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CHAPTER 1

Introduction

This thesis is concerned with the representation theory of an almost simple group over
an algebraically closed field k of prime characteristic p. The structure of the tilting modules
poses a highly interesting unsolved problem. The notion of a tilting module was originally
introduced by Ringel (1991) in the setting of quasi hereditary algebras; but modules with
the properties of tilting modules had been studied before this: see Collingwood and Irving
(1989). Later Donkin (1993) adapted the machinery of tilting modules to reductive alge-
braic groups. In this setting, a tilting module is a module with a filtration of Weyl modules
and a filtration of dual Weyl modules. The tilting modules form a family of modules with
very interesting properties: It is closed under tensor products, and any summand of a tilting
module is tilting. For each dominant weight λ there is an indecomposable tilting module
T � λ � with highest weight λ; this accounts for all indecomposable tilting modules. A tilting
module is uniquely determined by its character, but the characters of the indecomposable
tilting modules are in general unknown.

Knowledge of the characters of all indecomposable tilting modules would in fact allow
us to deduce the characters of the simple modules, see (Donkin 1993) and (Andersen 1998).
The characters of the simple modules is the basic goal within the representation theory of
our group; though progress have been made in later years, and though much is known in
special cases, the characters of the simple modules still present an open problem. This
stresses the importance as well as the difficulty of identifying the indecomposable tilting
modules.

The indecomposable tilting modules may be determined by an account of the Weyl
factors in T � λ � . We write � T � λ � : V � µ ��� for the number of times the Weyl module V � µ �
appears in a filtration of T � λ � . The decomposition numbers � T � λ � : V � µ ��� for all dominant
µ is a convenient way to express the characters of the indecomposable tilting modules,
since the characters of the Weyl modules are known. However, apart from the information
obtained through the construction of tilting modules (see Chapter 2), the decomposition
numbers � T � λ � : V � µ ��� are effectively unknown.

A second way to reveal the structure of the tilting modules is to obtain the multiplicities
of T � λ � in any tilting module with known character. The multiplicity of T � λ � in a tilting
module M is the number of times T � λ � appears as a summand of M, and we denote this
number by � M : T � λ ��� . Formulae for these multiplicities � M : T � λ ��� is enough indeed to
determine the characters of the indecomposable tilting modules. Some progress have been
made along this line. If λ belongs to the first alcove (see Chapter 2 for a more detailed
account of the notation), the answer is well known, due to Georgiev and Mathieu (1994)
and Andersen and Paradowski (1995).

� Q : T � λ ����� ∑
x � W 	 x 
 λ � X �

�� 1 � l � x � � Q : V � x � λ ��� (1.1)

Little seems to be known if λ does not belong to the first alcove.
A third way to examine the structure of tilting modules is via quantizations: For each

modular tilting module M there is a quantum tilting module (meaning a tilting module of
the corresponding quantum group at a p’th root of unity) Mq with the same character. As
the characters of the indecomposable quantum tilting modules are known, we may compute
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8 1. INTRODUCTION

the multiplicities �Mq : Tq � λ ��� (see Chapter 3 for the notation) if we know the character of
M. Also, knowledge of the quantum multiplicities � T � λ � q : Tq � µ ��� for all µ will determine
the characters of the indecomposable tilting modules. The characters of quantum tilting
modules are expressed in terms of Hecke algebra combinatorics, and related concepts such
as right cells and weight cells turn out to play a central role in the representation theory of
quantum groups at a p’th root of unity.

The results in this thesis are brought about by considering the quantizations T � λ � q of
modular indecomposable tilting modules. Even though the character of T � λ � is unknown
we are able to deduce the following theorem, where h as usually denotes the Coxeter
number.

THEOREM 1.1. Assume that the root system of our group is of type An � 2, B2, Dn, E6,
E7, E8 or G2, and let p � h.

For dominant weights λ, µ, with µ in the first or second weight cell we have

� T � λ � q : Tq � µ ���	� δλµ 

As a modular tilting module is a direct sum of indecomposable tilting modules, we

immediately generalize this to
THEOREM 1.2. Assume that the root system of our group is of type An � 2, B2, Dn, E6,

E7, E8 or G2, and let p � h. For a modular tilting module M and a weight λ in the first or
second weight cell we have

�M : T � λ �������Mq : Tq � λ ��� (1.2)

Note that the right hand side of (1.2) is the multiplicity of a quantum tilting module;
so the right hand side is computable. Thus the theorem provides a closed formula for the
multiplicities of indecomposable tilting modules with highest weight in the first or second
weight cell. We regard Theorem 1.2 as the main result of our thesis.

Note that Theorem 1.2 covers the situation considered in equation (1.1), and may thus
be seen as a generalization of this equation.

From the construction of tilting modules in Chapter 2 we find that the characters of the
indecomposable tilting modules is a basis of the ring of characters. Let �M : T � λ ��� denote
the coefficient of chT � λ � so that

chM � ∑
λ  X �

�M : T � λ ��� chT � λ �

for all modules M. This extend our usage of �M : T � λ ��� so far. Considered as a character
formula, equation (1.2) therefore holds for all modules M. In particular, since the modular
Weyl module and the quantum Weyl module have the same character, we find that

THEOREM 1.3. Assume that the root system of our group is of type An � 2, B2, Dn, E6,
E7, E8, or G2, and let p � h.

For dominant weights λ, µ, with µ in the first or second weight cell we have

�V � λ � : T � µ �������Vq � λ � : Tq � µ ��� (1.3)

This provide us with the “inverse” decomposition numbers for all T � µ � with µ in the
first or second weight cell.

Recent years have seen many and diverse applications of tilting modules. Here we will
mention two. Let N denote a vector space of dimension n over k. From the commuting
actions on N � r of the symmetric group and the group of linear automorphisms of N we
obtain a surjective ring homomorphism

k � Σr ����� EndGL � N � � N � r � (1.4)

The indecomposable summands of N � r index the simple modules of EndGL � N � � N � r � , by
general ring theory. Further, the dimension of a simple EndGL � N � � N � r � -module is given
by the multiplicity in N � r of the corresponding indecomposable. As N � r is tilting we may
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apply Theorem 1.2 to count the multiplicities of those indecomposable tilting modules,
that have highest weights in the first or second weight cell. Through the surjection (1.4)
above we obtain a dimension formula for a set of simple representations of the symmetric
group, as stated in

THEOREM 1.4. Let λ � �
λ1 ��������� λn � denote a partition with at least three parts. When

p � n we may compute the dimension of the simple k 	 Σr 
 -module parametrized by λ, pro-
vided that λ1 � λn � 1  p � n � 2 or λ2 � λn  p � n � 2.

This Theorem is a generalization of a result by Mathieu (1996), determining the di-
mension of the simple modules parametrized by Young diagrams with n1 � nn  p � n � 1.
Further, our result proves a special case of conjecture 15.4 in (Mathieu 2000).

As a second application, we consider the surjective ring homomorphism

k GL
�
M ����� EndGL � N � ����� N � M ���

As
�

N � M is a tilting module we may apply Theorem 1.2 to count multiplicities of second
cell tilting modules. The corresponding dimension formula may in fact be refined to a
character formula; however the precise statement requires some further notation. Therefore
we give only an example. We denote the i’th fundamental weight of GL

�
M � by ωi.

EXAMPLE 1.5. Consider the dominant weight aωi � ω j, with i � j, a � 0. Theorem
1.2 allow us to calculate the character of the simple GL

�
M � -module L

�
aωi � ω j � for p � 3.

The character formulae obtained here generalizes work of Mathieu and Papadopoulo
(1999).

Review of the thesis

In Chapter 2 we construct indecomposable modular tilting modules. We shall follow
the approach of Ringel (1991) and Donkin (1993). We will refer to this construction in
Chapter 3, where we introduce Uq, the corresponding quantum group at a p’th root of
unity, and quantum tilting modules. Also in Chapter 3 we consider the key concept – in
this thesis – of quantizations of modular tilting modules; that is, we find for each modular
tilting module a quantum tilting module with the same character.

Chapter 4 is devoted to the Hecke algebra. We show how right cells arise naturally via
bases of “nice” ideals of the Hecke algebra. We treat in depth one right cell, which we call
the second cell. The second cell is at the heart of this thesis. Chapter 5 contains the Hecke
module and Soergels Theorem, expressing the characters of quantum tilting modules in
terms of Hecke algebra combinatorics. This is applied: We classify all tensor ideals of
quantum tilting modules following Ostrik (1997), and we determine the weight cells. Both
applications relies on the right cells of Chapter 4.

With Chapter 6 this thesis begins in honest. Based on quantizations of modular tilting
modules and Hecke algebra calculations we examine the structure of modular tilting mod-
ules. The outcome is the multiplicity formula of Theorem 1.2. We prove the formula for
type An � 2, Dn, E6, E7, E8 or G2 in Chapter 6, and we see that the formula does not hold in
type A1. Chapter 7 then consider the formula for type B2 – using techniques quite different
from those of Chapter 6 we prove that the multiplicity formula does indeed hold in type
B2.

The last chapters of the thesis present applications of the main result. Via Schur-
Weyl duality (of which we give a self contained account) this leads us in Chapter 8 to
a dimension formula for simple representations of the symmetric group corresponding to
partitions, which satisfy a simple condition. Chapter 9 considers Howe duality. Here the
multiplicity formula provide us with character formulae for simple modules of the general
linear group, parametrized by the dominant weights of a given set. Finally in the short
Chapter 10 we take up modular weight cells and show how the multiplicity formula allow
us to determine the second largest modular weight cell.





CHAPTER 2

Tilting modules

Let k denote an algebraically closed field of prime characteristic p. Let G be an almost
simple algebraic group over k.

� Let T denote a maximal torus, and let X � X
�
T � denote the character group of

T .� Let R � X denote the set of roots of G. The root system R is irreducible because
G is almost simple. Choose a set of simple roots � α1 ���	����� αn 
 and let R � denote
the positive roots. For each root α let α � denote the coroot corresponding to α.� Let E denote the real vector space spanned by all α  R. There is a bilinear
form, ��� � ��� , on E, so that the numbers � α � β ��� (for simple α, β) are the entries
of the Cartan matrix of R.� Let ω1 ���	�	� ωn denote the basis dual to α �1 ���	����� α �n . Then ωi is called the i’th
fundamental weight. Let ρ denote the sum of all fundamental weights, and let
St � �

p � 1 � ρ.� For each root α define a reflection on E by

sα
�
λ ��� λ ��� λ � α � � α �

A reflection corresponding to a simple root αi is called a simple reflection and
is denoted by si. The set of simple reflections is denoted by S0. The simple re-
flections generate the (finite) Weyl group W0. Let w0 denote the longest element
in the Weyl group.� Let α0 denote the highest short root of R, and define an affine reflection s0 by

s0
�
λ ��� λ ��� λ � α �0 � α0 � pα0 �

The affine Weyl group, W , is the group generated by S ��� s0 � s1 ���	����� sn 
 .� The Weyl group and affine Weyl group act on E through the dot-action

w � λ � w
�
λ � ρ ��� ρ w  W � λ  E �

� The action of the affine Weyl group divides E into alcoves, on which it acts
simply transitive. Let

C � � λ  E � 0 ��� λ � ρ � α � ��� p for all positive roots α 

denote the first (or standard) alcove. The first alcove contains a weight when
p � h, h denoting the Coxeter number of the root system of G.� Let U denote the subgroup of G generated by all root subgroups corresponding
to negative roots. Let U � denote the group generated by root subgroups corre-
sponding to all positive roots. And let B denote the Borel subgroup generated
by U and T .

Modules

By a G-module we mean a rational finite dimensional representation of the algebraic
group G. Any G-module is also a T -module. A T -module splits in a direct sum of
one-dimensional T -modules, and T ’s action on a one-dimensional module is given by a
character. For a G-module M and a character λ  X , we define the λ-weight space by
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12 2. TILTING MODULES

Mλ � �
w � M � tw � λ � t � w for all t � T � . If Mλ �� 0 we say that λ is a weight of M. The

sum of weight spaces is direct and we therefore have a decomposition of any G-module M:

M �	� λ 
 X Mλ �
We shall sometimes refer to the elements of X as the weights of G.

For each dominant weight λ we have the Weyl module V � λ � with highest weight λ.
In characteristic p this module need not be simple, as it is in characteristic zero. But
the head of V � λ � , which we denote by L � λ � , is simple and of highest weight λ. In fact�

L � λ ��� λ � X �� is a full set of non-isomorphic simple modules. The Weyl module has
an important universal property. A U  -invariant line km of weight λ in a G-module M
generates a quotient of the Weyl module V � λ � .

Next, let us consider the induced modules. We shall define them as duals of Weyl
modules, that is, set H0 � λ � � V ��� w0λ ��� . This definition is adequate for our purpose.
However, as the name suggests, the induced modules arise naturally by induction. Let kλ
denote the one dimensional B-module with trivial U-action and T -action through λ. Then
H0 � λ ��� IndG

B kλ. We will let χ � λ � denote the character of the Weyl module and the induced
module with highest weight λ.

We say that a module M has a Weyl filtration, if there is a filtration

0 � M0 � M1 ��������� Mr � M �
so that each quotient Mi � Mi � 1 is a Weyl module. If M allows a filtration where each
subquotient is a dual Weyl module, we say that M has a good filtration. If M has a Weyl
filtration we let �M : V � λ ��� denote the number of times V � λ � appears as a subquotient. And
if M has a good filtration we let �M : H0 � λ ��� denote the number of times H0 � λ � appears as
a subquotient.

A tilting module is a module with a Weyl filtration and a good filtration. Equivalently,
a module M is tilting if M and the dual of M allow a good filtration, or M is tilting if M
and its dual have a Weyl filtration. In this first chapter we show that there is a unique
indecomposable tilting module with highest weight λ for each dominant weight λ. We will
then denote this indecomposable tilting module by T � λ � .

The translation functors and the wallcrossing functors are used extensively in Chapter
6. Let us review their definition. We define prλ M as the largest submodule of M where all
composition factors have highest weight in W � λ. By the linkage principle, prλ M is a direct
summand of M. Now let λ � µ � C  X . There is a unique ν, so that

�
ν � � W0 � µ � λ �! X  .

The translation functor T µ
λ is then defined by

T µ
λ M � prµ � L � ν �!" prλ M � �

As truncation to a summand is exact and as L � ν �!"#� is exact, we find that the translation
functor is an exact functor. The wallcrossing functors are defined as a composition of
translation functors. Choose µ � C  X so that Wµ � �

1 � s � , where Wµ denotes the stabilizer
of µ with respect to the dot action. Let λ � C  X denote a regular weight, i.e. a weight
with trivial stabilizer. Then Θs � T λ

µ $ T µ
λ is a wallcrossing functor.

Weyl modules

We prepare the construction of tilting modules in the next section by recalling results
about Weyl modules.

By weight considerations we find that chV � λ � � chL � λ �&% ∑µ ' λ aµ chL � µ � for some
non-negative integers aµ. But more is known. Recall the definition of the linkage relation(

on X from (Andersen 1980b), to which we also refer to for the following theorem.

THEOREM 2.1. If L � µ � is a composition factor of V � λ � then µ
(

λ.
If L � µ � is a composition factor of H0 � λ � then µ

(
λ
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The strong linkage principle above is usually stated for induced modules; but the
equality chV � λ ��� chH0 � λ � shows that the Weyl module and the induced module have
the same composition factors.

THEOREM 2.2. (Cline, Parshall, Scott and van der Kallen 1977)
Let µ and λ be dominant weights. Then

Exti � V � λ ��� H0 � µ ����� �
k i � 0 and λ � µ
0 otherwise

The full strength of Theorem 2.2 is not needed to construct tilting modules; for this
purpose we need only the special case i � 0 � 1 (which may be established quite easily
independently) and i � 2 in the proof of Theorem 2.8.

COROLLARY 2.3. Let W be a module with a Weyl filtration and Q a module with a
good filtration. Then

(i) dimHom � V � λ �	� Q ����
Q : H0 � λ �� ,
(ii) dimHom � W � H0 � λ ������
W : V � λ ��� ,

(iii) Exti � W � Q ��� 0 for all i � 1.

The Lemma below states a necessary condition for the extension of a Weyl module
with a simple module. A convenient reference is (Jantzen 1987, II.6.20) which also de-
scribes how far apart it is possible for λ and µ to be.

LEMMA 2.4. Let µ and λ be dominant weights.

(i) If, for some i � 0, Exti � V � λ ��� L � µ ������ 0 then λ � µ.
(ii) dimExti � V � λ ��� L � µ ��� is finite for all i.

PROOF. The proof goes by induction in i. If Ext0 � V � λ �	� L � µ ������ 0 then λ � µ as
V � λ � has simple head equal to L � λ � . Now suppose that Exti � V � λ �	� L � µ ������ 0 for a pair of
dominant weights λ, µ and that i � 1. Consider the exact sequence

0 � L � µ ��� H0 � µ ��� H0 � µ ��� L � µ ��� 0 �
Applying Hom � V � λ ������� and recalling Theorem 2.2 we find an isomorphism

Exti � 1 � V � λ �	� H0 � µ ��� L � µ ��� � Exti � V � λ ��� L � µ ���
This implies Exti � 1 � V � λ �	� L � µ1 ���!�� 0 for some composition factor L � µ1 � of H0 � µ � ; hence
µ1 � µ. Repeating the argument we find a sequence of linked dominant weights µi �"�����#�
µ1 � µ so that Exti � i � V � λ �	� L � µi ������ 0. We conclude that µi � λ.

The second claim is obvious if i � 0. For i $ 0 it follows by induction in µ. If µ is
minimal then L � µ �%� H0 � µ � and conclusion by Theorem 2.2. For non-minimal µ we have
Exti � 1 � V � λ ��� H0 � µ ��� L � µ ���%� Exti � V � λ ��� L � µ ��� by the first part of the proof. By induction
dimExti � 1 � V � λ �	� L � µ &'���)( ∞ for each factor L � µ &*� in H0 � µ ��� L � µ � , and the result follows.+

REMARK 2.5. Note that Lemma 2.4(ii) shows that for any module M and any domi-
nant weight λ we have dimExti � V � λ �	� M �,( ∞ for all i � 0.

LEMMA 2.6. Let λ be a dominant weight. We have

Exti � V � λ ��� L � λ ����� �
k i � 0
0 i � 1 �

PROOF. Consider the following short exact sequence

0 � L � λ ��� H0 � λ ��� H0 � λ ��� L � λ ��� 0 �
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For all composition factors L � µ � in H0 � λ ��� L � λ ��� 0 we have µ � λ and µ �� λ; hence (by
Lemma 2.4) Exti � V � λ �	� L � µ �
��� 0 for all i � 0. This implies Exti � V � λ �	� H0 � λ ��� L � λ �
�� 0
for all i � 0. Thus

Exti � V � λ �	� L � λ ����� Exti � V � λ ��� H0 � λ �
��� �
LEMMA 2.7. Let λ be a dominant weight. We have

Exti � V � λ �	� V � λ �
��� � k i � 0
0 i � 1 �

PROOF. In the following we let V � λ � 1 denote the kernel of the natural projection
V � λ �� L � λ � . This is reasonable since V � λ � 1 agrees with the first submodule of V � λ � in
Jantzens filtration.

0 � V � λ � 1 � V � λ ��� L � λ ��� 0 �
For all composition factors L � µ � in V � λ � 1 we have µ � λ and µ �� λ; hence (by Lemma 2.4)
Exti � V � λ �	� L � µ �
��� 0 for all i � 0. This immediately implies Exti � V � λ ��� V � λ � 1 ��� 0 for all
i � 0. Thus

Exti � V � λ �	� V � λ �
��� Exti � V � λ �	� L � λ ���	� �
THEOREM 2.8. (Donkin 1981) Suppose that Ext1 � V � µ �	� M ��� 0 for all dominant µ.

Then M allows a good filtration.

PROOF. Choose a minimal λ so that L � λ � is a composition factor in the socle of M.
We will show that H0 � λ � is a submodule in M and that Ext1 � V � µ ��� M � H0 � λ �
�� 0 for all
dominant µ. Recursively this gives us a sequence of surjections M � M1 ���
�
��� Mr � 0,
where each kernel is an induced module. This sequence shows that M allows a good
filtration.

From the short exact sequence 0 � L � λ � i� H0 � λ �� H0 � λ ��� L � λ ��� 0 we obtain a
long exact sequence with the terms���
��� Hom � H0 � λ ��� M ��� Hom � L � λ �	� M ��� Ext1 � H0 � λ ��� L � λ �	� M ��� ���
�
Assume for a moment that the last term is zero; then there is an f � Hom � H0 � λ ��� M � so

that f  i includes L � λ � in M. The kernel of f is either zero or contains L � λ � (which is the
socle of H0 � λ � ); therefore the kernel must be trivial, and we get an inclusion of H0 � λ � in
M.

So we must show that Ext1 � H0 � λ ��� L � λ ��� M �!� 0. Let L � ν � denote a composition
factor of H0 � λ ��� L � λ � , and consider the sequence 0 � V � ν � 1 � V � ν ��� L � ν ��� 0. Using
Hom �
"#� M � we get an exact sequence including the terms�
���$� Hom � V � ν � 1 � M ��� Ext1 � L � ν ��� M �%� Ext1 � V � ν �	� M �%� �
���
Now the last term is zero by assumption. Further, there are no maps from V � ν � 1 to M: The
composition factors of V � ν � 1 are L � ν &'� with ν & strictly smaller than ν � λ and λ was chosen
minimal among the highest weights of the composition factors of the socle of M. So we
see that Ext1 � L � ν ��� M �(� 0 for each factor L � ν � of H0 � λ ��� L � λ � . We conclude that also
Ext1 � H0 � λ ��� L � λ �	� M �� 0, and we have the desired factorization of the inclusion L � λ ��) �
M.

Finally Ext1 � V � µ �	� M � H0 � λ ����� 0 for all dominant µ follows from Hom � V � µ �	�
"*� ap-
plied to the exact sequence 0 � H0 � λ �+� M � M � H0 � λ ��� 0, as Ext2 � V � µ �	� H0 � λ ����� 0
by Theorem 2.2.

�
When M allows a good filtration, we have Ext1 � V � µ ��� M ��� 0 for all dominant µ by

Corollary 2.3. Together Corollary 2.3 and Theorem 2.8 give the following corollary.
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COROLLARY 2.9. Let 0 � M � N � P � 0 be a short exact sequence of G-modules.
Then

(i) P has a good filtration if N and M have a good filtration.
(ii) N has a good filtration if P and M have a good filtration.

(iii) A summand in a module with a good filtration has a good filtration.

Construction of tilting modules.

In this section we outline how to construct an indecomposable tilting module with
highest weight λ � X

�
. The idea is to inductively build the tilting module by extensions,

until we get a module that does not extend any Weyl module. This module will then have
a good filtration, as ensured by Theorem 2.8.

Fix λ and let Π � λ ����� µ � X
�
	

µ � λ � . Note that Π � λ � is a finite set; accordingly we
order Π � λ ���� λ0 � λ1 ������� λr � so that λi � λ j implies that j � i. Note that λ0 � λ.

Let E0 � V � λ0 � . If Ext1 � V � λ1 � � E0 ��� 0 then we set E1 � E0. If this space is non-zero
we extend V � λ1 � with E0: Choose a non-split short exact sequence

0 � E0 � E � 1 �0 � V � λ1 ��� 0 � (2.1)

Applying Hom � V � λ1 � ��� � we obtain a long exact sequence, beginning with the six terms

0 � Hom � V � λ1 � � E0 ��� Hom � V � λ1 � � E � 1 �0 � Ψ� Hom � V � λ1 � � V � λ1 ���
� Ext1 � V � λ1 � � E0 ��� Ext1 � V � λ1 � � E � 1 �0 ��� Ext1 � V � λ1 � � V � λ1 ����� �����

Note that (2.1) is non-split if and only if Ψ is the zero map, as Hom � V � λ1 � � V � λ1 �����
k IdV � λ1 � . Further, we have a complete description of Exti � V � λ1 � � V � λ1 ��� from Lemma 2.7.
We conclude that

0 � End � V � λ1 ����� Ext1 � V � λ1 � � E0 ��� Ext1 � V � λ1 � � E � 1 �0 ��� 0

is exact. In particular, we have dimExt1 � V � λ1 � � E � 1 �0 ��� dimExt1 � V � λ1 � � E0 � � 1.
Now: If Ext1 � V � λ1 � � E � 1 �0 ��� 0 then set E1 � E � 1 �0 . If this space is non-zero choose a

non-split extension

0 � E � 1 �0 � E � 2 �0 � V � λ1 ��� 0 �
Arguing as above we obtain dimExt1 � V � λ1 � � E � 2 �0 ��� dimExt1 � V � λ1 � � E � 1 �0 � � 1. We con-

tinue in this way until we eventually find an E � d1 �
0 with the property that

Ext1 � V � λ1 � � E � d1 �
0 ��� 0

Then set E1 � E � d1 �
0 . Note that

d1 � dimExt1 � V � λ1 � � E0 � �
which is finite thanks to Remark 2.5. Further, E1 � E0 has a Weyl filtration; the quotients are
all isomorphic to V � λ1 � and there are d1 of them. Since there are no non-trivial extensions
of V � λ1 � with itself, we conclude that we have a short exact sequence

0 � E0 � E1 � V � λ1 ��� d1 � 0 �

Having dealt with λ1 we simply continue with λ2. Arguing as above we produce an
extension

0 � E1 � E2 � V � λ2 � � d2 � 0 �
so that Ext1 � V � λ2 � � E2 ��� 0. We also find that d2 � dimExt1 � V � λ2 � � E1 � .

We use this procedure for each of the finitely many λi in Π � λ � ; eventually we end up
with a module Er that fits into the short exact sequence

0 � Er  1 � Er � V � λr �!� dr � 0 �
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and has the property that Ext1 � V � λr ��� Er ��� 0 and where dr � dimExt1 � V � λr ��� Er � 1 � .
The module Er is our tilting candidate; but so far we have only explained how to obtain

Er. It still remains to prove that this module has the properties we are looking for.
LEMMA 2.10. For each dominant weight µ we have

Ext1 � V � µ ��� Er ��� 0 	
Consequently Er has a good filtration.

PROOF. First of all µ 
� λ implies Ext1 � V � µ ��� Er ��� 0, as Ext1 � V � µ ��� L �� 0 for each
composition factor L of Er follows from Lemma 2.4. Hence we may assume that µ � λi
for some λi in Π � λ � . But then Ext1 � V � µ ��� Ei ��� 0 by the construction of Ei.

Now, for all j � i we have µ 
� λ j. Thus Ext1 � V � µ ��� V � λ j ����� 0; if non-zero, there must
be a composition factor L � λ � � in V � λ j � so that Ext1 � V � µ ��� L � λ � ��� is nonzero: This forces
µ
�

λ � � λ j.
Combining Ext1 � V � µ ��� Ei ��� 0 and Ext1 � V � µ ��� V � λ j ����� 0 for all j � i we obtain the

result as follows. Use Hom � V � µ ������� on the sequence

0 � Ei � Ei � 1 � V � λi � 1 ��� di � 1 � 0 	 (2.2)

This shows that Ext1 � V � µ ��� Ei � 1 ��� 0. Completely analogous arguments allow us to con-
clude that also Ext1 � V � µ ��� Ei � 2 ����������� Ext1 � V � µ ��� Er ��� 0. �

LEMMA 2.11. V � λi � is not a summand of Ei.

