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The studied inventory systemwith continuous review has an easily computed
optimal (S�1; S) policy when unsatis�ed demands are backlogged. We assume
that unsatis�ed demands are lost and then it is also easy to compute the best
(S � 1; S) policy. But, as demonstrated by Roger Hill at the ISIR Symposium
in 1996, this pure base-stock policy can never be optimal if S � 2.

Our focus is on periodic review. We use Erlang's loss formula to derive ap-
proximate expressions for the stockout probability and the average cost. These
expressions are used to approximate the average cost and to compute a good
base-stock. We formulate and implement a Markov decision model to �nd the
optimal replenishment policy. The model is solved by a policy-iteration algo-
rithm. Because the optimal policy is often rather complicated, we introduce
modi�ed base-stock policies. They are speci�ed by a pair (S; t) where S is the
base-stock and t is a lower bound for the number of review periods between
review epochs in which placing a replenishment order is permitted. A simple
one has S equal to the base-stock computed from Erlang's formula and �xes t
as the largest integer which is less than or equal to the ratio of the number of
review periods per delivery period and S. Our numerical examples show that
the simple modi�ed base-stock policy provides most of the cost reduction which
can be obtained by replacing the best pure base-stock policy by the optimal
policy.
Key words: Periodic review, Lost sales, Base-stock, Policy iteration, Simple
policy.
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1 Introduction

We consider a single-item inventory system with Poisson demand, negligible
set-up costs and constant lead times. The system with continuous review has
an easily computed optimal pure base-stock policy when unsatis�ed demands
are backlogged [5]. A pure base-stock policy places a replenishment order to
restore the base-stock S whenever the inventory position (stock on hand + on
order � backordered) is below S. Hence the reorder level is S�1 and the policy
is commonly referred to as an (S � 1; S) policy.

We assume that unsatis�ed demands are lost and, by applying Erlang's loss
formula, it is easy to compute the best (S � 1; S) policy for the system with
continuous review [6]. But, as demonstrated by Hill [3], this pure base-stock
policy can never be optimal if S � 2. We present a model for �nding the optimal
replenishment policy. Because the optimal policy is often rather complicated,
we introduce easily implemented modi�ed base-stock policies. The suggested
ones provide most of the cost reduction which can be obtained by replacing
the best pure base-stock policy by the optimal policy. Moreover, one of the
suggested policies is easy to compute.

Our model assumes that replenishment orders can be placed only at equidis-
tant review epochs and that the constant lead time for one replenishment order
is an integer number m of review periods where m > 1. (The easy case with
m = 1 is excluded in order to facilitate the exposition in Section 3.) The de-
mand D in each review period has a Poisson distribution with parameter �=m,
where � denotes the demand rate per delivery period. We choose the cost per
delivery period of holding one unit in stock as the monetary unit. The shortage
cost for each lost demand is p. It equals the price at which the item is sold +
the penalty cost incurred when a demand is lost � the variable ordering cost
per unit. We assume that order set-up costs are negligible and can be ignored.
Therefore, the replenishment orders considered are for one unit. The objective
is to minimize the long-run average cost AC per delivery period which is our
time unit.

Assuming periodic review implies that Erlang's loss formula cannot be ap-
plied directly to determine the best (S � 1; S) policy as for the system with
continuous review. But this formula can be used to derive an approximate ex-
pression for AC as a function of the base-stock S. A good S-value is easily
computed from this expression. The approximate expression is of interest itself
because regularly scheduled shipments, disposed by periodic rather than con-
tinuous review, are common practice in order to achieve an e�cient utilization
of transportation resources and/or to procure transportation services at least
cost [2]. In addition to these reasons for assuming periodic review there are
two others. The assumption enables us to optimize the model because it is
a tractable Markov decision process which can be solved by a policy-iteration
algorithm. Moreover, the assumption makes the modi�ed base-stock policies
tractable.

The paper is organized as follows. Section 2 describes and illustrates with
numerical examples how a pure base-stock policy is evaluated by Erlang's loss
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formula with three di�erent speci�cations of the tra�c intensity. Section 3
introduces useful concepts to describe and evaluate an arbitrary replenishment
policy. Our policy-iteration algorithm for computing the optimal replenishment
policy is presented and illustrated in Section 4. Section 5 introduces modi�ed
base-stock policies. Numerical examples illustrate two such policies: a simple
one and the best one. Section 6 has concluding remarks.

