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ON THE KK-THEORY AND THE E-THEORY OF

AMALGAMATED FREE PRODUCTS OF C�-ALGEBRAS

KLAUS THOMSEN

Abstract. We establish six terms exact sequences relating the KK-theory groups
and the E-theory groups of an amalgamated free product C�-algebra, A1 �B A2,
to the respective groups of the three constituents, A1; A2 and B. In the KK-
theory case we assume the existence of conditional expectations from Ak onto B
or that A1; A2 and B are all nuclear, and in the E-theory case that there exist
sequences Rk

n
: Ak ! B; n 2 N, of completely positive contractions such that

limn!1Rkn(b) = b for all b 2 B; k = 1; 2. This condition is full�lled e.g. when B
is nuclear or sits as a hereditary C�-subalgebra of the Ak's.

1. Introduction

Cuntz and Germain have conjectured the existence of two short exact sequences
which should relate the KK-groups of an amalgamated free product A1 �B A2 to
the KK-groups of A1; A2 and B. See Remark 2 of [C1], Conjecture 0.1 of [G2] and
Conjecture 3.11 of [G3] where the conjecture is formulated in varying generality.
In [C1] Cuntz proved the conjecture when there are retractions from the Ak's onto
B, in [G1] Germain proved it when B = C sits unitally inside the Ak's which
were assumed to be 'K-pointed', cf. De�nition 5.1 of [G1], a condition which he
subsequently, in [G2], weakened to K-nuclearity (in the sense of Skandalis, [S]).
Finally, in [G3] he announced a proof of the conjecture under certain technical
assumptions ('relative K-nuclearity') which among other things require the existence
of conditional expectations Pk : Ak ! B. In another direction the conjecture was
established in increasing generality for examples coming from groups or actions by
groups in [C2], [L], [N]. In this direction the ultimate result seems to be that
of Pimsner, [Pi], who obtained results which, among other, verify the conjecture
when G1 and G2 are countable discrete groups containing a common subgroup H,
Ak = AnGk; k = 1; 2; and B = AnH for some actions of G1 and G2 on A which
agree on H. However, in the general case the conjecture remained open even when
B = C .
In this paper we establish the conjectured six terms exact sequences when there

are conditional expectations Ak ! B; k = 1; 2, or A1; A2 and B are all nuclear. In
principle the method we use for this is the same as that of Germain. In [G2] and [G3]
Germain wrote down a �-homomorphism ' : C ! S(A1�BA2) between the mapping
cone C for the inclusion B ! A1�A2 and the suspension S(A1 �B A2) of A1 �B A2,
and made the observation that the conjecture is equivalent to the KK-invertibility of
'. He was then able to invert ' in KK-theory when B = C under the assumption on
A1 and A2 mentioned above. The method of proof that we shall use is in principle
the same, but the goal - to invert ' in KK-theory - is achieved by completely di�erent
means. In fact, we shall obtain the proof by working with extension groups in much
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the same way as in the work of L. Brown, [Br], who obtained partial results which
inspired Cuntz in the formulation of the conjecture, cf. Remark 2 of [C1]. By
working with extensions we shall establish enough of the desired exact sequences
to deduce that Germains homomorphism is invertible in KK-theory. To do this we
use two important ingredients which were not available when Brown did his work,
namely Boca's result on free products of completely positive unital maps, [Bo], and
the automatic existence of absorbing trivial extensions together with the related
duality results for KK-theory obtained in full generality by the author in [Th1].
A major part of the paper is an attack on the analogous conjecture in the E-theory

of Connes and Higson, [CH], and we obtain the desired six terms exact sequences
under even weaker conditions in this setting, as described in the abstract. The
approach we take for this is new: Provided B is properly embedded in both Ak's,
meaning that an approximate unit in B is also an approximate unit in Ak, there is
an exact sequence

0 // S(A1 �B A2) // cone(A1) �SB cone(A2) // A1 � A2
// 0; (1.1)

where A1 � A2 is the unrestricted free product. As shown by Cuntz, [C3], A1 � A2

is KK-equivalent to A1 � A2. Based on methods and results from [DE] and [Th2]
we show here that cone(A1) �SB cone(A2) is equivalent to B in E-theory provided
there are sequences of completely positive contractions Rn

k : Ak ! B such that
limn!1Rn

k(b) = b for all b 2 B; k = 1; 2. The desired exact sequences then come up
as the E-theory exact sequences arising from (1.1). Note that the extension (1.1) is
actually semi-split (this follows from Boca's result, [Bo]), so it is not inconceivable
that this extension can be used to obtain the result in KK-theory rather than E-
theory. However, the methods that we use here to show that cone(A1) �SB cone(A2)
is equivalent to B works only in E-theory. In a �nal section we point out a serious
limitation of our methods which explains why they stop short o� a proof in the
general case.

2. On absorbing extensions and asymptotic homomorphisms

In this section we gather a series of lemmas. Only the �rst two are needed for our
results in KK-theory. Let A and D be separable C�-algebras, D stable. Let M(D)
denote the multiplier algebra of D. Since D is stable there are isometries V1; V2 2
M(D) such that V1V

�

1 + V2V
�

2 = 1 and V �

1 V2 = 0 and we can de�ne the orthogonal
sum a� b of two elements a; b 2M(D) to be V1aV

�

1 + V2bV
�

2 . Similarly, we can add
maps, ';  : A ! M(D), orthogonally; viz. (' �  )(a) = V1'(a)V

�

1 + V2 (a)V
�

2 .
We call a �-homomorphism ' : A!M(D) absorbing when the following holds:
When � : A ! M(D) is a �-homomorphism, there is a sequence of unitaries

fUng �M(D) such that limn!1 Un('� �)(a)U�n � '(a) = 0 for all a 2 A.
See Theorem 2.5 of [Th1] for alternative characterizations of absorbing �-homomorphisms

which we shall use quite freely. By Theorem 2.7 of [Th1] there always exists an ab-
sorbing �-homomorphism.

Lemma 2.1. Let A;D be separable C�-algebras, D stable and B � A a C�-subalgebra
of A. Assume that that there is a sequence of completely positive contractions Rn :
A ! B such that limnRn(b) = b; b 2 B. If � : A ! M(D) is an absorbing
�-homomorphism, then �jB : B !M(D) is an absorbing �-homomorphism.
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Proof. By Theorem 2.5 of [Th1] we must show that the unitization (�jB)+ : B+ !
M(D) of �jB is unitally absorbing. We check that condition 1) of Theorem 2.1 of
[Th1] is satis�ed. Consider therefore a completely positive contraction ' : B+ ! D.
Then 'ÆR+

k : A+ ! D is also a completely positive contraction and since �+ : A+ !
M(D) is unitally absorbing, we know that there is a sequence fW k

ng � M(D) such
that limn!1 k'ÆR+

k (a)�W k
n

�
�+(a)W k

nk = 0 for all a 2 A+ and limn!1 kW k
n

�
dk = 0

for all d 2 D. Since limk!1R
+
k (b) = b for all b 2 B+ � A+, it follows that also

(�jB)+ = �+jB+ satis�es condition 1). �

Lemma 2.2. Let A;D be separable C�-algebras, D stable and B � A a C�-subalgebra
of A. Assume that B is nuclear. If � : A!M(D) is an absorbing �-homomorphism,
then �jB : B !M(D) is an absorbing �-homomorphism.

Proof. Since B is nuclear there are sequences Sn : B ! Fn; Tn : Fn ! B; n 2 N , of
completely positive contractions, where the Fn's are �nite dimensional C�-algebras,
such that limn!1 Tn ÆSn(b) = b for all b 2 B. By Arvesons extension theorem, [A1],
there is for each n a completely positive contraction, Vn : A ! Fn, extending Sn.
Set Rn = Tn Æ Vn and apply Lemma 2.1. �

Throughout the rest of the paper A1; A2; B;D are separable C�-algebras with D
stable, and ik : B ! Ak; k = 1; 2, are embeddings.

