
Route Choice

in

Stochastic Time-Dependent

Networks

Theory, Algorithms and Computational Experience

Lars Relund Nielsen

PhD thesis, December 2003

Route Choice in

Stochastic Time-Dependent

Networks

Theory, Algorithms and Computational Experience

Lars Relund Nielsen, Department of Operations Research,
University of Aarhus, Denmark

PhD thesis, December 2003

Thesis committee:

- Jørgen Aase Nielsen, University of Aarhus.

- Jørgen Tind, University of Copenhagen.

- Kurt O. Jörnsten, Norwegian School of Economics and Business
Administration.

Thesis advisor:

- Kim Allan Andersen, Aarhus School of Business.

Lars Relund Nielsen
Department of Operations Research
University of Aarhus
Ny Munkegade, building 530
DK-8000 Aarhus C
Denmark
relund@imf.au.dk
http://home.imf.au.dk/relund/

Subject classification

MSC2000 – Primary: 90B15; secondary: 90B50, 90B06, 90C47, 90C35, 90C15, 90C59.
OR/MS – Networks/graphs: generalized networks, stochastic; transportation: network
models, route choice.

Dedicated to Dorthe and Mads

For angling may be said to be so like
the Mathematics, that it can never be
fully learnt; at least not so fully, but
that there will still be more new exper-
iments left for the trial of other men
that succeeds us.

Izaak Walton,
The Compleat Angler, 1653

Preface

This thesis is the outcome of my research during my four years as a PhD student at the
Department of Operations Research at the University of Aarhus. The main field of my
research has been directed hypergraphs and how they can be used to model problems in
stochastic time-dependent networks (STD networks). Other areas such as logical inference
and logic-based methods for optimization have also gained some interest, but will not be
covered by this thesis.

As the title suggests, the thesis focuses on STD networks which are an extension of
more “traditional” networks where the travel time or cost between two nodes (towns,
telephone switches etc.) are deterministic and time-independent. In STD networks the
travel time between two nodes are time-dependent, i.e. the travel time depends on the
leaving time from a node. Furthermore, it is assumed that, for each leaving time, the
travel time may not be fully known and hence a probability function is used to express
possible travel times. This gives in many cases a better framework for modelling real
world problems.

We consider route choice problems in STD networks which may be regarded as exten-
sions of traditional shortest path problems in directed graphs. The problem of finding a
shortest path in a directed graph may be considered as two problems in an STD network,
depending on whether the entire route, denoted a strategy, must be specified a priori, i.e.
before travel begins (a priori route choice) or whether the driver is allowed to react while
travelling on the revealed/actual arrival times at intermediate nodes (time-adaptive route
choice). The problem of finding the best route/strategy under a priori or time-adaptive
route choice consists in finding a strategy which is minimal with respect to a specific
objective, e.g. expected travel time.

The thesis focuses on two route choice problems in STD networks. In Chapter 4 we
consider the problem of finding the K best strategies under a priori and time-adaptive
route choice while Chapter 5 considers bicriterion route choice under a priori and time-
adaptive route choice. Here we assume that two criteria are given, e.g. minimizing ex-
pected travel time and cost. The goal is now to find efficient strategies, i.e. strategies
for which it is not possible to find a different strategy such that expected travel time or
cost is improved without getting a worse expected cost or travel time, respectively. Fi-
nally, Chapter 6 presents two problems which, due to time issues, have not been studied
as deeply as the problems in Chapter 4 and 5. That is, the results given may not be
considered as complete but may be regarded as directions for further research.

All the problems in this thesis have either not been considered before in the literature
or considered in a very limited number of papers.

vi Contents

How to read this thesis

First of all the reader is assumed to be familiar with graph theory and a few basic con-
cepts from probability theory. The thesis is best read in chronological order. Theory
and notation given in chapters preceding the chapter under consideration will often be
used. However, there are exceptions. Chapter 1 presents a very short introduction to the
problems we consider and a summary of the thesis which may be skipped. The appen-
dices contain information not directly related to STD networks. Appendix A considers
problems which have emerged as a result of studying the problem of finding the K best
strategies in an STD network, namely the subhypertree constrained hyperpath problem
and the problem of finding the K minimum weight hyperpaths in a non-acyclic hyper-
graph. Appendix B describes basic data structures used in the algorithms described in
the thesis. Finally, during fall 2000 I found a small error in the definition of a hyper-
path which has been used in many papers. I therefore wrote a short note with a counter
example which is presented in Appendix C.

Since most of the problems considered in this thesis have either not been considered
before we in most cases, had to start from scratch defining new notation, problem for-
mulation etc. As a result the reader may find the notation heavy and comprehensive.
Therefore the index “List of notation” has been included at the end of this thesis. It
contains all the notation used in the thesis, a short explanation and a reference to the
page where the notation is first introduced.

Acknowledgments

I owe a debt of gratitude to many people who have been crucial to my success in completing
the four years of my PhD.

First of all, I am thankful to my supervisor Kim Allan Andersen for his guidance,
encouragement, contributions and suggestions during the last four years.

During the late fall 2000 I visited Professor Daniele Pretolani at the University of
Camerino, Italy. During three valuable months, I had the privilege to draw on his com-
prehensive knowledge on the field of directed hypergraphs. Furthermore, I would like
to express my gratitude to him for our many discussions about solution methods and
implementation details. My research has greatly benefited from this and I am deeply
indebted.

I would like to thank my colleagues at the Department of Operations Research for
always providing a pleasant working atmosphere. In particular I am deeply indebted to
Randi Mosegaard for all the jokes (via e-mail) and for carefully proof reading the thesis.

Special gratitude is also extended to Holger and Søren for countless non-math hunting
and fishing trips during the last four years helping clearing my mind.

Finally, I owe much to my parents for always believing in me and encouraging me
to achieve my goals. My heartfelt appreciation also goes out to my wife Dorthe for her
understanding and her steadfast emotional support which have been invaluable in helping
me during this writing process.

Aarhus, December, 2003

Lars Relund Nielsen

Contents

Preface v
How to read this thesis . vi
Acknowledgments . vi

1 Introduction and summary 1
1.1 Summary of the thesis . 3

2 Directed hypergraphs 7
2.1 Basic definitions . 7
2.2 Paths, hyperpaths and hypertrees . 8
2.3 Weighted hypergraphs . 10

2.3.1 Weighting functions . 10
2.3.2 Minimum weight hyperpaths . 12

2.4 End-trees and reoptimization techniques 14
2.4.1 The value weighting function . 15
2.4.2 The distance weighting function 17

3 Stochastic time-dependent networks 19
3.1 Problem definition . 21
3.2 Route selection criteria . 23
3.3 A hypergraph model for STD networks . 25
3.4 The density of Y S

T

(
o, t̂

)
. 27

3.5 Generating STD networks . 28

4 Finding the K best strategies in an STD network 33
4.1 Finding the K best strategies under time-adaptive route choice 37

4.1.1 Using a backward branching approach 38
4.1.2 Using reoptimization to reduce computation time 44

4.2 Finding the K best strategies under a priori route choice 47
4.2.1 No waiting allowed . 49
4.2.2 Waiting allowed . 56

4.3 Computational results . 60
4.3.1 Performance measures/statistics 60
4.3.2 Time-adaptive route choice . 62
4.3.3 A priori route choice . 68

viii Contents

4.3.4 Summary . 74

5 Bicriterion route choice in STD networks 77
5.1 Basic definitions . 79
5.2 The two-phase approach . 82
5.3 Label correcting algorithms . 85
5.4 Finding the set of efficient strategies under time-adaptive route choice . . 87

5.4.1 Expectation criteria . 87
5.4.2 Min-max criteria . 93
5.4.3 Expectation criterion and min-max criterion 99

5.5 Finding the set of efficient strategies under a priori route choice 100
5.5.1 No waiting allowed . 100
5.5.2 Waiting allowed . 101

5.6 Computational results . 102
5.6.1 Performance measures/statistics 102
5.6.2 Time-adaptive route choice . 103
5.6.3 A priori route choice . 116
5.6.4 Summary . 120

6 Further problems in STD networks 123
6.1 Route choice when the leaving time is not known 123
6.2 Route choice when the cost is not known 125

Appendices 129

A Hypergraph problems 129
A.1 The subhypertree constrained hyperpath problem 129
A.2 Finding the K minimum weight hyperpaths 131

B Basic data structures 133
B.1 Data structures for network G and hypergraph H 133

B.1.1 Backward representation of H . 134
B.1.2 Backward and forward representation of H 135
B.1.3 Forward representation of H . 136
B.1.4 Representing G and linking G and H 136

B.2 Branching tree representation . 137

C A remark on the definition of a hyperpath 139
C.1 Hypergraphs, hyperconnection, hyperpaths 139

Bibliography 141

Index 149

List of notation 153

Chapter

1
Introduction and
summary

This thesis focuses on problems concerning route choice in stochastic time-dependent
networks (STD networks) and is the result of merging quite different research fields. In
this chapter we present a short introduction to the problems and the theory considered
in this thesis. The chapter is concluded with a summary of the remainder of the thesis.

STD networks are an extension of more “traditional” networks where the travel time
or cost between two nodes (towns, telephone switches etc.) is deterministic and time-
independent. We say that a network is time-dependent if the travel times on the arcs are
functions of time, and stochastic if the travel time is represented by probability distribu-
tions rather than simple scalars.

STD networks were first addressed by Hall [37] who considered the problem of finding
a path between two nodes minimizing the expected travel time when leaving the origin
at a specific time. He pointed out several ways to formulate the path selection problem
in STD networks as well as complications arising as a consequence of modelling both the
stochastic and time-dependent properties in the network.

If the entire route, denoted a strategy, must be specified before travel begins, the
driver must follow a loopless path in the network and no deviations from the path are
permitted. In this case the route is selected a priori on the basis of only the probability
distributions of the arc travel-times. This is referred to as a priori route choice and may
be useful for routing highly sensitive substances for which the path travelled must be
preapproved or where the driver does not have access to (or time to access) information
while travelling.

Rather than determining a single path only based on information known before travel
begins, routes/strategies with lower expected travel time may be obtained by allowing the
driver to react to revealed (actual) arrival times at intermediate nodes. This is identical
to a multistage recourse problem where decisions are taken according to realizations of
arc travel time outcomes while travelling (see Birge and Louveaux [9]). Hall realized that
the best route minimizing expected travel time does not necessarily define a path in the
network but rather a time-adaptive strategy that assigns optimal successors to a node as
a function of time. This is referred to as time-adaptive route choice.

The problem of finding the best route/strategy under a priori and time-adaptive route
choice consists in finding a strategy which is minimal with respect to a specific objective,

2 Introduction and summary

e.g. expected travel time. The problem under a priori route choice is NP-hard while the
problem under time-adaptive route choice can be solved in polynomial time (see Pretolani
[77]). Route choice problems under both a priori and time-adaptive route choice will be
considered in the thesis.

STD networks can be modelled using directed hypergraphs mainly used in the field
of computer science. Directed hypergraphs are an extension of directed graphs and
undirected hypergraphs and represent a general modelling and algorithmic tool, which
have been successfully used in many different research areas such as artificial intelligence,
database systems, fuzzy systems, propositional logic and transportation networks.

Pretolani [77] presented a hypergraph model for an STD network and showed that
finding the best strategy under time-adaptive route choice corresponds to finding a mi-
nimum weight hyperpath in a time-expanded hypergraph. The definition of a hyperpath
in a directed hypergraph and a general formulation of the minimum weight hyperpath
problem were given by Gallo, Longo, Pallottino, and Nguyen [29].

This thesis focuses on two route choice problems in STD networks which may be
regarded as extensions of traditional shortest path problems in directed graphs. In Chap-
ter 4 we consider the problem of finding the K best strategies under a priori and time-
adaptive route choice. That is, ranking the first K best strategies defining the route
followed between an origin and a destination node when leaving the origin at a specific
time, in non-decreasing order with respect to a specific objective, e.g. expected travel
time. This problem has not yet been considered in the literature.

Since a strategy under time-adaptive route choice corresponds to a hyperpath in the
time-expanded hypergraph H, we have that, finding the K best strategies under time-
adaptive route choice, corresponds to finding the K minimum weight hyperpaths in H.
Algorithms based on Nielsen, Andersen, and Pretolani [69] are presented in Section 4.1
which are a nontrivial extension of existing algorithms for the problem of finding the
K shortest loopless paths in a directed graph. The problem of finding the K shortest
loopless paths is a classical problem in graph theory. It was considered as early as 1959
by Hoffman and Pavley [43]. The best algorithm known to date is the algorithm by Yen
[94], later discussed by Lawler [51] in the more general framework of finding the K best
solutions to a discrete optimization problem.

The problem of finding the K best strategies under a priori route choice corresponds to
finding the K minimum weight hyperpaths satisfying that each strategy defines a path in
the network. A specialized algorithm based on lower bounds is used to solve this problem
in Section 4.2. These results were obtained during the last year of my PhD and will be
the subject of a forthcoming paper. Note that, since finding the best strategy under a
priori route choice is NP-hard, we have that the problem of finding the K best strategies
under a priori route choice is also NP-hard.

Bicriterion route choice in STD networks are considered in Chapter 5, i.e. we assume
that two criteria are used e.g. expected travel time and cost. The goal is now to find
efficient strategies, i.e. strategies for which it is not possible to find a different strategy
such that expected travel time or cost is improved without getting a worse expected cost
or travel time, respectively.

In Section 5.4, which is based on Nielsen, Andersen, and Pretolani [70], we consider
the problem under time-adaptive route choice. Here the problem consists in finding the
set of efficient strategies between an origin and a destination node when leaving the origin
at a specific time. To the author’s knowledge, no one has yet considered this problem.

1.1 Summary of the thesis 3

Since a strategy corresponds to a hyperpath in the time-expanded hypergraph, finding
the set of efficient strategies, corresponds to finding the set of efficient hyperpaths in the
time-expanded hypergraph.

Section 5.5 considers the problem under a priori route choice, i.e. we are interested
in finding the set of efficient strategies all defining a loopless path in the network. The
research presented in Section 5.5 has been done during the last 6 months of my PhD and
will be presented in a forthcoming paper. Only one paper has considered this problem,
namely Miller-Hooks and Mahmassani [60], with the first objective being minimizing
expected time and the second objective being minimizing expected cost. A labelling
procedure was presented, which guarantees that all the efficient paths can be obtained;
however, in practice the procedure is too slow.

We solve the bicriterion route choice problems under a priori and time-adaptive route
choice using a two-phase approach. The two-phase approach is a general method for
solving bicriterion combinatorial problems. As the name suggests, the two-phase approach
splits the search of efficient strategies into two phases. In phase one, a subset of efficient
strategies is found, which defines regions where further efficient strategies may be found.
Phase two proceeds to searching these regions one by one using the K best strategies
procedures developed in Chapter 4. Unfortunately, the two-phase approach cannot be
extended to the case where more than two criteria are considered, since phase one may
fail in identifying all regions where further efficient strategies may be found.

Finally, Chapter 6 presents two problems which, due to time issues, have not been
studied as deeply as the problems in Chapter 4 and 5. That is, the results given may
not be considered as complete but may be regarded as directions for further research. In
Section 6.1 we consider the problem of extending the K best strategies and bicriterion
algorithms to the case where the leaving time from the origin is not known and in Sec-
tion 6.2 the problem of finding the best strategy under time-adaptive route choice when
the cost of leaving a node at time t along an arc is not known and instead described by
a linear function.

1.1 Summary of the thesis

This thesis deals with problems concerning route choice in stochastic time-dependent
networks (STD networks). STD networks are an extension of more “traditional” networks
where the travel time or cost between two nodes (towns, telephone switches etc.) are
deterministic and time-independent. In stochastic time-dependent networks the travel
time between two nodes is time-dependent, i.e. the travel time depends on the leaving
time from a node. Furthermore, it is assumed that for each leaving time, the travel time
may not be fully known and hence a probability function is used to express possible travel
times.

Route choice problems in STD networks may be regarded as extensions of traditional
shortest path problems in directed graphs. The problem of finding a shortest path in
a directed graph may be considered as two problems in an STD network, depending on
whether the entire route, denoted a strategy, must be specified a priori, i.e. before travel
begins (a priori route choice) or whether the driver is allowed to react while travelling on
the revealed/actual arrival times at intermediate nodes (time-adaptive route choice).

The problem of finding the best route/strategy under a priori or time-adaptive route
choice consists in finding a strategy which is minimal with respect to a specific objective,

4 Introduction and summary

e.g. expected travel time.
This thesis focuses on two route choice problems in STD networks, namely the prob-

lem of finding the K best strategies under a priori and time-adaptive route choice and
bicriterion route choice under a priori and time-adaptive route choice. Here we assume
that two criteria are given, e.g. minimizing expected travel time and cost. The goal is
now to find efficient strategies, i.e. strategies for which it is not possible to find a differ-
ent strategy such that expected travel time or cost is improved without getting a worse
expected cost or travel time, respectively.

STD networks are modelled using directed hypergraphs which are presented in Chap-
ter 2. Here basic definitions of a directed hypergraph, hyperpath and hypertree is given
in Section 2.2. Furthermore, weighted hypergraphs are considered and procedures for
finding the minimum weight hyperpath for different weighting functions are presented
(Section 2.3). Finally, reoptimization techniques are developed in Section 2.4. These
techniques are essential for the efficiency of the algorithms in the thesis. The first sec-
tions of the chapter is based on well-known results and hence no proofs are given. The
theorems concerning reoptimization techniques in Section 2.4 are new.

Chapter 3 concerns STD networks and is mostly based on well-known results. First,
notation and definitions of a strategy under a priori and time-adaptive route choice is
given in Section 3.1. In Section 3.2 the different criteria which are used in the thesis
are presented. Next, in Section 3.3 it is shown how STD networks can be modelled
using hypergraphs and results are presented showing how the problem of finding the best
strategy under time-adaptive route choice can be transformed into a minimum weight
hyperpath problem. Finally, Section 3.5 presents the TEGP generator developed during
my PhD, which is a generator for generating different STD networks.

In Chapter 4, the problem of finding the K best strategies under a priori and time-
adaptive route choice is considered. Section 4.1 considers the problem under time-adaptive
route choice and is based on Nielsen et al. [69]. It is shown that the problem is equivalent to
finding the K minimum weight hyperpaths in a time-expanded hypergraph. A nontrivial
extension of the algorithm, presented by Yen [94], for finding the K shortest loopless paths
in a directed graph, is used to solve the problem. Furthermore, an improved algorithm
using reoptimization is given. Section 4.2 concerns the problem of finding the K best
strategies under a priori route choice. The problem can be solved in two ways depending
on how we partition the set of strategies. These results were obtained during the last year
of my PhD and will be the subject of a forthcoming paper. Finally, computational results
under a priori and time-adaptive route choice are presented in Section 4.3 including a
short summary of the results.

Chapter 5 concerns the problem of finding the efficient set of strategies under time-
adaptive and a priori route choice. In Section 5.4, which is based on Nielsen et al. [70],
we consider the problem under time-adaptive route choice while Section 5.5 considers the
problem under a priori route choice. The research, presented in Section 5.5, has been
done during the last 6 months of my PhD and will be presented in a forthcoming paper.

For both a priori and time-adaptive route choice, the problem is solved using a two-
phase approach. The two-phase approach is a general method for solving bicriterion
combinatorial problems. As the name suggests, the two-phase method splits the search
of efficient strategies into two phases. In phase one a set of efficient strategies is found
defining regions where further efficient strategies may be found. Phase two proceeds
to searching these regions one by one using the K best strategies procedures developed

1.1 Summary of the thesis 5

in Chapter 4. Computational results under a priori and time-adaptive route choice are
presented in Section 5.6 including a short summary of the results.

The last chapter, Chapter 6, presents two problems which, due to time issues, have
not been studied as deeply as the problems in Chapter 4 and 5. That is, the results
given should not be considered as complete but may be regarded as directions for further
research. In Section 6.1 we consider route choice when the leaving time from the origin is
not known and in Section 6.2 the problem of finding the best strategy under time-adaptive
route choice when the cost of leaving a node at time t along an arc is not known and
instead described by a linear function.

Finally, Appendix A considers two problems not directly related to STD networks,
namely the subhypertree constrained hyperpath problem and the problem of finding the
K minimum weight hyperpaths in a non-acyclic hypergraph. Both emerged as a result
of studying the problem of finding the K best strategies in an STD network. Appendix
B presents an overview over the basic data structures used in the algorithms. Last, in
Appendix C, based on Nielsen and Pretolani [71], we point out that the definition of a
hyperpath given by Gallo et al. [29] is wrong. A counter example is presented.

Chapter

2
Directed hypergraphs

Directed hypergraphs are an extension of directed graphs and undirected hypergraphs
introduced by Berge [8]. Directed hypergraphs represent a general modelling and algo-
rithmic tool, which have been successfully used in many different research areas such
as artificial intelligence, database systems, fuzzy systems, propositional logic and trans-
portation networks. For a more general overview on directed hypergraphs see Ausiello,
Franciosa, and Frigioni [3].

The concept of hyperpath and minimum weight hyperpath was introduced by Nguyen
and Pallottino [66]. Some particular minimum weight hyperpath problems were studied
in Jeroslow, Martin, Rardin, and Wang [46] within the more general setting of Leontief
flow problems. The definition of a hyperpath in a directed hypergraph and a general
formulation of the minimum weight hyperpath problem were given by Gallo et al. [29].

Minimum weight hyperpath problems have important practical applications, e.g. in
production planning (Gallo and Scutellà [32]) and in transportation networks (Pallottino
and Scutellà [74]). They are the core in traffic assignment methods for transit networks,
see for instance Nguyen and Pallottino [65], Nguyen, Pallottino, and Gendreau [67], Wu,
Florian, and Marcotte [93]. For an overview on hyperpath formulations of traffic assign-
ment problems we refer to the textbook by Marcotte and Nguyen [53].

In this chapter we give some basic definitions and properties for a subclass of directed
hypergraphs that we use to model stochastic time-dependent networks. The subclass
was denoted B-graphs in Gallo et al. [29] which considered the general class of directed
hypergraphs. However, as in many papers, the term “hypergraph” is used for the subclass
appropriate in the context.

2.1 Basic definitions

A directed hypergraph is a pair H = (V , E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node. Note
that a hyperarc has exactly one node in the head, and possibly several nodes in the tail.

The cardinality of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)|+1.

8 Directed hypergraphs

We call e an arc if |e| = 2. The size of H is the sum of the cardinalities of its hyperarcs,
i.e.

size(H) =
∑
e∈E

|e| .

Without loss of generality, we assume size(H) > n. We denote by

FS(v) = {e ∈ E | v ∈ T (e)} , BS(v) = {e ∈ E | v = h(e)}

the forward star and the backward star of node v, respectively.
A hypergraph H̃ = (Ṽ , Ẽ) is a subhypergraph of H = (V , E), if Ṽ ⊆ V and Ẽ ⊆ E . This

is written H̃ ⊆ H or we say that H̃ is contained in H. A subhypergraph is proper if at
least one of the inclusions is strict. Moreover, we denote by FSH̃ (v) and BSH̃ (v) the
forward and backward star of subhypergraph H̃ in node v, respectively.

A valid ordering V = (v1, v2, . . . , vn) of H is a topological ordering of the nodes such
that, for any e ∈ E , if h(e) = vi and vj ∈ T (e) then j < i. Note that, in a valid ordering
any node vj ∈ T (e) precedes node h(e). Let vlast denote the last node in V , i.e. vn. A
valid sub-ordering Ṽ of V is a subset of the nodes in V ordered like in V. We write Ṽ ⊆ V,
if Ṽ is a valid sub-ordering of V.

2.2 Paths, hyperpaths and hypertrees

A path Pst in H is a sequence

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u if a
path Puv exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular true if
t = s. If H contains no cycles, it is acyclic.

The next theorem has been proved by Gallo et al. [29], and generalizes a well-known
property of acyclic directed graphs.

Theorem 2.2.1 H is acyclic if and only if a valid ordering of the nodes in H is possible.

A valid ordering in an acyclic hypergraph is in general not unique, which is also the
case for acyclic directed graphs. An O(size(H)) algorithm finding a valid ordering was
given by Gallo et al. [29, p195]∗.

Different definitions of a hyperpath have been given in the literature. A widely used
definition is the one given by Gallo et al. [29]. However, as pointed out by Nielsen and
Pretolani [71] this definition is wrong. For the interested reader please see Appendix C.
We use the definition given in Ausiello et al. [3].

Definition 2.2.1 A hyperpath πst = (Vπ, Eπ) from source s to target t, is a subhypergraph
of H satisfying that, if t = s, then Eπ = ∅; otherwise the q ≥ 1 hyperarcs in Eπ can be
ordered in a sequence (e1, ..., eq) such that

1. t = h (eq) .

∗Actually the procedure finds an inverse valid ordering on an F-graph (hyperarcs having only one tail
node). However, it can easily be modified.

2.2 Paths, hyperpaths and hypertrees 9

t

1

2

3 4

e2

e1

e3

e4

e5

e7

e6

e8

e9

s

(a) Hypergraph H

t

1

2

3 4

s

(b) A hypertree in H

Figure 2.1: A non-acyclic hypergraph and a hypertree.

2. T (ei) ⊆ {s} ∪ {h (e1) , ..., h (ei−1)} , ∀ei ∈ Eπ.

3. No proper subhypergraph of πst is an s-t hyperpath.

A node t is hyperconnected to s in H if there exists a hyperpath πst in H. Note
that condition 2 implies that a valid ordering of πst is (s, h (e1) , ..., h (eq)) . That is, a
hyperpath is acyclic. Furthermore, condition 3 implies that, for each u ∈ Vπ \ {s}, there
exists a unique hyperarc e ∈ Eπ, such that h(e) = u and hence for each node u ∈ Vπ there
is a unique subhyperpath πsu contained in πst. We denote hyperarc e as the predecessor
of u in πst. The definition of a hyperpath can be extended to hypertrees.

Definition 2.2.2 A directed hypertree of H with root s is an acyclic subhypergraph Ts =
({s} ∪ N , ET) with s �∈ N satisfying

BS (s) = ∅, |BS(v)| = 1, ∀v ∈ N

It is not difficult to show that a directed hypertree Ts contains a unique s-u hyperpath
for each node u ∈ N (see e.g. [29]). That is, Ts is the union of hyperpaths from s to all
nodes in N . Moreover, Ts can be described by a predecessor function p : N → E ; for each
u ∈ N , p(u) is the unique hyperarc in Ts which has node u as the head. Note that any
hyperpath is a hypertree, in particular, it can be defined by a predecessor function.

Example 1 A hypergraph H = (V , E) is shown in Figure 2.1(a). A path from 3 to 2 is

P23 = (3, e5, 4, e9, 1, e6, 2)

The path P23 is a cycle. The hypergraph H becomes acyclic when hyperarc e9 is deleted
and has a unique valid ordering, namely V = (s, 1, 2, 3, 4, t). Below we give two hyperpaths
in H, namely a hyperpath from s to t and a hyperpath from s to 4.

πst =
(
{s, 1, 2, t}, {e1, e2, e3}

)
, πs4 =

(
{s, 2, 3, 4}, {e2, e4, e5}

)
A hypertree Ts for all nodes hyperconnected to s in H is shown in Figure 2.1(b), it is
the union of the two hyperpaths given above. Several valid orderings for Ts exist; one of
them is V = (s, 1, 2, t, 3, 4).

10 Directed hypergraphs

2.3 Weighted hypergraphs

In this section we introduce weights on hypergraphs, i.e. each hyperarc is assigned a
nonnegative real weight. The case where hyperarcs are assigned more than one weight is
not considered here, but introduced in Chapter 5.

We consider two different weighting functions, namely the distance and the value,
both of which have been studied in detail (see e.g. Jeroslow et al. [46] and Gallo et al.
[29]). Procedures for solving the minimum weight hyperpath problem on non-acyclic and
acyclic hypergraphs are presented.

2.3.1 Weighting functions

A weighted directed hypergraph is a hypergraph where each hyperarc e is assigned a non-
negative real weight w(e). The weight of a path Pst is the sum of the weights of the
hyperarcs in Pst.

Given an s-t hyperpath π defined by predecessor function p, a weighting function W
is a node function assigning weights W (u) to all nodes in π. The weight of hyperpath π
is W (t) (or W (π)). We shall restrict ourselves to additive weighting functions introduced
by Gallo et al. [29], defined by the recursive equations:

W (v) =
{

0 v = s

w(p(v)) + F (p(v)) v ∈ Vπ \ {s} (2.1)

Here F (e) denotes a non-decreasing function of the weights in the nodes of T (e). We
shall consider two particular weighting functions, namely the distance and the value. The
distance function is obtained by defining F (e) as follows:

F (e) = maxu∈T (e) {W (u)} (2.2)

and the value function is obtained as follows:

F (e) =
∑

u∈T (e)
ae (u)W (u)

where ae(v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e).
With respect to the value function, two interesting cases have been introduced in the
literature. If

ae(u) = 1, ∀e ∈ E , u ∈ T (e)

then the weighting function is called the sum function and if∑
u∈T (e)

ae(u) = 1, ∀e ∈ E

then the weighting function is called the mean function.
The weight of hyperpath π can be computed using equations (2.1) by processing the

nodes forward in a valid ordering Vπ of π. However, it may be useful to find the weight
of the hyperpath by processing Vπ backward, as we will see in the following chapters.

Theorem 2.3.1 The weight of s-t hyperpath π, using the value weighting function, is

W (π) =
∑

u∈Vπ�{s}
fπ (u)w (p (u)) (2.3)

2.3 Weighted hypergraphs 11

with fπ defined by the following recursive equations

fπ (u) =
{

1 u = t∑
e∈FSπ(u) ae(u)fπ (h (e)) u ∈ Vπ� {t} (2.4)

The values of fπ can be computed by processing the nodes in a valid ordering of π backward.

Proof Let Vπ = (s = v1, ..., vq = t) denote a valid ordering of π = (Vπ, Eπ). We show
(2.3) by considering each node in Vπ starting with node vq processing down to node v1.
Given a set of nodes I ⊆ Vπ, t ∈ I, first, define f I (u) for all u ∈ Vπ.

f I (u) =

1 u = t

0 I ∩ {h (e) : e ∈ FSπ (u)} = ∅∑
e∈FSπ(u)

h(e)∈I

ae(u)f I (h (e)) I ∩ {h (e) : e ∈ FSπ (u)} �= ∅

Note that f I (u) is the part of fπ (u) found by using only the hyperarcs in FSπ (u) with
head belonging to the set I. Moreover, if I is the set of nodes above node u in Vπ then
f I (u) = fπ (u) . Now consider node vq. According to equation (2.1), we have that

W (π) = w (p (vq)) +
∑

u∈T (p(vq))
ap(vq) (u)W (u)

=
∑

v∈Iq
fπ (v)w (p (v)) +

∑
u∈Bq

f Iq

(u)W (u) (2.5)

with
Ii = {vi, ..., vq} and Bi =

{
u ∈

⋃
v∈Ii

T (p (v)) : u /∈ Ii
}

Assume that nodes vq, ..., vi+1 have been considered and that (2.5) holds, then

W (π) =
∑

v∈Ii+1
fπ (v)w (p (v)) +

∑
u∈Bi+1

f Ii+1
(u)W (u)

It is obvious that vi ∈ Bi+1 and by writing the weight of node vi out we get

W (π) =
∑

v∈Ii+1
fπ (v)w (p (v)) +

∑
u∈Bi+1�{vi}

f Ii+1
(u)W (u)+

f Ii+1
(vi)

(
w (p (vi)) +

∑
u∈T (p(vi))

ap(vi) (u)W (u)
)

Since Ii+1 consists of all nodes above node vi in Vπ , we have that f Ii+1
(vi) = fπ (vi) .

Furthermore, note that given node u ∈ T (p (vi)) , we have that if node u /∈ Bi+1, then
f Ii

(u) becomes f Ii

(u) = fπ (vi) ap(vi) (u) ; otherwise if u ∈ Bi+1, then f Ii+1
(u) �= 0

andf Ii

(u) becomes f Ii

(u) = f Ii+1
(u) + fπ (vi) ap(vi) (u) . Hence we have the following

W (π) =
∑

v∈Ii
fπ (v)w (p (v)) +

∑
u∈Bi

f Ii

(u)W (u)

Proceeding down to node v1, we have that (2.5) can be written as

W (π) =
∑

v∈Vπ�{s}
fπ (v)w (p (v))

since B1 = ∅.

12 Directed hypergraphs

t

1

2

3

4

s

7

6

5

_1
3

_2
3

_1
9

_1
3()

_1
3()

_1
3

_1
3()

1(1)

_2
9

_1
9()

_1
3

_1
9()

_1
3

_1
9()

1 _1
9()

Figure 2.2: A hyperpath πst.

Example 2 A hyperpath πst is shown in Figure 2.2 (the whole figure). A valid ordering
of the nodes is Vπ = (s, 1, 2, 3, 4, 5, 6, 7, t) . Assume that the value of the multipliers are
equal to 1/ |T (e)| for each arc e. The value of fπ (v) is shown near each node v in
Figure 2.2 (the value not in parentheses). The numbers in parentheses will be explained
in Section 2.4.1.

Note that according to equation (2.2), the weight of a hyperpath using the distance
weighting function, is the weight of an maximal weight s-t path contained in π and hence
the following theorem holds trivially.

Theorem 2.3.2 The weight of s-t hyperpath π, using the distance weighting function, is
lπ (s), where lπ(u) denotes the maximum weight of a path from u to t contained in π.

lπ can be computed by using the following recursive equations

lπ(u) =
{

0 u = t

maxe∈FSπ(u) {lπ(h(e)) + w(e)} u ∈ Vπ \ {t} (2.6)

and by processing the nodes backwards according to a valid ordering of π.

2.3.2 Minimum weight hyperpaths

The minimum weight hyperpath problem or shortest hyperpath problem can be viewed
as a natural generalization of the shortest path problem and consists in finding the min-
imum weight hyperpaths from a source s to all nodes in H hyperconnected to s. The
result is a minimum weight hypertree containing minimum weight hyperpaths to all nodes
hyperconnected to s.

In general, the problem is NP-hard (see e.g. Ausiello, Nanni, and Italiano [5]), but if
the weighting function is additive and cycles are not decreasing, polynomial algorithms
exist (see [29]). We define a cycle C = {v1, e1, v2, e2, ..., vr, er, vr+1}, vr+1 ∈ T (e1), to be
decreasing if the node weight W (vr+1) can be decreased through the cycle. A sufficient
condition for a cycle not is decreasing in H is∑r

i=1
w (ei) ≥ 0

for all cycles in H provided that the distance function is considered (see Gallo et al. [29]).
This is the normal non-negativity condition from standard directed graphs. For the value

2.3 Weighted hypergraphs 13

1 procedure SHT(s,H)
2 for (∀v ∈ V) do W (v) := ∞;
3 for (∀ej ∈ E) do kj := 0;
4 Q = {s}; W (s) := 0;
5 while (Q �= ∅) do
6 select and remove u ∈ Q such that W (u) = min {W (v) | v ∈ Q};
7 for (ej ∈ FS(u)) do
8 kj := kj + 1;
9 if (kj = |T (ej)|) then

10 v := h (ej);
11 if (W (v) > w(ej) + F (ej)) then
12 if (v /∈ Q) then Q := Q ∪ {v};
13 W (v) := w(ej) + F (ej); p (v) := ej ;
14 end if
15 end if
16 end for
17 end while
18 end procedure

Figure 2.3: A procedure for finding the minimum weight hypertree.

function a sufficient condition is ∏r

i=1
aei(vi) ≥ 1 (2.7)

which is the gainfree condition from Jeroslow et al. [46].
Now, assume that the weighting function is additive, the weights nonnegative and that

no cycles are decreasing. As pointed out in Gallo et al. [29], finding the minimum weight
hypertree is equivalent to finding a solution to Bellman’s generalized equations

W (v) =

{
0 v = s

min
e∈BS(v)

{w(e) + F (e)} v ∈ V\ {s}

A general procedure for finding the minimum weight hypertree rooted at s containing the
minimum weight hyperpaths was proposed in Gallo et al. [29]. Procedure SHT, shown in
Figure 2.3, is a particular version which is a simple generalization of Dijkstra’s algorithm.
Here we always pick a node with minimum weight from the candidate set Q (line 6).
In this case, the well-known assumption of nonnegative arc weights in standard directed
graphs becomes

w (e) + F (T (e)) ≥W (v) , ∀v ∈ T (e) , e ∈ E (2.8)

and Dijkstra’s theorem can be extended to hypergraphs.

Theorem 2.3.3 Suppose (2.8) holds and W (u) = min {W (v) | v ∈ Q} . Then W (u) is
the minimum weight of all hyperpaths from s to u.

As a consequence we have that every node u ∈ V is removed from Q at most once.
Note that, using Theorem 2.3.3, we have that the order in which we pick the nodes from

14 Directed hypergraphs

1 procedure SHTacyclic(s,H)
2 W (v1) := 0; for (i = 2 to n) do W (vi) := ∞;
3 for (i = 2 to n) do
4 for (e ∈ BS(vi)) do
5 if (W (vi) > w(e) + F (e)) then
6 W (vi) := w(e) + F (e); p (vi) := e;
7 end for
8 end for
9 end procedure

Figure 2.4: An acyclic procedure for finding the minimum weight hypertree.

Q, defines a valid ordering of the minimal hypertree. Moreover, if the distance function
is considered, then the node u picked form the candidate set on line 6 is the node in
T (e) , e ∈ FS (u) with maximal value. Hence we may use F (e) = W (u) instead of
F (e) = maxu∈T (e) {W (u)} on line 11 and 13.

The complexity of procedure SHT, if a heap implementation [see 87] of the candidate
set Q is used and (2.8) holds, is O(m log n + size (H)). If (2.8) does not hold, a node
may be reinserted in Q resulting in complexity O (n · size (H)) .

If H is acyclic, a faster procedure exists (see e.g. Gallo and Pallottino [30]). Procedure
SHTacyclic is shown in Figure 2.4 and needs a valid ordering V = (s = v1, ..., vn) of H.
Since each hyperarc is examined once, the procedure runs in O (size (H)) time.

Example 1 (continued) Assume that hypergraph H is assigned weights as shown in
Figure 2.5(a) and consider the mean weighting function with the value of the multipliers
equal to 1/ |T (e)| for each arc e. The minimal hypertree is shown in Figure 2.5(b) with
the weight W (v) near to each node v. The weight of the minimal s-t hyperpath is 4. The
hypertree in Figure 2.5(b) is also minimal with respect to the distance weighting function.

H does not satisfy the gainfree condition (2.7). That is, condition (2.7) is not a
necessary condition. However, no decreasing cycles will be detected by procedure SHT.

2.4 End-trees and reoptimization techniques

In this section we consider reoptimization techniques on acyclic hypergraphs which later
will be used on the acyclic time-expanded hypergraph representing a stochastic time-
dependent network.

Let H be an acyclic hypergraph containing hypertree Ts defined by predecessor func-
tion p. Furthermore, let W (v) denote the weight of the hyperpath πsv ⊆ Ts for each node
v ∈ N = V \ {s}.

Definition 2.4.1 Consider an s-t hyperpath π. Then end-tree η = (Vη, Eη) defined by
Iη ⊆ Vπ and contained in hyperpath π is a hypergraph satisfying

1. Eη =
⋃

v∈Iη
p (v) , Vη =

⋃
e∈Eη

(T (e) ∪ {h (e)})

2.4 End-trees and reoptimization techniques 15

1
1

1

3
1

4

4

1

2

t

1

2

3 4

s

(a) Weights of hypergraph H.

1

4

3

1

3
t

1

2

3 4

s
0

(b) The minimum weight hypertree.

Figure 2.5: Hypergraph H and its minimum weight hypertree.

2. v ∈ Vη ⇒ ∃v − t path in η

Note that, condition 2 implies that t ∈ Iη. We denote Iη the set of inner-nodes and Eη

the set of leaf-nodes in η

Eη = Vη�Iη = {v ∈ Vη | |BSη (v)| = 0}

Now, assume that each s-t hyperpath in H must contain end-tree η ⊆ Ts, i.e. BSπ (v) =
{p (v)} for all v ∈ Iη. Consider nodes v ∈ E ⊆ Eη and assume that subhypergraph H̃
is obtained by removing the predecessor hyperarc p (v) , ∀v ∈ E from H. Let T̃s be
the minimal hypertree of H̃ and let W̃ (v) denote the weight of the minimal hyperpath
π̃sv ⊆ T̃s.

We consider the problem of finding the minimal hypertree T̃s, in particular the weight
of the minimal s-t hyperpath π̃ ⊆ T̃s. The two weighting functions are considered sepa-
rately.

2.4.1 The value weighting function

Consider the value weighting function. Using end-tree η, Theorem 2.3.1 can be reformu-
lated.

Theorem 2.4.1 The weight of hyperpath π, using the value weighting function and end-
tree η ⊆ π, is

W (t) =
∑

v∈Eη

W (v) fη (v) +
∑

v∈Iη

w (p (v)) fη (v) (2.9)

where

fη (u) =
{

1 u = t∑
e∈FSη(u)ae(u)fη (h (e)) u ∈ Vη� {t} (2.10)

The values of fη can be computed by processing the nodes backwards according to valid
ordering Vη ⊆ Vπ.

16 Directed hypergraphs

Proof Consider valid ordering Vη = (v1, ..., vq = t) of η. We show (2.9) by considering
each node in Vη starting with node vq processing down to node v1. Given I ⊆ Vη, t ∈ I
define f I (u) for all u ∈ Vη

f I (u) =

1 I = {t}
0 I ∩ {h (e) : e ∈ FSη (u)} = ∅∑

e∈FSη(u)
h(e)∈I

ae(u)f I (h (e)) I ∩ {h (e) : e ∈ FSη (u)} �= ∅

Note f I (u) is the part of fη (u) found by using only the hyperarcs in FSη (u) with head
belonging to the set I. Moreover, if I is the set of nodes above node u in Vη, then
f I (u) = fη (u). Now, consider node vq. According to equation (2.1) we have that

W (t) = w (p (vq)) +
∑

u∈T (p(vq))
ap(vq) (u)W (u) (2.11)

Let Ii
η and Ei

η denote the set of inner and leaf-nodes already considered

Ii
η = {vj ∈ Iη : i ≤ j ≤ q} , Ei

η = {vj ∈ Eη : i ≤ j ≤ q}

Moreover, let

Bi
η =

{
u ∈

⋃
v∈Ii

η

T (p (v)) : u /∈ Ii
η, u /∈ Ei

η

}
Then (2.11) can be written as

W (t) =
∑

v∈Iq
η

w (p (v)) fη (v) +
∑

v∈Eq
η

fη (v)W (v) (2.12)

+
∑

u∈Bq
η

f Iq
η (u)W (u)

Assume that node vq, ..., vi+1 have been considered and that (2.12) holds, then vi ∈ Bi+1.
We consider two cases. If vi ∈ Iη, we write out W (vi) , i.e.

