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Abstract

We consider a class of models for the evolution of a DNA sequence that

allows for interaction among neighbouring elements. When the evolutionary

distance between two sequences is small the number of changes along the se-

quence will be small. Categorizing the changes we prove a multivariate Poisson

approximation to the distribution of the number of changes.

Key words:

1 Introduction

A DNA string consists of a long sequence of nucleotides of which there are four: A,

G, C, and T. In a coding region these go together three by three (a reading frame)

forming the codons that translate into the aminoacids. When comparing two aligned

sequences it is customary to model the substitution part of the evolution of a DNA

string as a continuous time Markov process. In the most simple models it is assumed

that the di�erent nucleotides evolve independently and the analysis is reduced to that

of a Markov process with four states (Felsenstein, 1981). Similarly, for the slightly

more general model where it is assumed that the codons evolve independently, the

analysis is reduced to that of a Markov process with 64 states (Li et al., 1985). How-

ever, in some cases these models are not realistic. An instance of this is when there

are overlapping reading frames. In such a case an aminoacid changing substitution
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in reading frame I may or may not change the aminoacid coded for in reading frame

II. This introduces interaction among neighbouring codons.

A model that takes the interaction among neighbouring codons into account has

recently been proposed in Jensen and Pedersen (2000). However the analysis of

this model is very cumbersome as the likelihood function can only be found via an

MCMC simulation. In Pedersen and Jensen (2001) it is suggested to use a Poisson

approximation to the observed number of changes. The Poisson approximation can be

used both as a way of estimating the parameters and as a way of checking the model.

The theoretical mean of the Poisson distribution must be found by simulation, but

this simulation is straightforward and quick. In this note we show that the Poisson

approximation can be theoretically justi�ed.

We start in Section 2 by stating a Poisson approximation theorem of Arratia,

Goldstein and Gordon (1989) for sums of dependent Bernoulli variables. In order to

apply this theorem an estimate of the mixing properties of the variables is needed.

A formal setup for an underlying process is introduced for which we can establish

a coupling inequality and therby estimate the mixing properties. In Section 3 we

consider the DNA evolutionary model of Jensen and Pedersen (2000) and Pedersen

and Jensen (2001) and show how this model �ts into the framework of Section 2. We

also establish a central limit result to cover the cases where the Poisson approximation

is no longer applicable. In the concluding Section 4 a small numerical example is

given.

2 Preliminaries

2.1 Multivariate Poisson approximation

We will be using the multivariate Poisson approximation given in Arratia, Goldstein

and Gordon (1989). Let 
 be an arbitrary index set and for � 2 
 let U� be a
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Bernoulli random variable with p� = P (U� = 1) = 1 � P (U� = 0) > 0. Let 
 be

partioned into disjoint nonempty subsets 
(1); : : : ;
(d), and de�ne

Sj =
X

�2
(j)

U�; �j =
X

�2
(j)

p�:

For each � 2 
 let M� be a subset of 
 with � 2M�. Let Z1; : : : ; Zd be independent

Poisson variables with EZj = �j.

Theorem 2.1 (Arratia, Goldstein and Gordon, 1989)

The total variation distance between the joint distribution of (S1; : : : ; Sd) and (Z1; : : : ; Zd)

is bounded by

2min

(
1;

1:4

(min�i)1=2

)
(2b1 + 2b2 + b3); (2.1)

with

b1 =
X
�2


X
�2M�

p�p�; (2.2)

b2 =
X
�2


X
�2M�nf�g

E(U�U�); (2.3)

b3 =
X
�2


EjEfU� � p�j(U�; � 2 
nM�)gj: (2.4)

In our use of this theorem we have an underlying process X1; : : : ; Xn and

Uil = 1((Xi�1; Xi; Xi+1) 2 Bil); pil = EUil; i = 1; : : : ; n; l = 1; : : : ; d; (2.5)

where Bi;1; : : : ; Bi;d are disjoint subsets. We therefore take


 = f1; 2; : : : ; ng � f1; : : : ; dg;


(l) = f(i; l)ji = 1; : : : ; ng; l = 1; : : : ; d;

Mil = f(j;m)j jj � ij < k(n)g; (2.6)

for some number k(n). Since the sets Bil, l = 1; : : : ; d, are disjoint we have that

Uil = 1 implies that Uim = 0 for m 6= l, or

E(UilUim) = 0; m 6= l: (2.7)
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The error terms b1 and b2 will be bounded by �nding upper bounds on EUil and

E(UilUjm), respectively. Finding a bound on the error term b3 is more complicated,

and for that we need the coupling inequality of the next subsection.