2 Approximate evaluations of a pure base-stock

policy

Recall that the constant delivery period is our time unit and that our monetary
unit is the cost per unit time of holding one unit in stock. The long-run average
cost per unit time for an (S � 1; S) policy is

AC(S) = p � � �B(S) +AS(S) (1)

where B(S) is the long-run fraction of demand lost (hereafter referred to as the
`stockout probability') and AS(S) is the average stock.

For the system with continuous review, the stockout probability is speci�ed
by Erlang's loss formula

B�(S) =
�S

S!PS
i=0

�i

i!

(2)

and the average stock is

AS�(S) = S � (1�B�(S)) � �: (3)

Here the tra�c intensity � equals �. These results hold for any distribu-
tion of the delivery times (when they are independent) because the number
of single-unit orders outstanding is the same as the number of busy servers in
an M=G=S=S queue [6]. For this queue, the equilibrium distribution is inde-
pendent of the form of the distribution for the service times (which equal the
delivery times).

We shall use the above results to get approximate expressions for the sys-
tem with periodic review. Periodic review implies that there is a delay from
the epoch in which a demand is satis�ed to the review epoch in which the sys-
tem places the replenishment order triggered by this demand. Note that this
delay refers to satis�ed demand only. Therefore, we cannot conclude (as for
the backlogging system considered by Axs�ater [1]) that the delay is uniformly
distributed between 0 and 1=m, and it is not easy to compute the average delay
exactly. Furthermore, because the delays for consecutive satis�ed demands are
not independent, we cannot conclude from the above insensitivity result that
the equilibrium distribution for the number of single-unit orders outstanding
does not depend on how the delay is distributed. But we �nd it interesting
to investigate how close the stockout probability and the average stock are ap-
proximated by Eqs. 2 and 3 with the following three speci�cations of the tra�c

3



m=2 m=5 m=10
S = 1 a 33.3333% 0.6667 33.3333% 0.6667 33.3333% 0.6667

b 38.4615% 0.6154 35.4839% 0.6452 34.4262% 0.6557
c 38.6579% 0.6134 35.5185% 0.6448 34.4352% 0.6556
e 38.6579% 0.6134 35.5185% 0.6448 34.4352% 0.6556

S = 2 a 7.6923% 1.5385 7.6923% 1.5385 7.6923% 1.5385
b 10.7296% 1.4421 8.8905% 1.4989 8.2879% 1.5185
c 10.8585% 1.4382 8.9107% 1.4983 8.2929% 1.5183
e 10.8877% 1.4413 8.9172% 1.4988 8.2948% 1.5185

S = 3 a 1.2658% 2.5063 1.2658% 2.5063 1.2658% 2.5063
b 2.1865% 2.3887 1.6038% 2.4588 1.4297% 2.4825
c 2.2301% 2.3839 1.6098% 2.4580 1.4311% 2.4823
e 2.2703% 2.3886 1.6167% 2.4588 1.4329% 2.4825

S = 4 a 0.1580% 3.5008 0.1580% 3.5008 0.1580% 3.5008
b 0.3405% 3.3771 0.2200% 3.4512 0.1873% 3.4760
c 0.3501% 3.3720 0.2212% 3.4504 0.1875% 3.4758
e 0.3666% 3.3772 0.2236% 3.4512 0.1883% 3.4760

Table 1: Stockout probabilities (in %) and average stocks computed approxi-
mately (a, b and c) and exactly (e) for various base-stock policies when � = 0:5.

intensity �.
a. Neglecting the delays
The �rst speci�cation neglects the delays and sets � equal to �.
b. Setting the average delay equal to 1

2m

The second speci�cation assumes that the average delay is 1
2m

and sets � equal
to � � (1 + 1

2m
).

c. Setting the average delay equal to 1
m�(1�e��=m)

� 1
�

The third speci�cation is exact for S = 1 because it restricts attention to de-
mands which occur as the �rst in a review period. The average delay for such
demands is equal to the expected delay for the �rst demand occuring after an
arbitrary review epoch. Because the time from any epoch to the epoch in which
the next demand occurs is exponential with rate �, we conclude that the desired
average delay is

P
1

i=1

R i=m
(i�1)=m(i=m� t) � �e��tdt

=
P
1

i=1 e
���(i�1)=m �

R 1=m
0 (1=m � � ) � �e���d�

=
1

m
�

1

�
�(1�e��=m)

1�e��=m

= 1
m�(1�e��=m)

� 1
�
:

The third speci�cation sets � equal to � multiplied by 1 plus this expression for
the average delay.