W (t) =
∑

v∈Ii+1
η

w (p (v)) fη (v) +
∑

v∈Ei+1
η

fη (v)W (v)

+
∑

u∈Bi+1
η �{vi}

f Ii+1
η (u)W (u)

+ f Ii+1
η (vi)

(
w (p (vi)) +

∑
u∈T (p(vi))

ap(vi) (u)W (u)
)

=
∑

v∈Ii
η

w (p (v)) fη (v) +
∑

v∈Ei
η

fη (v)W (v) +
∑

u∈Bi
η

f Ii
η (u)W (u)

and (2.12) holds for node i. If vi ∈ Eη then (2.12) also holds since Ii
η = Ii+1

η , Ei
η =

Ei+1
η ∪ {vi} and Bi

η = Bi+1
η � {vi}.

Proceeding down to node v1, we have that (2.12) can be written as

W (t) =
∑

v∈Eη

fη (v)W (v) +
∑

v∈Iη

w (p (v)) fη (v)

since B1
η = ∅.

2.4 End-trees and reoptimization techniques 17

Assume that weights W̃ (v) , v ∈ Eη are known. The increase in W̃ (t) is then

W̃ (t) −W (t) =
∑

v∈Eη

W̃ (v) fη (v) +
∑

v∈Iη

w (p (v)) fη (v)

−
∑

v∈Eη

W (v) fη (v) +
∑

v∈Iη

w (p (v)) fη (v)

=
∑

v∈Eη

(
W̃ (v) −W (v)

)
fη (v)

and hence the following theorem holds.

Theorem 2.4.2 The weight of hyperpath π̃ ⊆ H̃ is

W̃ (t) = W (t) +
∑

v∈Eη

(
W̃ (v) −W (v)

)
fη (v) (2.13)

If only the last node vlast of the valid sub-ordering VEη ⊂ Vπ is modified, i.e. E ={
vlast

}
, then W (u) = W̃ (u) , ∀u ∈ Eη�

{
vlast

}
. Moreover, fπ

(
vlast

)
= fη

(
vlast

)
re-

sulting in the following corollary.

Corollary 2.4.1 The weight of hyperpath π̃ ⊆ H̃ when E =
{
vlast

}
is

W̃ (t) = W (t) +
(
W̃

(
vlast

)
−W

(
vlast

))
fπ

(
vlast

)
(2.14)

Note that, the value of fπ (v) and fη (v) , v ∈ Vπ is not necessarily equal since v-t
paths may exist with hyperarcs e /∈ Vη.

Example 2 (continued) Consider the hyperpath in Figure 2.2 with valid ordering Vπ =
(s, 1, 2, 3, 4, 5, 6, 7, t) . The end-tree defined by Iη = (2, 5, t) is shown with solid lines in
Figure 2.2. The set of leaf-nodes is Eη = {s, 3, 4, 6, 7} . The value of fη (v) is shown near
each node v ∈ Vη in parentheses.

2.4.2 The distance weighting function

Given end-tree η, the maximum weight lη(u) of an u-t path contained in η can be found
by using the following recursive equations

lη(u) =
{

0 u = t

maxe∈FSη(u) {lη(h(e)) + w(e)} u ∈ Vη \ {t} (2.15)

Similar to the mean case, lπ and lη are not always equal, since not all u-t paths in π may
be contained in η.

Lemma 2.4.1 Let Pπ denote the set of s-t paths in π and let Pv ⊆ Pπ, v ∈ Eη be defined
by

Pv = {Psv ∪ Pvt ∈ Pπ | Psv ⊆ πsv, Pvt ⊆ η}
That is, Pv denotes the set of s-t paths consisting of a path in the subhyperpath πsv and
a v-t path in η. Then

Pπ =
⋃

v∈Eη

Pv and
⋂

v∈Eη

Pv = ∅

18 Directed hypergraphs

Proof Since each path in Pπ must contain at least one leaf-node, we have that Pπ =⋃
v∈Eη

Pv. Note that each path Pvt ⊆ η, v ∈ Eη contains only one single leaf-node, namely
v. Assume that P ∈ Pv and P ∈ Pu, v �= u. Moreover, assume without loss of generality
that node v precedes node u in Vπ. Then Pvt ⊂ P is a path in η containing node u
contradicting that v must be the only leaf-node in Pvt and hence

⋂
v∈Eη

Pv = ∅.

Given a node v ∈ Eη, we have that W (v)+ lη (v) is the maximal weight of an s-t path
in Pv. Using Lemma 2.4.1, we have

Theorem 2.4.3 Given leaf-nodes Eη of η, we have that the weight of π is

W (t) = maxv∈Eη {W (v) + lη (v)}

and the weight of hyperpath π̃ is

W̃ (t) = maxv∈Eη

{
W̃ (v) + lη (v)

}
(2.16)

If we only modify H by removing the predecessor from exactly one node v̂ (i.e. E =
{v̂}) then some special cases arise

Theorem 2.4.4 Let P denote a maximal weight path in π.

If W̃ (v̂) ≥W (v̂) and P ∈ Pv̂ then W̃ (t) = W̃ (v̂) + lη (v̂) (2.17)

If W̃ (v̂) ≤W (v̂) and v̂ /∈ P then W̃ (t) = W (t) (2.18)

Proof Assume W̃ (v̂) ≥ W (v̂) and P ∈ Pv̂ then the maximal path P̃ of π̃ will be
contained in P̃v̂ and hence W̃ (t) = W̃ (v̂) + lη (v̂) .

Assume W̃ (v̂) ≤ W (v̂) and v̂ /∈ P . Since P is still a path in π̃ and W̃ (v̂) + lη (v̂) ≤
W (t), we have that W̃ (t) = W (t) .

If v̂ is the last node vlast of the valid sub-ordering VEη ⊂ Vπ then W (u) = W̃ (u) ,
∀u ∈ Eη�{vlast} and lπ(vlast) = lη(vlast). Furthermore, if W̃ (vlast) ≥ W (vlast) and
P /∈ Pvlast then

W (t) = maxv∈Eη\{v̂} {W (v) + lη(v)}

and hence (2.17) can be modified to

Corollary 2.4.2 If E =
{
vlast

}
and W̃

(
vlast

)
≥W

(
vlast

)
, then

W̃ (t) = max
{
W (t) , W̃

(
vlast

)
+ lπ

(
vlast

)}
Note that, if hypertree Ts is minimal, then we always have that W̃

(
vlast

)
≥W

(
vlast

)
.

Chapter

3
Stochastic
time-dependent
networks

Travel time between an origin and a destination is often the primary objective when
routing data, commodities, vehicles etc. in a network. The problem of finding a minimal
travel time path, if travel time is deterministic and time-independent, has been the subject
of extensive research for many years. For an overview see e.g. Deo and Pang [22] or the
textbook by Ahuja, Magnanti, and Orlin [2]. However, a transportation network in which
travel times between locations are deterministic and time-independent is often unrealistic.
For instance, travel time between one’s home and one’s workplace is normally faster at
midnight than during rush hour, and even during off-peak hours, travel times may vary
substantially.

We say that a network is time-dependent if the travel times on the arcs are functions
of time, and stochastic if the travel time is represented by probability distributions rather
than simple scalars.

Several papers address stochastic shortest path problems in stochastic time-indepen-
dent networks. Each with a different meaning of an optimal path. Frank [27] considered
the general problem of finding shortest path probability distributions. Sigal, Pritsker, and
Solberg [83] introduced the problem where the optimal path is the one with the greatest
probability of being the shortest path. The problem generated considerable interest.
We point out Adlakha [1] and Corea and Kulkarni [19]. A somewhat related problem
considered by Jaillet [45] is the one of determining a path, a priori, that minimizes the
expected distance, with some nodes being subject to failure with a known probability. One
of the most well considered problems is where the optimal path is the one that maximizes
the decision maker’s expected utility. The problem was first considered by Loui [52] and
generated wide interest, see e.g. Murthy and Sarkar [64] and Eiger, Mirchandani, and
Soroush [25]. Recently, the problem of finding a path that minimizes expected length,
when the traveller can change his path upon arrival at an intermediate node, has been
studied, see e.g. Psaraftis and Tsitsiklis [79] and Provan [78].

Shortest path problems on non-stochastic time-dependent networks have been studied
for many years. Nonstochastic time-dependent networks was considered as early as 1966
by Cooke and Halsey [18]. Various types of problems have been considered depending on
whether we are considering travel time or cost, discrete vs. continuous representation of
time, waiting is allowed in nodes vs. no waiting etc. Orda and Rom [72, 73] considered

20 Stochastic time-dependent networks

1 2 3

A

CB

Figure 3.1: Halls example.

continuous time-dependent networks and the problem of finding a path which minimizes
the travel time or cost between two nodes when leaving the origin node at time zero.
On discrete time-dependent networks, the problem of finding paths that minimize travel
time from one origin node, leaving at time zero, to all other nodes has been addressed by
Cooke and Halsey [18] and when no waiting is allowed by Kaufman and Smith [50]. The
problem of finding paths minimizing travel time from all nodes to one destination node
for all leaving times was considered by Ziliaskopoulos and Mahmassani [95] and Chabini
[12]. In Chen and Tang [15] the problem of finding a minimal travel time or cost path
between two nodes was addressed on a discrete network, where leaving a node is only
prohibited at a set of pre-specified leaving times and in Chen, Rinks, and Tang [14] the
problem of finding the K minimum cost paths on the same type of network was solved.

It is evident that both the stochastic and time-dependent properties are appropriate
in a transportation network model. For instance, the time to travel from one bus stop
to another depends on whether or not you arrive at the first stop in time to catch your
preferred bus, and regardless of which bus you take, your travel time on the bus will vary.
Therefore stochastic time-dependent networks∗ (STD networks) often provide a better
modelling tool in transportation applications.

STD networks was first addressed by Hall [37] who considered the problem of finding a
path between two nodes minimizing the expected travel time when leaving the origin at a
specific time. He pointed out several ways to formulate the path selection problem in STD
networks and complications arising as a consequence of modelling both the stochastic and
time-dependent properties in the network.

If a loopless path must be specified before travel begins, and no deviations from the
route are permitted, the path is selected a priori on the basis of only the probability
distributions of the arc travel-times. This is referred to as a priori route choice and may
be useful for routing highly sensitive substances for which the path travelled must be
preapproved or where the driver does not have access to (or time to access) information
while travelling.

It is well-known that the deterministic shortest path problem can be solved fast since
the principle of optimality holds. That is, optimal paths are composed of optimal sub-
paths. Furthermore, as pointed out by Loui [52], the same holds for the problem of
finding a path in a stochastic time-independent network with minimum expected travel
time. Here the problem can be solved by just using the expected values of the edge
probabilities and solve the resulting deterministic problem. Hall [37] presented a simple
example showing that the principle of optimality does not hold in STD networks. In

∗Also called random time-dependent networks, stochastic time-varying networks or stochastic dynamic
networks.

3.1 Problem definition 21

Halls example, reproduced in Figure 3.1, a traveller leaves node 1 at 2 o’clock. Route A
has deterministic travel time, route B stochastic travel time and route C time-dependent
travel time. Although route A has the lowest expected travel time to node 2, path BC
has a lower expected travel time overall than path AC. That is, the optimality principle
is violated. Hall [37] proposed an approach combining branch and bound and K short-
est paths techniques for determining the minimum expected travel time a priori path.
The worst-case complexity of the algorithm is non-polynomial. Moreover, it required the
determination of the k’th shortest path having minimum possible arrival time at the des-
tination. No procedure for determining this path was given. Later, Pretolani [77] showed
that the problem of finding a minimal expected travel time path under a priori route
choice is NP-hard.

Hall [37] also pointed out that rather than to determine a single path based on only
information known before travel begins, routes with lower expected travel time may be
obtained by allowing the driver to react to revealed (actual) arrival times at intermedi-
ate nodes. This is identical to a multistage recourse problem where decisions are taken
according to realizations of arc travel time outcomes while travelling. See Birge and
Louveaux [9] for a general overview of stochastic recourse models. Hall realized that the
best time-adaptive route minimizing expected travel time is not necessarily a path but
rather an time-adaptive strategy that assigns optimal successors to a node as a function
of time. This is referred to as time-adaptive route choice. He proposed a dynamic solution
approach to determine optimal strategies for networks with limited size.

Several papers have emerged from Halls work. Miller-Hooks and Mahmassani [59]
presented two procedures for determining the a priori paths with least possible travel
time. Such paths may not necessarily be the most desirable, since they do not consider all
relevant risk dimensions. Pretolani [77] presented a hypergraph model for STD networks
and showed that a time-adaptive strategy corresponds to a hyperpath in a time-expanded
hypergraph. Moreover, the best strategy under different criteria, such as minimizing
expected or maximum possible travel time or cost, can be found by solving a minimum
weight hyperpath problem using different weights and weighting functions. This result is
interesting and the basis of this thesis. In Miller-Hooks and Mahmassani [61] a labelling
correcting procedure for finding a path with minimum expected travel time under a priori
route choice was presented. Furthermore, a labelling correcting procedure for finding
a lower bound on the expected travel time was presented. Later the authors realized
that the lower bounding procedure with minor changes solves the time-adaptive route
problem and extensive computational testing of the problem of finding optimal time-
adaptive strategies was conducted in Miller-Hooks [58]. The procedures in Miller-Hooks
[58] do not use hypergraph procedures to find optimal strategies. However, optimal
strategies are represented by hyperpaths as in Pretolani [77].

3.1 Problem definition

We consider discrete STD networks where departure times are integer, and travel times
are independent integer-valued discrete random variables with time-dependent density
functions.

Let G = (N,A) be a directed graph with node set N and arc set A. We will refer to G
as the topological network. Let o ∈ N and d ∈ N denote the origin and destination node
in G, respectively. For the sake of simplicity, we assume that G contains no parallel arcs.

22 Stochastic time-dependent networks

Furthermore, no arcs enter node o and no arcs leave node d.
Assume that departure and arrival times belong to a finite time horizon, i.e. a set

H = {0, 1, ..., tmax} of integer values. In practice, we assume that the relevant time period
is discretized into time intervals of length δ, that is, the time horizon H corresponds to
the set of time instances 0, δ, 2δ, ..., tmaxδ.

For each arc (u, v) ∈ A let L (u, v) ⊂ H be the set of possible leaving times from node
u along arc (u, v) . Moreover, let L (u) , u �= d denote the set of possible leaving times
from node u, i.e

L (u) =
⋃

(u,v)∈FS(u)

L (u, v)

and let L (d) denote the set of possible arrival times at node d. For each arc (u, v) ∈ A
and t ∈ L (u, v) , let X (u, v, t) denote the arrival time at node v when leaving node u
at time t along arc (u, v) . The arrival time X (u, v, t) is a discrete random variable with
density

Pr (X (u, v, t) = ti) = θuvt (ti) , ti ∈ I (u, v, t)

where
I (u, v, t) =

{
t1, ..., tκ(u,v,t)

}
denotes the set of κ (u, v, t) possible arrival times at node v when leaving node u at time
t along arc (u, v) . That is, for each ti ∈ I (u, v, t) the probability of arriving at node v
at time ti when leaving node u at time t is θuvt (ti) . We assume that travel times are
positive, i.e.

ti > t, ∀ti ∈ I (u, v, t) (3.1)

For the moment we assume that waiting in a node is prohibited. As we will see in
Section 3.3 the model can easily be extended to the case where waiting is allowed. We
assume the following assumption holds

I (u, v, t) ⊂ L (v) , ∀ (u, v) ∈ A, t ∈ L (u, v) , v �= d (3.2)

That is, the traveller can not get stuck at an intermediate node v. If it is possible to
arrive at node v at time ti then it is also possible to leave v at time ti. Moreover, since
travel times are positive integers and tmax is finite, a traveller arrives at node d within
time tmax.

Costs can also be considered in the model by letting c (u, v, t) , t ∈ L (u, v) denote the
deterministic cost of leaving node u at time t along arc (u, v) . Moreover let gd (t) be the
penalty cost of arriving at node d at time t.

Definition 3.1.1 A strategy is a function S with domain

Dm (S) ⊆ {(u, t) : u ∈ N� {d} , t ∈ L (u)}

assigning to each pair (u, t) ∈ Dm (S) a successor arc (u, v) ∈ FS (u). Furthermore,
strategy S must satisfy the following conditions

1. If (u, t) ∈ Dm (S) and S (u, t) = (u, v) ⇒ t ∈ L (u, v).

2. If (u, t) ∈ Dm (S) and S (u, t) = (u, v) , v �= d⇒ (v, t′) ∈ Dm (S) , ∀t′ ∈ I (u, v, t).

3.2 Route selection criteria 23

Strategy S provides routing choices for travelling from all nodes and leaving times in
the domain towards the destination d. That is, a traveller leaving node u at time t travels
along arc S (u, t) .

A strategy must provide routing choice for all possible arrival times at an intermediate
node when following strategy S (condition 2 above). Note that Definition 3.1.1 extends
the definition of a strategy given by Pretolani [77] where a strategy was defined for every
node u ∈ N� {d} and leaving time t ∈ L (u). That is,

Dm (S) = {(u, t) : u ∈ N� {d} , t ∈ L (u)} (3.3)

and strategy S provides routing choice for travelling from all nodes at all possible leaving
times towards the destination node d. However, we may only be interested in strategies
providing route choice when leaving a specific node o at a specific time t towards the
destination d.

Definition 3.1.2 A strategy Sot providing routing choice for travelling from the origin
node o when leaving at time t towards the destination node d is a strategy satisfying

1. (o, t) ∈ Dm (Sot).

2. No pair (u, t′) can be removed from Dm (Sot) \ {(o, t)} such that Definition 3.1.1
still holds.

That is, in strategy Sot, we only consider the nodes and leaving times necessary for
defining the route travelled when leaving the origin at time t.

A strategy is a path-strategy if we travel along a loopless path in G, i.e. the successor
arc is unique and does not depend on time; in other words, a path-strategy must satisfy

S (u, t) = S (u, t′) , ∀ (u, t) , (u, t′) ∈ Dm (S) (3.4)

Finally, denote by
κ =

∑
(u,v)∈A, t∈L(u,v)

κ (u, v, t)

the total number of possible travel times. The value of κ can be considered as the size of
the input.

3.2 Route selection criteria

We consider different criteria for comparing strategies introduced by Pretolani [77]. Other
criteria for comparing strategies under a priori and time-adaptive route choice have been
considered by Miller-Hooks and Mahmassani [62]. However, these criteria seem to be
harder to use, since they require a huge number of comparisons between strategies for
finding optimal ones.

In the following we consider criteria under time-adaptive route choice and start by
considering the most frequently used criterion for ranking optimal strategies, namely
expected travel time. Let the random variable Y S

T (u, t) denote the arrival time at node
d when leaving node u at time t following strategy S (index T indicates that arrival time
is considered). If we leave node u at time t following arc S (u, t) = (u, v) and arrive at

24 Stochastic time-dependent networks

time t′ at node v, then the arrival time at node d is Y S
T (v, t′) and hence, according to e.g.

Hoel, Port, and Stone [42, p108], we have that the density of Y S
T (u, t) is

Pr
(
Y S

T (u, t) = ta
)

=
∑

t′∈I(u,v,t)

θuvt (t′) Pr
(
Y S

T (v, t′) = ta
)

(3.5)

where ta is the arrival time at node d. Furthermore, since Y S
T (d, t) = t with probability

one, the expected arrival time ES
T (u, t) at the destination d can be found by the following

recursive equations

ES
T (u, t) =

{
t u = d, t ∈ L (d)∑

ti∈I(u,v,t) θuvt (ti)ES
T (v, ti) u �= d, t ∈ L (u)

assuming that S (u, t) = (u, v) . The minimum expected travel time problem (MET prob-
lem) consists in finding a strategy S, with domain (3.3), yielding a minimum ES

T (u, t) for
each pair (u, t) ∈ Dm (S). Note that the expected travel time for a traveller leaving node
u at time t ∈ L (u) is given by ES

T (u, t) − t, that is, expected arrival time and expected
travel time only differ by the constant t.

Instead of considering expectation criteria worst cases may be of concern. That is,
finding the strategy minimizing maximum possible travel time. Given strategy S, assume
that we leave node u at time t ∈ L (u) following arc S (u, t) = (u, v) . Then the maximum
possible arrival time MS

T (u, t) at node d is found using the recursive equations

MS
T (u, t) =

{
t u = d, t ∈ L (d)
maxti∈I(u,v,t)

{
MS

T (v, ti)
}

u �= d, t ∈ L (u)

The min-max travel time problem (MMT problem) consists in finding a strategy S, with
domain (3.3), giving a minimum MS

T (u, t) for each pair (u, t) ∈ Dm (S).
Similarly a random variable denoting the cost of strategy S instead of travel time can

be defined. The expected cost ES
C (u, t) when leaving node u at time t following strategy

S, can then be found using the recursive equations

ES
C (u, t) =

{
gd (t) u = d, t ∈ L (d)
c (u, v, t) +

∑
ti∈I(u,v,t) θuvt (ti)ES

C (v, ti) u �= d, t ∈ L (u)

and the maximum possible cost MS
C (u, t) by using the recursive equations

MS
C (u, t) =

{
gd (t) u = d, t ∈ L (d)
c (u, v, t) + maxti∈I(u,v,t)

{
MS

C (v, ti)
}

u �= d, t ∈ L (u)

The minimum expected cost problem (MEC problem) and the min-max cost problem
(MMC problem) consist in finding a strategy S, with domain (3.3), yielding the mini-
mum of ES

C (u, t) and of MS
C (u, t) for each pair (u, t) ∈ Dm (S), respectively.

The above problems seek a strategy which does not necessarily corresponds to a path,
i.e. they are problems under time-adaptive route choice. However, the same problems can
be formulated under a priori route choice seeking a path-strategy instead of a “general”
strategy denoted the MET, MMT, MEC and MMC problem under a priori route choice.

3.3 A hypergraph model for STD networks 25

3.3 A hypergraph model for STD networks

We now use a time-expanded hypergraph H = (V , E) to model an STD network. The set
V contains one node for each pair (u, t) , t ∈ L (u) and an origin node s, i.e.

V =
{
ut : u ∈ N, t ∈ L (u)

}
∪ {s}

For each (u, v) ∈ A and t ∈ L (u, v) define a hyperarc

euv (t) =
({
vti : ti ∈ I (u, v, t)

}
, ut

)
Note that the orientation of euv (t) is opposite to the orientation of arc (u, v) , indeed, the
tail of euv (t) contains a node vti for each possible arrival time ti at node v, when leaving
node u at time t. Moreover, for each t ∈ L(d) define a dummy arc

ed (t) =
(
{s} , dt

)
That is, the set of hyperarcs is

E = {euv (t) : (u, v) ∈ A, t ∈ L (u, v)} ∪ {ed (t) : t ∈ L(d)}

It is obvious that size(H) is O (κ) and H can be built in O (κ) time. Furthermore, a valid
ordering where s precedes the other nodes can be found by ranking the nodes in V\ {s}
in decreasing order of time since (3.1) holds. Therefore according to Theorem 2.2.1 H
satisfies

Corollary 3.3.1 H is an acyclic hypergraph with origin s.

Observe that there is a one to one correspondence between a strategy and a predecessor
function on H, i.e. choosing p (ut) = euv (t) is equivalent to choosing S (u, t) = (u, v) .
Moreover, a node ut, u �= d in H is only defined if t ∈ L (u) and hence BS (ut) is
nonempty. The same holds for the nodes dt, t ∈ L (d) where ed (t) is the unique arc in
BS (dt) . According to Definition 2.2.2, we now have

Corollary 3.3.2 The predecessor function p defined for each node u ∈ V\ {s} correspond-
ing to strategy S with domain (3.3) defines a hypertree Ts in H. Moreover, a strategy Sut

providing route choice when leaving node u at time t towards d defines an s-ut hyperpath
πSut .

Pretolani [77] proved the following important result

Lemma 3.3.1 The maximum arrival time MS
T (u, t) for each pair (u, t) ∈ Dm (Sut) using

strategy Sut is equal to the weight of hyperpath πSut using the distance weighting function
and the following weights

w (e) =
{
t e = ed (t)
0 otherwise

(3.6)

The expected arrival time ES
T (u, t) for each pair (u, t) ∈ Dm (Sut) using strategy Sut is

equal to the weight of hyperpath πSut using the mean weighting function, weights (3.6)
and the following multipliers

ae

(
vt

)
=

{
θuvt (ti) ∀e = euv (t′) , t ∈ I (u, v, t)
1 ∀e = ed (t) , t ∈ L (d)

(3.7)

26 Stochastic time-dependent networks

The maximum cost MS
C (u, t) for each pair (u, t) ∈ Dm (Sut) using strategy Sut is equal

to the weight of hyperpath πSut using the distance weighting function and the following
weights

w (e) =
{
gt (d) e = ed (t)
c (u, v, t) e = euv (t)

(3.8)

The expected cost ES
C (u, t) for each pair (u, t) ∈ Dm (Sut) using strategy Sut is equal

to the weight of hyperpath πSut using the mean weighting function, weights (3.8) and
multipliers (3.7).

Lemma 3.3.1 implies that the MET problem, for instance, can be formulated as finding
a predecessor function yielding a minimum weight hypertree when the mean weighting
function is used. Moreover, since H is acyclic we have that the MET problem can be solved
in O (size (H)) = O (κ) time. That is, we have the following theorem for time-adaptive
route choice.

Theorem 3.3.1 Consider the time-expanded hypergraph H of an STD network. Under
time-adaptive route choice we have that

1. The MET problem can be solved by finding the minimum hypertree using the mean
weighting function and weights (3.6) and multipliers (3.7) on H.

2. The MMT problem can be solved by finding the minimum hypertree using the distance
weighting function and weights (3.6) on H.

3. The MEC problem can be solved by finding the minimum hypertree using the mean
weighting function and weights (3.8) and multipliers (3.7) on H.

4. The MMC problem can be solved by finding the minimum hypertree using the distance
weighting function and weights (3.8) on H.

The above problems can be solved in O (κ) time.

Unfortunately the same does not hold under a priori route choice where a path-strategy
must be found (Pretolani [77]).

Theorem 3.3.2 The problems in Theorem 3.3.1 under a priori route choice become NP-
hard.

The model presented in Section 3.1 assumed that waiting in nodes are not allowed.
However, the model can easily be extended. For instance, waiting at node u at time t
to time t′ = t + 1 can be represented by the arc eu (t, t′) = {{ut′}, ut} in H assigned
cost c (u, t, t′). Note that assumption (3.2) has to be modified so that, when arriving at a
node, the traveller can either wait or leave it. Observe that the size of H with waiting arcs
remains O (κ). Other features such as time windows can be easily modelled by deleting
suitable sets of hyperarcs from H.

Example 3 Consider the topological network G = (N,A) in Figure 3.2, where a is the
origin node and d is the destination node. For each arc in G, the possible departure and
arrival times are listed in Table 3.1. Here a pair ((u, v), t) corresponds to a possible leaving

3.4 The density of Y S
T

(
o, t̂

)
27

(u, v), t (a, b), 0 (b, c), 1 (b, c), 2 (b, d), 1 (b, d), 2 (c, d), 2 (c, d), 3 (c, d), 4
I(u, v, t) {1, 2} {2, 3} {3} {3} {6} {3, 4} {4, 5} {5, 6}

Table 3.1: Input parameters.

a

b

c

d

Figure 3.2: The topological network G.

time t from node u along arc (u, v). For the sake of simplicity, we assume that X (u, v, t)
has a uniform density, i.e., for each t′ ∈ I(u, v, t), we have θuvt(t′) = 1/|I(i, j, t)|. For
example, if we leave node c at time 2 along arc (c, d), we arrive at node d at time 3 or 4
with the same probability 1/2. Moreover, assume that it is possible to arrive at node c
(from node b) at time 2, and leave (towards node d) at time 4. That is, a traveller arriving
at node c can wait in node c until time 4, and then proceed along arc (c, d); waiting is
not allowed elsewhere.

The time expanded hypergraph H is shown in Figure 3.3. The weight/cost of each
hyperarc is given close to each hyperarc. Consider the MMC problem, the minimal hy-
pertree Ts is shown with solid lines in Figure 3.3. The weightW (ut) appears close to each
node ut. Note that Ts corresponds to a strategy S with sub-strategy Sa0 corresponding
to hyperpath πSa0 . The min-max cost for leaving node a at time zero is MS

C(a, 0) = 8.

3.4 The density of Y S
T

(
o, t̂

)
We consider the density of the random variable Y S

T

(
o, t̂

)
denoting the arrival time at

the destination d when leaving the origin o at time t̂ following strategy Sot̂. The density
of Y S

T

(
o, t̂

)
can be found recursively using (3.5). However, there is a clear connection

between fπ, defined in (2.4) and Y S
T

(
o, t̂

)
. Let Y S

T

(
o, t̂, v

)
denote the arrival time at

node v when leaving node o at time t̂ following strategy Sot̂. Then the following holds

Theorem 3.4.1 Given the hyperpath πSot̂ corresponding to strategy Sot̂. For each pair
(v, ta) ∈ Dm (Sot̂) or pair (v, ta) = (d, ta) , dta ∈ Vπ, we have that

Pr
(
Y S

T

(
o, t̂, v

)
= ta

)
= fπ

(
vta

)
Proof Consider strategy Sot̂ and its corresponding hyperpath πSot̂ . It is obvious that
for pair

(
o, t̂

)
, we have that Pr

(
Y S

T

(
o, t̂, o

)
= t̂

)
= f(ot̂) = 1. Moreover, for v �= o, the

28 Stochastic time-dependent networks

a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

0 0 0 0

8 2
9

1

5

52

2

2 2

0 0 0 0

4 1
2

56

8

Figure 3.3: The time-expanded hypergraph H.

probability of Y S
T

(
o, t̂, v

)
being equal to ta, can be defined recursively as

Pr
(
Y S

T

(
o, t̂, v

)
= ta

)
=

∑
(u,t):h(S(u,t))=v

θuvt (ta) Pr
(
Y S

T

(
o, t̂, u

)
= t

)
(3.9)

However, a pair (u, t) satisfying that the head of h (S (u, t)) is equal to v corresponds
to a hyperarc euv (t) ∈ FS (vta) in π with multiplier ae (vta) = θuvt (ta) . Therefore the
recursive equation (3.9) and the recursive equation (2.4) defining fπ are identical.

Given node vt ∈ Vπ, the above theorem says that fπ (vt) is the probability of ar-
riving at node v at time t, when following strategy Sot̂. Since Y S

T

(
o, t̂, d

)
= Y S

T

(
o, t̂

)
,

Theorem 3.4.1 gives us that the density of Y S
T

(
o, t̂

)
is

Pr
(
Y S

T

(
o, t̂

)
= ta

)
= fπ

(
dta

)
, dta ∈ Vπ

and zero otherwise.

3.5 Generating STD networks

To test the algorithms in this thesis, a generator was constructed generating time-expanded
hypergraphs, denoted TEGP (Time-Expanded Generator with Peaks). This program in-
cludes several features inspired by typical aspects of road networks (congestion effects,

3.5 Generating STD networks 29

4 71

3 6 9

5 82

d

o

Figure 3.4: A topological grid network (3 × 3 grid).

waiting, random perturbations etc.). Note that the TEGP generator like other generators
only models a fraction of a real network. However, it provides alternative choices that
may affect the behavior of the algorithms.

A topological grid network G of base b and height h is assumed, and we search for
optimal strategies from the bottom-right corner node (origin o) to the upper left corner
node (destination d). This choice is motivated by the fact that each origin-destination
path has at least b+ h− 2 arcs, and there are an exponential number of such paths in G.
A topological grid network G of base 3 and height 3 is shown in Figure 3.4.

The generator considers cyclic time periods (e.g. a day) and the set of time instances
H is the (finite) number of time instances in a cycle multiplied by the number of cycles.
In each cyclic period there are some peak periods (e.g. rush hours). Each peak consists of
three parts; a transient part pk1 where the traffic increases, a pure peak part pk2 where
the traffic stays the same and a transient part pk3 where the traffic decreases again. Peaks
are placed at the same time in each cycle. If no peaks is wanted then the length of the
peak may be set to zero.

We assume that the travel time density with mean µuv (t) and standard deviation
σuv (t) , for leaving node u at time t ∈ H along arc (u, v) is a discrete approximation of
the normal density. The mean µuv (t) follows a pattern like the dotted line in Figure 3.5.
In off-peaks µuv (t) = µ (u, v) ∈ [lbT , ubT] , where µ (u, v) denotes the mean travel time in
off-peaks. At the beginning of a peak, µuv (t) increases from µ (u, v) to µ (u, v) (1 + ψ),
where ψ denotes the peak increase parameter, then stays the same during the pure peak
period, and then decreases to µ (u, v) again. The same is the case for the standard
deviation, which is defined by σuv (t) = ρµuv (t) where ρ is the standard deviation mean
ratio. This setting gives higher mean travel time and higher standard deviation in peaks.
We assume symmetric mean travel times for the arcs in G, i.e. µuv (t) = µvu (t).

Two costs ci (u, v, t) , i = 1, 2 for each arc (u, v) and time t ∈ H are also generated,
since we may need two costs if bicriterion route choice are considered (see Chapter 5).
The costs can be generated in two ways, namely using random costs or peak dependent
costs.

If the costs are random no peak effect (ψ = 0) are considered and each cost ci (u, v, t),
i = 1, 2 is generated randomly in [lbC , ubC]. Note that by using this setting, e.g. the costs
of leaving a at time t may be 10 and the costs of leaving a at time t+ 1 may be 500. In
a road network this is probably not realistic and peak dependent cost can be generated

30 Stochastic time-dependent networks

pk1 pk2 pk3 pk3pk2pk1 t

travel time/
cost

Figure 3.5: Peak effect and random perturbation.

instead. However, random costs can be used to see if the algorithms presented in the
following chapters are robust.

The generation of peak dependent costs takes three components into account: the off-
peak cost, the peak effect, and a random perturbation. First, the off-peaks cost ci (u, v) ∈
[lbC, ubC], i = 1, 2, are generated. Next, the peak effect for the costs is taken into
account. For each arc (u, v), the costs, if leaving node u at a off-peak time, is ĉi (u, v, t) =
ci (u, v) , i = 1, 2. At the beginning of a peak, the costs ĉi (u, v, t) increase from ci (u, v)
to ci (u, v) (1 + ψ), then stays the same during the pure peak period, and then decrease to
ci (u, v) again. Finally, the random perturbation introduces small variations in the costs,
due to other factors not intercepted by the peak implementation, e.g. special information
about the cost at exactly that leaving time. For each cost ĉi (u, v, t) , i = 1, 2, we generate a
perturbation ξ ∈ [−rξ, rξ], where range rξ is a small percentage. Then, the cost ci (u, v, t)
of leaving node u at time t along arc (u, v) becomes ci (u, v, t) = ĉi (u, v, t) (1+ξ), i = 1, 2.
Hence the cost follows a pattern like the solid line shown in Figure 3.5. We assume
symmetric costs before the random perturbation is applied, i.e. ĉi (u, v, t) = ĉi (v, u, t) ,
i = 1, 2.

If waiting is allowed, waiting costs ci (u, t, t+ 1) , i = 1, 2 are generated like for
ci (u, v, t), except that the peak effect is not used for waiting costs. ci (u, t, t+ 1) is
the cost of waiting in node u from time t to time t+ 1.

The correlation type controls the correlation between the costs ci (u, v), i = 1, 2. Two
correlation types are possible, namely, nocor and negcor. If the correlation type is nocor,
both costs ci (u, v) , i = 1, 2 are generated randomly in [lbC , ubC] . If negcor is used,
then the two costs are assumed to be negatively correlated. This is a typical situation in
hazardous material transportation, where travel cost and risk/exposure are conflicting. In
this case the cost c1 (u, v) is generated in the interval [lbC , ubC] and depending on whether
the cost is below or above the middle of the interval, the cost c2 (u, v) is generated as
follows

c1 (u, v) <
ubC − lbC

2
⇒ c2 (u, v) ∈ [ubC − (c1 (u, v) − lbC) , ubC]

c1 (u, v) ≥ ubC − lbC
2

⇒ c2 (u, v) ∈ [lbC , lbC + (ubC − c1 (u, v))]

Points generated in the interval [1, 100]× [1, 100] for the two correlation types are shown
in Figure 3.6. Note that if waiting is allowed the waiting costs are correlated according

3.5 Generating STD networks 31

20 40 60 80

20

40

60

80

(a) Cor. type = nocor

20 40 60 80

20

40

60

80

(b) Cor. type = negcor

Figure 3.6: Points generated in [1, 100]× [1, 100] for the different correlation types.

to the specified correlation type.
The time-expanded hypergraph H is now created by expanding each node u ∈ N to

nodes ut, t ∈ H. Next, if t′ ≤ tmax, ∀t′ ∈ I (u, v, t), the hyperarc euv (t) for each t ∈ H and
(u, v) ∈ A is created with two weights. The weights depend on the problem considered for
criterion i, i = 1, 2. If the first criterion is to minimize travel time, the weight w1 (euv (t))
is set to zero (see Lemma 3.3.1), otherwise, if the first criterion is to minimize cost, then
the weight w1 (euv (t)) is set to c1 (u, v, t). Similarly for the second criterion. A dummy
origin node s and dummy arcs ed (t) = ({s} , dt) are also created and if the first criterion
is to minimize travel time, the weight w1 (ed (t)) is set to t, otherwise a penalty cost may
be used (see Lemma 3.3.1). If waiting is allowed, waiting arcs ({ut+1} , ut), 1 ≤ t ≤ H−1
for each u ∈ N \ {o, d} are generated with weights as described above.

Note that the correlation type and the range rξ of the random perturbation do not
affect the topological structure of the hypergraph. Moreover, only the interval of possible
off-peak travel times [lbT , ubT] is given as an input parameter to the TEGP generator.
When generating peak dependent costs, the actual interval of possible travel times IT
depends on the peak increase parameter ψ and the standard deviation mean ratio ρ, i.e.

IT = [(1 − ρ) lbT , (1 + ψ) (1 + ρ)ubT] (3.10)

The same holds for the generation of costs where also the range of the random per-
turbation affects the interval of possible costs:

IC = [(1 − rξ) lbC , (1 + ψ) (1 + rξ) ubC] (3.11)

Furthermore, the time horizon H for the STD network corresponding to H is not given
as an input parameter to the TEGP generator. The time horizon depends on the size of
G and the possible travel times generated for the arcs in G. The time horizon is set to
an upper bound on the travel time needed for travelling from o to d following a path of
length b + h. Therefore all hyperpaths containing paths of length less than or equal to
b+ h (not including waiting arcs), will be contained in H. Note that, since H is set to an
upper bound, travelling paths of length greater than b+ h may often be possible.

Finally, we point out that the generator create nodes and hyperarcs for each t ∈ H.
Hence some nodes and hyperarcs may not belong to an source-target hyperpath. These

32 Stochastic time-dependent networks

nodes and hyperarcs can be deleted in a preprocessing step by removing all nodes vt not
hyperconnected to s (including the hyperarcs in FS (u) and BS (u)) and all nodes vt

which do not have a path from vt to the target in H. This results in a hypergraph like
the one shown in Figure 3.3, where some of the nodes vt do not exist.

Chapter

4
Finding the K best
strategies in an STD
network

One classical problem encountered in the analysis of networks, is the ranking of paths
between two nodes in non-decreasing order of length, known as finding the K shortest
paths. The problem was considered as early as 1959 by Hoffman and Pavley [43].

The applications of the K shortest paths problem are numerous. In Rink, Rodin, and
Sundarapandian [80], the problem is applied to routing an aircraft through a network
of airfields at an airport and Hadjiconstantinou, Christofides, and Mingozzi [36] use K
shortest paths to find lower bounds on vehicle routing problems. In telecommunications,
Topkis [88] uses K shortest paths in the context of adaptive routing in communication
networks. The problem is also used to compute the K best solutions to general discrete
dynamic programming problems (Byers and Waterman [11]) and for solving generalized
assignment problems (Chang and Lai [13]). Jiménez and Marzal [47] uses K shortest
paths to enumerate the K best sentence hypotheses in speech recognition. Furthermore,
practical problems often include constraints which are hard to specify formally or hard to
optimize. Here an optimal solution can be found by enumerating suboptimal paths until
a path satisfying the hard constraints is found. Last but not least, the K shortest path
problem often appears as a subproblem within algorithms for bicriterion shortest path
problems, see for example Coutinho-Rodrigues, Climaco, and Current [20] and Handler
and Zang [38].

Assume that the K shortest paths problem on a directed network is considered. Usu-
ally, two different situations are distinguished. In the general (unrestricted) problem, the
paths are allowed to be looping, i.e. to contain cycles and in the restricted problem only
loopless paths are accepted.

For the general problem, the asymptotically best known algorithm is due to Eppstein
[26]. Here the algorithm, after computing the shortest path from every node in the
graph to the destination node, builds a graph representing all possible deviations from
the shortest path. Once this graph has been built the K shortest paths can be found very
fast, i.e. the main time is used on building the graph. A different way to solve the general
problem, is to use the path-deletion algorithm by Martins [54] which constructs a sequence
of graphs G1, ..., GK , such that the shortest path in Gk is the k ’th shortest path in the
graph G. In [6], Azevedo, Costa, Maderira, and Martins avoid the execution of a shortest
path algorithm on each graph Gk by properly using information already computed for

34 Finding the K best strategies in an STD network

Gk−1. A further computational improvement was proposed in Azevedo, Madeira, and
Martins [7]. More recently, Martins and Santos [57] have proposed a new improvement
that reduces the space complexity and in experiments reported by Martins and Santos,
their algorithm outperforms in practice the algorithm of Eppstein [26]. In Jiménez and
Marzal [48] a new algorithm was proposed. The algorithm recursively computes every
new origin-destination path by visiting at most the nodes in the previous path, and using
a heap of candidate paths from which the next path is selected. Experimental results
show that the new algorithm in practice outperforms the algorithms by Eppstein [26] and
Martins and Santos [57]. Recently, also parallel algorithms have been use to solve the
general problem, see Guerriero and Musmanno [34] and Ruppert [81].