Lemma 2.3. Assume that there are sequences Rk
n : Ak ! B; n = 1; 2; 3; � � � ; of

completely positive contractions such that limn!1Rk
n(ik(b)) = b for all b 2 B; k =

1; 2. Let �k : Ak ! M(D); k = 1; 2, be saturated and absorbing �-homomorphisms.
It follows that there is a normcontinuous path futgt2[1;1) of unitaries in M(D) such
that ut�1 Æ i1(b)u�t � �2 Æ i2(b) 2 D for all t 2 [1;1); b 2 B, and limt!1 ut�1 Æ
i1(b)u

�

t � �2 Æ i2(b) = 0 for all b 2 B.

Proof. Recall from [Th2] that �k being saturated means that the in�nite direct sum
0 � �k � �k � �k � � � � is unitarily equivalent to �k. It follows from Lemma 2.1
that �k Æ ik : B ! M(D); k = 1; 2, are both absorbing (and saturated). From the
uniqueness of absorbing �-homomorphisms it follows that �1 Æ i1 � (�2 Æ i2)1 �
�1 Æ i1 and (�1 Æ i1)1 � �2 Æ i2 � �2 Æ i2, in the notation of [DE]. It follows
therefore from Lemma 2.4 of [DE] that there is a normcontinuous path fwtgt2[1;1)

of unitaries in M(D) such that wt(�1 Æ i1)1(b)w�t � (�2 Æ i2)1(b) 2 D for all t; b, and
limt!1 wt(�1 Æ i1)1(b)w�t � (�2 Æ i2)1(b) = 0 for all b 2 B. Since �k is saturated, �k
is unitarily equivalent to (�k)1, so the conclusion follows. �

In the following we shall consider the suspensions SA1; SA2; SB and the cones
cone(A1); cone(A2); cone(B). The embeddings ik : B ! Ak; k = 1; 2, induce embed-
dings between some of these algebras (e.g. SB ! cone(Ak)) in a natural way, and
in order to avoid too heavy notation we shall denote a map induced by ik : B ! Ak
by ik again. It will always be clear from the context which domain and target is
meant.

Lemma 2.4. Assume that there are sequences Rk
n : Ak ! B; n = 1; 2; 3; � � � ; of com-

pletely positive contractions such that limn!1Rk
n(ik(b)) = b for all b 2 B; k = 1; 2.

There exist absorbing and saturated �-homomorphisms �k : cone(Ak)!M(D); k =
1; 2, such that �k Æ ik : cone(B)!M(D); k = 1; 2, are both absorbing and saturated,
and there exist normcontinuous paths, fptgt2[0;1); fwtgt2[0;1), of elements in M(D)
such that the wt's are unitaries, and
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1) 0 � pt � 1; t 2 [0;1),
2) pt�k(cone(Ak)) � D ; t 2 [0;1); k = 1; 2;
3) (p2t � pt)�k(cone(Ak)) = f0g ; t 2 [0;1),
4) limt!1 ptd = d ; d 2 D,
5) limt!1 kpt�k(a)� �k(a)ptk = 0 ; a 2 cone(Ak); k = 1; 2,
6) p0 = 0; p2n = pn; n = 1; 2; 3; � � � ,
7) limt!1wt�1 Æ i1(b)w�t � �2 Æ i2(b) = 0 for all b 2 cone(B),
8) limt!1 ptwt � wtpt = 0.

Except for 7) and 8), Lemma 2.4 follows from Theorem 3.7 of [Th2]. To obtain 7)
and 8), which will be crucial for us here, we must elaborate on the proof of Theorem
3.7 of [Th2] as follows.

Lemma 2.5. Let D be a separable C�-algebra. Let K1 � K2 � M(D) and F � D
be compact subsets. Let Æ > 0 and assume that p 2 M(D) is a projection such that
[p;m] 2 D; m 2 K2, and

kmp� pmk < Æ ; m 2 K1: (2.1)

Let 0 � z � 1 be a strictly positive element in (1� p)D(1� p) and let �1; �2 2 ]0; 1[
be given. There is then a continuous function h : [0; 1] ! [0; 1] such that h is zero
in a neighbourhood of 0, h(t) = 1; t � �1,

sup
t2[0;1]

k[m; p+ h(tz)]k < 5Æ ; m 2 K1 ; (2.2)

k[m; p+ h(z)]k < �2 ; m 2 K2 ; (2.3)

and

kpd+ h(z)d� dk < �2 ; d 2 F : (2.4)

Proof. Let � denote the convex set of continuous functions H : [0; 1] ! [0; 1] such
that H is zero in a neighbourhood of 0 and H(t) = 1; t � �1. For each x 2 K2 de�ne
a multiplier ~x of cone((1� p)D(1� p)) by (~xf)(t) = (1� p)x(1� p)f(t) ; t 2 [0; 1],
and de�ne ~H 2 cone((1� p)D(1� p)) by ~H(t) = H(tz). Since t 7! tz is a strictly
positive element of cone((1 � p)D(1 � p)), f( ~H; p +H(z))gH2� is a convex net in
cone((1� p)D(1� p))�M(D) such that

lim
H2�

( ~H; p+H(z))X = X

for allX 2 cone((1�p)D(1�p))�D. Since [m; p] 2 D for allm 2 K2 we can therefore
use the arguments from the proof of the existence of quasi-central approximate units
to �nd a h 2 � such that k[(~x; y); (~h; p+h(z))]k < minfÆ; �2g; x 2 K1; y 2 K2, and
kpd+ h(z)d� dk < �2; d 2 F . In particular (2.3) and (2.4) hold and we have that

sup
t2[0;1]

k[(1� p)x(1� p); h(tz)]k < Æ; x 2 K1 : (2.5)

Since [x; h(tz)] = [(1� p)x(1� p); h(tz)] + [(1� p)xp; h(tz)] + [px(1� p); h(tz)], we
get (2.2) by combining (2.5) with (2.1).

�

Let H be an in�nite-dimensional separable Hilbert space. We can then de�ne
g : [0;1[! [0; 2] by

g(s) = supfk[a;px]k : a; x 2 B(H); kak � 1; 0 � x � 1; k[a; x]k � sg :
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By the lemma on page 332 of [A2], g is continuous at 0, i.e. lims!0 g(s) = 0. g
will feature in the next lemma. In that lemma we introduce the notation 0n for the
zero in the n-by-n matrices over a C�-algebra.

Lemma 2.6. Let A and D be separable C�-algebras with A contractible. Let 't :
A! A; t 2 [0; 1], be a homotopy of endomorphisms of A such that '0 = id and '1 =
0, and let L �M(D) be a �xed subset. Let F0 � F1 � A and K � D; G0 � G1 � L
be compact subsets. Let � : A ! M(D) be a �-homomorphism and p 2 M(D) a
projection such that p�(A) � D; [p;m] 2 D; m 2 L, kp�('t(a)) � �('t(a))pk <
�; a 2 F0; t 2 [0; 1], and kpm�mpk < �; m 2 G0, for some � > 0.

For any � > 0 there is an n 2 N, a �-homomorphism �1 : A!M(Mn(D)) of the
form

�1(a) = diag(�('s1(a)); �('s2(a)); � � � ; �('sn(a)))
for some s1; s2; � � � ; sn 2 [0; 1]; s1 = 0; sn = 1, and a normcontinuous path pt; t 2
[0; 1], of elements pt 2M(Mn+1(D)) such that

1) 0 � pt � 1; t 2 [0; 1],

2) (p2t � pt)
�
�(a)

�1(a)

�
= 0 ; a 2 A; t 2 [0; 1],

3) pt
�
�(a)

�1(a)

�
2 Mn+1(D) ; a 2 A; t 2 [0; 1],

4) kpt
�
�(a)

�1(a)

�
�
�
�(a)

�1(a)

�
ptk � 6g(20�) + 3� ; a 2 F0; t 2 [0; 1],

5) ( p 0n ) � pt; t 2 [0; 1],

6) kp1
�
�('t(a))

�1('t(a))

�
�
�
�('t(a))

�1('t(a))

�
p1k � � ; a 2 F1; t 2 [0; 1],

7) kp1
�
d
0n

� � �
d
0n

� k � � ; d 2 K,
8) p1 = p21; p0 = ( p 0n ),
9) [(1Mn+1(C ) 
m); pt] 2Mn+1(D); m 2 L; t 2 [0; 1],
10) k[(1Mn+1(C ) 
m); pt]k � 6g(20�) + 3� ; m 2 G0; t 2 [0; 1],
11) k[p1; (1Mn+1(C ) 
m)]k � � ; m 2 G1.