For various values of � and S, Tables 1, 2 and 3 illustrate the results ob-
tained by the three speci�cations of � compared to the exact values (e) found as
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m=2 m=5 m=10
S = 1 a 50.0000% 0.5000 50.0000% 0.5000 50.0000% 0.5000

b 55.5556% 0.4444 52.3810% 0.4762 51.2195% 0.4878
c 55.9616% 0.4404 52.4564% 0.4754 51.2393% 0.4876
e 55.9616% 0.4404 52.4564% 0.4754 51.2393% 0.4876

S = 2 a 20.0000% 1.2000 20.0000% 1.2000 20.0000% 1.2000
b 25.7732% 1.0722 22.3660% 1.1460 21.1917% 1.1725
c 26.2300% 1.0626 22.4436% 1.1443 21.2115% 1.1721
e 26.2019% 1.0690 22.4413% 1.1455 21.2111% 1.1724

S = 3 a 6.2500% 2.0625 6.2500% 2.0625 6.2500% 2.0625
b 9.6974% 1.8712 7.5793% 1.9834 6.9050% 2.0225
c 9.9996% 1.8563 7.6249% 1.9808 6.9160% 2.0218
e 10.0511% 1.8709 7.6375% 1.9833 6.9196% 2.0225

S = 4 a 1.5385% 3.0154 1.5385% 3.0154 1.5385% 3.0154
b 2.9413% 2.7868 2.0418% 2.9225 1.7803% 2.9687
c 3.0789% 2.7684 2.0599% 2.9194 1.7845% 2.9679
e 3.1493% 2.7874 2.0728% 2.9226 1.7878% 2.9687

Table 2: Stockout probabilities (in %) and average stocks computed approxi-
mately (a, b and c) and exactly (e) for various base-stock policies when � = 1:0.

m=2 m=5 m=10
S = 1 a 60.0000% 0.4000 60.0000% 0.4000 60.0000% 0.4000

b 65.2174% 0.3478 62.2641% 0.3774 61.1651% 0.3883
c 65.7703% 0.3423 62.3705% 0.3763 61.1933% 0.3881
e 65.7703% 0.3423 62.3705% 0.3763 61.1933% 0.3881

S = 2 a 31.0345% 0.9655 31.0345% 0.9655 31.0345% 0.9655
b 37.9427% 0.8364 33.9358% 0.9099 32.5088% 0.9370
c 38.7206% 0.8226 34.0757% 0.9073 32.5450% 0.9363
e 38.6289% 0.8307 34.0607% 0.9089 32.5414% 0.9368

S = 3 a 13.4328% 1.7015 13.4328% 1.7015 13.4328% 1.7015
b 19.1685% 1.4844 15.7289% 1.6095 14.5789% 1.6546
c 19.8716% 1.4604 15.8438% 1.6051 14.6076% 1.6535
e 19.8449% 1.4831 15.8462% 1.6093 14.6089% 1.6546

S = 4 a 4.7957% 2.5719 4.7957% 2.5719 4.7957% 2.5719
b 8.2445% 2.2796 6.0929% 2.4505 5.4288% 2.5105
c 8.7138% 2.2460 6.1608% 2.4446 5.4450% 2.5090
e 8.7784% 2.2816 6.1790% 2.4509 5.4502% 2.5106

Table 3: Stockout probabilities (in %) and average stocks computed approxi-
mately (a, b and c) and exactly (e) for various base-stock policies when � = 1:5.
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m=2 m=5 m=10
a -56.910% 16.858% -29.359% 6.300% -16.115% 3.075%

(0.5,4) (1.5,1) (0.5,4) (1.5, 1) (0.5,4) (1.5,1)
b -7.133% 1.615% -1.609% 0.283% -0.550% 0.073%

(0.5,4) (1.5,1) (0.5,4) (1.5,1) (0.5,4) (1.5,1)
c -4.499% -1.562% -1.094% -0.261% -0.413% -0.067%

(0.5,4) (1.5,4) (0.5,4) (1.5,3) (0.5,4) (1.5,3)

Note. Each pair in parenthesis speci�es the values of � and S for which the
di�erence in the line above is computed.