The restricted problem where only loopless paths are accepted is considered to be
harder to solve. The problem was originally examined by Hoffman and Pavley [43], but
nearly all early attempts to solve it led to exponential time algorithms, Pollack [76]. The
best result known to date is the algorithm by Yen [94], later discussed by Lawler [51] in
the more general framework of finding the K best solutions to a discrete optimization
problem.

Let P denote the set of paths between an origin and destination node in a graph
G = (N,A) with n nodes and m arcs. In general terms, Yen’s algorithm is an implicit
enumeration method where P is partitioned into smaller subsets by recursively applying
a branching operation on the current path picked from a candidate set. The algorithm
first finds a shortest path P in P ,

P = (o = u1, a1, u2, a2, . . . , aq, uq+1 = d).

The branching operation on P then partitions the set P \ {P} into q disjoint subsets P i,
i = 1, ..., q. Each set P i contains the deviations from P at i, that is, each path in P i is
the concatenation of Poui (the subpath of P from o to ui) and a path from ui to d not
containing arc ai. It is evident, that by taking the shortest path in ∪i=1,...,qP i, we find
the second shortest path and the branching operation can then be applied on the second
minimum weight hyperpath recursively. To find the shortest path in ∪i=1,...,qP i, we have
to find the shortest path in each set P i. Since each path in P i must contain the fixed
subpath Poui , the shortest path in P i can be found by finding a shortest path from ui

to d in a subgraph Gi, obtained from G by deleting each node uj , j = 1, ..., i− 1 in Poui

and deleting arc ai as well. Yen’s algorithm maintains a candidate set representing the
partition of P into subsets. That is, at the beginning of the k ’th iteration the first k − 1
shortest paths have been found, i.e. the candidate set consists of subsets representing the
partition of P \ {P 1, . . . , P k−1}, where {P 1, . . . , P k−1} are the previously found k − 1
shortest paths. The k ’th shortest path is then selected from the candidate set as the
minimal path of all the subsets in the candidate set. The algorithm terminates when the
K shortest paths are found, or if the candidate set is empty. Note that Yen’s algorithm
follows a “forward branching” approach, since we process arcs forward in P , i.e. paths in
P i must contain path Poui , starting at the origin proceeding forward to node ui. However,
we may follow a “backward branching” approach instead, where path P is processed from
d towards o. Here each path in the set P i would be the concatenation of a path from o to
ui+1, not containing arc ai, and the fixed subpath of P from ui+1 to d. From a theoretical
point of view, the two approaches are equivalent; as we shall see, this symmetry does no
longer hold when we consider finding the K best strategies in an STD network. Since no
more than n pairs can be generated at each branching step, Yen’s algorithms must solve

35

at most Kn shortest path problems. Using more recent improvements in shortest path
algorithms the complexity of the algorithm becomes O (Kn (m+ n logn)) .

In the case of undirected graphs, Katoh, Ibaraki, and Mine [49] improved the com-
plexity of Yen’s algorithm and in Hadjiconstantinou and Christofides [35] extensive com-
putational experiments was conducted on the algorithm described in [49]. While Yen’s
asymptotic worst case bound for enumerating the K shortest loopless paths in a directed
graph remains unbeaten, several heuristic improvements to his algorithm have been pro-
posed and implemented, as have other algorithms with the same worst case bound. See
e.g. Hershberger, Maxel, and Suri [41], Martins and Pascoal [56] and Perko [75].

Similar to what is discussed above for K shortest paths, applications and solution
methods for STD networks would take advantage of the availability of alternate optimal
or suboptimal solutions. However, to the authors knowledge, no one has considered the
problem of finding the K best strategies under a priori or time-adaptive route choice in
an STD network.

In this chapter we propose algorithms for finding the K best strategies under a priori
or time-adaptive route choice between an origin and a destination node leaving the origin
at time zero. That is, we consider strategies So0 followed when leaving the origin at time
zero and are interested in ranking the first K strategies in non-decreasing order using one
of the criteria in Section 3.2.

Since a strategy So0 corresponds to a hyperpath in the time-expanded hypergraph H,
finding the K best strategies under time-adaptive route choice corresponds to finding the
K minimum weight hyperpaths in H between the source s and the node corresponding to
leaving the origin at time zero denoted target t. Note that in our context hyperpaths are
acyclic and hence we extend Yen’s algorithm for loopless paths to directed hypergraphs;
as we shall see, this extension is not straightforward. Moreover, since H is acyclic in
our context, we only consider the problem of finding the K minimum weight hyperpaths
in an acyclic hypergraph. The problem, can with some modifications, be extended to
non-acyclic hypergraphs. However, this is not relevant for STD networks; therefore the
algorithms for the non-acyclic case are given in Appendix A.2.

Similarly finding the K best strategies under a priori route choice corresponds to
finding the K minimum weight s-t hyperpaths satisfying that they must correspond to a
path-strategy. Unfortunately, due to Theorem 3.3.2, we have that finding the best path-
strategy is NP-hard. Therefore the problem of finding the K best path-strategies is also
NP-hard. A specialized algorithm based on lower bounds is used to solve this problem
in Section 4.2.

Before we start considering STD networks, other areas where K minimum weight
hyperpaths algorithms may be used, deserves to be mentioned. Propositional satisfiability
problems represent a research area where directed hypergraphs is used from a theoretical
as well as a practical point of view, see e.g. Gallo, Gentile, Pretolani, and Rago [28].
For instance, the maximum satisfiability problem for Horn formulas (Max Horn SAT)
turns out to be equivalent to the problem of finding a minimum cut in a hypergraph (see
[28]). Since Max Horn SAT is NP-hard, so is finding the minimum cut in a hypergraph,
opposed to the well-known minimum cut problem in graphs. A branch and cut algorithm
for finding a minimum cut has been devised by Gallo et al. [28]. This algorithm is based
on a particular cut generation technique that requires finding hyperpaths with a weight
less than one, using the cost weighting function. Here the weight of a hyperpath is
the sum of the weights of its hyperarcs. It has been proved by Ausiello, Italiano, and

36 Finding the K best strategies in an STD network

Nanni [4] that the problem of finding a minimum cost s-t hyperpath is strongly NP-
hard. Therefore, finding hyperpaths with a cost less than one is in general hard. In
order to overcome this difficulty, a quite simple heuristic is adopted in [28]. This heuristic
consists in computing minimum weight hyperpaths for the sum and distance weighting
functions which are additive weighting functions, i.e. a minimum weight hyperpath can
be found in polynomial time. Even though this approximation performs well for some
classes of instances, more sophisticated techniques seems to be necessary to improve the
effectiveness of the algorithm. To this aim, K minimum weight hyperpaths procedures
can be used. Since the sum weight gives an upper bound on the cost weight, one may
try to find all hyperpaths with sum weight less than or slightly larger than one. This
defines a (possibly empty) set of cuts that can be generated “easily”. Furthermore, the
distance weight gives a lower bound on the cost weight. Hence finding all hyperpaths
with a distance weight less than one, defines a superset of the valid cuts.

Besides the specific application to cut generation discussed above, it is apparent that
a K minimum weight hyperpaths procedure can be used to find a minimum weight s-
t hyperpath when the cost weighting function is considered. More precisely, we rank
hyperpaths by using the distance weight, keeping track of the minimum cost hyperpath
generated in the process. The procedure terminates as soon as the distance weight of the
next ranked hyperpath is greater than or equal to the minimum cost weight found so far.
Here we exploit the fact that the distance weight is a lower bound on the weight when
using the cost weighting function. The same approach can be used to solve a minimum
weight hyperpath problem for any “difficult” weighting function, besides cost.

Hypergraphs have been used for many years to model transit networks proposed by
Nguyen and Pallottino [65]. Transit networks consist of a set of bus lines connected to stop
nodes where passengers board or unboard buses. In the hypergraph model, a hyperarc
represents the set of attractive bus lines for a passenger waiting at a stop node; a minimum
weight hyperpath represents a set of attractive origin-destination routes. The hypergraph
model is embedded within a traffic assignment model, based on Wardrop’s equilibrium,
where passengers are assumed to travel along their minimum weight available hyperpaths.
In the context of iterative methods for traffic assignment, it may be computationally
useful to identify alternate optimal hyperpaths by using a K minimum weight hyperpaths
procedure.

Finally, algorithms for finding the K minimum weight hyperpaths may also be used
to solve minimum makespan assembly problems. As shown by Gallo and Scutellà [31], an
assembly line can be represented by a suitable hypergraph, where each hyperarc represents
a machine operation linking two or more subassemblies together. A hyperpath thus
represents a particular assembly plan. Assuming that each operation has a cost as well as
an execution time, minimum weight hyperpaths with respect to two particular weighting
functions give assembly plans with minimum total cost or minimum execution time (with
an unlimited number of machines), respectively. Observe that a “good” assembly plan
should represent a trade-off between execution time and cost; clearly, this is related to
finding efficient hyperpaths which will be discussed in Chapter 5. In general, scheduling
a given assembly plan on a fixed number of machines in order to minimize its makespan
is a hard problem; approximating methods are discussed in [31]. A possible approach for
refining these methods would be to generate K candidate assembly plans; an “optimal”
plan would then be chosen according to its approximated minimum makespan scheduling,
possibly taking into account other objectives.

4.1 Finding the K best strategies under time-adaptive route choice 37

4.1 Finding the K best strategies under time-adaptive
route choice

Consider an STD network with topological network G and time-expanded hypergraph H.
Assume that one of the criteria in Section 3.2 is considered, i.e. H is assigned weights and
weighting function according to Lemma 3.3.1. Furthermore, let

VH = (s = v1, ..., vn = t)

denote a valid ordering of the nodes in H. We consider the problem of finding the K best
strategies under time-adaptive route choice between an origin node o and a destination
node d in G when leaving the origin at time zero. That is, we are interested in ranking
the first K strategies So0 in non-decreasing order using one of the criteria in Section 3.2.
According to Corollary 3.3.2 a strategy So0 corresponds to a hyperpath in H. Hence
finding the K best strategies under time-adaptive route choice, corresponds to finding the
K minimum weight hyperpaths in H between the source s and the node in H corresponding
to leaving node o at time zero, denoted target t. That is, we have to extend Yen’s algorithm
to finding the K minimum weight s-t hyperpaths in H.

Let Π1 denote the set of s-t hyperpaths in H. In order to extend Yen’s algorithm to
hypergraphs, we need to devise a suitable branching operation, i.e. a way to partition Π1

into subsets so that the minimum weight hyperpath in each subset can be found with
procedure SHTacyclic. Assume that a minimum weight s-t hyperpath π1 in Π1 is known
(the first minimum weight hyperpath), and defined by predecessor function p1. Moreover,
a valid ordering Vπ1 ⊆ VH of π1 is given

Vπ1 = (s, u1, u2, . . . , uq1 = t)

Since a path is much simpler than a hyperpath, a direct application of Yen’s method is
not possible. However, since a valid ordering of the nodes in π1 are given, we may follow
a forward branching approach, where we fix the predecessor hyperarcs of the nodes in Vπ1

forward.

Branching Operation 4.1.1 Given minimum weight hyperpath π1 of Π1 and valid or-
dering Vπ1 , the set Π1 \ {π1} can be partitioned into q1 disjoint subsets Π1,i, 1 ≤ i ≤ q1
as follows

1. Hyperpaths in Π1,1 do not contain hyperarc p1(u1).

2. For 1 < i ≤ q1, hyperpaths in Π1,i contain hyperarcs p1 (uj) , 1 ≤ j ≤ i− 1, and do
not contain hyperarc p1(ui).

Proof Note that hyperpaths in Π1,i must contain hyperarcs p1 (u1) , ..., p1 (ui−1) and not
hyperarc p1 (ui) . Hence the partition of Π1 defines a branching tree as shown in Figure 4.1
where an arc “fix” on level i means that an s-t hyperpath must contain hyperarc p1 (ui)
and an arc “remove” on level i states that an s-t hyperpath must not contain hyperarc
p1 (ui) . It is obvious that the sets Π1,i, 1 ≤ i ≤ q1 are disjoint and that π1 is defined
by the leaf of the branching tree where all hyperarcs in π1 have been fixed. Therefore
∪i=1,...,q1Π1,i = Π1 \ {π1}.

38 Finding the K best strategies in an STD network

fix

remove

Π
11,q1

π1

Π
1,1

Π
1,2

Level 1 2 q1

p 1(u 1
)

p
1 (u

1)

fix

remove

p 1
(u q1

)

p
1 (u

q
1
)

fix

remove

p 1
(u 2

)

p
1 (u

2)

Figure 4.1: The branching tree partitioning Π1.

A hyperpath in Π1,i must contain hypergraph T i
s = ({s}∪N , ET) where N = ET = ∅

for i = 1, and N = {u1, ..., ui−1} and ET =
{
p1 (u1) , ..., p1 (ui−1)

}
for i > 1. According

to Definition 2.2.2, T i
s is a hypertree; T i

s ⊂ π1 is the hypertree spanning the first i − 1
nodes of π1.

Now, consider the problem of finding the minimum weight hyperpath in Π1,i, i =
1, ..., q1 when using Branching Operation 4.1.1, i.e. a minimum weight hyperpath π1,i

containing hypertree T i
s . Note that the problem is not equivalent to finding a minimal

hypertree Ts, spanning all nodes in H, containing T i
s since the s-t hyperpath π contained

in Ts may satisfy T i
s � π. In fact finding π1,i turns out to be difficult.

Theorem 4.1.1 The problem of finding the minimum weight hyperpath π1,i ∈ Π1,i using
Branching Operation 4.1.1 is NP-hard.

Proof The proof in a more general framework is given in Appendix A.1.

4.1.1 Using a backward branching approach

Due to Theorem 4.1.1 we shall follow a different approach, in particular one based on
backward branching where we fix the predecessor hyperarcs by processing the nodes in
Vπ1 backward. As we will see, backward branching partitions the set Π1 in a way that
simplifies finding the minimum weight hyperpath in each subset. This result essentially
comes from the fact that there is only one node in the head of each hyperarc. The following
branching operation is defined in a more general setting than Branching Operation 4.1.1,
since it is applied recursively on the first, second,..., K-1’th hyperpath. Let the k’th
hyperpath πk with valid ordering

Vπk = (s, u1, ..., uqk
= t)

be defined by predecessor function pk. Assume that πk is picked from the set Πk of s-t
hyperpaths.

4.1 Finding the K best strategies under time-adaptive route choice 39

Branching Operation 4.1.2 Given the k’th minimum weight hyperpath πk of Πk and
valid ordering Vπk , the set Πk \ {πk} can be partitioned into qk disjoint subsets Πk,i,
1 ≤ i ≤ qk as follows

1. Hyperpaths in Πk,qk do not contain hyperarc pk(uqk
), that is pk(t).

2. For 1 ≤ i < qk, hyperpaths in Πk,i contain hyperarcs pk (uj) , i + 1 ≤ j ≤ qk, and
do not contain hyperarc pk(ui).

Proof Note that hyperpaths in subset Πk,i must contain hyperarcs pk (uqk
) , ..., pk (ui+1)

and not hyperarc pk (ui) , i.e. like in the proof of Branching Operation 4.1.1, the par-
tition of Πk defines a branching tree as shown in Figure 4.1 (pk (ui) is replaced with
pk (uqk+1−i)). Hence the sets Πk,i, 1 ≤ i ≤ qk are disjoint and we have that ∪i=1,...,qk

Πk,i =
Πk \ {πk}.

Note that, if k = 1 in Branching Operation 4.1.2, then the second minimum weight
hyperpath can be found by taking the minimum weight hyperpath in the sets Π1,i, i =
1, ..., q1. However, it is obvious that we can use Branching Operation 4.1.2 recursively.

Definition 4.1.1 For each i = 1, ..., qk, let hypergraph ηk,i = (Vη, Eη) be defined by

Eη =
{

∅ i = qk{
pk (uqk

) , ..., pk (ui+1)
}

otherwise

Vη =
{ {t} i = qk⋃

e∈Eη
T (e) ∪ h (e) otherwise

Since we fix hyperarcs backward in Vπk , a hyperpath in Πk,i must contain ηk,i. Ac-
cording to Definition 2.4.1, ηk,i, i = 1, ..., qk − 1 is an end-tree defined by the nodes
Iη = {ui+1, ..., uqk

}∗. Now consider the problem of finding the minimum weight hyper-
path πk,i ∈ Πk,i using Branching Operation 4.1.2. That is, finding a minimum weight
s-t hyperpath containing end-tree ηk,i. In this case, the problem reduces to solving a
minimum weight hypertree problem on a subhypergraph of H.

In the following we present a general definition on how subhypergraphs can be created
when using Branching Operation 4.1.2 on the k’th hyperpath πk rather than only consid-
ering the first minimum weight hyperpath π1. The hypergraph Hk is a hypergraph where
the k’th hyperpath πk is minimal and created by using Definition 4.1.2 on one of the k−1
hyperpaths π1, ..., πk−1 previously found by the procedure. If k = 1 then H1 = H.

Definition 4.1.2 Given πk, let subhypergraph Hk,i, i = 1, ..., qk be obtained from Hk

as follows

1. For each node uj , i+ 1 ≤ j ≤ qk, remove each hyperarc in BS(uj) except pk(uj).

2. Remove hyperarc pk(ui) from BS(ui).

∗The hypergraph ηk,qk = ({t}, ∅) is not an end-tree. But may be considered as one with Eη = {t}
and Iη = ∅.

40 Finding the K best strategies in an STD network

Level

0
τ(0,1)

null

1

2

3

τ(1,q1-1)τ(1,q1) τ(1,2) τ(1,1)

τ(2,q2) τ(2,1)

τ(3,q3) τ(3,1)

Figure 4.2: The branching tree representing the partition of Π.

Theorem 4.1.2 Given subhypergraph Hk,i, the following are equivalent for i = 1, ..., qk

1. π ∈ Πk,i.

2. π is an s-t hyperpath in Hk,i.

Proof Consider π = (Vπ, Eπ) ∈ Πk,i defined by predecessor p. Note that p (u) , u ∈ Vπ,
is a hyperarc in Hk,i and hence we have that π is a hyperpath in Hk,i. Next, assume
that π is a hyperpath in Hk,i. Since all hyperarcs except pk (uj) have been removed from
BS (uj), j = i+1, ..., qk, we have that π must contain ηk,i. Furthermore, hyperarc pk (ui)
has been removed from Hk,i, i.e. π cannot contain pk (ui) and hence must π ∈ Πk,i.

Note that, in hypergraph Hk,i we remove all hyperarcs in BS (uj) , i + 1 ≤ j ≤ qk,
except pk (uj) , i.e. we fix the backward star of node uj to pk (uj) . We say that Hk,i is
obtained from Hk by fixing hyperarcs pk (uj), i + 1 ≤ j ≤ qk and removing hyperarc
pk (ui). Theorem 4.1.2 provides us with the following useful result.

Corollary 4.1.1 Finding the minimum weight hyperpath πk,i ∈ Πk,i, i = 1, ..., qk, when
using Branching Operation 4.1.2, reduces to solving a minimum weight hyperpath problem
on Hk,i.

As a consequence, each set Πk,i can be represented by its corresponding subhypergraph
Hk,i.

In order to find the K minimum weight hyperpaths, we implicitly have to maintain a
candidate set of pairs (π̃, H̃), where π̃ is a minimum weight hyperpath in H̃. Assuming
that the first k minimum weight hyperpaths π1, ..., πk have been found, the candidate set
represents a partition of Π1 \

{
π1, ..., πk

}
. Hyperpath πk+1 is then found by picking and

removing the pair containing the hyperpath with minimum weight in the candidate set.
Note that, when branching on πk, hypergraph Hk,i+1 only differs slightly from Hk,i. In

both hypergraphs, hyperarcs pk (uqk
) , ..., pk (ui+2) are fixed; in Hk,i+1 we remove hyper-

arc pk (ui+1) and in Hk,i we fix pk (ui+1) and remove pk (ui) . Hence Hk,i can be obtained

4.1 Finding the K best strategies under time-adaptive route choice 41

1 procedure setF(τ)
2 remove eτ from H;
3 while (eτ �= null) do
4 τ := point(τ);
5 if (level changed) then remove eτ from H;
6 else fix eτ in H;
7 end while
8 end procedure

Figure 4.3: Subprocedure setF of procedure K-BS.

by first fixing pk (ui+1) and next removing pk (ui) from Hk,i+1. As a result we can store
each pair

(
πk,i,Hk,i

)
implicit in a branching tree as shown in Figure 4.2 (the three first

minimum weight hyperpaths shown). The branching tree satisfies

1. For k = 1, 2, 3 and i = 1, ..., qk, each branching tree node τ (k, i) =
(
pk (ui) ,W k,i

)
,

where pk is the predecessor function defining πk andW k,i is the weight of a minimum
weight hyperpath in Hk,i. τ (k, i) represents pair

(
πk,i,Hk,i

)
. We assume that the

root node τ (0, 1) =
(
null,W

(
π1

))
.

2. The arcs represent a pointer to the next branching tree node.

3. All nodes in a dotted square represent a partition of hypergraph Hk into subhyper-
graphs Hk,i, where Hk is the hypergraph defined by the branching tree node in the
previous level of the branching tree pointed to by the first branching tree node in
the square.

4. Vertical pointers indicate that a branching operation on the hypergraph the pointer
points to has been performed.

A heap† of pointers to the branching tree nodes currently in the candidate set can be
used to order the nodes in the branching tree. The heap data structure is well-known (see
e.g. Tarjan [87]) and has a O (logKn) worst time complexity for inserting or deleting a
branching tree node.

Note there is only one pointer out of each branching tree node and hence there is a
unique path between each node τ and the root of the branching tree. Therefore subhy-
pergraph Hk,i can be built by traversing the path from τ (k, i) to the root node in the
branching tree (see procedure setF below). A procedure K-BS for finding the K best
strategies, i.e. the K minimum weight hyperpaths can now be formulated. A backward
and forward representation of the time-expanded hypergraph H and the topological net-
work G is used. For further details on data structures representing and linking H and G,
see Appendix B. The following subprocedures are used.

setF (τ): Builds the subhypergraph corresponding to branching tree node τ =
(eτ ,Wτ), see Figure 4.3. Here point(τ) denotes the branching tree node which

†In the current implementation a 4-heap is used.

42 Finding the K best strategies in an STD network

1 procedure findOrd(π)
2 inPath(t) = true;
3 for (i = n to 2) do
4 if (inPath(vi)) then
5 output vi to Vπ;
6 for (u ∈ T (p(vi))) do inPath(u) = true;
7 end if
8 end for
9 end procedure

Figure 4.4: Subprocedure findOrd of procedure K-BS.

τ points at. It is obvious that a hyperarc can be removed from H by maintain-
ing a flag for each hyperarc equal to zero if not in the subhypergraph and one
otherwise. A hyperarc e is then fixed by setting all the flags of the hyperarcs
in BS (h (e)) equal to zero except the flag for hyperarc e. Since the procedure
only removes a hyperarc once, worst case complexity becomes O (m).

SHTacyclic(s,H): Find the minimum weight hypertree of H, i.e. node labels W (u)
and p (u) , ∀u ∈ V (see Figure 2.4). Procedure SHTacyclic runs in O (size (H))
time (see Section 2.3.2).

modF (H̃, er, ef): Modify the flags in H by removing hyperarc er in H̃ and fixing
the hyperarc ef (if ef not equal to null).

delMin(): Pick and remove the pointer to the branching tree node τ = (eτ ,Wτ)
with minimal label Wτ in the heap. Takes O (logKn) time (see Tarjan [87]).

insert(τ): Insert τ = (eτ ,Wτ) into the branching tree. Moreover, if Wτ <∞, insert
a pointer to τ into the heap. It takes O (1) time to add τ to the branching
tree and O (logKn) time to insert it into the heap, i.e. procedure insert runs
in O (logKn) time.

findOrd(π): Return a reverse valid ordering Vπ of the nodes in π by scanning the
nodes in VH backwards (see Figure 4.4). Boolean inPath, for each node in H,
is used to indicate if a node is in π. The worst case complexity is O (size (H)) .

Procedure K-BS is shown in Figure 4.5. Line 2-4 finds the minimum weight hyperpath
π1, creates the root of the branching tree and inserts it into the heap. Line 5-18 contains
the main loop. In the k ’th iteration the minimal branching tree node τ is picked and
removed from the heap and its corresponding hypergraph H̃ built. Since we do not store
the hyperpath corresponding to τ, we recalculate and output πk on line 9 and next, a
reverse valid ordering of πk is found. The partitioning corresponding to Branching Oper-
ation 4.1.2 is performed on line 11-17. As pointed out, the path from branching tree node
τ to the root of the branching tree defines end-tree η̃ and each s-t hyperpath in H̃ must
contain η̃. End-tree η̃ defines the set of nodes where the backward star have been fixed
in previous branching operations and hence the subhypergraph, obtained by removing
one of the hyperarcs in η̃, will contain no s-t hyperpath. Therefore these nodes are not

4.1 Finding the K best strategies under time-adaptive route choice 43

1 procedure K-BS(H, s, t, K)
2 SHTacyclic(s,H);
3 if (W (t) < ∞) then insert(null, W (t));
4 else stop (there is no s-t hyperpath);
5 for (k := 1 to K) do
6 τ := delMin();
7 if (τ = null) then stop (there are no more s-t hyperpaths);
8 H̃ := setF(τ);
9 call SHTacyclic(s, H̃) and output πk;

10 (uqk , ..., u1, s) := findOrd(πk); p(uqk+1) := null;
11 for (i := qk to 1) do
12 if (p(ui) not fixed) then
13 H̃ := modF(H̃, p(ui), p(ui+1));
14 SHTacyclic(s,Hk

i);
15 insert(p(ui), W (t));
16 end if
17 end for
18 end for
19 end procedure

Figure 4.5: Finding the K best strategies.

considered again (line 12). If pk (ui) has not already been fixed, we create subhypergraph
Hk,i, find the minimum weight hyperpath and insert

(
pk (ui) ,W (t)

)
into the branching

tree and heap if W (t) <∞ (line 13-15). Note, if |BSH̃ (p (ui))| = 1, then subhypergraph
Hk,i, obtained by removing p (ui), contains no s-t hyperpath. Therefore we do not have
to use procedure SHTacyclic on line 14, we may just insert (p (ui) ,∞) immediately on
Line 15.

Since the k ’th iteration partitions the set Πk \ {πk} into subsets by considering the
subhypergraphs Hk,i corresponding to Πk

i , we have that the k’th iteration only removes
πk from Π1. That is, at the end of the k ’th iteration, the set of branching tree nodes in the
heap represents the partition of Π1\

{
π1, ..., πk

}
. Furthermore, at most n subhypergraphs

are considered for each iteration. Therefore procedure K-BS must solve O (Kn) minimum
weight hyperpath problems and since the complexity of procedure SHTacyclic dominates
the complexity of the other subprocedures, we have the following theorem.

Theorem 4.1.3 Procedure K-BS finds the K minimum weight hyperpaths in worst time
complexity O (size (H) ·Kn).

Example 3 (continued) Consider the time-expanded hypergraph H, shown in Figure 3.3
on page 28, where the minimal hypertree containing minimal s-a0 hyperpath π1 for the
MMC problem is shown with solid lines. Assume that we want to find the K = 3 best
strategies minimizing maximum cost, i.e. the distance weighting function is used. A valid
ordering of π1 where s precedes the other nodes can be found by ranking the nodes in
V\ {s} in decreasing order of time, i.e. Vπ = (s, u1, ..., u8) =

(
s, d6

, d
5, d4, c3, c2, b2, b1, a0

)
.

Hence using Branching Operation 4.1.2 on π1 corresponds to creating subhypergraphs
H1,8, ...,H1,1. subhypergraph H1,7, ...,H1,4 are shown in Figure 4.6 with the minimal

44 Finding the K best strategies in an STD network

11a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(a) subhypergraph H1,7

a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

a0 9

(b) subhypergraph H1,6

12a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(c) subhypergraph H1,5

9a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(d) subhypergraph H1,4

Figure 4.6: Subhypergraphs created when using Branching Operation 4.1.2.

hypertree shown with solid lines. The hyperarcs which are fixed are shown in bold.
The remaining subhypergraphs are not shown, since, removing the hyperarc results in a
subhypergraph where no s-a0 hyperpath exists.

Assume that the minimum weight hyperpath in H1,4 is picked as the second minimum
weight hyperpath π2. Since nodes in H1,4 have only one hyperarc in its backward star,
we have that none of the subhypergraphs obtained when using Branching Operation 4.1.2
on π2 contain an s-a0 hyperpath. Next the third minimum weight hyperpath is picked as
the minimum weight hyperpath in H1,6.

4.1.2 Using reoptimization to reduce computation time

The main drawback of procedure K-BS is that a minimum weight hyperpath problem
must be solved for each subhypergraph generated during the branching operation. The
number of minimum weight hyperpath problems to solve is therefore much larger than
K. In this section we use reoptimization techniques to avoid solving minimum weight

4.1 Finding the K best strategies under time-adaptive route choice 45

hyperpath problems, indeed we shall devise a specialized procedure where procedure
SHTacyclic is called only once.

Let W k (v), v ∈ V denote the node weight of a minimum weight hypertree T k
s in Hk,

containing the k ’th minimum weight hyperpath πk. Hyperpath πk is defined by the pre-
decessor function pk of T k

s . Consider the subhypergraphs Hk,i, i = 1, ..., qk corresponding
to Branching Operation 4.1.2 on πk.

Theorem 4.1.4 Let W k,i (v), v ∈ V, denote the weight of node v in a minimum weight
hypertree in subhypergraph Hk,i. Then W k,i (v) = W 1 (v) for all nodes v below node ui in
the valid ordering VH. Moreover,

W k,i (ui) = mine∈BSHk,i (ui)w (e) + F
(
W 1, e

)
(4.1)

where F (W 1, e) denotes the function F (e) using weights W 1 (u), as defined in Sec-
tion 2.3.1.

Proof Consider subhypergraph Hk,i. Recall that no hyperarcs have been removed from
the backward star of a node v below node ui in the valid ordering VH and therefore
W k,i (v) = W 1 (v). Furthermore, all nodes in T (e) , e ∈ BS (ui) are below ui in VH.
Hence, using procedure SHTacyclic in node ui, corresponds to solving (4.1).

Theorem 4.1.4 is useful, since, by storing the weights W 1 of the minimum weight
hypertree of H we can avoid recalculating the weight of all nodes below node ui in VH.
According to the definition of Hk,i in Theorem 4.1.2, subhypergraph Hk,i, i = 1, ..., qk
satisfies

BSHk,i (uj) = pk (uj) , j = i+ 1, ..., qk (4.2)

That is, an s-t hyperpath in Hk,i must contain the end-tree ηk,i defined in Defini-
tion 4.1.1 with inner-nodes Iη and leaf-nodes Eη. End-tree ηk,i can be found by traversing
the path from the branching tree node corresponding to Hk,i to the root of the branching
tree. The predecessor function defining πk,i then satisfy

Theorem 4.1.5 The predecessor of the minimum weight hyperpath πk,i = (Vπ, Eπ) in
Hk,i is equal to

1. Predecessor pk (v) for v ∈ Iη.

2. The predecessor defined by equation (4.1) for node ui.

3. Predecessor p1 (v) for v ∈ Vπ \ (Iη ∪ {ui}).

Proof According to (4.2) the predecessor of πk,i is equal to pk (v) for v ∈ Iη and the
predecessor hyperarc of ui is the hyperarc giving W k,i (ui) in equation (4.1). Finally,
since no hyperarcs have been removed from the backward star of a node v below node ui,
we have that the predecessor hyperarc is equal to p1 (v).

Given end-tree ηk,i, it is obvious that ui ∈ Eη. Furthermore, ui is the last node in
a valid ordering of Eη. Therefore, using Corollary 2.4.1 for the value weighting function,
and Corollary 2.4.2 for the distance weighting function we have

46 Finding the K best strategies in an STD network

1 procedure setFP(τ)
2 for (u ∈ V \ {s}) do p(u) := p1(u);
3 remove eτ from H; v = h(eτ);
4 while (eτ �= null) do
5 τ := point(τ);
6 if (level changed) then remove eτ from H;
7 else fix eτ in H and set p(h(eτ)) = eτ ;
8 end while
9 for (e ∈ BS(v)) do

10 W (v) := 0;
11 if (w(e) + F (W 1, e) < W (v)) then p(v) := e;
12 end for
13 end procedure

Figure 4.7: Subprocedure setFP of K-BSreopt.

Theorem 4.1.6 The weight of the minimal hyperpath πk,i in Hk,i is equal to

W k,i (t) = W k (t) +
(
W k,i (ui) −W k (ui)

)
fη (ui)

if the mean weighting function is considered, where fη is defined as in (2.10) for ηk,i.
Similarly, the weight of the minimal hyperpath πk,i in Hk,i is equal to

W k,i (t) = max
{
W k (t) ,W k,i (ui) + lη (ui)

}
if the distance weighting function is considered. Here lη is defined as in (2.15) for ηk,i.

A K best strategies procedure using reoptimization can now be formulated. Each node
in H contains labels W 1(u) and p1 (u). That is, the weights of a minimal hypertree in H
and its corresponding predecessor function. Moreover, labels p (u) and f (u) are used at
the current iteration of the procedure where p (u) is used to store the current predecessor
hyperarcs and f (u) stores the value of fη (or lη). Two new subprocedures are used

setFP(τ): Shown in Figure 4.7. First, reset the labels p (u) to p1 (u) . Next, build
the subhypergraph corresponding to branching tree node τ = (eτ ,Wτ) by
setting the flag in the hyperarcs as in procedure setF. At the same time if fix
a hyperarc eτ , then set p (h (eτ)) = eτ . Finally, find the new predecessor in the
node where hyperarcs have been removed but not fixed. Given Theorem 4.1.5,
we have that, when procedure setFP terminates, label p defines the hyperpath
πk in hypergraphHk. Since the procedure only removes a hyperarc once, worst
case complexity becomes O (m) .

calcW (u, er): First, find the weightW k (ui) and then the weight defined in (4.1), i.e.
scan the hyperarcs in BS (ui) of subhypergraph Hk to find W k (ui). Then do
the same with hyperarc er removed to find W k,i (ui). Next, use Theorem 4.1.6
to find and return the weight in node t.

Procedure K-BSreopt for finding the K best strategies, i.e. the K minimum weight
hyperpaths is shown in Figure 4.8. The procedure only differs from procedure K-BS

4.2 Finding the K best strategies under a priori route choice 47

1 procedure K-BSreopt(H, s, t, K)
2 SHTacyclic(s,H);
3 if (W (t) < ∞) then insert(null, W (t));
4 else stop (there is no s-t hyperpath);
5 for (u ∈ V) do W 1(u) := W (u) and p1(u) := p(u);
6 for (k := 1 to K) do
7 f(t) := 1; for (v ∈ V \ {t}) do f(v) := 0;
8 τ := delMin();
9 if (τ = null) then stop (there are no more s-t hyperpaths);

10 setFP(τ);
11 output πk;
12 (uqk , ..., u1, s) := findOrd

(
πk

)
; p(uqk+1) := null;

13 for (i := qk to 1) do
14 for (v ∈ T (p(ui+1))) do f(v) := f(v) + ap(u)(v)f(ui+1);
15 if (p(ui) not fixed) then
16 insert(p(ui), calcW(ui, p(ui));
17 end if
18 end for
19 end for
20 end procedure

Figure 4.8: Finding the K best strategies using reoptimization.

in the way the predecessor function of πk is found and how the weight in node t is
calculated. In the k ’th iteration we first initialize label f. By using procedure setFP,
we have that labels p (u) defines the predecessor function of hyperpath πk in Hk. On
line 14, we update labels f (u) so that they correspond to fη (u) of the current end-tree
ηk,i, provided that the value weighting function is considered. For the distance function,
we use f (v) := max(f (ui+1) + w (p (ui+1)) , f (v)) instead. Procedure calcW finds the
weight of the minimum weight hyperpath in Hk,i.

Note that each time Branching Operation 4.1.2 is used in procedure K-BSreopt, we
perform at most O (size (H)) calculations using procedure calcW. Hence the worst case
complexity of procedure K-BSreopt becomes linear in K.

Theorem 4.1.7 Procedure K-BSreopt finds the K minimum weight hyperpaths in worst
time complexity O (size (H) ·K).

4.2 Finding the K best strategies under a priori route
choice

Consider an STD network defined by the topological network G and the time-expanded
hypergraph H with valid ordering

VH = (s = v1, ..., vn = t)

In this section we consider the problem of finding the K best strategies under a priori
route choice between an origin node o and a destination node d in G when leaving the

48 Finding the K best strategies in an STD network

origin at time zero. That is, we are interested in ranking the first K path-strategies in
non-decreasing order using one of the criteria in Section 3.2. Note that, under a priori
route choice, we seek path-strategies where the route must be specified before travel
begins, i.e. we seek strategies corresponding to loopless o-d paths in G.

A priori route choice may for instance be useful for routing highly sensitive substances
for which the travel path must be preapproved or where the driver does not have access
to (or time to access) information while travelling.

Unfortunately, due to Theorem 3.3.2, finding the best path-strategy is NP-hard.
Therefore the problem of finding the K best path-strategies is also NP-hard. However,
experimental tests, provided in Section 4.3, show that the problem can be solved for
relatively large networks.

Consider a hyperarc e in H not equal to a waiting or dummy arc. Then e corresponds
to a unique arc a in G. Furthermore, a node v ∈ V� {s} corresponds to a unique node in
G. Let arc (e), e ∈ E denote the arc in G corresponding to e. If e is a waiting or dummy
arc in H, we assume that arc (e) = null. Moreover, let node (v), v ∈ V� {s}, denote the
node in G corresponding to v in H.

According to Corollary 3.3.2 there is a one to one correspondence between a path-
strategy So0 and an s-t hyperpath π with valid ordering Vπ ⊆ VH where t is the node in
H corresponding to leaving the origin at time zero. Let the set of nodes in π corresponding
to node u in G be

Vπ (u) = {v ∈ Vπ : node (v) = u}

Similar, VH (u) denote set of nodes in H corresponding to node u in G.
Consider two nodes in π corresponding to the same node in G. If the predecessor

hyperarc of the nodes do not define a waiting arc, the predecessor must correspond to the
same arc in G according to (3.4) resulting in the following corollary.

Corollary 4.2.1 Hyperpath π defined by predecessor p corresponds to a loopless o-d path
in G if for all v, v′ ∈ Vπ (u), we have

arc (v) �= null, arc (v′) �= null⇒ arc (p (v)) = arc (p (v′)) (4.3)

Corollary 4.2.1 can be checked by starting in node t, proceeding down to node s and
stop as soon as (4.3) fails. In this way, we build a subpath from the origin o to a node u
in G. Even if a hyperpath does not satisfy Corollary 4.2.1 it is obvious that it still defines
a subpath in G if (4.3) holds for a subset of the nodes in G.

Corollary 4.2.2 Hyperpath π corresponds to travelling subpath Pπ = (u1, a1, ..., aq−1, uq)
in G if for each node ui, 1 ≤ i < q we have

arc (p (v)) = (ui, ui+1) , ∀v ∈ Vπ (ui) , arc (p (v)) �= null

Procedure findSubP shown in Figure 4.9 finds a loopless subpath Pπ in G starting at
the origin corresponding to π in O (size (H)) time. The procedure starts in node o in G,
i.e. node t in H. In the while loop we consider the nodes in π corresponding to the last
node u in Pπ. If no successor arc is defined an arc a ∈ A is found in line 6. Otherwise the
remaining nodes in Vπ (u) are examined and if all nodes have a predecessor corresponding
to a or to a waiting arc, we add the arc to path Pπ (line 12). Finally, if h (a) = d, we

4.2 Finding the K best strategies under a priori route choice 49

1 procedure findSubP(π)
2 u := o; stop := false;
3 while (stop = false) do
4 a := null;
5 for (v ∈ Vπ(u)) do
6 if (a = null and arc(p(v)) �= null) then a := arc(p(v));
7 else if (arc(p(v)) �= null and arc(p(v)) �= a) then
8 stop := true and break;
9 end if

10 end for
11 if (stop = false) then
12 Pπ := Pπ ∪ (u, a, h(a)); u := h(a);
13 if (u = d) then stop := true;
14 end if
15 end while
16 end procedure

Figure 4.9: A procedure finding a subpath defined by π.

have that π corresponds to a loopless o-d path, i.e. π defines a path-strategy and the
procedure stops; otherwise the loop is repeated on h (a).

In the next section we consider the problem of finding the K best path-strategies in
an STD network where no waiting is allowed in the nodes in G. Different procedures are
presented distinguished by the way a lower bound on the weight of a best path-strategy is
found. In Section 4.2.2 we extend the results to STD networks where waiting is allowed.

4.2.1 No waiting allowed

Consider an STD network where no waiting is permitted in the nodes in G and let P
denote the set of loopless o-d paths in G. Then a traveller following a path P ∈ P must
upon arrival at an intermediate node u in P leave u immediately. Hence path P defines
a unique arc a ∈ A followed for each node u ∈ P and leaving time.

Corollary 4.2.3 A path P ∈ P corresponds to a unique path-strategy So0, i.e. a unique
s-t hyperpath π in H and conversely a path-strategy corresponds to a unique path in G.

Due to Corollary 4.2.3, we have that finding the K best path-strategies corresponds
to finding the K minimum weight paths in G where the minimum weight of a path P is
the weight of the hyperpath corresponding to P using one of the criteria in Section 3.2.
Therefore we partition P into subsets, i.e. the branching operation is not performed on
the hyperpath π but on a subpath in G corresponding to π. More specifically, let π
denote a minimum weight hyperpath in H. First, check if π defines a path-strategy using
procedure findSubP. Two cases may arise:

1. Procedure findSubP returns a loopless o-d path‡ Pπ = (o = u1, ..., uq = d), i.e. the
best path-strategy has been found corresponding to Pπ.

‡The arcs in the path are not written explicitly.

50 Finding the K best strategies in an STD network

2. Procedure findSubP considers a node v in H where (4.3) fails, i.e. π defines a sub-
path (o = u1, ..., uq−1 = v) . In this case, let Pπ = (o = u1, ..., uq−1, uq) denote the
subpath together with arc (uq−1, uq) where (uq−1, uq) denotes the arc a in procedure
findSubP when (4.3) fails (line 7).

The idea is now to partition P using Pπ. That is, branch on the path from u1 to uq

found above, starting at u1 and proceeding forward. This is the usual forward branching
approach of Yen applied to Pπ in G with a special treatment of node uq.