2.2 A coupling inequality

Let Xi take values in a measure space X equipped with a measure �. Assume that

there exist functions

�i(�j�; �) : X 3 ! [0;1); i = 1; : : : ; n;

such that the joint density of X1; : : : ; Xn with respect to �n is

1

Cn

nY
i=1

�i(xijxi�1; xi+1); (2.8)

where Cn is a norming constant and x0 and xn+1 are �xed points. This Gibbs form

of the density introduces a second order Markov structure on the process and it

will be convenient to have a notation for a consequtive pair of variables. Thus we

let x[i] = (xi; xi+1). The structure of the density (2.8) implies that the conditional

density of (Xr+1; : : : ; Xs�1) given the remaining variables depends on x[r�1] and x[s]

only, and is given by
1

Z(x[r�1]; x[s])

sY
i=r

�m(xijxi�1; xi+1); (2.9)

where Z(x[r�1]; x[s]) is a norming constant. We say that sets Ak � X 2, k = 1; : : : ; n,

are atoms for the process if the conditional density (2.9) is the same for all

(x[r�1]; x[s]) 2 Ar�1 �As:

In order to introduce a coupling we consider another process fYig independent of
the fXig process. We �x I < J and consider the Yi process for i = I � 1; : : : ; J + 1.

We require that the conditional distribution of (YI+1; : : : ; YJ�1) given (Y[I�1]; Y[J]) =

(y[I�1]; y[J]) has density (2.9) with (x[I�1]; x[J ]) replaced by (y[I�1]; y[J]). The marginal
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distribution of (Y[I�1]; Y[J ]) is denoted QIJ and that of (X[I�1]; X[J ]) is denoted PIJ .

Note that for variables with index between I + 1 and J � 1 the Y -process has the

same Gibbs structure as the X-process.

To shorten the formulae below we use for v � 1 the notation

X(v) = (X[I+v]; X[J�v�1]);
Y (v) = (Y[I+v]; Y[J�v�1]);
A(v) = AI+v �AJ�v�1:

For r with 2r + 2 � J � I � 1 we introduce the coupling by the event

Er =
n
(X(v); Y (v)) =2 A(v)2; v = 1; : : : ; r � 1; (X(r); Y (r)) 2 A(r)2

o
:

Furthermore we de�ne

Fr = (E1 [ � � � [ Er)
C

=
n
(X(v); Y (v)) =2 A(v)2; v = 1; : : : ; r

o
:

Because of the structure (2.5) of the Bernoulli variables we formulate the following

coupling inequality.

Lemma 2.2 For any set B and for r = minfk � I; J � kg � 3 we have

jP ((Xk�1; Xk; Xk+1) 2 B)� P ((Yk�1; Yk; Yk+1) 2 B)j < 2P (Fr):

Proof. Let Bk(X) be the event that (Xk�1; Xk; Xk+1) 2 B and similarly for Bk(Y ).

We write, with a(v) an arbitrary point in the set A(v),

P (Bk(X)) =
rX

v=1

P (Bk(X); Ev) + P (Bk(X); Fr)

=
rX

v=1

P (Ev)P (Bk(X)jX(v) 2 A(v)) + P (Bk(X); Fr)

=
rX

v=1

P (Ev)P (Bk(X)jX(v) = a(v)) + P (Bk(X); Fr)

=
rX

v=1

P (Ev)P (Bk(Y )jY (v) = a(v)) + P (Bk(X); Fr)
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=
rX

v=1

P (Ev)P (Bk(Y )jY (v) 2 A(v)) + P (Bk(X); Fr)

=
rX

v=1

P (Bk(Y ); Ev) + P (Bk(X); Fr)

= P (Bk(Y ))� P (Bk(Y ); Fr) + P (Bk(X); Fr); (2.10)

where in the second equality we use the Gibbs structure and the de�nition of the

atoms Ai to obtain

P (Bk(X)jEv) =
Z
A(v)

P (Bk(X)jX(v) = a(v))PX(v)(da(v)jEv)

= P (Bk(X)jX(v) = a(v)):

The result of the lemma follows directly from (2.10).

When I = 0 we use a onesided version of the lemma, where the Y process has Y0

�xed at x0. Thus we use

�Er = f(X[J�v�1]; Y[J�v�1]) =2 A2
J�v�1; v = 1; : : : ; r�1; (X[J�r�1]; Y[J�r�1]) 2 A2

J�r�1g;

and

�Fr = ( �E1 [ � � � [ �Er)
C = f(X[J�v�1]; Y[J�v�1]) =2 A2

J�v�1; v = 1; : : : ; rg:

The result of the lemma is then true with r = J � k � 3. Similar modi�cations are

made when J = n + 1.

In order to bound the probability of the event F (r) we make the following as-

sumption.

A1: There exist Æ > 0 and � � 1 such that for all i and all z1; z2 2 X 2

P (X[i] 2 AijX[i���1] = z1; X[i+�+1] = z2) � Æ: (2.11)

From this assumption we get the bound

P

 
(X(v); Y (v)) =2 A(v)2

����� X(v � � � 1) = x1; X(v + � + 1) = x2
Y (v � � � 1) = y1; Y (v + � + 1) = y2

!
� 1� Æ4;

(2.12)
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where x1; x2; y1; y2 are arbitrary points in X 4. To bound the probability of the event

F (r) we condition on the variables

fX(�1 + j(2� + 1)); Y (�1 + j(2� + 1))g; j = 0; 1; : : : ; m(r); m(r) =
�
r + 3

2� + 1

�
;

so that we can use the bound (2.12) m(r) times. We thus get the upper bound

(1� Æ4)m(r) (2.13)

for the probability of the event F (r).

We now consider the Bernoulli variables de�ned by (2.5) and obtain a bound on

the term b3 from (2.4).