PROOF. Recall that we have a short exact sequence

0 � Ei � 1
i� Ei

p� V � λi � � di � 0 	 (2.3)

We show that any homomorphism j: V � λi �� � Ei factors through i and that any homo-
morphism q: Ei � � V � λi � factors p. Hence a composition q  j is zero.

The first factorization follows from (2.3); applying Hom � V � λi ������� we obtain a long
exact sequence where the first terms are

0 � Hom � V � λi ��� Ei � 1 � � Hom � V � λi ��� Ei � � Hom � V � λi ��� V � λ � � di �
� Ext1 � V � λi ��� Ei � 1 � � Ext1 � V � λi ��� Ei � � 	�	�	

But Ei was constructed so that Ext1 � V � λi ��� Ei �!� 0. Further, dimExt1 � V � λi ��� Ei � 1 �"�
dimHom � V � λi ��� V � λ � � di ��� di, hence

Hom � V � λi ��� Ei � 1 ��� � Hom � V � λi ��� Ei ��� f #� i  f (2.4)

is an isomorphism.
The second factorization also follows from (2.3), since Hom � Ei � 1 � V � λi ���$� 0: The

Weyl factors of Ei � 1 is V � λ j � with λ j 
� λi and Hom � V � λ j ��� V � λi ����� 0 for all such j. �
COROLLARY 2.12.

0 � Ei � Ei � 1 � V � λi � 1 � di � 1 � 0 	
is non-split for each i.

LEMMA 2.13. Each Ei is indecomposable. In particular, Er is indecomposable.

PROOF. Note that E0 is indecomposable; we proceed inductively. We establish first a
connection between End � Ei � and End � Ei � 1 � to facilitate the induction argument.

End � Ei � 1 �
% f &' i ( f

��

0 // Hom � V � λi � di � Ei � f &' f ( p
// End � Ei � f &' f ( i

// Hom � Ei � 1 � Ei � // 0
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The isomorphism is obtained by using Hom � Ei � 1 ����� on (2.3); in the proof of Lemma
2.11 we saw that Hom � Ei � 1 � V � λi ���	� 0.

The sequence is exact since we constructed Ei so that Ext1 � V � λi �
� Ei ��� 0.
Choose an idempotent e � End � Ei � . We must show that e is either one or zero. Let f

denote the image of e in Hom � Ei � 1 � Ei � lifted to End � Ei � 1 � ; it is straightforward to check
that this is an idempotent. Since Ei � 1 is indecomposable we thus find that f is 1 or 0.

Suppose first that f is zero. Then e is the image of some g � Hom � V � λi � di � Ei � , i.e.
g  p � e. If

p  g : V � λi � di ��� Ei ��� V � λi � di

is non-zero, then V � λi � is a summand in Ei, contradicting Lemma 2.11. Therefore 0 �
g  p  g  p � e2 � e.

If, on the other hand f � 1, then we consider e � 1, which is mapped to zero in
Hom � Ei � 1 ��� Ei � . With the same argumentation as above we find a g ��� Hom � V � λi � di � Ei �
that is mapped to e � 1, i.e. g �� p � e � 1. As before, 0 � p  g � ; otherwise V � λi � splits off
Ei. Therefore 0 � � e � 1 � 2 � 1 � e and we are done. �

Properties of tilting modules

The construction of Er in the last section gives us directly the basic properties of tilting
modules. These are stated in Theorem 2.14 below. Further properties that are not directly
linked to the construction are stated in Theorem 2.15. We denote by T � λ � the module Er.

THEOREM 2.14. Let λ denote a dominant weight.
(i) T � λ � is an indecomposable tilting module with highest weight λ.

(ii) The λ-weight space of T � λ � is one-dimensional.
(iii) If V � µ � is a Weyl factor of T � λ � then µ � λ.

If L � µ � is a composition factor of T � λ � then µ � λ.
(iv) Suppose that µ is maximal among weights with Ext1 � V � µ �
� V � λ ������ 0. Then

�
T � λ � : V � µ ����� dimExt1 � V � µ ��� V � λ ���

PROOF. In the previous section we constructed the module Er. By construction, this
module has a Weyl filtration and highest weight λ. By Lemma 2.10 Er has a good filtration,
and it is therefore a tilting module. Finally Lemma 2.13 shows that Er is indecomposable.
This shows the first assertion.

Note that V � λ � appears once in T � λ � and that all other Weyl factors have highest
weight linked to λ. This shows (ii) and the first statement in (iii). The second statement of
(iii) now follows from the strong linkage principle, Theorem 2.1.

Note that the assumption in (iv) allow us to choose the ordering of Π � λ � so that λi � µ
and Ext1 � V � λ j �
� V � λ ����� 0 for all j � i. The first steps in the construction then show the
claim. �

THEOREM 2.15.
(i) There exist an indecomposable tilting module with highest weight λ for each

dominant weight λ.
(ii) � T � λ �! λ � X "!# is a full set of non-isomorphic indecomposable tilting modules.

(iii) A direct sum of tilting modules is tilting.
(iv) A summand in a tilting module is tilting.
(v) A tilting module is fully determined by its character.

(vi) A tensor product of tilting modules is tilting.
(vii) Translations and wallcrossings take tilting modules to tilting modules.

PROOF. The first assertion is trivial in view of Theorem 2.14.
Before we prove (ii) we note that V � λ � is a submodule of T � λ � and that H0 � λ � is a

quotient. This follows from a well known fact about modules with Weyl filtrations; any
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T � λ �

||yy
yy
yy
yy

��

V � λ � // Q

��

// H0 � λ �

T � λ �

;;xxxxxxxx

FIGURE 1

maximal Weyl factor is a submodule and the quotient has a Weyl filtration. By dualizing,
we obtain a similar statement about modules with good filtrations; a maximal factor is a
quotient and the kernel of the projection has a good filtration.

Now let Q be a tilting module with λ as a highest weight. Choosing a nonzero vector
in Qλ allow us to define homomorphisms V � λ ����� Q ��� H0 � λ � so that the composite is
non-zero. From the inclusion V � λ ����� T � λ � and the projection p : T � λ ����� H0 � λ � we
obtain long exact sequences by applying Hom ���
	 Q � and Hom � Q 	���� respectively

�� � Hom � T � λ ��	 Q ��� Hom � V � λ ��	 Q � � Ext1 � T � λ ��� V � λ ��	 Q ��� ��
�� � Hom � Q 	 T � λ ����� Hom � Q 	 H0 � λ ����� Ext1 � Q 	 ker p � � ��

Both Ext1-groups are zero by Corollary 2.3, since T � λ ��� V � λ � has a Weyl filtration and
ker p has a good filtration. Hence we obtain homomorphisms so that the diagram of Figure
2 commutes.

As the map V � λ ����� H0 � λ � is nonzero we see that the composite T � λ ����� T � λ �
is nonzero on the λ-weight space. Hence it is not nilpotent. But by Fittings lemma, all
non-nilpotent endomorphisms of indecomposable modules are isomorphisms. We have
shown that T � λ � is a summand of Q. This proves the second assertion, as it shows that any
indecomposable module with highest weight λ is isomorphic to a T � λ � .

It is obvious that direct sums of tilting modules are tilting. It follows from Corollary
2.8 that summands in modules with good filtrations have good filtrations. Recalling that a
module Q is tilting if and only if Q and its dual Q � has good filtrations, we get the sixth
claim.

It follows from (iv) that a tilting module is a sum of indecomposable tilting modules.
Since dimT � λ � λ � 1 we find that chT � λ � , λ � X � , form a basis of the ring of characters.
Hence only one decomposition in indecomposables is possible and we have (v).

The assertion (vi) follows from the non-trivial fact that tensor products of modules
with a good filtration has a good filtration. This was shown by Donkin (1985) in almost all
types and characteristics, and later by Mathieu (1990) in general.

Finally the last assertion follows from (iv) and (vi). �
Let us determine the structure of a first set of tilting modules.
COROLLARY 2.16. A Weyl module is tilting if and only if it is simple.

PROOF. Suppose that V � λ � is simple. Then no Weyl modules extend V � λ � as

Ext1 � V � µ ��	 V � λ ��� � Ext1 � V � µ ��	 H0 � λ ��� � 0

by Theorem 2.2. So by the construction T � λ � � V � λ � . Of course, we may also argue that
V � λ � � H0 � λ � shows that V � λ � is tilting, and since a simple V � λ � is indecomposable, we
find that V � λ � � T � λ � .

Suppose that V � λ � is tilting. Then V � λ ��� H0 � λ � by character arguments, since V � λ �
has a good filtration. But any homomorphism V � λ ����� H0 � λ � factorizes over L � λ � by
Theorem 2.2. �



CHAPTER 3

Quantum groups

This chapter introduces Uq – the quantum group at a p’th root of unity corresponding
to G. Further, we establish here the key concept of quantizations of modular tilting mod-
ules. This chapter is not as detailed as Chapter 2. In fact, we give references, and virtually
no proofs.

Let � ai j � denote the Cartan matrix of the irreducible root system R of rank n, defined by
the almost simple group G from Chapter 2. We will consider 4 quantum groups, associated
to the Cartan matrix � ai j � .

The first quantum group: U

We choose a diagonal matrix d, so that d � ai j � is symmetric. We let di, 1 � i � n,
denote the entries on the diagonal of d and we assume that these di’s are positive with
no common divisor. Let us recall the definitions of the so-called Gaussian integers and
binomial coefficients. For each m, l ��� set�

m � d � vmd 	 v 
 md

vd 	 v 
 d�
m � d! � �

m � d �m 	 1 � d ���� � 1 � d�
m
l � d

� �
m � d �m 	 1 � d ���� �m 	 l � 1 � d�

l � d � l 	 1 � d ����� � 1 � d �
The quantum group U is the ��� v � -algebra with generators Ei, Fi, Ki, K 
 1

i for i � 1 ���� n
and relations

KiK 
 1
i � K 
 1

i Ki � 1
K jKi � K jKi

KiE jK 
 1
i � vdiai j

KiFjK 
 1
i � v 
 diai j

EiFj
	 FjEi � 0 i �� j

EiFi
	 FiEi � Ki

	 K 
 1
i

vdi 	 v 
 di

1 
 ai j

∑
s � 0

� 	 1 � s � 1 	 ai j
s � di

E
1 
 ai j 
 s
i E jEs

i � 0 i �� j

1 
 ai j

∑
s � 0

� 	 1 � s � 1 	 ai j
s � di

F
1 
 ai j 
 s
i FjFs

i � 0 i �� j �
The quantum group U is a Hopf-algebra; we will not list the comultiplication, the

counit, and the antipode here as we do not use them.

The second quantum group: UA

Let A denote the localization of � � v � at the ideal generated by p and v 	 1. We view
A as a subring of ��� v � .

19
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We construct UA as a A-subalgebra of U. Consider for each i � 1 ����� n, r ��� and
c ��� the following elements

E
	
r 


i � Er
i�

r � di!

F
	
r 


i � Fr
i�

r � di!
Ki; c

r � � r

∏
s � 1

Kiqdi
	
c � 1 � s 
�� K � 1

i q � di
	
c � 1 � s 


vdis � v � dis
�

Then define UA as the A-subalgebra of U generated by

E
	
r 


i � F
	
r 


i � Ki � K � 1
i �  Ki; c

r � � for i � 1 ����� n � r ��� � c ��� �
In fact, the last set of generators is unnecessary, as they are contained in the A-subalgebra
generated by the four first sets.

We let U �A denote the subalgebra generated by E
	
r 


i , U �A denotes the subalgebra gen-

erated by F
	
r 


i , and U0
A denotes the subalgebra generated by Ki, K � 1

i ,


Ki; c
r � with

i � 1 ����� n, r ��� , c ��� . Then we have a triangular decomposition of UA , meaning that
multiplication defines an isomorphism U �A U0

A U �A � UA . These algebras are all free over
A .

Let λ ��� λ1 � ����� λn � ��� n. Then λ defines a character of U0
A by

λ � Ki � � vdiλi (3.1)

λ �  Ki; c
r � � � 

λi � c
r � di

� (3.2)

The binomial coefficients all belong to � � v � v � 1��� A .

The third and fourth quantum groups: Uk and Uq

We obtain the third and fourth quantum group by specialization of UA . Consider the
field k as a A-module, with v acting as 1 � k. Let q ��� denote a primitive p’th root of
unity, and consider the field � as a A-module, with v acting as q. Then define

Uk � UA � A k

Uq � UA � A
� �

We let U �k , U0
k , U �k , U �q , U0

q , and U �q denote the images of U �A , U0
A , and U �A in Uk

and Uq. Further, λ ��� n defines a character of U0
k and U0

q as in the previous section.

Modules of UA , Uk, and Uq

We shall restrict ourself to A-finite UA -modules and to finite dimensional Uk- and
Uq-modules. If Q is a UA -module (say) then define the λ-weight space of Q by

Qλ �! m � Q " um � λ � u � m for all u � U0
A # �

A Uk- or Uq-module Q is a direct sum of its weights spaces: Q �%$ λ &(' nQλ.
We consider modules of the quantum group Uk. It is shown in (Lusztig 1990) that Uk

modulo the ideal generated by all Ki � 1 � 1 (1 ) i ) n) is isomorphic to the hyper algebra
of the group G. Therefore we may regard all G-modules as modules of Uk. On a G-weight
space Mλ, with λ � λ1ω1 �+*�*�*�� λnωn

� X (here ωi denote the i’th fundamental weight),
U0

k acts through λ �,� λ1 � ����� � λn � �-� n. It follows that we may identify the weight spaces of
G and the quantum groups in question. From this point on we shall write X for the weight
spaces of the quantum groups and X � for the dominant weights, corresponding to � �/. 0 � n.
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We will regard L � λ � , V � λ � , H0 � λ � , and T � λ � as Uk-modules, as explained above.
Let us consider induced modules of the quantum groups. As the name suggest, these

modules are obtained by induction. For a λ � X � , consider A as a U �A U0
A -module with

trivial U �A -action and U0
A -action through λ. We denote this module by Aλ. Then let

H0
A � λ � denote the integrable part of HomU �

A
U0

A
� UA � Aλ � ; this yields an A-finite module.

We define by similar recipes the finite dimensional modules H0
k � λ � and H0

q � λ � over Uk and
Uq.

We define the Weyl modulesVA � λ � , Vk � λ � , andVq � λ � as the dual of H0
A ��� w0λ � , H0

k � λ � ,
and H0

q ��� w0λ � , respectively.
By now we have two sets of Weyl modules and two sets of induced modules for Uk;

one set obtained as above, and one set since all G-modules may be considered as Uk-
modules. It follows from (Andersen, Polo and Wen 1991, Proposition 1.22 and Proposition
3.3) that

H0
k � λ �
	 H0 � λ �

Vk � λ �
	 V � λ �
Therefore we shall denote these modules by H0 � λ � and V � λ � from now on.

As Uk and Uq are obtained as specializations of UA we get modules of Uk and Uq
from UA -modules. The Weyl modules and the induced modules behave well with respect
to specializations of A . From loc.cit. we also get that VA � λ � and H0

A � λ � are free over A .
In fact, we have the following isomorphisms (by (Andersen et al. 1991, Theorem 3.5 and
Corollary 5.7)):

H0
A � λ ��� A k 	 H0 � λ � VA � λ ��� A k 	 V � λ � (3.3)

H0
A � λ �� A � 	 H0

q � λ � VA � λ �� A � 	 Vq � λ ��� (3.4)

Further, the head of Vq � λ � (isomorphic to the socle of H0
q � λ � by our definition) is

simple, and we denote it by Lq � λ � . Then � Lq � λ ��� λ � X ��� is a full set of simple non-
isomorphic Uq-modules, see (Andersen et al. 1991, 6.2).

Quantum tilting modules

We shall define tilting modules of the quantum groups as for the group G. That is,
a module is tilting if it has a Weyl filtration as well as a good filtration. By the previous
section, the tilting modules of G are tilting Uk-modules.

Let us consider tilting modules of Uq. We explore first the many similarities between
the category of finite dimensional Uq-modules and the category of G-modules. The results
presented here are chosen with the construction of tilting modules from Chapter 2 in mind.
First of all we find that the linkage relation preserve its importance.

THEOREM 3.1. (Andersen et al. 1991, Theorem 8.1) If Lq � µ � is a composition factor
of Vq � λ � then µ � λ. If Lq � µ � is a composition factor of H0

q � λ � then µ � λ.

Next we would like a Uq-version of Theorem 2.2. But we make do with

THEOREM 3.2. Let λ, µ � X � . Then

(i) Hom � Vq � λ � � H0
q � µ �����

�
k λ � µ
0 λ �� µ

(ii) Ext1 � Vq � λ � � H0
q � µ ����� 0.

PROOF. The case λ � µ follows since Lq � λ � is the head of Vq � λ � , and Lq � λ � appears
only in the socle of H0

q � λ � and only once. In case λ �� µ, duality gives us

Hom � Vq � λ � � H0
q � µ ����	 Hom � Vq ��� w0µ � � H0

q ��� w0λ �����
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If these spaces are non zero we have (by Theorem 3.1) λ � µ as well as � w0µ ��� w0λ; this
shows that λ � µ.

For (ii) we refer to (Andersen et al. 1991, Lemma 9.9). �
Theorem 3.2 provide us with some information about extensions with Weyl modules.

We leave the proof of the following corollary to the reader.
COROLLARY 3.3. Let λ, µ � X � . Then

(i) Ext1 � Vq
� λ �
	 Lq

� µ ����� 0 implies that λ � µ.
(ii) dimExt1 � Vq

� λ ��	 Lq
� µ ��� is finite.

(iii) dimExt1 � Vq
� λ ��	 Q � is finite for any Uq-module Q.

In Chapter 2 we found that modules with a good filtration are characterized by the
property that only trivial extensions with Weyl modules are possible. For Uq-modules we
have a similar criteria.

THEOREM 3.4. (Paradowski 1994, Theorem 3.1) Let Q be a Uq-module. Suppose
Ext1 � Vq

� λ ��	 Q ��� 0 for all λ � X � ; then Q allows a good filtration.

Armed with the above results, the construction of tilting modules from Chapter 2 may
be repeated. As a result we get a quantum version of Theorems 2.14 and 2.15.

THEOREM 3.5. Let λ denote a dominant weight.

(i) There exist an indecomposable tilting module with highest weight λ. We denote
it by Tq

� λ � .
(ii) The λ-weight space of Tq

� λ � is one-dimensional.
(iii) If Vq

� µ � is a Weyl factor of Tq
� λ � then µ � λ.

If Lq
� µ � is a composition factor of Tq

� λ � then µ � λ.
(iv) � Tq

� λ ��� λ � X ��� is a full set of non-isomorphic indecomposable tilting modules.
(v) A tilting module is fully determined by its character.

(vi) A direct sum of tilting modules is tilting.
(vii) A summand in a tilting module is tilting.

(viii) A tensor product of tilting modules is tilting.
(ix) Translations and wallcrossings take tilting modules to tilting modules.

With the exception of (viii), this theorem follows by the same arguments as its mod-
ular counterparts. For (viii) we refer to (Kaneda 1998), which proves the result for UA -
modules.

We turn to tilting UA -modules. For UA it is difficult to use the machinery of Chapter
2. One reason is that there are no obvious analogues of the simple modules L � λ � ; we rely
on composition series in our arguments in many places. With some care, however, it is
still possible to construct tilting modules for UA . Comparison with the modular case via
specialization of UA to Uk and the base change arguments of (Andersen et al. 1991, 3.5)
are key ingredients. We shall give the first step in the construction so as to indicate the
procedure.

Choose λ � X � and recall the set Π � λ � . Let E0 � VA
� λ � λ0 � . Then Ext1 � VA

� λ1 �
	 E0 �
is A-finite by (Andersen et al. 1991, 5.15). Suppose that it is non-zero, and represent one
generator e � Ext1 � VA

� λ1 ��	 E0 � by a short exact sequence.

0 � E0 � E � 1 �0 � VA
� λ1 ��� 0

Then applying Hom � VA
� λ1 ��	���� we obtain a long exact sequence beginning with

0 � Hom � VA
� λ1 ��	 E0 ��� Hom � VA

� λ1 �
	 E � 1 �0 ��� End � VA
� λ1 ���

� Ext1 � VA
� λ1 �
	 E0 ��� Ext1 � VA

� λ1 ��	 E � 1 �0 ��� Ext1 � VA
� λ1 �
	 VA

� λ1 ���
We have End � VA

� λ1 ����� A and Ext1 � VA
� λ1 ��	 VA

� λ1 ����� 0. The identity of End � VA
� λ1 ���

is mapped to e, so that by exactness e is mapped to zero in Ext1 � VA
� λ1 �
	 E � 1 �0 � .



QUANTUM TILTING MODULES 23

Now assume that E0 is a set of A-generators of Ext1 � VA
� λ1 ��� E0 � of minimal cardi-

nality. Then Ext1 � VA
� λ1 ��� E � 1 �0 � has E0 �	� e 
 as generators. This explains that we may

construct successively E0, E1, . . . Er so that Ei is an extension of V � λi � d �i with Ei � 1, with d i
equal to the minimal number of generators of Ext1 � VA

� λi ��� Ei � 1 � . But we have not shown
that Er has any of the properties we are looking for. In particular we do not know that Er
is tilting. For this we refer to

THEOREM 3.6. (Andersen 1998, 5.3) Er is a tilting module and we denote it by TA
� λ � .

Further, the minimal number of generators of each Ext1 � VA
� λi ��� Ei � 1 � is equal to di. In

particular,
TA
� λ ��� A k � T � λ ���

Recall here that we denote by di the dimension of Ext1 � V � λi ��� Ei � 1 � in the construction
of the modular tilting modules.

We consider also TA
� λ ��� A � . It is clear from equation (3.4) that TA

� λ ��� A � has a
filtration by Uq-Weyl modules and a filtration by Uq-induced modules. Thus TA

� λ ��� A �
is Uq-tilting. But this module is not necessarily indecomposable. Thus, the discussion
above gives that for some nonnegative integers aµλ

TA
� λ ��� A k � T � λ �

TA
� λ ��� A � � Tq

� λ �����
µ � λ

aµλTq
� µ ���

This shows that the tilting modules of G lift to tilting modules of UA . That is, for a
tilting G-module Q there exists a tilting UA -module QA with the property QA � A k � Q.
We denote by Qq the tilting Uq-module QA � A � . In this way each tilting G-module Q
gives rise to a tilting Uq-module Qq with the same character.

REMARK 3.7.
(i) We shall see in Chapter 5 that the characters of all Tq

� λ � are known.
(ii) It is expected that T � λ � q � Tq

� λ � for all λ in the lowest p2-alcove, see (Andersen
1998).





CHAPTER 4

The Hecke algebra and right cells

Corresponding to the irreducible root system R, we have the affine Weyl group W with
generators S � �

s0 � s1 ��������� sn � . The pair � W � S 	 is a Coxeter system and we may therefore
form the Hecke algebra associated to it. This algebra is the subject of this chapter.

We have sought to keep the notation as close as possible to that of the paper (Soergel
1997). A reader unacquainted with the subject will probably find that a copy of this paper
or the expanded German version (Soergel n.d.) is a good companion.

The reader should note that it is usual in the theory of Coxeter groups to define the
affine generator s0 in terms of the highest long root, see e.g. (Humphreys 1990), (Bourbaki
1968, Planche I-IX). But given our interest in the representation theory of algebraic groups,
we maintain that s0 is defined with respect to the highest short root (see the beginning of
Chapter 2).

The Hecke algebra

The results in this section may all be found in (Soergel 1997). Therefore the proofs
are short here.

The affine Weyl group W comes with the Bruhat order 
 and a length function, l,
mapping w � W to the length of a reduced expression.

Associated to the Coxeter system � W � S 	 we have the Hecke algebra H over the ring
of Laurent polynomials �� v � v � 1� . As an �� v � v � 1� -module, H is free with one generator Hx
for each Weyl group element x � W . The ring structure is determined by the relations

HxHy � Hxy if l � x 	�� l � y 	�� l � xy 	 (4.1)

HxHs � Hxs ��� v � 1 � v 	 Hx if xs 
 x � s � S (4.2)

On H we have a ring homomorphism, ,̄ taking Hx to Hx � H � 1
x � 1 and v to v � v � 1. Since ¯

is an involution, we say that H is self-dual if H � H. As an example note that H s � Hs � v
is selfdual, since H � 1

s � Hs
� v � 1 � v. This also shows that each basis element Hx is

invertible.
It is clear from the relation (4.1) that H is generated by

�
Hs � s � S � . Since Hs �

Hs � v it follows that
�
Hs � s � S � is a second generating set. The action of these selfdual

generators is given by

HxHs �
�

Hxs � vHx xs � x
Hxs � v � 1Hx xs 
 x

(4.3)

The following theorem provides a second basis of H .
THEOREM 4.1. For each x � W there is a unique self-dual element

Hx � Hx � ∑
y � x

v �� v � Hy �
PROOF. We prove this by induction and note that He and Hs � v (which we already

denote by Hs) show the existence part of the theorem for x of length 0 and 1.
Given x of length � 1 we choose s � S so that xs 
 x. By induction we may assume the

existence of a selfdual element Hxs � Hxs � ∑y � xs hy � xsHy, with hy � xs � v �� v � . Then HxsHs

25
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is selfdual. We write

HxsHs � Hx
� ∑

y � x
hyHy � (4.4)

where hy � ��� v � by (4.3). So hy may contain a constant. We handle this by considering

Hx � HxHs 	 ∑
y � x

hy 
 0 � Hy �
This element is selfdual, and shows the existence part of the theorem for x.

We leave uniqueness to the reader. 
DEFINITION 4.2. We define polynomials hy � x � ��� v � by the formula

Hx � ∑
y � W hy � xHy �

We will denote the linear term of hy � x by µ 
 y � x � .
These polynomials are basically the Kazhdan-Lusztig polynomials defined in (Kazhdan

and Lusztig 1979). Note that hy � x 
 0 ���� 0 if and only if x � y. Further, if y � x the leading
coefficient of hy � x is 1 and deghy � x � l 
 x � 	 l 
 y � .

Our new basis of selfdual elements is central to this chapter. Let us record the right
action of H on the selfdual basis.