Branching Operation 4.2.1 Given path Pπ = (o = u1, ..., uq) in G, the set P can be
partitioned into disjoint subsets P i, 1 ≤ i ≤ q as follows:

1. For 1 ≤ i < q, paths in P i contain path P i
π = (u1, ..., ui) but not arc (ui, ui+1) .

2. Paths in Pq contain path Pπ .

Proof It is obvious that the partition of P defines a branching tree similar to the one
shown in Figure 4.1 and hence P i, 1 ≤ i ≤ q are disjoint and P = ∪i=1,...,qP i.

Note, if uq = d, then Pq contains a single path, namely Pπ, i.e. in this case Pπ may
be removed from P by not considering Pq.

Definition 4.2.1 Given Pπ , let subgraph Gi, i = 1, ..., q be obtained from G as follows

1. For each node uj , j = 1, ..., i− 1, remove each arc in FS(uj) except (uj , uj+1).

2. If i �= q, remove arc (ui, ui+1) .

Definition 4.2.2 Given Pπ, let subhypergraph Hi, i = 1, ..., q be obtained from H as
follows

1. For each node v ∈ VH (uj) , j = 1, ..., i− 1, remove each hyperarc in BS(v) except
the hyperarc e with arc (e) = (uj , uj+1) .

2. If i �= q, then for each node v ∈ VH (ui) , remove the hyperarc e ∈ BS (v) with
arc (e) = (ui, ui+1) .

Note that, Branching Operation 4.2.1, Definition 4.2.1 and Definition 4.2.2 only con-
sider the partition of G into subgraphs. However, it is obvious that we can use Branching
Operation 4.2.1 recursively.

The partition of P corresponds to a partition of G into subgraphs Gi or equivalent to
partition H into subhypergraphs Hi.

Theorem 4.2.1 Given subgraph Gi and subhypergraph Hi for i = 1, ..., q, the following
are equivalent

1. Pod ∈ P i.

2. Pod is an o-d path in Gi.

3. s-t hyperpath π corresponding to path Pod is a hyperpath in Hi.

4.2 Finding the K best strategies under a priori route choice 51

Proof Consider Pod ∈ P i. Note that all arcs in Pod is in Gi, i.e. Pod is a path in Gi. Next,
assume that Pod is a path in Gi. Note that Hi contains all hyperarcs corresponding to an
arc in Pod. Therefore the s-t hyperpath π corresponding to Pod is contained in Hi. Finally,
consider an s-t hyperpath π ⊆ Hi corresponding to Pod. Since the predecessor hyperarc e
of a node v in π with node (v) = uj , j = 1, ..., i−1 is a hyperarc with arc (e) = (uj, uj+1),
we have that π defines subpath P i

π = (u1, ..., ui). Moreover, if i < q the predecessor
hyperarc e of a node v satisfying node (v) = ui cannot correspond to arc (ui, ui+1) , i.e.
Pod cannot contain arc (ui, ui+1) , i.e. Pod ∈ P i.

Using Theorem 4.2.1, each subset P i can be represented by its corresponding subgraph
Gi. Furthermore, since the weight of the best strategy is a lower bound on the weight of
the best path-strategy we have that a lower bound on the minimum weight path in P i

can be found by considering subhypergraph Hi.

Corollary 4.2.4 The weight of the minimum weight hyperpath in subhypergraph Hi cor-
responding to subgraph Gi is a lower bound on the weight of the minimal path in P i.

Recall that, in Branching Operation 4.2.1, branching is performed on a subpath in G,
not on a hyperpath in H. Since the number of arcs in path Pπ found, when examining
the minimum weight hyperpath π, is expected to be much smaller than the number of
hyperarcs in π, the number of subsets P i is expected to be smaller than if branching was
performed on π instead. Furthermore, branching is not necessarily performed on an o-d
path. If only a subpath Pπ is found when examining the minimum weight hyperpath π
(i.e. uq �= d), the last arc (uq−1, uq) in Pπ is found where (4.3) fails. It is then obvious
that hyperpath π is not contained in Hi, i = 1, ..., q. That is, we can stop the branching
operation in node uq, because the partition removes the current minimum weight hy-
perpath π. On the contrary, if uq = d, we have found a loopless o-d path in G and its
corresponding path-strategy defined by π.

Procedure K-BPS, shown in Figure 4.10, for finding the K best path-strategies can now
be formulated. A backward and forward representation of the time-expanded hypergraph
H and the topological network G is used. Furthermore, H and G are linked together
with pointers, so that, for each hyperarc e and node u in H, arc (e) and node (u) can
be identified. For further details see Appendix B.1.4. A candidate set of pairs (l̃b, G̃)
representing the current partition of P is used. Graph G̃ is the subgraph representing
subset P̃ and l̃b is the weight of the minimal hyperpath in subhypergraph H̃ corresponding
to G̃. That is, l̃b is a lower bound on the weight of the minimal path in G̃. Note that
it is still possible to maintain the partition of P implicitly in a branching tree similar to
the one shown in Figure 4.2. The branching tree node corresponding to (l̃b, G̃) contains
pair (ã, l̃b), where ã is the hyperarc we remove in the forward star. Moreover, if the pair
corresponds to subset Pq in Branching Operation 4.2.1, then we fix the whole path Pπ.
In this case we set ã = null. A heap of pointers to the branching tree nodes is used to
maintain the candidate set in non-decreasing order of the lower bound. Procedure K-BPS
uses the following subprocedures:

SHTacyclic(s,H,G̃): Finds the minimum weight hyperpath in subhypergraph H̃
corresponding to G̃. Done by modifying line 4 in procedure SHTacyclic(s,H),
shown in Figure 2.4 on page 14, to only considering hyperarcs e in BS (vi)
satisfying that arc (e) is in G̃ or e is a dummy arc.

52 Finding the K best strategies in an STD network

1 procedure K-BPS(H, G, s, t, K)
2 SHTacyclic(s,H);
3 if (W (t) = ∞) then stop (there is no path-strategy);
4 insert(null, W (t)); k := 0
5 while (k < K) do
6 τ := delMin();
7 if (τ = null) then stop (there are no more path-strategies);
8 G̃ := setF(τ);
9 call SHTacyclic(s,H, G̃) to find π̃;

10 Pπ̃ = (o = u1, a1, ..., aq−1, uq) := findP(π̃, aq); a0 := null;
11 if (uq = d) then
12 k := k + 1, output the k’th path-strategy π̃ and set j := q − 1;
13 else Pπ̃ := Pπ̃ ∪ aq, j := q + 1 and aq+1 := null;
14 for (i := 1 to j) do
15 if (ai not fixed) then
16 G̃ := modG(G̃, ai, ai−1);
17 SHTacyclic(s,H, G̃);
18 insert(ai, W (t));
19 end if
20 end for
21 end while
22 end procedure

Figure 4.10: Finding the K best path-strategies.

findP(π̃, ã): Return the path found in procedure findSubP in Figure 4.9. Moreover,
the arc ã used as input in findP is set to null if path Pπ is an o-d path;
otherwise if the procedure stops before reaching node d, arc ã is set to the arc
a used in procedure findSubP, i.e. the arc used when (4.3) fails (line 7).

setF (τ): Similar to procedure setF under time-adaptive route choice. Subgraph G̃
can be obtained from G by maintaining a flag for each arc in G equal to one,
if the arc is in subgraph G̃ and zero otherwise. An arc (u, v) in G is then
fixed by setting the flags of the hyperarcs in FS (u) to zero except the flag
for arc (u, v). Moreover, note that, o-d paths in G must contain the fixed
subpath (o, ..., u, v). Since we seek loopless o-d paths, we also remove the arcs
a ∈ BS (v) \ {(u, v)}.

modG(G̃, ar, af): Modify subgraph G̃ by removing arc ar and next fix arc af (if
not equal to null).

At the start of an iteration the minimal branching tree node τ is picked and removed
from the heap. Subgraph G̃ is then built by traversing the path from τ to the root in the
branching tree. The minimum weight hyperpath in subhypergraph H̃, corresponding to
G̃, is found using procedure SHTacyclic(s,H, G̃). Given G̃, we find the minimum weight
hyperpath π̃ of H̃ and use procedure findP to find path Pπ̃ = (o = u1, ..., uq) . If uq = d,
then we have found a best path-strategy and output it. In this case the subgraph defined
by fixing all arcs in Pπ̃ is equal to Pπ̃ and hence we only insert the first q − 1 subgraphs

4.2 Finding the K best strategies under a priori route choice 53

t

u1u2u3ui-1ui = o

Figure 4.11: The end-tree ηi defined by subpath P i
π .

into the branching tree and heap (line 12). If uq �= d we have to branch on the arc where
(4.3) fails. Therefore path Pπ̃ is modified on line 13 and we consider the partition of G̃
into q + 1 subgraphs. For each subgraph G̃ we find the lower bound l̃b on the weight of
the minimal path in G̃ and insert the pair into the branching tree and candidate set.

Note that the subgraphs G̃ defined in the branching tree are ranked according to a
lower bound, which are equal to the weight of the minimal hyperpath in the subhypergraph
corresponding to G̃. Therefore the weight of the minimal branching tree node in the heap
is equal to the weight of the minimal hyperpath π̃ defined by all the subgraphs in the
candidate set. That is, if π̃ defines a path-strategy, i.e. an o-d path in G, we have found
the minimal one. Moreover, due to Branching Operation 4.2.1, we only remove an o-d
path from G if π̃ defines a path-strategy (line 12). That is, the following theorem holds

Theorem 4.2.2 Procedure K-BPS finds the K best path-strategies in a finite number of
steps.

The worst case complexity of the procedure is exponential, since the problem of finding
the best path-strategy is NP-hard.

Ranking nodes in the branching tree using a weaker lower bound

Consider subgraph G̃ corresponding to a branching tree node in the branching tree. In
procedure K-BPS each branching tree node is ranked according to a lower bound on the
weight of the minimal path in G̃, equal to the weight of the minimal hyperpath in the
subhypergraph H̃ corresponding to G̃. That is, a minimum weight hyperpath problem
must be solved for each subgraph generated during the branching operation. However,
we may use reoptimization techniques to find another lower bound. In general, this lower
bound is weaker, since it is a lower bound on the weight of the minimal hyperpath in
H̃. However, we do not need to solve a minimum weight hyperpath problem for each
subgraph generated during the branching operation.

Consider Branching Operation 4.2.1 on path Pπ = (o = u1, ..., uq) found by considering
s-t hyperpath π. In each subgraph Gi, i = 1, ..., q we have fixed the u1-ui subpath P i

π

54 Finding the K best strategies in an STD network

of Pπ. According to Definition 4.2.2, fixing the subpath from u1 to ui corresponds to
fixing the predecessor from t and backwards in Hi (see Figure 4.11). That is, a hyperpath
in Hi must contain the hypergraph as shown in Figure 4.11. More formally, let Vπ(P i

π)
denote the set of nodes in π corresponding to nodes in P i

π except node ui. Consider
subhypergraph ηi = (Eη,Vη) of Hi, i = 2, ..., q − 1 with

Eη =
⋃

u∈Vπ(P i
π)

{p (u)} , Vη =
⋃

e∈Eη

(T (e) ∪ h (e))

Since there is a path from each node u ∈ Vη to node t in ηi, we have, according to
Definition 2.4.1, that

Corollary 4.2.5 Subpath P i
π corresponds to the unique end-tree ηi ⊂ π defined by Vπ(P i

π),
i = 2, ..., q − 1.

Note that we do not define ηq because arc (uq−1, uq) may be an arc where (4.3) is
violated. That is, ηq is an end-tree but may not be contained in π. End-tree ηi has a
particular structure, indeed the set of inner-nodes is equal to Vπ(P i

π) and the set of leaf-
nodes Eη is contained in Vπ (ui). However, since we branch on G and not on H, nodes in
H are not processed backward according to the valid ordering of π. That is, we cannot
use the weights of a minimal hypertree Ts to find the weight of the minimal hyperpath
to each node in Eη. But by using the weights of the minimal hypertree Ts containing the
s-t hyperpath π used in Branching Operation 4.2.1, we can find a lower bound on the
minimum weight hyperpath in subhypergraph Hi.

Due to Theorem 4.1.4, it is obvious that a lower bound lbi (u) for each node u ∈ Eη

in Hi is
lbi (u) = mine∈BSHi (u) w (e) + F

(
W Ts , e

)
(4.4)

where F (W Ts , e) denotes the function F (e) using the weights of Ts, as defined in Sec-
tion 2.3.1. Furthermore, given the lower bounds lbi (u), u ∈ Eη, the lower bound for
node t can be calculated using Theorem 4.1.6 on end-tree ηi. For subhypergraph H1 no
end-tree is defined. However, here we only remove the hyperarc p (t), i.e. the lower bound
in node t is found using (4.4). Furthermore, no end-tree is defined for Hq, but end-tree
ηq−1 is also an end-tree in Hq, i.e. we just use (4.4) on ηq−1 in Hq.

A procedure K-BPSreopt, finding the K best path-strategies using reoptimization, can
now be formulated. The procedure only differs slightly from procedure K-BPS, therefore
the pseudo-code of procedure K-BPSreopt is not shown. Since branching tree nodes are
ranked according to a lower bound, which is not equal to the weight of the minimal
hyperpath, two cases may happen when we pick and remove a branching tree node τ
from the heap:

1. The weight Wτ of the minimal hyperpath πτ in the subhypergraph corresponding
to τ is lower than or equal to the current minimal lb in the candidate set.

2. The weight Wτ of the minimal hyperpath in the subhypergraph corresponding to τ
is greater than the current minimal lb in the candidate set.

In the first case, πτ is the hyperpath with minimum weight among all the subhyper-
graphs in the candidate set and we proceed as in procedure K-BPS. In the second case,

4.2 Finding the K best strategies under a priori route choice 55

this is not necessarily true. Therefore we reinsert τ into the candidate set with the lower
bound updated to Wτ . That is, we do not perform any branching operation but start on
a new iteration. Furthermore, a label for each node in H must be maintained containing
the value of lη or fη for the end-tree as in procedure K-BSreopt. Finally, on line 17 in
procedure K-BPS, we find a lower bound in node t as descried above, instead of using
procedure SHTacyclic.

Using a multiple branching approach

In this section a more restricted branching operation is presented. Consider Branching
Operation 4.2.1, o-d paths in subset P i must contain subpath P i

π = (u1, ..., ui) and not
arc (ui, ui+1). Note, however, we do not take into consideration that a path in P i must
have a unique successor arc of node ui. This can be done by considering each arc a in
the forward star of ui separately. That is, instead of creating one subset P i where we
remove the successor arc (ui, ui+1), we create |FS (ui)| − 1 subsets, where we fix an arc
a ∈ FS (ui) satisfying a �= (ui, ui+1).

More specifically, let π denote a minimum weight hyperpath in H and assume that
π defines subpath Pπ = (o = u1, ..., uq). Note that Pπ differs from the path used in
Branching Operation 4.2.1. Here we only consider the subpath defined by π. Now, the
idea is to partition P using the following multiple branching operation on Pπ .

Branching Operation 4.2.2 Given path Pπ = (o = u1, ..., uq) defined by π the set P
can be partitioned into disjoint subsets as follows:

1. For 1 ≤ i < q and a ∈ FS (ui) \ {(ui, ui+1)}, paths in P i,a contain path P i
π and arc

a.

2. If uq �= d, then for a ∈ FS (uq), paths in Pq,a contain path Pπ and arc a, otherwise
Pq−1,(uq−1,uq) = {Pπ}.

Proof A branching tree similar to the one shown in Figure 4.1 can be constructed where
each level, instead of having a remove and a fix arc, has a fix arc for each arc in the
forward star. Note, if uq = d, we do not consider the subset Pq−1,(uq−1,uq) in item 1
above, therefore it is defined in item 2.

Note that P i,a may be empty, for instance this is the case if the head node of arc a is
in path P i

π. Similar to Definition 4.2.1 and Definition 4.2.2, the subset P i,a corresponds
to subgraph Gi,a and a subhypergraph Hi,a.

Definition 4.2.3 Given Pπ and subset P i,a, let subgraph Gi,a be obtained from G as
follows

1. For each node uj , j = 1, ..., i− 1, remove each arc in FS(uj) except (uj , uj+1).

2. Remove each arc in FS(ui) except arc a.

Definition 4.2.4 Given Pπ and subset P i,a, let subhypergraph Hi,a be obtained from
H as follows

56 Finding the K best strategies in an STD network

1. For each node v ∈ VH (uj) , j = 1, ..., i − 1, remove each arc in BS(v) except the
hyperarc e with arc (e) = (uj , uj+1) .

2. For each node v ∈ VH (ui) , remove each arc in BS(v) except the hyperarc e with
arc (e) = a.

Theorem 4.2.3 Given subset P i,a, subgraph Gi,a and subhypergraph Hi,a the following
are equivalent

1. Pod ∈ P i,a.

2. Pod is an o-d path in Gi,a.

3. Hyperpath π in Hi,a defines a path-strategy corresponding to Pod.

Proof Similar to the proof of Theorem 4.2.1.

A procedure finding the K best path-strategies using the multiple branching opera-
tion, denoted K-BPS MB, can now be formulated. The procedure only differ from the
procedure K-BPSreopt in the way the subgraphs G̃ are made. Moreover, a slightly dif-
ferent branching tree implementation must be used (see Appendix B.2). Note that a
hyperpath in subhypergraph Hi,a must contain end-tree ηi and hence a lower bound on
the weight of the best path-strategy for each subhypergraph Hi,a can be found by using
(4.4) and Theorem 4.1.6 on end-tree ηi.

Using Branching Operation 4.2.2 creates more branching tree nodes compared to
Branching Operation 4.2.1. However, we obtain a tighter lower bound and often the
size of the forward star of a node in G is small in practice (about four in a road network).
Therefore, if the calculation of the lower bound for each subgraph is fast, we may obtain
a faster procedure.

4.2.2 Waiting allowed

Consider a strategy So0 defining the route followed between node o and d when leaving
node o at time zero. Assume that So0 is a path-strategy, i.e. So0 defines a path P ∈ P .

P = (o = u1, a1, u2, a2, ..., aq−1, uq = d)

If no waiting is allowed, then path-strategy So0 corresponding to P is unique according
to Corollary 4.2.3. However, if waiting is allowed, then a traveller arriving at node ui,
1 < i < q, following path P, can either wait or leave along arc ai. That is, if waiting is
allowed, then P defines a possible exponential number of path-strategies, distinguished
from each other by the use of waiting. Therefore there may exist an exponential number
of hyperpaths corresponding to P each having a different weight.

Due to this, the problem of finding the K best strategies under a priori route choice
when waiting is allowed can be divided into two cases depending on whether the K best
path-strategies must correspond to K different o-d paths in G, or if the path-strategies
not necessarily have to correspond to different o-d paths in G. Note that in this case we
may find K best path-strategies corresponding to the same path in G.

We start by looking at the first problem and next proceed to show that the latter
problem can be solved by a simple extension of the first problem.

4.2 Finding the K best strategies under a priori route choice 57

1 procedure calcLB(H̃, P̃ = (u1, ..., ui))
2 for (v ∈ VH̃(uj), j = 1, ..., i) do W (v) := ∞;
3 for (j := i to 1) do
4 VNH̃(uj) := (v1, ..., vr(uj));
5 for (l := 1 to r(uj)) do
6 for (e ∈ BS(vl)) do
7 W (vl) := min(W (vl), w(e) + F (e));
8 end for
9 end for

10 end for
11 end procedure

Figure 4.12: Finding a lower bound (waiting allowed).

Paths must be different

It is easy to see that Branching Operation 4.2.1 still holds and the construction of the
subgraphs Gi defined in Definition 4.2.1 is not affected by waiting. However, the hyper-
graph Hi defined in Definition 4.2.2 does not contain all hyperpaths corresponding to a
path in P i, since we remove the waiting arc when we fix a hyperarc. Instead another set
of subhypergraphs has to be constructed.

Definition 4.2.5 Given path Pπ in Branching Operation 4.2.1, let subhypergraph Hi,
i = 1, ..., q be obtained from H as follows

1. For each node v ∈ VH (uj) , j = 1, ..., i− 1, remove each hyperarc in BS(v) except
the hyperarc e with arc (e) = (uj , uj+1) and the unique waiting arc (if it exists).

2. For each node v ∈ VH (ui) , remove the hyperarc e with arc (e) = (ui, ui+1) .

Given Hi in Definition 4.2.5 it is easy to see that Theorem 4.2.1 still holds. Moreover,
if Pπ defines an o-d path, then all s-t hyperpaths in Hq correspond to Pπ . Hence, by
removing the branching tree node corresponding to Hq from the candidate set, we remove
all path-strategies corresponding to Pπ . Procedure K-BPS in Figure 4.10 can now be
easily modified to find the K minimum weight paths under waiting. We only have to
modify Subprocedure SHTacyclic(s,H, G̃) so that we only consider hyperarcs which are
either equal to a waiting arc, dummy arc or correspond to an arc in G̃. Hence we find the
minimum weight of a hyperpath in a subhypergraph as defined in Definition 4.2.5 and if
Pπ is an o-d path then subhypergraph Hq is removed from the candidate set, i.e. we only
output one path-strategy for each path in G, namely the best one.

Unfortunately, fixing the subpath P i
π in Gi does not define an end-tree in Hi in

the waiting case. Therefore, procedure K-BPSreopt cannot be used directly. However,
equation (4.4) still can be used to find a lower bound on all the nodes v ∈ VH (ui).

Procedure calcLB, shown in Figure 4.12, can be used to find a lower bound on the
minimal hyperpath in subhypergraph H̃ where each hyperpath must contain the subpath
P̃ = (u1, ..., ui). Procedure calcLB is a modified version of procedure SHTacyclic which
only considers the nodes in H̃ corresponding to nodes in P̃ . First, the node weights are

58 Finding the K best strategies in an STD network

initialized to infinity. We next process the nodes according to a valid ordering VH̃ of H̃.
Every hyperpath in H̃ must define subpath P̃ , hence, by considering node ui down to the
first node u1 in P i

π, we follow a valid ordering of H̃. Note that, given node uj, we must
follow a valid sub-ordering VVH(uj) ⊂ VH̃ of the nodes in VH(uj) defined on line 4. This
ordering is maintained in the data structures representing G and H (see Appendix B.1.4).
Label W (t) then contains a lower bound on the weight of the minimal hyperpath in H̃
when the procedure stops.

Similarly the multiple Branching Operation 4.2.2 still holds under waiting and we have
to redefine the subhypergraphs Hi,a.

Definition 4.2.6 Given Pπ and subset P i,a, let subhypergraph Hi,a be obtained from
H as follows

1. For each node v ∈ VH (uj) , j = 1, ..., i − 1, remove each arc in BS(v) except the
hyperarc e with arc (e) = (uj , uj+1) and the unique waiting arc (if it exists).

2. For each node v ∈ VH (ui) , remove each arc in BS(v) except the hyperarc e with
arc (e) = a and the unique waiting arc (if it exists).

Given Hi,a in Definition 4.2.6, we have that Theorem 4.2.3 still holds; therefore pro-
cedure K-BPS MB , in the waiting case, can use subprocedure calcLB described above on
Hi,a defined in Definition 4.2.6.

Paths does not have to be different

We consider the problem of finding the K best path-strategies not necessarily correspond-
ing to K different paths in G. Consider the path Pπ used in Branching Operation 4.2.1
or Branching Operation 4.2.2 obtained from the minimum weight hyperpath π in H. If
π does not define a path-strategy then the partition of P does not remove any paths
from the candidate set and the procedures run like in the previous section. If π defines a
path-strategy, then Pπ is an o-d path. In this case Pπ is removed from the candidate set
in the procedures used when no waiting is allowed. However, if waiting is allowed, there
may be exponentially many different path-strategies corresponding to Pπ and we are not
interested in removing Pπ from P but only in removing the path-strategy, i.e. hyperpath
π. This can be done in the following way.

First, consider the procedures using Branching Operation 4.2.1, if Pπ is an o-d path,
then all s-t hyperpaths in subhypergraph Hq correspond to Pπ, i.e. we are interested in
removing π from Hq. However, since all s-t hyperpaths in Hq correspond to Pπ , we can
remove π from Hq by using Branching Operation 4.1.2. That is, we perform a backward
branching operation using the hyperarcs in π not the arcs in Pπ. In this way we partition
Hq into subhypergraphs Hq,j and for each subhypergraph, we now can find the minimum
weight hyperpath which defines the best path-strategy in Hq,j . Using a slightly modified
branching tree (see Appendix B.2), we can now store the minimum weight and Hq,j in the
candidate set. Note if Hq,j later is picked from the candidate set, then all s-t hyperpaths
in Hq,j define an o-d path and we may use Branching Operation 4.1.2 directly on Hq,j .

Finally, consider the procedures using Branching Operation 4.2.2. If Pπ is an o-d path,
then all s-t hyperpaths in subhypergraph Hq−1,(uq−1,uq) correspond to Pπ and Branching
Operation 4.1.2 is used on Hq−1,(uq−1,uq) as described above.

4.2 Finding the K best strategies under a priori route choice 59

11a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(a) subhypergraph H2

9a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(b) subhypergraph H3

12a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(c) subhypergraph H3,4

10a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

(d) subhypergraph H3,3

Figure 4.13: Subhypergraphs created when using Branching Operation 4.2.1 and Branch-
ing Operation 4.1.2.

Example 3 (continued) Consider the topological network G in Figure 3.2 on page 27.
Note that there are only two a-d paths in G. However, since waiting is possible in node c,
they define five path-strategies – one corresponding to path (a, b, d) and four corresponding
to path (a, b, c, d).

Assume that we want to find the K = 3 best path-strategies minimizing maximum
cost using procedure K-BPS.

First the minimal hypertree for the MMC problem is found in the time-expanded hy-
pergraph H, containing the minimal s-a0 hyperpath π, shown with solid lines in Figure 3.3
on page 28.

Next, procedure findP finds the path Pπ = (a, b). Since Pπ is not an a-d path, we use
Branching Operation 4.2.1 on Pπ := (a, b, c). Note Pπ is the union of the subpath (a, b)
defined by π and a successor arc of node b where equation (4.3) fails. Another successor
arc may be chosen, e.g. arc (b, d) . Subgraphs Gi, i = 1, 2, 3, is created and the lower
bound found. The subhypergraphs H2 and H3 corresponding to G2 and G3 are shown

60 Finding the K best strategies in an STD network

in Figure 4.13(a) and 4.13(b) where hyperarcs in the minimal hypertree is shown with
solid lines and the hyperarcs corresponding to a fixed arc in G are shown in bold. The
subhypergraph of G1 is not shown, since no s-a0 hyperpath exists.

The minimum weight hyperpath π1 in H3 is then picked from the candidate set.
Since π1 corresponds to an a-d path Pπ1 = (a, b, c, d), we output π1 as the first best path-
strategy. Consider the subgraphsG3,i, i = 1, 2, 3, 4 of G3. In all subgraphsG3,i, i = 1, 2, 3,
no a-d path exist, i.e. nothing is added to the candidate set. However, waiting is allowed
in node c, and hence we have to use Branching Operation 4.1.2 on π1 in the subhypergraph
corresponding to G3,4 which, in this case, is equal to H3 (see Figure 4.13(b)). A valid
ordering of π1, where s precedes the other nodes, can be found by ranking the nodes in
V\ {s} in decreasing order of time:

Vπ1 = (s, u1, ..., u7) =
(
s, d5

, d
4, c3, c2, b2, b1, a0

)
Hence using Branching Operation 4.1.2 on π1 corresponds to creating subhypergraphs
H3,i, i = 1, ..., 7 of H3. Only subhypergraphs H3,4 and H3,3 contain an s-a0 hyperpath.
The subhypergraphs are shown in Figure 4.13(c) and 4.13(d) where the hyperarcs fixed
in Vπ1 are shown in bold. The second best path-strategy is then found as the minimum
weight hyperpath π2 in subhypergraph H3,3. All nodes in H3,3 have only one hyperarc in
their backward star and hence there will be no s-a0 hyperpath in the subhypergraphs of
H3,3. The third best path-strategy is then the minimum weight hyperpath in H2. Note
the first two best path-strategies correspond to path (a, b, c, d) while the third corresponds
to path (a, b, d).

4.3 Computational results

In this section we report the computational experience with the procedures previously
described in this chapter. The procedures have been implemented in C++ and tested on
a 1 GHz PIII computer with 1GB RAM using a Linux Red Hat operating system. The
programs have been compiled with the GNU C++ compiler with optimize option -O.

All tests are performed on time-expanded hypergraphs generated with the TEGP
generator (see Section 3.5). In the following, we use the term hypergraph class to define
a particular setting of the TEGP input parameters; for each class, different hypergraphs
(i.e. different instances of the problem) can be generated by choosing different seeds.

For each hypergraph class, five independent runs was carried out using a different
seed. In all classes, a cycle consists of 144 time instances, i.e. 12 hours divided in 5
minute intervals. A cycle has two peaks each with a total length of 5 hours (each period
pkj of the peak lasts 1 hour and 40 minutes) and the first peak starts after half an hour
(t = 6). The interval of possible off-peak mean travel times is [lbt, ubt] = [2, 6] , i.e. an
off-peak mean travel time between 10 and 30 minutes. The deviation mean ratio is set
to ρ = 0.25 in all classes. The remaining input parameters will be specified when we
consider the different classes used in the tests.

4.3.1 Performance measures/statistics

In this section, performance measures/statistics used to evaluate the procedures, are de-
scribed. The statistics can be divided into two groups. In group one statistics concerning

4.3 Computational results 61

4 71

3 6 9

5 82

d

o

(a) “path-like”.

4 71

3 6 9

5 82

d

o

(b) Not very “path-like”.

Figure 4.14: A “path-like” and a not very “path-like” strategy.

the performance of the procedures are considered. For each hypergraph class the measures
are averaged over five independent runs using different seeds. The abbreviation used in
the tables are given in parentheses.

CPU time (CPU K): CPU time for finding the K best strategies (time-adaptive
case) or path-strategies (a priori case). The running time does not include
input/output time.

First CPU time (CPU 1): CPU time for finding the best strategy or path-strategy.

Number of iterations (iteK): Number of iterations performed for finding theK best
path-strategies, i.e. the number of times the while loop in e.g. procedure K-
BPS is executed. Only used under a priori route choice since the number of
iterations under time-adaptive route choice is equal to the number of strategies
K found.

Number of iterations (ite1): Number of iterations performed for finding the best
path-strategy.

Number of reinsertions (reins): The number of times a branching tree node picked
from the candidate set is reinserted into the candidate set. Only used under a
priori route choice, since no reinsertions are made under time-adaptive route
choice. Reported in percent of the number of iterations iteK .

Average number of branching tree nodes (|τ |): The average number of branching
tree nodes τ created when performing a branching operation. That is, under
time-adaptive route choice, the number of hyperarcs in the hyperpath not
already fixed, and under a priori route choice, the number of arcs in the path
Pπ used in the branching operation not already fixed.

In the second group, statistics on how the strategies look like, are given, e.g. number
of hyperarcs in the hyperpaths, increase in the weight between the first and the K’th
strategy etc. Here we also examine how “path-like” the strategies are – defined in the

62 Finding the K best strategies in an STD network

following sense: Given a hyperpath π defining a strategy S, it is obvious that π defines a
subgraph Gπ = (Nπ, Aπ) of G with

Nπ = {u = node (v) | v ∈ Vπ} , Aπ = {a = arc (e) | e ∈ Eπ}

Each node u in Nπ is a node which may be visited when following strategy S and each
arc a in FS (u) is an arc followed for some leaving time t from node u. Moreover, if the
number of arcs in FS (u) is equal to one, the same arc is followed for all leaving times from
u. If this holds for all u ∈ Nπ, then S defines a path in G. On the contrary, if the number
of arcs in FS (u) is higher than one in most for the nodes in Nπ, then strategy S defines
a strategy which is not very “path-like”, since different routes are followed depending on
the actual travel time on the arcs. A path-like and not very path-like strategy is shown
in Figure 4.14 when considering a 3× 3 grid network G. Note that strategies may define
cycles in Gπ corresponding to travelling from a node at time t and arriving at the same
node at time t′ > t.

We use the following statistics to see how strategies look like. Again, for each hyper-
graph class, the measures are average over five independent runs using a different seed
and the abbreviation used in the tables is given in parentheses.

Relative increase in weight (inc): The relative increase between the first strategy
and the K ’th strategy under time-adaptive route choice and under a priori
route choice between the first path-strategy and the K ’th path-strategy. Re-
ported in percent.

Relative increase strategy to path-strategy (incS−PS): The relative increase between
the first strategy and the first path-strategy reported in percent. Only re-
ported under a priori route choice.

Average number of hyperarcs in π (|Eπ|): The average number of hyperarcs in a
specific set Π̃ of hyperpaths. Under time-adaptive route choice, Π̃ is equal
to the hyperpaths used by the branching operation. Under a priori route
choice, Π̃ is equal to the hyperpaths used by the branching operation not
corresponding to a path-strategy.

Average number of arcs (|Aπ|): The average number of arcs in the subgraphs Gπ

corresponding to the hyperpaths in the set Π̃ described above.

Average percentage of nodes with j successor(s) (s = j): For each subgraphGπ cor-
responding to a hyperpath in Π̃, the percentage of nodes with j successors is
found. Note that, since the TEGP generator considers grid networks, a node
in the subgraph has at most four successors. The average over the subgraphs
Gπ is reported for j = 1, 2, 3 and 4.

Number of different paths (diff): Used under a priori route choice when waiting is
allowed. Report the number of different paths the K path-strategies corre-
spond to.

4.3.2 Time-adaptive route choice

Our main goal here is to evaluate and compare the behavior of procedure K-BS and
K-BSreopt. Both the MEC and the MMC criterion is considered, i.e. we are minimizing

4.3 Computational results 63

Class 1 2 3 4 5 6 7 8 9 10 11

n 1586 1975 2320 2682 4157 1497 1497 1497 1497 1497 1497

mh 5309 6608 7738 8955 13907 5012 5012 5012 5012 5012 5012

ma 47 60 71 77 111 44 44 44 44 44 44

|T (e)| 3 3 4 5 5 3 3 3 3 3 4

H 78 94 118 133 155 75 75 75 75 75 75

IT [2,8] [2,11] [2,15] [2,19] [2,23] [2,8] [2,8] [2,8] [2,8] [2,8] [2,8]

IC [1,1100] [1,1500] [1,2000] [1,2500] [1,3000] [1,1050] [1,1100] [1,1200] [1,1500] [1,2000] [1,2000]

ψ 0.1 0.5 1.0 1.5 2.0 0 0 0 0 0 -

rξ 0 0 0 0 0 0.05 0.10 0.20 0.50 1.00 -

Table 4.1: Class 1-11 used for preliminary testing (grid size 5 × 10).

expected or maximum possible cost. Time criteria will not be considered, since similar
results are obtained.

First, some preliminary tests are performed to examine how changes in the structure
of the costs of the hyperarcs may effect how path-like the strategies are. An underlying
grid size of 5× 10 is used and eleven hypergraph classes are considered. In Table 4.1, the
following statistics for class 1-11 are reported:

Number of nodes (n): Recall that the generator may generate nodes and hyperarcs
in H which cannot be contained in an s-t hyperpath. These nodes and hyper-
arcs are removed from H in a preprocessing step. The number of nodes in H
after preprocessing are reported.

Number of hyperarcs (mh): Number of “true” hyperarcs in H after preprocessing
(i.e. |T (e)| > 1).

Number of arcs (ma): Number of arcs in H after preprocessing.

Tail size (|T (e)|): The average number of nodes in the tail of each hyperarc, i.e.
the average number of elements in the travel time density of X (u, v, t) when
leaving node u at time t along arc (u, v).

Time horizon (H): The time horizon or number of time instances of the STD net-
work.

Travel time interval (IT): The interval of possible travel times. Note that this in-
terval may not be equal to [lbt, ubt], since the travel time increases in peaks,
if peak dependent travel times/costs are used (see Section 3.5).

Cost interval (IC): The interval of costs used. Note that this interval may not be
equal to [lbc, ubc], since the costs increase in peaks, if peak dependent costs
are used (see Section 3.5).

The value of the peak increase parameter ψ and the range of the random perturbation
rξ is also reported in Table 4.1.

64 Finding the K best strategies in an STD network
C

la
ss

C
P

U
K

|τ | |Eπ| |Aπ| s
=

1

s
=

2

s
=

3

s
=

4

C
la

ss

C
P

U
K

|τ | |Eπ| |Aπ| s
=

1

s
=

2

s
=

3

s
=

4

MEC MMC

1 62 27 226 23 75 18 7 0 1 284 72 202 17 84 15 0 0

2 109 32 272 24 73 16 9 2 2 437 89 237 19 83 14 3 0

3 166 40 356 27 66 22 10 1 3 767 110 297 20 77 20 3 0

4 201 39 389 27 66 22 11 1 4 617 73 317 22 76 21 3 0

5 518 51 552 32 57 32 10 1 5 1193 115 464 24 71 25 4 0

6 84 20 227 22 74 20 4 1 6 282 74 196 16 86 13 1 0

7 132 32 245 24 71 22 7 0 7 261 68 196 18 82 17 1 0

8 115 29 265 27 65 26 9 0 8 281 73 222 20 76 21 3 0

9 237 58 312 35 53 33 13 1 9 271 71 265 29 60 31 9 0

10 319 82 401 54 38 39 18 4 10 286 77 371 48 50 32 16 2

11 1001 264 854 123 10 32 40 18 11 479 114 545 76 24 58 14 3

Table 4.2: Results for finding the K = 1000 best strategies using procedure K-BS (no
waiting).

In class 1-10, peak dependent costs are used with an off-peak cost interval [lbc, ubc] =
[1, 1000]. Changes in the peak increase parameter ψ and the range of the random pertur-
bation rξ is tested separately.

For class 1-5, no random perturbation is used and the peak increase parameter ψ
increases from 10% to 200%. Note that, increasing the value of ψ, increase the interval of
possible travel times, the interval of costs used and the average tail size. Moreover, the
time horizon grows, since, for larger travel times, we need a larger time horizon, i.e. the
hypergraphs grow in size.

In class 6-10, the peak increase parameter ψ is set to zero and the range of the random
perturbation rξ increases from 5% to 100%. Since the peak increase parameter is zero,
no changes in time horizon are needed, i.e. the topological structure for the hypergraphs
in class 6-10 is the same. However, the cost interval grows.

Finally, in class 11, random costs are generated in the interval [1, 2000], i.e. the topo-
logical structure for the hypergraphs in class 11 are the same as in class 6-10. However,
in class 6-10 the costs are peak dependent while the costs are random in class 11 (see
Section 3.5).

The results for finding the K = 1000 best strategies using procedure K-BS on hyper-
graph class 1-11 are reported in Table 4.2 for the MEC and MMC case. First, consider
the MEC criterion, i.e. the mean weighting function is used. Increasing the peak increase
parameter, makes the strategies more non path-like: The average number of hyperarcs in
the 1000 hyperpaths/strategies grows. Similarly does the average number of arcs in the
subgraph Gπ corresponding to hyperpath π. Moreover, the percentage of nodes in Gπ

with two, three or four successor arcs grows while the percentage of nodes in Gπ with one
successor arc falls. This is a result of the fact that, increasing ψ, makes the costs of a
node in G for two different leaving times vary more. One may believe that the strategies
become more non path-like as a result of the hypergraphs becoming larger in size when
increasing ψ. However, this is not the case, as can be seen in the results of class 6-10.

4.3 Computational results 65

peak dependent costs random costs

Class 12 13 14 15 16 17

Grid size 5 × 10 10 × 10 20 × 10 5 × 10 10 × 10 20 × 10

n 2320 7573 21454 1497 3961 11856

mh 7738 27177 79423 5012 14236 43903

ma 71 101 147 44 59 88

|T (e)| 4 4 4 3 3 3

H 118 156 237 75 101 155

IT [2,15] [2,15] [2,15] [2,8] [2,8] [2,8]

IC [2,2190] [1,2197] [1,2200] [1,2000] [1,2000] [1,2000]

Table 4.3: Class 12-17 used to compare procedure K-BS and K-BSreopt.

Here the topological properties are the same for class 6-10, but increasing the range of
the random perturbation, makes the strategies even more non path-like compared to class
1-5.

Finally, making the costs random have a big impact on the strategies. Most of the
nodes in Gπ now have three successors (40%) and the number of arcs in Gπ increases
significantly. Making the strategies more non path-like, affects the performance of proce-
dure K-BS. The CPU time varies between 62-1001 seconds depending on how path-like
the strategies are, even if the same grid size is considered in all classes. This is due
to the fact that strategies not very path-like correspond to hyperpaths containing more
hyperarcs, i.e. the branching operation has to be performed on more subhypergraphs
and since procedure K-BS has to solve a minimum weight hyperpath problem for each
subhypergraph, the CPU time may increase significantly.

For the MMC criterion, the same results are valid. However, the increase in ψ and
rξ do not affect the strategies as much as under the MEC criterion. Moreover, note that
when peak dependent costs are considered, the number of branching tree nodes created
|τ | is larger than under the MEC criterion even though the number of hyperarcs in the
hyperpaths is slightly smaller. This indicate that we branch on hyperpaths where the
number of hyperarcs already fixed is smaller than under the MEC criterion.

The preliminary tests indicate that the structure of the costs may have a big impact on
procedure performance. Therefore we test procedure K-BS and K-BSreopt on two groups
of hypergraphs. In the first group, we use peak dependent costs and a combination of
the peak increase parameter ψ and the random perturbation to model “realistic” STD
networks and to show that our algorithms are expected to work well in practice. In group
two we use random costs. The STD networks generated when using random costs do
probably not correspond to “realistic” STD networks. However, these networks are used
to show how the procedures work on difficult problem instances.

Six classes are used to test procedures K-BS and K-BSreopt. Statistics for class 12-17
are reported in Table 4.3. Class 12-14 use peak dependent costs. The range of the random
perturbation is set to rξ = 10% and the peak increase parameter to ψ = 100%. This gives
a cost structure as shown in Figure 3.5 on page 30. Furthermore, different grid sizes are
used, namely 5× 10, 10× 10 and 20× 10. Therefore the time horizon increases with grid
size.