Proposition 2.3 Under the assumption (2.11) we have the bound

b3 � 2nd(1� Æ4)(k(n)+1)=(2�+1)�1;

where k(n) appears in the de�nition (2.6) of Mil.

Proof. We write b3 as

b3 =
nX
i�1

dX
l=1

EjP (Uil = 1jUjm; (j;m) =2 Mil)� P (Uil = 1)j

=
nX
i�1

dX
l=1

EjEf[P (Ui;l = 1jUj;m; (j;m) =2Mi;l; Xj; jj � ij � k(n)� 1)

�P (Ui;l = 1)]jUj;m; (j;m) =2Mi;lgj

�
nX
i�1

dX
l=1

E
Z ���P (Ui;l = 1jX[I�1] = x[I�1]; X[J] = x[J])� P (Ui;l = 1)

���
PX[I�1];X[J]

(d(x[I�1]; x[J])jUj;m; (j;m) =2Mi;l); (2.14)

where I = i� k(n) + 1 and J = i+ k(n)� 1.

Let now the Y -process be de�ned as above with the marginal distribution of

(Y[I�1]; Y[J ]) concentrated at the point (x[I�1]; x[J]). Then

jP (Ui;l = 1jX[I�1] = x[I�1]; X[J] = x[J ])� P (Ui;l = 1)j
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= jP ((Yi�1; Yi; Yi+1) 2 Bi;l)� P ((Xi�1; Xi; Xi+1) 2 Bi;l)j

� 2P (Fk(n)�2jY[I�1] = x[I�1]; Y[J ] = x[J ])

� 2(1� Æ4)(k(n)+1)=(2�+1)�1; (2.15)

where we have used (2.13). Inserting (2.15) into (2.14) we obtain the bound

b3 � 2nd(1� Æ4)(k(n)+1)=(2�+1)�1;

which is the result of the proposition.

3 Applications to DNA evolutionary models

In this section we will consider the class of models studied in Jensen and Pedersen

(2000) and Pedersen and Jensen (2001). In these models the evolution of a string of

nucleotides is described by a continuous time Markov process with a jump consisting

in the substitution of one nucleotide.

We describe the DNA string in terms of the codons within a reading frame, which

we denote reading frame I. Let (D1(t); : : : ; Dn(t)) be the codons at time t. We

imagine that there are also codons D0 and Dn+1 that are kept �xed during the

evolution. A codon has three nucleotides and we use the notation Di = (d1i ; d
2
i ; d

3
i ).

As mentioned in the introduction we can have more than one reading frame. The

i'th codon in reading frame II is (d2i ; d
3
i ; d

1
i+1) and the i'th codon in reading frame III

is (d3i ; d
1
i+1; d

2
i+1). There are three stop codons, namely (TAA), (TAG), and (TGA).

If a mutation gives rise to a stop codon the protein being coded for is destroyed and

this will most likely imply that the new individual does not survive. In the model

we do therefore not allow the appearence of a stop codon in a reading frame. In the

model the intensity of a change of a nucleotide in a particular position depends on

the neighbouring nucleotides that together form a codon in a reading frames. We
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generally write

�(r; zjDi�1; Di; Di+1); r = 1; 2; 3; z 2 fA;G;C; Tgnfdrig; (3.1)

for the rate of a substitution of dri by z. The rate is zero if the substitution of a

nucleotide by z produces a stop codon. Thus, if we are in the situation with three

reading frames and we have a substitutiton at position r = 1 the rate is zero if either

(z; d2i ; d
3
i ), (d

2
i�1; d

3
i�1; z) of (d

3
i�1; z; d

2
i ) is a stop codon. If there is only one reading

frame it is (z; d2i ; d
3
i ) alone that cannot be a stop codon. Excluding the cases where

a stop codon is produced all other transitions are allowed. There will therefore exist

constants �1 > 0 and �2 so that the nonzero rates are bounded below by �1 and

above by �2,

�1 � �(r; zjDi�1; Di; Di+1) � �2: (3.2)

3.1 Conditioning on the initial sequence

We imagine that we have observed two sequences (D1(0); : : : ; Dn(0)) and (D1(t
0); : : : ;

Dn(t
0)), where the former has evolved into the latter. The probabilities in this subsec-

tion will be for the conditional process given the initial sequence (D1(0); : : : ; Dn(0)).

At each codon position i = 1; : : : ; n we can ask if there has been a change from

Di(0) to Di(t
0). If so we can categorise the change into, say, d classes, where the

category may depend on what happens at codon positions i� 1 and i+ 1. Formally,

we de�ne a Bernoulli random variable Uil for each class l = 1; : : : ; d by

Uil = 1
�
(Di�1(0); Di(0); Di+1(0); Di�1(t

0); Di(t
0); Di+1(t

0)) 2 Bi;l

�
(3.3)

where the sets Bil are such that

Uil � 1(Di(0) 6= Di(t
0)):

Also the sets Bil, l = 1; : : : ; d are disjoint so that Uil = 1 implies that Uim = 0 for

m 6= l.
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We start by deriving an upper bound for the success probability P (Uil = 1) and

an upper bound for the joint success probability P (Uil = 1; Ujm = 1), j 6= i.