Table 4: The largest positive or negative di�erences (in %) between the ap-
proximate and exact values of the stockout probabilities and the average stocks
computed in Tables 1, 2 and 3.

described in the next section. We have computed how much the approximate
values di�er (in %) from their exact values for each of the three speci�cations
and for each considered m-value. Table 4 shows the largest positive or negative
percentage computed (�rst line) and the pair (�; S) for which it is computed
(second line). We are not able to explain why the largest di�erences occur for
the pairs reported. But we see that the speci�cations b and c perform reason-
able well (especially for m = 5 and m = 10) whereas the a-speci�cation has a
poor performance. For modest S-values, our favorite is the c-speci�cation. We
use it in Section 5 to specify the simple modi�ed base-stock policy.

Let AC�(S) denote the approximate average cost computed from Eq. 1 when
B(S) and AS(S) are speci�ed by Eqs. 2 and 3 with the tra�c intensity �. Note
that

AC�(S + 1) �AC�(S) = (p+ 1) � � ��B�(S) + 1

where �B�(S) = B�(S + 1) � B�(S) is negative and strictly increasing in S.
Therefore, the largest S which minimizes AC�(S) is

S� = min

(
S

������B�(S) > �
1

(p+ 1) � �

)
: (4)

3 Exact evaluation of a replenishment policy

We consider an arbitrary stationary replenishment policy for which the inven-
tory position is at most S. A Markov chain is used to evaluate this policy
exactly. The concepts introduced in this section to describe policy evaluation
are useful in Sections 4 and 5 to describe policy improvement and modi�ed
base-stock policies, respectively.

The Markov chain focuses on the inventory system at the review epochs. The
state of the system is described by a vector x with components xj; j = 0; 1; ::; S.
The component x0 speci�es the stock on hand. The other components are either
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positive or zero and they are ordered so that

m � xj � xj+1 � 0; j = 1; 2; ::; S � 1: (5)

A positive component xj identi�es an outstanding order for one unit and spec-
i�es that xj � 1 review periods are gone since this order was placed. Hence
maxfjjxj > 0g is the number of single-unit orders outstanding. If x1 = 0 then
this number is 0. The number of orders to be delivered at the end of the com-
ing review period is 0 if x1 < m and maxfjjxj = mg else. Our motivation for
letting xj be one plus the number of review periods elapsed since the jth order
outstanding was placed is that then we can distinguish between when the jth
order has just been placed and when less than j orders are outstanding.

The inventory position for the state described by the vector x equals x0 +
maxfjjxj > 0g. It is easy to verify, by induction on k, that the number of states
with inventory position k is

nk =
(m+ k)!

m!k!

and that the number of states for which the inventory position is at most k is

Nk =
kX

j=0

nj =
(m+ 1 + k)!

(m+ 1)!k!
:

In particular NS is the total number of states. We identify the states with the
integers from 1 to NS. The state space IS is the set of these integers.

For each state i 2 IS, let y(i) denote the 1+S dimensional vector describing
the state. Note that it speci�es that the number of orders outstanding is

NOO(i) =

(
0 if y1(i) = 0
maxfjjyj(i) > 0g else

and that the number of orders to be delivered at the end of the coming review
period is

NOD(i) =

(
0 if y1(i) < m
maxfjjyj(i) = mg else.

The numbers of single-unit orders which can be placed in state i when the
inventory position is bound by S are the elements of the set

AS(i) = f0; 1; ::; S � y0(i)�NOO(i)g :

If the number of orders placed in state i is a, say, then this state is changed
immediately into another one which is denoted by oa(i). The vector y(oa(i))
describing the new state has the components

yj(o
a(i)) =

8><
>:

yj(i); j � NOO(i)
1; NOO(i) < j � NOO(i) + a
0; j > NOO(i) + a:
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Note that NOD(oa(i)) = NOD(i) because the constant delivery times are
assumed to be at least two review periods.