Class 15-17 use random costs, i.e. there are no peak effect and no random perturbation,

66 Finding the K best strategies in an STD network

Class
CPUK

(reopt)
CPUK

(K-BS) CPU1 |τ | |Eπ| |Aπ| s = 1 s = 2 s = 3 s = 4 inc

MEC

12 9.46 164.50 0.01 33 340 26 65 24 9 2 0.00

13 24.79 1521.61 0.03 88 895 54 60 29 10 1 0.00

14 70.17 6564.36 0.07 135 1688 76 65 31 4 0 0.00

15 7.26 812.17 0.01 264 854 123 10 32 40 18 0.00

16 25.87 4371.57 0.02 442 2162 253 6 24 41 29 0.00

17 75.79 45013.99 0.05 1401 7063 614 3 14 36 46 0.00

MMC

12 9.14 569.16 0.01 99 320 21 74 23 3 0 0.00

13 24.82 4174.09 0.03 203 651 35 72 21 6 1 0.00

14 75.00 24706.39 0.08 400 1603 71 71 26 3 0 0.00

15 7.80 400.37 0.01 114 545 76 24 58 14 3 0.00

16 22.08 2773.09 0.02 251 1398 160 17 55 24 4 0.00

17 71.42 46471.10 0.06 1339 5215 405 10 40 39 11 0.00

Table 4.4: Results for finding the K = 1000 best strategies using procedure K-BS and
K-BSreopt (no waiting).

instead costs are generated randomly in [1, 2000]. Grid sizes as in class 12-14 are used.

The results for finding the K = 1000 best strategies are reported in Table 4.4 for the
MEC and MMC criteria. The CPU time for finding the 1000 best strategies is reported
for both procedure K-BSreopt and K-BS. The rest of the statistics are the same for both
procedures. It is clear that procedure K-BSreopt outperforms procedure K-BS. This is
due to the face that procedure K-BS has to solve a minimum weight hyperpath problem
for each subhypergraph generated during the branching operation, i.e. procedure K-BS
must solve |τ | minimum weight hyperpath problems on average each time the branching
operation is used. Since the average number of hyperarcs in the hyperpaths increase with
grid size, resulting in an increase in |τ |, this has a large effect on procedure K-BS, in
particular when random costs are used. In procedure K-BSreopt, we for each branching
operation on π, on the contrary, have to find a valid ordering of the nodes in π which
takes O (size (H)), update the weights in the end-tree which takes O (size (π)) time and
finally, for each subhypergraph H̃, we must scan BS (ui) to find the new weight in node ui

used to find the new weight in node t. That is, the calculation of new node weights takes
on average O(|BSH̃ (ui)| · average tail size · |τ |) time. Therefore both the size of H, π and
|τ | will have an impact on the CPU time for procedure K-BSreopt. This can be seen on
the results of class 12-17, if we consider the peak dependent and random costs separately.
However, the CPU time for peak dependent and random costs are approximately the
same when using procedure K-BSreopt. Note that the size of the hypergraph, when using
random costs, is approximately half the size of the hypergraph when using peak dependent
costs. This fact will make the CPU time fall under random costs. On the other hand,
a larger size of the hyperpaths (column |Eπ|) and the branching nodes |τ | will make the
CPU time rise under random costs. These two conflicting effects, seem to neutralize each
other and as a result, the CPU time is approximately the same for procedure K-BSreopt

4.3 Computational results 67

0 100 200 300 400

50

150

250 Peak dependent costs
Random costs

Grid size

sec.

Figure 4.15: CPU times for increasing grid sizes using the MEC criterion (K = 1000).

no matter if we are considering peak dependent or random costs.
The CPU time for finding the first strategy is negligible, i.e. a minimum weight hy-

perpath problem can be solved very fast.
If we consider the average number of hyperarcs |Eπ| in the hyperpaths, we see that |Eπ|

is large compared to |τ |. Therefore a lot of hyperarcs are already fixed when performing
a branching operation.

Finally, note that the increase in the weight between the first strategy and the 1000’th
strategy is very small (below 0.00%). This behavior can be intuitively explained for both
the MEC and MMC criterion.

First, consider the MEC criterion and a hyperpath π. The weight of π can be found
using Theorem 2.3.1 and fπ. By looking at the recursive equations (2.4) defining fπ it is
easy to see that fπ(v) may be very small for some node v in π. This is true, in particular,
if the hyperarc size is large and π contains long s-t paths. Let W (v) denote the weight in
node v of hyperpath π. Moreover, let W̃ (v) denote the weight in node v of the hyperpath
π̃ obtained by changing the predecessor of node v. According to Corollary 2.4.1 the weight
of hyperpath π̃ is then

W̃ (t) = W (t) +
(
W̃ (v) −W (v)

)
fπ (v)

In this situation, for a sufficiently small fπ(v) any choice of predecessor in node v would
give almost the same weight of π and π̃. Thus we can expect a huge number of hyperpaths
with more or less the same weight.

For the MMC criterion there may exist a lot of hyperpaths with the same weight.
Consider hyperpath π and a node v in π with predecessor hyperarc e. Assume that
u ∈ T (e) is a node used to find W (v), that is, W (v) = W (u) + w(e). Now suppose that
hyperpath π̃ is obtained by changing the predecessor in a node u′ ∈ T (e), u′ �= u. The
change in the predecessor of u′ does not affect the weight in node v, unless W̃ (u′) becomes
greater than W (u). In other words, we may have a lot of hyperpaths with exactly the
same weight.

The fact that the increase in the weight is very small, will have a negative effect on the
procedures used when considering bicriterion route choice in STD networks, as we will

68 Finding the K best strategies in an STD network

peak dependent costs random costs

Class 18 19 20 21 22 23

n 2329 2329 2329 1499 1499 1499

mh 7756 7756 7756 5016 5016 5016

ma 2328 2328 2328 1498 1498 1498

|T (e)| 4 4 4 3 3 3

H 118 118 118 75 75 75

IT [2,15] [2,15] [2,15] [2,8] [2,8] [2,8]

IC [1,2190] [1,2190] [1,2190] [1,2000] [1,2000] [1,2000]

IW [1,500] [500,1000] [1000,2000] [1,500] [500,1000] [1000,2000]

Table 4.5: Class 18-23 where waiting is allowed (grid size 5 × 10).

see in the next chapter. Here we use a K best strategies procedure to find all strategies
below a certain upper bound. However, since the increase in the weight is small, we have
to find a lot of strategies before the upper bound is reached.

In order to investigate the behavior of the CPU time of procedure K-BSreopt more
carefully, procedure K-BSreopt was tested for all grid sizes between 5 × 5 and 20 × 20
(increasing the grid base or height with 5 each time). The results for the MEC criterion
is shown in Figure 4.15 on the page before using both peak dependent and random costs.
Each point (grid size, CPU) in the figure corresponds to the CPU time of procedure
K-BSreopt on a hypergraph in a class using one seed, i.e. five points are plotted for each
class. The grid size denotes the number of nodes in the grid. The CPU time for random
and peak dependent costs seems to be the same. Moreover, the CPU time seems to grow
in a slightly curved line with the grid size. This is expected since doubling the grid size
makes the corresponding time-expanded hypergraph triple in size (recall that the CPU
time is affected by size (H)).

Waiting

Procedure K-BSreopt was also tested on STD networks where waiting is allowed. Six
classes were used, namely classes 18-23. In all the classes a grid size of 5 × 10 is used.
Statistics for the classes are reported in Table 4.5. Class 18-20 use peak dependent costs
as in class 12 and three waiting costs intervals, namely low waiting costs [1, 500], middle
waiting costs [500, 1000] and high waiting costs [1000, 2000]. In class 21-23 random costs
are used as in class 15 with the same waiting cost intervals as in class 18-20.

The results for finding the K = 1000 best strategies are reported in Table 4.6 for the
MEC and MMC criteria. If we compare the results with class 12 and class 15, we see that
the CPU time is slightly smaller due to the fact that |τ | is smaller than if waiting is not
allowed. Moreover, note that low waiting gives more nodes with one successor compared
to when no waiting is allowed.

4.3.3 A priori route choice

We consider the problem of finding the K best strategies under a priori route choice, i.e.
the K best path-strategies. Our main goal here is to evaluate and compare the behavior of

4.3 Computational results 69

Class CPUK CPU1 |τ | |Eπ| |Aπ| s = 1 s = 2 s = 3 s = 4 inc

MEC

18 7.90 0.00 32 351 23 75 15 9 1 0.00

19 7.88 0.00 21 338 25 68 18 12 2 0.00

20 7.88 0.00 19 339 26 68 18 12 2 0.00

21 3.70 0.00 59 476 76 25 54 18 4 0.00

22 7.38 0.01 134 776 117 10 35 40 14 0.00

23 7.46 0.00 164 794 117 13 31 39 18 0.00

MMC

18 7.83 0.00 47 278 19 79 18 4 0 0.00

19 7.92 0.00 94 323 22 73 23 4 0 0.00

20 7.92 0.00 89 328 23 71 25 4 0 0.00

21 7.15 0.01 80 319 59 46 45 9 1 0.00

22 6.69 0.01 86 518 77 25 53 18 4 0.00

23 6.71 0.01 79 543 73 27 57 15 2 0.00

Table 4.6: Results for finding the K = 1000 best strategies using procedure K-BSreopt
(waiting allowed).

procedure K-BPS, K-BPSreopt and K-BPS MB. Both the MEC and the MMC criterion
are considered, i.e. we are minimizing expected or maximum cost.

First, consider the preliminary tests on hypergraph class 1-11 under time-adaptive
route choice. The results pointed out that different cost structures will affect how path-
like the strategies are. Increasing the peak increase parameter and the range of the
random perturbation when peak dependent costs are considered, will make the strategies
more non path-like. Furthermore, using random costs have a big impact on the strategies
which become even more non path-like.

Obviously the extent of how path-like the strategies are, will affect the procedures
under a priori route choice, since, if strategies are not path-like, then the length of the
path Pπ used in the branching operation will be small. Hence when using random costs
we may have to perform a lot of branching operations before a path-strategy is found.
On the other hand if the strategies are more path-like then the length of Pπ will be long
and we will find a path-strategy faster.

Due to the comments above we will use hypergraph classes 12-23 to test procedures
K-BPS, K-BPSreopt and K-BPS MB where classes with peak dependent costs are used
to test “realistic” STD networks and to show that our algorithms are expected to work
in practice. The classes using random costs are used to show how the procedures will
work on very difficult problem instances. It is expected that, finding the K best strategies
under a priori route choice, will be much harder than the corresponding problem under
time-adaptive route choice. Therefore only K = 100 path-strategies are found in the
tests.

The results for finding K = 100 path-strategies in class 12-17 using procedure K-BPS
are reported in Table 4.7. First, note that, as expected, the strategies in class 12-14 are
more path-like (peak dependent costs) compared to class 15-17 (random costs).

Second, let us compare the results with the results under time-adaptive route choice.

70 Finding the K best strategies in an STD network
C

la
ss

it
e K

C
P

U
K

it
e 1

C
P

U
1

|τ | |Eπ| |Aπ| s
=

1

s
=

2

s
=

3

s
=

4

in
c

in
c S

-P
S

MEC

12 356 8 13 0.3 3 233 22 82 14 4 1 49 5

13 454 37 11 1.0 4 411 31 82 14 4 0 17 7

14 2359 875 133 53.5 4 892 46 85 13 2 0 10 5

15 1427 25 133 2.5 2 203 46 50 25 20 5 18 43

16 9942 564 2722 157.9 2 475 90 39 21 27 12 8 54

17 203479 34227 89519 15127.5 2 1748 244 25 16 27 31 3 59

MMC

12 258 9 4 0.2 3 246 19 86 12 2 0 48 4

13 405 52 14 2.2 4 422 27 85 13 2 0 17 5

14 3253 1330 250 108.0 4 816 44 86 12 2 0 10 9

15 839 15 109 2.0 2 231 32 64 28 7 1 12 25

16 4972 286 1487 87.0 2 509 56 54 32 13 1 5 33

17 579906 77120 293709 45262.1 2 1485 122 44 29 22 5 2 39

Table 4.7: Results for finding the K = 100 best path-strategies using procedure K-BPS
(no waiting).

Under a priori route choice, the increase in weight for the first 100 path-strategies is
between 2% and 49%, while, under time-adaptive route choice, the increase in the weight
for the first 1000 strategies was below 0.00%. This will have a positive effect on the
procedures used when considering bicriterion route choice in STD networks, as we will
see in the next chapter. Here we use a K best path-strategies procedure to find all path-
strategies below a certain upper bound. Furthermore, the branching tree size under a
priori route choice is much smaller than under time-adaptive route choice. Recall that
we have to create a subhypergraph for each hyperarc not fixed in the hyperpath when we
perform the branching operation under time-adaptive route choice, while we only have to
create a subgraph for each arc in the path Pπ when we perform the branching operation
under a priori route choice.

Next, let us compare the results when using peak dependent costs and random costs.
Random costs have a negative impact on procedure performance. The number of itera-
tions and the CPU time increase significantly. This is due to the fact that when random
costs are used, there exists a lot of strategies with weight below the best path-strategy
(see incS-PS column). Hence the procedure first has to remove all these strategies from
the candidate set before the best path-strategy can be found. However, when the best
path-strategy is found, the increase in weight is small (see inc column). The situation is
opposite when peak dependent costs are used here the increase between the first strat-
egy and the first path-strategy in small and the increase in the weight for the first 100
path-strategies is high.

Procedure K-BPSreopt and K-BPS MB was also tested on hypergraph class 12-17.
The results are reported in Table 4.8. The columns |Eπ|, |Aπ|, and s = j are not shown
since results similar to the one shown in Table 4.7 are obtained.

4.3 Computational results 71
C

la
ss

it
e K

r
ei
n
s

C
P

U
K

it
e 1

C
P

U
1

|τ | it
e K

r
ei
n
s

C
P

U
K

it
e 1

C
P

U
1

|τ |
MEC K-BPSreopt K-BPS MB

12 542 32 6 20 0.2 3 484 34 5 19 0.2 6

13 664 30 23 14 0.5 4 589 35 20 12 0.4 8

14 3732 36 375 194 20.1 4 3379 42 500 183 27.3 8

15 2297 38 24 205 2.2 2 1995 47 20 178 1.8 4

16 16336 39 529 4430 146.1 2 13896 50 424 3752 115.8 4

17 334272 39 27333 145971 11927.6 2 280451 51 27529 123048 12107.4 4

MMC K-BPSreopt K-BPS MB

12 350 25 6 5 0.1 3 316 25 5 5 0.1 7

13 549 25 29 20 1.1 4 498 29 26 18 1.0 8

14 5073 36 768 355 55.1 4 4604 41 710 338 55.3 8

15 951 12 10 122 1.3 2 826 13 9 107 1.1 4

16 5721 13 182 1721 54.8 2 4971 14 164 1523 50.3 4

17 709453 18 59904 360947 30414.8 2 584794 23 58898 297955 29825.2 4

Table 4.8: Results for finding the K = 100 best path-strategies using procedure K-
BPSreopt and K-BPS MB (no waiting).

200 400 600 800

100

300

500

k

sec.

random

peak

Figure 4.16: CPU time for increasing k for a hypergraph using random and peak depen-
dent costs.

Clearly procedure K-BPSreopt and K-BPS MB outperform procedure K-BPS. More-
over, procedure K-BPS MB seems to have a slightly better CPU running time than
procedure K-BPSreopt. This may be a result of the procedure obtaining a more tight
lower bound when considering a subhypergraph in the branching operation. Note that
the branching tree is approximately doubled in size when using procedure K-BPS MB.
However, since we create more constrained subgraphs in the branching operation, we
obtain more subgraphs where no o-d paths exist.

72 Finding the K best strategies in an STD network
C

la
ss

it
e K

re
in

s

C
P

U
K

it
e 1

C
P

U
1

|τ | |Eπ| |Aπ| s
=

1

s
=

2

s
=

3

s
=

4

in
c

in
c S

-P
S

MEC

18 386 85 8.07 13 0.29 6 136 36 83 13 3 1 46 3

19 411 104 8.58 13 0.28 6 171 36 81 13 4 1 49 5

20 411 104 8.60 13 0.29 6 194 36 81 13 4 1 49 5

21 520 108 5.67 29 0.33 4 227 83 73 23 4 1 23 17

22 1476 600 15.53 112 1.17 4 234 117 58 25 15 2 18 33

23 1806 819 18.80 159 1.65 4 234 122 53 24 19 4 17 39

MMC

18 245 28 5.32 4 0.11 7 119 19 87 10 3 0 42 1

19 292 52 6.22 5 0.12 7 190 19 86 12 2 0 47 3

20 292 52 6.27 5 0.12 7 221 19 86 12 2 0 47 3

21 350 29 4.03 18 0.20 5 219 23 78 20 2 0 25 12

22 709 99 7.73 75 0.82 4 252 30 64 30 5 0 13 23

23 748 93 8.31 79 0.87 4 252 30 64 30 6 0 14 23

Table 4.9: Results for finding the K = 100 best path-strategies corresponding to K
different o-d paths in G using procedure K-BPS MB (waiting allowed).

Finally, we tried to investigate the computational effort required by each generated
path-strategy more carefully. To this aim we recorded the elapsed CPU time for every
tenth generated path-strategy. Figure 4.16 on the preceding page shows the CPU time
for finding k path-strategies of a hypergraph in class 13 and 16 using the same seed and
procedure K-BPS MB. The CPU time when using peak dependent costs seems to be
linear in k and much lower than when using random costs. On the contrary, the CPU
time when using random costs seems to follow a downward curved line and finding the
first path-strategy takes much computational effort. As pointed out above, this is due
to the fact that there exists a lot of strategies with weight below the best path-strategy.
Afterwards the subgraphs in the candidate set are so constrained that, finding the k’th
path-strategy, takes less time than finding the k-1’th path-strategy.

Waiting

Two problems is considered if waiting is allowed on hypergraph classes 18-23, namely
finding the K best path-strategies corresponding to K different o-d paths in G and the
problem of finding the K best path-strategies where the o-d paths in G do not have to
be different.

The results for finding the K = 100 best path-strategies corresponding to K different
o-d paths in G using procedure K-BPS MB are reported in Table 4.9, while the results
for finding the K = 100 best path-strategies using procedure K-BPS MB are reported
in Table 4.10. If we compare the results in the two tables, we see that the CPU time
is smaller when we find the K best path strategies where the paths do not have to be
different. This is due to the fact that we almost always find path-strategies corresponding
to the same path (see the diff column). That is, we use Branching Operation 4.1.2 and

4.3 Computational results 73
C

la
ss

it
e K

re
in

s

d
iff

C
P

U
K

it
e 1

C
P

U
1

|τ | |Eπ| |Aπ| s
=

1

s
=

2

s
=

3

s
=

4

in
c

in
c S

-P
S

MEC

18 112 2 1 2.40 13 0.30 17 149 18 84 13 2 1 0 3

19 112 3 1 2.41 13 0.29 6 224 20 80 13 6 1 0 5

20 112 3 1 2.40 13 0.29 6 258 20 80 13 6 1 0 5

21 129 5 1 1.57 29 0.34 16 762 42 54 36 8 2 0 17

22 211 40 1 2.41 112 1.17 13 1008 60 37 30 27 6 0 33

23 258 64 1 2.88 159 1.65 9 1008 66 34 28 30 9 0 39

MEC

18 103 0 1 2.18 4 0.12 55 125 18 84 12 4 0 0 1

19 104 1 1 2.22 5 0.13 68 196 18 84 13 3 0 2 3

20 111 2 4 2.40 5 0.13 92 279 18 85 12 3 0 8 3

21 118 1 1 1.42 18 0.21 17 391 34 63 32 5 0 1 12

22 174 10 1 2.06 75 0.84 18 387 42 48 40 10 2 0 23

23 178 6 1 2.08 79 0.86 18 400 44 47 43 10 0 0 23

Table 4.10: Results for finding the K = 100 best path-strategies using procedure K-
BPS MB (waiting allowed).

branch on hyperpaths instead of subpaths Pπ. As a result, the increase in the weight
becomes small again. If we consider the problem of finding the K minimum weight paths
in G, we get more or less the same results as if waiting was not allowed. Note, however,
that the increase in the weight between the first strategy and the first path-strategy falls
under waiting, in particular when low waiting costs are used.

Further remarks

A few further remarks on the procedures under a priori route choice is in order. Consider
the time-expanded hypergraph H and a node v in the topological network G. In the
current implementation, the hyperarcs in BS (vt), vt ∈ VH (v) are ordered in the same
way. That is, if the hyperarc ea (t) corresponding to leaving node v along arc a ∈ FS (v)
at time t is ordered first in the backward star of a node vt ∈ VH (v), then it is also ordered
first in all nodes vt′ ∈ VH (v) \ {vt}. This is not relevant in the hypergraph classes on
which we test. However, this may be relevant in some particular situations, e.g. if the
cost of all the hyperarcs in H are the same. Then the order of hyperarcs becomes a rule
for breaking ties and by picking e.g. the first hyperarc in the backward star of all the
nodes in VH (v), we follow a single arc in the forward star of node v in G.

Another procedure was also tested under a priori route choice. The branching opera-
tions used under a priori route choice all branch on a subpath Pπ in G. However, instead
of branching on a subpath in G, we might use procedure K-BSreopt, i.e. branch on hy-
perpaths instead and then check if the strategy is a path-strategy using Corollary 4.2.1.
Hence we can use the reoptimization techniques we have for hyperpaths which are faster.
But a lot more branching tree nodes are generated using this approach. However, sub-
hypergraphs can be skipped, if the following holds. Consider a subhypergraph Hk,i and

74 Finding the K best strategies in an STD network

its end-tree ηk,i when using Branching Operation 4.1.2 on the k’th hyperpath πk. If the
following holds for v, v′ with arc (p (v)) , arc (p (v′)) �= null.

∃v, v′ ∈ Iη : v, v′ ∈ Vπk (u) and arc (p (v)) �= arc (p (v′))

then no hyperpaths in Hk,i can correspond to a path and we may skip Hk,i (and sub-
hypergraphs Hk,j , j = 1, ..., i − 1). However, using this procedure leads to much higher
CPU times than the ones reported in the tables.

4.3.4 Summary

This section presents a short summary of the main results of the computational tests
under a priori and time-adaptive route choice.

First, consider time-adaptive route choice where the structure of the costs have a big
impact on how path-like the K best strategies are. That is, high variation in the costs for
different leaving times t when considering a given node u and leaving arc in G, results in
that the best strategies are not very path-like. High variation in the costs can be obtained
by using peak dependent costs and increasing the peak increase parameter ψ, using peak
dependent costs and increasing the range rξ of the random perturbation or using random
costs which makes the strategies most non path-like.

The best strategy can be found very fast. Moreover, procedure K-BSreopt outperforms
procedure K-BS.

The performance of procedure K-BSreopt is affected by the size of H, the size of the
hyperpaths we branch on and the number of new branching tree nodes created. The CPU
times of procedure K-BSreopt when considering the MEC and MMC criteria is more or
less the same. The procedure performance is not affected significantly by allowing waiting.

The increase in the weight between the first strategy and the K’th strategy is negli-
gible.

Second, consider a priori route choice. Here the structure of the costs may have a big
impact on procedure performance. High variation in the costs for different leaving times t
when considering a given node u and leaving arc in G, result in that the K best strategies
are not very path-like. This will affect the procedures under a priori route choice, since, if
strategies are not path-like, then the length of the path Pπ used in the branching operation
will be small. Hence when using random costs we may have to perform a lot of branching
operations before a path-strategy is found. On the other hand if the strategies are more
path-like then the length of Pπ will be long and we will find a path-strategy faster. As a
result using random costs will have a very negative impact on procedure performance.

Procedure K-BPSreopt and K-BPS MB outperform procedure K-BPS and finding the
K best path-strategies can be done relatively fast on “realistic” STD networks, i.e. STD
networks using peak dependent costs.

If comparing procedure K-BPSreopt and K-BPS MB, procedure K-BPS MB seems to
be slightly better. However, more memory has to be used in procedure K-BPS MB.

The increase in the weight between the first path-strategy and the K’th path-strategy
is much larger than under time-adaptive route choice if we find path-strategies corre-
sponding to different o-d paths in G. If waiting is allowed and the o-d paths do not have
to be different the K best path-strategies often will correspond to the same path in G
resulting in a small increase between the first path-strategy and the K’th path-strategy.

4.3 Computational results 75

Finally, if we compare the procedures under time-adaptive route choice and a priori
route choice we see that finding the K best path-strategies is harder than finding the
K best strategies. Moreover, the structure of the costs have a much larger effect on
procedure performance under a priori route choice. Finally, the branching tree size is
much smaller under a priori route choice, i.e. less memory has to be used.

Chapter

5
Bicriterion route
choice in STD
networks

One of the most classical problems encountered in the analysis of networks is the shortest
path problem. Traditionally the shortest path problem was a single objective problem
with the objective being to minimize total distance or travel time. Nevertheless, due to
the multiobjective nature of many transportation and routing problems, a single objective
function is not sufficient to completely characterize most real-life problems. In a road
network for instance, two parameters, time and cost, can be assigned to each arc. Clearly,
often the fastest path may be too costly or the cheapest path may be too long. Therefore
the decision maker must choose a solution among the paths for which it is not possible
to find a different path such that time or cost is improved without getting a worse cost
or time, respectively (efficient path).

The problem of finding all efficient paths is denoted the bicriterion shortest path (bi-
SP) problem and has generated wide interest in multicriterion linear integer programming;
for an overview on multicriterion optimization see Ehrgott [23] or Ehrgott and Gandibleux
[24].

An efficient path P defines a nondominated point (W1 (P) ,W2 (P)) in the criterion
space, where Wj (P) denotes the length/weight of the path with respect to the j’th
criterion. Due to the discrete nature of the bi-SP problem, the set of nondominated
points is not convex. We partition them into two sets. Basically, if a point corresponding
to P lies on the boundary of the convex hull of all the nondominated points, it is a
supported nondominated point, otherwise it is an unsupported nondominated point.

Hansen [39] introduced the bi-SP problem and other related bicriterion shortest path
problems and a few years later Climaco and Martins [16] presented experimental results
for a simple procedure solving the bi-SP problem using K shortest paths. The method
seems to be slow, since there are too many paths to search, see Mote, Murthy, and Olson
[63]. Garey and Johnson [33] showed that the bi-SP problem is NP-hard. A variety
of algorithms has been developed to solve bi-SP based on dynamic programming, see
e.g. Sancho [82] and Henig [40] and label setting/correcting methods, see e.g. Martins
[55] and Tung and Chew [89]. Here a set of labels is maintained in each node v in the
network where each label contains the weights of an efficient path to node v. The label
correcting approach uses the well-known fact that all efficient paths pass through efficient
subpaths. Therefore a label only has to be maintained for each efficient path. The

78 Bicriterion route choice in STD networks

two-phase approach has also been used on the bi-SP problem, see Mote et al. [63]. The
two-phase approach is a general method of finding efficient solutions which have been used
to solve bi-SP and other biobjective combinatorial problems, see e.g. Ulungu and Teghem
[90] and Visée, Teghem, Pirlot, and Ulungu [91]. More recent interactive methods, where
only a subset of the nondominated points is found, have been considered by Coutinho-
Rodrigues et al. [20] and Current, ReVelle, and Cohen [21]. Here a two-phase approach
is used where the first phase finds supported nondominated points by solving shortest
path problems and the second phase finds unsupported nondominated points by using a
K shortest paths procedure. Computational experiments comparing different methods of
the bi-SP problem have been given by Huarng, Pulat, and Shih [44], Brambaugh-Smith
and Shier [10] and Skriver and Andersen [85]. For an annotated bibliography of the bi-SP
problem including more than forty references, we refer to Ehrgott and Gandibleux [24].

It is obvious that problems concerning bicriterion route choice in STD networks are
relevant. For instance, if routing hazardous materials in an STD network, two criteria may
be considered, namely expected risk and expected travel time, i.e. the first objective is
MEC where the cost corresponds to risk and the second objective is MET (see Section 3.2).
Note that other criteria may be used, e.g. instead of minimizing expected risk the decision
maker may be more risk averse and wish to minimize maximum risk instead (MMC).
Therefore bicriterion route choice problems in STD networks have a richer structure than
bi-SP, in the sense that the two criteria may correspond to time as well as cost and the
purpose may be to minimize the expected as well as the maximum possible time or cost.

In this chapter we consider bicriterion route choice problems in STD networks under
a priori and time-adaptive route choice. A two-phase approach is used to find efficient
strategies. The two-phase approach will be described in Section 5.2.

Under time-adaptive route choice, the problem consists in finding the set of efficient
strategies between an origin and destination node when leaving the origin at time zero.
To the author’s knowledge, no one has yet considered this problem. Since a strategy So0

corresponds to a hyperpath in the time-expanded hypergraphH, finding the set of efficient
strategies corresponds to finding the set of efficient hyperpaths in the time-expanded
hypergraph H, all having source s and target t corresponding to leaving the origin at
time zero. Procedures solving the problem are presented in Section 5.4. Unfortunately,
computational results show that the number of efficient strategies may grow exponentially
in hypergraph size. Therefore finding all efficient strategies may be impossible in practice.
As a result procedures finding an approximation of the set of efficient strategies are
developed.

The problem under a priori route choice consists in finding the set of efficient path-
strategies where each path-strategy defines a path followed between the origin and desti-
nation node when leaving the origin at time zero. Note that, if no waiting is allowed in
the nodes in G, then, according to Corollary 4.2.3, a path in G corresponds to a unique
path-strategy. Hence each path-strategy in the efficient set defines a unique path in G.
However, if waiting is allowed, then different path-strategies may correspond to the same
path. Only one paper has considered the problem of finding efficient strategies under
a priori route choice. Miller-Hooks and Mahmassani [60] consider the problem on STD
networks where no waiting is allowed with the first objective being MET and the second
objective being MEC. A labelling procedure is presented which guarantees that all the
efficient paths can be obtained; however, in practice the procedure is too slow. Therefore
a heuristic procedure to produce a subset of the efficient paths is suggested. The proce-

5.1 Basic definitions 79

dures presented in this chapter will not use a labelling approach to find efficient strategies,
instead a two-phase approach is used. Since the bi-SP problem is NP-hard and bi-SP is
a special case of the problems we consider here, we have that they are NP-hard as well.

5.1 Basic definitions

We start by introducing some basic definitions extended from directed graphs to directed
hypergraphs. We follow the terminology given in Skriver [84].

Given a hypergraph H, assume that each hyperarc e is assigned two nonnegative
real weights w1(e) and w2(e). Furthermore, let Wj (π), j = 1, 2, denote the weight of
hyperpath π using weights wi(e).

Definition 5.1.1 Let Π denote the set of s-t hyperpaths in H. A hyperpath π ∈ Π is
efficient if and only if

�π̃ ∈ Π : W1(π̃) ≤W1(π) and W2(π̃) ≤W2(π)

with at least one strict inequality; otherwise π is inefficient.

Efficient hyperpaths are defined in the decision space Π and correspond to points in
the criterion space:

W =
{
W (π) ∈ R2 | π ∈ Π

}
where W (π) ∈ R2 is the vector with components W1(π) and W2(π).

Definition 5.1.2 A point W (π) ∈ W is a nondominated criterion point if and only if π
is an efficient hyperpath. Otherwise W (π) is a dominated criterion point.

Let us define

Πeff = {π ∈ Π | π is efficient} , Weff =
{
W (π) ∈ R2 | π ∈ Πeff

}
Finding the set of efficient hyperpaths Πeff , implies that we find the set of nondominated
criterion points Weff . However, two efficient hyperpaths may correspond to the same
nondominated point in Weff . Therefore we do not need to find all efficient hyperpaths for
finding all nondominated points but only one efficient hyperpath for each nondominated
point. Most papers in the literature consider finding Πeff and Weff as equivalent and
finds Weff. However, often the solution procedures only need to be changed slightly to
find Πeff . In this chapter we consider the problem of finding Πeff except in a few special
cases.

The criterion points can be partitioned into two kinds, namely supported and unsup-
ported. The supported ones can be further subdivided into extreme and nonextreme. To
this aim, let us define the following set

W≥ = conv (Weff) ⊕
{
w ∈ R2 | w ≥ 0

}
;

where ⊕ as usual denotes direct sum, and conv(Weff) denotes the convex hull of Weff .

Definition 5.1.3 W (π) ∈ W is a supported nondominated criterion point if W (π) is on
the boundary of W≥. Otherwise W (π) is an unsupported point.

80 Bicriterion route choice in STD networks

(0,0)
(0,0) (0,0) (0,0)

(9,2)

(3,1) (1,3)

(0,0)

(1,5)

(1,1)

(5,3)

(1,2)

(0,0)
(5,9)

a0

s

d 5d 4d 3

c3c2 c4

b2b1

d 6

Figure 5.1: The time-expanded hypergraph.

Definition 5.1.4 A supported point W (π) is an extreme if W (π) is an extreme point of
W≥. Otherwise W (π) is a nonextreme point.

It is well-known that unsupported nondominated points (in fact, all vectors in W) are
dominated by a convex combination of extreme supported points (Steuer [86]). Moreover,
a set of nondominated points Φ =

{
W 1,W 2, . . . ,W r

}
⊆ R2 can be ordered such that:

W 1
1 < W 2

1 < ... < W r
1 , W 1

2 > W 2
2 > ... > W r

2 (5.1)

We call Φ an ordered nondominated set. We denote by the frontier, the ordered non-
dominated set of extreme supported points in W . The following definitions introduce the
concepts of ε-domination and ε-approximation. The definitions below follow the termi-
nology given by Warburton [92].

Definition 5.1.5 A point (W1,W2) ε-dominates point (Ŵ1, Ŵ2) if

Ŵ1 ≥ (1 − ε)W1, Ŵ2 ≥ (1 − ε)W2

Definition 5.1.6 A set Φ1 is an ε-approximation of another nondominated set Φ2, if for
each point Ŵ ∈ Φ2, there exists W ∈ Φ1 such that W ε-dominates Ŵ .

Example 4 Given the topological network G and time-expanded hypergraph of Exam-
ple 3 on page 26, assume that two costs ci (u, v, t), i = 1, 2, are given for each leaving

5.1 Basic definitions 81

W2

W1

W1 W 3W 2

W 5

W 6 W 7

W 8

W 9

W 4

6

8

10

6 8

Figure 5.2: The criterion space of the hyperpaths in H.

time t from node u along arc (u, v) . Moreover, we assume that the penalty costs and
waiting costs are equal to zero. The time-expanded hypergraph H and the costs are given
in Figure 5.1. Assume that we are interested in finding the set of nondominated points
under time-adaptive and a priori route choice when the first and second criterion is MEC
and MMC, respectively.

First, consider the problem of finding efficient strategies under time-adaptive route
choice. According to Theorem 3.3.1 the problem consists in finding efficient s-a0 hy-
perpaths π with weights (W1 (π) ,W2 (π)) where W1 (π) is the weight of hyperpath π
using weights w1 (e) and the mean weighting function, and where W2 (π) is the weight of
hyperpath π using weights w2 (e) and the distance weighting function.

Hypergraph H contains eleven s-a0 hyperpaths corresponding to nine points in the
criterion space. The points are given by: W 1 = (4.5, 10), W 2 = (5.5, 10), W 3 =
(8, 10), W 4 = (5, 9), W 5 = (6.5, 7), W 6 = (7, 7), W 7 = (8.5, 7), W 8 = (9, 6) and
W 9 = (9.5, 5). These points are illustrated in Figure 5.2; the frontier consists of the
four points W 1,W 4,W 5 and W 9; solid lines joining points in the frontier belong to the
boundary of W≥. Note that the frontier defines three triangles, shown with dashed lines,
where it may be possible to find unsupported nondominated points such as W 8. Points
which do not lie inside the triangles such as W 3 and W 6 are dominated.

Next, consider the problem of finding efficient strategies under a priori route choice,
i.e. we are interested in finding efficient hyperpaths corresponding to a path-strategy.
Hypergraph H contains only five hyperpaths defining a path-strategy which correspond
to points W 3, W 4, W 5, W 6 and W 8. That is, the set of nondominated criterion points is{
W 4,W 5,W 8

}
which all are extreme nondominated points under a priori route choice.

82 Bicriterion route choice in STD networks

W2

W1

W1

W 3W 2

W 5

W 6 W 7

W 8

W 9

W 4

γ(W,λ)

6

8

10

6 8

γ(λ)

Figure 5.3: The criterion space and its corresponding parametric space.

5.2 The two-phase approach

The two-phase approach is a general method for solving bicriterion combinatorial prob-
lems. It cannot be used for more than two criteria; since phase one may fail in finding all
extreme nondominated points.

As the name suggests, the two-phase method splits the search of nondominated points
into two phases. In phase one the supported extreme nondominated points are found.
These extreme points define the triangles in which unsupported nondominated points
may be found. Phase two proceeds to search the triangles one at a time. This is done
parametrically. The approach is illustrated by the set of criterion points shown in Fig-
ure 5.2 representing the criterion weights for the s-a0 hyperpaths in Figure 5.1. Let
γ : (W ,R+) → R+ denote the parametric weight of a hyperpath π.

γ (W (π) , λ) = W1(π)λ +W2 (π) . (5.2)

Given λ > 0, a minimum parametric weight hyperpath π (λ) (there may be many), is a
hyperpath with minimal parametric weight denoted γ(λ). The criterion space and its
corresponding parametric space are shown in Figure 5.3. For a given hyperpath π ∈ Π,
each point W (π) corresponds to a line with slope W1 (π) and intersection W2 (π) in the
parametric space. Given a fixed λ > 0, we have a line in the parametric space defined by
some π ∈ Π which minimizes γ(W (π) , λ), see Figure 5.3. Moreover, the lower envelope
of the lines in the parametric space defines γ (λ) , which is a non-decreasing piecewise
linear function with break points λi. Note that each breakpoint λi corresponds to a
value of λ where two adjacent supported nondominated points have the same minimal
parametric weight. For instance for λ = λ2 we have that W 4 and W 5 have the same
minimal parametric weight, i.e. finding a minimal parametric weight hyperpath π (λ2)

5.2 The two-phase approach 83

1 procedure phaseOne(H)
2 π(M) := SHTayclic(H, M); add(Φ, W (π(M)));
3 π(ε) := SHTayclic(H, ε); add(Φ, W (π(ε)));
4 if (W (π(M)) = W (π(ε))) then stop (only one nondominated point)
5 W + = W (π(M)); W− = W (π(ε));
6 while (W + �= W (π(ε))) do
7 λ :=

∣∣(W−
2 − W +

2)/(W−
1 − W +

1)
∣∣;

8 inc := false;
9 π(λ) := SHTayclic(H, λ);

10 if (γ(λ) < γ(W +, λ)) then add(Φ, W (π(λ));
11 else inc := true;
12 if (inc) then W + := W−;
13 W− := next(Φ, W +);
14 end while
15 end procedure

Figure 5.4: Phase one - Finding extreme nondominated points.

corresponds to searching in the direction of the normal to the line shown in Figure 5.3.
It is obvious that each piece of γ (λ) defines an extreme nondominated point. Hence
the extreme nondominated points can be found by finding a minimal parametric weight
hyperpath π (λ) for different values of λ. This is done by using a NISE∗ like algorithm (see
Cohen [17]) shown in Figure 5.4. Procedure phaseOne uses the following subprocedures

SHTacyclic(H, λ): Finds the minimum parametric weight hyperpath π (λ) for a
given λ.

add(Φ,W): A general function for adding a point to the ordered nondominated
set Φ. If W not is dominated by a point in Φ then W is added to Φ and
points now dominated by W are removed. Moreover, W is added to Φ so that
afterwards Φ is ordered as in (5.1).

next(Φ,W): Return the point following W in Φ, i.e. if W = W i then W i+1 is
returned.

The procedure first finds the upper/left and the lower/right point (W 1 and W 9 in
Figure 5.3). The upper/left point is the nondominated point which has minimum weight
using the second criterion when weight one is fixed to its minimum weight. Similarly, the
lower/right point is the nondominated point which has minimum weight using the first
criterion when weight two is fixed to its minimum weight. In general the upper/left point
can be found by finding π (λ) with λ very big (line 2, M big) and the lower/right point
can be found by finding π (λ) with λ close to zero (line 3, ε small).

Given two nondominated points W+ and W−, we now calculate the search direction
λ defined by the slope of the line between the points and find the minimum parametric
weight hyperpath π (λ). If W (π (λ)) corresponds to a new extreme nondominated point,
then the parametric weight γ (λ) of π (λ) must be below the parametric weight of W+ and

∗Non-inferior set estimation.

84 Bicriterion route choice in STD networks

W+

W -

W2
+

W1
+

W2
-

W1
-

ub1

ub0

Search direction

Figure 5.5: A triangle defined by W+ and W−.

W− (line 10). The points W+,W (π (λ)) and W− then define two new search directions
and the while step is repeated on the points W+ and W (π (λ)). Otherwise no new
extreme nondominated point has been found and we proceed with the two next points in
Φ. The procedure stops when no more new extreme nondominated points can be found.

Since the number of hyperpaths in Π is finite, we have that the number of lines
defining γ (λ) in the parametric space is finite and hence procedure phaseOne will stop
in a finite number of steps. However, the number of extreme nondominated points may
increase exponentially in hypergraph size. In this case an approximation of the extreme
nondominated points may be found, as we shall see in Section 5.4

Finally, observe that if the search direction is defined by the slope between two adja-
cent extreme nondominated points, it may happen that the minimum parametric weight
hyperpath π (λ) corresponds to a supported nonextreme nondominated point. This point
is excluded on line 10; however, often including supported nonextreme nondominated
points may reduce the space to search by phase two. Procedure phaseOne can easily be
modified so that nonextreme nondominated points are included in Φ by changing the less
than sign on line 10 to a less than or equal sign.

Since there may exist unsupported nondominated criterion points, it is not in general
possible to find all nondominated points during the first phase. This can be seen in
Figure 5.3 where unsupported nondominated points inside the triangles, such as W 8,
correspond to a dashed line lying above γ (λ) . These points are found in phase two which
searches each triangle defined by the set of extreme nondominated points found in phase
one. Consider the triangle defined by the extreme nondominated points W+ and W− (see
Figure 5.5). The second phase searches each triangle using a K best strategy procedure
in the direction λ defined by the slope between the two points defining the triangle. The
procedure stops when an upper bound has been reached. At start the upper bound is
ub0 = W−

1 λ + W+
2 . However, when a new unsupported nondominated point is found

inside the triangle, the upper bound is updated to ub1 (see Figure 5.5). Note that the
procedure may find points outside the triangle because all points with parametric weight
below ub1 are found.