PROPOSITION 4.3. Let x � W and s � S. We have

HxHs �
�

Hxs
�

∑ys � y µ 
 y � x � Hy xs � x;


 v � v � 1 � Hx xs � x �
PROOF. We will prove only the formula for xs � x here. We have by definition H x �

Hx
� ∑y � x hy � xHy with hy � x � v

���
v � , and we write

HxHs � Hx
� ∑

y � x
hyHy �

Then hy � ��� v � by equation (4.3). In fact

hy �
�

hys � x � vhy � x if ys � y;
hys � x � v � 1hy � x if ys � y �

By the proof of Theorem 4.1 we have�
HxHs : Hy � � hy 
 0 � �

But hy 
 0 � � 0 if ys � y. And hy 
 0 � � µ 
 y � x � if ys � y. 
REMARK 4.4. We will be concerned mostly with right modules and right ideals of H ;

on a few occasions, however, we need to consider the left action, which is given by the
completely analogous formula

HsHx �
�

Hsx
�

∑sy � y µ 
 y � x � Hy sx � x;


 v � v � 1 � Hx sx � x �
The following lemma is often useful, despite its uncomplicated appearance. The

lemma is an easy consequence of Proposition 4.3. We will leave it to the reader.

LEMMA 4.5. Suppose that xs � x and ys � y. Then hys � x � vhy � x.
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Right cell ideals in the Hecke algebra

Right modules of the Hecke algebra turn out to be an important tool in the represen-
tation theory of quantum groups at a root of unity (this is the subject of Chapter 5). It is
therefore natural to ask for the right ideals of H . We are interested here in right ideals with
a particular nice basis. Since each Hx is invertible, it is the basis of self-dual elements that
are interesting.

DEFINITION 4.6. A right ideal in H is called a right cell ideal if it allows a basis�
Hy � y � Y � for some subset Y � W.

DEFINITION 4.7. (Lusztig 1999) Write y � R x if �HxHs : Hy �	�
 0 for some s � S.
Write y � R x if there is a chain w0 ������ wn so that

y 
 w0 � R w1 � R �� � R wn

 x

REMARK 4.8.
(i) So y � R x implies that Hy must be part of the basis of each right cell ideal that

contains Hx.
(ii) If xs � x then �HxHs : Hxs � 
 1, by the proof of Theorem 4.1. Thus y 
 xz with

l � y � 
 l � x ��� l � z � implies y � R x.
It should come as no surprise that the preorder � R provides us with right ideals; it is

designed to do just that. The following lemma gives the basics of right cell ideals.
LEMMA 4.9. Ix


��
y � R x � � v � v � 1� Hy is a right cell ideal, and Ix is the smallest right

cell ideal that contains Hx. A right cell ideal is the sum of such Ix, x � W, and a sum of
such Ix, x � W is a right cell ideal.

PROOF. We show that Ix is preserved by the generators
�
Hs � s � S � of H . Assume

therefore that y � R x and that �HyHs : Hw ���
 0 for some s � S. But then w � R y � R x
shows that w � R x.

We will leave the proof of the remaining assertions to the reader. �
The right cell ideal presented next proves useful when we move on to right cells; see

Lemma 4.13.
LEMMA 4.10. Fix an s � S. Then�

x; sx � x
� � v � v � 1� Hx


 �
H � H � � Hs � v � v � 1 � H 
 0 �

and this is a right cell ideal.

PROOF. It is clear that the right hand side is a right ideal, so it suffices to show the
equality. The inclusion � is obvious from Remark 4.4. To show the other inclusion,
choose an H � H with HsH


 � v � v � 1 � H. Expressing this H in the self-dual basis we get
the equality

∑
z  W

�H : Hz � HsHz

 ∑

z  W
�H : Hz � � v � v � 1 � Hz

If there is a z so that sz � z with �H : Hz �!�
 0, then choose z maximal with this property.
This produces a contradiction, since Remark 4.4 shows that the coefficient of H z on the
left hand side is zero and nonzero on the right hand side. �

We conclude this section by giving an alternative description of the preorder � R . In
the literature this description is often used to define � R ; with this definition there is no
need to introduce right cell ideals.

We introduce the following notation: Write y � x if either µ � x � y � or µ � y � x � is nonzero,
and let

L � w � 
 �
s � S � sw " w �

R � w � 
 �
s � S � ws " w � 
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LEMMA 4.11. Let x �� y � W. We have

y � R x ��� y � x and R � y 	
�� R � x 	�
PROOF. If y � R x then Proposition 4.3 shows that y � x and R � y 	��� R � x 	 . On the

other hand, if µ � y � x 	��� 0 and R � y 	
� s �� R � x 	 then �HxHs : Hy � �� 0; and if µ � x � y 	��� 0
and R � y 	�� s �� R � x 	 , then Lemma 4.5 shows that hxs � y has a constant term, hence that
y � xs � x, hence that �HxHs : Hy � �� 0. �

Right cells

DEFINITION 4.12. The equivalence relation induced by � R is denoted by � R ; so we
write y � R x if y � R x � R y. An equivalence class is called a (Kazhdan-Lusztig) right
cell.

For a right cell C we write x � R C if x � R z for a z � C (equivalently for all z � C ).
If C � is another right cell we write C � R C � when z � R C � for a z � C (equivalently for all
z � C ). The preorder � R gives a partial order on the set of right cells in this very natural
way.

LEMMA 4.13. y � R x implies L � y 	�� L � x 	 . Hence y � R x implies L � y 	 � L � x 	 .
PROOF. Suppose that sx � x. Then Hx � � y;sy ! y " � v � v # 1� Hy, which is a right cell

ideal by Lemma 4.10. Then the right cell ideal generated by H x is also contained in this
large ideal: So Ix

� � y $ R x " � v � v # 1� Hy is contained in � y;sy ! y " � v � v # 1� Hy. The lemma
follows. �

The following corollary is an immediate consequence of Lemma 4.13 since L � e 	 � /0
and e is the only Weyl group element with this property. The second assertion is also
immediate; He is a unit in H , hence generates all of it; therefore e is the maximal element
in the preorder � R .

COROLLARY 4.14. % e & is a right cell. It is maximal among right cells.

Suppose that there is a unique s so that xs � x. The next lemma states that this is
sufficient to guarantee that xs and x are in the same right cell. This criteria will (despite
its simplicity) prove very useful, since it is strong enough to determine the second largest
cells.

LEMMA 4.15. Suppose that xs � x and that xs �� e. Then R � x 	 � % s & implies xs � R x:

PROOF. From Lemma 4.5 we get hxs � x � v. Choose a t, so that xst � xs (such t exists
as xs �� e). Then t �� s and therefore xt � x. Proposition 4.3 and Equation (4.3) shows that

HxHt
� Hxt ' Hxs ' ∑

ys ! y � y () xs
µ � y � x 	 Hy;

HxsHs
� Hx ' ∑

ys ! y
µ � y � xs 	 Hy �

The first equation shows that xs � R x and the second equation shows that x � R xs. �
EXAMPLE 4.16. The affine Weyl group corresponding to a root system of type A1 is

generated by two elements s, t with relations s2 � t2 � 1. The different elements are words
formed by the letters s, t without two consecutive s’s or t’s; each such word is in fact a
reduced expression. Consider the sets

A � %*� st 	 m �+� st 	 ns , m - 1 � n - 0 &
B � % e &
C � %*� ts 	 m �+� ts 	 nt , m - 1 � n - 0 &
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Note that each x � A has L � x ����� s � and each y � C has L � y ����� t � . It follows from
Lemma 4.13 that A and C are unions of right cells. On the other hand Lemma 4.15 shows
that

� st � ns 	 R � st � n 
 1 	 R � st � n 
 1s n � 0 �
� ts � nt 	 R � ts � n 
 1 	 R � ts � n 
 1t n � 0 

Therefore A is a right cell and B is a right cell. So in type A1 the right cell decomposition
of the affine Weyl group is given by

W � A � B � C 
We will now describe the second largest right cells. Let C denote the set of elements

in W with a unique reduced expression. Inspired by Lemma 4.13 we consider C � si � , the
subset with reduced expression beginning with si:

C � si ��� � w � C � L � w ����� si ���
This is a non-empty set since si � C � si � . Further, it is a connected set in the sense made
precise by the following lemma:

LEMMA 4.17. Suppose w � C � si � , s � S, and ws � w. Then ws � C � si � or ws � e.

PROOF. If ws allows more than one reduced expression then so does w. If the unique
expression of w begin with si then so does the reduced expression of ws, unless ws � e. �

THEOREM 4.18. (Lusztig 1983) C � si � is a right cell.

PROOF. It is a standard fact that s � R � w � if and only if w has a reduced expression
that ends with s. Hence w � C � si � gives R � w ����� s � for some s. When ws �� e, Lemma
4.15 shows that w 	 R ws and Lemma 4.17 gives that ws � C � si � . Recursively, this shows
that w 	 R si, hence that C � si � is contained in a right cell.

Now let w � C � si � and let x � W be an arbitrary element satisfying w 	 R x. To show
the theorem, we must show that x � C � si � . First x �� e is easy as e has a right cell of its own.
We will prove that w � R x implies that x � C � si � . This is enough to give us the theorem.

By definition, there is a simple s so that�
HxHs : Hw � �� 0 

By Proposition 4.3 we know a lot about a product HxHs. In particular, if xs � x then x � w
and we have x � C � si � . Further, if xs � x and w � x then w � xs and we have x � C � si �
by Lemma 4.17 (recall that x �� e � . So we may assume that xs � x, that ws � w and that
µ � w � x ���� 0 (recall that this is the linear term of hw� x). Then pick any simple t so that x � xt.
We have wt � w as s �� t is unique with the property ws � w. Now Lemma 4.5 gives
hw � x � vhwt � x and we conclude that hwt � x has a constant term. But then wt � x. This shows
that t is uniquely determined by xt � x, i.e. that R � x ��� � t � . So all reduced expressions
of x end with t; removing that t gives us a reduced expression of w. But w has a unique
reduced expression and this unique reduced expression begins with si. It follows that x has
a unique reduced expression and that this unique reduced expression begins with si. We
have x � C � si � . �

We conclude this section by the cell decomposition of the affine Weyl groups in type
A2, B2, and G2. Given a w � W we associate to it the alcove w C; this is the usual bijection
between Weyl group elements and the set of alcoves defined by W . In Figure 2, 3, and 4 we
have visualized the right cells by coloring alcoves. Each connected component corresponds
to a right cell. Proofs may be found in (Lusztig 1985).

We should mention the existence of two-sided cells and left cells; these cells arise
from two-sided ideals in H and left ideals in H . A two-sided cell is a union of right cells
and a union of left cells. In Figure 2,3, and 4 all right cells with the same color comprise
one two-sided cell.
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FIGURE 2. The right cells in type A2.

FIGURE 3. The right cells in type B2.
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FIGURE 4. The right cells in type G2.

Right cells and dominant weights

Right cells (as we will see in Chapter 6) are important in the representation theory of G
and Uq. For this reason, we have a speciel interest in cells that contain dominant weights.
In this short section we describe the right cells that corresponds to alcoves containing
dominant weights.

Recall, that the dominant chamber is the open subset
�
λ � E � 0 ��� λ � αi � for i � 1 �
	
	�	�� n �	

LEMMA 4.19. Assume p � h. The following four sets are equal

W (i) � �
w � W � w 	C is contained in the dominant chamber �

W (ii) ��� w � W � x 	 0 � X ���
W (iii) � �

w � W � L � w ��� � s0 ��
W (iv) � �

w � W � w is the minimal lenght representative of the right coset W0w ��	
We shall denote this set by W 0.

PROOF. When p � h, 0 is a regular weight in the first alcove C. Then W (i) � W (ii) is
clear.

The minimal length representative of W0w is determined by the property that siw � w
for all generators s1 ��	
	
	�� sn of the subgroup W0. Then W (iii) � W (iv) follows.
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Now let w � 0 � X
�

and let si
�� s0. Then siw � 0 �� X

�
. Further l � siw �	� l � w � ; this may be

proved by interpreting the length of w as the number of reflection hyperplanes that seperate
w �C and C (see (Humphreys 1990, section 4.4) or the proof of Lemma 8.20 below). Thus
siw � w and we see that w is the minimal length representative of the right coset W0w,
hence w � W (iv). If, on the other hand, l � siw �
� l � w � for all si

�� s0, then the alcoves w �C
and C lie on the same side of the reflection hyperplane corresponding to si for all si

�� s0.
This means that w �C lies in the dominant chamber. �

The Figures 2, 3, and 4 indicate that right cells do not cross the boundaries of the
dominant chamber. This is an easy consequence of Lemma 4.19 above.

COROLLARY 4.20. A right cell is either contained in or intersects trivially with W 0.

PROOF. We obviusely have

W 0 �� w � W � L � w � ��� s0 ����� � w � W � L � w � � /0 � �
Now the corollary follows by Lemma 4.13. �

The second cell

In this section we take a closer look at one specific right cell. It is the cell C � s0 � , which
consist of all Weyl group elements with a unique reduced expression that begins with s0. It
is a right cell by Theorem 4.18. In fact C � s0 � is a subset of W 0 and therefore each x � C � s0 �
corresponds to an alcove x �C in the dominant chamber, see Lemma 4.19.

OBSERVATION 4.21. If e
�� x � W 0, then x � R s0 by Remark 4.8. It follows that

C � R C � s0 ��� R
� e �

for all right cells C inside W 0 and unequal to � e � . So we see that C � s0 � is the second
largest right cell in W 0. We will, for this reason, refer to C � s0 � as the second cell from time
to time.

The aim of this section is to find the reduced expression of each Weyl group element
in C � s0 � , for all types of root system. It is possible to do this based only on the description
as elements with a unique reduced expression that begins with s0. We will need some
notation: We say that a reduced expression t1 ����� tk, ti

� S contains a braid-word if it contains
a string stst ����� with m � s � t � factors (m � s � t � being the order of the element st), s

�� t � S.
The unique reduced expressions may now be described as the set of reduced expression
without a braid-word.

LEMMA 4.22. A reduced expression is unique if and only if it does not contain a
braid-word.

PROOF. A reduced expression containing a braid-word is not unique since stst ����� �
tsts ����� (m � s � t � factors on both sides) in W . The only if part follows from (Tits 1969),
which solves the word-problem in Coxeter-groups; (Humphreys 1990, section 8.1) is a
convenient reference. �

We will now describe how the reduced expression of elements in C � s0 � can be obtained
inductively. For each k � 0 we define a set by

C � s0 � k ��� w �
C � s0 ��� l � w � � k �

So we have C � s0 � 0 � /0 and C � s0 � 1 ��� s0 � .
If t1 ����� tk belongs to C � s0 � k then t1 ����� tk � 1 belongs to C � s0 � k � 1; it is a direct conse-

quence of Lemma 4.17. It follows that we may obtain C � s0 � k � 1 by adding simple reflec-
tions to a reduced expression from C � s0 � k, and then discard any expressions which contain
braid words. That is,

C � s0 � k � 1
��� t1 ����� tks without braid-word � t1 ����� tk � C � s0 � k � s �� tk � �

Note that t1 ����� tks � t1 ����� tk is automatic when s
�� tk. When stk � tks we see that t1 ����� tks

has two reduced expressions. Therefore we need only consider those s, that are connected
to tk in the Coxeter graph.
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Type Reduced expression �C � s0 � �
A1 � s0s1 � m, m � 1 ∞

An, n � 2 � s0snsn � 1 ����� s1 � m, m � 1 ∞
� s0s1s2 ����� sn � m, m � 1

Bn s0s1s0 ∞
� s0s1s2 ����� sn � 1snsn � 1 ����� s2s1 � m, m � 1

Cn, n � 3 s0s2s1 2n � 1
s0s2s3 ����� sn � 1snsn � 1 ����� s2s0
s0s2s3 ����� sn � 1snsn � 1 ����� s2s1

Dn s0s2s1 n � 1
s0s2s3 ����� sn � 2sn � 1
s0s2s3 ����� sn � 2sn

E6 s0s2s4s3s1 7
s0s2s4s5s6

E7 s0s1s3s4s2 8
s0s1s3s4s5s6s7

E8 s0s8s7s6s5s4s2 9
s0s8s7s6s5s4s3s1

F4 s0s4s3s2s1 8
s0s4s3s2s3s4s0

G2 s0s1s2s1s2s1s0 8
s0s1s2s1s0

TABLE 1. The table lists the reduced expression of elements in C � s0 � .
Used together with Lemma 4.17 it yields the reduced expression of all
elements of C � s0 � . Note that s0 corresponds to the highest short root
in the root system. The relations between the generators are given as
Coxeter graphs in Table 2.

Table 1 describes the elements in C � s0 � for each type of root system. These expres-
sions were first published in (Lusztig 1983). The rest of the section may help the reader
that wants to check Table 1. It is not strictly needed.

LEMMA 4.23. Suppose that our rootsystem is of type An 	 2, Dn, E6, E7, E8. Then each
element in C � s0 � corresponds to a route in one direction from s0 in the Coxeter graph.

PROOF. The assumption amounts to m � s 
 t ��� 3 for all pairs s 
 t of simple reflections.
A reduced expression t1 ����� tk from C � s0 � is unique, hence m � ti 
 ti  1 ��� 3 for all i; otherwise
ti and ti  1 commute. This shows that ti and ti  1 are connected by a line in the Coxeter
graph. This is what we mean by a route in the Coxeter graph: a word t1 ����� tk, where each
consecutive pair ti, ti  1 is connected in the Coxeter graph. Further, there is no turning back;
if ti  2 � ti for some i then t1 ����� titi  1ti  2 ����� tk is not unique, hence is not in C � s0 � . It follows
that we may travel in one direction only in the Coxeter graph. �

EXAMPLE 4.24 (Type An, n � 2). Since the Coxeter graph is a ring, there is basicly
two ways to find routes begining in s0: You can go clockwise or counterclockwise. This
corresponds to the non-empty words on the form

� s0snsn � 1 ����� s1 � ms0sn ����� sk m � 0

� s0s1s2 ����� sn � ms0s1 ����� sk m � 0

No words on this form contain braid-words. So the Weyl group elements corresponding to
these words comprise the right cell C � s0 � . Compare with Table 1.
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Root system Coxeter graph of the affine Weyl group

A1 ��� ���
�

An, n
�

2
��� ��� ��	�
�� ��	

��

Bn, n
�

2 �� ��� ��� ��	�
�����	�
�� ��	
� �

Cn, n
�

3 ��

���

��� ��� ��	�
�����	�
�� ��	
�

Dn, n
�

3 ��	��

���

��� ��� ��	�
�����	�
��

��	�
��

E6

������ ������ ���
���

� �

E7

������ ���������
���

��� ���

E8

������ ���������
���

��� ��� ���

F4 ������ ��� ��� ���
�

G2 ��� ��� ���
�

TABLE 2. The relations between the generators given as Coxeter graphs.
Note that s0 corresponds to the highest short root in the root system.



CHAPTER 5

Character formulae and tensor ideals

This chapter presents the character formulae for indecomposable quantum tilting mod-
ules. The characters are expressed by certain basis change coefficients in a Hecke algebra
module. We introduce this module, the Hecke module, first and then go on to state So-
ergel’s character formula.

This chapter contains also a classification of tensor ideals of quantum tilting modules.
The proof relies on Hecke algebra combinatorics, and may be seen as an application of the
right cell theory of Chapter 4 and of the character formula for indecomposable quantum
tilting modules. We conclude the chapter by introducing weight cells.

Assume p � h throughout this chapter.

The Hecke module

The material in this section may be found in (Soergel 1997).
The finite Weyl group W0 is a parabolic subgroup of W , so each right coset of W0 � W

has a unique representative of minimal length. We denote the set of these representatives
by W 0; multiplication then gives a bijection W0 � W 0 ��� W . The set W 0 is described
thoroughly by Lemma 4.19. In particular, if we associate to each element x � W 0 the
alcove x �C as in figure 2,3, and 4 then we get all alcoves in the dominant Weyl chamber.

Let H0 denote the Hecke algebra of S0 � W0. It is a subalgebra of H . We have a surjec-
tive 	�
 v� v � 1 -algebra homomorphism, φ � v : H0 � � 	�
 v � v � 1 , mapping each generator Hsi ,
si � S0, to � v. This gives 	�
 v � v � 1 a H0-module structure, and by induction we obtain a
right H -module

N ��	�
 v � v � 1��
H0

H �
This module is the Hecke module. In Lemma 5.5 below we show that N may also be
constructed as a quotient of H with a right cell ideal.

We denote by ε the canonical surjection

ε : H � N

H �� 1 � H

Note that for z � W0, x � W 0 we have ε � Hzx � ��� � v � l � z � Nx. N has a basis consisting of�
Nx � 1 � Hx � x � W 0 � and the action of H is given by

NxHs �
��� � Nxs ! vNx xs " x and xs � W 0;

Nxs ! v � 1Nx; xs # x;
0 xs $� W 0;

(5.1)

The first and second line follows from equation (4.3). The assumption in the last line forces
xs � tx for some t � S0, which gives the formula.

We define an involution on N by a � H � a � H. This involution is H -skewlinear (i.e.
NH � N H for N � N � H � H ). We say that N is selfdual if N � N. As was the case with
H , we want to replace the canonical basis

�
Nx � 1 � Hx � x � W 0 � with one of selfdual

elements.

35
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THEOREM 5.1. For each x � W 0 there is a unique selfdual element Nx in N so that

Nx � Nx � ∑
y � x

v ��� v � Ny �
PROOF. This theorem is proved by the same method as Theorem 4.1. In particular,

the proof is constructive and gives an algorithm to obtain the selfdual element N x.
To begin, note that Ne � 1 	 He is selfdual; this shows the existence part of the theorem

for x of length 0.
Given x of length 
 1 we choose s � S so that xs � x. By induction we may assume

the existence of the selfdual Nxs � Nxs � ∑y � xs ny � xsNy, with ny � xs � v �� v � . Then NxsHs is
selfdual. We write

NxsHs � Nx � ∑
y � x

nyNy � (5.2)

where ny ����� v � by (5.1). So constant coefficients may appear in N xsHs. We fix this with

Nx � NxsHs � ∑
y � x

ny � 0 � Ny �
which is selfdual, and this shows the existence part for x.

We leave uniqueness to the reader. �
LEMMA 5.2.

ε � Hx � � � Nx x � W 0

0 x �� W 0 �
PROOF. The first line follows from the fact that ε � Hx � is selfdual and ε � Hx ��� Nx �

∑y � x v ��� v � ε � Hy ��� Nx � ∑z � x v ��� v � Nz. For the second line, note that ε � H si
� � ε � Hsi � v � � 0

for si �� s0. When x �� W 0 there is a si �� s0 so that x � six. Therefore we may prove the
second line by induction via Remark 4.4. �

DEFINITION 5.3. Let ny � x � �Nx : Ny ������� v � denote the coefficients of the new selfdual
basis expressed in the old basis, so that

Nx � ∑
y � x

ny � xNy �
REMARK 5.4. The map ε reveals that the polynomials ny � x and hy � x are related by the

formula
ny � x � ∑

w � W0

� � v � l � w  hwy � x � (5.3)

Recall that we denote the linear coefficient of hy � x by µ � y � x � . The equation (5.3) shows that
the linear coefficient of ny � x is equal to µ � y � x � for x � y � W 0.

The Hecke algebra acts on the selfdual basis by the following formulae; to see this use
ε on the equations in Proposition 4.3.

NxHs � !"""""
#
"""""$

Nxs � ∑
y % R x � y � W 0

µ � y � x � Ny xs � x and xs � W 0;

∑
y % R x � y � W 0

µ � y � x � Ny xs � x and xs �� W 0;

� v � v & 1 � Nx xs � x �
(5.4)

We conclude this section with an alternative description of N . Recall the right cell
ideals Ix from Chapter 4.

LEMMA 5.5. ε induces an isomorphism of right H -modules between H � ∑i '( 0 Isi and
N .

PROOF. We have ∑i '( 0 Isi �*) x +� W 0 ��� v � v & 1� Hx and this is the kernel of ε by Lemma
5.2. �
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We will need the following analogue of Lemma 4.5.

LEMMA 5.6. When xs � x and ys � y we have nys � x � vny � x.

Soergels Theorem

Our main interest in the Hecke module is Theorem 5.7 below. It relates the structure of
quantum tilting modules with combinatorics of the corresponding Hecke algebra. Recall
that for a module Q with a Weyl filtration, �Q : Vq � λ ��� denotes the number of times Vq � λ �
appears as a quotient in the filtration. Clearly, the numbers �Q : Vq � λ ��� for all λ determine
the character of Q. When Q is a quantum tilting module we let � Q : Tq � λ ��� denote the num-
ber of times Tq � λ � appears as a summand of Q; we say that �Q : Tq � λ ��� is the multiplicity
of Tq � λ � in Q.

THEOREM 5.7. Let p 	 h. For a weight λ 
 C and x � y � z 
 W 0 we have

(i) � Tq � x � λ � : Vq � y � λ ��� � ny � x � 1 �
(ii) If xs  x then �ΘsTq � x � λ � : Tq � z � λ ��� � �NxHs : Nz � .

The proof of (i) may be found in (Soergel 1998). This result of Soergel relies on an
equivalence of categories between affine Lie algebra modules and quantum group modules
established in (Kazhdan and Lusztig 1993), (Kazhdan and Lusztig 1994) together with
results from (Lusztig 1994) and (Kashiwara and Tanisaki 1996). In some types these results
impose mild restrictions on p.

We will use the second part of Theorem 5.7 extensively. It is a straightforward conse-
quence of the first part as shown in the proof below.

PROOF OF (II). Consider a module Q with character chQ � ∑y; y � λ � X � ay � λχ � y � λ � . Ap-
plying the wallcrossing functor we obtain a module with character given by chΘsQ �
∑y; y � λ � X � ay � λ � χ � y � λ ��� χ � ys � λ ��� .

Now consider a Weyl factor Vq � y � λ � in Tq � x � λ � . Suppose first that ys 
 W 0; then by the
first part of the theorem,

ny � x � 1 ��� nys � x � 1 � � � Tq � x � λ � : Vq � y � λ ������� Tq � x � λ � : Vq � ys � λ ���
� � ΘsTq � x � λ � : Vq � y � λ ���
� ∑

z � xs
�ΘsTq � x � λ � : Tq � z � λ ����� Tq � z � λ � : Vq � y � λ ���

� ∑
z � xs

�ΘsTq � x � λ � : Tq � z � λ ��� ny � z � 1 ���

In the first equation below, see Equation (5.1).

NxHs � ∑
y; ys � y �
ys � W 0

ny � xNys � vny � xNy � nys � xNy � v � 1ny � xNys

NxHs � ∑
z � xs

�NxHs : Nz � ∑
y;ys � y

ny � zNy � nys � zNys �

Considering the coefficient �NxHs : Ny � and evaluating in v � 1, we find that

ny � x � 1 ��� nys � x � 1 � � ∑
z � xs

�NxHs : Nz � ny � z � 1 ���

If ys �
 W 0 then � ΘsTq � x � λ � : Vq � y � λ ��� � 0 � �NxHs : Ny � . So for all y � z � xs we have

∑
z � xs

� ΘsTq � x � λ � : Tq � z � λ ��� ny � z � 1 � � ∑
z � xs

�NxHs : Nz � ny � z � 1 ���

It is now a matter of linear algebra to conclude that �ΘsTq � x � λ � : Tq � z � λ ��� � �NxHs : Nz �
for all z � xs. �
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The Hecke module at v � 1

We continue this chapter with a construction of tensor ideals of quantum tilting mod-
ules. This is based on the paper (Ostrik 1997). It illustrates the strength of right cells when
applied to the representation theory of quantum groups at a root of unity, through Theorem
5.7. This section prepares the ground for Ostriks tensor ideals in the next section.