Let NOP (i) denote the number of single-unit orders prescribed to be placed
in state i by the considered policy. Suppose that the demand satis�ed during the
review period following a review epoch in which the state is i equals d. Then the
components of the vector describing the state s(i; d) at the next review epoch
are speci�ed as follows. The component for the stock on hand is y0(s(i; d)) =
y0(i)�d+NOD(i). If 1 � j � NOO(i)�NOD(i) then j identi�es an old order
for which the component is yj(s(i; d)) = yNOD(i)+j(i) + 1. Otherwise j either
identi�es an order placed in state i or no order, and then the components are

yj(s(i; d)) =

(
2; NOO(i) �NOD(i) < j � NOO(i) �NOD(i) +NOP (i)
0; j > NOO(i) �NOD(i) +NOP (i):

Recall that the demand D during each review period has a Poisson distribution
with parameter �=m. The positive probabilities Pi;j of a transition from state
i at one review epoch to state j at the next one are

Pi;s(i;d) =

(
PrfD = dg; d = 0; 1; ::; y0(i)� 1;
PrfD � y0(i)g; d = y0(i):

(6)

The expected cost incurred during the review period is [4, page 183]

ci = p � U(y0(i)) + y0(i)=m�
y0(i)X
k=1

U(k)=� (7)

where

U(k) = E[D � k]+ =
1X
d=k

PrfD > kg; k = 0; 1; :::

Let g denote the long-run average cost incurred per review period and let vi
denote the expected incremental cost incurred over an in�nite horizon when the
inventory system is started in state i rather than in state 1. If the Markov chain
has no two disjoint closed sets (this condition is satis�ed when the considered
policy is a reasonable one), then g and the state values vi satisfy the following
system of linear equations [7, Theorem 3.1.1]

vi = ci � g +
NSX
j=1

Pi;j � vj; i = 1; 2; ::; NS: (8)

Furthermore, these equations together with the normalizing equation

v1 = 0 (9)

has a unique solution. We have used Gauss elimination to �nd the unique solu-
tion numerically. The exact average cost AC per unit time equals m multiplied
by the g-value found.

The exact stockout probabilities (in %) reported in Tables 1, 2 and 3 are
computed as 100 � �g � m=� where �g is the solution to Eqs. 8 and 9 with ci set
equal to U(y0(i)). The exact average stocks reported are the average costs AC
computed for p = 0.
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4 Computing the optimal replenishment policy

We shall now present a policy-iteration algorithm [7, Section 3.2] for �nding
the replenishment policy which is optimal subject to the condition that the
inventory position is at most S. How this S can be �xed is discussed after the
presentation of the algorithm.

The iterations of the policy-iteration algorithm start with a replenishment
policy which prescribes the number NOP (i) of single-unit orders to be placed
in each state i 2 IS so that the inventory position is at most S. This policy is
available from the previous iteration or - in the �rst iteration - from the outset.
Each iteration consists of the following three steps.
Step 1 (value determination). For the current policy speci�ed by NOP (i); i 2
IS, use Eqs. 8 and 9 to compute the average cost g per review period and the
state values vi; i 2 IS.
Step 2 (policy improvement). For each state i 2 IS, determine an action a(i)

yielding the minimum in min
n
voa(i)ja 2 AS(i)

o
. The new policy is obtained by

choosing NOP new(i) = a(i) for all i 2 IS with the convention that NOPnew(i)
is chosen equal to the old action NOP (i) when this action minimizes the policy-
improvement quantity.
Step 3 (convergence test). If the new policy equals the old one, the algorithm
is stopped with the policy found. Otherwise, go to step 1 with the old policy
replaced by the new one.

It is our experience from numerical examples that the algorithm converges
after few iterations, typically at most 5. The algorithm requires per iteration
the solving of NS equations. The number NS of states increases rapidly in S.
For example, if m = 10, then we have N0 = 1, N1 = 12, N2 = 78, N3 =
364, N4 = 1365 and N5 = 4368. Therefore, even for this modest value of m,
the computational burden of the algorithm becomes overwhelming unless S is
small. Tijms [7] suggests a value-iteration algorithm to solve large-scale Markov
decision problems. But we desist from discussing such problems in this paper.

For m = 10 and various values of the demand rate � and the shortage cost
p, Table 5 reports the average cost AC and the stockout probability B for four
policies: the best pure base-stock policy (denoted by (S; 0)), the simplemodi�ed
base-stock policy (SIMP) introduced in the next section, the best modi�ed base-
stock policy (denoted by (S; t) as explained in the next section) and the optimal
policy (OPT). For each reported case, Eq. 4 provides the same S�-value with
the three speci�cations of � mentioned in Section 2 and this value turns out to
be the best base-stock. OPT is computed in the following way. First, the upper
bound S for the inventory position is �xed as the best pure base-stock and the
policy-iteration algorithm, initialized with the best pure base-stock policy, is
run. Next, starting with the policy found, the algorithm is run again with S
increased by one to search for a better policy. For all cases reported, no better
policy was found by this search.