5.3 Label correcting algorithms 85

5.3 Label correcting algorithms

In this section we point out some disadvantages of using label correcting algorithms for
finding efficient hyperpaths in directed hypergraphs. Label correcting algorithms have
proven successful in solving the bicriterion shortest path problem see e.g. Skriver and
Andersen [85]. Basically, label correcting algorithms maintain a set of labels in each node
v in the network where each label contains the weights of a path to node v. The labels
of each node in the network are then updated until all nondominated points have been
found. The method uses the well-known fact that all efficient paths pass through efficient
subpaths. Hence only labels corresponding to efficient paths have to be maintained in
each node. Note that the number of efficient paths is always larger than the number of
nondominated points because there may be more than one efficient path corresponding
to a nondominated point. Hence one may argue that label correcting algorithms are
faster in solving the bicriterion shortest path problem than algorithms using the two-
phase approach, since label correction algorithms only find one efficient path for each
nondominated point, while the two-phase method has to find all efficient paths when
searching a triangle. However, label correcting algorithms also have some disadvantages.

First, label correcting algorithms find all nondominated points and do not distinguish
between supported and unsupported nondominated points. Therefore, if the number of
nondominated points is very large, we cannot use interactive methods as in the two-phase
approach where the supported extreme nondominated points first may be found and next
the triangles of interest can be searched for further unsupported nondominated points.

Second, as will be pointed out in the following sections, the set of nondominated points
may be huge. Therefore an approximation of the nondominated set has to be found. The
two-phase approach seems to be more suitable for this.

Finally, the well-known fact that all efficient paths pass through efficient subpaths
cannot be extended to hyperpaths as can be seen in the following example.

Example 5 Consider the time-expanded hypergraph H shown in Figure 5.6. Hypergraph
H is similar to the time-expanded hypergraph in Example 4. However, here the costs on
arc ebd (2) is changed from (9, 2) to (7, 7). Assume that we are interested in finding the
set of efficient hyperpaths, i.e. efficient strategies under time-adaptive route choice. Let
the first and second criterion be MMC, i.e. two distance weighting functions are used.

The set of nondominated points is Φ = {(6, 10) , (7, 9) , (8, 8) , (9, 7)}. The hyperpath
corresponding to point (8, 8) is shown in bold in Figure 5.6. Note that the subhyperpath
to node b2 is dominated by another s-b2 hyperpath with weight (4, 6). That is, the
efficient hyperpath corresponding to nondominated point (8, 8) contains an inefficient
subhyperpath. Furthermore, there does not exist another efficient s-t hyperpath with an
efficient s-b2 subhyperpath yielding point (8, 8).

The above example shows that we cannot extend label correcting algorithms to hy-
pergraphs, since, by maintaining only labels corresponding to efficient hyperpaths in each
node, we may not find all nondominated points. Similar examples can be constructed if
other criteria are considered.

Another problem also arises if a label correcting algorithm is applied to the time-
expanded hypergraph in Figure 5.6. Assume that both criteria is MEC, i.e. two mean
weighting functions are used. Then the label set LS in node b1 and b2 will contain the

86 Bicriterion route choice in STD networks

s

(0,0)
(0,0) (0,0) (0,0)

(7,7)

(3,1) (1,3)

(0,0)

(1,5)

(1,1)

(5,3)

(1,2)

(0,0)
(5,9)

a0

d 5d 4d 3

c3c2 c4

b2b1

d 6

Figure 5.6: A time-expanded hypergraph H.

following weights of efficient hyperpaths.

LS
(
b1

)
= {(5, 9) , (6, 5.5) , (7, 4.5) , (8, 4)}

LS
(
b2

)
= {(2, 8) , (4, 6)}

If we combine the weights in L
(
b1

)
and L

(
b2

)
and remove the dominated points in order

to find the label set in node a0, we get

LS
(
a0

)
= {(4.5, 9.5) , (5, 7.75) , (5.5, 7.25) , (6, 6.75) , (6.5, 6.25) , (7, 6)}

However, points (5.5, 7.25) and (6, 6.75) do not correspond to the weight of an s-a0 hy-
perpath, i.e. they are not nondominated points. The reason is that here we assumed that
the hypergraph containing hyperarc eab (0) and two efficient hyperpaths from node s to
node b1 and b2 is a hyperpath. This is not always true. Hence each label in a node must
not only contain the weights of the hyperpath but also the hyperpath such that we can
check that we still have a hyperpath when combining subhyperpaths. It is obvious that
checking this may be time consuming. Moreover, much more memory has to be used for
storing labels.

Due to the reasons pointed out above, the two-phase approach will be used to solve
the problems in the following sections.

5.4 Finding the set of efficient strategies under time-adaptive route choice 87

5.4 Finding the set of efficient strategies under time-
adaptive route choice

In this section the problem of finding efficient strategies under time-adaptive route choice
is considered. The problem consists in finding the set of efficient strategies between an
origin and a destination node when leaving the origin at time zero. The criteria given in
Section 3.2 are used, i.e. we consider expectation criteria where the goal is to minimize
the expected travel time (MET) or cost (MEC) or min-max criteria where the goal is to
minimize the maximum possible travel time (MMT) or cost (MMC).

Since a strategy between an origin and a destination node corresponds to a hyperpath
in the time-expanded hypergraph H, finding the set of efficient strategies corresponds to
finding the set of efficient hyperpaths Πeff in the time-expanded hypergraph H, all having
source s and target node t corresponding to leaving the origin at time zero.

Recall that, according to Theorem 3.3.1, both MEC and MET reduce to finding a
minimum weight hyperpath using the mean weighting function. Similarly MMC and
MMT reduce to finding a minimum weight hyperpath using the distance weighting func-
tion. Hence time and cost can be treated in a uniform way and we only have to focus
on whether we are minimizing expectation criteria (MEC and MEC) or min-max criteria
(MMC and MMT).

Three cases arise: if both criteria are expectation criteria, the resulting problem be-
comes finding efficient hyperpaths using two mean weighting functions. If both criteria
are min-max criteria, we have to find efficient hyperpaths using two distance weighting
functions. Finally, if one of the criteria is expectation and the other criterion is min-max,
we have to find efficient hyperpaths using a mean weighting function for the expectation
criterion and a distance weighting function for the min-max criterion. Each case will be
treated separately, since the problem of finding a hyperpath with minimal parametric
weight turns out to be harder in some cases than others.

Recall that for finding efficient strategies using the two-phase approach requires that
we can solve minimum weight hyperpath and K minimum weight hyperpaths problems
with respect to the parametric weight (5.2), which is a linear combination of the two
criteria. It is well-known that, as long as directed graphs are considered, the following
holds

Theorem 5.4.1 Let G = (N,A) be a directed graph where each arc a ∈ A carries two
weights (w1 (a) , w2 (a)) . Given a search direction defined by λ, the shortest parametric
path corresponding to a supported nondominated point is the shortest path using weights
wλ (a) = w1 (a)λ+ w2 (a).

That is, we can find a path with minimal parametric weight by just solving a shortest
path problem on G with modified weights wλ (a). This is not necessarily the case for
directed hypergraphs. In the following let Hλ = (V , E) denote the hypergraph in which
each hyperarc e ∈ E is assigned weight wλ (e) = w1 (e)λ+ w2 (e).

5.4.1 Expectation criteria

Assume that both criteria are expectation criteria, i.e. we have to find efficient hyperpaths
using two mean weighting functions. Remarkably, Theorem 5.4.1 can be extended to

88 Bicriterion route choice in STD networks

W
+

W -

W1

W 2

W1

W2

Figure 5.7: Using ε-dominance in the first phase.

hypergraphs when two mean weighting functions are considered.

Theorem 5.4.2 Let Wλ(π) denote the weight of a hyperpath π in Hλ using the mean
weighting function. For every λ > 0 and for every π ∈ Π, we have that Wλ (π) =
γ(W (π) , λ).

Proof It suffices to write the weight Wλ(π) of the s-t hyperpath π according to (5.2):

Wλ(π) =
∑

u∈Vπ\{s}
fπ(u)wλ(p(u))

=
∑

u∈Vπ\{s}
(fπ(u)w1(p(u))λ) + (fπ(u)w2(p(u)))

= λ
∑

u∈Vπ\{s}
fπ(u)w1(p(u)) +

∑
u∈Vπ\{s}

fπ(u)w2(p(u))

= γ(W (π) , λ).

Theorem 5.4.2 provides us with the following corollary

Corollary 5.4.1 Finding the hyperpath π (λ) with minimal parametric weight γ (λ) re-
duces to finding a minimum weight hyperpath in Hλ.

Phase one: Finding the frontier

Due to Corollary 5.4.1 the frontier can be found using procedure phaseOne shown in
Figure 5.4 where subprocedure SHTacyclic simply finds the minimum weight hyperpath
in Hλ. However, as pointed out in Section 4.3, there may often be a lot of hyperpaths with
weight close to each other. Hence there may be a large number of extreme nondominated
points, resulting in high CPU times for finding the frontier. In some cases, we may be

5.4 Finding the set of efficient strategies under time-adaptive route choice 89

satisfied with an ε-approximation of the true frontier. Let Φ =
{
W 1,W+,W−,W 2

}
denote an ordered nondominated set of four extreme nondominated points found during
phase one, as shown in Figure 5.7. Note that any new extreme nondominated points
between W+ and W− must belong to the shaded area in Figure 5.7.

Lemma 5.4.1 Given Φ =
{
W 1,W+,W−,W 2

}
, each extreme nondominated point be-

tween W+ and W−, i.e. inside the shaded area shown in Figure 5.7, is ε-dominated by
either W+ or W− if

(1 − ε)W−
1 λ1 + (1 − ε)W+

2 ≤ γ
(
W 1, λ1

)
or

(1 − ε)W−
1 λ2 + (1 − ε)W+

2 ≤ γ
(
W 2, λ2

) (5.3)

where λ1 denotes the slope defined by W 1 and W+ and λ2 the slope defined by W 2 and
W−.

Proof Given ε, W+ and W− define two points (1 − ε)W+ and (1 − ε)W−, shown with
crosses in Figure 5.7. According to Definition 5.1.5, all points in the shaded area are
ε-dominated if (1 − ε)W+ and (1 − ε)W− dominate the shaded area. That is, the point(
(1 − ε)W−

1 , (1 − ε)W+
2

)
, shown with a square in Figure 5.7, must either be below the

line containing W 1 and W+ or below the line containing W 2 and W−. Using λ1 and λ2,
we get the conditions in (5.3).

Procedure phaseOne in Figure 5.4 can now be modified to find an ε-approximation of
the true frontier, denoted procedure phaseOne(ε). Simply in the beginning of the while
loop, check whether (5.3) holds. If not, continue as before; otherwise set inc = true and
go to line 12. Due to Lemma 5.4.1 and the fact that, when a new nondominated point
is added to Φ in procedure phaseOne, it is an extreme nondominated point, we have the
following theorem

Theorem 5.4.3 Procedure phaseOne(ε) finds an ε-approximation of the frontier in a
finite number of steps containing a subset of the extreme nondominated points.

Phase two: Looking into the triangles

After phase one an ordered nondominated set Φ =
{
W 1,W 2, ...,W r

}
containing extreme

nondominated points has been found. Note that Φ might be an approximation of the true
frontier. Φ gives rise to a set of r−1 triangles in which further unsupported nondominated
points may be found in phase two. Each triangle is searched independently, thus some
triangles may be ignored, e.g. if an interactive approach is adopted, see e.g. Current et al.
[21].

Assume that we consider the triangle defined by W+ and W− in Φ. Since Corol-
lary 5.4.1 holds W+ and W− are extreme nondominated points of the frontier. Moreover,
if (5.3) holds then nondominated points inside the triangle is ε-dominated by W+ or W−,
and the triangle can be ignored if an ε-approximation of the efficient set is desired. In our
computational experience, we shall apply phase two only to triangles where (5.3) does
not hold, referred to as large triangles.

90 Bicriterion route choice in STD networks

Assume that W+ and W− define a large triangle. First, the value of the parameter λ
is found such that W+ and W− have the same parametric weight, i.e.

λ =
W+

2 −W−
2

W−
1 −W+

1

(5.4)

Next, we search the triangle using a K best strategies procedure on Hλ (e.g. procedure
K-BSreopt in Figure 4.8). For the k’th strategy, we find its corresponding weights W1

and W2 using criterion one and two and use procedure add(Φ,W) to update Φ. The
procedure stops when the current upper bound is reached. Recall that the upper bound
can be decreased during the search, if new nondominated points are found. Moreover,
if only an ε-approximation of Weff is needed, i.e. procedure phaseOne(ε) has been used
in the first phase, then the upper bound can be decreased, since, instead of considering
for instance the upper bound ub0 = W−

1 λ +W+
2 , we can now consider the upper bound

ub0 = (1 − ε)W−
1 λ+ (1 − ε)W+

2 (see Figure 5.5).
Clearly, the efficiency of phase two depends on how many points of W lie inside the

triangle. Unfortunately, under expectation criteria, the increase in the weight when using
the K best strategies procedure is very small as pointed out in Section 4.3, and hence
searching a triangle may be unacceptably slow. In order to overcome this difficulty, it
is necessary to reduce the number of hyperpaths generated by the K best strategies
procedure, i.e. we are interested in finding ways to prune the candidate set of the K best
strategies procedure.

Consider Branching Operation 4.1.2 on the k’th hyperpath πk in hypergraph Hk with
valid ordering Vπk = (s, u1, ..., uqk

) and subhypergraphs Hk,i, i = 1, ..., qk, defined in
Definition 4.1.2. Let mk,i

j (u) denote the weight of the minimum weight s-u hyperpath in
Hk,i when using criterion j.

Our goal is now to detect situations where the hyperpaths in Hk,i can be discarded
from the candidate set. It is obvious that all hyperpaths in subhypergraph Hk,i must
correspond to a point (W1,W2) greater than or equal to (mk,i

1 (t) ,mk,i
2 (t)). Hence if

mk,i
1 (t) ≥W1(πk) and mk,i

2 (t) ≥W2(πk)

then all hyperpaths in Hk,i are dominated by πk and can be discarded. Here we consider
the hyperpath πk on which the branching operation is performed. A stronger rule can
be obtained by considering the whole set Φ of nondominated points, currently found
in the first and second phase. Moreover, we may adopt ε-dominance, rather than pure
dominance.

Rule 5.4.1 Assume ∃Ŵ ∈ Φ satisfying mk,i
1 (t) ≥ (1 − ε)Ŵ1 and mk,i

2 (t) ≥ (1 − ε)Ŵ2.
Then for all hyperpaths π in Hk,i, we have that Ŵ ε-dominates W (π).

Proof Since all hyperpaths π in Hk,i must correspond to a point satisfying

(W1 (π) ,W2 (π)) ≥ (mk,i
1 (t) ,mk,i

2 (t))

we have that, if Ŵ ε-dominates (mk,i
1 (t) ,mk,i

2 (t)), then it also ε-dominates W (π) .

While searching a triangle defined by W+ and W− only points inside the triangle are
of interest. The following rule also considers ε-dominance.

5.4 Finding the set of efficient strategies under time-adaptive route choice 91

Rule 5.4.2 If mk,i
1 (t) ≥W−

1 (1− ε) or mk,i
2 (t) ≥W+

2 (1− ε), then all hyperpaths in Hk,i

correspond to points either outside the triangle or ε-dominated by W+ or W−.

Proof Assume that mk,i
1 (t) ≥ W−

1 (1 − ε). If mk,i
1 (t) < W−

1 and mk,i
2 (t) < W+

2 , then
W− ε-dominates (mk,i

1 (t) ,mk,i
2 (t)) and hence also W (π), for all hyperpaths π in Hk,i;

otherwise if mk,i
1 (t) ≥W−

1 , then (mk,i
1 (t) ,mk,i

2 (t)) is outside the triangle and hence will
W (π), for all hyperpaths π in Hk,i also be outside the triangle. The proof is similar if
we assume that m2(t) ≥W+

2 (1 − ε).

Note that, if we remove the subhypergraphs satisfying Rule 5.4.1 and 5.4.2 from the
candidate set in the K best strategies procedure, we only remove hyperpaths correspond-
ing to either points which are ε-dominated by a point in Φ or points outside the triangle.
Therefore the set of nondominated points found in the triangle when the K best strate-
gies procedure stops, is an ε-approximation of the true set of nondominated points in the
triangle. This gives us the following theorem.

Theorem 5.4.4 Given ε ≥ 0, the set of nondominated points Φ found by phase one using
procedure phaseOne(ε) and phase two using Rule 5.4.1 and 5.4.2 is an ε-approximation
of Weff.

Unfortunately, in most cases Rule 5.4.1 and 5.4.2 do not remove enough hyperpaths
from the candidate set to speed up the triangle search significantly. Therefore we must
adopt an approximated triangle search procedure. Given ε, the goal here is not to find
an ε-approximation of Weff; instead we simply want to prevent the K best strategies
procedure from getting stuck due to the huge number of almost equivalent hyperpaths.
The basic idea is quite simple: when branching on hyperpath πk, we do not want to
consider hyperpaths corresponding to points that are “too close” to W (πk).

For each criterion j ∈ {1, 2}, let W k
j (u) , u ∈ Vπk , denote the weights of the nodes in

πk. Recall that efficient hyperpaths may not necessarily contain efficient subhyperpaths.
However, removing subhypergraphs Hk,i where all s-t hyperpaths contain inefficient s-ui

hyperpaths may be useful. The following rule considers ε-dominance in node ui

Rule 5.4.3 If mk,i
1 (ui) ≥ (1 − ε)W k

1 (ui) and mk,i
2 (ui) ≥ (1 − ε)W k

2 (ui) then all s-ui

subhyperpaths in Hk,i are ε-dominated by W k (ui) and we discard subhypergraph Hk,i.

Let W k,i
j (u) denote the weights of a minimum parametric weight hyperpath πk,i in

Hk,i when considering criterion j. According to Theorem 4.1.6, we have that the weight
of hyperpath πk,i using criterion j is

W k,i
j (t) = W k

j (t) +
(
W k,i

j (ui) −W k
j (ui)

)
fη (ui)

where fη (ui) is found using (2.10) on the end-tree ηk,i defined in Definition 4.1.1. Hence
an improvement in criterion j is obtained if (W k,i

j (ui) − W k
j (ui)) < 0. However, the

improvement may be small if fη (ui) is small. This may often be the case as pointed out
in Section 4.3. Therefore one way to prevent finding points close to W

(
πk

)
is to skip

subhypergraph Hk,i when fη(ui) is too small. Let us denote by ε1 a lower bound on
fπ(ui). We consequently have the following very simple rule.

92 Bicriterion route choice in STD networks

Rule 5.4.4 If fη(ui) ≤ ε1 then discard subhypergraph Hk,i.

Consider a node v in Hk,i corresponding to node u in G at time t. Recall that fη(v) is
the probability of arriving at node u at time t when following the strategy defined by πk,i

according to Theorem 3.4.1. That is, the s-v hyperpath contained in πk,i defines a sub-
strategy for travelling from u to the destination, leaving at time t; this sub-strategy has
a probability fη(v) of being used. Our hypergraph model cannot discriminate between
sub-strategies that occur with low or high probability. However, using Rule 5.4.4, low
probability sub-strategies are not examined. This approach may be quite reasonable in
an online setting, where a situation such as “leave node u at time t” would be considered
only when - and if - the situation occurs.

Even if Rule 5.4.4 fails, we may skip subhypergraph Hk,i if, for both criteria, the
actual improvement in the weights of the minimum parametric weight hyperpath in Hk,i

is small. The maximal improvement for criterion j at node ui is W k
j (ui) −mk,i

j (ui). As
discussed above, this gives an improvement (W k

j (ui)−mk,i
j (ui))fη(ui), at node t. If this

improvement is small for both criteria, we may skip subhypergraph Hk,i. In the following
rule, the improved weights at t for both criteria are compared to some previously found
nondominated point. Here, ε2 denotes a lower bound on the improvement.

Rule 5.4.5 Assume ∃Ŵ ∈ Φ satisfying W1

(
πk

)
−(W k

1 (ui)−mk,i
1 (ui))fη(ui) ≥ (1−ε2)Ŵ1

and W2

(
πk

)
−(W k

2 (ui)−mk,i
2 (ui))fη(ui) ≥ (1−ε2)Ŵ2. Then discard subhypergraph Hk,i.

Rule 5.4.5 is very restrictive, since, by skipping subhypergraph Hk,i, we assume that
no efficient hyperpath in Hk,i can be found by changing the predecessor p (v) of a node
v ∈ Eη� {ui} . This may often be the case and hence using Rule 5.4.5 may result in poor
approximations. Therefore Rule 5.4.5 should only be used when the K best strategies
procedure begins to stall.

Clearly, the set of points determined by Rules 5.4.3-5.4.5 ε-dominates the true set of
nondominated points for some ε. But we cannot determine how good the approximation
is, i.e. the value of ε. However, an upper bound on ε can be found for each triangle
examined.

Theorem 5.4.5 Consider an approximation Φ =
{
W 1, ...,W q

}
of a large triangle where

W 1 and W q denote the extreme nondominated points defining the triangle. Then Φ is an
εub-approximation of the true set of nondominated points in the triangle with

εub = max
i=1,...,q−1

{
1 −

γ
(
W 1, λ

)
W i+1

1 λ+W i
2

}
(5.5)

where λ is the value such that W 1 and W q have the same parametric weight.

Proof Consider the triangle in Figure 5.8 with nondominated points Φ =
{
W 1, ...,W q

}
(q = 4). Recall that W 1 and W q are extreme nondominated points. Therefore is suffices
to find the minimum ε needed such that a point on the segment joining W 1 and W q is
always dominated by a point in Φ. That is, according to Definition 5.1.6 we have to find
an εub so that the points (1 − εub)W 1, ..., (1 − εub)W q, marked with crosses in Figure 5.8,
dominate all the points in the segment joining W 1 to W q. This is the case if the points(
(1 − εub)W i+1

1 , (1 − εub)W i
2

)
, i = 1, ..., q − 1, marked with squares in Figure 5.8 have

5.4 Finding the set of efficient strategies under time-adaptive route choice 93

W1

W 2

W1

W2

W 3

W 4

Figure 5.8: Finding an upper bound on ε for a triangle.

parametric weight below the parametric weight γ
(
W 1, λ

)
of the segment joining W 1 to

W q, i.e.
(1 − εub)W i+1

1 λ+ (1 − εub)W i
2 ≤ γ

(
W 1, λ

)
, i = 1, ..., q − 1

Modifying the inequality and taking the maximum value of εub, we get (5.5).

Finally, a few remarks about the data structures needed in phase two. An ordered
nondominated set Φ must be maintained. For each triangle, we run a modified version of
procedure K-BSreopt ranking hyperpaths according to the parametric weight. For each
subhypergraph Hk,i added to the candidate, we store, for j = 1, 2, weights mk,i

j (t) and
Wj(πk,i) and the parametric weight γ(W (πk,i), λ). Assume that the k’th hyperpath πk

is picked from the candidate set. Using Theorem 4.1.6, we now can find mk,i
j (t) and

W k,i
j (t) and check Rules 5.4.1-5.4.5 (if they are used).

5.4.2 Min-max criteria

Assume that both criteria are min-max criteria, i.e. we have to find efficient hyperpaths
using two distance weighting functions. Unfortunately Theorem 5.4.1 cannot be extended
to hypergraphs when two distance weighting functions are considered, as can be seen in
the following example

Example 5 (continued) Consider the time-expanded hypergraph with costs as shown
in Figure 5.6 on page 86 and assume that both criteria is MMC. A minimum weight
hyperpath π of Hλ (λ = 1), using the distance weighting function, is shown in Figure 5.9.
The costs (w1 (e) , w2 (e) , wλ (e)) are shown near each hyperarc e. The minimum weight
of π, using weights wλ (e), is Wλ (π) = 14. However, the weight of π using criterion one
and two is W1 (π) = 9 and W2 (π) = 7, i.e. the parametric weight γ (W (π) , λ) is equal to
16.

Note that, we have Wλ (π) ≤ γ(W (π) , λ) in the above example. This property holds
true in general.

94 Bicriterion route choice in STD networks

a0

s

d5d4d3

c3c2

b2b1

(0,0,0)
(0,0,0) (0,0,0)

(3,1,4)

(1,5,6)

(1,1,2)

(5,3,8)

(1,2,3)

Figure 5.9: A minimum weight hyperpath of Hλ.

Theorem 5.4.6 Let Wλ(π) denote the distance of a hyperpath π in Hλ. For every λ > 0
and for every π ∈ Π, we have that Wλ (π) ≤ γ(W (π) , λ).

Proof For each u in π, denote by Wλ(u), W1(u) and W2(u) the distance of node u in
π with respect to the weights wλ, w1 and w2, respectively. Consider a valid ordering
Vπ = (u1, ..., uq) for π. We shall prove by induction that for each uj in V , Wλ(uj) ≤
W1(uj)λ+W2(uj). The property clearly holds for u1 = s. Now, assume that the property
holds for each node preceding u = uj in V . Then

Wλ(u) = max
v∈T (p(u))

{Wλ(v)} + wλ(p(u))

= max
v∈T (p(u))

{Wλ(v)} + w1(p(u))λ+ w2(p(u))

≤
(

max
v∈T (p(u))

{W1(v)} + w1(p(u))
)
λ +

(
max

v∈T (p(u))
{W2(v)} + w2(p(u))

)
= W1(u)λ+W2(u).

Hence we have that Wλ(π) ≤ γ(W (π) , λ).

A better lower bound can be found, if all hyperpaths in Hλ must contain an end-tree.
Note that this is the case when considering the subhypergraphs Hk,i created when using
Branching Operation 4.1.2 on the k’th minimum weight hyperpath πk. All hyperpaths in
Hk,i must contain end-tree ηk,i defined in Definition 4.1.1.

Consider subhypergraph Hk,i and denote by W k,i
λ (v), W k,i

1 (v) and W k,i
2 (v) the weight

of node v in π with respect to the weights wλ (e), w1 (e) and w2 (e), respectively. Similarly,
let lηλ(v), lη1(v) and lη2(v) denote the maximal weight of a v-t path in ηk,i with respect to
the weights wλ (e), w1 (e) and w2 (e), respectively

Theorem 5.4.7 Given hyperpath π in Hk,i let

Ŵλ (π) = max
v∈Eη

{Wλ (v) + lη1 (v)λ+ lη2 (v)} (5.6)

5.4 Finding the set of efficient strategies under time-adaptive route choice 95

For every λ > 0 and for every hyperpath π in Hk,i we have that Wλ (π) ≤ Ŵλ (π) ≤
γ(W (π) , λ).

Proof Consider the valid ordering V = (ui+1, ..., uq = t) of ηk,i. We shall first prove by
induction that, for each uj in V , lηλ(uj) ≤ lη1(uj)λ + lη2(uj). The property clearly holds
for uq = t. Now assume that the property holds for each node succeeding u in V . Then

lηλ (u) = max
e∈FSη(u)

{lηλ(h(e)) + wλ(e)}

= max
e∈FSη(u)

{lηλ(h(e)) + w1(e)λ+ w2(e)}

≤ max
e∈FSη(u)

{lη1(h(e)) + w1(e)}λ+ max
e∈FSη(u)

{lη2(h(e)) + w2(e)}

= lη1(u)λ+ lη2(u)

According to Theorem 2.4.3, the weight Wλ (π) is

Wλ (π) = max
v∈Eη

{Wλ (v) + lηλ (v)}

≤ max
v∈Eη

{Wλ (v) + lη1 (v)λ+ lη2 (v)}

≤ max
v∈Eη

{W1 (v) + lη1 (v)}λ+ max
v∈Eη

{W2 (v) + lη2 (v)}

= γ(W (π) , λ)

Hence we have that Wλ(π) ≤ Ŵλ (π) ≤ γ(W (π) , λ).

Note that, if only one v-t path exists in ηk,i for each v ∈ Eη, then lηλ (u) = lη1(u)λ+lη2(u)
and hence Wλ (π) = Ŵλ (π) and we obtain no improvement using Ŵλ (π).

Since Ŵπ (π (λ)) is a lower bound on γ (λ), Theorem 5.4.7 provides us with the fol-
lowing corollary

Corollary 5.4.2 Let π denote a minimum weight hyperpath in Hλ using (5.6). Then
Ŵλ (π) ≤ γ (λ).

That is, using Corollary 5.4.2 results in a minimum weight hyperpath π with weight
Ŵλ (π) which is a lower bound on γ(λ). However, we cannot find the minimum parametric
weight hyperpath π (λ) by just solving a minimum weight hyperpath problem. Instead π
only provides an approximation of the supported nondominated point corresponding to
π(λ).

As we will see, computational results show that the lower bound Ŵλ (π) often provides
us with a poor approximation. Therefore a greedy heuristic procedure for finding a
hyperpath providing an approximation of π (λ) was developed. The procedure SHTgreedy,
shown in Figure 5.10, is similar to procedure SHTacyclic. However, here we maintain 3
labels for each node: the weight Wj (v) , j = 1, 2, of the current hyperpath (defined by
p) to node v using criterion j and the parametric weight W (v) of the current hyperpath
to node v. When considering node v in the procedure, the predecessor hyperarc is set to
the hyperarc e yielding the minimal parametric weight

(F1 (e) + w1 (e))λ+ F2 (e) + w2 (e)

96 Bicriterion route choice in STD networks

1 procedure SHTgreedy(s, λ,H)
2 W1(v1) := W2(v1) := W (v1) := 0;
3 for (i = 2 to n) do W1(v1) := W2(v1) := W (v1) := ∞;
4 for (i = 2 to n) do
5 for (e ∈ BS(vi)) do
6 if (W (vi) > wλ(e) + F1(e)λ + F2(e)) then
7 W (vi) := wλ(e) + F1(e)λ + F2(e); p (vi) := e;
8 W1(vi) := w1(e) + F1 (e); W2(vi) := w2(e) + F2 (e);
9 end if

10 end for
11 end for
12 end procedure

Figure 5.10: A greedy heuristic for finding an approximation of π(λ).

where Fj (e) denotes the function (2.2) using weights Wj (u), j = 1, 2. Clearly, procedure
SHTgreedy does not find π (λ) since it assumes that all nodes in a minimum parametric
weight hyperpath have minimum parametric weight, too. Nevertheless, it often provides
a solution quite close to π (λ), as we will see in Section 5.6. Note that the weight W (t),
when procedure SHTgreedy stops, is equal to the parametric weight γ (W (π) , λ) of the
s-t hyperpath π defined by p. Hence W (t) is an upper bound on γ (λ). In the following we
therefore let Wub

λ denote the weight of the hyperpath π found by procedure SHTgreedy.

Phase one: Finding an approximated frontier

Due to the fact that we cannot find the minimum parametric weight hyperpath by solving
a minimum weight hyperpath problem on Hλ, we cannot find the frontier using procedure
phaseOne in Figure 5.4. However, an approximated frontier can be found for a given λ
by finding the weight Wλ of the minimum hyperpath of Hλ and the weight Wub

λ of the
hyperpath returned by procedure SHTgreedy. That is, procedure phaseOne is modified
so that, for each new search direction λ, we find Wλ and Wub

λ and add them to Φ using
procedure add(W,Φ) . The procedure stops when no new points can be found. Note that
Φ may contain only a subset of the extreme nondominated points. Furthermore, it may
also contain points dominated by points in Weff. Nevertheless, the approximate frontier
Φ defines a set of triangles which can be used in phase two. Moreover, if an interactive
approach is used, Φ can be used to guide the decision maker.

Phase two: Looking into the approximated triangles

After phase one an ordered nondominated set Φ, defining a set of triangles we search for
further nondominated points in phase two, has been found.

Assume that we consider the triangle defined by W+ and W− in Φ and λ given in
(5.4). Unfortunately we cannot rank hyperpaths in non-decreasing order of the parametric
weight by using a K best strategies procedure on Hλ. Due to Corollary 5.4.2, however,
ranking hyperpaths according to Ŵλ (π) corresponds to ranking hyperpaths according to
a lower bound on the parametric weight. Hence the following holds

5.4 Finding the set of efficient strategies under time-adaptive route choice 97

Theorem 5.4.8 Assume that we find the K minimum weight hyperpaths ranking hyper-
paths according to the lower bound weight Ŵλ (π). Moreover, assume that the k’th hy-
perpath is selected with weight Ŵλ(πk) then all hyperpaths π ∈ Π with parametric weight
γ (W (π) , λ) below Ŵλ(πk) have been considered.

Due to Theorem 5.4.8, ranking hyperpaths according to Ŵλ until the upper bound of
the triangle is reached, provides us with a complete method, that is, all the hyperpaths
with parametric weight below the upper bound would be obtained. Clearly, if Ŵλ (π) is a
week lower bound on the parametric weight γ (W (π) , λ) then hyperpaths π with Ŵλ (π)
below the upper bound of the triangle may have parametric weight γ (W (π) , λ) above
the upper bound. As a result the K minimum weight hyperpaths procedure may have
to consider a lot of points above the triangle before it stops. Computational results in
Section 5.6 show that this may often be the case.

Another possibility is to find hyperpaths using procedure SHTgreedy within procedure
K-BSreopt. That is, for each subhypergraph Hk,i, we insert the hyperpath π found by
procedure SHTgreedy into the candidate set. As discussed earlier, hyperpath π provides
us with an approximation on π (λ) in Hk,i with upper bound weight Wub

λ (π). Hence by
using this approach, we find an approximation of the nondominated points in the triangle.
Note that, by using procedure SHTgreedy within procedure K-BSreopt we clearly do not
rank strategies exactly. That is, the weight of the k’th hyperpath found by procedure
K-BSreopt may be greater than the weight of the k + 1’th hyperpath†.

It should also be pointed out that new extreme nondominated points may be found
during phase two, since we only find an approximation of the frontier in phase one. If
this happens the current set of extreme nondominated points is updated and the current
K best strategies procedure is stopped and restarted on the triangles defined by the new
point. Other choices would be possible, but computational testing shows that this choice
is acceptable in terms of computation time.

As under expectation criteria, the efficiency of phase two depends on how many points
of W lie inside the triangle. Under min-max criteria, the increase in the weight when using
the K minimal hyperpath procedure is slow, since there may exist a lot of hyperpaths
corresponding to the same point in the criterion space as pointed out in Section 4.3.
Therefore rules have to be used to prune the candidate set of hyperpaths. The rules
used under expectation criteria can also be used under min-max criteria except Rule
5.4.4. Note that, if hyperpaths are ranked according to lower bound weight Ŵλ (π) when
triangles are searched and only Rule 5.4.1 and 5.4.2 is used, then Theorem 5.4.4 still
holds.

A specialized branching operation for min-max criteria

In this section we present a new branching operation for min-max criteria. Branching
Operation 4.1.2 has the following weakness when min-max criteria are considered.

Consider Branching Operation 4.1.2 on hyperpath πk and let Pj denote a path con-
tained in πk with maximal weightWj(πk) using criterion j. Recall that Hk,i with minimal
hyperpath πk,i is obtained by removing the predecessor hyperarc pk (ui) from node ui (see
Definition 4.1.2) Assume that ui /∈ P1 ∪ P2. Then, according to Corollary 2.4.2 the point
W (πk,i) satisfies

Wj

(
πk,i

)
≥Wj

(
πk

)
, j = 1, 2

†See Figure 5.12 on page 111 where an example of the ranking of the parametric weight is shown.

98 Bicriterion route choice in STD networks

That is, πk,i will either contain the same maximum weight paths P1 and P2 as in πk

or paths with a higher weight. This suggests the following improved branching operation

Branching Operation 5.4.1 Given hyperpath π ∈ Π defined by predecessor function p
with valid ordering Vπ, let VP1P2 = (s, ū1, ū2, . . . , ūr = t) ⊆ Vπ denote a valid ordering of
the nodes in P1∪P2. Moreover, let ΠP1P2 denote the set of s-t hyperpaths in H containing
P1 and P2. Then the set Π\ ΠP1P2 can be partitioned into r disjoint subsets Π̄i, 1 ≤ i ≤ r
as follows

1. Hyperpaths in Π̄r do not contain hyperarc p(ūr), that is p(t).

2. For 1 ≤ i < r, hyperpaths in Π̄i contain hyperarcs p (ūj) , i+ 1 ≤ j ≤ r, and do not
contain hyperarc p(ūi).

Proof Similar to the proof of Branching Operation 4.1.2.

By using Branching Operation 5.4.1, all hyperpaths containing P1 and P2 are removed
in one branching operation, since they all correspond to points dominated by or equal
to point W (π) . It is obvious that hyperpaths in Π̄i must contain the following end-tree
η̄i = (Vη, Eη), i = 1, ..., r with

Eη =
{

∅ i = r

{p (ūr) , ..., p (ūi+1)} otherwise
, Vη =

{
{t} i = r⋃

e∈Eη
T (e) ∪ h (e) otherwise

As in Branching Operation 4.1.2, finding a minimum weight s-t hyperpath π̄i ∈ Π̄i re-
duces to solving a minimum weight hypertree problem on a subhypergraph H̄i, containing
end-tree η̄i of H, defined by

Definition 5.4.1 Given π, let subhypergraph H̄i, i = 1, ..., r, be obtained from H as
follows

1. For each node ūj , i+ 1 ≤ j ≤ r, remove each hyperarc in BS(ūj) except p(ūj).

2. Remove hyperarc p(ūi) from BS(ūi).

Since each s-t hyperpath in H̄i must contain an end-tree η̄i and η̄i+1 ⊂ η̄i, the weight
lηλ (v) (and the lengths lη1 (v) and lη2 (v)), can be updated recursively during the branching
operation on π. However, note that node ūi ∈ Eη is not necessarily the last node in the
valid sub-ordering VEη ⊂ Vπ . Therefore Corollary 2.4.2 cannot be used to find the weight
of the minimal hyperpath π̄i in H̄i. This is due to the fact that the weight of the nodes
v ∈ Eη (above ūi in VEη) may change when the weight in node ūi is changed. Instead,
we may do the following to find the updated weights of the minimal hyperpath π̄i in H̄i

1. First see if Theorem 2.4.4 can be used.

2. Otherwise update the weights for the nodes v ∈ Eη (above ūi in the valid ordering
of Eη) by using a modified version of procedure SHTacyclic.

3. Use Theorem 2.4.3 to calculate the weight in node t.

5.4 Finding the set of efficient strategies under time-adaptive route choice 99

Unfortunately, item 2 above seems to be too time consuming. Instead we will follow a
different approach. Consider the subhypergraph H̄i and assume that we add hyperpaths
to the candidate set using the lower bound Ŵλ given in (5.6). Now, consider the weight
Wλ(ūi). Since we remove a hyperarc in the backward star of node ūi, the updated weight
in node ūi will increase. As a result, the updated weight in the nodes v ∈ Eη cannot
decrease. Therefore using Corollary 2.4.2 with the updated weight in node ūi provides us
with a lower bound on the weight Ŵ (π̄i) in H̄i. We can now modify procedure K-BSreopt
in Figure 4.8 so that Branching Operation 5.4.1 can be used.

1. Pick the minimal branching tree node τ (line 8) and create the subhypergraph
corresponding to τ (line 10) as before.

2. Line 11 needs to be modified to

(a) First, recalculate the weight Wτ of the hyperpath πτ using procedure SHTa-
cyclic.

(b) If the weight Wτ is above the lowest weight in the candidate set then reinsert
the subhypergraph into the candidate set with weight Wτ updated and start
a new iteration.

(c) Otherwise, output the hyperpath.

Similar item 1 and 2 above can be used when ranking hyperpaths using the upper
bound Wub

λ found by procedure SHTgreedy where item 2a uses procedure SHTgreedy
instead of procedure SHTacyclic.

Note that the way we calculate weights and reinsert subhypergraphs is similar to
procedure K-BPSreopt under a priori route choice. Moreover, when using K-BSreopt with
Branching Operation 5.4.1, the rules in Section 5.4.1 cannot be applied as before, because
we only calculate a lower bound on the minimal hyperpath for each subhypergraph when
branching on hyperpath πτ . Hence only Rule 5.4.3 can be applied to the nodes ūi ∈ P1∪P2

when branching on hyperpath πτ while Rules 5.4.1, 5.4.2 and 5.4.5 must be applied to
the minimal hyperpath in πτ found when considering the branching tree node τ. That is,
the rules are mainly applied to hyperpaths when picked from the candidate set and not
to the hyperpaths of the subhypergraphs created when branching.

5.4.3 Expectation criterion and min-max criterion

Assume that one of the criteria is expectation and the other criterion is min-max, i.e.
we have to find efficient hyperpaths using a mean weighting function for the expectation
criterion and a distance weighting function for the min-max criterion.

As in the case where min-max criteria is used, Theorem 5.4.1 cannot be extended
to hypergraphs if one of the criteria is expectation and the other criterion is min-max.
However, a lower bound on the parametric weight can be found.

Theorem 5.4.9 Let Wλ(π) denote the weight of a hyperpath π in Hλ when using the
mean weighting function. For every λ > 0 and for every π ∈ Π, we have that Wλ (π) ≤
γ(W (π) , λ).

100 Bicriterion route choice in STD networks

Proof The proof is not given, but it follows the same kind of reasoning as the proof of
Theorem 5.4.6.

Due to Theorem 5.4.9, ranking hyperpaths according to weight Wλ in (5.6) until
the upper bound of the triangle is reached provides us with a complete method. That
is, all the efficient hyperpaths with parametric weight below the upper bound would
be obtained. Moreover, the weight of the hyperpath returned by procedure SHTgreedy,
shown in Figure 5.10, still provides us with an upper bound on the parametric weight.
Hence adding hyperpaths to the candidate set using procedure SHTgreedy provides us
with an approximation of the nondominated points in the triangle.

Using the above lower and upper bounds we can apply phase one and two as under
min-max criteria.

5.5 Finding the set of efficient strategies under a priori
route choice

In this section the problem of finding efficient strategies under a priori route choice is
considered. The problem consists in finding the set of efficient path-strategies between
an origin and a destination node when leaving the origin at time zero. The criteria given
in Section 3.2 are used, i.e. we consider expectation criteria where the goal is to minimize
the expected travel time (MET) or cost (MEC) or min-max criteria where the goal is
to minimize the maximum possible travel time (MMT) or cost (MMC). We consider the
case where waiting is allowed and the case where no waiting is allowed separately.

Since a path-strategy between an origin and a destination node corresponds to a
hyperpath in the time-expanded hypergraph H, finding the set of efficient path-strategies
corresponds to finding the set of efficient hyperpaths in the time-expanded hypergraph
H, all corresponding to a path-strategy.

Let ΠPS ⊆ Π denote the set of s-t hyperpaths corresponding to a path-strategy. Note
that, we are not interested in finding the set of efficient hyperpaths Πeff but the set
of efficient hyperpaths in ΠPS . That is, we only consider a subset of Π, namely the
hyperpaths corresponding to a path-strategy.

5.5.1 No waiting allowed

Consider an STD network where no waiting is allowed in the nodes inG and the problem of
finding efficient hyperpaths corresponding to a path-strategy. Due to Corollary 4.2.3, the
total number of path-strategies is significantly lower than the total number of strategies.
As a result, we may expect that the K best path-strategy procedure searching a triangle
has to find fewer path-strategies before reaching the upper bound of the triangle.