Inspired by Theorem 5.7 we begin with the specialization of N at v � 1. Consider
�

as
an
���

v� v � 1� -module with v acting as multiplication by 1. We then obtain a right H -module
by

N 1 � ���
	�� v v � 1 � N
From the

���
v � v � 1� -bases of N we get two bases of N 1:�

N1
x � 1

�
Nx � x � W 0 � �

N1
x � 1

�
Nx � x � W 0 �

As endomorphisms of N 1 we have HxHy � Hxy even when l � x ��� l � y ��� l � xy � . Further, the
generators act by the formulae below; the first equation follows from the defining relations
(4.1) and (4.2) of H and the second equation follow from equation (5.4).

N1
x Hs � �

N1
xs if xs � W 0;� N1

x if xs �� W 0;
(5.5)

N1
xHs � ������ �����!

N1
xs � ∑

y " R x  y # W 0

µ � y � x � N1
y xs $ x � xs � W 0;

∑
y " R x  y # W 0

µ � y � x � N1
y xs $ x � xs �� W 0;

2Nx xs � x %
(5.6)

A right cell submodule of N 1 is a right H -submodule with a basis consisting of�
Ny � y � Y � for some subset Y of W . The following lemma describes all of them.

LEMMA 5.8. Let C & W 0 denote a right cell, and let x � C . Then

JC �('
y ) R C 
y # W 0

�*�
v � v � 1� N1

y

is a right cell submodule and JC is the smallest right cell submodule to contain N1
x . A right

cell submodule is a sum of such JC , and a sum of such JC is a right cell submodule.

REMARK 5.9. Note that the set
�

y � W 0 � y + R C � is a union of right cells; it is
equal to the union of all C ,-+ R C .

PROOF OF LEMMA 5.8. Equation (5.6) shows that JC is stable under the generators
Hs of H . So each JC is a right cell submodule.

Suppose that y � W 0 and y + R C . We will show that N1
y belongs to any right cell

submodule containing N1
x . There is a chain y � w0 . R w1 /0/1/�. R wn � x, where wi � W

to begin with. But in fact wi � W 0, as L � wi �2& L � y �3� � s0
� by Lemma 4.13. Now wi . R

wi 4 1 means that
�
Hwi 5 1

Hs : Hwi
�76� 0 for some s; further�

Hwi 5 1
Hs : Hwi

� � �
N1

wi 5 1
Hs : N1

wi
�

by equation (5.6). This shows that each N1
wi

must be part of any basis of a right cell
submodule containing N1

x . We have shown that JC is the smallest right cell submodule
containing N1

x .
We leave the remaining assertions to the reader. 8
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Ostrik’s tensor ideals

Inside the category Cq of finite dimensional Uq-modules we have the full subcategory
of tilting modules Tq.

DEFINITION 5.10. A subset τ � Tq is a tensor ideal if it satisfies the following condi-
tions.

(i) For any Q1 in τ and any tilting module Q, the tensor product Q1 � Q belongs to
τ.

(ii) If Q is a summand in Q1 and Q1 belongs to τ, then Q belongs to τ.
These two properties are sufficient to ensure that tensor ideals are stable under the

translation functors.
Consider a tensor ideal τ � Tq; it follows from the defining properties that τ is spanned

by a set of indecomposable tilting modules � Tq � λ ��� λ � Λ � (Λ denoting a subset of the
dominant weights) in the sense that all modules in τ are direct sums of these indecompos-
ables. What can we say about Λ? What are the possible subsets Λ � X 	 ?

LEMMA 5.11. Let τ � Tq denote a tensor ideal. Then Tq � x 
 0 � belongs to τ if and only
if Tq � x 
 λ � belongs to τ whenever x 
 λ is a dominant weight in the lower closure of the alcove
x 
C.

PROOF. Recall that tensor ideals are stable under the translation functors. The claim
follows from (Soergel 1997, Remark 7.2 2.): When x 
 λ belongs to the lower closure of the
alcove x 
C, we have

T λ
0 Tq � x 
 0 ��� Tq � x 
 λ ����Wλ �

T 0
λ Tq � x 
 λ ��� Tq � x 
 0 ��


Here Wλ denotes the stabilizer of λ. �
It follows that all tensor ideals are spanned by sets � Tq � λ ��� λ � Λ � where Λ is the

union of the set of dominant weights in lower closures of alcoves.
COROLLARY 5.12. To each tensor ideal τ in Tq we may associate a subset C � τ ��� W 0

so that the indecomposable tilting modules in τ are all Tq � λ � with λ in the lower closure of
one of the alcoves y 
C, y � C � τ � .

PROPOSITION 5.13. Let τ denote a tensor ideal in Tq and let C � τ ��� W 0 denote the
associated set of Weyl group elements. Then � x � C � τ ��� N1

x is a right cell submodule in N 1,
and C � τ � is a union of right cells in W 0.

PROOF. Let x � C � τ � and assume that �N1
xHs : N1

y ���� 0. We must show that y � C � τ � ,
as this demonstrates that � x � C � τ � � N1

x is stable under the generators Hs of H . By definition
of C � τ � we know that Tq � x 
 0 � belongs to the tensor ideal τ. To show the proposition we
need only verify that Tq � y 
 0 � belongs to τ. This is immediate from

�ΘsTq � x 
 0 � : Tq � y 
 0 � � � �NxHs : Ny � � �N1
xHs : N1

y � 

The first equality above follows from Theorem 5.7 and the second by comparing the equa-
tions (5.4) and (5.6). The last assertion in the proposition follows from Lemma 5.8 and
Remark 5.9. �

By now we have seen that a tensor ideal in Tq corresponds to a right cell submodule.
Further the right cell submodules separate tensor ideals, in the sense that two tensor ideals
are different if and only if they correspond to different right cell submodules. This takes
us some way toward a classification of tensor ideals in Tq as Lemma 5.8 provide us with a
classification of right cell submodules in terms of right cells.

It remains to construct a tensor ideal from each right cell submodule. It suffices to do
this for the minimal right cell submodules JC . This occupies the rest of this section.
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We begin by connecting the ring of characters with the module N 1. Recall that the
characters of the Weyl modules � χ � λ ��� λ � X ��� form a basis of the character ring. Then
set

α0 : 	�
 X � W0  N 1

χ � λ ��� �
0 if λ �� W � 0
N1

x if λ � x � 0 for some x � W 0 �
REMARK 5.14.

(i) This map is well defined as 0 is a regular weight when p � h.
(ii) By Theorem 5.7 we have α0 � Tq � x � 0 ����� N1

x . Note that we should really write
α0 � chTq � x � 0 ��� , but this should not cause confusion.

The following lemmata give two important properties of the map α0. The first lemma
is almost trivial, but the second is rather technical.

LEMMA 5.15. Let w � W. Then

α0 � χ � w � 0 ����� α0 � χ � 0 ��� Hw �
PROOF. Decompose w � w0x with w0 � W0 and x � W 0 satisfying l � w ��� l � w0 ��� l � x � .

Then, using formula (5.5) in the second line

α0 � χ � w � 0 ����� α0 ����� 1 � l � w0 � χ � x � 0 ����� �!� 1 � l � w0 � N1
x

α0 � χ � 0 ��� Hw � N1
e Hw0x � �!� 1 � l � w0 � N1

e Hx � �!� 1 � l � w0 � N1
x "

The following lemma from (Ostrik 1997) is the key result needed in the proof of
Proposition 5.18; there we show that a minimal right cell submodule JC corresponds to a
tensor ideal.

LEMMA 5.16. Let λ # µ � C and assume that z � λ is a dominant weight. For any module
Q in Cq, there is an HQ � H so that

α0 � T 0
µ � Tq � z � λ �%$ Q ����� α0 � T 0

λ Tq � z � λ ��� HQ

PROOF. Write chTq � z � λ �&� ∑w ' W awχ � w � λ � . Then by (Jantzen 1987, II.7.5b) we have

chprµ Tq � z � λ �($ Q � ∑
w ' W aw ∑

ν ) ν � λ ' W * µdim � Qν � χ � w �+� λ � ν ���
Consider the following set of Weyl group elements:

P �,� x � W � ν � λ � x � µ # dimQν -� 0 �
This set is clearly stable under multiplication from the right with w1 � Wµ. It is also stable
under multiplication from the left by w2 � Wλ: We have w2x � µ � w2 �.� λ � ν �&� w2 � λ � w / ν
for some w / in the finite Weyl group, and dimQν � dimQw 0 ν.

The actions of the groups Wµ (from the right) and Wλ (from the left) are simply transi-
tively. The orbits of the Wµ-action are indexed by the weights of Q, so we choose for each
weight ν of Q an element wν so that wνWµ � µ � λ � ν. Let w � i � , i � 1 #������1# l denote a set of
representatives from the orbits of the Wλ-action. Then P may be described as

P �,� wνw1 � w1 � Wµ # dimQν -� 0 �2�,� w2w � i � � w2 � Wλ # i � 1 #������1# l �3�
We may now continue the calculation. We have

chprµ Tq � z � λ �($ Q � ∑
w ' W aw ∑

ν ) ν � λ 4 wν * µ dim � Qν � χ � wwν � µ �5�
This gives

chT 0
µ Tq � z � λ �($ Q � ∑

w ' W aw ∑
ν ) ν � λ 4 wν * µ dim � Qν � ∑

w1 ' Wµ

χ � wwνw1 � 0 �5�
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We use Lemma 5.15 in the following calculation.

α0 � T 0
µ Tq � z � λ ��� Q ��� ∑

w � W
aw ∑

ν � ν 	 λ 
 wν � µ
dim � Qν � ∑

w1 � Wµ

α0χ � wwνw1 � 0 �

� α0 � ∑
w � W

awχ � w � 0 ��� � ∑
ν � ν 	 λ 
 wν � µ

dim � Qν � ∑
w1 � Wµ

Hwνw1 �

� α0 � ∑
w � W

awχ � w � 0 ��� � ∑
i

∑
w2 � Wλ

dim � Qν � Hw2w  i � �

� α0 � ∑
w2 � Wλ

∑
w � W

awχ � ww2 � 0 ��� � ∑
i

dim � Qν � Hw  i � �

� α0 � T 0
λ Tq � z � λ ��� � ∑

i
dim � Qν � Hw  i � ���

Here the last line follows as

chT 0
λ Tq � z � λ ��� ∑

w � W
aw ∑

w2 � Wλ

χ � ww2 � 0 ���
�

REMARK 5.17. In Lemma 5.16 we may replace Tq � z � λ � by any other module Q � with
prλ Q ��� Q � .

Proposition 5.13 and Corollary 5.12 states that each tensor ideal in Tq determines a
right cell submodule in N 1, and that two different tensor ideals are mapped to different
right cell submodules. In the other direction, Proposition 5.18 shows that each of the
minimal right cell modules JC from Lemma 5.8 corresponds to a tensor ideal.

PROPOSITION 5.18. Let C � W 0 denote a right cell. The indecomposable tilting
modules with highest weight in the lower closure of an alcove x �C, x � R C span a tensor
ideal.

PROOF. Let τ � C � denote the set of all indecomposable tilting modules with highest
weight in the lower closure of one of the alcoves x �C, x � R C . Recall the map α0 from the
ring of characters to N 1 defined above. We first show that the map α0 reveals whether a
given indecomposable tilting module belongs to τ � C � or not. Suppose that Tq � y � µ � is such
a module, with µ � C and y chosen so that y � µ belongs to the lower closure of the alcove
y �C. Then

α0 � T 0
µ Tq � y � µ ����� α0 � Tq � y � 0 ����� N1

y

We see that Tq � y � µ � belongs τ � C � if and only if it is mapped to JC � N 1 by α0 � T 0
µ � � .

Now assume that x � R C . Let Q denote an arbitrary tilting module and consider the
tensor product Tq � x � λ ��� Q. We must show that each summand Tq � y � µ � belongs to τ � C � .
By the discussion above this is equivalent to α0 � T 0

µ � Tq � x � λ ��� Q ����� JC for all µ � C. Now
Lemma 5.16 shows that

α0 � T 0
µ � Tq � x � λ ��� Q ��� α0 � T 0

λ Tq � x � λ ��� H �
for some H � H . As α0 � T 0

λ Tq � x � λ ��� H � N1
xH and as JC is a H -module we find that

α0 � T 0
µ � Tq � x � λ ��� Q ����� JC as needed. We are done.

�

Denote by τ � C � the tensor ideal corresponding to the right cell C , i.e. let τ � C � de-
note the tensor ideal spanned by all indecomposable quantum tilting modules with highest
weight in the lower closure of an alcove x �C with x � R C . We may now classify the tensor
ideals in Tq.

THEOREM 5.19. Let C � W 0 denote a right cell and let x � C . The tensor ideal τ � C �
is the smallest tensor ideal to contain Tq � x � 0 � . A tensor ideal is a union of such τ � C � , and
a union of such τ � C � is a tensor ideal.
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PROOF. Let us consider the smallest tensor ideal containing Tq � x � 0 � . By Corollary
5.12 and Proposition 5.13 we may associate to it a subset Y � W 0, so that � y � Y � N1

y is a
right cell submodule of N 1. This submodule contains N1

x , so it contains also JC , where
C � W 0 is the right cell containing x. We have shown that C � Y . Hence any tensor ideal
containing Tq � x � 0 � must contain τ � C � . Further, τ � C � is a tensor ideal by Proposition 5.18;
we see that τ � C � is the smallest tensor ideal to contain Tq � x � 0 � .

The last assertions are clear. �
Weight cells

In the previous sections we have seen that there is a close connection between right
cell ideals in H and right cell submodules of N 1 on one side and tensor ideals of quantum
tilting modules on the other side. Weyl group elements that generate the same right cell
ideal or right cell submodule are said to belong to the same right cell. There is a similar
notion in the category of quantum tilting modules. The highest weights in tilting modules
that generate the same tensor ideal are said to belong to the same weight cell.

DEFINITION 5.20. (Ostrik 2001) Write µ � Tq λ if 	 Tq � λ ��
 Q : Tq � µ ����� 0 for some
quantum tilting module Q.

REMARK 5.21. Note that � Tq is a preorder, since 	 Tq � λ ��
 Q1 : Tq � µ ������ 0 and 	 Tq � ν ��

Q2 : Tq � λ ������ 0 gives 	 Tq � ν ��
 Q1 
 Q2 : Tq � µ ����� 0. Note that Q1 
 Q2 is tilting because a
tensor product of tilting modules is tilting.

DEFINITION 5.22. Let � Tq be the equivalence relation defined by � Tq . The equiv-
alence classes of � Tq are called weight cells. The preorder � Tq induces a partial order
(also denoted � Tq) on the set of weight cells in the natural way.

To ease the notation, we write Ǎ for the lower closure of an alcove A.
REMARK 5.23.

(i) If µ � λ � ν and all three weights are dominant then µ � Tq λ as weight consid-
erations show that Tq � µ � is a summand of Tq � λ ��
 Tq � ν � .

(ii) If Tq � µ � is a summand in a translation or a wallcrossing of Tq � λ � then µ � Tq λ.
(iii) Let x � W 0 and assume that λ, µ � ˇx �C � X � . Then (the proof of) Lemma 5.11

shows that λ � Tq µ. So a weight cell consists of all dominant weights in the
lower closure of x �C, x in some subset of W 0.

(iv) If x � y � W 0 and y � R x then y � 0 � Tq x � 0 since 	ΘsTq � x � 0 � : Tq � y � 0 �� � 	NxHs :
Ny ���� 0. This immediately give us that y � R x implies y � 0 � Tq x � 0 and that
y � R x implies y � 0 � Tq x � 0

THEOREM 5.24. There is a one-to-one correspondence between the right cells in W 0

and weight cells in X � . The image of a right cell is given by

C �  "!$#
x � C

ˇx �C � X � �
This correspondence is order preserving.

PROOF. We first show that % x � C
ˇx �C � X � is a weight cell, for a right cell C . Let z,

y � C and let y � λ � ˇy �C � X � , z � µ � ˇz �C � X � . We have

z � µ � Tq z � 0 � Tq y � 0 � Tq y � λ �
where the first and last � Tq follows from Remark 5.23 (iii) and the second follows from
(iv) as x � R y.

To complete the proof we must show that y � λ � ˇy �C, z � µ � ˇz �C with z � µ � Tq y � λ gives
z � R y. First of all, we have z � 0 � Tq y � 0 as before. This means that Tq � z � 0 � belongs to all
tensor ideals containing Tq � y � 0 � ; by Theorem 5.19 we conclude that z � R y. We get in the
same way y � R z and hence z � R y.
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Finally, it follows from Remark 5.23 (iv) that this mapping respects the order of the
sets. �

We will denote the weight cell corresponding to the ’first’ right cell � e � by c1; note that
c1 � C. The weight cell corresponding to the second right cell C � s0 � is similarly denoted
by c2; it is the second largest weight cell. In the theorem below we identify the minimal
weight cell which we will denote by cSt. Figure 5, 6, and 7 in Chapter 6 hold pictures of
the weight cells in type A2, B2, and G2.

THEOREM 5.25. (Andersen 2001a) St � X � is a weight cell. It is minimal.

PROOF. The proof relies on a complete description of the injective indecomposable
tilting modules in Tq, given in (Andersen 2001b). We have

Tq � λ � injective �
	 λ � St � X ��
Let us first see that Tq � St � is in every tensor ideal of tilting modules. The dual of a

tilting module is tilting, since the dual of Weyl module is an induced module and vice versa.
Further, the dual of a indecomposable module is indecomposable, as End � Q ��� End � Q � �
for all modules. We thus find that T � λ � � � T ��� w0λ � , since the highest weight of T � λ � � is
� w0λ. Then

Hom � Tq � St ��� Tq � λ ��� Tq ��� w0λ � St ����� Hom � Tq � St ��� Tq ��� w0λ ��� Tq ��� w0λ � St ��� �
The last space is nonzero since the second module is a summand in the first by weight
considerations. Then Tq � St � is a summand in Tq � λ ��� Tq ��� w0λ � St � as Tq � St � is simple
and injective. It follows that St � Tq λ for all dominant weights. So St is a minimal element
in the preorder � Tq .

We have seen that St belongs to the minimal weight cell. By Remark 5.23 (i) we find
that St � X � is contained in this minimal weight cell. It remains to see that λ � Tq St implies
λ � St � X � .

Suppose that Tq � λ � is a summand in a Tq � St ��� Q with Q in Tq. The tensor product
is injective since Tq � St � is. Then Tq � λ � is necessarily injective as it is a summand in an
injective module. It follows that λ � St � X � . �





CHAPTER 6

Results

In this chapter we investigate the structure of modular tilting modules with highest
weight in the second weight cell. The second weight cell is the image of the right cell
C � s0 � under the correspondence of Theorem 5.24. The weight cell decompositions of the
dominant weights for root systems of type A2, B2 and G2 are shown in Figure 5, 6, and 7.
All weights in an open alcove is contained in the same weight cell, and alcoves are colored
after which weight cell its weights belong to. A non-regular weight lies in the lower closure
of one uniquely determined alcove, and belongs to the same weight cell as the weights of
this alcove.

The main results in this chapter is derived from right cell properties of C � s0 � . Theorem
5.7 provides a link to the representation theory of quantum groups at a root of unity, and
an analysis of quantized tilting modules allows us to draw conclusions as to the structure
of modular tilting modules.

FIGURE 5. The weight cells in type A2. The maximal weight cell c1 is
black. The second weight cell c2 is grey. The minimal weight cell cSt is
white.
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FIGURE 6. The weight cells in type B2. The maximal weight cell c1 is
black. The second weight cell c2 is dark grey. The minimal weight cell
cSt is white.

The proofs in this chapter rely on the wallcrossing functors to faciliate induction.
Therefore we assume throughout that p � h, h denoting the Coxeter number of G. This
ensures that every alcove and every wall contain a weight. We repeat the assumption p � h
in the statement of theorems only.

Wallcrossing a quantum tilting module

Fix a λ � C. We write T � x � for T � x � λ � (with a similar convention for quantum tilting
modules) throughout this chapter. Divide W 0 into three disjoint sets:

W 0 � � e �	� C � s0 �
� R �
That is, R is the union of the remaining right cells.

We begin with a few basic properties of quantum tilting modules.
PROPOSITION 6.1. Let x � W 0 and s � S so that xs � x. Let y � W 0.

(i) �ΘsTq � x � : Tq � y ����� 0 implies ys � y,
(ii) �ΘsTq � x � : Tq � y ����� 0 implies y � R x,

(iii) Let t � S so that xt � x. Then

�ΘsTq � x � : Tq � xt �� �
�

1 if xts � xt;
0 if xts � xt �

PROOF. All three claims follows from Theorem 5.7. From (5.4) in Chapter 4 we
see that �NxHs : Ny ��� 0 implies even that y � R x which in turn means that ys � y (by
Definition 4.7 and Proposition 4.3). This verifies (i) and (ii).

In (iii), the zero-part follows from (i). To see the other part, we note that nxt � x � v
by Lemma 5.6. Using that xts � xt and equation (5.1) we find �N xHs : Nxt  � � v � 1nxt � x �
nxts � x ��� v � 0

� 1. �
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FIGURE 7. The weight cells in type G2. The maximal weight cell c1 is
black. The second weight cell c2 is light grey. The minimal weight cell
cSt is white.

The following result describes explicitly when a second cell tilting module splits off.
It is the key to almost all results in this chapter.

PROPOSITION 6.2. Let x � W 0 and s � S so that xs � x. Suppose y � C � s0 � .
For �ΘsTq � x � : Tq � y �����	 0 it is necessary and sufficient that

(i) y 	 xt for some t � S with xts 
 xt, and
(ii) x � C � s0 ���� e � .

If these conditions are satisfied, we have �ΘsTq � x � : Tq � y ��� 	 1.

PROOF. The conditions (i) and (ii) are sufficient: Assume y 	 xt. If xt 
 x then xts 
 xt
implies �ΘsTq � x � : Tq � y ��� 	 1 by Proposition 6.1 (iii); if xt � x then x is the unique minimal
element in the coset x 
 s � t � , so xts 
 xt then shows that xts 	 x, hence s 	 t and y 	 xs
follows.

It remains to show that both claims are also necessary. First note that �ΘsTq � x � :
Tq � y �����	 0 implies y � R x. But y belongs to C � s0 � , so x � C � s0 � or x 	 e by Observa-
tion 4.21.

We now prove that y 	 xt for some t � S. If y � x then y 	 xs. If y 
 x then µ � y � x ���	 0
and ys 
 y. Pick a t � S so that xt 
 x. Then yt � y because y � C � s0 � shows that s is
unique with the property ys 
 y. From Lemma 5.6 we find that nyt � x has a constant term.
We conclude that x 	 yt.
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Finally the necessity of xts � xt follows from Proposition 6.1 (i). �
Based on Proposition 6.2 we give the following theorem. We will refer to it numerous

times throughout this chapter.
THEOREM 6.3. Let p � h.

(i) Let z � C � s0 � and zs � z. There is a unique t � S so that zt � z, and nonnegative
integers ay so that

ΘsTq � z ��� εTq � zs �
	 δTq � zt �
	��
y  R

ayTq � y ���
Here ε �

�
1 zs � W 0

0 zs �� W 0 and δ �
�

1 zts � zt
0 zts � zt

.

(ii) Assume type An � 2, Dn, E6, E7, E8. Let z � zs � C � s0 � . Then for some nonnega-
tive integers ay

ΘsTq � z ��� εTq � zs �
	��
y  R

ayTq � y ���
Here ε is 1 when zs � W 0 and 0 when zs �� W 0.

(iii) All types. Let e �� x �� C � s0 � . Then for some nonnegative integers ay

ΘsTq � x ��� �
y  R

ayTq � y ���
PROOF. The first and the last assertion follow from Proposition 6.2 and Proposition

6.1 (ii).
To see the second, lets us assume that zs � C � s0 � with zs � z � zt � zts so that δ � 1.

Then zs has a reduced expression that ends with sts. This reduced expression is unique
since zs � C � s0 � , and we see that m � s � t � � 4, where m � s � t � denotes the order of st. So
δ � 1 happens only in types with a pair of simple reflections s � t with m � s � t � � 4. �

Comparing quantum and modular tilting modules

For completeness we begin with results about the “first” cell � e � .
LEMMA 6.4.

(i) For any x � W 0 we have �ΘsTq � x � : Tq � e ����� 0.
(ii) Let Q be a modular tilting module. Then

�Q : T � e ����� �Qq : Tq � e �����
PROOF. Recall (from Corollary 4.14) that e is maximal in the preorder  R . Now (i)

follows directly from Proposition 6.1 (ii).
All tilting modules are a direct sum of indecomposable tilting modules. In (ii) it

suffices to show that � T � x � q : Tq � e ���!� 0 for all x �� e. This follows by induction using
the first part of the lemma. �

REMARK 6.5. There is a well known and explicit formula for the number �Q : T � e ���"��Qq : Tq � e ��� . The following formulae may be found in (Andersen and Paradowski 1995).
Here M is a modular tilting module, Q a quantum tilting module, and λ � C.

�M : T � λ ����� ∑
x  W # x $ λ  X % �'& 1 � l ( x ) �M : V � x � λ ���

�Q : Tq � λ ����� ∑
x  W # x $ λ  X % �'& 1 � l ( x ) �Q : Vq � x � λ ���*�

These equations implies Lemma 6.4 (ii).
We turn to modular tilting modules in the second cell; the aim is to decompose their

quantization.
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THEOREM 6.6. Assume type An � 2, Dn, E6, E7 or E8 and p � h. Let z � C � s0 � . Then
for some nonnegative integers ay

T � z � q � Tq � z ���	�
y 
 R

ayTq � y ���
PROOF. Note that T � s0 � q � Tq � s0 � . We will proceed by induction. Let z  zs � C � s0 �

and assume zs �� s0. Then z � C � s0 � by Lemma 4.17. By induction and Theorem 6.3 (ii)
and (iii) we get

Θs � T � z � q ��� ΘsTq � z ���	�
y 
 R

ayΘsTq � y �
� Tq � zs ��� �

y 
 R

byTq � y ���

for some non-negative integers by. Note the identity � ΘsT � z ��� q � Θs � T � z � q � ; both modules
are quantum tilting modules with the same character.

� ΘsT � z ��� q � T � zs � q ���
x 
 W 0

cxT � x � q �
This proves the claim, since Tq � zs � is a summand of T � zs � q. �

REMARK 6.7. Consider type G2. Let z � C � s0 � and recall from Table 2 on page 34
that C � s0 � consists of only 8 elements. We claim that T � z � q � Tq � z � . In fact, for zs  z
(such s is necessarily unique) we have

chT � z ��� χ � z ��� χ � zs ��� chTq � z ���
Here χ � z � denotes the character of the Weyl module. Pick a weight µ � C with StabW � µ � �
� 1 � s � ; then the sumformula reveals that V � z � µ � is simple. The claim follows and we have
actually proved that Theorem 6.6 holds in type G2 too.