Proof. The proof is an elaboration of Voiculescus proof of Proposition 3 in [V]. Let

Æ > 0 be so small that 6g(4Æ)+3Æ < �; Æ < � and Æ+
pkdkÆ < � for all d 2 K. Choose

n so large that t; s 2 [0; 1]; js� tj � (n� 1)�1 ) k't(a)�'s(a)k < Æ; a 2 F1. Let
0 � z � 1 be a strictly positive element in (1� p)D(1� p). It follows from Lemma
2.5 that there are continuous functions gi : [0; 1]! [0; 1]; i = 0; 1; � � � ; n� 1, which
are all zero in a neighbourhood of 0 such that gjgj�1 = gj�1; j = 1; 2; � � � ; n � 1,
and such that the elements xj = p+ gj(z) and x

t
j = p+ gj(tz) satisfy that

kxjm�mxjk < Æ; m 2 G1; (2.6)

kxj� Æ 's(a)� � Æ 's(a)xjk < Æ ; a 2 F1; (2.7)

kxtj� Æ 's(a)� � Æ 's(a)xtjk < 5�; a 2 F0; (2.8)

and

kxtjm�mxtjk < 5�; m 2 G0; (2.9)

for all s; t and all j = 0; 1; 2; � � � ; n�1, and kx0d�dk � Æ; d 2 K. Set sj =
j�1
n�1

; j =
1; 2; � � � ; n, and �1 = diag(� Æ 's1; � Æ 's2 ; � � � ; � Æ 'sn). Let

pt =
� p

0n�1
2t(1�p)

�
; t 2 [0;

1

2
] :
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Then 1)-5), 9) and 10) hold trivially for t 2 [0; 1
2
]. Note that xtix

t
i�1 = xti�1; i =

1; � � � ; n � 1. Set X0
t = x2t�10 ; Xj

t = x2t�1j � x2t�1j�1 ; j = 1; 2; � � � ; n � 1, and

Xn
t = 1� x2t�1n�1 ; t 2 [1

2
; 1]. De�ne Tt 2M(Mn+1(D)); t 2 [1

2
; 1], by

Tt =

0BBB@
p
X0
t 0 : : : 0p

X1
t 0 : : : 0

...
...

. . .
...p

Xn
t 0 : : : 0

1CCCA :

Then TtT
�

t is a projection since T �t Tt clearly is. Since T 1
2
T �1

2

= p 1
2
we can extend

pt; t 2 [0; 1
2
], to a continuous path inM(Mn+1(D)) by setting pt = TtT

�

t ; t 2 [1
2
; 1].

Then 1) and 2) clearly hold and 3) follows from the observation that�
�(a)

�1(a)

�
Tt � Mn+1(D) ; a 2 A; t 2 [

1

2
; 1] :

It follows from (2.7) and (2.8), by using that TtT
�

t is tri-diagonal as in the proof of
Proposition 3 in [V], that

k[p1;
�
�('s(a))

�1('s(a))

�
]k � 6g(4Æ) + 3Æ � �; a 2 F1 s 2 [0; 1];

and

k[pt;
�
�(a)

�1(a)

�
]k � 6g(20�) + 3� ; a 2 F0 ; t 2 [

1

2
; 1] ;

i.e. 4) and 6) hold. 10) and 11) follow in the same way. 5) is trivial when t 2 [0; 1
2
]

and for t > 1
2
it follows from the observation that

( p 0n )Tt = ( p 0n ) ; ( p 0n )T
�

t = ( p 0n ) :

It is straightforward to check that kp1
�
d
0n

��� d 0n

� k � kX0
1d�d+

p
X1

1

p
X0

1dk �
Æ +

pkdkÆ when d 2 K, and 7) holds. 8) is trivial and 9) is a consequence of the
construction of pt and the assumption that [m; p] 2 D; m 2 L.

�

Proof. (of Lemma 2.4) We apply �rst Lemma 2.3 to obtain saturated and absorbing
�-homomorphisms �k : cone(Ak) ! M(D); k = 1; 2, and a normcontinuous path
futgt2[1;1) of unitaries in M(D) such that limt!1 ut�1 Æ i1(b)u�t � �2 Æ i2(b) = 0
for all b 2 cone(B). De�ne � : cone(A1) � cone(A2) ! M(D) by �(a1; a2) =
�1(a1) � �2(a2). There is then a normcontinuous path fvtgt2[0;1) of unitaries in
M(D) such that vt�(i1(b); 0)v

�

t � �(0; i2(b)) 2 D for all t 2 [0;1); b 2 cone(B),
and limt!1 vt�(i1(b); 0)v

�

t � �(0; i2(b)) = 0 for all b 2 cone(B). Let F1 � F2 �
F3 � � � � and G1 � G2 � G3 � � � � be sequences of �nite sets with dense union in
cone(A1) � cone(A2) and D, respectively. By using Lemma 2.6 with L = fvs : s 2
[0;1)g we can construct a sequence 1 = n0 < n1 < n2 < � � � of natural numbers,
paths pi(t); t 2 [i; i + 1]; in Mni(M(D)); i = 0; 1; 2; � � � , and �-homomorphismse�i : cone(A1) � cone(A2) ! Mni�ni�1(M(D)); i = 1; 2; � � � , such that �0 = � and
�i = �i�1 � e�i : cone(A1)� cone(A2)!Mni(M(D)); i = 1; 2; � � � , satisfy

1) 0 � pi(t) � 1; t 2 [i; i+ 1]; i = 0; 1; 2; � � � ,
2) kpi(t)�i(a) � �i(a)pi(t)k � 1

i
; a 2 Fi ; t 2 [i; i+ 1]; i = 0; 1; 2; � � � ,

3) pi(t)�i(cone(A1)� cone(A2)) � Mni(D); t 2 [i; i + 1]; i = 0; 1; 2; � � � ,
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4) kpi+1(t)
�
d
0ni�ni�1

�
�

�
d
0ni�ni�1

�
k � 1

i
when all the entries of d 2

Mni�1(D) come from Gi, t 2 [i+ 1; i+ 2]; i = 1; 2; 3; � � � ,
5) (pi(t)

2� pi(t))�i(cone(A1)� cone(A2)) = f0g ; t 2 [i; i+1]; i = 0; 1; 2; � � � ,
6) pi(i + 1) = pi(i+ 1)2; pi(i) =

�
pi�1(i) 0

0 0ni�ni�1

�
; i = 1; 2; 3; � � � ,

7) kpi(t)(1Mni
(C ) 
 vs)� (1Mni

(C ) 
 vs)pi(t)k � 1
i
; t 2 [i; i+ 1]; s 2 [0; i+ 1]; i =

0; 1; 2; � � � ,
8) [pi(t); (1Mni

(C ) 
 vs)] 2Mni(D); t 2 [0; 1]; s 2 [0;1),

and p0 = 0. Note that thanks to the way �1 is constructed in Lemma 2.6 we
�nd that e�i has the form e�i = �i�1 � 'i � 0ni�1 for some �-homomorphism 'i :
cone(A1)� cone(A2)!Mni�2ni�1(M(D)), and that

lim
t!1

sup
i

k(1Mni
(C ) 
 vt)�i(i1(b); 0)(1Mni

(C ) 
 v�t )� �i(0; i2(b))k = 0

for all b 2 cone(B). Now de�ne '0 : cone(A1)� cone(A2)! LD (l2(D)) by '0(a) =
diag(�(a); e�1(a); e�2(a); e�3(a); � � � ), and set

p0t =

�
pi(t)

01

�
; t 2 [i; i + 1] ; i = 0; 1; 2; � � � ;

and w0t = diag(vt; vt; vt; � � � ); t 2 [0;1). '0 is unitarily equivalent to a �-homomorphism
� : cone(A1) � cone(A2) ! M(D) since l2(D) ' D as Hilbert D-modules. Via
the isomorphism l2(D) ' D, p0 and w0 become paths in M(D) which satisfy 1)-8)
relative to �1(a) = �(a; 0) and �2(a) = �(0; a) in the statement of the lemma. �k
and �k Æ ik; k = 1; 2, are all absorbing because �1 and �2 are, and they are also
all saturated because each �i occurs in�nitely often as a direct summand in the
sequence e�1; e�2; e�3; � � � . �

Lemma 2.7. Assume that there are sequences Rk
n : Ak ! B; n = 1; 2; 3; � � � ; k =

1; 2, of completely positive contractions such that limn!1Rk
n(ik(b)) = b for all

x 2 B; k = 1; 2. For any pair of asymptotic homomorphisms ';  : cone(B) ! D,
there are asymptotic homomorphisms �k : cone(Ak) ! D; k = 1; 2, such that
limt!1 �1t Æ i1(x) � �2t Æ i2(x) = 0; x 2 cone(B), and a normcontinuous path of
unitaries fWtgt2[1;1) in M2(D)+ such that

lim
t!1

Wt

�
't(x)

�1
t
Æi1(x)

�
W �

t �
�
 t(x)

�1
t
Æi1(x)

�
= 0

for all x 2 cone(B).