Assume that both criteria are expectation criteria, i.e. the resulting problem becomes
finding efficient hyperpaths corresponding to a path-strategy using two mean weighting
functions. Since the set ΠPS is a subset of Π, we have that Theorem 5.4.2 still holds.
That is, we have the following corollary

Corollary 5.5.1 Assume that both criteria are expectation criteria. Then finding the
hyperpath π ∈ ΠPS with minimum parametric weight, reduces to finding a minimum
weight hyperpath π ∈ ΠPS in Hλ.

5.5 Finding the set of efficient strategies under a priori route choice 101

Note that the minimum parametric weight hyperpath π ∈ ΠPS defines a path-strategy
corresponding to a supported nondominated point. Hence the frontier can be found in
phase one by a modified version of procedure phaseOne in Figure 5.4; simply change
procedure SHTacyclic to e.g. procedure K-BPS MB with K = 1. Note that the first path-
strategy, when using procedure K-BPS MB, can be found relatively fast for “realistic”
STD networks (see Section 4.3).

In phase two the only change, compared to time-adaptive route choice, is that here
we just have to search each triangle using a K best path-strategies procedure instead of a
K best strategies procedure. Rules 5.4.1 and 5.4.2 can still be used to remove subgraphs
from the candidate set. This is not the case for Rules 5.4.3-5.4.5. In the experimental
tests, however, no rules are used, since this is unnecessary due to the fact that the number
of hyperpaths in ΠPS is significantly lower that the number of hyperpaths in Π.

Now assume that both criteria are min-max criteria, i.e. we have to find efficient hy-
perpaths π ∈ ΠPS using two distance weighting functions. As under time-adaptive route
choice, we may use a K best path-strategy procedure adding hyperpaths π ∈ ΠPS to the
candidate set by either using the lower bound weight Ŵλ in (5.6) or the upper bound
weight Wub

λ found by using procedure SHTgreedy. Due to Theorem 5.4.8 ranking hyper-
paths according to Ŵλ until the upper bound of the triangle is reached, provides us with
a complete method, that is, all the hyperpaths π ∈ ΠPS with parametric weight below
the upper bound would be examined. If, instead, Wub

λ is used, we find an approximation
of the nondominated points in the triangle.

Finally, if one of the criteria is expectation and the other criterion is min-max, we
may again use either a lower bound weight which provides us with a complete method or
an upper bound weight resulting in an approximation.

5.5.2 Waiting allowed

Consider an STD network where waiting is allowed in the nodes in G. If both criteria
are expectation criteria, then Corollary 5.5.1 still holds and the frontier can be found in
phase one as in the case where no waiting is allowed. For min-max criteria phase one can
also be used as in the case where no waiting is allowed.

Recall that, if waiting is allowed, then a path P in G defines a possible exponential
number of path-strategies, distinguished from each other by the use of waiting (see Sec-
tion 4.2.2). Therefore there may exist an exponential number of hyperpaths π ∈ ΠPS

corresponding to P , each having different weights. That is, different nondominated points
may correspond to the same path in G. As a result phase two has to search each trian-
gle using a K best path-strategy procedure where Branching Operation 4.1.2 is used, if
the branching operation branches on a hyperpath corresponding to a path-strategy. Un-
fortunately, the results in Section 4.3.3 show that the path-strategies found with the K
best path-strategy procedure often correspond to the same path in G resulting in a small
increase in the parametric weight. That is, the procedure searching a triangle begins to
stall and we have to find a way to prune the candidate set.

A simple way of avoiding this is to consider one path-strategy only for each path
in G, i.e. we do not use Branching Operation 4.1.2 in e.g. procedure K-BPS MB (see
Section 4.2.2). This approach provides us with an approximation of the nondominated
set.

102 Bicriterion route choice in STD networks

5.6 Computational results

In this section we report the computational experience with the procedures previously
described in this chapter. The procedures have been implemented in C++ and tested on
a 1 GHz PIII computer with 1GB RAM using a Linux Red Hat operating system. The
programs have been compiled with the GNU C++ compiler with optimize option -O.

All tests are performed on time-expanded hypergraphs generated with the TEGP gen-
erator (see Section 3.5). In the following, we use the term hypergraph class as a particular
setting of the TEGP input parameters except that different criteria and correlation be-
tween the criteria may be chosen for the same class. That is, for each hypergraph class,
different instances of the problem can be generated by choosing different criteria, corre-
lation and seeds.

For each hypergraph class, the following criteria are considered: MET/MEC, MEC/
MEC and MMC/MMC (criterion one/criterion two). Three types of correlation between
the two criteria are considered. If the first criterion considers time and the second cost
(T/C), then the weight, with respect to the first criterion, is zero on all the hyperarcs and
the second weight follows a pattern as shown in Figure 3.5 on page 30. If both criteria
consider cost (C/C), then two different types of correlation between the costs are consid-
ered, namely no correlation (nocor) and negative correlation (negcor) (see Section 3.5 for
further details).

Peak dependent costs are used in all classes with an off-peak cost interval equal to
[lbc, ubc] = [1, 1000]. The deviation mean ratio is set to ρ = 0.25 in all classes. The
remaining input parameters will be specified when we consider the different classes used
in the tests.

5.6.1 Performance measures/statistics

In this section performance measures/statistics used to evaluate the procedures are de-
scribed. For each hypergraph class, type of criteria and correlation type, the measures
are average or maximum over five independent runs using a different seed. The statistics
can be divided into two groups. In group one the following statistics concerning phase
one is reported. The abbreviation used in the tables is given in parentheses.

Frontier size (|Φf |): The size of the frontier. Only reported when both criteria
are expectation criteria.

Approximated frontier size (|Φf (ε)|): The size of the approximated frontier using
procedure phaseOne(ε) when expectation criteria are considered. If min-max
criteria are considered, |Φf (ε)| is the number of extreme points in the non-
dominated set found in phase one.

CPU time (CPU f): The CPU time used for phase one reported in seconds.

Number of triangles (|�|): Number of large triangles searched by phase two when
expectation criteria are considered and the number of triangles defined by the
nondominated set when phase two stops when min-max criteria are consid-
ered.

5.6 Computational results 103

Relative increase (RIj): The relative increase from the upper/left point Wul to
the lower/right point W lr for the j’th criteria defined as (W lr

j −Wul
j)/Wul

j .
Reported in percent.

In the second group we report statistics for each triangle searched in phase two. The
abbreviation used in the tables are given in parentheses.

CPU time (CPU�): The CPU time for searching a triangle reported in seconds.
The average CPU time for all the triangles searched is reported. Moreover,
also the maximum CPU time of all the triangles searched is reported.

Points in the triangle (|Φ�|): The number of nondominated points in the triangle
not including the two points defining the triangle. Average and maximum
results reported.

Upper bound on epsilon (εub): The upper bound (5.5) on epsilon for each triangle
reported in percent. Only reported when expectation criteria are considered.
Average and maximum results reported.

Number of unfinished triangles (U): The number of triangles where the search stop-
ped because a limit on the number of iterations was reached, i.e. the K best
strategies procedure terminated before reaching the upper bound defined by
the triangle.

Number of new frontier points (newf): Number of new frontier points found during
phase two when min-max criteria are considered.

Epsilon (εΦs): The epsilon needed for the nondominated points found by the pro-
cedure to ε-dominate a triangle in a nondominated set Φs when min-max
criteria are considered. Average and maximum results reported.

Number of iterations (ite): Average number of iterations performed when searching
a triangle.

5.6.2 Time-adaptive route choice

In this section the problem of finding efficient strategies under time-adaptive route choice
is considered. Our main goal here is to evaluate phase one and phase two under different
criteria and different correlation between the two criteria.

The criteria given in Section 3.2 are used, i.e. we consider expectation criteria where
the goal is to minimize the expected travel time (MET) or cost (MEC) or we consider
min-max criteria where the goal is to minimize the maximum possible travel time (MMT)
or cost (MMC).

We consider the case where both criteria are expectation criteria and the case where
both criteria are min-max criteria separately. As we will see, using expectation criteria
results in a dense set of nondominated points while using min-max criteria results in a
sparse set of nondominated points. Moreover, the problem is easier to solve when using
expectation criteria, i.e. when the nondominated set is dense. Therefore, one may expect
that the case where one of the criteria is expectation and the other criterion is min-max,
is easier to solve than the case, where two min-max criteria are used. This is confirmed
by a few computational tests not presented in this thesis. Therefore the case where one
of the criteria is expectation and the other criterion is min-max will not be considered.

104 Bicriterion route choice in STD networks

Class 1 2 3 4 5 6 7 8

n 3342 2817 2314 1862 3342 3342 3342 3342

mh 10976 9262 7612 6132 10976 10976 10976 10976

ma 102 90 81 76 102 102 102 102

|T (e)| 4 5 6 6 4 4 4 4

H 144 144 144 144 144 144 144 144

IT [3,10] [3,15] [3,20] [3,30] [3,10] [3,10] [3,10] [3,10]

IC [1,1000] [1,1500] [1,2000] [1,2500] [1,1050] [1,1100] [1,1200] [1,1500]

ψ 0 0.5 1.0 1.5 0 0 0 0

rξ 0 0 0 0 0.05 0.10 0.20 0.50

Table 5.1: Hypergraph classes for preliminary tests (grid size 5 × 8).

Expectation criteria

Let both criteria be expectation criteria, i.e. we have to find efficient hyperpaths using
two mean weighting functions.

First, some preliminary tests are carried out to point out the impact of some features
of the TEGP generator, and to justify the relevant parameter settings. The effect of
peak increase changes and changes in the range of the random perturbation are examined
separately. An underlying grid size of 5×8 is used and no waiting is allowed. In all classes,
a cycle consists of 144 time instances, i.e. 12 hours divided into 5 minute intervals. A
cycle has two peaks, each with a total length of 5 hours with each part of the peak pkj

lasting 1 hour and 40 minutes. The first peak starts after half an hour (t = 6) and the
interval of possible off-peak mean travel times is [lbt, ubt] = [4, 8] , i.e. an off-peak mean
travel time between 20 and 40 minutes. A fixed time horizon of 144 time instances is
used. Eight hypergraph classes are considered. In Table 4.1 the following statistics for
class 1-8 are reported:

Number of nodes (n): Recall that the generator may generate nodes and hyperarcs
in H which cannot be contained in an s-t hyperpath. These nodes and hyper-
arcs are removed from H in a preprocessing step. The number of nodes in H
after preprocessing are reported.

Number of hyperarcs (mh): Number of “true” hyperarcs in H after preprocessing
(i.e. |T (e)| > 1).

Number of arcs (ma): Number of arcs in H after preprocessing.

Tail size (|T (e)|): The average number of nodes in the tail of each hyperarc, i.e.
the average number of elements in the travel time density of X (u, v, t) when
leaving node u at time t along arc (u, v).

Time horizon (H): The time horizon or number of time instances of the STD net-
work.

Travel time interval (IT): The interval of possible travel times (see (3.10)).

Cost interval (IC): The interval of travel costs used (see (3.11)).

5.6 Computational results 105

|Φ�| CPU� εub

Class ψ |Φf | |�| ave max ave max ave max

T/C

1 0 4 3 19 59 0.30 0.86 1.80 4.12

2 0.5 55 3 8 26 0.20 0.75 1.78 3.75

3 1.0 64 4 6 15 0.17 0.30 1.60 3.84

4 1.5 70 3 11 31 0.19 0.41 1.55 4.59

C/C (negcor)

1 0 7 6 135 690 11.42 122.08 1.55 10.46

2 0.5 140 14 20 306 4.13 168.89 1.23 10.59

3 1.0 138 9 78 589 17.49 189.48 1.44 4.84

4 1.5 154 8 70 308 14.42 182.26 1.88 15.42

Table 5.2: Preliminary tests – Changing the peak increase parameter ψ (expectation
criteria).

The value of the peak increase parameter ψ and the range of the random perturbation
rξ are also reported in Table 4.1.

For class 1-4, no random perturbation is used and the peak increase parameter ψ
increases from 0% to 150%. Note that, increasing the value of ψ, increases the interval of
possible travel times, the interval of costs used and the average tail size.

In class 5-8, the peak increase parameter ψ is set to zero and the range of the random
perturbation rξ increases from 5% to 50%. Note that the random perturbation only affect
the costs on the hyperarcs. Hence, the topological structure for hypergraphs in class 5-8,
generated with the same seed, are the same. However, the cost interval grows.

The frontier was found in the preliminary tests and phase two was carried out using
Rules 5.4.1-5.4.5 with ε = ε1 = ε2 = 0.01. Hypergraph class 1-8 have also been tested
using only Rules 5.4.1 and 5.4.2. Unfortunately, this led to unacceptable CPU times since
Rules 5.4.1 and 5.4.2 do not remove enough subhypergraphs from the candidate set to
speed up the triangle search significantly.

First, the effect of increasing the peak increase parameter ψ without using a random
perturbation is considered (class 1-4). For each class we consider two cases, namely T/C
and C/C negcor. The results are reported in Table 5.2.

The results show that the frontier size grows when the peak increase parameter in-
creases. It is hence relevant to model the peak effect with the TEGP generator. Note
also that option C/C negcor is much harder than T/C, as shown by the maximum values
of εub, the CPU time and the number of triangles needed to be searched by phase two.

Next we test the effect of changing the random perturbation without a peak effect
(class 1 and 5-8). Results are shown in Table 5.3 where five possible values of rξ are
considered. Like for class 1-4, increasing rξ increases the number of extreme nondominated
points. Consider the εub columns; here average and maximum εub fall when the range
increases, indicating that the triangles searched become smaller and nondominated points
are found closer to the frontier. In the C/C negcor case this is also reflected in the CPU
columns where the CPU time falls. We can conclude that a larger random perturbation
gives easier problems. Note that the same does not hold in the peak increase tests, hence

106 Bicriterion route choice in STD networks

|Φ�| CPU� εub

Class rξ |Φf | |�| ave max ave max ave max

T/C

1 0 4 3 19 59 0.31 0.85 1.80 4.12

5 5 36 3 5 9 0.18 0.70 1.78 4.06

6 10 57 3 5 9 0.21 0.54 1.78 4.01

7 20 85 3 5 21 0.25 0.79 1.82 3.90

8 50 157 3 10 37 0.62 3.32 1.59 3.68

C/C (negcor)

1 0 7 6 135 690 11.07 113.71 1.55 10.46

5 5 93 13 20 364 2.56 85.99 1.23 10.27

6 10 118 13 15 230 2.08 54.80 1.21 9.90

7 20 171 11 14 78 1.25 31.80 1.21 8.51

8 50 360 11 12 104 1.02 24.48 1.10 2.73

Table 5.3: Preliminary tests – Changing the range of the random perturbation rξ (expec-
tation criteria).

Class 9 10 11 12

Grid size 5 × 8 5 × 8 10 × 10 10 × 10

n 2254 2263 14877 14886

mh 7383 7405 53220 53241

ma 80 2262 196 14885

|T (e)| 6 6 6 6

H 144 144 288 288

IT [3,20] [3,20] [3,20] [3,20]

IC [1,2200] [1,2200] [1,2200] [1,2200]

IW - [1,550] - [1,550]

Waiting no yes no yes

Table 5.4: Hypergraph classes 9-12 (rξ = 0.1 and ψ = 1).

it seems that the effect of the random perturbation is most relevant. The preliminary
tests show that both parameters ψ and rξ must be chosen with caution.

In the remaining tests, the peak increase is set to ψ = 100%, while the range of the
random perturbation to rξ = 10%. A larger range might result in too easy problems.
Four hypergraph classes are considered with two different grid sizes and waiting allowed
in two of the classes. The grid size, number of nodes etc after preprocessing are shown in
Table 5.4. In all the classes the length of a cycle, peak lengths and off-peak mean travel
times and costs are the same as for class 1-8. Note that allowing waiting will make the
set of possible strategies between the origin and destination node in G grow significantly.
Moreover, using low waiting costs compared to the costs on the hyperarcs may result in
a decrease in the expected cost of the hyperpath. That is, we may expect the number of
strategies inside a triangle to increase significantly. Therefore, allowing waiting with low

5.6 Computational results 107

Class |Φf | CPUf |Φf (ε)| CPUf |�| RI1 RI2

ε = 0% ε = 1%

9 T/C 74 2.61 18 0.38 2 39 98

9 C/C nocor 84 2.98 28 0.62 5 84 106

9 C/C negcor 186 6.66 63 1.37 11 192 390

10 T/C 98 3.92 23 0.54 2 55 106

10 C/C nocor 140 5.53 33 0.79 5 152 123

10 C/C negcor 225 8.66 66 1.58 11 231 417

11 T/C 357 72.32 37 3.76 1 69 183

11 C/C nocor 528 106.70 60 6.15 4 173 224

11 C/C negcor 809 164.02 114 12.19 13 415 711

12 T/C 426 91.83 35 3.80 1 71 185

12 C/C nocor 662 143.06 68 7.51 5 428 240

12 C/C negcor 923 202.78 117 14.22 14 484 816

Table 5.5: Results phase one (expectation criteria).

waiting costs, will make the problem harder to solve. In the tests of classes 9-12, three
types of correlation between the two criteria are considered, namely T/C, C/C nocor and
C/C negcor. We consider phase one and two separately.

Start by looking at the results for phase one, shown in Table 5.5, where both the
frontier and an ε-approximation of the frontier are found (ε = 1%). First, compare the
exact results against the approximated ones. Here the number of extreme nondominated
points is significantly lower for the approximation, resulting in large savings in CPU time.
This implies that the set of large triangles, i.e. the triangles searched by phase two, can
be determined much faster by an approximate phase one. Anyway, it must be remarked
that the number of large triangles (column |�|) is quite limited even compared to the
size of the approximated frontier. That is, the frontier contains many points close to each
other. In this situation, a decision maker may be satisfied by the results given by phase
one, which would make phase two superfluous.

If we compare the different types of correlation, we see that the cases T/C and C/C
nocor produce fewer extreme nondominated points than the negatively correlated case
C/C negcor. This is a well-known behavior for the bicriterion shortest path problem,
see e.g. Skriver and Andersen [85]. It is not surprising that the T/C option seems to
find even fewer points than C/C nocor, since for T/C, the first weight is zero on each
hyperarc. Note also that the number of large triangles is highest in C/C negcor indicating
that finding efficient strategies is hardest in this case.

Next, let us consider the exact frontier and compare the different waiting possibili-
ties. For weight option T/C, the number of extreme nondominated points increase when
waiting arcs with low costs are used. A possible explanation is that, in a strategy using
waiting, the mean travel time will increase (first criterion); however, the mean cost may
be smaller. Thus the upper/left point of the criterion space stays the same, while the
lower/right point moves to the south-east. This is confirmed by the values RIj , that are
larger when waiting is allowed.

Similar results are obtained when the criteria consider costs; the number of extreme

108 Bicriterion route choice in STD networks

|Φ�| CPU� εub |Φ�| CPU� εub

Class |�| U ave max ave max ave max U ave max ave max ave max

ε1 = 0.01 ε1 = 0.1

9 T/C 2 0 18 60 4.53 21.80 1.85 3.39 0 4 13 0.09 0.28 1.96 3.39

9 C/C nocor 5 0 9 29 0.28 2.46 1.17 2.66 0 3 10 0.09 0.34 1.65 2.90

9 C/C negcor 11 0 17 203 1.11 25.80 1.11 2.75 0 6 59 0.14 1.03 1.22 2.76

10 T/C 2 ∗0 24 216 31.22 116.60 2.01 3.71 0 10 75 11.37 80.28 1.89 3.71

10 C/C nocor 5 0 15 52 1.73 30.28 1.22 2.50 0 5 17 1.39 12.16 1.59 2.89

10 C/C negcor 11 ∗0 18 249 7.07 117.73 1.18 4.19 0 7 67 0.92 15.67 1.21 2.75

11 T/C 1 0 1 24 0.16 3.04 0.22 1.49 0 0 6 0.08 1.13 0.23 1.66

11 C/C nocor 4 0 15 132 25.07 300.69 1.12 1.96 0 5 27 1.41 9.84 1.26 2.17

11 C/C negcor 13 1 34 338 39.65 449.09 1.14 6.48 0 9 149 10.00 356.32 1.10 2.01

12 T/C 1 ∗0 2 52 20.81 519.10 0.25 2.23 0 3 63 5.24 129.75 0.23 1.78

12 C/C nocor 5 1 94 755 183.19 610.13 1.37 5.15 ∗0 19 130 28.94 515.62 1.23 2.25

12 C/C negcor 14 1 35 334 71.55 655.69 1.15 7.24 ∗0 9 123 19.65 524.27 1.08 3.53

∗ Few unfinished triangles (below 0.5 on average).

Table 5.6: Results phase two (expectation criteria, use Rule 5.4.5 always).

nondominated points increase when low waiting costs are used. Note that waiting can
make the expected cost of both criteria become lower in some cases. However, this
does not seem to happen often, as can be seen on the values of RIj . Using waiting to
reduce expected cost on one criterion will in general make the expected cost on the other
criterion increase. In graphical terms, the upper/left point of the criterion space moves
to the north-west and the lower/right point moves to the south-east resulting in higher
values of RIj .

Consider phase two. An ε-approximation of the frontier was found (ε = 1%) and
phase two applied to the large triangles. At most 10.000 strategies were allowed to be
generated for each triangle searched. Two different values of the lower bound ε1 in Rule
5.4.4 are used to investigate the effect on procedure performance, namely 0.1 and 0.01.
Furthermore, recall that using Rule 5.4.5 may result in poor approximations. Therefore it
may be relevant to only use Rule 5.4.5 in a triangle when the K best strategies procedure
begin to stall. This can be done in the following way.

Assume that, for each strategy 100j, j = 1, 2, ..., we calculate the relative increase in
the parametric weight between strategy 100j and strategy 100 (j − 1) (if j = 1 we use the
first strategy). Now, if the relative increase is below a specific bound ζ, we use Rule 5.4.5
in the rest of the triangle search. We consider the case where Rule 5.4.5 is applied only
when the K best strategies procedure begins to stall, in the experimental tests, with a
bound ζ = 0.01. Moreover the case where Rule 5.4.5 is applied at the start of all triangles
searched is also considered. In both cases the limit ε2 = 0.01 is used. Other values of ε2
have been tested. However, the results is more or less the same.

The results when using Rule 5.4.5 at the start of all triangles searched are reported
in Table 5.6, while the results when using Rule 5.4.5, only when the K best strategies
procedure begins to stall are reported in Table 5.7.

Consider Table 5.6 first and the results obtained with ε1 = 0.01. Observe that, in

5.6 Computational results 109

|Φ�| CPU� εub |Φ�| CPU� εub

Class |�| U ave max ave max ave max U ave max ave max ave max

ε1 = 0.01 ε1 = 0.1

9 T/C 2 0 58 131 27.31 82.28 1.76 3.01 0 10 34 0.88 3.84 1.86 3.22

9 C/C nocor 5 0 42 100 6.33 44.72 1.16 2.66 0 4 11 0.35 1.91 1.62 2.90

9 C/C negcor 11 ∗0 58 232 7.98 114.42 1.12 2.75 0 8 55 0.33 3.05 1.20 2.45

10 T/C 2 ∗0 50 229 41.61 113.39 1.96 3.43 0 15 82 14.84 81.95 1.85 3.52

10 C/C nocor 5 ∗0 51 110 15.57 107.37 1.15 2.78 0 6 15 3.19 16.99 1.59 2.90

10 C/C negcor 11 1 59 230 15.79 127.42 1.22 5.42 0 8 54 1.22 15.97 1.20 2.75

11 T/C 1 0 4 82 18.08 449.72 0.23 1.70 0 0 7 0.23 4.66 0.23 1.77

11 C/C nocor 4 ∗0 43 149 86.08 573.30 1.30 5.45 0 5 25 1.61 11.76 1.20 2.03

11 C/C negcor 13 1 72 466 85.06 607.14 1.19 8.74 0 10 149 11.73 421.97 1.11 2.01

12 T/C 1 ∗0 7 97 27.27 516.35 0.26 2.38 0 3 58 6.66 164.99 0.22 1.60

12 C/C nocor 5 2 128 735 248.69 576.30 1.54 7.65 ∗0 19 132 28.59 505.96 1.22 2.25

12 C/C negcor 14 2 70 426 107.64 596.87 1.22 8.83 ∗0 10 123 19.65 517.17 1.09 3.53

∗ Few unfinished triangles (below 0.5 on average).

Table 5.7: Results phase two (expectation criteria, use Rule 5.4.5 when stall, ζ = 0.01).

general, we find good approximations for most triangles. The average value of εub is
between 0.22 and 2.01 percent. However, in few triangles poor values of εub are obtained.
This does not necessarily mean that a poor approximation of the set of nondominated
points Weff is found. Recall that εub is an upper bound on the value needed for the
approximation to ε-dominate Weff; this upper bound might not be tight in some cases,
since εub is found by comparing the approximation to the frontier. High values of εub may
be due to the fact that the true set of nondominated points lies deep inside the triangle.

Clearly, the CPU time grows significantly for the hypergraphs with underlying grid
size 10 × 10. Moreover, CPU time is affected by waiting, since the number of possible
strategies increases significantly. Note also that the average CPU time and the maximum
CPU time are often quite different. This indicate that the triangles searched may be quite
different. On average the triangles are searched relatively fast. However, difficult triangles
may appear resulting in high CPU times or even that the procedure stops because the
limit of 10.000 strategies are reached.

Now, consider the results obtained with ε1 = 0.1 in Table 5.6. Here Rule 5.4.4 is
stronger and a worse approximation may be expected; this is also the case when no
unfinished triangles appear, indeed the average value of εub grows. However, the increase
in εub is small and good savings in CPU time can be obtained. Moreover, if unfinished
triangles appear, ε1 = 0.1 yields better approximations and fewer unfinished gaps. Note
also that the number of nondominated points inside a triangle falls. We may argue that
a higher value of ε1 makes the triangle search less selective but faster, and allow us to
search “deeper” inside the triangles.

This can be seen in Figure 5.11, where the effect of increasing ε1 in a difficult triangle
is shown for ε1 = 0.01, 0.1 and 0.2. Here a lot of nondominated points close to the
two vertices of the triangle are found, when ε1 = 0.01 is used, but the search stops
(K = 10.000) before the whole triangle is searched resulting in large values of εub. When

110 Bicriterion route choice in STD networks

12000 15000

8000

9000

0.2

0.1

0.01

Figure 5.11: Changing ε1 in a difficult triangle.

increasing ε1, fewer points are generated, but the triangle is searched deeper, and a better
overall approximation is found.

Now, consider Table 5.7 where Rule 5.4.5 is applied only when the K best strategies
procedure begins to stall. That is, better approximations are found since Rule 5.4.5 is
applied later when a triangled is searched. If we compare the values of εub in Table 5.7
with the ones in Table 5.6, only a small decrease in εub is obtained. However, the CPU
time may grow significantly. In conclusion, applying Rule 5.4.5 later when a triangle is
searched does not improve the approximation significantly.

Min-max criteria

Let both criteria be min-max criteria, i.e. we have to find efficient hyperpaths using
two distance weighting functions. As pointed out in Section 5.4.2, considering min-max
criteria, makes it harder to find efficient strategies, since we cannot find a minimum
parametric weight hyperpath by solving a minimum weight hyperpath problem.

In this section, we compare several approximated versions of phase two, based on
different settings. For each generated hypergraph, the solutions found with the different
settings were merged into a nondominated set Φs, representing the best known nondo-
minated set of the problem instance. Since the true frontier in general is not known, we
cannot compute an upper bound on the epsilon needed for the nondominated set found to
be an ε-approximation of the nondominated set Weff. Instead, we use Φs as a benchmark
for comparing the relative performance of the various settings.

Only criteria considering cost are used, namely C/C nocor and C/C negcor. If the first
criterion considers time and the second cost, the maximum distance with respect to the
time criterion cannot be greater than the time horizon. Thus, efficient solutions can be
found by finding the best strategy for different settings of the time horizon. This simpler
approach may be much more effective in practice.

First some preliminary tests are performed on smaller hypergraphs where the set of
nondominated points Weff can be found. Hence it is possible to check how good an
approximation of the nondominated set we obtain for different ways of

5.6 Computational results 111

ub

k

Wub

l k1

λ

Figure 5.12: Ranking of hyperpaths when procedure SHTgreedy is used.

1. adding strategies to the candidate set when a triangle is searched. Recall that two
options are possible. We may either add and rank strategies using the weight Ŵλ

given in Theorem 5.4.7, which is a lower bound on the parametric weight, or we may
add strategies using weight Wub

λ returned by using procedure SHTgreedy which is
an upper bound on the parametric weight.

2. generating the subhypergraphs in the branching tree when a triangle is searched.
Recall that we may use either Branching Operation 4.1.2 or the specialized Branch-
ing Operation 5.4.1.

Before considering the results of the preliminary tests, let us consider in detail the
use of procedure SHTgreedy in adding strategies to the candidate set when a triangle is
searched. Clearly, procedure SHTgreedy does not rank strategies exactly, since procedure
SHTgreedy does not return the hyperpath with minimum parametric weight. This can
be seen in Figure 5.12 where an example of the ranking of the parametric weight for a
triangle using procedure SHTgreedy is shown. Suppose that the search is stopped as soon
as the weight is over the upper bound ub of the triangle (k = k1). In this case, we may
miss some (possibly efficient) strategies with weight below ub. This difficulty can be faced
as follows. Split the sequence of strategies generated by the K best strategies procedure
when searching a triangle into sub-sequences of length l, as shown in Figure 5.12. For each
sub-sequence, store the minimum weight Wub

λ , and stop the search if Wub
λ > ub. Thus,

the search may stop after generating k = l, 2l, 3l, . . . strategies (k = 6l in Figure 5.12).
Clearly, higher values of l will in general find better approximations of Weff on the expense
of higher CPU times.

The preliminary tests were carried out on three classes of hypergraphs. The grid size,
number of nodes etc after preprocessing are reported in Figure 5.8. A peak increase
parameter ψ = 100% and a range rξ = 10% of the random perturbation is used. No
waiting is allowed in class 13-15 which are smaller hypergraphs generated using small
grid sizes. The time horizon contains one cycle of 80 time instances, i.e. 6 hours and 40
minutes divided into 5 minutes intervals. Each cycle has two peaks each with a total
length of 2 hours; each part of the peak period pkj has a length of 40 minutes. The first
peak starts after 10 minutes (t = 2).

112 Bicriterion route choice in STD networks

Class 13 14 15

Grid size 3×4 4×4 4×5

n 440 497 502

mh 1111 1392 1454

ma 51 47 43

|T (e)| 5 5 5

H 80 80 80

IT [3,20] [3,20] [3,20]

IC [1,2200] [1,2200] [1,2200]

Table 5.8: Hypergraph classes 13-15.

Class |Φf | CPUf εΦs

13 C/C nocor 2 0.01 4.14

13 C/C negcor 3 0.02 10.62

14 C/C nocor 3 0.03 5.05

14 C/C negcor 4 0.05 11.58

15 C/C nocor 3 0.04 1.80

15 C/C negcor 4 0.05 15.30

Table 5.9: Results frontier approximation (min-max criteria).

The results of phase one are reported in Table 5.9. Here an approximation of the
extreme nondominated points is found by using both the weight Ŵλ and the weight
Wub

λ (see Section 5.4.2). The number of frontier points are small. Furthermore, only a
rough approximation of Φs is obtained: the ε needed for the approximated frontier to
ε-dominate the frontier in Φs is between 1.8 and 15.3 percent (column εΦs). However,
note that the approximated frontier is only used to guide the search in phase two. If a
new extreme nondominated point is found, then the search on the triangles affected is
restarted. Finally, note that the values of εΦs are smaller when uncorrelated weights are
used, indicating that the uncorrelated case is easier to solve, as expected.

Some of the results for different settings in phase two are reported in Table 5.10.
First, consider the results ranking strategies using the lower bound Ŵλ, Branching Op-
eration 5.4.1 and Rule 5.4.1 and 5.4.2 with ε = 0. Observe that no triangle search is
stopped because the limit of 100.000 strategies was reached, except for class 15 in the
C/C negcor case. Hence, due to Theorem 5.4.8, the nondominated set Weff is found,
i.e. Φs becomes equal to Weff resulting in εΦs = 0. In class 15 (C/C negcor), a triangle
searched did not stop before the limit of 100.000 strategies searched was reached resulting
in only an approximation of the nondominated set being found, (εΦs > 0).

If instead we consider the results ranking strategies using the lower bound Ŵλ, Branch-
ing Operation 4.1.2 and Rule 5.4.1 and 5.4.2 with ε = 0, we see that using Branching
Operation 5.4.1 gives much better results. The average and maximum values of εΦs

are much higher when using Branching Operation 4.1.2. Furthermore, in all classes we
have unfinished triangles and the average number of strategies generated are larger (col-

5.6 Computational results 113

|Φ�| CPU� εΦs

Class |�| ave max ite newf ave max ave max

Ŵλ, B.Operation 5.4.1, Rule 5.4.1 and 5.4.2, ε = 0

13 C/C nocor 2 1 9 18 1 0.03 0.13 0.00 0.00

13 C/C negcor 3 2 6 242 1 0.71 5.86 0.00 0.00

14 C/C nocor 3 2 10 158 1 0.34 5.36 0.00 0.00

14 C/C negcor 4 4 16 4138 6 18.71 139.46 0.00 0.00

15 C/C nocor 2 3 9 5389 2 21.19 288.51 0.00 0.00

15 C/C negcor
∗5 4 12 32101 5 81.91 292.23 0.06 0.80

Ŵλ, B.Operation 4.1.2, Rule 5.4.1 and 5.4.2, ε = 0

13 C/C nocor
∗2 1 9 21382 1 11.96 63.06 0.06 1.21

13 C/C negcor
∗3 2 6 18063 1 15.41 92.33 0.00 0.00

14 C/C nocor
∗2 1 6 56371 1 70.00 140.97 1.87 10.43

14 C/C negcor
∗3 2 12 81220 4 104.95 148.49 6.74 24.07

15 C/C nocor
∗2 2 5 75800 2 170.43 255.61 2.39 11.63

15 C/C negcor
∗3 2 5 98462 3 211.22 260.24 6.15 19.22

Wub
λ , B.Operation 5.4.1, Rule 5.4.1 and 5.4.2, ε = 0.01, l = 200

13 C/C nocor 2 2 9 32 1 0.11 0.42 0.07 0.53

13 C/C negcor 3 2 4 106 1 0.38 1.92 0.20 0.88

14 C/C nocor 2 1 7 81 0 0.24 2.28 0.12 0.86

14 C/C negcor 3 3 14 915 4 2.07 16.34 0.89 7.74

15 C/C nocor 1 2 8 249 1 0.72 2.47 1.44 11.63

15 C/C negcor 3 4 14 1892 3 6.54 104.46 1.93 10.64

Wub
λ , B.Operation 5.4.1, Rule 5.4.1, 5.4.2 and 5.4.3, ε = 0.01, l = 200

13 C/C nocor 2 2 9 28 1 0.05 0.24 0.08 0.53

13 C/C negcor 3 2 4 103 1 0.21 1.09 0.20 0.88

14 C/C nocor 2 1 7 72 0 0.11 1.16 0.12 0.86

14 C/C negcor 3 3 14 998 4 1.53 15.86 0.76 7.74

15 C/C nocor 1 2 8 246 1 0.61 2.39 1.44 11.63

15 C/C negcor 3 4 14 3110 3 5.77 90.52 1.84 10.64

∗ Some unfinished triangles (search max 100.000 strategies).

Table 5.10: Results phase two (min-max criteria).

umn ite). Also Branching Operation 5.4.1 was compared with Branching Operation 4.1.2
when ranking strategies using the upper bound Wub

λ . Here similar results were obtained.
Therefore the specialized branching operation for min-max criteria clearly outperforms
the general branching operation.

The results using Ŵλ and Branching Operation 5.4.1 show that Weff can be found
on small networks. However, using Ŵλ on larger networks is not useful. If the grid size
grows, too many strategies must be generated before the upper bound of the triangle
is reached. This is due to the fact that the lower bound Ŵλ may be weak. Instead,
we may rank strategies using the upper bound Wub

λ and find an approximation of the
nondominated set. Note that the quality of the approximation is affected by the length

114 Bicriterion route choice in STD networks

300 600 900 1200 1500

1

2

3

C/C nocor

C/C negcor

l

εΦs

Figure 5.13: Increasing the length l of the sub-sequences (class 15).

of the sub-sequences l and by which rules are used.
Classes 13-15 were tested using the upper bound Wub

λ and Rule 5.4.1 and 5.4.2 with
ε = 0.01 for l = 1, 10, 20, 50, 100, 200, 400, 600, 800, 1000, 1250 and 1500. Similar tests
were performed when Rule 5.4.3 was allowed, too. The results in both cases for l = 200
are reported in Table 5.10.

First, note that the average number of strategies generated (column ite) are much
smaller compared to when we rank strategies using Ŵλ resulting in good savings in CPU.
Moreover, we have no unfinished triangles and the average values of εΦs are acceptable.

If we compare the results where Rule 5.4.3 is used, too, we see that the approximation
is not worse. However, we obtain savings in CPU by using Rule 5.4.3. That is, removing
subhypergraphs from the candidate set where efficient hyperpaths will contain inefficient
subhyperpaths, does not seem to affect the approximation significantly.

Increasing the length of the sub-sequences l makes the approximation better which
can be seen in Figure 5.13 where (l, ave εΦs) has been plotted for class 15 in the case
where Rules 5.4.1, 5.4.2 and 5.4.3 are used. For small values of l, we have higher values
of εΦs which decreases as l increases. For high values of l, there does not seem to be any
improvement in εΦs .

Note also that the C/C negcor case is harder to solve than the C/C nocor case. We
obtain worse approximations and the CPU times are significantly higher in the negatively
correlated case.

Now consider classes 9-12 (see Table 5.4 on page 106). Due to the higher grid size,
the number of hyperpaths corresponding to points inside an triangle searched by phase
two may increase significantly. Hence, even using the upper bound Wub

λ with Rules 5.4.1-
5.4.3, may fail to search a full triangle. Therefore Rule 5.4.5 has to be used in these
cases. As pointed out in Section 5.4.1, Rule 5.4.5 may result in a poor approximation
and should only be used when the K best strategies procedure begins to stall. This can
be checked in the following way. Using the length l of the sub-sequences, the lowest and
highest parametric weight for each interval is stored. If the percentage increase from the
lowest weight to the highest weight is below the bound ζ, then Rule 5.4.5 is applied to
the rest of the triangle search. It is expected that a higher bound ζ will result in a worse
approximation but better CPU.

5.6 Computational results 115

9 - C/C nocor

9 - C/C negcor

10 - C/C nocor

10 - C/C negcor

0.02 0.06 0.10

10

20

sec.

ζ

(a) Class 9 and 10.

11 - C/C nocor

11 - C/C negcor

12 - C/C nocor

12 - C/C negcor

0.02 0.06 0.10

35

45

55

sec.

ζ

(b) Class 11 and 12.

9 - C/C nocor

9 - C/C negcor

10 - C/C nocor

10 - C/C negcor

0.02 0.06 0.10

1

2

3

εΦs

ζ

(c) Class 9 and 10.

11 - C/C nocor

11 - C/C negcor

12 - C/C nocor

12 - C/C negcor

0.02 0.06 0.10

0.2

0.4

εΦs

ζ

(d) Class 11 and 12.

Figure 5.14: Increasing the bound ζ (l = 50).

Classes 9-12 were tested using Branching Operation 5.4.1 and upper bound Wub
λ with

Rules 5.4.1-5.4.3 and 5.4.5, l = 50 and ζ = 0.1, 0.075, 0.05, 0.025 and 0.01. The results
are shown in Figure 5.14 where the bound ζ has been plotted against average CPU and
average εΦs for each triangle.

For the (ζ, average CPU) plots, we see that the CPU time only increases for small
values of ζ (ζ below 0.05). Note that the increase in the weight for each sub-sequence
is compared against the bound ζ for k = 50, 100, ... and hence Rule 5.4.5 can first be
applied for k = 50. Therefore almost the same CPU time for ζ ≥ 0.05 is a result of the
fact that Rule 5.4.5 is almost always applied for k = 50. That is, we obtain almost the
same approximation for all bounds ζ ≥ 0.05. This can also be seen in the (ζ, average εΦs)
plots, here the values of εΦs are quite stable for ζ ≥ 0.05 (except maybe in class 9 C/C
negcor).

For ζ below 0.05 we obtain better values of εΦs , i.e. Rule 5.4.5 is applied later in the
triangle search. Note that this may result in a high increase in CPU time.

Finally, we compare the different weight options. As expected correlated weights make
the problem harder to solve, we have higher values of εΦs and more triangles must be

116 Bicriterion route choice in STD networks

Class |Φf | ite CPUf |�| |Φf (ε)| ite CPUf |�| RI1 RI2

ε = 0 ε = 0.01

9 T/C 5 25 0.54 4 5 22 0.48 3 48 94

9 C/C nocor 4 28 0.57 3 4 28 0.57 3 98 103

9 C/C negcor 8 76 1.45 7 8 76 1.42 7 201 324

10 T/C 35 172 6.01 34 13 55 1.73 4 84 100

10 C/C nocor 41 213 6.74 40 11 50 1.42 4 424 121

10 C/C negcor 32 190 5.70 31 12 84 2.19 7 201 349

11 T/C 6 84 8.90 5 6 76 7.86 4 36 136

11 C/C nocor 8 216 21.45 7 8 214 20.72 6 140 92

11 C/C negcor 11 243 25.04 10 11 230 23.38 8 280 365

12 T/C 73 605 96.10 72 15 98 15.31 4 71 155

12 C/C nocor 113 2124 265.71 112 22 341 44.55 7 756 126

12 C/C negcor 114 2058 259.11 113 24 323 43.73 10 532 541

Table 5.11: Results phase one (expectation criteria).

searched.

Last, we remark that Branching Operation 5.4.1 may have been used in another way.
Recall that we create subhypergraphs by considering a valid ordering of the nodes in the
maximal weight paths P1 and P2 in π backwards (see Section 5.4.2). This results in all
hyperpaths in subhypergraph H̄i must contain a specific end-tree η̄i. However, another
ordering can be used as long as the hyperpaths still must contain an end-tree. Therefore
we could first branch backwards on the nodes in the valid ordering of P2 and next do the
same for the nodes in the valid ordering of P1. This approach also provides us with an
end-tree.