REMARK 6.8. In chapter 7 we will find that Theorem 6.6 holds in type B2, too. This
result is stated in Theorem 7.21.

REMARK 6.9. Erdmann (1995) has computed the characters of the modular tilting
modules in type A1. Outside the lowest p2-alcove, the characters of the quantum and
modular tilting modules disagree in general. This shows that Theorem 6.6 cannot hold in
type A1 as the set R is empty in type A1.

We are now able to discuss the decomposition of quantized modular tilting modules
belonging to lower cells. This result holds for all types of root systems in contrast to
Theorem 6.6.

THEOREM 6.10. All types and p � h. Let x � R. Then for some nonnegative integers
ay

T � x � q � �
y 
 R

ayTq � y ���
PROOF. We prove this by induction. We postpone its basis, so assume that x � R is

’non-minimal’ i.e. suppose that there is an s so that x � xs � R. By induction

T � xs � q � �
y 
 R

ayTq � y ���
Then using theorem 6.3 (iii) we get

Θs � T � xs � q ��� �
y 
 R

ayΘsTq � y �
� �

y 
 R

a �yTq � y ���
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On the other hand T
�
x � q is a summand of

�
ΘsT

�
xs ��� q and we conclude that

T
�
x � q � �

y � R

a � �y Tq
�
y ���

It remains to consider x, where x 	 xs implies xs 
� R. The analysis of T
�
x � q when x � R is

such a minimal element will require some case-by-case arguments: We give one proof in
type A2, a second in the types An � 3, B2, Dn, E6, E7, E8, or G2, and a third for type Bn, Cn
or F4; the statement in the Theorem is irrelevant for type A1 as the set R is empty.

First xs 
� R shows that xs �
C
�
s0 � . If  R �

x ���� 1, Lemma 4.15 shows that x �
C
�
s0 � .

Thus, there is a t �� s so that x 	 xs and x 	 xt �
C
�
s0 � .

Suppose that s, t do not commute. We will first show that this is only possible in type
A2. The coset x � s � t 	 has maximal element x, and we denote the minimal element by z.
The entire coset x � s � t 	 is contained in W 0, and zs 	 z � zt shows that e �� z. By Lemma
4.17 we find that x � s � t 	���� x � is contained C

�
s0 � . Let r denote the simple reflection with

zr � z. From R
�
zs ����� s � we see that zr � z � zs � zsr, hence s and r can not commute.

Similarly rt �� tr. Since we assumed that s, t do not commute, we find that r, s, and t are
all connected to each other in the Coxeter graph of the Weyl group. Hence we are in type
A2 as claimed and m

�
s � t ��� 3. The elements in the coset x � s � t 	 are ordered as in Figure

8.
By Theorem 6.6 we have T

�
xs � q � Tq

�
xs ��� � � y � RayTq

�
y ��� . Using Theorem 6.3 (i) we

find

Θs
�
T
�
xs � q ��� ΘsTq

�
xs �����

y � R

ayΘsTq
�
y �

� Tq
�
x ��� Tq

�
xst ��� �

y � R

a �yTq
�
y ���

By a completely analogous argument we get

Θt
�
T
�
xt � q ��� Tq

�
x ��� Tq

�
xts ��� �

y � R

a � �y Tq
�
y � �

Now T
�
x � q is a summand of

�
ΘsT

�
xs ��� q as well as a summand of

�
Θt T

�
xt ��� q. We conclude

that T
�
x � q � Tq

�
x ��� � � y � Ra � � �y Tq

�
y �!� .

In the rest of the proof we may assume that s, t commute. The elements in the coset
x � s � t 	 are ordered as in Figure 9.

Suppose that s, t commute and that we are in type An � 3, B2, Dn, E6, E7, E8,
or G2. The assumptions allow us to use Theorem 6.6, and we have T

�
xs � q � Tq

�
xs �"�
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Root system type minimal element in R

Bn s0s1s0s2
Cn s0s2s1s3

s0s2s3 ����� sn � 1snsn � 1 ����� s2s0s1
F4 s0s4s3s2s1s3

TABLE 3. The minimal elements of R.

���
y � RayTq

�
y ��� . Using Theorem 6.3 (ii) we get

Θs
�
T
�
xs � q �
	 ΘsTq

�
xs � ���

y � R

ayΘsTq
�
y �

	 Tq
�
x � � �

y � R

a yTq
�
y � �

Recall that T
�
x � q is a summand of (ΘsT

�
xs ��� q. We conclude that T

�
x � q 	�� y � R a  y Tq

�
y � .

Suppose that we are in type Bn, Cn or F4. We do not use that s, t commute here.
Instead we determine the minimal elements of R explicitly and check the claim. A reduced
expression of each minimal element is given in Table 3. Let us briefly discuss how this
table is obtained. It was shown above that if x is a minimal element of R then there exist
s, t so that xs � x � xt and xs, xt both belong to C

�
s0 � . So there must be two elements of

equal length. Looking at the Table 1 on page 33, which displays the reduced expression of
all elements in C

�
s0 � , we see that this happens only four times, and this corresponds to the

four entries in Table 3.
We must show that the assertion in the theorem holds for these four elements. We do

this for the long element in type Cn and leave the remaining three to the reader. Recall that
T
�
s0 � q 	 Tq

�
s0 � . Using Theorem 6.3 (i) and (iii) in each step we find that

ΘsnΘsn � 1 ����� Θs3Θs2T
�
s0 � q 	 Tq

�
s0s2s3 ����� sn � 1sn � � �

y � R

ayTq
�
y �

Θsn � 1ΘsnΘsn � 1 ����� Θs3Θs2T
�
s0 � q

	 Tq
�
s0s2s3 ����� sn � 1snsn � 1 � �

Tq
�
s0s2s3 ����� sn � 1 � � �

y � R

a yTq
�
y �

Before we proceed, note that Θsn � 2Tq
�
s0s2s3 ����� sn � 1 ��	 Tq

�
s0s2s3 ����� sn � 2 � ��� y � RbyTq

�
y �

by Theorem 6.3 (i) since s0s2s3 ����� sn � 2sn � 1sn � 2 	 sn � 1s0s2s3 ����� sn � 2sn � 1 �� W 0; the re-
lations between the generators is given by Table 2 on page 34. Similarly, we find that
Θsn � 3Tq

�
s0s2s3 ����� sn � 2 ��	 Tq

�
s0s2s3 ����� sn � 3 � ��� y � Rb yTq

�
y � and so on. We continue with

Θs0Θs2Θs3 ����� Θsn � 1ΘsnΘsn � 1 ����� Θs3Θs2T
�
s0 � q

	 Tq
�
s0s2s3 ����� sn � 1snsn � 1 ����� s3s2s0 � � Tq

�
s0 � � �

y � R

a  y Tq
�
y �

Θs1Θs0Θs2Θs3 ����� Θsn � 1ΘsnΘsn � 1 ����� Θs3Θs2T
�
s0 � q

	 Tq
�
s0s2s3 ����� sn � 1snsn � 1 ����� s3s2s0s1 � � �

y � R

a   y Tq
�
y �

Here we used that Θs1Tq
�
s0 ��	 0 as s0s1 	 s1s0 �� W 0. Now, since T

�
s0s2s3 ����� sn � 1snsn � 1 ����� s3s2s0s1 � q

is a summand in Θs1Θs0Θs2Θs3 ����� Θsn � 1ΘsnΘsn � 1 ����� Θs3Θs2T
�
s0 � q we have the desired for-

mula. We are done. �
The following theorems may be seen as the main results of the thesis.
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THEOREM 6.11. Assume type An � 2, B2, Dn, E6, E7, E8, or G2 and p � h.
Let z � C � s0 � and let Q be a tilting G-module. Then

�
Q : T � z ���	� �

Qq : Tq � z ����

PROOF. Since Q is a direct sum of indecomposable tilting modules, it is enough to

check the result for all Q � T � x � , x � W 0. If x � e both sides of the equality is zero. If
x � C � s0 � we may apply Theorem 6.6, Remark 6.7, and Remark 6.8. Finally x � R is
handled with Theorem 6.10. �

Recall that each right cell corresponds to a weight cell, and that we denote the weight
cell corresponding to C � s0 � by c2. As stated, Theorem 6.11 holds for regular weights in
c2, but the next result generalizes the theorem to all of c2 as well as the first weight cell c1.

THEOREM 6.12. Assume type An � 2, B2, Dn, E6, E7, E8 or G2 and p � h. For a weight
µ in the first or second weight cell and any modular tilting module Q we have�

Q : T � µ ���� �
Qq : Tq � µ ����


PROOF. Recall first that c1 � C. If µ � c1 then Lemma 6.4 proves the theorem. So
we assume that µ � c2. This means that µ is a dominant weight in the lower closure of an
alcove z 
C with z � C � s0 � . We pick ν � C so that z 
 ν � µ. In general, if x 
 ν � X � belongs
to the lower closure of x 
C, then

T 0
ν T � x 
 ν ��� T � x 
 0 �

T 0
ν Tq � x 
 ν ��� Tq � x 
 0 ��


The first result is stated in (Andersen 2000, Proposition 5.2). For the quantum analogue,
see (Soergel 1997, Remark 7.2 2.). From these identities we see that

�
Q : T � µ ���� �

T 0
ν Q : T � z 
 0 ����

Qq : Tq � µ ���� �
T 0

ν � Qq � : Tq � z 
 0 ���
As quantum tilting modules, T 0

ν � Qq ��� � T 0
ν Q � q since the characters of the modules are

equal. Now Theorem 6.11 shows that the left hand sides are equal. �
REMARK 6.13. In the special case of type A2, Theorem 6.12 has been proved by

Jensen (1998).

Decomposition numbers

It is a well known fact that the characters of the Weyl modules � chV � λ � , λ a dominant
weight � , form a basis of the ring of characters. Since the λ-weight space of T � λ � is always
one dimensional, it is clear that � chT � λ � , λ a dominant weight � , establishes a second basis
of the character ring. Hence the character of a module M may be expressed in both bases.
We denote the coefficients in the first basis by

�
M : V � λ ��� and by

�
M : T � λ ��� in the second

basis, so that

chM � ∑
λ � X �

�
M : V � λ ��� chV � λ ��� ∑

λ � X �
�
M : T � λ ��� chT � λ ��


If the module M admits a filtration by Weyl modules then
�
M : V � λ ��� is the number of times

V � λ � appears as a quotient in the filtration. When M is a tilting module,
�
M : T � λ ��� is the

multiplicity of T � λ � in M. Thus the definition of
�
M : V � λ ��� and

�
M : T � λ ��� given here

agrees with our usage of
�
M : V � λ ��� and

�
M : T � λ ��� so far.

A convenient way of expressing the character of an indecomposable tilting module
is through the decomposition numbers

�
T � λ � : V � µ ��� . This is to difficult for us. But the

“inverse” decomposition numbers
�
V � µ � : T � λ ��� for all µ � λ � ν would allow us to calculate

the characters of all indecomposable tilting modules with highest weight � ν. Based on
Theorem 6.12 we may give some of the numbers

�
V � µ � : T � λ ��� .
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The characters of the tilting modules span the ring of characters. Hence the formula in
Theorem 6.12 holds for any element of the character ring. The modular Weyl modules and
the quantum Weyl modules have the same character. Therefore we obtain the following
reformulation of Theorem 6.12 suggested to us by W. Soergel.

THEOREM 6.14. Assume type An � 2, B2, Dn, E6, E7, E8 or G2 and let p � h. For a
dominant weight λ, and a weight µ in the first or second weight cell we have�

V � λ � : T � µ ����� �
Vq � λ � : Tq � µ �	�

This allow us to calculate the coefficient of a second cell tilting module in any Weyl
module, since the right hand side is known.

For a Weyl factor V � λ � in a tilting module T � µ � we have λ 
 µ (Theorem 2.14). Simi-
larly, if

�
V � λ � : T � µ ������ 0 then µ 
 λ. Thus, to express the character of a Weyl module V � λ �

in the basis of tilting characters, we need only consider T � µ � with µ linked to λ.
Choose a dominant weight λ and let Π � λ ���� µ � X ��� µ 
 λ � . Order (as in Chapter 2)

the set Π � λ ����� λ0 � λ1 ������� λr � so that λi 
 λ j implies that j � i; so λ0 � λ. We organize
the “inverse” decomposition numbers

�
V � µ � : T � λ ��� in a � r � 1 ����� r � 1 � matrix. Then �
V � λi � : T � λ j �	�"!

is a lower triangular matrix. The following Corollary in merely a restatement of Theorem
6.14.

COROLLARY 6.15. Assume type An � 2, B2, Dn, E6, E7, E8 or G2 and suppose λi be-
longs to the first or second weight cell. Then the entire i’th column of the matrix of “in-
verse” decomposition numbers is known.





CHAPTER 7

B2

We return now to Theorem 6.6, which considers the decomposition of modular tilting
modules, and holds in type An � 2, Dn, E6, E7, E8, and G2. Further, Remark 3.8 makes it
clear that the formula does not hold for type A1.

It is therefore natural to consider type B2. Does the multiplicity formula hold for root
system of this type? We answer this question in this chapter: The answer is positive; see
Theorem 7.21.

It should be noted, however, that the methodology is basically different from that of
Chapter 6. We consider here the multiplicity of Weyl modules “close to” the top of an
indecomposable tilting module. This is to be understood in the following way: Suppose
that the tilting module has highest weight λ and that the Weyl module has highest weight
µ. Then “close to”’ means that the closure of the facets containing λ and µ share a special
weight. When this is the case we are able to compute

�
T � λ � : V � µ ��� ; this number equals the

corresponding number in the quantum case (see Theorem 7.20). We then apply this result
and emerge with a proof of the multiplicity formula in type B2.

We continue to assume that p � h; the Coxeter number of B2 is 4. We use results
stated in (Koppinen 1986). In particular Theorem 7.1 below is essential since it describes
the homomorphisms between Weyl modules “close to” each other. This provides a valuable
starting point. It is worth noticing that Theorem 7.1 is not limited to type B2. A few other
results that does not require type B2 is to be found in the last section.

Homomorphisms between Weyl modules

The first result provide us with useful information about the homomorphisms between
Weyl modules around a special weight. This theorem is used many times in the proofs in
this chapter. Recall that the stabilizer of a weight λ is denoted by Wλ.

THEOREM 7.1. (Koppinen 1986) All types. Let χ be a dominant special weight. Let µ
denote a weight in a facet, whose closure contains χ.

(i) If ξ, ξ �	� Wχ 
 µ and ξ � ξ � then

Hom � V � ξ �� V � ξ � ����� k 

(ii) If ξ, ξ � , ξ � � � Wχ 
 µ and

V � ξ ����� V � ξ � ����� V � ξ � � �
are nonzero homomorphisms, then the composite is nonzero.

REMARK 7.2. This theorem does not hold for non-dominant special weights: See
Proposition 7.18.

The highest factors in a Weyl module

We assume until the last section that the root system in question is of type B2.
Consider figure 10. It contains two similar situations. We state here some results

about the factors of the Weyl modules in the figure. The statements in Case I and Case II
are identical, and the proof applies to both cases.

55
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Case I Case II

δ � χ � rω1 δ � χ � rω2
β � χ � r � ω1 � ω2 � β � χ � r � ω2 � 2ω1 �
γ � χ � r � ω1 � ω2 � γ � χ � r � ω2 � 2ω1 �

α � χ � rω1 α � χ � rω2

0 � r � p 0 � r � p
2

���
�
	

��

�
�

� �

���
�
	

��

�
�

��

FIGURE 10. Case I (left) and Case II (right). χ is the special weight
around which α, β, γ, and δ is arranged.

PROPOSITION 7.3. With weights arranged as in Case I or in Case II, we have�
V � δ � : L � α ��� � �

V � γ � : L � α ��� � �
V � β � : L � α ��� � 1�

V � δ � : L � β ��� � �
V � γ � : L � β ��� � 1�

V � δ � : L � γ ��� � 1 �
PROOF. We begin with the composition multiplicities of L � α � . Let χ denote the spe-

cial weight around which the four weights lie. From (Jantzen 1987, II.7.15) we see that for
a simple module L we have

T χ
α L � L � χ ����� L � L � α � �

Using also (Jantzen 1987, II.7.13) we get�
V � δ � : L � α ��� � �

T χ
α V � δ � : T χ

α L � α ���
� �

V � χ � : L � χ ��� � 1 �
This argument works equally well with V � δ � replaced by V � γ � or V � β � .

From (Jantzen 1987, II.6.24) or (Andersen 1980a, Theorem 3.1) we get immediately
that �

V � δ � : L � γ ��� � �V � γ � : L � β ��� � 1
Finally the last multiplicity deserves a lemma of its own. �
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���
� � ���

� �

FIGURE 11. Case I (left) and Case II (right)

LEMMA 7.4. [Case I] Let χ denote a dominant special weight. Let δ � χ � rω1 and
β � χ � r � ω1 � ω2 � with 0 	 r 	 p. Then


V � δ � : L � β ��� � 1 
LEMMA 7.5. [Case II] Let χ denote a dominant special weight. Let δ � χ � rω2 and

β � χ � r � ω2 � 2ω1 � with 0 	 r 	 p
2 . Then

V � δ � : L � β ��� � 1 

Note that the proofs in Case I and Case II are based on the same idea, and that only
minor modifications are needed.

PROOF OF CASE I. Since Hom � V � β ��� V � δ ��� is nonzero we have


V � δ � : L � β ����� 1. To

prove � we first reduce to a special case: By the translation principle it is enough to prove
the Lemma with β � χ � ω1 and δ � χ � ω1 � ω2. We now get the result via the inequalities

dimV � δ � β � 2 (7.1)

dimL � δ � β � 1 � (7.2)

that clearly shows


V � δ � : L � β ��� � 1.

The character of the Weyl module V � δ � is independent of the field k. Since we are
only interested in the multiplicity of a weight space, we consider the Weyl module V � δ � as
a factor in the Verma module Z � δ � of the complex simple Lie algebra of type B2. We have
δ � β � α1 � α2. Now Kostants formula for the weight space multiplicities of Z � δ � yields
dimZ � δ � β � 2, and we have shown (7.1).

We use Steinbergs tensor product theorem: Recall that we may write (uniquely) any
dominant weight λ as λ � λ0 � pλ1 with λ0 � X1 and λ1 � X � . Then

L � δ ��� L � δ0 ��� L � δ1 ��� F �  (7.3)

From the fact that χ � ρ � pX we find that δ ��� p � 1 � ω2 � pδ1 and β ��� p � 2 � ω2 � pδ1
with δ1 � X � . So we have

δ0 � � p � 1 � ω2

β0 � � p � 2 � ω2 
Now (7.3) shows that it is enough to verify that dimL � δ0 � β0 � 1. Figure 11 shows how the
weights β0 and δ0 are arranged in X1. Jantzens sumformula reveals that V � δ0 � is simple.
Therefore we may use Freudenthals formula for the weight space multiplicities of Weyl
modules to determine dimL � δ0 � β0 � dimV � δ0 � β0 . An uncomplicated calculation shows
that

dimV � δ0 � β0 � 1 
This gives us (7.2) and concludes the proof. �
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PROOF OF CASE II. Since Hom � V � β ��� V � δ ��� is nonzero we have �V � δ � : L � β ���	� 1.
As before we reduce to the special case β 
 χ � ω2 and δ 
 χ � ω2 � 2ω1. We now get the
result via the inequalities

dimV � δ � β  3 (7.4)

dimL � δ � β � 2 � (7.5)

Kostants formula yields dimZ � δ � β 
 3, and Freudenthals formula gives dimL � δ0 � β0 

2. �

Extensions of Weyl modules

OBSERVATION 7.6. With weights arranged as in Figure 10 we have� α � β � γ � δ� If α � λ � δ then λ ��� α � β � γ � δ � .
This observation is a special case of Lemma 7.22
LEMMA 7.7. With the notation from Figure 10 we have

Exti � V � α ��� L � β ����
 Exti � V � β ��� L � γ ����
 Exti � V � γ ��� L � δ ����

�

k i 
 1
0 i �
 1 �

PROOF. We will calculate Exti � V � α ��� L � β ��� . The other claims follow by analogous
arguments.

From Theorem 7.1 we obtain a homomorphism

φ : H0 � β � ��� H0 � α ���
and from this map we gain three short exact sequences:

0 � kerφ � H0 � β � � imφ � 0
0 � imφ � H0 � α � � cokerφ � 0
0 � L � β � � kerφ � kerφ � L � β � � 0 �

Recall that α �� λ implies Exti � V � α ��� L � λ ����
 0 by Lemma 2.4. Then

Exti � V � α ��� kerφ � L � β ����
 0 for all i � 0

Exti � V � α ��� cokerφ ��
 0 for all i � 0 �
as Proposition 7.3 and Observation 7.6 shows that all factors L � λ � in kerφ � L � β � and cokerφ
has α �� λ. Therefore

Exti � V � α ��� imφ �� Exti � V � α ��� H0 � α ����

�

k i 
 0
0 i � 1 �

where the last equality follows from Theorem 2.2. Also by Theorem 2.2 we find that for
all i � 0 we have Exti � V � α ��� H0 � β ����
 0, so that

Exti � V � α ��� kerφ ��

�

k i 
 1
0 i �
 1

From the last of the three exact sequences we obtain

Exti � V � α ��� L � β ���� Exti � V � α ��� kerφ ��

�

k i 
 1
0 i �
 1 �

�
PROPOSITION 7.8. With the notation of Figure 10 we have

Exti � V � α ��� V � β ����
 Exti � V � β ��� V � γ ����
 Exti � V � γ ��� V � δ ����

�

k i 
 0 � 1
0 i � 2 �
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PROOF. We shall calculate only Exti � V � α ��� V � β ��� . The same argumentation works in
the remaining two situations.

From Theorem 7.1 we obtain the map

f : V � α ����� V � β ��	
This homomorphism induces three short exact sequences:

0 � ker f � V � α � � im f � 0
0 � im f � V � β � � coker f � 0
0 � kerπ � coker f π� L � β � � 0 	

We claim that Exti � V � α �
� L ��� 0 (for all i) for all simple factors in ker f and kerπ;
this follows from Lemma 2.4, Proposition 7.3, and Observation 7.6. We conclude that
Exti � V � α ��� ker f �� 0 � Exti � V � α ��� kerπ � for all i � 0. Using Lemma 2.7 and Lemma 7.7
we arrive at

Exti � V � α �
� im f ��� Exti � V � α �
� V � α �����
�

k i � 0
0 i � 1

Exti � V � α ��� coker f ��� Exti � V � α �
� L � β �����
�

k i � 1
0 i �� 1 	

We establish the proposition by examining the long exact sequence obtained by using
Hom � V � α �
����� on the short exact sequence with V � β � as middle term. �

PROPOSITION 7.9. With notation as in Figure 10 we have�
T � β � : V � α ����� � T � γ � : V � β ����� � T � δ � : V � γ ����� 1 	

PROOF. We consider only the first decompostion number. Since α is maximal among
dominant weights linked to β (see Observation 7.6) we have, by Theorem 2.14 (iv)�

T � β � : V � α ����� dimExt1 � V � α �
� V � β ����� 1 	
�

We proceed to determine the ext groups of the remaining pairs of Weyl modules. Note
that the proofs given are very similar to those of the lemma and the proposition above.

LEMMA 7.10. With notation as in Figure 10 we have for i � 0

Exti � V � α �
� L � γ ����� Exti � V � β ��� L � δ ���� 0 	
PROOF. We will calculate Exti � V � α ��� L � γ ��� . The second claim follows by an analo-

gous argument.
From Theorem 7.1 we get that the following composition of maps is nonzero:

H0 � γ � φ��� H0 � β ����� H0 � α �
	
We conclude that L � α � and L � β � appear as factors in the image of φ. By the composition
factor results in Proposition 7.3 none of them appear in the kernel of φ, nor in the cokernel
of φ. From the map φ we gain three short exact sequences:

0 � kerφ � H0 � γ � � imφ � 0
0 � imφ � H0 � β �!� cokerφ � 0
0 � L � γ �"� kerφ � kerφ # L � γ �$� 0 	

It follows from Observation 7.6 and Lemma 2.4 that Exti � V � α �
� L �%� 0 (for all i) for all
simple factors in kerφ # L � γ � and cokerφ. We have thus established that

Exti � V � α �
� kerφ # L � γ ����� 0 for all i � 0

Exti � V � α �
� cokerφ ��� 0 for all i � 0 	
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Recall that Exti � V � α ��� H0 � β ����� Exti � V � α ��� H0 � γ ����� 0 for all i � 0 by Theorem 2.2. We
use the functor Hom � V � α ���
	�� on all three sequences above; it is easy to see that this
implies (as claimed)

Exti � V � α ��� L � γ ����� 0 for all i � 0  �
PROPOSITION 7.11. With notation as in Figure 10 we have

Exti � V � α ��� V � γ �
��� Exti � V � β ��� V � δ ����� �
k i � 0 � 1
0 i � 2 

PROOF. We shall calculate only Exti � V � α ��� V � γ �
� . The same line of argumentation
works equally well in the other situation.

From Theorem 7.1 we obtain a nonzero composition of maps

V � α ��	�� V � β � f	�� V � γ ��
Since this composite is nonzero, L � α � must appear in the image of f . Hence L � α � and L � β �
can not appear in the kernel of f , nor in the cokernel of f , by the composition multiplicities
of Proposition 7.3.

The homomorphism f provide us with two short exact sequences:

0 � ker f � V � β ��� im f � 0
0 � im f � V � γ ��� coker f � 0 

In Lemma 7.10 above we proved that Exti � V � α ��� L � γ �
��� 0. Hence Exti � V � α ��� L ��� 0
(for all i) for all simple factors in ker f and coker f by Lemma 2.4. We conclude that
Exti � V � α ��� ker f ��� 0 � Exti � V � α ��� coker f � for all i � 0. Examining the long exact se-
quences obtained by using Hom � V � α ���
	�� now yields

Exti � V � α ��� V � γ �
��� Exti � V � α ��� im f ��� Exti � V � α ��� V � β �
��� �
k i � 0 � 1
0 i � 2  �

We now calculate Exti � V � α ��� V � δ �
� . There are no surprises in the proofs; they follow
the same path as for the preceding statements.

LEMMA 7.12. With notation as in Figure 10 we have for i � 0

Exti � V � α ��� L � δ �
��� 0 for all i � 0 
PROOF. From Theorem 7.1 we get that the following composition of maps is nonzero.