Lemma 3.1 We have the bounds

pil = EUil � p� and E(UilUjm) � (2p�)2

2
e2p�; j 6= i;

with

p =
3�2
n�1

and � = 9n�2t
0:

Proof. If there were no restrictions due to stop codons any codon would at a given

instant in time have the possibility of 9 substitutions. However, considering all the

possible restrictions one can see that there always is at least 3 possible substitutions.

From (3.2) the total intensity for a change in the sequence is therefore bounded

between 3�1n and 9�2n and the expected number of substitutions for the sequence is

bounded between 3�1nt
0 and 9�2nt

0. Conditionally on the past the probability that

a given substitution takes place in codon j is bounded between

3�1
9�2n

and p =
9�2
3�1n

:

Let K be the total number of substitutions in the sequence. Then K is stochastically

smaller that a Poisson random variable with mean � = 9�2nt
0. We then �nd

EUil � E1(Di(0) 6= Di(t
0)) � 1� E1(Di(0) = Di(t

0)); (3.4)

and

E1(Di(0) = Di(t
0)) � P (no substitutions in codon i)

� E(1� p)K

�
1X
k=0

(1� p)k
�k

k!
e��

= exp(�� + �(1� p)): (3.5)
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Combining (3.4) and (3.5) we obtain

EUil � 1� exp(��p) � �p: (3.6)

This gives the �rst statement of the lemma.

For the second statement we argue in the same way. We use

E(UilUjm) � P (Dj(0) 6= Dj(t
0); Di(0) 6= Di(t

0))

� P (at least two substitution in codon j and codon i together)

� E

(
KX
l=2

 
K
l

!
plmax(1� pmin)

K�l

)

= E

(
(1� pmin)

K

"
(1 +

pmax

1� pmin
)K � 1�K

pmax

1� pmin

#)
; (3.7)

where

pmax = 2p and pmin = cpmax; c =
�21
9�22

:

Since the integrand in (3.7) is increasing in K we can replace the distribution of K

by a Poisson distribution with mean �. This gives the upper bound

e��
n
e�(1�pmin+pmax) � 1� �((1� pmin + pmax)

o
� e��

n
e�(1�pmin) � 1� �((1� pmin)

o
�pmax�

n
e��fe�(1�pmin) � 1

o
= e��pmin

h
e�pmax � 1� �pmax

i

� (�pmax)
2

2
e�pmax

=
(�2p)2

2
e�2p;

and the second statement of the lemma has been proved.

We next turn to the mixing properties of the evolution process and prove the

assumption (2.11). The variable Xi of Section 2 is now the path of codon i over

the time interval [0; t0], for which we here use the notation Di(�). That we have the
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Gibbs form (2.8) for the density is seen from (3.8) below. As the atom Ai we take

Ai = Ai\Ai+1 where Ai is the event that there has been no substitutions in codon i,

Ai = fDi(t) � Di(0); 0 < t � t0g:

The development of a codon over the time interval [0; t0] can be described by

giving the times at which changes occur and by specifying the position within the

codon of the change and specifying the new nucleotide. This corresponds to a point

in the space

H = [1k=0[0; t
0]k �Mk;

where M is the mark space containing the position within the codon and the new

nucleotide, and where k = 0 corresponds to no changes of the codon. The state space

for the development of the whole sequence of codons is then the n-fold product of

the space H. As dominating measure on H we use Lebesgue measure on [0; t0] and

counting measure on M .

The rate for a substitution of the r'th nucleotide in codon i is �(r; zjDi�1; Di; Di+1)

from (3.1), where (Di�1; Di; Di+1) is the value of codons i � 1, i, and i + 1 prior to

the substitution. The total rate for a substitution in codon i is

�(Di�1; Di; Di+1) =
X
r;z

�(r; zjDi�1; Di; Di+1):

Let ni be the total number of substitutions in codons i � 1, i, and i + 1 and

t(1; i); t(2; i); : : : ; t(ni; i) the times at which the substitutions occur. Furthermore,

we let

(Di�1[j]; Di[j]; Di+1[j])

be the three codons after the j'th substitution. Let the number of substitutions

in codon i be ~ni � ni, let these be numbered by k(1; i); : : : ; k(~ni; i) among the

ni substitutions and let the positions of the ~ni substitutions within the codon be
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r(1; i); : : : ; r(~ni; i). The time points for these substitutions are then t(k(1; i); i); : : : ;

t(k(~ni; i); i). De�ne

�i(j) = �(Di�1[j]; Di[j]; Di+1[j]);

~�i(j) = �(r(j; i); dr(j;i)i [k(j; i)]jDi�1[k(j; i)� 1]; Di[k(j; i)� 1]; Di+1[k(j; i)� 1]);

Vi =
~niY
j=1

~�i(j);

Wi =
ni+1X
j=1

�i(j)[t(j; i)� t(j � 1; i)]; t(0; i) = 0; t(ni + 1; i) = t0:

The density for the development of the codons over [0; t0] can now be written as

nY
i=1

Vi exp(�Wi): (3.8)

If we consider (DI+1(�); DI+2(�); : : : ; DJ�1(�)) conditional on (D1(�); : : : ; DI(�), DJ(�);
: : : ; Dn(�)) this will depend on (DI�1(�); DI(�); DJ(�); DJ+1(�)) only, and the condi-

tional density is

1

Z
exp

 
�

JX
i=I

Wi

!0
@ J�1Y
i=I+1

Vi

1
A 1(VI > 0)1(VJ > 0); (3.9)

where Z = Z(DI�1(�); DI(�); DJ(�); DJ+1(�)) is a norming constant.