Each case in Table 5 is identi�ed by a pair (�; p). OPT equals the base-stock
policy with S = 1 for the two cases (0.5,2.5) and (0.5,5). For the four cases
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p = 2:5 p = 5 p = 10
policy AC B policy AC B policy AC B

� = 0:5 (1,0) 1.086 34.44 (1,0) 1.517 34.44 (2,0) 1.933 8.29
SIMP 1.086 34.44 SIMP 1.517 34.44 SIMP 1.925 8.48
(1,0) 1.086 34.44 (1,0) 1.517 34.44 (2,6) 1.924 8.62
OPT 1.086 34.44 OPT 1.517 34.44 OPT 1.924 8.62

� = 1:0 (2,0) 1.703 21.21 (2,0) 2.233 21.21 (3,0) 2.714 6.92
SIMP 1.678 21.78 SIMP 2.223 21.78 SIMP 2.698 7.11
(2,8) 1.668 24.13 (2,4) 2.222 21.51 (3,3) 2.698 7.11
OPT 1.668 24.13 OPT 2.222 21.51 OPT 2.695 7.20

� = 1:5 (2,0) 2.157 32.54 (3,0) 2.750 14.61 (4,0) 3.328 5.45
SIMP 2.137 33.38 SIMP 2.725 15.05 SIMP 3.306 5.58
(2,5) 2.137 33.38 (3,3) 2.725 15.05 (4,3) 3.303 5.95
OPT 2.137 33.38 OPT 2.721 15.14 OPT 3.296 5.78

Note. (S; 0) denotes the best pure base-stock policy, SIMP denotes the simple
modi�ed base-stock policy, (S; t) denotes the best modi�ed base-stock policy
and OPT denotes the optimal policy.

Table 5: Average cost AC and stockout probability B (in %) for four policies
when m = 10.

(0.5,10), (1,2.5), (1,5) and (1.5,2.5), OPT has S = 2 and it prescribes to place
one order for one unit in the states described by the vectors (0,0,0), (1,0,0) and
(0; x1; 0) for x1 = t + 1; t + 2; ::; 10, where t is speci�ed by the best modi�ed
base-stock policy. For the two cases (1,10) and (1.5,5), OPT has S = 3 and it
prescribes to place one order for one unit in the states described by the vectors
x with the components listed in Table 6. We desist from listing the vectors
describing the states in which OPT with S = 4 prescribes to place orders for
the last case (1.5,10). But it is noteworthy that OPT never prescribes to place
more than one single-unit order in any state.

The approach used for computing OPT is applicable for any parameter
setting. We suggest to run the policy-iteration algorithm �rst with the upper
bound S for the inventory position set equal to S� where the tra�c intensity
� is determined e.g. by the c-speci�cation mentioned in Section 2. The initial
policy can be the pure base-stock policy speci�ed by this S. But the simple
modi�ed base-stock policy presented in the next section is a better choice. When
the algorithm has found the policy which is optimal subject to the condition
that the inventory position is at most S, then increase S by one and run the
algorithm again to investigate whether a better policy exists.
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inventory position x0 x1 x2 x3
0 0 0 0 0
1 1 0 0 0

0 � 3 0 0
2 2 0 0 0

1 � 4 0 0
0 10 � 4 0
0 9 � z9 0
0 8 � z8 0

Note. If (�; p) = (1; 10) then z8 = 6 and z9 = 5. If (�; p) = (1:5; 5) then z8 = 5
and z9 = 4.

Table 6: Components for the vectors x describing states in which OPT pre-
scribes to place an order for one unit when (�; p) equals (1,10) or (1.5,5).

5 Modi�ed base-stock policies

For the continuous-review (S � 1; S) system with S = 2, Hill [3] has shown
that the long-run average cost can be decreased by imposing a lower limit on
the time between epochs in which placing a replenishment order is permitted.
The cost reduction arises because with a short time between two consecutive
ordering epochs it is most likely to have no demand during the interval between
the epochs in which the two orders are delivered. The expected incremental
shortage cost caused by extending this interval shall in optimum balance the
holding cost rate (our monetary unit) for the unit coming from the second order.