Proof. Let ~ ; ~' : cone(B) ! Cb([1;1); D)=C0([1;1); D) be the �-homomorphisms
arising from  and ', respectively. By Lemma 2.6 of [Th2] there is a stable separable

C�-algebra D0 � Cb([1;1); D)=C0([1;1); D) such that ~ (cone(B))[ ~'(cone(B)) �
D0. For any C

�-algebra X, de�ne p : cone(X)! cone(X) and s : cone(X)! SX �
cone(X) by p(f)(t) = f( t

2
) and

s(f)(t) =

(
f(2t); t 2 [0; 1

2
]

f(2� 2t); t 2 [1
2
; 1]

:

Note that ~ Æ pjSB and ~' Æ pjSB both represent zero in [[SB;D0]]cp. Let pt; wt; �1

and �2 be as in Lemma 2.4, relative to D0. By Theorem 4.1 in [Th2] there is an
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increasing continuous function r : [1;1) ! [1;1) with limt!1 r(t) = 1 and a
normcontinuous path fStgt2[1;1) of unitaries in M2(D0)

+ such that

lim
t!1

St
�

~'Æp(x)
pr(t)�1Æi1(x)pr(t)

�
S�t �

�
~ Æp(x)

pr(t)�1Æi1(x)pr(t)

�
= 0

for all x 2 SB. Set
Tt =

�
1
wr(t)

�
St

�
1
w�
r(t)

�
and l1t (�) = wr(t)pr(t)�1(�)pr(t)w�r(t); l2t (�) = pr(t)�2(�)pr(t). Then lk : cone(Ak) !
D0; k = 1; 2, are asymptotic homomorphisms such that limt!1 l1t Æi1(b)�l2t Æi2(b) = 0
for all b 2 cone(B) and

lim
t!1

Tt

�
~'Æp(b)

l1
t
Æi1(b)

�
T �t �

�
~ Æp(b)

l1
t
Æi1(b)

�
= 0

for all b 2 SB. Note that fTtgt2[1;1) is a normcontinuous path of unitaries in
M2(D0)

+. Let � : Cb([1;1); D+)=C0([1;1); D+)! Cb([1;1); D+) be a continuous
right-inverse for the quotient map q : Cb([1;1); D+)! Cb([1;1); D+)=C0([1;1); D+).
Standard arguments give us a normcontinuous path of unitaries fVtg in M2(D)+

such that (idM2 
q)(Vt) = Tt. Set �kt (x) = �(lk
s�1(t)(x))(t) for a suÆciently rapidly

increasing continuous bijection s : [1;1) ! [1;1). If s increases fast enough, this
will give us asymptotic homomorphisms �k : cone(Ak) ! D; k = 1; 2, such that
limt!1 �1t Æ i1(x) � �2t Æ i2(x) = 0; x 2 cone(B), and a normcontinuous path of
unitaries Wt = Vs�1(t)(t) in M2(D)+ such that

lim
t!1

Wt

�
'tÆp(x)

�1
t
Æi1(x)

�
W �

t �
�
 tÆp(x)

�1
t
Æi1(x)

�
= 0

for all x 2 SB. Set �k = �k Æ s : cone(Ak)! D; k = 1; 2. Then �k Æ ik = �k Æ s Æ ik =
�k Æ ik Æ s and hence limt!1 �1t Æ i1(x)� �2t Æ i2(x) = 0; x 2 cone(B), and

lim
t!1

Wt

�
't(x)

�1
t
Æi1(x)

�
W �

t �
�
 t(x)

�1
t
Æi1(x)

�
= 0

for all x 2 cone(B). �

3. Results in KK-theory

Assume now that A1; A2; B and ik : B ! Ak; k = 1; 2, are all unital. Let jk :
Ak ! A1 �B A2; k = 1; 2, be the natural maps. The basic assumption in this section
is that there is an absorbing �-homomorphism � : A1�BA2 !M(D) such that �Æjk
and � Æ jk Æ ik; k = 1; 2, are all absorbing. (Of course, � Æ j1 Æ i1 = � Æ j2 Æ i2.) This
is the case when either,

a) there are surjective conditional expectations Pk : Ak ! B; k = 1; 2,

or

b) A1; A2 and B are all nuclear.

Indeed, in case a) it follows from [Bo] that there are also conditional expectations
idA1 �BP2 : A1 �B A2 ! A1 and P1 �B idA2 : A1 �B A2 ! A2. Hence by Lemma
2.1 any absorbing �-homomorphism � : A1 �B A2 ! M(D) will have the desired
property. And � exists by Theorem 2.7 of [Th1]. In case b) it suÆces to use Lemma
2.2 instead, plus the non-trivial fact that jk : Ak ! A1 �B A2; k = 1; 2, are injective,
see Theorem 3.1 of [Bl] or Theorem 4.2 of [P2].
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This � will be �xed throughout this section. To simplify notation we set �k =
� Æ jk; k = 1; 2. Set

Ak = fx 2M(D) : x�k(a)� �k(a)x 2 D; a 2 Akg;
Bk = fx 2 Ak : x�k(a) 2 D; a 2 Akg;
A = fx 2M(D) : x�1 Æ i1(b)� �1 Æ i1(b)x 2 D; b 2 Bg;
B = fx 2 A : x�1 Æ i1(b) 2 D; b 2 Bg:

Obviously, Ak � A; k = 1; 2, and since A1; A2; B share the same unit, we see that
B1 = B2 = B. Hence Ak=Bk � A=B; k = 1; 2. By Theorem 3.2 of [Th1] we can make
the following identi�cations

KK(Ak; D) = K1(Ak=Bk); k = 1; 2;

KK(B;D) = K1(A=B):
In the following, when given a �-homomorphism ' : E ! F between C�-algebras,

we will denote the �-homomorphism E !Mn(F ), given by

E 3 e 7! diag('(e); '(e); � � � ; '(e));
by [1n 
 ']. Let qD : M(D) ! Q(D) = M(D)=D be the quotient map. We
de�ne a map � : KK(B;D) ! Ext�1(A1 �B A2; D) in the following way. Let
u be a unitary Mn(A=B) for some n, and let ~u 2 Mn(A) be a lift of u. Then
~u[1n 
 �1 Æ i1](b)~u� � [1n 
 �2 Æ i2](b) 2Mn(D) for all b 2 B and ~u~u�[1n 
 �1](a) =
~u�~u[1n 
 �1](a) = [1n 
 �1](a) modulo Mn(D) for all a 2 A1, so

�(u) = (qMn(D) Æ Ad ~u Æ [1n 
 �1]) �B (qMn(D) Æ [1n 
 �2])

is a well-de�ned extension, �(u) : A1 �B A2 ! Q(Mn(D)) ' Q(D).

Lemma 3.1. �(u) is an invertible extension. In fact,
�
�(u)

�(u�)

�
is a split extension.