Lemma 3.2 There exists Æ > 0 such that for all i and all paths (Di�3(�); Di�2(�),
Di+3(�); Di+4(�)) we have

P (Ai \ Ai+1jDi�2(�); Di�1(�); Di+2(�); Di+3(�)) � Æ:

Proof. We �rst note the following simple bounds:

�1 � ~�i(j)1(~�i(j) > 0) � �2;

�~ni
1 � Vi1(Vi > 0) � �~ni

2 ;

3�1 � �i(j) � 9�2;

3�1t
0 � Wi � 9�2t

0;
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where the �rst bound is simply (3.2).

To understand intutitively the idea in the lower bound of the lemma we will

imagine that there are no restrictions due to stop codons, i.e. all rates are positive.

Then, on taking I = i� 1 and J = i+ 2 in (3.9), we get the bound

P (Ai \ Ai+1jDi�2(�); Di�1(�); Di+2(�); Di+3(�)) � exp(�4 � 9�2t0)
Z

: (3.10)

To get an upper bound on Z from (3.9) we use the lower bound 3�1t
0(J � I + 1)

for the sum of the Wi's and use the upper bound (�2)
~nI+1+���+~nJ�1 for the product of

the Vi's. Summing over the possible substitutions for a �xed number of substitutions

�2 is replaced by 9�2 in the upper bound for the Vi's. Next, integrating over the

substitution times we get the upper bound

(9�2)
~nI+1+���+~nJ�1 expf�3�1t0(J � I + 1)g

J�1Y
j=I+1

(t0)~nj

~nj!
: (3.11)

Finally, summing over the number of substitutions ~nj, j = I +1; : : : ; J � 1 we obtain

the bound

Z � expf�3�1t0(J � I + 1) + 9�2t
0(J � I � 1)g: (3.12)

Inserting this bound into (3.10) we get a lower bound for the conditional probability

of the event Ai \ Ai+1.

When there are restrictions due to stop codons a change in the path DI(�) may

necessitate a change in the path of codon I + 1, otherwise VI becomes zero. We

therefore take I = i� 2 and J = i+ 3 and use the bound

P (Ai \ Ai+1jDi�3(�); Di�2(�); Di+3(�); Di+4(�))

� P (Ai \ Ai+1 \ C \ ~CjDi�3(�); Di�2(�); Di+3(�); Di+4(�)): (3.13)

Here C is the event that there are no substitutions in codon i � 1 if this event does

not make Vi�2 = 0, and there is exactly one substitution changing d1i�1 to a C before

time t�i�2 if this is needed in order that Vi�2 > 0. Similarly, ~C is the event that there
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are no substitutions in codon i + 2 if this event does not make Vi+3 = 0, and there

is exactly one substitution changing d3i+2 to a C before time t�i+3 if this is needed in

order that Vi+3 > 0. Let I1 and I2 be the indicator functions for the necessity of a

change in codon i� 1 or codon i+ 2, respectively. We bound (3.13) from below by

1

Z
exp(�6 � 9�2t0)(�1t�i�2)I1(�1t�i+3)

I2: (3.14)

Instead of (3.11) we get the upper bound

expf�6 � 3�1t0g(9�2t
0)~ni

~ni!

(9�2t
0)~ni+1

~ni+1!

�(9�2)
~ni�1((t0)~ni�1 � I1(t

0 � t�i�2)
~ni�1)

~ni�1!

�(9�2)
~ni+2((t0)~ni+2 � I2(t

0 � t�i+3)
~ni+2)

~ni+2!
:

Summing over the possible values of ~nj (~ni�1 � 1 if I1 = 1) we obtain the bound

Z � exp
n
�6 � 3�1t0 + 4 � 9�2t0

o �
1� exp(�9�2t�i�2)

�I1 �
1� exp(�9�2t�i+3)

�I2
:

(3.15)

Dividing (3.14) by (3.15) we get the lower bound

P (Ai \ Ai+1jDi�3(�); Di�2(�); Di+3(�); Di+4(�))

� exp(�(90�2 � 18�1)t
0)

 
�1t

�
i�2

1� exp(�9�2t�i�2)

!I1  �1t
�
i+3

1� exp(�9�2t�i+3)

!I2

� exp(�(90�2 � 18�1)t
0)

 
�1t

0

1� exp(�9�2t0)

!2

:

This proves the result of the lemma.