H0 � δ � φ	�� H0 � γ ��	�� H0 � β ��	�� H0 � α ��
We conclude that L � α � , L � β � and L � γ � appears as factors in the image of φ. By the com-
position multiplicities of Proposition 7.3 none of them appear in the kernel of φ, nor in the
cokernel of φ. From the map φ we gain three short exact sequences:

0 � kerφ � H0 � δ ��� imφ � 0
0 � imφ � H0 � γ ��� cokerφ � 0
0 � L � δ ��� kerφ � kerφ � L � δ ��� 0 

It follows from Observation 7.6 and Lemma 2.4 that Exti � V � α ��� L � � 0 (for all i) for
all simple factors in kerφ � L � δ � and cokerφ. We have thus established that

Exti � V � α ��� kerφ � L � δ ����� 0 for all i � 0

Exti � V � α ��� cokerφ ��� 0 for all i � 0 
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Recall that Exti � V � α ��� H0 � δ ����� Exti � V � α ��� H0 � γ ����� 0 for all i � 0. We use Hom � V � α �	��
��
on all three sequences above; it is easy to see that this implies (as claimed)

Exti � V � α ��� L � δ ����� 0 for all i � 0  �
PROPOSITION 7.13.

Exti � V � α ��� V � δ ����� �
k i � 0 � 1
0 i � 2 

PROOF. From Theorem 7.1 we obtain a nonzero map

V � α ��
�� V � β ��
�� V � γ � f
�� V � δ �	
Since this composite is nonzero, L � α � and L � β � must appear in the image of f . Hence L � α �
and L � β � cannot appear in the kernel of f nor in the cokernel of f , by the composition
multiplicities of Proposition 7.3.

The homomorphism f provide us with two short exact sequences:

0 � ker f � V � γ ��� im f � 0
0 � im f � V � δ ��� coker f � 0 

The Lemmata 7.12 and 7.10 says that Exti � V � α ��� L � γ ����� Exti � V � α ��� L � δ ����� 0. By Ob-
servation 7.6 and Lemma 2.4 we obtain Exti � V � α �	� L ��� 0 (for all i) for all simple factors
in ker f and coker f . We conclude that Exti � V � α �	� ker f ��� Exti � V � α ��� coker f ��� 0 for all
i � 0. Examining the long exact sequences obtained by using Hom � V � α ����
�� now yields

Exti � V � α �	� V � δ ����� Exti � V � α �	� im f ��� Exti � V � α ��� V � γ ����� �
k i � 0 � 1
0 i � 2  �

A multiplicity calculation

THEOREM 7.14. We keep the notation of Figure 10. Recall that p � 5. We have�
T � γ � : V � α ����� 1

The rest of this section present a proof of the Theorem. The strategy in the proof
is simply to follow the steps in the construction of a tilting module. This is possible in
practice, because there are only one weight β between γ and α (in the linkage order); this
follows from Observation 7.6.

Recall the construction of T � λ � in chapter 2. As β is maximal among dominant
weights linked to γ the first step is to extend V � γ � with V � β �! d1 non-trivially; here d1 �
Ext1 � V � γ �	� V � β ��� . From Proposition 7.8 we have d1 � 1. So we must first find a non-
split extension, E, of V � γ � with V � β � . Now α is maximal among dominant weights
linked to γ and different from β and γ. Therefore we may continue the construction
of T � λ � by extending E with V � α � . It follows from our construction in Chapter 2 that�
T � γ � : V � α ����� dimExt1 � V � α �	� E � . We calculate the dimension of this extension group to

prove the theorem.
Let us describe how we obtain E. Consider T δ

χ V � χ � . By (Jantzen 1987, II.7.13) this
module allows a filtration with V � α � , V � β � , V � γ � , and V � δ � as subquotients. We want to
get rid of V � α � and V � δ � . It is a standard fact about modules with a Weyl filtrations that
a Weyl module with maximal (with relation to the linkage ordering on X) highest weight
is a submodule and that the quotient has a Weyl filtration. It follows that a Weyl factor
with a minimal highest weight is a quotient and that the kernel of the projection has a Weyl
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filtration. Using this in turn yields modules R � T δ
χ V
�
χ ��� V � δ � and E � ker

�
R � V

�
α ���

and corresponding sequences

0 � V
�
δ ��� T δ

χ V
�
χ ��� R � 0

0 � E � R � V
�
α ��� 0

0 � V
�
γ ��� E � V

�
β �	� 0 


Note, that we have still to determine whether E is split. But Lemma 7.15 below immedi-
ately gives that the last short exact sequence is non-split: If split, Theorem 7.1 shows that
Hom

�
V
�
α ��� E � is a two-dimensional space, contradicting Lemma 7.15.

It is also worth noticing that in the proof of Lemma 7.15 we prove that Hom
�
V
�
α ��� R �

have dimension one. Therefore the middle short exact sequence is non-split. Also, in the
proof of Lemma 7.15 we show that Hom

�
V
�
α �� T δ

χ V
�
χ ��� is one-dimensionally. So the first

sequence is also non-split. We shall not use that the first two sequences are non-split.
LEMMA 7.15.

Exti
�
V
�
α �� E ��� � k i � 0 � 1

0 i � 2 

PROOF. By adjointness of the translation functors T δ

χ , T χ
δ and Lemma 2.7 we obtain

Exti
�
V
�
α �� T δ

χ V
�
χ ����� Exti

�
T χ

δ V
�
α �� V � χ ���

� Exti
�
V
�
χ �� V � χ ����� � k i � 0

0 i � 1 

From Proposition 7.13 we have a complete description of Exti � V � α ��� V � δ ��� . Now apply
Hom

�
V
�
α ������� to the first of the short exact sequences above. We conclude that

Exti
�
V
�
α ��� R ��� � k i � 0

0 i � 1 

From the third short exact sequence and Proposition 7.11 we get

k � Hom
�
V
�
α �� V � γ ����� Hom

�
V
�
α ��� E ��


Now apply Hom
�
V
�
α ������ on the second short exact sequences above; from the informa-

tion gathered so far we have

Exti
�
V
�
α �� E ��� � k i � 0 � 1

0 i � 2 
 �
Non-dominant special weights

In this section we turn to non-dominant special weights. Again we consider two sit-
uations simultaneously: The two cases are illustrated in Figure 12, which also defines the
notation.

LEMMA 7.16. �
V
�
δ � : L

�
β ����� 0 


PROOF. The idea is simply to check that the contributions from the weights β and α
cancel in Jantzens sum formula. We will prove the Lemma in Case I only. It is straightfor-
ward to adapt the proof to Case II.

In Case I our special weight is determined by χ � ρ � npω2. We ask the reader to
verify that

Wχ � � sα1 � sα2 ! np � sα2 " α1 ! 2np � sα2 " 2α1 ! np # 
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� �� �
� � � �

FIGURE 12. Case I (left) and case II (right). We denote the special point
around which the weights α, β, γ, and δ are arranged, by χ.

Consider Jantzens sumformula

∑
i � 1

chV � δ � i � ∑
α � R 	 ∑

0 
 mp 
�� δ  ρ � α ��� vp � mp � χ � sα �mp � δ � � (7.6)

It follows from Lemma 7.24 that � χ � sα �mp � : L � β ������ 0 implies that sα �mp � Wχ. Therefore
we get that�

∑
i � 1

chV � δ � i : chL � β ��� ������ ∑
α � R 	 ∑

0 
 mp 
�� δ  ρ � α � �
sα  mp � Wχ

vp � mp � χ � sα �mp � δ � : chL � β �"!$##% �
We can calculate the right hand side of this equation:

∑
α � R 	 ∑

0 
 mp 
�� δ  ρ � α � �
sα  mp � Wχ

vp � mp � χ � sα �mp � δ �
� vp � 2np � χ � sα1  α2 � 2np � δ �'& vp � np � χ � sα1  2α2 � np � δ �� vp � 2np � χ � α �(& vp � np � χ � β � � 0 ) (7.7)

since χ � α � �+* χ � β � and p �� 2. ,
LEMMA 7.17.

Exti � V � β �-) L � δ �.� � 0 for all i / 0 �
PROOF. Consider the sequence

0 0 L � δ �10 H0 � δ �20 H0 � δ �43 L � δ �10 0 �
By Observation 7.6 β is maximal among dominant weights linked to δ. Hence for all i / 0
and all factors L in H0 � δ �43 L � δ � we have Exti � V � β �-) L � � 0; this implies that for all i / 0
we have Exti � V � β �-) H0 � δ �43 L � δ �.� � 0. Since also Exti � V � β �-) H0 � δ �.� � 0 for all i / 0 by
Theorem 2.2, we have the desired vanishing. ,
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FIGURE 13. Top part of various tilting modules. Case I (right) and Case
II (left).

Note that this shows that Exti � V � β ��� L ��� 0 for all i � 0 and any factor L in V � δ � , by
Lemma 7.17 and Lemma 2.4. Therefore:

PROPOSITION 7.18.

Exti � V � β ��� V � δ ����� 0 for all i � 0 	
PROPOSITION 7.19. 


T � δ � : V � β ���� 0 	
PROOF. Since β is maximal among weights linked to δ we have by Theorem 2.14


T � δ � : V � β ���� dimExt1 � V � β ��� V � δ ����� 0 	 �

Pictures of tilting modules

Figure 13 features pictures of the Weyl factors around a top special point; if λ is
minimal in Wχ 	 λ the picture is omitted. The following list points to proofs in the modular
case:

1. row See (Andersen 2000, Proposition 5.2)
2. row Theorem 7.14
3. row Proposition 7.9
4. row Proposition 7.19.

Note that the corresponding results for regular weights can be obtained by translation
off the wall: It follows from (Andersen 1992, Proposition 5.6) that such a translation of an
indecomposable tilting module yields an indecomposable tilting modules.
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THEOREM 7.20. Let p � 5. Suppose that χ is a special weight. Let F denote a facet
so that χ � F. Let λ � F � X � . For each w � Wχ we have�

T � λ � : V � w � λ �	��
 �
Tq � λ � : Vq � w � λ �	�	�

Furthermore, these numbers are either one or zero.

PROOF. We refer to (Stroppel 1997), which contains all the quantum numbers. A
comparison yields the result. �

This chapter is motivated by Theorem 6.6. We are able to prove the corresponding
statement in type B2 now. We use the notation of Chapter 6; in particular T � z � is short for
T � z � λ � with λ denoting a fixed regular weight of C.

THEOREM 7.21. Type B2 and p � 5. Suppose that z � C � s0 � . Then

T � z � q 
 Tq � z ����
y � R

ayTq � y ���

PROOF. Induction in z. Note that

T � s0 � q 
 Tq � s0 ���
Assume that z � s0. By the properties of C � s0 � there is a unique simple s, so that

z � zs 
 z � . Let t denote the unique simple reflection so that z ��� z � t. It follows from
Lemma 4.17 that z � , z � t � C � s0 ����� e � . By induction

T � z � � q 
 Tq � z � ����
y � R

ayTq � y ���
Hence by Theorem 6.3 (i) and (iii) we get

ΘsT � z � � q 
 ΘsTq � z � �� �
y � R

ayΘsTq � y �


 Tq � z �� δTq � zst ����
y � R

a �yTq � y ��� (7.8)

Here δ is either 1 or 0. Since Θs � T � z ��� q ��
�� ΘsT � z ����� q we find that T � z � q is a summand in
(7.8).

Note that the geometry of the second cell (see Figure 14) in type B2 dictates that the
closure of the alcoves z � C and zst �C share a special weight. By Theorem 7.20�

T � z � : V � zst � �!
 �
Tq � z � : Vq � zst �	�	�

This means that Tq � zst � cannot appear as a summand of T � z � q. If it appeared,
�
T � z � : V � zst �	�

would be strictly larger than
�
Tq � z � : Vq � zst �	� . �

The linkage order around special points

In this section we prove a few results referred to earlier. The lemmata hold for root
systems of all types, and this is the reason they are gathered in this last section of the
chapter.

Let χ denote a special point, defined by the equations"
χ # ρ $ α %'&(
 nα p $

where nα, α � R � is a set of integers. We consider a set of alcoves; those that contains χ
in the closure of the alcove. Here two stands out

C � 
 � λ � E ) nα p * "
λ # ρ $ α %+&,*-� nα # 1 � p $ α � R � �

C . 
 � λ � E )/� nα 0 1 � p * "
λ # ρ $ α % &1* nα p $ α � R � �/�

Recall that the stabilizer of χ is denoted by Wχ.
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FIGURE 14. The cells in type B2

Let F denote a facet with χ � F. Choose λ � F � X . Since the closure of an alcove
contains exactly one point from each W -orbit, we define weights λ

�
, λ � by�

λ
�����

W 	 λ � C
� �

λ � ��� W 	 λ � C � 	
LEMMA 7.22.

Wχ 	 λ � � λ 
�� λ �� λ 
  λ
� �

REMARK 7.23. This statement appears in the proof of Corollary 3.2 in (Koppinen
1986).

PROOF. The proof is based on the following fact about alcoves (Jantzen 1987, II.6.11):�
C 
 � χ � C 
 ��� � w 	C � � w � Wχ

��� �
C 
 � C �  C 
  C

���
This basically proves the Lemma when λ is a regular weight; for regular weights λ1 � C1,
λ2 � C2 in the same W -orbit we have λ1  λ2 � C1  C2. For non-regular weights we have
only � .

Let w � Wχ. We will prove that λ �  w 	 λ  λ
�

. Let C be an alcove so that C contains
λ. Then

w 	C �
w 	C � χ � C �  w 	C  C

�
� λ �  w 	 λ  λ

�
Now assume that λ �  λ 
  λ

�
. We obtain a chain of inequalities

λ ��� si1 	 λ ��� si2 si1 	 λ ����������� λ 
 � sis ����� si1 	 λ ����������� sir ����� si1 	 λ � � λ
���

Since χ belongs to the closure of the facets containing λ � and λ
�

we get the same chain of
inequalities for χ

χ � si1 	 χ � si2 si1 	 χ ��������� sis ����� si1 	 χ ��������� sir ����� si1 	 χ � χ 	
In particular we have sis ����� si1 � Wχ, and we are done.  

Lemma 7.22 describes how weights around a special point are linked. One immediate
application is to Jantzens sumformula; it simplifies calculations if you are only interested
in the factors with highest weight around the top special weight.

In the following lemma λ, λ
�

, λ � , and χ are defined as above.
LEMMA 7.24. Let λ �  λ 
  λ

�
and assume that 0 ! mp !#" λ $ ρ

�
α % for some integer

m and α � R � .
If & χ ' sα (mp 	 λ ) : L ' λ 
 )+*-,� 0 then sα (mp � Wχ.
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PROOF. From the assumptions we get an w � W0 so that wsα �mp � λ � X
�

and so that

λ ��� λ ��� wsα �mp � λ � λ � λ
�

The first, second, and fourth � follows directly form the assumptions. The third � is neces-
sary; otherwise V 	 λ 
 has a simple factor with highest weight not linked to λ.

From Lemma 7.22 we have wsα �mp � λ � Wχ � λ. So w � 1
1 wsα �mp � λ � λ for some w1 � Wχ.

But Wλ � Wχ, hence w � 1
1 wsα �mp � Wχ. We see that wsα �mp � Wχ.

From χ � wsα �mp � χ we conclude that

χ � ρ � χ � ρ ��� 

w � 1 	 χ � ρ 
�� w � 1 	 χ � ρ 
��
� 

sα �mp 	 χ � ρ 
�� sα �mp 	 χ � ρ 
��
� 

χ � ρ � χ � ρ ��� 2 	  χ � ρ � α ����� mp 
  χ � ρ � α ����	  χ � ρ � α ����� mp 
 2  α � α �
Assuming that


χ � ρ � α � ��� mp �� 0, we get


χ � ρ � α � ��� mp � 2


χ � ρ � α �

α � α �
From this we conclude that mp � 0. But this contradicts our assumptions on mp. Hence
χ � ρ � α � ��� mp � 0, and we have sα �mp � χ � χ. �





CHAPTER 8

Schur-Weyl duality

Let N denote an n-dimensional vector space over k with group of linear automorphisms
denoted by GL � N � . The r-fold tensor product N � r has a natural structure of GL � N � -
modules. But N � r is also a representation of the symmetric group, with σ � Σr acting
by permutation

σ � v1 ��������� vr �
	 vσ1 ��������� vσr �
The actions of GL � N � and Σr commute. Therefore we obtain ring homomorphisms

k � Σr ���� EndGL � n � � N � r � (8.1)

k GL � N � ��� EndΣr � N � r � (8.2)

The first map is the subject of this chapter. It is an isomorphism when r � n, see (Carter
and Lusztig 1974); for larger values of n the map is no longer injective, but it remains
surjective, see (de Concini and Procesi 1976). In the first three sections of the chapter we
give an account of these facts.

The surjectivity of (8.1) allow us to consider EndGL � n � � N � r � -modules as representa-
tions of the symmetric group. By ring theory, there is one irreducible representation of
EndGL � n � � N � r � for each isomorphism class of indecomposable summands in N � r. The
dimension of the irreducible module is given by the multiplicity of the indecomposable
module in N � r.

Our interest in the centralizer property (8.1) derives from the fact that N � r is a tilting
module. Thus, every indecomposable summand is tilting. We want to know the multiplicity
of each indecomposable tilting module in N � r, as this multiplicity is equal to the dimen-
sion of an irreducible representation of the symmetric group. The multiplicity formula of
Theorem 6.12 allow us to count the multiplicities of some of the indecomposable tilting
modules, thus to calculate the dimension of some of the simple modules of the symmetric
group. This application of Theorem 6.12 is the subject of this chapter.

Notation and recollections
� We identify GL � N � with the group GL � n � of invertible n � n matrices with en-

tries from k, by choosing the natural basis of N 	 kn.� The set of diagonal matrices is a maximal torus with character group denoted
by X .� We let εi denote projection on the � i � i � ’th entry of a matrix; then ε1 � ����� � εn is a � -
basis of X . Let � � � ��� be the bilinear form that makes ε1 � ����� � εn an orthonormal
basis.� Inside X we have the root system R of type An � 1; the roots are � αi � j 	 εi �
ε j � i  	 j ! and we may choose � αi 	 αi � i " 1 � i 	 1 � ����� � n � 1 ! as the set of
simple roots.� For a root systems of type A the co-roots identify with the roots α #$	 α for all
roots. Let ωi 	 ε1 %&�����'% εi. Then � ωi � α # j � 	 δi � j, and ω1 � ����� � ωn are a second
� -basis of X ; these weights are called fundamental weights.� For each root α we have a root subgroup Uα. Then GL � n � is generated by
all root subgroups together with the maximal torus. Let B denote the Borel
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subgroup generated by the maximal torus and all root subgroups corresponding
to negative roots. Let U � denote the group generated by the root subgroups
corresponding to positive roots.� The finite Weyl group W0 is generated by s1 ��������� sn � 1, where si maps εi to εi � 1,
εi � 1 to εi, and fixes all ε j with j

�	 i � i 
 1. This gives an explicit isomorphism
to the symmetric group on n letters.� Let s0 denote the map λ �� λ �� λ � α �1 � n � α ��
 pα � . The affine Weyl group is the
group generated by s0 � s1 ��������� sn. This group usually acts on X by the dot action
w � λ 	 w � λ  ρ ��
 ρ, where ρ is the sum of all fundamentals weights ∑i ωi.� A weight n1ε1 
�������
 nnεn is called polynomial when all ni � 0. We let P � n �
denote the set of polynomial and dominant weights. Expressed in both bases of
X this set is

P � n � 	 � n1ε1 
�������
 nnεn � n1 � ����� nn � 0 �	 � m1ω1 
�������
 mnωn � mi � 0 for all i �
The degree of a polynomial weight n1ε1 
�������
 nnεn is the sum ∑i ni.

Let us verify that, as promised,
LEMMA 8.1. N  r is a tilting module.

PROOF. The weights of N are ε1 ��������� εn. These weights comprise one Weyl group
orbit. Since the set of weights of a module is preserved by the finite Weyl group, N is a
simple module with highest weight ε1. This also shows that N is the simple quotient of
the Weyl module Vn � ε1 � 	 Vn � ω1 � . But this Weyl module is simple because ω1 is minimal
among dominant weights. This proves that N is a simple Weyl module, hence tilting. Now
the lemma follows from Theorem 2.15. !

A partition of r is a sequence of non-negative non-increasing integers n1 � ����� nn � 0
with sum r. The following map defines a one-to-one correspondence between the set of
dominant polynomial weights of GL � n � and the set of partitions with at most n non-zero
parts:

n1ε1 
�������
 nnεn " � n1 � ����� nn � 0
Hence we may think of an element of P � n � as a partition as well as a polynomial dominant
weight. The same map defines a one-to-one correspondence between the set of dominant
polynomial GL � n � -weights of degree r and the set of partitions of r with at most n non-zero
parts.

Recall that n1 � ����� nn � 0 is p  singular if there is a sequence of p equal consecutive
parts ni

	 ����� 	 ni � p. A partition is p-regular if it is not p-singular.
Recall from (James 1978) the definition of a family of Σr-representations, the Specht-

modules Spλ parametrized by partitions of r. In prime characteristic these modules are not
necessarily simple (as they are in characteristic zero); but the Specht-modules parametrized
by p-regular partitions have simple head, which we denote by Dλ. Then � Dλ � λ a p-regular
partition of r � is a full set of non-isomorphic simple representations of the symmetric group
Σr.

Restriction from GL � n � to GL � n  1 �
The proof of surjectivity of (8.1) requires some knowledge about restrictions to GL � n 

1 � . This section provides the necessary tools. We hasten to add that these results really be-
long in the much broader context of restrictions to Levi subgroups, see (Donkin 1993).
Here, however, we do not need the full strength of of the results in (Donkin 1993).

We embed GL � n  1 � in GL � n � , and think of GL � n  1 � as sitting in the top left corner.#
GL � n  1 �

1 $&% GL � n � �
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To be more precise, we consider the subgroup of GL � n � generated by kerεn and the root
subgroups Uαi � j with i � j �� n. For a GL � n � -module M we write MGL 	 n 
 1 � for the restriction
to the subgroup GL � n � 1 � . The character group of kerεn is the free  -module with bases
ε1 ��������� εn 
 1 and ω1 ��������� ωn 
 1 (We should really write “ε1 restricted to kerεn” etc.).

NOTATION 8.2. In this chapter we will consider GL � n � -modules and GL � n � 1 � -
modules. To avoid confusion we denote the Weyl, induced, and tilting GL � n � -modules
with highest weight λ by Vn � λ � , H0

n � λ � , and Tn � λ � .
Let us consider the restriction of Vn � ωi � (i �� n) to GL � n � 1 � . Since ωi is minimal

among dominant weights, it follows that

chVn � ωi � � ∑�
wωi �w � W0 �

e � wωi ���

As εn restricts to the identity we find that

chVn � ωi � GL 	 n 
 1 � � chVn 
 1 � ωi ��� chVn 
 1 � ωi 
 1 ���
By minimality of the fundamental weights among dominant weights both modules on the
right hand side are simple. The GL � n � 1 � -weights ωi and ωi 
 1 does not belong to the
same orbit under the affine Weyl group; so the linkage principle ensures that

Vn � ωi � GL 	 n 
 1 ��� Vn 
 1 � ωi ��� Vn 
 1 � ωi 
 1 ���
We see that the restriction of the Weyl module Vn � ωi � has a filtration of Weyl modules. In
this section we will show that this holds for all Weyl modules of GL � n � .

THEOREM 8.3. Suppose that M is GL � n � -module with a Weyl filtration (resp. a good
filtration). Then the restriction MGL 	 n 
 1 � has a Weyl-filtration (resp. a good filtration). If
M is tilting, then MGL 	 n 
 1 � is tilting.

We will prove the statement for induced modules; the corresponding statement for
modules with a Weyl-filtration is then immediate as the dual module has a good filtration.
The statement about restriction of a tilting module is clear from the first part of the theorem.
Before we begin to prove the theorem, note the following lemma. Recall that H 0 � λ � �
IndG

B � kλ � and that induction is left exact; we let (as is usual) H i ����� denote the derived
functors.

LEMMA 8.4. Let M be a finite dimensional B-module. Assume that for each weight,
µ, of M we have H1

n � µ � � 0. Then H0
n � M � has a good filtration, and H1

n � M � � 0

PROOF. Induction in the dimension of M. �
PROOF OF THEOREM 8.3. It is enough to show that the modules H0

n � λ � , λ  X ! re-
stricts to a module with a good filtration by Corollary 2.9.

Consider now a dominant weight λ, so λ � n1ω1 �#"�"�"�� nnωn with each ni $ 0. The
case ∑i ni

� 0 is trivial. When ∑i ni
� 1, we have already proved the result in the beginning

of this section as the Weyl modules Vn � ωi � are simple, hence isomorphic to H0
n � ωi � . We

will proceed inductively, so choose a fundamental weight ω so that λ � ω is dominant.
From the surjective B-module homomorphism p : H0

n � ω �&%'� λ � ω �(��) ω �*� λ � ω �
we obtain a long exact sequence beginning with

0 ) H0
n � ker p �+) H0

n � H0
n � ω ��%*� λ � ω ���,) H0

n � λ �+) H1
n � ker p ���

The weights of ker p are all on the form λ � wω, wω �� ω. By Kempfs vanishing theorem
we have H1

n � λ � wω � � 0 as λ is dominant and - wω � α .0/1 32 0 �54 1 6 in type An 
 1. Thus, by
Lemma 8.4, we see that H1

n � ker p � � 0 and that H0
n � ker p � has a good filtration. We have

(using the tensor identity)

0 ) H0
n � ker p �+) H0

n � ω ��% H0
n � λ � ω �7) H0

n � λ �+) 0 � (8.3)

We see that each good factor H0
n � ν � of H0

n � ker p � has highest weight ν 8 λ; so by induction
each H0

n � ν � restricts to a module with a good filtration. Then Corollary 2.9 assures that
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H0
n � ker p � GL � n � 1 � has a good filtration. Also by induction, H0

n � λ � ω � GL � n � 1 � has a good
filtration. So H0

n � ω ��� H0
n � λ � ω � is a tensor product of two GL � n � 1 � -modules with good

filtrations, hence has a good filtration. By Corollary 2.9 we conclude that the restriction of
H0

n � λ � has a good filtration. �
REMARK 8.5. The Weyl factors in Vn � λ � GL � n � 1 � are known. See (Brundan, Kleshchev

and Suprunenko 1998, Proposition A.2) for an explicit description.
REMARK 8.6. The inductive argument in the proof of Theorem 8.3 may also be used

to give a reasonable short proof that H0 � λ �	� H0 � µ � has a good filtration. This approach
then yields a proof of the stability of the family of tilting modules under tensor products in
type A.

The functor Trr

Given a GL � n � -module M we note that

Mr 
 ∑
λ; deg � λ ��� r

Mλ

is a submodule as each root subgroup Uα preserve the degree. In fact Mr is a summand of
M as the sum of the weights spaces Mλ with deg � λ � 
 r are preserved by the affine Weyl
group; the linkage principle states that two simple modules may extend non-trivially only
when their highest weights are in the same orbit of the affine Weyl group. We say that M
is a GL � n � -module in (homogeneous) degree r when Mr 
 M. There are no homomor-
phisms between modules in unequal degree, since GL � n � -linear homomorphisms preserve
the degree of a module.