Proof. Choose �rst a unitary lift w 2M2n(A) of ( u u� ). Then�
�(u)

�(u�)

�
= (qM2n(D) Æ Adw Æ [12n 
 �1]) �B (qM2n(D) Æ [12n 
 �2]):

As is wellknown, there is a continuous path of unitaries in M2n(A) connecting w to
a unitary w0 2M2n(B)+. Set w1 = ww�0 2M2n(A), and observe that�

�(u)
�(u�)

�
= (qM2n(D) Æ Adw1 Æ [12n 
 �1]) �B (qM2n(D) Æ [12n 
 �2]):

Note that Adw1 leaves [12n 
 �1 Æ i1]+(B+) +M2n(D) globally invariant and that
the path of unitaries in M2n(A) connecting w1 to 1 shows that the automorphism
of [12n
�1 Æ i1]+(B+)+M2n(D) given by Adw1 is homotopic to the identity in the
uniform normtopology. Consequently this automorphism is inner by Corollary 8.7.8
of [P1], i.e. there is a unitary T 2 [12n
�1 Æ i1]+(B+)+M2n(D) such that w1xw

�

1 =
TxT � for all x 2 [12n 
 �1 Æ i1]+(B+) +M2n(D). Write T = [12n 
 �1 Æ i1]+(S) + d,
where S 2 B+ and d 2M2n(D). Since �1 Æ i1 is absorbing, qM2n(D) Æ [12n 
 �1 Æ i1]+
is injective, so we conclude that S is a unitary. Furthermore, since

qM2n(D) Æ [12n 
 �1 Æ i1](b)
= qM2n(D) Æ Adw1 Æ [12n 
 �1 Æ i1](b) = qM2n(D) Æ [12n 
 �1 Æ i1](SbS�)
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for all b 2 B, we conclude that SbS� = b for all b 2 B. We can therefore de-
�ne an automorphism � = (AdS) �B idA2 of A1 �B A2 such that � Æ j1(x) =
j1(i

+
1 (S)

�xi+1 (S)); x 2 A1, and � Æ j2(y) = j2(y); y 2 A2. Then�
�(u)

�(u�)

�
Æ�

= (qM2n(D) Æ Ad(w1[12n 
 �1 Æ i1]+(S)�) Æ [12n 
 �1]) �B (qM2n(D) Æ [12n 
 �2])

= (qM2n(D) Æ Ad(w1T
�) Æ [12n 
 �1]) �B (qM2n(D) Æ [12n 
 �2])

which admits the lift (Ad(w1T
�)Æ [12n
�1])�B [12n
�2]) : A1�BA2 !M2n(M(D)).

It follows that
�
�(u)

�(u�)

�
admits the lift ((Ad(w1T

�)Æ [12n
�1])�B [12n
�2])Æ��1.

�

Given Lemma 3.1 it is clear that the construction gives us a homomorphism
� : KK(B;D)! Ext�1(A1 �B A2; D).

Lemma 3.2.

KK(A1; D)�KK(A2; D)
i�1�i

�

2 // KK(B;D)
� // Ext�1(A1 �B A2; D)

(j�1 ;j
�

2 )

��

Ext�1(B;D) Ext�1(A1; D)� Ext�1(A2; D)
i�1�i

�

2

oo

is exact.

Proof. Exactness at KK(B;D): Consider elements vk 2 Mn(Ak) that are unitaries
modulo Mn(Bk). Then

(qMn(D) Æ Ad v�2v1 Æ [1n 
 �1]) �B (qMn(D) Æ [1n 
 �2])

is unitarily equivalent to

(qMn(D) Æ Ad v1 Æ [1n 
 �1]) �B (qMn(D) Æ Ad v2 Æ [1n 
 �2]) =

(qMn(D) Æ [1n 
 �1]) �B (qMn(D) Æ [1n 
 �2]) = qMn(D) Æ [1n 
 �];

which is a split extension. This shows that � Æ (i�1 � i�2) = 0. Consider then a
unitary u 2 Mn(A=B) and assume that [�(u)] = 0 in Ext�1(A1 �B A2; D). Since �
is absorbing this implies that

Ad qMn+1(D)(W ) Æ � �(u) qDÆ� � = � qMn(D)Æ[1n
�]
qDÆ�

�
for some unitary W 2 Mn+1(M(D)). Alternatively,

Ad qMn+1(D)(W ) Æ
�
qMn(D)ÆAd ~uÆ[1n
�1]

qDÆ�1

�
=
�
qMn(D)Æ[1n
�1]

qDÆ�1

�
and

Ad qMn+1(D)(W ) Æ
�
qMn(D)Æ[1n
�2]

qDÆ�2

�
=
�
qMn(D)Æ[1n
�2]

qDÆ�2

�
Hence W � and W ( ~u

1 ) represent unitaries in Mn+1(A2=B2) and Mn+1(A1=B1), re-
spectively, and since the product of their images inMn+1(A=B) is ( u 1 ), we conclude
that [u] is in the range of i�1 � i�2.
Exactness at Ext�1(A1 �B A2; D): It is obvious that the composition (j�1 ; j

�

2) Æ � is
zero, so consider an extension - a priori not necessarily invertible - ' : A1 �B A2 !
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Q(D) with the property that ' Æ jk; k = 1; 2, are both split. Since �k is absorbing
there are unitaries Sk 2M2(M(D)) such that

Ad qM2(D)(Sk) Æ
�
'Æjk

qDÆ�k

�
= ( qDÆ�k qDÆ�k ) ;

k = 1; 2. It follows that S2S
�

1 2 M2(A) and that ( ' qDÆ� ) is unitarily equivalent
to (Ad qM2(D)(S2S

�

1) Æ [12 
 �1]) �B [12 
 �2] which is clearly in the range of �. In
particular, ' is invertible afterall, and we have exactness at Ext�1(A1 �B A2; D).
Exactness at Ext�1(A1; D)�Ext�1(A2; D): It is trivial that (i�1� i�2)Æ (j�1 ; j�2) = 0,

so consider a pair of invertible extensions 'k : Ak ! Q(B); k = 1; 2, with the
property that i�1['1] = i�2['2]. There is then a unitary S 2M2(M(D)) such that

Ad qM2(D)(S) Æ
�
'1Æi1

qDÆ�1Æi1

�
=
�
'2Æi2

qDÆ�2Æi2

�
:

After adding qD Æ �k to 'k we may assume that '1 Æ i1 = '2 Æ i2. Similarly, if
 k : Ak ! Q(D) represents the inverse of 'k in Ext�1(Ak; D); k = 1; 2, we may
assume that  1 Æ i1 =  2 Æ i2. We can then consider the two extensions '1 �B
'2;  1 �B  2 : A1 �B A2 ! Q(B) whose sum � = ('1 �B '2) � ( 1 �B  2) has the
property that � Æ jk : Ak ! Q(D); k = 1; 2, both split. By the arguments in the last
paragraph we conclude that � and hence also '1 �B '2 is an invertible extension.
Since 'k = ('1 �B '2) Æ jk; k = 1; 2, the proof is complete. �

Theorem 3.3. Let A1; A2; B be separable C�-algebras. Assume that ik : B !
Ak; k = 1; 2, are embeddings, and that there are surjective conditional expectations
Pk : Ak ! ik(B); k = 1; 2, or that A1; A2 and B are all nuclear. Let jk : Ak !
A1 �B A2; k = 1; 2, be the natural maps. For any separable C�-algebra D there are
six terms exact sequences

KK(D;B)
(i1�;i2�) // KK(D;A1)�KK(D;A2)

j1��j2� // KK(D;A1 �B A2)

��
KK(SD;A1 �B A2)

OO

KK(SD;A1)�KK(SD;A2)
j1��j2�

oo KK(SD;B)
(i1�;i2�)

oo

and

KK(B;D)

��

KK(A1; D)�KK(A2; D)
i1
��i2

�

oo KK(A1 �B A2; D)
(j�1 ;j

�

2 )oo

KK(A1 �B A2; SD)
(j�1 ;j

�

2 )
// KK(A1; SD)�KK(A2; SD)

i1
��i2

�

// KK(B; SD) :

OO

Proof. Consider �rst the case where A1; A2 and B share the same unit, and let
' : C ! S(A1 �B A2) be Germain's �-homomorphism, cf. [G3], where C is the
mapping cone for the embedding B ! A1�A2. ' relates the Puppe exact sequence
of Theorem 1 in [CS] to the exact sequence in Lemma 3.2 in such a way that we can
conclude from the �ve lemma that '� : KK(S(A1 �B A2); D) ! KK(C;D) is an
isomorphism. Since D is arbitrary here, standard KK-theory arguments show that
['] 2 KK(C; S(A1 �B A2)) is invertible. By using that (A1 �B A2)

+ = A+
1 �B+ A+

2 it
follows straightforwardly that ['] is also invertible in the general (non-unital) case.
As pointed out by Germain in [G3], this completes the proof. �
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The possibilities of our approach are not completely exhausted; if we assume that
D is nuclear we can obtain the second of the six terms exact sequences in Theorem
3.3 without any conditions on ik : B ! Ak; k = 1; 2.