We are now ready to bound 2b1 + 2b2 + b3 of Theorem 2.1. From Lemma 3.1 and

Proposition 2.3 together with Lemma 3.2 we �nd

2b1 + 2b2 + b3 � nd

(
4k(n)d

 
(p�)2 +

(2p�)2

2
e2p�

!
+ 2(1� Æ4)(k(n)+1)=(2�+1)�1

)

with

p� =
27�22
�1

t0:
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If we take k(n) = 2(2� + 1) log(n)= log(1 � Æ4) and assume that t0 � �1=(27�
2
2) we

end up with

2b1 + 2b2 + b3 � c1(Æ; �1; �2) log(n)n(t
0)2 (3.16)

for some constant c1(Æ; �1; �2).

When using Theorem 2.1 we also want to take into account the term with (min�i)
1=2.

For this we need a lower bound on the success probability P (Uil = 1). Here, however,

we have the problem that we have not speci�ed completely the sets Bil de�ning the

Bernoulli variables Uil, and there may be combinations of Di(0) and Bil that makes

Uil identically zero. Instead we make the following assumption.

A2: The starting sequence D(0) and the sets Bil are such that for each l = 1; : : : ; d

the number of codons for which Uil can become 1 by one substitution only in

Di(�) and no substitutions in Di�1(�) and Di+1(�) is bigger than c2n for some

constant c2.

Taking a codon i for which Uil can become 1 we can make a lower bound on

P (Uil = 1jDi�2(�); Di�1(�) � Di�1(0)Di+1(�) � Di+1(0); Di+2(�))

as in (3.10) and (3.12). Instead of (3.10) the lower bound is

1

Z
exp(�3 � 9�2t0)(�1t0); (3.17)

and the estimation of Z in (3.12) is replaced by

Z � expf�3 � 3�1t0 + 9�2t
0g: (3.18)

Next we use the bound

P (Di�1(�) � Di�1(0); Di+1(�) � Di+1(0)) � 1� 2�p; (3.19)

obtained from (3.6). We then �nd

EUil � (1� 2�p) exp(�(36�2 + 9�1)t
0)�1t

0:
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For t0 � �1=(27�
2
2) we can write the lower bound as

�i � c2nc3(�1; �2)t
0; (3.20)

for some constant c3(�1; �2)

Combining (3.16) and (3.20) we get the following theorem from Theorem 2.1.

Theorem 3.3 Let Sj =
Pn

i=1 Uij, j = 1; : : : ; d, and let t0 � �1=(27�
2
2). Un-

der the assumption A2 the total variation distance between the joint distribution of

(S1; : : : ; Sd) and independent Poisson variables with the same means is bounded by

c(Æ; �1; �2) log(n)(n(t
0)3)1=2 for some constant c(Æ; �1; �2).

Theorem 3.3 shows that the multivariate Poisson approximation is valid when

n(t0)3 is small.

3.2 Unconditional result

In this section we let Ujl be de�ned as in (3.3) and as before let Xi = Di(�). Instead of

�xing Di(0), i = 1; : : : ; n we let the initial sequence have the stationary distribution

correponding to the Markov process with intensities given by (3.1). Since the esti-

mates in Lemma 3.1 and in Lemma 3.2 are true for all values of the initial sequence

Di(0), i = 1; : : : ; n, we can use the same estimates when we no longer condition on

the initial sequence.

For the class of model studied in Jensen and Pedersen (2000) and Pedersen and

Jensen (2001) the stationary distribution of a codon sequence can be viewed as a

Markov chain along the sequence. We can then use a large deviation result to show

that the number of three consequtive codons (Di�1(0); Di(0); Di+1(0)) of a particular

type is larger than cn except on a set having an exponentially small probability in n.

We therefore obtain a result similar to Theorem 3.3 in the unconditional case.
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3.3 A central limit theorem

When t0 is so large that Theorem 3.3 is no longer applicable we can instead use a

normal approximation to the distribution. Establishing a central limit theorem is,

however, slightly complicated because we still want to include a limiting situation

with t0 ! 0 while n ! 1. The main point seems to be a lower bound on the

variance of the sum as t0 ! 0. In order to establish a central limit theorem we will

use the proof in Bolthausen (1982).

Let e be a d-dimensional unit vector and let Vi =
Pd

l=1 el(Uil � EUil). Let mn be

a number to be chosen below and de�ne

an =
X
i

E

8<
:Vi

0
@ X
j:jj�ij�mn

Vj

1
A
9=
; :

According to Bolthausen (1982) we must prove the following statements,

an = var

 
nX
i=1

Vi

!
(1 + o(1)); (3.21)

a�2n
X

i1;i2;j1;j2:ji1�j1j�mn;ji2�j2j�mn

cov (Vi1Vj1 ; Vi2Vj2)! 0; (3.22)

a�1=2n sup
i

X
j1;j2:ji�j1j�mn;ji�j2j�mn

E (Vj1Vj2)! 0; (3.23)

and

a�1=2n

X
i

E jE (VijVj; jj � ij > mn)j ! 0: (3.24)

Lemma 3.4 Under the assumption A2 and for t0 bounded there exists a constant c

such that

var

 
nX
i=1

Vi

!
� cnt0:

Proof. Since e is a unit vector let je�j � 1=
p
d. Let fi1; : : : ; iKg be the codons

satisfying the condition in assumption A2 for the variables Ui�. Starting from below