For the periodic-review inventory system considered in this paper, we shall
now introduce modi�ed base-stock policies which are easy to implement. Each
modi�ed base-stock policy is speci�ed by a pair (S; t) where S is the base-stock
and t is a lower bound for the number of review periods between review epochs
in which placing a replenishment order is permitted. We refer to this t as
the minimal time between ordering epochs. The 1 + S dimensional vectors x
describing the states of the (S; t) system have components satisfying Condition 5
supplemented with

xj � t+ xj+1 if xj+1 > 0; j = 1; 2; ::; S � 1:

Therefore, the number ~NS;t of states is at most NS and equals NS only when
t = 0 or S � 2. The state space ~IS;t is a subset of IS. The exact average cost
AC(S; t) for the modi�ed base-stock policy equals m multiplied by the g-value
found by solving an adapted version of Eqs. 8 and 9. We delete in Eq. 8 the
linear equations for the super
uous states i 2 ISn~IS;t.

A simple modi�ed base-stock policy is speci�ed in the following way. The
base-stock S is set equal to S� where the tra�c intensity � is determined e.g.
by the c-speci�cation mentioned in Section 2 and the minimal time t between
ordering epochs is �xed as the ratio m=S truncated to an integer. A best
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modi�ed base-stock policy is speci�ed by a pair (S; t) which minimizesAC(S; t).
If the minimum is attained for more than one pair, then our tie-breaking rule
prescribes to select the pair with the smallest S and the largest t. But ties have
never occured in the numerical examples investigated by us.

The cases reported in Table 5 (and numerous others) illustrate that the
simple and best modi�ed base-stock policies provide most of the cost reduction
which can be obtained by replacing the best pure base-stock policy by the
optimal policy. Both modi�ed base-stock policies are easy to implement. The
simple one is easy to compute whereas extensive computations are needed to
�nd the best one. We suggest to compute the best modi�ed base-stock policy by
a neighborhood search procedure which is initialized with the simple modi�ed
base-stock policy. For each investigated (S; t) system, the procedure requires
the the solution of ~NS;t equations to evaluate the system. This evaluation
is computational demanding if ~NS;t is large and it is avoided by restricting
attention to the simple modi�ed base-stock policy. This policy is often a good
choice and we recommend to implement it. It outperforms the best pure base-
stock policy when S � 2 and its simplicity makes it worthy for implementation.

6 Conclusions

We have used Erlang's loss formula to derive an approximate expression for the
long-run average cost of a periodic-review inventory system controlled by a pure
base-stock policy. A good base-stock S is easily computed from this expression.
If S � 2 then we recommend to modify the base-stock policy by never placing
more than one single-unit order at any review epoch and by imposing a lower
bound t for the number of review periods between review epochs in which
placing an order is permitted. We suggest to �x t as the largest integer which
is less than or equal to the ratio of the number m of review periods per delivery
period and S. Our suggestion implies for increasing m that the minimal time
between ordering epochs approaches the ratio of the delivery time for one order
and S. Therefore, we suggest to control the continuous-review inventory system
by a modi�ed base-stock policy with the minimal time between ordering epochs
speci�ed by this ratio.

References

[1] Axs�ater, S., \Optimization of order-up-to-S policies in two-echelon inven-
tory systems with periodic review", Naval Research Logistics 40 (1993),
245-253.

[2] Graves, S. C., \A multiechelon inventory model with �xed replenishment
intervals", Management Science 42:1 (1996), 1-18.

[3] Hill, R. M., \On the suboptimality of (S � 1; S) lost sales inventory poli-
cies", International Journal of Production Economics 59 (1999), 387-393.

12



[4] Johansen, S. G., and Thorstenson, A., \Optimal and approximate (Q; r)
inventory policies with lost sales and gamma-distributed lead time", Inter-
national Journal of Production Economics 30-31 (1993), 179-194.

[5] Schultz, C. T., \On the optimality of the (S�1; S) policy", Naval Research
Logistics 37 (1990), 715-723.

[6] Smith, S. A., \Optimal inventories for an (S � 1; S) system with no back-
orders", Management Science 23:5 (1977), 522-528.

[7] Tijms, H. C., Stochastic Models, Wiley, Chisester, 1994.

13