Theorem 3.4. Let A1; A2; B be separable C�-algebras. Assume that ik : B !
Ak; k = 1; 2, are embeddings, and let jk : Ak ! A1 �B A2; k = 1; 2, be the natural
maps. For any separable nuclear C�-algebra D the following six terms sequence is
exact:

KK(A1; D)�KK(A2; D)
i�1�i

�

2 // KK(B;D)
� // Ext�1(A1 �B A2; D)

(j�1 ;j
�

2 )

��
KK(A1 �B A2; D)

(j�1 ;j
�

2 )

OO

Ext�1(B;D)
�Æ�Æ�

oo Ext�1(A1; D)� Ext�1(A2; D) ;
i�1�i

�

2

oo

where � : Ext�1(�; D) ! KK(�; SD) and � : Ext�1(�; SD) ! KK(�; D) are
Kasparov's natural transformations.

Proof. By adjoining units we may assume that A1; A2 and B share the same unit,
and we may assume that D is stable. By Theorem 5 of [K] the nuclearity of D
implies that any absorbing �-homomorphism � : A1 �B A2 ! M(D) restricts to
absorbing �-homomorphisms on A1; A2 and B. Consequently the proof of Lemma
3.2 works to give us the stated six terms exact sequence. �

In particular, Theorem 3.4 calculates of the K-homology of an arbitrary amalga-
mated free product of separable C�-algebras.
The crucial Lemma 3.2 in this section is in some sense merely an updated version

of the result in [Br]. Brown's result contains also the statement that Ext(A1 �B A2)
is a group when Ext(Ak); k = 1; 2, are groups and B is �nite dimensional. This part
of Brown's result can now be improved as follows.

Proposition 3.5. Let A1; A2; B;D be separable C�-algebras, D stable. Assume that
ik : B ! Ak; k = 1; 2, are embeddings, and that Ext(Ak; D); k = 1; 2, are both
groups. If either
a) there are surjective conditional expectations Ak ! B; k = 1; 2,
or
b) A1; A2 and B are nuclear,
or
c) D is nuclear,
it follows that also Ext(A1 �B A2; D) is a group.

Proof. The assumptions ensure that there is an absorbing �-homomorphism � :
A1 �B A2 ! M(D) such that � Æ jk; k = 1; 2, and � Æ j1 Æ i1 = � Æ j2 Æ i2 are all
absorbing; in case a) this follows from Lemma 2.1, in case b) from Lemma 2.2 and in
case c) from Theorem 5 of [K]. Therefore the arguments from the proof of Lemma
3.2 give that every extension of A1 �B A2 by D is invertible.

�

As a particular case of c) in Proposition 3.5 we get that Ext(A1 �B A2) is always
a group when Ext(Ak); k = 1; 2, both are. It is wellknown that the assumption that
Ext(Ak; D); k = 1; 2, are groups is redundant in case b).
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4. An appropriate picture of the E-theory groups

Let A;D be separable C�-algebras, D stable. In this section an E-pair for (A;D)
will be a pair (W;'), where ' : cone(A)! D is an asymptotic homomorphism and
W = fWtgt2[1;1) is a strictly continuous path of unitaries in M(D) such that

lim
t!1

kWt't(a)� 't(a)Wtk = 0 (4.1)

for all a 2 SA. The pair (W;') is degenerate when (4.1) holds for all a 2 cone(A).
We let X0(A;D) denote the set of homotopy classes of E-pairs, where a homotopy
is given by an E-pair for (A;C[0; 1] 
 D). The direct sum of E-pairs, performed
with the aid of any pair V1; V2 of isometries in M(D) such that V �

1 V2 = 0 and
V1V

�

1 + V2V
�

2 = 1, makes obviously X0(A;D) into an abelian semigroup. The sub-
semigroup of X0(A;D) consisting of the elements of X0(A;D) that can be repre-
sented by a degenerate E-pair will be denoted by X00(A;D). The quotient semi-
group X(A;D) = X0(A;D)=X00(A;D) is then an abelian group; a standard rotation
argument shows that (W;')� (W �; ') is homotopic to a degenerate E-pair. De�ne
a map � : X(A;D) ! [[S2A;D]] in the following way. Given an E-pair (W;') we
can de�ne an asymptotic homomorphism W 
 ' : C(T) 
 SA! D such that

lim
t!1

(W 
 ')t(g 
 f)� g(Wt)'t(f) = 0

for all g 2 C(T); f 2 SA. We set �[W;'] = i�[W
'], where i : S2A! C(T)
SA is
the canonical embedding. To show that � is an isomorphism, we need two lemmas.

Lemma 4.1. Let ' : C(T) 
 A ! D be an asymptotic homomorphism. There is
then a strictly continuous path W = fWtgt2[1;1) of unitaries in M2(M(D)) such that

lim
t!1

g(Wt)
�
't(1C(T)
a)

0

�
� � 't(g
a)

0

�
= 0

for all g 2 C(T); a 2 A.
Proof. Let '1 : C(T) 
 A ! Cb([1;1); D)=C0([1;1); D) be the �-homomorphism
de�ned from ' in the usual way. Set H = '1(C(T) 
 A), and H0 = q�1(H) �
Cb([1;1); D), where q : Cb([1;1); D)! Cb([1;1); D)=C0([1;1); D) is the quotient
map. Since '1 and q extend to surjections '1 : M(C(T) 
 A) ! M(H) and q :

M(H0) ! M(H), we can �nd a unitary lift W 2 M2(M(H0)) of
�
'1(z)

'1(z�)

�
,

where z 2 M(C(T) 
 A) is the element given by the identity function on T. Since
M(M2(H0)) � M(M2(C0([1;1); D))), W is given by a strictly continuous path of
unitaries in M2(M(D)) with the desired property. �

Let c : SA! C(T) 
 SA be the �-homomorphism c(f) = 1C(T)
 f .

Lemma 4.2. Let  : C(T) 
 SA ! D be an asymptotic homomorphism such
that c�[ ] = 0 in [[SA;D]]. It follows that there are asymptotic homomorphisms
 00 : C(T) 
 cone(A) ! D;  0 : cone(A) ! D and a strictly continuous path
fWtgt2[1;1) of unitaries in M(D) such that

lim
t!1

[ t �  00t ](g 
 f)� g(Wt) 
0

t(f) = 0

for all g 2 C(T); f 2 SA.
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Proof. Since c�[ ] = 0 it follows from Theorem 4.2 of [Th2] that there is an as-
ymptotic homomorphism � : cone(A)! D and a normcontinuous path of unitaries
fUtgt2[1;1) �M2(D)+ such that

lim
t!1

Ut
�
 t(1C(T)
f)

�t(f)

�
U�t �

�
0
�t(f)

�
= 0

for all f 2 SA. Let ev : C(T) 
 SA ! SA be the �-homomorphism obtained by
evaluation at some point in T. It follows from Lemma 4.1 that there is a strictly
continuous path fWtgt2[1;1) of unitaries in M(D) such that

lim
t!1

g(Wt)( t � �t Æ ev � 0)(1C(T)
 f)� ( t � �t Æ ev � 0)(g 
 f) = 0;

g 2 C(T); f 2 SA. Set  00 = � Æ ev � 0 and  0 = Ad(U � 1)� Æ (0� � � 0). �

To use these two lemmas to de�ne a map Æ : [[S2A;D]] ! X(A;D), we remind
the reader that [[S�; D]] = E(S�; D), cf. [DL]. In particular, the contravariant
functor [[S�; D]] is split-exact, and this will be used now. Let  : S2A ! D
be an asymptotic homomorphism. There is then an asymptotic homomorphism
' : C(T) 
 SA ! D such that c�['] = 0 and [ ] = [' Æ i] in [[S2A;B]]. Since
c�['] = 0, Lemma 4.2 gives us asymptotic homomorphisms '00 : C(T) 
 cone(A)!
D; '0 : cone(A) ! D and a strictly continuous path fWtgt2[1;1) of unitaries in
M(D) such that