(r = 0, i0 = 0) we condition on the codon paths of codons ir+1; : : : ; is�1, where s > r
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is the smallest value such that we condition on at least two codon paths in between ir

and is. In this way we end up with a reduced set of codons fj1; : : : ; jLg � fi1; : : : ; iKg,
where L � c2n=3, and where we have conditioned on at least two codon paths at each

side of jl. A lower bound on the variance is obtained as the mean of the conditional

variance. This gives the lower bound

LX
l=1

E fvar (Vjl�1 + Vjl + Vjl+1jDjl�2(�); Djl�1(�); Djl+1(�); Djl+2(�))g : (3.25)

To bound the individual terms in the sum we further condition onDjl�1(�) � Djl�1(0)

and Djl+1(�) � Djl+1(0). Then Vjl�1 = 0, Vjl+1 = 0, and the possible values of Vjl

are f0; e1(1 � pjl;1); : : : ; ed(1 � pjl;d)g. The conditional probability that Vjl equals

e�(1 � pjl;�) is bounded from below by exp(�(36�2 � 9�1)t
0)�1t

0 from (3.17) and

(3.18). Arguing as in (3.17) and (3.18), but making an upper bound instead of a

lower bound, the conditional probability that Vjl equals ej(1� pjl;j) is bounded from

above by exp((27�2 � 6�1)t
0)�2t

0. Putting these bound together we see that

var (VjljDjl�2(�); Djl�1(�) � Djl�1(0); Djl+1(�) � Djl+1(0); Djl+2(�)) � !1t
0 (3.26)

for some constant !1. Combining (3.26) with the bound (3.19) each term in (3.25) is

bounded from below by !1t
0(1� 2�p) We therefore end up with

var

 
nX
i=1

Vi

!
� L!1t

0(1� 2�p) � !2nt
0;

where !2 is a constant. This then gives the result of the lemma.

Theorem 3.5 If there exist constants c3; c4 and 0 � 
 < 1=2 such that c3n
�
 � t0 �

c4, and if assumption A2 holds then

(var(S))�1=2(S � ES)
�! Nd(0; I);

where S = (S1; : : : ; Sd) is the vector of counts.
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Proof. We prove (3.21) to (3.24) by takingmn = n� with 
+� < 1=2 and 
+4� < 1.

Let Æ be given by Lemma 3.2 and de�ne

� = (1� Æ4)1=(2t+1);

and let !i, i = 1; : : :, be constants. Using the line of argument as in (2.14) and (2.15)

we get the bounds

jE (VijVj; jj � ij > mn)j � !1�
mn ; (3.27)

jEViVjj � !2�
ji�jj; (3.28)

and for ji1 � j1j � mn, ji2 � j2j � mn, ji1 � i2j > 2mn,

jcov (Vi1Vj1; Vi2Vj2)j � !3�
ji1�i2j�2mn ; (3.29)

and for arbritrary i1; i2

jcov (Vi1Vj1; Vi2Vj2)j � jE (Vi1Vj1Vi2Vj2)j+ jE(Vi1Vj1)E(Vi2Vj2)j
� !4�

minfji1�j1j;ji1�i2j;ji1�j2jg: (3.30)

To prove (3.21) we use (3.28) to write

������var
0
@ nX
i�1

Vi

1
A� an

������ � 2!2n
1X

j=mn

�j = nt0
2!2

1� �

1

t0
�mn = nt0o(1);

which from Lemma 3.4 proves (3.21). In particular, we then have

an � !5nt
0: (3.31)

Turning to (3.22) we use (3.29) and (3.30) to get the bound

a�2n !6n

8<
:(2mn + 1)2

1X
k=3mn

�k�2mn + (6mn)(2mn + 1)
3mnX
j=0

�j

9=
;

= a�2n
!6n

1� �

n
(2mn + 1)2�mn + 6mn(2mn + 1)

o
! 0;
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where the convergence follows from n2
+2��1 ! 0. For (3.23) we have trivially the

bound

!7a
�1=2
n (2mn + 1)2 ! 0;

where the convergence follows from n
=2+2��1=2 ! 0. Finally, for (3.24) we get directly

from (3.27) the bound

!1a
�1=2
n n�mn ! 0:

We note that the two theorems 3.3 and 3.5 overlap in the sence that the former

can be used with t0 = n�
 for 
 > 1=3 and the latter can be used when 
 < 1=2.

4 An example

To illustrate the result of Theorem 3.3 we simulate a model of the form described

in Section 3. We consider a situation where reading frames I and II are used. A

codon D = (d1; d2; d3) translates into an aminoacid am(D). There are 64 codons,

but only 20 di�erent aminoacids. When we substitute z for dr we can either have

that the aminoacid am(D) is unchanged, to be denoted by S (the substitution is syn-

onymous), or the aminoacid am(D) is changed, to be denoted by N (the substitution

is nonsynonymous). When we have two reading frames we write S(I) or N(I) for

what happens in reading frame I and S(II) or N(II) for what happens in reading

frame II. Thus we let 1N(I);S(II) be one if the substitution is synonymous in reading

frame II and nonsynonymous in reading frame I. If both of z and dr belong to fA;Gg
or fC; Tg we speak of a transition and let 1ts be one. Finally, we let 1nostop(I) be one

if the substitution of dr by z does not produce a stop codon in reading frame I and

similarly with 1nostop(II). We will consider rates (3.1) of the form

�(r; zjDi�1; Di; Di+1) = �(z)�1tsf
1N(I);S(II)

I f
1S(I);N(II)

II f
1N(I);N(II)

I=II 
K1nostop(I)1nostop(II);

(4.1)
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whereK is the number of timesG follows after aC in the sequence (d3i�1; d
1
i ; d

2
i ; d

3
i ; d

1
i+1)

minus the same number for the sequence with dri replaced by z. Here � � 1,

fI ; fII; fI=II are all less than or equal to one, and �(A) + �(G) + �(C) + �(T ) = 1.