We will now define a functor from the category of GL � n � -modules to the category of
GL � n � 1 � -modules of degree r.

Trr M 
 � Mr � rGL � n � 1 ��
This a basically the functor Trnε1 used in (Donkin 1993). The functor is exact as it is the
composition of truncations to a summand and a restriction, and these are exact. We have,
as a first propery of Trr,

PROPOSITION 8.7. If M has a Weyl or a good filtration, then so does Trr M. Hence
Trr takes tilting modules to tilting modules.

PROOF. Summands in modules with a good filtration has a good filtration, see Corol-
lary 2.9. And Theorem 8.3 shows that the restriction of such a module to GL � n � 1 � has a
good filtration. �

Recall the definition of the set P � n � of polynomial dominant GL � n � -weights. We
consider P � n � 1 � as a subset of P � n � by n1ε1 ��������� nn � 1εn � 1 �� n1ε1 ��������� nn � 1εn � 1 �
0εn. Compare the following proposition with the example given in the beginning of the
previous section. The proof of the proposition is a simplified version of a proof sketched
in (Donkin 1983).

PROPOSITION 8.8. Let λ � P � n � have degree r.
(i) If λ � P � n � 1 � then Trr Vn � λ � 
 Vn � 1 � λ � ,

(ii) If λ �� P � n � 1 � then Trr Vn � λ � 
 0.

PROOF. Assume that λ � P � n � 1 � . We will prove that

chTrr Vn � λ � 
 chVn � 1 � λ � 
This will show (i) as Theorem 8.3 guarantees that Trr Vn � λ � has a Weyl filtration. The
equality of characters is established by checking that the dimension of each weight space
agree. The character of the Weyl module is independent of the characteristic of the ground
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field, and we may thus apply our characteristic zero methods. We use Kostants formula for
the dimension of a weight space:

dimVn � λ � µ � ∑
w � W0

��� 1 � l � w � p � µ � w � λ � (8.4)

Here p � ν � denotes the number of ways ν can be written as a sum of negative roots.
Let µ be a weight of Vn � λ � with µ � w � λ 	 0. We may assume that µ 
 P � n � 1 � and

that deg � µ � � r, otherwise the µ-weight spaces of Trr Vn � λ � and Vn � 1 � λ � are zero. Note
that a weight 	 0 has εn-coefficient � 0, and that a weight � 0 has εn-coefficient 	 0.
From µ � w � λ 	 0 and λ � w � λ � 0 we find that the εn-coefficient of w � λ is zero, since
λ  µ 
 P � n � 1 � . Since w � λ � ρ � � ρ has εn-coefficient equal to zero, it follows that w 
 W0
fixes εn. It follows that in (8.4) we need only sum over w that fixes εn.

We consider the weights of GL � n � 1 � as a subspace of GL � n � -weight space. On this
space the Weyl group of GL � n � 1 � may be identified with the subgroup of the GL � n � -Weyl
group, that fixes εn. Further, as µ � w � λ 
 P � n � 1 � we may just as well calculate p � µ � w � λ �
as a weight of GL � n � 1 � . We have

dimTrr Vn � λ � µ � ∑
w � W0 � GL � n ���

��� 1 � l � w � p � µ � w � λ �

� ∑
w � W0 � GL � n � 1 ��� ���

1 � l � w � p � µ � w � λ � � dimVn � 1 � λ � µ �

This shows (i). To see (ii) we note that λ �
 P � n � 1 � means that the εn-coefficient is � 0.
Then λ � µ shows that the εn-coefficient of µ is � 0. So we see that µ �
 P � n � 1 � . It follows
that the µ-weight space of Vn � λ � is killed by Trr. We are done. �

REMARK 8.9. There is a similar statement about induced modules; the proof for
Proposition 8.8 above is essentially a character calculation - and the characters of Vn � λ �
and H0

n � λ � are equal.
We prepare the proof of Theorem 8.11 below with a lemma.
LEMMA 8.10. Let λ, µ 
 P � r � . Then

Trr : HomGL � n � � Vn � λ �� H0
n � µ ��� ��� HomGL � n � 1 � � Trr Vn � λ �� Trr H0

n � µ ���
is surjective.

PROOF. We are done if Trr Vn � λ � or Trr H0
n � µ � is zero. So we may as well assume that

λ, µ 
 P � n � 1 � . Further HomGL � n � 1 � � Trr Vn � λ �� Trr H0
n � µ ��� � 0 if λ �� µ. So we need only

consider µ � λ. Now let f : Vn � λ � ��� H0
n � λ � be a non-zero GL � n � -homomorphism. Then

Trr f : Trr Vn � λ � ��� Trr H0
n � λ � is non-zero on the λ-weight spaces, which are preserved by

Trr. It follows that

Trr : HomGL � n � � Vn � λ �� H0
n � λ ��� ��� HomGL � n � 1 � � Vn � 1 � λ �� H0

n � 1 � λ ���
is nonzero. Since the last space is one dimensional, we are done. �

THEOREM 8.11. (Donkin 1993) Suppose that M has a Weyl filtration and that N has
a good filtration. Then

Trr : HomGL � n � � M  N � ��� HomGL � n � 1 � � Trr M  Trr N �
is surjective.

PROOF. The proof runs by induction in the number of subquotients in the filtrations of
M, N. Suppose first that M � Vn � λ � for some dominant λ. The result follows from Lemma
8.10 in case N is an induced module. So we may assume the existence of N � , N � � with good
filtrations, so that

0 � N � � N � N � � � 0
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is exact. By exactness of Trr we get

0 � Trr N
� � Trr N � Trr N

� � � 0

By Corollary 2.3 both Ext1GL � n �
�
Vn
�
λ ��� N � �	� 0 and Ext1GL � n 
 1 �

�
Trr Vn

�
λ ��� Trr N

� ��� 0. Ap-
plying HomGL � n �

�
Vn
�
λ ������ and HomGL � n 
 1 �

�
Trr Vn

�
λ ������ to the exact sequences above

(and omitting the subscripts on Hom) we get

0 � Hom
�
Vn
�
λ ��� N � � � Hom

�
Vn
�
λ ��� N � � Hom

�
Vn
�
λ ��� N � � � � 0� � �

0 � Hom
�
Trr Vn

�
λ ��� Trr N

� ��� Hom
�
Trr Vn

�
λ ��� Trr N ��� Hom

�
Trr Vn

�
λ ��� Trr N

� � ��� 0 �
The first and last vertical map are surjective by induction. It follows by the snake lemma

that the middle map is surjective.
We leave the general case to the reader. �
PROPOSITION 8.12. Let λ � P

�
n � have degree r.

(i) If λ � P
�
n � 1 � then Trr Tn

�
λ ��� Tn 
 1

�
λ � ,

(ii) If λ �� P
�
n � 1 � then Trr Tn

�
λ ��� 0.

PROOF. Let us consider (ii) first. A Weyl factor Vn
�
µ � in Tn

�
λ � has highest weight

µ � λ, so µ �� P
�
n � 1 � . From Proposition 8.8 we see that all Weyl factors in Tn

�
λ � get

killed by Trr.
Proposition 8.7 shows that Trr Tn

�
λ � is tilting. It is clear that this module has highest

weight λ if λ � P
�
n � 1 � . So we must show that it is indecomposable. It follows from

Theorem 8.11 that

EndGL � n � � Tn
�
λ ������� EndGL � n 
 1 � � Trr Tn

�
λ ���

is surjective. It is also a ring homomorphism: Recall that the functor Trr is composed of
truncation to degree r, restriction to GL

�
n � 1 � , and truncation to degree r. Each of these

induces ring homomorphisms; for a GL
�
n � -module M, EndGL � n �

�
M ����� EndGL � n �

�
Mr � is

a ring homomorphism because there is no homomorphisms between modules in unequal
degree. It remains to note that the surjective image of a local ring is local. �

Schur-Weyl duality, part one

We now return to the ring homomorphism (8.1) considered in the beginning of this
chapter. We shall prove the following theorem in the course of this section.

THEOREM 8.13. The ring homomorphism k � Σr � ��� EndGL � n �
�
N  r � is surjective for

all values of r and n.

We begin with a proposition, that proves one half of the theorem.

PROPOSITION 8.14. (Carter and Lusztig 1974) Assume r � n. Then

k � Σr �"! EndGL � n � � N  r �
PROOF. We fix a basis # e1 �������� en $ of N, so that ei has weight εi. The corresponding

basis of N  r is denoted by ei � ei1 %'&�&&�% eir . For t (� 0 we let hl
�
t � denote the diagonal

matrix with ε j
�
hl
�
t ���� 1 for j (� l, and εl

�
hl
�
t ���� t. Then hl

�
t � ei � t ) i:l * ei where � i : l � �

# # i j + i j � l $ . Therefore hl
�
t � determines the number of times a specific el appears in a basis

vector ei. This is needed in the proof.
We prove surjectivity first. Choose φ � EndGL � n �

�
N  r � , let i � �

1 �������� n � , and write
φ
�
ei ��� ∑j cjiej. Using GL

�
n � -linearity it follows that

∑
j

cjit ) i:l * ej � φ
�
hl
�
t � ei ��� hl

�
t � φ � ei ��� ∑

j
cjihl

�
t � ej � ∑

j
cjit ) j:l * ej
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Comparing the coefficients of ej, we see that cjit � i:l ��� cjit � j:l � . This holds for any t �� 0
and any l, and we conclude that cji �� 0 implies � i : l � � � j : l � for each l. This shows that�

j1 �
	�	
	
� jr � is a permutation of
�
1 ��	
	�	�� n � , which is denoted σ. We now have

φ
�
ei � � ∑

σ  Σr

cσi � iσei 	 (8.5)

It remains to prove that φ
�
ej � � ∑σ  Σr cσi � iσej for all basis vectors ej of N � r.

Choose a basis vector ej of N � r. We define an endomorphism, x on N by xe1
�

e j1 ��	
	�	�� xer
� e jr � xer � 1

� 0 �
	
	�	 (recall that r � n). Then x becomes an endomorphism
on N � r, and xei

� ej. Recall that the actions of GL
�
n � and Σr on N � r commutes; as

endomorphisms of N we have k GL
�
n � � End

�
N � so x commutes with any σ � kΣr as

endomorphisms of N � r. Then

φ
�
ej � � φ

�
xei � � x ∑

σ  Σn

cσi � iσei
� �

∑
σ  Σn

cσi � iσ � � ej ��	

This proves surjectivity. Injectivity follows at once: Assume 0 � ∑σ  Σn cσσ. Then in
particular

0 � ∑
σ  Σn

cσσe1 ���
�
�
� en 	
But � σ � e1 �����
�
� en ��� are non-equal basis vectors of N � r, and therefore each cσ

� 0. �
Let M denote an vector space of dimension n � 1 over k with automorphism group

GL
�
n � 1 � . We embed GL

�
n � 1 � in GL

�
n � as in the previous section. We apply the results

on restrictions to GL
�
n � 1 � to obtain the second half of the proof of Theorem 8.13.

PROPOSITION 8.15. We have a surjective ring homomorphism

EndGL � n �
�
N � r � ��� EndGL � n � 1 �

�
M � r �

PROOF. Considered as a GL
�
n � 1 � -module we have N  M ! k as they are tilting

modules with equal characters. It follows that the GL
�
n � 1 � -submodule in degree r of

N � r � �
M ! k � � r is M � r. Recall the functor Trr. We see that Trr N � r � M � r, so that Trr

provide us with the homomorphism in the proposition. Surjectivity follows from Theorem
8.11. It is a ring homomorphism by the proof of Proposition 8.12. �

PROOF OF THEOREM 8.13. This proof is merely a restatement of Propositions 8.14
and 8.15. If r � n the theorem follows immediately from the first, and if r " n then applying
the second a number of times gives a surjective homomorphism:

k � Σr �# EndGL � r �
�
R � r � ��� EndGL � n �

�
N � r �$	

Here R is the natural r-dimensional GL
�
r � -module. �

Schur-Weyl duality, part two

Recall that the partition n1 %&���
�'% nn is identified with the weight n1ε1 (����
�
( nnεn.
THEOREM 8.16. Let λ denote a p-regular partition of r. Then

dimDλ � �N � r : Tn
�
λ � �

.
We prepare the proof of Theorem 8.16 with the important Proposition 8.17. The

surjection kΣr ��� EndGL � n �
�
N � r � of Theorem 8.13 allow us to consider EndGL � n �

�
N � r � -

modules as representations of the symmetric group Σr. For each λ � X � the space
�
N � r � U )λ

(the U � -fixpoints of weight λ) is preserved by all GL
�
n � -linear maps; it is therefore a

EndGL � n �
�
N � r � -module. In general, it is not simple but we will produce a simple quotient

of this module. This is done in Proposition 8.17 below, that describes the structure of the
EndGL � n � � N � r � -modules

�
N � r � U )λ .
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The results in Proposition 8.17 below holds, however, in the more general context of
EndGL � n �

�
Q � -modules, where Q is an arbitrary tilting module. And we will, in fact, need

the results of Proposition 8.17 again in the next chapter, Chapter 9, recasted for another Q.
Therefore the following proposition is formulated in terms of EndGL � n �

�
Q � -modules with

Q an arbitrary tilting module. Also, we note that the proof of Proposition 8.17 below does
not depend on the group GL

�
n � ; but the applications of it, in this and the following chapter,

is limited to GL
�
n � . For the purpose of this chapter the reader is invited to mentally replace

each Q by N � r.
We follow the approach of (Mathieu 2000); see in particular Lemma 11.1 in loc.cit.
Let aλ denote the multiplicity �Q : Tn

�
λ ��� . For each dominant λ, define iλ and pλ as

the inclusion and projection of aλTn
�
λ � in Q.

Q �
	 µaµTn
�
µ � pλ // //

aλTn
�
λ �

?
_iλoo

In the proposition below we abuse notation and write pλ also for the restriction of pλ to
QU �

λ .

PROPOSITION 8.17.

(i) pλ : QU �
λ ��

�
aλTn

�
λ ��� U �λ is a surjective homomorphism of EndGL � n �

�
Q � -

modules.
(ii) Each non-zero element of aλTn

�
λ � λ generates QU �

λ as EndGL � n �
�
Q � -module.

(iii)
�
aλTn

�
λ ��� U �λ is a simple EndGL � n �

�
Q � -module of dimension aλ.

PROOF. Clearly the map in (i) is surjective . To show the first assertion it is enough to
see that the restriction of pλ is EndGL � n �

�
Q � -linear. The endomorphism σ � EndGL � n �

�
Q �

acts by restriction on
�
aλTn

�
λ ��� U �λ , that is as pλσiλ. To prove the proposition we must

show that pλσ
�
v ��� pλσiλ pλ

�
v � for each v � QU �

λ .
Recall that Hom

�
Vn
�
λ ��� Q � is isomorphic to QU �

λ and that the isomorphism is given
by evaluation in a fixed nonzero element of Vn

�
λ � λ. Any map in Hom

�
Vn
�
λ ��� Q � lifts to

Hom
�
Tn
�
λ ��� Q � , since Vn

�
λ � is a submodule of Tn

�
λ � , the quotient Tn

�
λ ��� Vn

�
λ � has a Weyl

filtration, and Q has a good filtration. It follows that each v � QU �
λ is in the image of some

F � Hom
�
Tn
�
λ ��� Q � .

This leads us to consider the map pλσF . Corresponding to the decomposition of Q we
have a decomposition of the identity, IdQ � ∑µ iµ pµ. Thus pλσF � ∑µ pλσiµ pµF. Consider
one term in the sum

Tn
�
λ � pµF

// aµTn
�
µ � pλσiµ

// aλTn
�
λ ��� (8.6)

If pλσ
�
v ���� 0 then the map (8.6) is nonzero on the λ-weight space of Tn

�
λ � and have

nonzero image in one of the summands of aλTn
�
λ � . The result is a map Tn

�
λ � �� Tn

�
λ �

which is nonzero on the λ-weight space, hence not nilpotent. An endomorphism of an in-
decomposable module is either nilpotent or an automorphism (Fittings lemma). It follows
that Tn

�
λ � is a summand of aµTn

�
µ � , hence that λ � µ. We have shown that

pλσF � pλσiλ pλF �
which implies EndGL � n �

�
Q � -linearity of the restriction of pλ to QU �

λ . We have proved (i).
We prove (ii). Choose a non-zero element tλ � T

�
λ � λ. Since T

�
λ � is a summand of Q

we may consider tλ as an element of Q. We claim that tλ generates QU �
λ as a EndGL � n �

�
Q � -

module. To prepare the argument, choose a generator vλ � V
�
λ � λ of the Weyl module with

highest weight λ. Since V
�
λ � is a submodule of T

�
λ � we may fix an embedding that maps

vλ to tλ.
So let x � QU �

λ be arbitrary. We construct a σ � EndGL � n �
�
Q � that maps tλ to x. This

will show that tλ generates QU �
λ as a EndGL � n �

�
Q � -module.
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Since x � QU �
λ there is a GL � n � -homomorphism V � λ ����� Q that maps vλ to x. This

map factorizes over T � λ � as Q has a good filtration (we already used this in the proof of
(i)). Hence there is a GL � n � -homomorphism T � λ ����� Q that maps tλ to x. The composite
of this map with the projection of GL � n � -modules Q �	� T � λ � is a GL � n � -endomorphism
of Q that maps tλ to x. This shows that, as claimed, tλ generates QU �

λ as a EndGL 
 n � � Q � -
module.

To finish the proof of (ii) we must show that any non-zero element v of aλTn � λ � gen-
erates QU �

λ as EndGL 
 n � � Q � -module. For such a v, there is a σ � EndGL 
 n � � aλTn � λ ����
EndGL 
 n � � Q � that maps v to tλ. Since tλ generates all of QU �

λ we are done.
Finally (iii) is an immediate consequence of (i) and (ii). �
PROOF OF THEOREM 8.16. As representations of the symmetric group, � N � r � U �λ is

isomorphic to Spλ. We will not prove this, but we refer to (Carter and Lusztig 1974) for the
result; it is, however, not difficult. When λ is a p-regular partition, Dλ is the unique simple
quotient of the Specht module Spλ. It follows from Proposition 8.17 that the dimension of
the simple head of Spλ is equal to the multiplicity of Tn � λ � in N � r. �

Restrictions from GL � n � to SL � n �
Schur-Weyl duality shows that the multiplicities of tilting GL � n � -modules determine

the dimension of simple representations of the symmetric group. On the other hand, The-
orem 6.12 allows us to calculate the multiplicities of some tilting SL � n � -modules. To
connect these powerful tools we consider in this section restrictions from GL � n � to SL � n � .

As a subgroup of GL � n � , SL � n � is generated by all root subgroups Uα, α � R. As
a maximal torus we choose the set of diagonal matrices of SL � n � . It is a subgroup of the
maximal torus of GL � n � . We denote the restriction of a GL � n � -weight λ by λ. Then ωn � 0
and ω1 ������� ωn � 1 spans the weight space of SL � n � .

Recall that the Weyl, induced, and tilting GL � n � -modules with highest weight λ are
written Vn � λ � , H0

n � λ � , and Tn � λ � . We use V � λ � , H0 � λ � , and T � λ � for Weyl, induced, and
tilting SL � n � -modules with highest weight λ.

LEMMA 8.18. Let λ be a dominant GL � n � -weight. Then Vn � λ � SLn � V � λ � .
PROOF. Note that Vn � λ � SL 
 n � has highest weight λ. This gives us a SL � n � -linear map

f : V � λ ���	� Vn � λ � SLn . Choose a non-zero v � Vn � λ � λ, then v � im f . As U  SL � n � and
Uv spans the vector space Vn � λ � , we see that f is surjective. By Weyls character formula
the modules have the same character. �

PROPOSITION 8.19. Let λ be a dominant GL � n � -weight. Then Tn � λ � SLn � T � λ � .
PROOF. From Lemma 8.18 it is clear that restriction from GL � n � to SL � n � takes

tilting modules to tilting modules. Indecomposability follows from EndGL 
 n � � Tn � λ ��� �
EndSL 
 n � � Tn � λ � SL 
 n � � . �

Second cell revisited

So far the weights in the second cell have been described as the dominant weights
in the lower closure of alcoves x �C with x in a explicitly described set of Weyl group
elements. We will need a “better” description of the weights in the second weight cell,
since we want to know the set of partitions for which we can calculate dimDλ. That is,
we must understand which GL � n � -weights restricts to SL � n � -weights of the first or second
cell. The outcome of this section is a description of the second cell as a the set of dominant
weights between certain reflection hyperplanes; see Theorem 8.22 below. We consider at
first SL � n � -weights and remark at the end of the section on GL � n � -weights.
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Let D � D1
�

D2, where

D1 ��� λ � X ��� 0 �
	 λ � ρ � α 1 � n � 1 � � p �
D2 ��� λ � X ��� 0 �
	 λ � ρ � α 2 � n � � p �

We show first that these sets have a property that is very similar to that of the second cell
expressed in Lemma 4.17.

LEMMA 8.20.
If x � 0 � D1 and x � xs, then xs � 0 � D1.
If x � 0 � D2 and x � xs, then xs � 0 � D2.
Consequently, xs � 0 � D when x � 0 � D and x � xs.

PROOF. We begin with some alcove geometry. Let nα, α � R � be the set of integers
so that

nα p ��	 x � 0 � ρ � α  � ��� nα � 1 � p
Then ∑α � R � � nα � equals the number of reflection hyperplanes in the affine Weyl group

that separates C and x �C; the equations of these hyperplanes are 	 λ � ρ � α  � � ip, where
1 � i � nα if nα is positive, and 0 � i � nα � 1 if nα is negative. This number of separating
hyperplanes equals the length of x, see (Humphreys 1990, section 4.4).

Now let s � S. There is exactly one reflection hyperplane that separates the alcoves
x �C and xs �C. Denote by H the hyperplane that separates x �C and xs �C. Let Px denote the
set of reflection hyperplanes that separates x �C and C. Then Pxs � Px � � H � if H separates
x �C and C, and Pxs � Px

� � H � if x �C and C are on the same sides of H: Any hyperplane
that separates x �C and C, but not xs �C and C (or vice versa) must necessarily separate x �C
and xs �C; so � H � is the difference between the sets Pxs and Px.

We will only prove the first claim of the lemma. Suppose x � 0 � D1 and xs � 0 �� D1. By
definition of D1, either

� p ��	 xs � 0 � ρ � α  � � 0 ��	 x � 0 � ρ � α  � � p for an α � R � , or

0 ��	 x � 0 � ρ � α  � � p ��	 xs � 0 � ρ � α 1 � n � 1 � � 2p

In either case, the number of reflection hyperplanes that separates the alcoves xs �C and C is
one higher than the number of hyperplanes that separates the alcoves x �C and C. We have
l � xs ��� l � x � and the lemma is proved. �

Let Σ � Σ1
� Σ2, where

Σ1 �
��� s0s1 ��� � sn � 1 � ms0s1 � ��� sk � m � 0 � 1 � k � n � 1 � � � e �
Σ2 �
��� s0sn � 1 ����� s1 � ms0sn � 1 ��� � sk � m � 0 � 1 � k � n � 1 � � � e �!�

Recall that the root system is of type An � 1. According to Table 1 on page 33 or Example
4.24 we have Σ � C � s0 � � � e � . This set of Weyl group elements are related to the set of
weights above by

PROPOSITION 8.21. x � 0 � D "$# x � Σ

PROOF. We will first show that D1 is stabilized by s0s1 % %�% sn � 1. We will use that X ,
the weight space of SL � n � , is a hyperplane in the real vector space spanned by ε1 � ����� εn. So
in the calculation below the basis coefficient ni need not be integers. However, the Weyl
group action on X is best expressed in this way.

s0s1 % %�% sn � 1 �&� n1ε1 �'� ��� nnεn �(� ρ
�)� nn � 1 � p � 2 � ε1 �*� n1 � n � ε2 �+� n2 �+� n � 1 � � ε3 � %�% % �+� nn � 2 � 3 � εn � 1 �*� nn � 1 � p � εn

Assume that λ � D1. Using that 0 �,	 λ � ρ � α n � 2 � and the equations above it is routine to
verify that

0 �
	 λ � ρ � α 1 � n � 1 � � p implies 0 ��	 s0s1 %�%�% sn � 1 � λ � ρ � α 1 � n � 1 � � p �
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and that s0s1 ����� sn � 1 maps dominant weights to dominant weights. This shows in particular
that

�
s0s1 ����� sn � 1 � m � 0 � D1. Then x � 0 � D1 for all x � Σ1 by Lemma 8.20. We may show

that x � 0 � D2 for all x � Σ2 by similar arguments.
We turn to the second claim; we will show that x � 0 � D1 only when x � Σ1. We do

this by induction in the length of x, the case l
�
x �	� 0 being trivial. Assuming l

�
x ��
 0 we

choose a simple reflection s so that xs � x. Then xs � 0 � D1 by Lemma 8.20 and xs � Σ1 by
induction. This argument show that, in fact, xt � x implies xt � Σ1; but Σ1 has only one
element of each length so s is the unique simple reflection so that xs � x. Then xs � e or
xs  R x as Lemma 4.15 shows. So x � C

�
s0 ����� e � � Σ1 � Σ2. If x � Σ2 then xs � Σ2, hence

xs � Σ1 � Σ2 ��� e � s0 � . Then x � � s0 � s0sn � 1 � . But x �� s0sn � 1 as s0sn � 1
� 0 �� D1 by a simple

calculation. So we see that x � Σ1 as claimed.
We may show x � 0 � D2 implies x � Σ2 similarly. �
THEOREM 8.22. c1 � c2 � D.

PROOF. Let y � µ be a dominant weight with µ � C and y � W 0 chosen so that y � µ
belongs to the lower closure of the alcove y �C.

Suppose first that y � µ � D. The regular weight y � 0 belongs D, as the defining equations
of D involves only sharp inequalities. Then Proposition 8.21 shows that y � Σ � C

�
s0 ���

� e � . All dominant weights in the lower closure of y �C then belongs c1 � c2 by Theorem
5.24.

Suppose that y � µ � c1 � c2. By definition of these weight cells, y � C
�
s0 ����� e � � Σ.

But then Proposition 8.21 states that y � 0 � D. As y � µ is in the lower closure of the alcove
y �C we get (say)

0 ��� y � µ � ρ � α �1  n � 1 ! � p �
But y � µ is dominant so the first inequality is sharp; we see that y � µ � D. We are done. �

We leave the proof of the corollary to the reader. Compare with Figure 5 on page 45.
COROLLARY 8.23. Let λ � n1ε1 � ����� � nnεn be a dominant polynomial weight of

GL
�
n � . Then λ � c1 � c2 if and only if either n1 " nn � 1 � p " n � 2 or n2 " nn � p " n � 2.