lim
t!1

['t � '00t ](g 
 f)� g(Wt)'
0

t(f) = 0

for all g 2 C(T); f 2 SA. Then (W;'0) is an E-pair and we claim that we can
de�ne Æ such that Æ[ ] = [W;'0]. To see this, the only non-trivial point is to
show that the class of (W;'0) is independent of the choices made. So assume that
�00 : C(T) 
 cone(A) ! D; �0 : cone(A) ! D are asymptotic homomorphisms and
fStgt2[1;1) a strictly continuous path of unitaries in M(D) such that

lim
t!1

['t � �00t ](g 
 f)� g(St)�
0

t(f) = 0

for all g 2 C(T); f 2 SA. By Lemma 4.1 there are strictly continuous pathes,
fYtgt2[1;1); fXtgt2[1;1) of unitaries in M(D) such that

lim
t!1

g(Yt)'
00

t (1C(T)
 f)� '00t (g 
 f) = 0;

lim
t!1

g(Xt)�
00

t (1C(T)
 f)� �00t (g 
 f) = 0

for all g 2 C(T); f 2 cone(A). Since (Y; '00Æc) and (X; �00Æc) are degenerate E-pairs,
[W;'0] = [W;'0]+ [X; �00 Æ c] = [W �X;'0��00 Æ c] and [S; �0] = [S; �0]+ [Y; '00 Æ c] =
[S�Y; �0�'00 Æ c] in X(A;D). Conjugating the pair (S�Y; �0�'00 Æ c) by a unitary,
we see that [W;'0] = [W 1; '1] and [S; �0] = [W 2; '2], where the E-pairs (W 1; '1)
and (W 2; '2) are related such that

lim
t!1

g(W 1
t )'

1
t (f)� g(W 2

t )'
2
t (f) = 0

for all g 2 C(T); f 2 SA. In particular, limt!1 '1
t (f)� '2

t (f) = 0 for all f 2 SA,
so a standard rotation argument shows that (W 1 �W 2�; '1 � '2) is homotopic to
(W 2�W 1 � 1; '1 � '2). This shows that [W 1; '1] � [W 2; '2] is represented by an
E-pair (V; �) where limt!1 g(Vt)�t(f) � g(1)�t(f) = 0 for all g 2 C(T); f 2 SA.
By rotation we �nd that [V; �] + [1; 0] = [V; 0] + [1; �] = 0 in X(A;D). Hence
[W;'0] = [S; �0] and we conclude that Æ is well-de�ned. Since Æ is clearly an inverse
for �, we have obtained the following proposition.
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Proposition 4.3. � : X(A;D)! [[S2A;D]] is an isomorphism with inverse Æ.

5. cone(A1) �SB cone(A2) is equivalent to B in E-theory

Assume now that ik : B ! Ak; k = 1; 2, are proper embeddings, i.e. that ik(B)Ak
spans a dense subspace in Ak, and that there are sequences Rk

n : Ak ! B; n =
1; 2; 3; � � � ; k = 1; 2, of completely positive contractions such that limn!1R

k
n(ik(x)) =

x for all x 2 B; k = 1; 2. By Theorem 5.5 of [P2] we have natural isomorphisms

S(A1 �B A2) = SA1 �SB SA2; cone(A1 �B A2) = cone(A1) �cone(B) cone(A2):

We can then de�ne a map X(B;D)! [[cone(A1) �SB cone(A2); D]] in the following
way. Let (W;') be an E-pair. It follows from Lemma 2.7 that there are asymptotic
homomorphisms �k : cone(Ak) ! D and �k : cone(Ak) ! D; k = 1; 2, such that
limt!1 �1t Æ i1(x)� �2t Æ i2(x) = limt!1 �1t Æ i1(x)� �2t Æ i2(x) = 0 and

lim
t!1

't(x)� �1t Æ i1(x)� �1t Æ i1(x) = 0

for all x 2 cone(B). Since limt!1Ad(Wt � 1) Æ �1t Æ i1(x) � �2t Æ i2(x) = 0 for all
x 2 SB, there is an asymptotic homomorphism

(Ad(W � 1) Æ �1) �SB �2 : cone(A1) �SB cone(A2)! D

such that limt!1((Ad(W � 1) Æ �1) �SB �2)t Æ j1(x)�Ad(Wt� 1) Æ �1t Æ j1(x) = 0 for
all x 2 cone(A1) and limt!1((Ad(W � 1) Æ �1) �SB �2)t Æ j2(x)� �2t Æ j2(x) = 0 for
all x 2 cone(A2). We claim that we can de�ne a map � : X(B;D)! [[cone(A1) �SB
cone(A2); D]] such that �[W;'] = [(Ad(W � 1) Æ �1) �SB �2]. If �k : cone(Ak)! D
and lk : cone(Ak) ! D; k = 1; 2, are other asymptotic homomorphisms such that
limt!1 l1t Æ i1(x)� l2t Æ i2(x) = limt!1 �1t Æ i1(x)� �2t Æ i2(x) = 0 and

lim
t!1

't(x)� �1t Æ i1(x)� l1t Æ i1(x) = 0

for all x 2 cone(B), observe �rst that �1 �SB �2; l1 �SB l2 and �1 �SB �2 are all restric-
tions of asymptotic homomorphisms de�ned on cone(A1 �B A2) = cone(A1) �cone(B)

cone(A2), and hence null-homotopic. Consequently

[(Ad(W�1)Æ�1)�SB�2] = [((Ad(W�1)Æ�1)�SB�2)�(�1�SB�2)�(l1�SBl2)�(�1�SB�2)]:
Note that there is a unitary S 2M(D) which commutes both withW�1�1�1�1�1
and 1� 1� 1�W � 1� 1, and has the property that

lim
t!1

(((Ad(W � 1) Æ �1) �SB �2)� (�1 �SB �2)� (l1 �SB l2)� (�1 �SB �2))t Æ jk Æ ik(x)
� AdS Æ ('� �1 � �1 � '� �1 � �1)t Æ ik(x) = 0

for all x 2 SB; k = 1; 2. By �rst 'rotating'W�1�1�1�1�1 to 1�1�1�W �1�1
and then connecting S to 1 through a strictly continuous path of unitaries inM(D),
we get a homotopy connecting

((Ad(W � 1) Æ �1) �SB �2)� (�1 �SB �2)� (l1 �SB l2)� (�1 �SB �2)
to

(�1 �SB �2)� (�1 �SB �2)� ((Ad(W � 1) Æ l1) �SB l2)� (�1 �SB �2):
Hence [(Ad(W � 1) Æ �1) �SB �2] = [(Ad(W � 1) Æ l1) �SB l2], and we conclude that �
is a well-de�ned homomorphism. Note, however, that at this point we do not know
that [[cone(A1) �SB cone(A2); D]] is a group.
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To obtain an inverse to �, consider an asymptotic homomorphism  : cone(A1)�SB
cone(A2)! D. By Lemma 2.7 there are asymptotic homomorphisms �k : cone(Ak)!
D; k = 1; 2, such that limt!1 �1t Æ i1(x) � �2t Æ i2(x) = 0 for all x 2 cone(B) and a
normcontinuous path of unitaries fWtg in D+ such that

lim
t!1

Wt( t Æ j1 Æ i1(x)� �1t Æ i1(x))W �

t �  t Æ j2 Æ i2(x)� �2t Æ i2(x) = 0

for all x 2 cone(B). Then (W �;  Æ j2 Æ i2 � �2 Æ i2) is an E-pair, and we claim that
Æ[ ] = [W �;  Æj2Æi2��2Æi2] is a wellde�ned map Æ : [[cone(A1)�SB cone(A2); D]]!
X(B;D). To see this, let �k : cone(Ak)! D; k = 1; 2, be another pair of asymptotic
homomorphisms and fStg another normcontinuous path of unitaries inD+ such that

lim
t!1

St( t Æ j1 Æ i1(x)� �1t Æ i1(x))S�t �  t Æ j2 Æ i2(x)� �2t Æ i2(x) = 0

for all x 2 cone(B). There is a unitary in M(D) conjugating (S;  Æ j2 Æ i2 � �2 Æ
i2)� (1; �2 Æ i2) to (T;  Æ j2 Æ i2 � �2 Æ i2 � �2 Æ i2), where fTtg is a normcontinuous
path of unitaries in D+ such that

lim
t!1

Tt( tÆj1Æi1(x)��1t Æi1(x)��1t Æi1(x))T �t � tÆj2Æi2(x)��2t Æi2(x)��2t Æi2(x) = 0

for all x 2 cone(B). Then a standard rotation argument shows that

[W �;  Æ j2 Æ i2 � �2 Æ i2] + [S;  Æ j2 Æ i2 � �2 Æ i2]
= [W �;  Æ j2 Æ i2 � �2 Æ i2] + [1; �2 Æ i2] + [S;  Æ j2 Æ i2 � �2 Æ i2] + [1; �2 Æ i2]
= [T (W � � 1);  Æ j2 Æ i2 � �2 Æ i2 � �2 Æ i2] + [1;  Æ j2 Æ i2 � �2 Æ i2 � �2 Æ i2]
= 0

in X(B;D). Since X(A;B) is a group we deduce that

[W �;  Æ j2 Æ i2 � �2 Æ i2] = [S�;  Æ j2 Æ i2 � �2 Æ i2];
proving that Æ is well-de�ned. It is straightforward to see that Æ is an inverse to �
so we have proved the following