With these rates there are several terms contributing to the interaction among the

codons. The terms involving fI ; fII; fI=II together with the term 1nostop(II) all involve

two codons. The term 
K is introduced to model cases where there is a suppression of

CG-dinucleotide pairs. Typically, this suppression will also be present across codon

boundaries again introducing interaction.

The stationary distribution for a sequence evolving according to the rates in

(4.1) can be found in Pedersen and Jensen (2001). The stationary distribution can

be viewed as a Markov chain along the sequence and it is therefore easy to simu-

late a realization from the stationary distribution. For a �xed realization from the

stationary distribution, (D1(0); : : : ; Dn(0)), we have simulated the evolution of the

DNA sequence 500000 times. As an illustration we have for each simulated value

(D1(t); : : : ; Dn(t)) counted the number of codons i for which Di(0) has been changed

in one position, either position 1 or 3, the substitution is a transition, and the substi-

tution is synonymous in both reading frames (the count being N1) or the substitution

is synonymous in one reading frame and nonsynonymous in the other reading frame

(the count being N2). We have performed two simulations that di�er in the value t0

of the evolutionary time:

t0 = 0:1 and t0 = 0:5:

The remaining parameters have been �xed at

n = 400; fI = fII = 0:2; fI=II = fIfII = 0:04; � = 2; 
 =
p
0:2; �(�) = 0:25:

Let us �rst consider the marginal distribution of N1, the number of changes being

synonymous in both reading frames. In Table 1 is a comparison of the simulated

distribution with a Poisson distribution with the same mean as the simulated dis-
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t0 = 0:1 t0 = 0:5
n P (N1 = n) Pois(n) P (N1 = n) Pois(n)
0 41:07� 0:14 41:91 3:38� 0:06 4:52
1 37:39� 0:14 36:45 12:56� 0:10 13:99
2 16:18� 0:10 15:85 22:10� 0:12 21:67
3 4:37� 0:06 4:60 24:34� 0:12 22:37
4 0:85� 0:03 1:00 18:99� 0:11 17:32
5 0:12� 0:012 0:17 11:15� 0:09 10:73
6 0:014� 0:005 0:025 5:01� 0:06 5:54
7 1:80� 0:04 2:45
8 0:52� 0:03 0:95
9 0:13� 0:02 0:33
10 0:023� 0:009 0:101

Table 1: Comparison of simulated distribution of N1 with a Poisson distribution with
the same mean. All entries are percentage values.

tribution. As can be seen for t0 = 0:1 the true distribution is very close to the

Poisson approximation whereas for t0 = 0:5 the discrepancies are bigger with the

Poisson approximation giving bigger probabilities for small values of N1 and smaller

probabilities for large values of N1.

We next consider the conditional distribution of N2, the number of changes being

synonymous in one reading frame only, given the value of N1. These are given in

Figure 1. For t0 = 0:1 the Poisson approximation is very accurate and N1 and N2

are close to being independent. Contrary to this we can for t0 = 0:5 see a deviation

from independence as well as a deviation from the Poisson approximation.

Let us conclude by illustrating the use of the normal approximation from Theorem

3.5. In fact we will go one step further and include the �rst correction term of an

Edgeworth expansion. Thus from the simulations we estimate the mean �(k), the

variance �2(k), and the third standardized moment �(k) of the distribution of N2
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Figure 1: Comparison of conditional distribution of N2 given N1 with a Poisson
approximation. The left �gure is t0 = 0:1 and the right �gure is t0 = 0:5. The �
is the Poisson approximation and the vertical bars are the simulated probabilities
plus minus two standard deviations. The leftmost bar is the marginal distribution of
N2 and moving right follows the conditional distributions of N2 given N1 = n with
n = 0; 1; 2; 3; 4 for t0 = 0:1 and n = 0; 1; : : : ; 6 for t0 = 0:5.

given that N1 = k. We then approximate the conditional distribution by

P (N2 = mjN1 = k) � 1

�(k)
f1� �

6
(3x(m)� x(m)3)g e�x(m)2=2q

2��(k)2
; (4.2)

x(m) =
m� �(k)

�(k)
:

For the case considered above with t0 = 0:5 this gives a very good approximation. In

Figure 2 is a typical example where we have taken k = 0.
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Figure 2: Comparison of the conditional distribution of N2 given N1 = 0 with a
normal distribution for the case t0 = 0:5. The dots are the simulated probabilities,
the full drawn line is the Edgeworth approximation (4.2), and the dotted line is the
normal approximation.
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