A dimension formula for some simple Σr-modules

THEOREM 8.24. Let p # n and let λ � �
n1 # ����� # nn # 0 � denote a partition with at

least three parts. We can compute dimDλ whenever$ n1 " nn � 1 � p " n � 2 or$ n2 " nn � p " n � 2.
Explicitly we have

dimDλ � %N & r
q : Tq

�
λ �(' �

PROOF. This proof is merely a recollection of results scattered around in this chapter
and the rest of the thesis. First of all by Theorem 8.16 we have

dimDλ �)%N & r : Tn
�
λ �(' �

For two weights λ, µ in a module of homogeneous degree r we have

λ � µ *,+ λ � µ �
It follows by Proposition 8.19 that the GL

�
n � -multiplicities of N & r is equal to the SL

�
n � -

multiplicities:
%N & r : Tn

�
λ �('��)%N & r : T

�
λ �-' �

The assumptions in the theorem on the weight λ amounts exactly to λ � D � c1 � c2.
Hence by Theorem 6.12

%N & r : T
�
λ �-'.�/%N & r

q : Tq
�
λ �-' �

�
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REMARK 8.25. The multiplicity of an indecomposable quantum tilting summand in a
tilting module with known character may be computed, since the characters of the inde-
composable quantum tilting modules are known by Theorem 5.7. Thus the right hand side
of the formula in Theorem 8.24 is known.

REMARK 8.26. Theorem 8.24 generalizes a result of Mathieu (1996), determining the
dimension of all simple Σr-representations corresponding to p-regular partitions satisfying
(with notation as in Theorem 8.24 above)

n1 � nn
� p � n � 1 �

REMARK 8.27. Jensen (1998) shows the multiplicity formula of Theorem 6.12 in type
A2; see Proposition 2.2.3 and the remark following it in loc.cit. The corresponding dimen-
sion result about simple Σr-modules parametrized by Young diagrams with three lines is
the subject of (Jensen and Mathieu n.d.).

Quantum Schur-Weyl duality

The symmetric group Σr comprise, with the set of transpositions ��� 1 � 2 �	�
���
���
� r � 1 � r �� ,
a Coxeter system. We form the Hecke algebra, H , of Σr over ��� v � v � 1� , as in the first section
of Chapter 4. We write Hq for the � -algebra obtained by specialization of ��� v � v � 1� via
v �� q ��� , q a primitive root of unity. The representation theory of Hq resembles that of
the symmetric group. In particular, the simple modules are indexed by p-regular partitions
of r. We denote the simple Hq-module corresponding to the p-regular partitions λ by Dλ

q .
The Hecke algebra Hq plays the role of the symmetric group in quantum Schur-Weyl

duality. Similarly, GL � n � is replaced by Uq ������� n �
� . The relations of Uq ������� n ��� may be
found in (Du 1995), where quantum ����� n � is taken up over ��� v � v � 1� . From (Du, Parshall
and Scott 1998, Theorem 6.3) we get the quantum analogue of the surjection (8.1): The
following map is a surjective ring homomorphism

Hq � � EndUq ���! n " � V # r �	� (8.7)

We identify the weightspaces of GL � n � and Uq ����� n � . As in the modular case, the tilting
multiplicities of TUq ���! n " � λ � in V # r determine the dimension of some of the simple modules
of Hq. By (Du 1995, Proposition 2.7) we may embed Uq $ Uq �&%'� n � into Uq �(�)� n � . Then, in
analogy with the modular case,

�V # r : TUq ���! n " � λ � � $ �V # r : Tq � λ � � � (8.8)

COROLLARY 8.28. Let p * n and let λ $ � n1 *,+
+�+-* nn * 0 � denote a partition with
at least three parts. Assume n1 � nn � 1

� p � n � 2 or n2 � nn
� p � n � 2. Then

dimDλ $ dimDλ
q � (8.9)

PROOF. We argue as follows, using the equations and theorems above.

dimDλ $ �V # r : Tn � λ � �
$ �V # r : T � λ � �
$ �V # r

q : Tq � λ � �
$ �V # r

q : TUq ���! n " � λ � �
$ dimDλ

q .

REMARK 8.29. The dimension of Dλ
q is known; see (Lascoux, Leclerc and Thibon

1996) and (Ariki 1996).
REMARK 8.30. Corollary 8.28 proves a special case of Conjecture 15.4 in (Mathieu

2000).



CHAPTER 9

Howe duality

As in Chapter 8 we let N denote a n-dimensional vector space over k with group of
linear automorphisms identified with GL � n � . Similarly we let M denote a m-dimensional
vector space over k with group of linear automorphisms identified with GL � m � . We strive
to keep the notation regarding GL � n � and GL � m � as in Chapter 8. To phrase the results
in this chapter properly we need to recall notation regarding weights and partitions from
Chapter 8, and we need to introduce Young diagrams.

A polynomial dominant weight n1ε1 ��������� nnεn of GL � n � corresponds to the partition
n1 �	�����
� nn � 0 with at most n parts. A partition is conveniently visualized by its Young
diagram; this diagram has n1 boxes on the first line, n2 boxes on the second, etc. The
transpose of this Young diagram has n1 boxes in the first column, n2 boxes in the second,
etc. We will denote the transpose of a Young diagram λ by λt . The size of this Young
diagram is by definition � λ �� ∑i ni and � λ ����� λt � .

DEFINITION 9.1. We will say that a dominant polynomial weight n1ε1 ��������� nnεn of
GL � n � is m-bounded if n1 � m (equivalently ni � m for all i). We write P � n � m-bounded for
the set of these weights.

Note that P � n � m-bounded is a finite set as the Young diagrams corresponding to its
weights are contained in a n � m rectangle. In fact, the elements in P � n � m-bounded corre-
spond to all Young diagrams contained in a n � m rectangle.

There is an operation on polynomial dominant weights that corresponds to transposi-
tion of a Young diagram, since these weights corresponds to Young diagrams. We describe
this operation now. Let λ � P � n � m-bounded, and express this weight in the basis of funda-
mental weights as

λ � ωi1 � ωi2 ��������� ωim � (9.1)

Here i1 � i2 � ����� im � 0. Note that the sequence is only non-increasing and that trailing
zeroes are allowed. By convention ω0 � 0. For this weight λ define

λt � i1ε1 � i2ε2 ��������� imεm

This operation on polynomial dominant weights corresponds exactly to transposition of the
corresponding Young diagram. We will abuse notation and write λ �� λt for this operation.
As transposition takes Young diagrams contained in a n � m rectangle to a Young diagram
contained in a m � n rectangle, it is clear that λ �� λt maps m-bounded polynomial dom-
inant weights of GL � n � to n-bounded polynomial dominant weights of GL � m � . In effect,
λ �� λt is a map P � n � m-bounded � � P � m � n-bounded.

As an example, consider λ � 5ε1 � 4ε2 � 2ε3 � ω3 � ω3 � ω2 � ω2 � ω1. Therefore
λt � 3ε1 � 3ε2 � 2ε3 � 2ε4 � ε5; considered as an operation on Young diagrams we have

�� �� t � �
81
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Simple GL � m � -modules

In Chapter 8 we used a module with a GL � n � -structure and a Σr-structure to con-
vey information from the representation theory of GL � n � to that of the symmetric group.
Here we follow the same strategy; we use a module with two structures, one of GL � n � -
modules and one of GL � m � -modules. Consider N as a trivial GL � m � -module and M as
a trivial GL � n � -module. Then the exterior product ��� N � M � is a GL � n � -module as well
as a GL � m � -module, and the actions of the groups commute. This induces natural ring
homomorphisms

k GL � m ����� EndGL 	 n 
 ���� N � M ��� (9.2)

k GL � n ����� EndGL 	 m 
 � � � N � M ��� (9.3)

THEOREM 9.2. (Donkin 1993, Proposition 3.11) The ring homomorphisms of (9.2)
and (9.3) are surjective.

Now a decomposition in indecomposables of the GL � n � -module ��� N � M � would
give us the dimensions of some simple GL � m � -modules. We begin with

LEMMA 9.3. ��� N � M � is a tilting GL � n � -module. Thus all summands in ��� N � M �
are tilting.

PROOF. We consider first � r N. The module N has weights ε1 ��������� εn each with mul-
tiplicity one. So � r N has weights εi1 ��������� εir with multiplicity one for each sequence
i1 � ����� � ir. It follows that � r N has highest weight ωr and that the weights of � r N com-
prise one orbit under the finite Weyl group (recall that this group acts as the symmetric
group on ε1 ��������� εn). So � r N is simple with highest weight ωr. The Weyl module V � ωr �
is simple, as ωr is a minimal dominant weight, and simple Weyl modules are tilting, so� r N � T � ωr � .

Each summand in � N ��� r � n � r N is tilting, so � N is tilting. As a GL � n � -module��� N � M ������� N � ����� � N � (m copies), since M is a trivial and m-dimensional GL � n � -
module. Note the identity ��� mN ��� �!� N ��" m; both modules are equal to the direct sum of
all � i1 N � ����� � � im N with 1 # i1 ��������� im # n. Then the lemma follows as tensor products
of tilting modules are tilting (Theorem 2.15). $

Recall Proposition 8.17. This proposition leads us to examine the GL � m � -module

� � � N � M ��� U %nλ ; here λ is a GL � n � -weight and we let U &n denote the subgroup of GL � n �
generated by the root subgroups corresponding to positive roots. Similarly, let U &m de-
note the subgroup of GL � m � generated by the root subgroups corresponding to positive
roots. Since the actions of GL � n � and GL � m � commute it is clear that the action of GL � m �
preserve GL � n � -weight spaces and all U &n -fixpoints.

PROPOSITION 9.4. (Mathieu 2000, Lemma 12.3) Suppose that λ ' P � n � m-bounded.
There is an isomorphism of GL � m � -modules,

Vm � λt ��(*) � � N � M ��+ U %n
λ
�

PROOF. The first part of the proof produces a remarkable element w in � � � N � M ��� U %nλ .
Besides being U &n -invariant and having GL � n � -weight λ, this element is U &m -invariant with
GL � m � -weight λt .

Recall from Chapter 8 that e1 ��������� en is a basis of N, chosen so that ei has GL � n � -
weight εi. Similarly, fix a basis f1 ��������� fn of M, chosen so that fi has GL � m � -weight εi.
Let us write bi j for the tensor product ei � f j to simplify notation. Clearly, bi j has GL � n � -
weight εi and GL � m � -weight ε j . Let us visualize the basis of N � M by arranging it in an
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n � m-matrix
b11 ����� b1m

...
...

bn1 ����� bnm

(9.4)

Then U �n and U �m acts by

ubi j � bi j � ∑
1 	 l 
 i

kbl j u � U �n ; (9.5)

ubi j � bi j � ∑
1 	 l 
 i

kbil u � U �m � (9.6)

Note that the basis vectors bl j appearing in (9.5) are above and in the same column as bi j.
Similarly the basis vectors bil appearing in (9.6) are to the left and in the same row as bi j.

Consider λ � P � n  m-bounded as a partition, so λ ��� λ1 ��������� λn � 0  . Then form
the tensor product w of the first λ1 basis vectors on row 1 of the matrix (9.4), the first λ2

basis vectors on row 2, etc. Equivalently (but perhaps easier to visualize), think of λ as a
Young diagram, and place λ in the top left corner of the matrix of basis vectors (9.4); in
the following figure this is illustrated for λ ��� 3 � 1  .

b11 b12 b13

b21

Let Z denote the set of basis vectors from the matrix (9.4) that is contained in the Young
diagram λ. Then w is simply the tensor product of all these basis vectors. So w is a tensor
product of � λ ��� ∑i λi unequal basis vectors, and w � � N � M ����λ � . It is clear that w has
GL � n  -weight λ and GL � m  -weight λt . Further, for a u � U �n we have by (9.5) that

uw � ∑
bil jl � Z

kbi1 j1 � ����� � bi �λ � j �λ � (9.7)

We consider the space � �λ � � N � M  . To describe a basis, order the basis vectors of
N � M in some way. Then � � λ � � N � M  has basis � bi1 j1 � ����� � bi �λ � j �λ � � bi1 j1  �����  bi �λ � j �λ �"! .
So a basis vector corresponds to a choice of � λ � unequal basis vectors from the matrix (9.4).

We claim that the image, w, of w in � �λ � � N � M  is U �n -invariant. This follows from
equation (9.7), as the image of bi1 j1 � ����� � bi �λ � j �λ � is zero unless bi1 j1 � ����� � bi �λ � j �λ � are pair-
wise distinct. A completely similar argumentation shows that w is invariant under the
action of U �m .

This gives us our element w � �#�$� N � M � U %nλ ; it is also U �m -invariant with GL � m  -
weight λt as claimed.

Next we claim that w � � aλTn � λ � U %nλ & �'�$� N � M � U %nλ . To see this we consider the
GL � m  -weight space � � λ � � N � M  λt , which contains w. A basis of � � λ � � N � M  λt is given
by all

bi1 j1 � ����� � bi �λ � j �λ � with ∑
1 	 l 	 �λ �

ε jl � λt � (9.8)

The condition ∑1 	 l 	 � λ � ε jl � λt amounts to demanding that # � jl � 1 ! of the vectors
bil jl are chosen from the first column of the matrix (9.4), that # � jl � 2 ! of the vectors bil jl
are chosen from the second column, etc. The GL � n  -weight of a basis vector from (9.8) is
∑1 	 l 	 � λ � εil . We get the largest possible GL � n  -weight by choosing the vectors bil jl from
the top of the each column. In particular, we find that λ is a maximal GL � n  -weight of the
GL � n  -module � �λ � � N � M  λt , and that w is a maximal weight vector.

Since each GL � m  -weight space � �λ � � N � M  µ is a GL � n  -summand of the GL � n  -
tilting module � � N � M  , we find that � �λ � � N � M  λt is GL � n  -tilting with highest weight
λ. It follows that w � � aλTn � λ � U %nλ as claimed.
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Recall that w is U �m -invariant of weight λt . So we get a GL
�
m � -linear homomorphism

Vm
�
λt ����� ���	�

N 
 M ��� U �n
λ . It is surjective as w  �

aλTn
�
λ ��� U �n

λ ; Proposition 8.17 states

that
� � �

N 
 M ��� U �n
λ is generated by w. So we find that

� � �
N 
 M ��� U �n

λ is a quotient of the
Weyl module Vm

�
λt � . We finish the proof of the proposition by calculating dimensions.

We have
� � �

N 
 M ��� U �n
λ � HomGL � n � � Vn

�
λ ��� � �

N 
 M ��� . As
� �

N 
 M � has a good
GL

�
n � -filtration, it follows from Corollary 2.3 that

dim ��� �
N 
 M ��� U �n

λ ��� � �
N 
 M � : H0

n
�
λ �����

We will now reduce to characteristic zero. The character of N 
 M is independent of
characteristic; this implies that also the character of

�	�
N 
 M � is independent of the char-

acteristic of the ground field. As the character of each induced module is the same in prime
characteristic and in characteristic zero, we find that � �	�

N 
 M � : H0
n
�
λ ��� is independent of

the characteristic of k. So the proposition follows from the characteristic zero equality:

dimVm
�
λt � ��� � �

N 
 M � : H0
n
�
λ ��� �

Recalling that Vm
�
λt � and H0

n
�
λ � are simple in characteristic zero, we recognize this as

Howe’s (1995) result over ! . "
The simple GL

�
m � -module with highest weight λ is denoted Lm

�
λ � .

THEOREM 9.5. Let λ  P
�
m � n-bounded denote a GL

�
m � -weight. Then

(i) dimLm
�
λ � ��� � �

N 
 M � : Tn
�
λt ���

(ii) dimLm
�
λ � ��� �$#λ # �

N 
 M � : Tn
�
λt ���

(iii) Suppose µ  P
�
m � n-bounded, µ � m1ε1 %'&�&�&�% mmεm. Then

dimLm
�
λ � µ ��� � m1 N 
 &�&�& 
 � mm N : Tn

�
λt ���

.

PROOF. Proposition 9.4 states that Vm
�
λ � is isomorphic to

� � �
N 
 M ��� U �n

λt as GL
�
m � -

modules; this module has a simple quotient of dimension � �$�
N 
 M � : Tn

�
λt ��� as Propo-

sition 8.17 assures. It is a well known fact that the Weyl module Vm
�
λ � has simple head

equal to Lm
�
λ � . This shows (i).

Recall from Chapter 8 that we write Mr for the largest submodule of homogeneous
degree r in a GL

�
n � -module M. Then note that all GL

�
n � - and all GL

�
m � -weights of� r � N 
 M � have degree r. Therefore

�(� �
N 
 M � � r

� � r � N 
 M �
Since Tn

�
λ � has homogeneous degree ) λ ) it follows that we must look for these tilting

modules in
� � �

N 
 M ��� # λ #
. This shows (ii).

Let Tm denote the maximal torus of GL
�
m � . As GL

�
n �+* Tm module� #λ # �

N 
 M � � � # λ # ���
N 
 f1 �-, &�&�& , �

N 
 fm ���
� .

∑i ki / # λ #
� � k1 N 
 f1 �0
 &�&�& 
 ��� km N 
 fm �

The summand
� � k1 N 
 f1 �1
 &�&�& 
 � � km N 
 fm � has Tm-weight ∑i kiεi. Recall from Propo-

sition 9.4 that as GL
�
m � -modules, Lm

�
λ � and

�
aλT

�
λ ��� U �n

λt are isomorphic. Therefore

dimLm
�
λ � µ ��� � m1 N 
 &�&�& 
 � mm N : Tn

�
λt ���

as claimed. "
Let λ be a n-bounded GL

�
m � -weight. Recall from the beginning of this chapter that

we write λ � ωi1 % ωi2 %2&�&�&�% ωin , with i1 3 i2 3 ����� in 3 0. Then the transpose of this
weight is λt � i1ε1 % i2ε2 %4&�&�&5% inεn. The size ) λ ) of λ is the sum ∑ j i j.
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THEOREM 9.6. Let λ � P � m � n-bounded with n satisfying p � n � 3, and define i1 ������ in � 0 by λ 	 ωi1 
 ωi2 
�������
 ωin . We can calculate dimLm � λ � whenever
i1  in � 1 � p  n 
 2 or
i2  in � p  n 
 2

Explicitly we have
dimLm � λ ��	�� ��� λ ��� N � M � q : Tq � λt ���

PROOF. From Theorem 9.5 we recall

dimLm � λ ��	�� � �λ ��� N � M � : Tn � λt ��� �
The tilting GL � n � -module ��� λ ��� N � M � is of homogeneous degree  λ  . We consider now
its restriction to SL � n � . For two weights λ, µ of equal degree we have

λ 	 µ !#" λ 	 µ �
Therefore we find that

� ���λ � � N � M � : Tn � λt ���$	�� ��� λ � � N � M � : T � λt ���&%
where the right hand side is the SL � n � -multiplicity. The assumptions ensures that the
GL � n � -weight λt belongs to c1 ' c2 (Corollary 8.23). Then by Theorem 6.12

� � � λ ��� N � M � : T � λt ���$	�� � � λ ��� N � M � q : Tq � λt ��� � (

REMARK 9.7. The right hand side is (in principle) known, by Theorem 5.7.
COROLLARY 9.8. Let λ 	 aωm 
 ωi1 
 ωi2 
�������
 ωin with a �*) , i1 � ����� in � 0, and

p � n � 3. Then chLm � λ � is computable if either
i1  in � 1 � p  n 
 2 or
i2  in � p  n 
 2.

PROOF. Let λ1 	 ωi1 
 ωi2 
�������
 ωin . Then

Lm � λ �,+ Lm � λ1 �-� deta %
where det is the one-dimensional representation of GL � m � with each g � GL � m � acting
as multiplication by det � g � . This allows us to reduce to λ 	 λ1. But then Theorem 9.5
(iii) shows that we can calculate the dimension of each weight space in Lm � λ � . We are
done.

(

EXAMPLE 9.9. Consider the weight λ 	 ω5 
 ω4 
 ω1. This weight satisfies the as-
sumptions in Corollary 9.8, so for all m � 5 and all p � 3 we may calculate the character
of Lm � λ � . Note that in this example p may be smaller than the Coxeter number of GL � m � .

REMARK 9.10. Based on a determination of �Q : T � λ ��� with λ � C, Mathieu and
Papadopoulo (1999) gave a character formula for Lm � λ � with λ satisfying (in our notation)

i1  in � p  n 
 1

Corollary 9.8 allows us to calculate the characters of Lm � λ � with λ in a larger set of
weights.

REMARK 9.11. Let λ 	 ωi1 
 ωi2 
.�����&
 ωin with i1 � ����� in � 0 and p � n � 3. Assume
that i1  in � 1 � p  n 
 2 or i2  in � p  n 
 2.

(i) The character of Lm � λ � is independent of m, provided that m � i1.
(ii) Note that λ satisfy the same assumptions for all primes p /10 p. Therefore

the character of Lm � λ � may be calculated in any characteristic larger than p.
However, the character is not independent of p (compare with (Mathieu and
Papadopoulo 1999)).
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(iii) Define the following subset of GL � m � -weights:

X1 ��� µ � X ���
	 µ � α ���� p for all simple roots α ���
Then λ � X1 unless λ � pωi for some i � m.

Suppose that λ0 ��������� λr satisfy the assumptions of λ and that each λ j �� pωi,
i � m. By Steinbergs tensor product theorem, we may calculate the character of
Lm � ∑ j p jλ j � .

EXAMPLE 9.12. Consider the GL � m � -weight bωi � ω j with m � i � j and assume
first that 0 � b � p. Then bωi � ω j fulfills the conditions of Corollary 9.8. So we may
calculate the character of Lm � bωi � ω j � .

Assume now only b � 0. We consider the p-adic expansion of b,

b � ∑
r � l � 0

bl pl 0 � bl � p � 1 �
Note that each blωi satisfies the assumptions of Corollary 9.8. By Steinbergs tensor product
theorem we get

chLm � bωi � ω j � � chLm � b0ωi � ω j � chLm � b1ωi ��� Fr �� � � chLm � brωi ��� Frr �
Here M � Fr � denotes the vector space M with the action of g � GL � m � twisted by the Frobe-
nius map. Since we are able to calculate the character of each term in the product on the
right hand side, we can calculate chLm � bωi � ω j � for all b � 0 and for all p � 3.



CHAPTER 10

Modular weight cells

We ask the reader to review the last section of Chapter 5, which describes weight cells.
Recall that two dominant weights belong to the same weight cell when the corresponding
quantum tilting modules generates the same tensor ideal. The concept of a weight cell
has an analogue in the theory of modular tilting modules. In this chapter we consider
these modular weight cells and explore the connections between weight cells and modular
weight cells. Let T denote the full subcategory of modular tilting modules. We assume
p � h throughout.

DEFINITION 10.1. (Andersen 2001a) Write µ � T λ if � T � λ ��� Q : T � µ ���
	� 0 for some
modular tilting module Q.

REMARK 10.2. Note that � T is a preorder, since � T � λ ��� Q1 : T � µ ��
	� 0 and � T � ν ���
Q2 : T � λ ����	� 0 gives � T � ν ��� Q1 � Q2 : T � µ ���	� 0.

DEFINITION 10.3. Let � T be the equivalence relation defined by � T . The equiva-
lence classes of � T are called modular weight cells. The preorder � T induces a partial
order (also denoted � T ) on the set of weight cells in the natural way.

The following lemma is obvious from the definition. It merely states the connection
to tensor ideals of modular tilting modules.

LEMMA 10.4. If µ � T λ then T � µ � belongs to all tensor ideals that contain T � λ � . The
set � T � µ ��� µ � T λ � spans a tensor ideal in T .

REMARK 10.5.
(i) If µ � λ � ν and all three weight are dominant then µ � T λ as weight consider-

ations shows that T � µ � is a summand of T � λ ��� T � ν � .
(ii) if T � µ � is a summand in a translation or a wallcrossing of T � λ � then µ � T λ.

Recall that we write Ǎ for the lower closure of an alcove A.
LEMMA 10.6. Let c denote a modular weight cell. Let x � W 0.
Then x � 0 belongs to c if and only if ˇx �C � X � is contained in c.

PROOF. Let λ � C so that x � λ � ˇx �C � X � . For such a weight we have (see (Andersen
2000, Proposition 5.2))

T λ
0 T � x � 0 ��� T � x � λ �����Wλ �

T 0
λ T � x � λ ��� T � x � 0 �

So we see that x � λ � T x � 0 (by the first equation and Remark 10.5 (ii) above) and that
x � 0 � T x � λ.  

Lemma 10.6 shows that a modular weight cell is a union of all dominant weights in
the lower closure of a set of alcoves. As Remark 5.23 (iii) shows, this is also the case for
weight cells.

LEMMA 10.7. The first weight cell c1 is a modular weight cell. It is maximal among
modular weight cells.

PROOF. The weight cell c1 is equal to C, the weights in the first alcove. Lemma 10.6
shows that c1 is contained in a modular weight cell.

87
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Let λ � C. It is well known that X
���

C is a tensor ideal, see (Mathieu 1996). If T � λ � is
a summand in a tensor product T � µ ��� Q, we see that µ � C. It follows that λ � T µ implies
that µ � C. This shows both assertions in the lemma. 	

Next we consider the second cell. Note that we do not impose restriction on the type
of root system here.

LEMMA 10.8. Let λ � c2 and assume that λ � T µ 
� c1. Then µ � c2.

PROOF. We first consider the quantization of T � µ � . By Lemma 6.4, there are no
summands with highest weight in the first weight cell c1. We have

T � µ � q ��
ν �� c1

aνµTq � ν �
The assumption that λ � T µ give us a modular tilting module M so that

0 ���� T � µ ��� M : T � λ ����� � � T � µ ��� M � q : Tq � λ �����
For some ν with aνµ �� 0 we have λ � Tq ν. As λ belongs to the second largest weight cell
and as ν 
� c1 we have ν � Tq λ. It follows that ν � Tq λ, hence that ν � c2. By Theorem
6.10 we see that µ 
� c2 implies that ν 
� c2. So we see that µ � c2. 	

LEMMA 10.9. Assume type An � 2, B2, Dn, E6, E7, E8 or G2.
Let λ � c2 and assume that λ � Tq µ. Then λ � T µ.

PROOF. By assumption there is a quantum tilting module Q so that � Tq � µ ��� Q :
Tq � λ ������ 0. Choose a modular tilting module M so that Q is a summand in Mq. Then

� Tq � µ ��� Q : Tq � λ ����� � � T � µ ��� M � q : Tq � λ ���
� � T � µ ��� M : T � λ ���

The last equality follows from Theorem 6.6. The lemma is proved. 	
THEOREM 10.10. We assume p � h.

(i) The second weight cell c2 is a union of modular weight cells.
(ii) Assume type An � 2, B2, Dn, E6, E7, E8 or G2. The second weight cell c2 is a

modular weight cell.
The proof of (i) follows from Lemma 10.8 . The proof of (ii) follows from Lemma

10.9 .
The term modular weight cell was first used in (Andersen 2001a). This paper contains

among other things a detailed study of the smallest weight cell cSt. It is shown that this
weight cell decomposes in infinitely many modular weight cell. Further all modular weight
cells in cSt are described in terms of the modular weight cells in X

���
cSt (when p � 2h  2).

In type A2 this leads to a complete description of the modular weight cells, since X
���

cSt �
c1 ! c2.
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