Lemma 5.1. [[cone(A1)�SBcone(A2); D]] is a group, and � : X(B;D)! [[cone(A1)�SB
cone(A2); D]] is an isomorphism.

Note that it follows from Lemma 5.1 and [DL] that E(cone(A1)�SBcone(A2); D) =
[[cone(A1) �SB cone(A2); D]].
In the following we let K denote the C�-algebra of compact operators on an in�nite

dimensional separable Hilbert space.

Theorem 5.2. Assume that ik : B ! Ak; k = 1; 2, are proper embeddings, and that
there are sequences Rk

n : Ak ! B; n = 1; 2; 3; � � � ; k = 1; 2, of completely positive
contractions such that limn!1Rk

n(ik(x)) = x for all x 2 B; k = 1; 2. There is an
asymptotic homomorphism � : cone(A1) �SB cone(A2)! B 
 K which is invertible
in E-theory.

Proof. By Proposition 4.3 and Lemma 5.1, � Æ ��1 : [[S2B;D]] ! [[cone(A1) �SB
cone(A2); D]] is an isomorphism. Let ' : S2B ! B 
 K be the asymptotic ho-
momorphism obtained by applying the Connes-Higson construction to the Toeplitz-
extension tensored with B. Let � be an asymptotic homomorphism such that
[�] = � Æ ��1['] in [[cone(A1) �SB cone(A2); B 
 K]]. Standard KK- and E-theory
arguments show that � must be invertible in E-theory because of Lemma 5.1. �
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6. Results in E-theory

Theorem 6.1. Let A1; A2; B be separable C�-algebras. Assume that ik : B !
Ak; k = 1; 2, are embeddings, and that there are sequences Rk

n : Ak ! B; n =
1; 2; 3; � � � ; k = 1; 2, of completely positive contractions such that limn!1Rk

n(ik(x)) =
x for all x 2 B; k = 1; 2. Let jk : Ak ! A1 �B A2; k = 1; 2, be the natural maps. For
any separable C�-algebra D there are six terms exact sequences

E(D;B)
(i1�;i2�) // E(D;A1)� E(D;A2)

j1��j2� // E(D;A1 �B A2)

��
E(SD;A1 �B A2)

OO

E(SD;A1)� E(SD;A2)
j1��j2�

oo E(SD;B)
(i1�;i2�)

oo

and

E(B;D)

��

E(A1; D)� E(A2; D)
i1
�
�i2

�

oo E(A1 �B A2; D)
(j�1 ;j

�

2)oo

E(A1 �B A2; SD)
(j�1 ;j

�

2 )
// E(A1; SD)� E(A2; SD)

i1
�
�i2

�

// E(B; SD) :

OO

Proof. Let A+
1 ; A

+
2 ; B

+ denote the C�-algebras obtained by adjoining units to A1; A2

and B. Let X denote the kernel of the natural map cone(A+
1 ) �S(B+) cone(A

+
2 ) !

cone(C ) �SC cone(C ) and Y the kernel of the natural map A+
1 �A+

2 ! C � C . There
is then a commuting diagram

0

��

0

��

0

��
0 // S(A1 �B A2)

��

// X

��

// Y //

��

0

0 // S(A+
1 �B+ A+

2 )
//

��

cone(A+
1 ) �S(B+) cone(A

+
2 ) //

��

A+
1 �A+

2
//

��

0

0 // SC

��

// cone(C ) �SC cone(C ) //

��

C � C

��

// 0

0 0 0
(6.1)

By [C2] A+
1 �A+

2 and C � C are KK-equivalent to A+
1 �A+

2 and C � C , respectively,
so we �nd that Y is equivalent to A1 � A2 in E-theory. In the same way it fol-
lows from Theorem 5.2 that X is equivalent to B in E-theory. The two six terms
exact sequences of the theorem now arise by writing down the two six terms exact
sequences of E-theory coming from the �rst row in (6.1), substituting A1 � A2 for
Y and B for X, and �nally identifying the resulting maps in the diagram. We leave
this to the reader. �
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7. Conclusion

As pointed out by Germain in [G3] the six terms exact sequences of Theorem 3.3
imply that S(A1 �B A2) is KK-equivalent to the mapping cone C of the embedding
B ! A1 � A2 (and vice versa, essentially). It follows therefore from Theorem 3.3
that S(A1 �B A2) is equivalent to C in E-theory under the assumptions of that
theorem, and the six terms exact sequences of Theorem 6.1 follow from this by
writing down the E-theory Puppe sequences for the inclusion B ! A1 � A2. In
other words, Theorem 6.1 is a consequence of Theorem 3.3 when there are conditional
expectations from the Ak's onto B, and when A1; A2 and B are all nuclear. But the
assumptions of Theorem 6.1 are much weaker than this; it suÆces for example that
B is nuclear, or that B sits as a hereditary C�-subalgebra of the Ak's. Nonetheless
it would be nice to be able to remove the condition in Theorem 6.1 altogether, and
also in Theorem 3.3 for that matter. Let us therefore conclude by pointing out that
the methods we have used can not, without some serious adjustments, give the six
terms exact sequences of Theorem 6.1 in full generality.
It is clear that the assumption of Theorem 6.1 was used above to guarantee

that some absorbing �-homomorphism cone(B) ! M(D) can be extended to a
�-homomorphism cone(Ak) ! M(D). Such an extension will not exist in general.
To see this observe that if B � A are separable C�-algebras and D is a stable sep-
arable C�-algebra, then there can only be a �-homomorphism � : A ! M(D) such
that �jB : B !M(D) is absorbing when

f'jB : ' : A! D is a completely positive contractiong
is dense for the topology of pointwise normconvergence among all the completely
positive contractions B ! D, see [Th1]. (In fact, this condition is also suÆcient.)
Now consider a separable exact C�-algebra B for which Ext(cone(B)) is not a group
- such C�-algebras exist in abundance by [Ki1]. Then B � A for some nuclear
separable C�-algebra A; in fact one can take A = O2, cf. [Ki2]. That Ext(cone(B))
is not a group means that there is a �-homomorphism � : cone(B) ! Q ( = the
Calkin algebra) which does not lift to a completely positive map cone(B) ! B (l2).
Consider D = �(cone(B)) 
 K which is certainly a separable stable C�-algebra. If
'n : cone(A)! D; n 2 N , is a sequence of completely positive contractions such that
limn!1 'n(b) = �(b) 
 e11; b 2 cone(B), we would clearly also have a sequence of
completely positive contractions  n : cone(A) ! Q such that limn!1  n(b) = �(b)
for all b 2 cone(B). Since cone(A) is nuclear each  n would be liftable in the sense of
[A2] and hence this would force � to be liftable by Theorem 6 in [A2], contradicting
the choice of it. It follows that for such an inclusion B � A the approach we have
taken to prove Theorem 6.1 does not suÆce to prove the general conjecture in E-
theory. The method we use to prove Theorem 3.3 requires even more; namely that
we can extend some absorbing �-homomorphism out of B, not only to A1 and A2,
but all the way to A1 �B A2. The obstacle we have just identi�ed is therefore even
more serious in regards to Theorem 3.3.
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