Branching Operation 5.4.1, as explained in Section 5.4.2 follows a “breadth-first”
approach while the above-mentioned approach follows a “depth-first” approach. The
“depth-first” approach was also tested on the classes above. However, the best results
were obtained using a “breadth-first” approach.

5.6.3 A priori route choice

In this section the problem of finding efficient path-strategies is considered. Our main
goal here is to evaluate phase one and phase two under different criteria and different
correlation between the two criteria.

The same criteria and correlations as considered under time-adaptive route choice will
be considered and the procedures will be tested on hypergraph classes 9-12. Recall that, in
class 10 and 12, waiting is allowed. Therefore, as pointed out in Section 5.5.2, the K best
path-strategy procedure for searching a triangle may stall. However, an approximation
can be found by simply allowing one path-strategy to be generated for each path in G.
This approach will be used in all the tests for class 10 and 12.

5.6 Computational results 117

|Φ�| CPU� εub |Φ�| CPU� εub

Class |�| ave max ave max ave max |�| ave max ave max ave max

ε = 0 ε = 0.01

9 T/C 4 1 4 0.16 0.33 0.0 0.0 3 1 4 0.14 0.28 1.0 1.0

9 C/C nocor 3 1 4 0.20 0.40 0.0 0.0 3 1 4 0.18 0.34 1.0 1.0

9 C/C negcor 7 3 11 0.73 2.22 0.0 0.0 7 3 10 0.54 1.86 1.0 1.0

10 T/C 34 0 10 0.12 0.48 0.5 7.3 4 1 3 0.18 0.44 2.9 7.3

10 C/C nocor 40 0 6 0.13 0.60 0.9 9.1 4 1 5 0.22 0.49 4.4 9.1

10 C/C negcor 31 1 11 0.42 2.86 1.3 8.1 7 3 10 0.72 2.38 4.1 8.1

11 T/C 5 2 8 3.79 22.91 0.0 0.0 4 1 5 2.00 8.14 1.0 1.0

11 C/C nocor 7 3 17 5.76 47.57 0.0 0.0 6 3 16 4.36 37.72 1.0 1.0

11 C/C negcor 10 6 26 12.08 43.05 0.0 0.0 8 7 23 7.49 25.85 1.0 1.0

12 T/C 60 2 26 3.43 43.05 0.1 4.6 4 1 7 2.46 10.95 2.1 4.6

12 C/C nocor 112 1 18 1.79 58.43 0.2 5.6 7 3 17 5.64 45.96 3.1 5.6

12 C/C negcor 113 1 26 2.63 56.94 0.3 6.6 10 6 25 8.31 30.50 2.9 6.6

Table 5.12: Results phase two (expectation criteria).

Expectation criteria

Let both criteria be expectation criteria, i.e. we have to find efficient hyperpaths corre-
sponding to a path-strategy using two mean weighting functions.

The results for phase one using procedure phaseOne is reported in Table 5.11. Here
both the frontier and an ε-approximation of the frontier is found (ε = 1%).

First, compare the exact results against the approximated ones. In the approximated
case the number of extreme nondominated points is significantly lower if waiting is allowed,
resulting in savings in CPU time. This is due to the fact that waiting makes the set of
possible path-strategies increase significantly. As a result an approximate phase one may
identify the large triangles searched by phase two faster, if low waiting costs are used.
Furthermore, note that the number of triangles searched by phase two (column |�|) is
below half the size of the approximated frontier for class 10 and 12 if waiting is allowed.
That is, the frontier contains small triangles. Hence a decision maker may be satisfied by
the options offered by phase one, which would make phase two superfluous.

If no waiting is allowed, the differences between the exact and the approximated phase
is small. However, if we only want to find an ε-approximation, the number of triangles
searched by phase two is a bit lower.

If we compare the different types of correlation there does not seem to be a clear pat-
tern of the negatively correlated case C/C negcor producing more extreme nondominated
points. However, note that the number of triangles that must be searched by phase two,
when we find an approximation, indicates how many large triangles there are. Therefore
the correlated case C/C negcor is the hardest to solve, since the number of triangles that
must be searched by phase two is highest here.

Finally, recall that the number of frontier points under time-adaptive route choice
(Table 5.5) is significantly higher than under a priori route choice. Again due to the
fact that the number of possible path-strategies is significantly lower than the number of
strategies.

118 Bicriterion route choice in STD networks

Phase two was applied to both the frontier and the ε-approximation of the frontier
with ε = 1%. The results are reported in Table 5.12. No rules are used except that, if
waiting is allowed, then we only consider one path-strategy per path in G when a triangle
is searched (which might be considered a rule). Hence if all the triangles defined by
the frontier are searched and no waiting is allowed, then the set of nondominated points
Weff is found. Moreover, if no waiting is allowed and we only search the large triangles
defined by the approximated frontier, we find an ε-approximation of the frontier. On the
other hand, if waiting is allowed, we cannot be sure to find all nondominated points in
the triangles we search. As a result, we can only report the upper bound εub given in
equation (5.5).

Consider the classes where no waiting is allowed and the results obtained with ε = 0%,
i.e. all triangles are searched. Observe that the set of nondominated points can be found at
smaller CPU times than under time-adaptive route choice (where only an approximation
is found). Moreover, if we are satisfied with an ε-approximation, the CPU times can be
reduced slightly.

If waiting is allowed, one must be careful when comparing the average results for
different values of ε, since the number of triangles searched is considerably different in
the two cases. In fact the average results given for ε = 0%, report average results for all
the triangles, while average results given for ε = 1%, report average results for the large
triangles searched by phase two. In general, good approximations of the nondominated
points inside a triangle are found. However, in a few large triangles, poor values of εub

are obtained. Recall that this does not necessarily mean that a poor approximation of
the true set of nondominated points is found. High values of εub may be due to the fact
that the true set of nondominated points lies deep inside the triangle. Note also that,
searching only the large triangles (ε = 1%) will reduce the overall CPU time for phase
two because significantly few triangles are searched.

Finally, note that the number of nondominated points seems to be highest in the
negatively correlated case C/C negcor, as under time-adaptive route choice.

Min-max criteria

Let both criteria be min-max criteria, i.e. we have to find efficient hyperpaths correspond-
ing to a path-strategy using two distance weighting functions.

In this section, we compare different settings used in phase two. For each generated
hypergraph, the nondominated points found with the different settings were merged into
a nondominated set Φs, representing the best known nondominated set of the problem
instance. We use Φs as a benchmark for comparing the relative performance of the various
settings.

As under time-adaptive route choice we have two possible ways of finding an approx-
imation of the path-strategy with minimal parametric weight, namely Ŵλ giving a lower
bound on the parametric weight or Wub

λ providing an upper bound on the parametric
weight.

If no waiting is allowed, using Ŵλ provides us with a complete method, i.e. the set of
nondominated points is found for ε = 0 and an ε-approximation for ε > 0. If waiting is
permitted (class 10 and 12), we avoid that the K best path-strategy procedure searching
a triangle stalls by allowing only one path-strategy to be generated for each path in G.
As a result, only an approximation is found.

5.6 Computational results 119

|Φ�| CPU� εΦs |Φ�| CPU� εΦs

Class |�| ave max ave max ave max ave max ave max ave max

Ŵλ and ε = 0 Wub
λ , ε = 0.01 and l = 30

9 C/C nocor 3 1 4 0.32 0.68 0.00 0.00 1 4 1.14 2.19 0.00 0.00

9 C/C negcor 6 4 14 2.01 5.65 0.00 0.00 4 13 2.16 7.51 0.07 0.41

10 C/C nocor 6 1 7 0.32 1.04 0.57 2.03 1 7 1.61 3.28 0.29 1.30

10 C/C negcor 9 3 16 2.27 8.52 0.54 1.70 4 16 2.33 6.94 0.34 1.44

11 C/C nocor 7 2 12 17.91 80.12 0.00 0.00 2 12 12.62 30.14 0.37 1.46

11 C/C negcor 9 7 59 100.42 439.72 0.00 0.00 4 21 20.58 143.57 2.38 5.72

12 C/C nocor 10 2 12 14.92 76.02 0.60 2.91 2 11 9.82 68.13 1.37 4.86

12 C/C negcor 15 5 35 69.70 385.93 0.46 3.00 3 20 13.96 222.91 2.10 8.19

Table 5.13: Results phase two (min-max criteria).

Clearly an approximation is also found, if we use the upper bound Wub
λ . In this case,

as under time-adaptive route choice, we can split the sequence of parametric weights of
the hyperpaths generated, when a triangle is searched, into sub-sequences of length l. For
each sub-sequence we store the minimal parametric weight, and stop the search if the
minimal weight is above the upper bound of the triangle.

The procedures were tested using both the lower bound Ŵλ with ε equal to 0% and
1% and the upper bound Wub

λ with ε = 1% and the length of the sub-sequences l equal
to 1, 10, 15, 20, 25, 30 and 50. The results for Ŵλ with ε = 0 and Wub

λ with l = 30 are
given in Table 5.13. By using the lower bound Ŵλ, the nondominated set can be found
for class 9 and 11. Furthermore, using the lower bound Ŵλ, provides us with the best
approximation for class 10 and 12 when comparing to the best known solution Φs.

In most cases a good approximation can be found by using the upper bound Wub
λ .

However, note that, if the upper bound Wub
λ is used with for instance l = 30, then, when

searching a triangle, at least 30 iterations must be performed. This is not the case when
using the lower bound Ŵλ and therefore we may get higher CPU times when using Wub

λ .
In fact this is the case for the STD networks with grid size 5 × 8 (class 9 and 10). Here
the number of path-strategies generated when searching a triangle using Ŵλ is lower than
the number of path-strategies generated when searching a triangle using Wub

λ . Therefore
using Ŵλ provides us with both the best approximations and the best CPU times. For
the STD networks with grid size 10 × 10 (class 11 and 12), the situation is different.
Using Ŵλ provides us with the best approximations but using Wub

λ may reduce CPU
time significantly.

The average CPU running time and the average value of εΦs for class 11 and 12 is
shown in Figure 5.15 for different settings of l (using Wub

λ) and ε (using Ŵλ). Clearly,
increasing l makes the CPU running time grow. However, better approximations are
found. If, instead, we use Ŵλ for different values of ε, we see that, increasing ε, may
reduce CPU running time significantly in the negatively correlated cases (negcor). In this
case the approximation for ε = 1% is almost as good as for ε = 0%.

120 Bicriterion route choice in STD networks

11 - C/C nocor

11 - C/C negcor

12 - C/C nocor

12 - C/C negcor

10

30

50

70

90

sec.

10 30 50 1%
l

0%
ε

(a) Class 11 and 12.

11 - C/C nocor

11 - C/C negcor

12 - C/C nocor
12 - C/C negcor

0.5

1.5

2.5

3.5

10 30 50 1%
l

0%

0.0

ε

εΦs

(b) Class 11 and 12.

Figure 5.15: CPU time and εΦs for different values of l = 50 and ranking.

5.6.4 Summary

This section presents a short summary of the main results of the computational tests
under a priori and time-adaptive route choice. We consider expected criteria and min-
max criteria separately.

Expectation criteria

First, consider time-adaptive route choice. Here the nondominated set cannot be found
since the number of points corresponding to a strategy in the regions we search are huge.
Therefore an approximation is found by using rules to prune the candidate set.

The preliminary tests show that the structure of the costs affect the size of the frontier.
Increasing the peak increase parameter ψ or the range rξ of the random perturbation
makes the number of extreme nondominated points grow. A larger frontier may give
easier problems.

By using an approximate phase one the set of large triangles, i.e. the triangles searched
by phase two, can be determined at lower CPU time. The number of large triangles is
quite limited compared to the size of the approximated frontier. That is, the frontier
contains many points close to each other. In this situation, a decision maker may be
satisfied by the results given by phase one, which would make phase two superfluous.

The CPU time is affected by waiting, since the number of strategies in the regions we
search increases significantly.

The average CPU time and the maximum CPU time for searching a triangle are often
quite different. This indicate that the triangles searched may be quite different. On
average the triangles are searched relatively fast and good approximations are found.

Increasing the value of ε1 used in Rule 5.4.4 makes the triangle search less selective
but faster, and allows us to search “deeper” inside the triangles. Applying Rule 5.4.5
later when a triangle is searched does not improve the approximation significantly.

Second, consider a priori route choice. Here no rules are used except that, if waiting

5.6 Computational results 121

is allowed, then we only find one path-strategy for each path in G when a triangle is
searched. As a result only an approximation is found when waiting is allowed.

If no waiting is allowed the set of nondominated points can be found at smaller CPU
times than under time-adaptive route choice (where only an approximation is found).
Moreover, if we are satisfied with an ε-approximation, the CPU time can be reduced.

If waiting is allowed an approximation can be determined and in general, good ap-
proximations of the nondominated points inside a triangle are found.

Under a priori route choice, the number of frontier points and nondominated points
is significantly lower than under time-adaptive route choice.

Finally, note that under both time-adaptive and a priori route choice the number of
nondominated points seems to be highest when negatively correlated costs are used. This
case is also hardest to solve.

Min-max criteria

For min-max criteria two possible ways of ranking the hyperpaths can be used when a
triangle is searched, namely Ŵλ giving a lower bound on the parametric weight or Wub

λ

providing an upper bound on the parametric weight.
First, consider time-adaptive route choice. Here the nondominated set cannot be

found since the number of strategies for the points in the regions we search are huge.
Therefore an approximation is found using by rules to prune the candidate set.

The specialized branching operation, Branching Operation 5.4.1, for min-max criteria
outperforms the other branching operation.

Using Rule 5.4.3, that is, removing subhypergraphs from the candidate set where
efficient strategies will contain inefficient sub-strategies, does not seem to affect the ap-
proximation significantly. Applying Rule 5.4.5 later when searching a triangle makes the
approximation better. The same holds if we increase the length of the sub-sequences l
when using Wub

λ .
The lower bound Ŵλ is too weak resulting in a high CPU time for searching a triangle,

instead, using Wub
λ provides us with a better approximation and CPU time.

Second, consider a priori route choice. Here no rules are used except that, if waiting
is allowed, then we only find one path-strategy for each path in G when a triangle is
searched.

The nondominated set can be found if no waiting is allowed by using the lower bound
Ŵλ. Furthermore, using the lower bound Ŵλ, provides us with the best approximation
when waiting is allowed. Note however, ranking hyperpaths using Wub

λ may reduce CPU
when considering large grid networks.

As under expectation criteria the number of nondominated points is highest if neg-
atively correlated costs are used. Moreover, the number of nondominated points under
time-adaptive route choice is higher than under a priori route choice.

Finally, we point out that the number of nondominated points found under expectation
criteria is significant higher than under min-max criteria.

Chapter

6
Further problems in
STD networks

Two problems in STD networks are considered in this chapter. Due to time issues, the
problems have not been studied as deeply as the problems in the preceding chapters.
That is, the results given in this chapter may not be considered as complete. Directions
for further research will be pointed out.

In Section 6.1, we consider route choice when the leaving time from the origin is not
known. Recall that, in Chapter 4 and 5, strategies So0, corresponding to leaving the
origin o at time zero towards the destination, were considered. However, the leaving time
from the origin may not be known, i.e. a set of possible leaving times is given instead.

Consider the MEC or MMC criterion. Here a deterministic cost c (u, v, t) is given for
each arc (u, v) and leaving time t. However, the costs may not be known and instead
described by a linear function of a parameter λ. The problem now consists in finding
the best strategy under time-adaptive route choice for different values of λ. That is, we
conduct a parametric analysis where the costs are perturbed along a fixed direction. The
problem is considered in Section 6.2. Note that, the same problem is not considered when
the MET or MMT criterion is used. Here variations in the travel time X (u, v, t) when
leaving node u along arc (u, v) at time t is given by the density of X (u, v, t).

The problem in Section 6.2 may be relevant in intelligent traffic systems where strate-
gies under time-adaptive route choice is calculated online. Here recalculation of the best
strategy when the costs change may be avoided by having a parametric solution on hand.
The problem may also be considered under a priori route choice. However, it is probably
not relevant since decisions are taken a priori, i.e. before we start travelling the route.
Therefore the computation time for finding a new best strategy is not as big an issue as
under time-adaptive route choice.

6.1 Route choice when the leaving time is not known

Consider an STD network with origin o and destination d. In Chapter 4 and 5, strategies
So0 corresponding to leaving the origin o at time zero towards the destination were con-
sidered. However, it may be the case that the leaving time from the origin is not known.

124 Further problems in STD networks

Let LS (o) ⊆ L (o) denote a set of leaving times from the origin satisfying∑
t∈LS(o)

θo (t) = 1

where θo (t) denotes the probability of leaving the origin at time t. That is,
we leave the origin towards the destination at time t with probability θo (t) > 0 for

each t ∈ LS (o). The problems in Chapter 4 and 5 can now be extended. We here
consider strategies S corresponding to leaving the origin o at time t ∈ LS (o) towards the
destination instead of strategies only leaving the origin at a specific time. More specifically
strategy S is defined by

Definition 6.1.1 A strategy S, providing routing choice for travelling from the origin o
when leaving at time t ∈ LS (o) towards the destination d, is a strategy satisfying

1. (o, t) ∈ Dm (S), ∀t ∈ LS (o)

2. No pair (u, t′) can be removed from Dm (S) \
{
(o, t) : t ∈ LS (o)

}
such that Defini-

tion 3.1.1 still holds.

Consider the criteria introduced in Section 3.2. Given a strategy S satisfying Defini-
tion 6.1.1, the expected arrival time when leaving the origin at time t ∈ LS (o), is

ES
T (o) =

∑
t∈LS(o)

θo (t)ES
T (o, t)

Moreover, the maximum arrival time is

MS
T (o) = maxt∈LS(o)

{
MS

T (o, t)
}

Similarly, if considering cost instead of travel time, we have that the expected cost is
given by

ES
C (o) =

∑
t∈LS(o)

θo (t)ES
C (o, t)

and the maximum cost by

MS
C (o) = maxt∈LS(o)

{
MS

C (o, t)
}

The problem of finding the best strategy S using one of the criteria introduced in
Section 3.2 now consists in finding a strategy with e.g. minimal expected travel time
ES

T (o).
Consider the time-expanded hypergraph H = (V , E) introduced in Section 3.3. Expand

hypergraph H to Ĥ = (V̂ , Ê) by letting

V̂ = V ∪ {ô} , Ê = E∪
{({

ot : t ∈ LS (o)
}
, ô

)}
That is, we add to H a dummy node ô and a dummy hyperarc ê to H with T (ê)

representing the set of possible leaving times from o and with h (ê) equal to node ô. It is
easy to see that Corollary 3.3.2 now can be extended to Ĥ.

Corollary 6.1.1 A strategy S, satisfying Definition 6.1.1 providing route choice when
leaving node o at time t ∈ LS (o) towards d, defines an s-ô hyperpath πS in Ĥ.

6.2 Route choice when the cost is not known 125

Moreover, using the weights and multipliers given in Lemma 3.3.1, let the weight and
multipliers of the new hyperarc ê added to H be

w (ê) = 0, (6.1)

ae

(
ot

)
= θo (t) , ot ∈ T (ê) (6.2)

Then it is obvious that the following holds

Theorem 6.1.1 Given strategy S we have the following

1. The expected arrival time ES
T (o) is equal to the weight of hyperpath πS using the

mean weighting function, weights (3.6) and (6.1) and multipliers (3.7) and (6.2).

2. The maximum arrival time MS
T (o) is equal to the weight of hyperpath πS using the

distance weighting function with weights (3.6) and (6.1).

3. The expected cost ES
C (o) is equal to the weight of hyperpath πS using the mean

weighting function, weights (3.8) and (6.1) and multipliers (3.7) and (6.2).

4. The maximum cost MS
C (o) is equal to the weight of hyperpath πS using the distance

weighting function with weights (3.8) and (6.1).

Theorem 6.1.1 implies that the best strategy can be found simply by solving a mini-
mum weight hyperpath problem on Ĥ. Furthermore, if we consider the problem of finding
the K best strategies under time-adaptive route choice in Chapter 4 or the problem of
finding efficient strategies under time-adaptive route choice in Chapter 5, then we may
consider strategies S where the leaving time is not known simply by considering Ĥ and
s-ô hyperpaths πS in Ĥ.

The same holds under a priori route choice. Here we find path-strategies satisfying
Definition 6.1.1 by finding s-ô hyperpaths in Ĥ corresponding to a path in G.

Note that, since a path-strategy corresponds to a path in G, we here assume that the
traveller must follow the same path for all leaving times t ∈ LS (o). The problem where
just a path must be followed for each leaving time, i.e. the path when leaving the origin
at time t may differ from the path when leaving at time t′ �= t, seems harder to solve and
remains open for further research.

6.2 Route choice when the cost is not known

Let H be a time-expanded hypergraph with valid ordering VH = (s = v1, ..., vn = t).
Assume that, for each hyperarc e, the weight is a nonnegative linear function of the
parameter λ

w (e, λ) = α (e) + β (e)λ (6.3)

where α (e) and β (e) are real numbers. That is, the cost of leaving a node u inG, along arc
(u, v) at time t, is a linear function of the parameter λ. We assume that λ ∈ Λ =

[
λ, λ

]
,

i.e. an interval satisfying w (e, λ) ≥ 0, for all e ∈ E . Note that, without loss of generality,
we may assume that λ ≥ 0, since otherwise we may just define λ̂ = λ − λ and use the
parameter λ̂ instead.

126 Further problems in STD networks

We consider the problem of finding the best strategy So0 for all λ ∈ Λ under time-
adaptive route choice where So0 defines the route followed when leaving the origin at time
zero. According to Corollary 3.3.2 a strategy So0 corresponds to a hyperpath in H. Hence
finding the best strategy for a given λ under time-adaptive route choice, corresponds to
finding the minimum weight hyperpath between the source s and target t corresponding
to leaving the origin o at time zero in hypergraph H when using the weights w (e, λ).

A solution to the problem is a sequence of real numbers λ = λ1 ≤ λ2 ≤ ... ≤ λq+1 = λ̄
and s-t hyperpaths π1, ..., πq satisfying that hyperpath πi is minimal for λ ∈ [λi, λi+1].
Note that the solution is not unique since there may be more than one minimal hyperpath
for a fixed λ resulting in different sequences.

We first point out some properties for the mean and distance weighting function. Let
W (π, λ) denote the weight of hyperpath π using weights w (e, λ).

Lemma 6.2.1 Given s-t hyperpath π, the weight W (π, λ) of hyperpath π, using the mean
weighting function, is a continuous linear function of λ, i.e.

W (π, λ) = a (π) + b (π)λ (6.4)

Moreover, the weight W (π, λ) of hyperpath π, using the distance weighting function, is a
continuous piecewise linear convex function of λ, i.e.

W (π, λ) =

a1 (π) + b1 (π) λ λ ∈ I1

...
...

ar (π) + br (π) λ λ ∈ Ir

with a1 (π) > ... > ar (π), b1 (π) < ... < br (π) and Ii ∈ Λ, i = 1, ..., r.

Proof The weight of hyperpath π using the mean function is according to Theorem 2.3.1

W (π, λ) =
∑

u∈Vπ

fπ (u) (α (p (u)) + β (p (u))λ)

=
∑

u∈Vπ

fπ (u)α (p (u)) + λ
∑

u∈Vπ

fπ (u)β (p (u)) (6.5)

and hence (6.4) holds. Let Pπ denote the set of s-t paths contained in π and note that the
weight of each path P ∈ Pπ is a linear function a (P)+ b (P)λ. Since the weight using the
distance weighting function is equal to the weight of a maximum weight path contained
in π we have that

W (π, λ) = max
P∈Pπ

{a (P) + b (P)λ}

It is well-known that the upper envelope of a set of linear functions defines a continuous
piecewise linear convex function.

Let W (λ) denote the weight of a minimal hyperpath given λ. Using Lemma 6.2.1 we
then have

Theorem 6.2.1 W (λ) is a concave piecewise linear function when the mean weighting
function is considered and a piecewise linear function when the distance weighting function
is considered.

6.2 Route choice when the cost is not known 127

W(λ)

W

λ=λ1 λ2 λ3 λ4=λ

(a) Mean

W

λ=λ1

W(λ)

λ2 λ3 λ4 λ5=λ

(b) Distance

Figure 6.1: The weight W (λ) for the mean and distance weighting function.

Proof Consider Figure 6.1 where the weight W (π, λ) has been plotted for all π ∈ Π
(assuming that |Π| = 4) for the mean and distance weighting function. The weight W (λ)
is shown in bold. It is easy to see that the theorem holds.

Now, consider expectation criteria where we are interested in finding the best strategy
for all λ ∈ Λ minimizing the expected travel time or cost. That is, finding a minimum
weight s-t hyperpath using the mean weighting function. By considering equation (6.5),
it is easy to see that a (π) is the weight of hyperpath π using hyperarc weights α (e), while
b (π) is the weight of hyperpath π using hyperarc weights β (e). Hence W (π, λ) is equal
to the parametric weight γ (W (π) , λ) given in (5.2) using weights (α (e) , β (e)) on each
hyperarc. That is, finding W (λ) is equivalent to finding the frontier. As a result we can
use procedure phaseOne shown in Figure 5.4 on page 83 where we, on line 2, replace M
with λ̄ and, on line 3, replace ε with λ.

If, instead, we consider min-max criteria, i.e. we are interested in finding a minimum
weight s-t hyperpath for all λ ∈ Λ using the distance weighting function, the problem is
harder. Consider W (λ) in Figure 6.1(b), the problem consists in identifying the numbers
λ1 to λ5 and the minimal hyperpaths πi with minimum weight W (λ) for λ ∈ [λi, λi+1],
i = 1, ..., 4. However, W (λ) is not concave, i.e. we cannot use a procedure similar to
phaseOne to solve the problem. Finding an algorithm solving the problem remains open
for further research.

Appendix

A
Hypergraph problems

In this appendix we consider two problems in directed hypergraphs. Both emerged as
a result of the study of finding the K best strategies in an STD network. Recall that
finding the K best strategies in an STD network corresponds to finding the K minimum
weight s-t hyperpaths in the time-expanded hypergraph.

Consider the problem of extending Yen’s algorithm, for finding the K shortest loop-
less paths in a directed graph, to directed hypergraphs. Here hyperarcs are fixed using a
forward branching approach, i.e. each hyperpath in the subset Πk,i must contain a spe-
cific hypertree (see Section 4.1). The problem of finding a minimum weight hyperpath
containing a specific hypertree, is considered in Appendix A.1 which is based on Nielsen
and Pretolani [71]. It is shown that the problem is NP-hard.

Note that the time-expanded hypergraph is acyclic. Therefore the K minimum weight
hyperpaths procedures considered in Chapter 4 may not hold when considering non-
acyclic hypergraphs. However, the procedures can with some modifications be extended
to non-acyclic hypergraphs. This problem is considered in Appendix A.2. By considering
non-acyclic hypergraphs, we do not focus on STD networks anymore, since the time-
expanded hypergraph is always acyclic. However, other research areas exist where K
minimum weight hyperpaths procedures may be used, as pointed out in the introduction
of Chapter 4.

A.1 The subhypertree constrained hyperpath prob-

lem

Assume that we are given a weighted hypergraph H, a hypertree T rooted at s in H,
and a node t of H not in T . The subhypertree constrained hyperpath (SCH) problem
consists in finding a minimum weight s-t hyperpath containing T as a subhypertree. We
show that this problem is NP-hard, also if T only contains arcs in FS(s). We consider
the distance function here, a simpler construction can be given for the value function.
We provide a reduction from the set covering problem (SC), which is well-known to be
strongly NP-hard.

An instance of SC is defined by a family F = {F1, F2, . . . , Fn} of subsets of the set

130 Hypergraph problems

3v

s u1 2u u3 u4

v2v1v0

Figure A.1: Hypergraph HC

{1, 2, . . . ,m}, where each Fi has a cost ci. The problem is to find a subset C ⊆ {1, 2, . . . , n}
with minimum cost c(C) =

∑
j∈C cj such that

{1, 2, . . . ,m} =
⋃
j∈C

Fj .

Theorem A.1.1 Problem SCH for the distance function is NP-hard in the strong sense.

Proof Given an instance of SC, define an instance of SCH as follows. Let HC = (VC , EC)
be a weighted hypergraph where

- VC = {s} ∪ {ui : 1 ≤ i ≤ m} ∪ {vj : 0 ≤ j ≤ n};

- EC = FS(s) ∪ {ea
j : 1 ≤ j ≤ n} ∪ {eh

j : 1 ≤ j ≤ n};

here FS(s) contains an arc from s to each node ui and an arc ({s}, {v0}); moreover, for
each 1 ≤ j ≤ n:

- ea
j = ({vj−1}, vj);

- eh
j = ({ui : i ∈ Fj} ∪ {vj−1}, vj).

The cost of each hyperarc eh
j is cj , arcs have zero costs. Finally, let the hypertree T

contain the arcs in FS(s), and choose the destination node t = vn.
Figure A.1 shows the hypergraph HC for an SC instance where m = 4, n = 3,

F1 = {1, 2}, F2 = {2, 3} and F3 = {3, 4}. The optimal hyperpath is represented by solid
lines.

An s-t hyperpath in HC is feasible if it contains T . Observe that, in any feasible s-t
hyperpath π = (Vπ, Eπ) it is Vπ = VC , and for each j > 0, the predecessor p(vj) is either
eh

j or ea
j . Therefore π is uniquely defined by the set

C = {j : eh
j ∈ Eπ},

and the distance of each node vj , j > 0, is given by the distance of vj−1 plus the cost of
p(vj); the distance of π is thus c(C) =

∑
j∈C cj . Moreover, in a feasible π, each node ui

A.2 Finding the K minimum weight hyperpaths 131

must belong to the tail of some hyperarc eh
j with j ∈ C. Therefore hyperpath π is feasible

for SCH if and only if the corresponding C is a feasible solution for SC. Since the cost
of π is c(C), we conclude that SC reduces to solving the above instance of SCH, and the
claim follows.

Now consider the forward branching approach in Section 4.1. It is easy to see that
finding the minimum weight hyperpath πk,i in the set Πk,i is a SCH problem and therefore
NP-hard.

A.2 Finding the K minimum weight hyperpaths

We consider the problem for finding the K minimum weight hyperpaths in a non-acyclic
hypergraph, i.e. we extend the procedures in Section 4.1 to non-acyclic hypergraphs.
Note that a hyperpath π is per definition acyclic and hence a valid ordering of π exists.
Therefore Branching Operation 4.1.2 and Corollary 4.1.1 still hold. The only difference
from the acyclic to the non-acyclic case is that a valid ordering of the hyperpath πk used
in Branching Operation 4.1.2 must be found differently, since no valid ordering is given
for the hypergraph. Moreover, the minimum weight hyperpath of each subhypergraph
Hk,i must be found differently.

First, consider procedure K-BS in Figure 4.5 on page 43. For extending procedure
K-BS to non-acyclic hypergraphs, procedure SHT given in Figure 2.3 on page 13 must
be used on line 2, 9 and 14 instead of procedure SHTacyclic. Furthermore, a reverse valid
ordering of πk can be found by processing the nodes in πk from t and backwards.

Extending procedure K-BSreopt seems a bit harder. In the non-acyclic case, Theo-
rem 4.1.4 does not hold, that is, the weight in node ui cannot be found by just processing
the hyperarcs in the backward star of node ui. However, it is easy to see that W k,i (ui),
in Theorem 4.1.4, provides us with a lower bound on the weight in node ui, i.e. the weight
W k,i (t) in Theorem 4.1.6 is a lower bound on the weight of the minimal hyperpath in
subhypergraph Hk,i.

Procedure K-BSreopt, shown in Figure 4.8, can now be extended to non-acyclic hy-
pergraphs. We rank subhypergraphs in the candidate set according to the lower bound
W k,i (t) returned by procedure calcW on line 16. Since branching tree nodes are ranked
according to a lower bound, the minimum weight hyperpath has to be calculated when
we pick and remove a branching tree node τ from the heap, i.e. on line 10 the minimum
weight hyperpath πτ in the subhypergraph corresponding to branching tree node τ must
be found using procedure SHT. Let Wτ denote the weight of hyperpath πτ . Two cases
may happen:

1. The weight Wτ of the minimal hyperpath πτ in the subhypergraph corresponding
to τ is less than or equal to the current minimal lower bound in the candidate set.

2. The weight Wτ of the minimal hyperpath in the subhypergraph corresponding to τ
is greater than the current minimal lower bound in the candidate set.

In the first case πτ is the hyperpath with minimum weight among all the hyperpaths
in the candidate set and we output πτ . In the second case, this is not necessarily true.
Therefore we reinsert τ into the candidate set with the lower bound updated to Wτ . That
is, we do not perform any branching operation but start a new iteration.

132 Hypergraph problems

Class n ma mh |τ | reins
CPUK

(reopt)
CPUK

(K-BS) |τ | reins
CPUK

(reopt)
CPUK

(K-BS)

Sum function Distance function

1 100 400 5000 9 2.3 1.7 15.1 20 10.7 2.2 31.3

2 300 1200 15000 10 0.5 8.0 78.3 26 1.4 9.4 220.0

3 500 2000 25000 10 1.1 14.5 147.6 28 8.1 17.8 427.0

4 800 3200 40000 10 0.6 24.4 234.0 23 5.0 29.0 606.5

5 1000 4000 50000 9 0.6 31.4 284.2 33 2.1 36.4 1113.4

6 1000 2000 4000 7 0.8 2.4 14.6 16 1.2 2.8 35.8

7 3000 6000 12000 7 0.4 11.1 68.1 18 0.8 12.5 189.4

8 5000 10000 20000 7 0.0 20.4 121.9 16 0.0 22.6 301.8

9 8000 16000 32000 7 0.0 34.9 196.9 14 0.1 38.7 445.3

10 10000 20000 40000 6 0.2 45.0 243.7 14 0.6 50.0 563.4

Table A.1: Sum and distance functions, K = 500 (non-acyclic hypergraphs).

Clearly, the modified version on procedure K-BSreopt is only effective if the total
number of iterations is close to K. That is, the lower bound of the minimal hyperpath in
each subhypergraph is tight, resulting in few reinsertions.

The modified versions of procedure K-BS and K-BSreopt were tested on randomly
generated non-acyclic hypergraphs in Nielsen et al. [69] and run on a 700 MHz PIII
computer with 512MB RAM using a Linux operating system.

Some of the results are reproduced in Table A.1 where 10 hypergraph classes are
considered. Hypergraphs in class 1-5 have a small number of nodes but are dense: the
number of arcs is 4n and the number of “true hyperarcs” is 50n. Hypergraphs in class 5-10
have a higher number of nodes but are sparse, the number of arcs is 2n and the number
of “true hyperarcs” is 4n. Each row in Table A.1 contains the average results over the five
hypergraphs generated for each class. Two weighting functions are considered, namely
the sum (see Section 2.3.1) and the distance weighting function.

If we compare the CPU times, we see that the modified version of procedure K-BSreopt
outperforms the modified version of procedure K-BS. Furthermore, the actual number of
reinsertions in the modified version of procedure K-BSreopt is quite low (10.7% in the
worst case) implying that the lower bound is mostly tight. The number of reinsertions
tends to be higher for the distance function which is due to the fact that the branching
tree size is higher when the distance function is considered.

For further details on finding the K minimum weight hyperpaths in a non-acyclic
hypergraphs see Nielsen et al. [69].

Appendix

B
Basic data structures

In this appendix, basic data structures used by the procedures in this thesis are described.
It is assumed that the reader is familiar with object oriented programming and pointers
(ptr). Examples of program code is written in C++. Objects are written in a box as
shown below

Object name

dt // data type contained in the object

pDt // ptr to a data type

... // other data types

where dt is a data type defined inside the object and pDt is a pointer to a data type.
The prefix p before a data type denotes that it is a pointer. Comments to the data types
are given with //.

B.1 Data structures for network G and hypergraph H
Consider an STD network with topological network G = (N,A) and time-expanded
hypergraph H = (V , E) containing n nodes. The set of hyperarcs E is divided into
arcs e and true hyperarcs eh (hyperarcs having more than one tail node), that is E =
(e1, ..., ema)∪(eh1, ..., ehmh

) where ma and mh denote the number of arcs and true hyper-
arcs in H, respectively. Let tail size ts denote the total size of the tails of true hyperarcs.
A hypergraph/graph structure with a forward and/or a backward representation of H/G
now consists of arrays containing structures representing e.g. an arc in G. The structures
are linked together with pointers. For instance a node structure (NodeH) corresponding
to a node in H contains

NodeH

ptr pAFst // ptr to first arc in BS

ptr pHFst // ptr to first true hyperarc in BS

ptr pGNode // ptr to corresponding node in G

... // other data types

134 Basic data structures

Here pAFst and pHFst denote pointers to the first arc and to the first true hyperarc in
the backward star of the node, respectively. Pointer pGNode points to the corresponding
node in graph G. Note that we only consider the variables used to link the structures
together, other algorithm specific variables will be needed. For instance if minimum
weight hyperpaths must be found, we need a weight and a predecessor label in each
NodeH. Now, consider the backward and forward representation of a hypergraph.

B.1.1 Backward representation of H
Given a node v, a needs to know the hyperarcs belonging to BS (v) . We use the node
structure given above and define an arc (ArcH), true hyperarc (HArcH) and a tail (TailH)
structure.

ArcH

pHead // ptr to head NodeH

pTail // ptr to tail NodeH

pGArc // ptr to corresponding arc in G

... // other data types

HArcH

pHead // ptr to head HNode

ppTail // ptr to first tail ptr

pGArc // ptr to corresponding arc in G

... // other data types

TailH

pTail // ptr to tail NodeH

... // other data types

The backward representation of a hypergraph can now be obtained by storing the
node, arc, true hyperarc and tail structures in arrays. The node array is an array of size
n+ 2, where each entry contains a NodeH structure.

0 1 n n+ 1
D v1 . . . vn D

Here the node structure corresponding to node vi is stored in entry i. The zero and n+1
entries are used as dummy (D) nodes so that it is possible to use for statements. The
nodes are stored such that a valid ordering is V = (v1, ..., vn).

The arc array is of size ma + 2, where each entry contains an ArcH structure. The
array is sorted in a backward star order, i.e. first comes the arcs of BS (v1), then the arcs
of BS (v2) and so on. Again dummy entries are used.

0 1 ma ma + 1
D e1 . . . ema D

If pNode is a pointer to a NodeH , then the backward star of the arcs can now be scanned
by using the following for statement

B.1 Data structures for network G and hypergraph H 135

ptr pANow,pALast; // ArcH ptr

for(pANow=pNode->pAFst,pALast=(pNode+1)->pAFst;pANow!=pALast;pANow++) {
statements;

}

Here we start with the first arc in the backward star of pNode and scan the arc array
until we reach the first arc of the next node. Similarly an true hyperarc array of size
mh + 2 containing HArcH structures is made.

0 1 mh mh + 1
D eh1 . . . ehmh

D

Again, if pNode is a pointer to a NodeH, then the backward star of true hyperarcs can be
scanned by using the following for statement

ptr pHNow,pHLast; // HArcH ptr

for(pHNow=pNode->pHFst,pHLast=(pNode+1)->pHFst;pHNow!=pHLast;pHNow++) {
statements;

}

To store the tails of the hyperarcs we use a tail array of TailH structures

0 1 ts ts+ 1
D ptr1 . . . ptrts D

The array is sorted in the same way as the hyperarc array. Here the tail nodes of a
hyperarc pointed to by pHArc can be scanned using

ptr ppNNow,ppNLast; // ptr to NodeH ptr

for(ppNNow=pHArc->ppTail,ppNLast=(pHArc+1)->ppTail;ppNNow!=ppNLast;pNNow++) {
pNode=*ppNNow; // ptr to tail node

statements;

}

B.1.2 Backward and forward representation of H
If a forward representation is needed together with a backward representation then two
more arrays are needed – a forward star arc and a forward star true hyperarc array. The
NodeH structure must also be modified to contain two more pointers.

NodeH

ptr pAFst // ptr to first arc in BS

ptr ppAFst // ptr to first arc ptr in FS

ptr pHFst // ptr to first true hyperarc in BS

ptr ppHFst // ptr to first true hyperarc ptr in FS

ptr pGNode // ptr to corresponding node in G

... // other data types

The forward star arc array is of size ma + 2 and contains ArcH pointers.

0 1 ma ma + 1
D ptr1 . . . ptrma D

Here the forward star of arcs to a node pointed by pNode can be scanned by

136 Basic data structures

ptr ppANow,ppALast; // ptr to ArcH ptr

for(ppANow=pNode->ppAFst,ppALast=(pNode+1)->ppAFst;ppANow!=ppALast;ppANow++) {
pArc = *ppANow; // ptr to ArcH

statements;

}

The forward star hyperarc array is of size ts+ 2 and contains HArc pointers.

0 1 ts ts+ 1
D ptr1 . . . ptrts D

and if pNode is a pointer to a node, then the forward star of hyperarcs can be scanned
by using the following for statement

ptr ppHNow,ppHLast; // ptr to HArcH ptr

for(ppHNow=pNode->ppHFst,ppHLast=(pNode+1)->ppHFst;ppHNow!=ppHLast;ppHNow++) {
pHArc = *ppHNow; // ptr to HArcH

statements;

}

B.1.3 Forward representation of H
If only a forward representation is needed, the backward star arc array can be deleted and
the forward star arc array sorted in a forward star order instead. Moreover, the hyperarc
array does not have to be sorted in a backward star order.

B.1.4 Representing G and linking G and H
Note G is a special case of a hypergraph, i.e. we can use the same structures as the ones
used to represent H. Moreover, since G only contains arcs, we do not need all the arrays
and structures used to represent a true hyperarc.

To link H with G, a pointer for each arc (ArcH) and true hyperarc (HArcH) in H is
made to the corresponding arc in G (ArcG). If a waiting or dummy arc in H is considered a
link to a dummy arc in G is made so that waiting and dummy arcs can be easily identified.
Furthermore, for each node in H (NodeH) a pointer is made to its corresponding node
structure (NodeG) of the node in G which contains

NodeG

ptr pAFst // ptr to first arc in BS

ptr ppAFst // ptr to first arc in FS

ptr ppGList // ptr to list of NodeH ptr

... // other data types

Here ppGList is used to link G with H. ppGList is an array of size time instances + 1
containing pointers to every instance of the node in H. The last entry of the list contains
the null pointer. The list now can be scanned by using the following for statement

ptr ppNNow; // ptr to NodeH ptr

for(ppNNow=ppGList;ppNNow!=null;ppNNow++) {
pNodeH = *ppNNow; // ptr to NodeH

statements;

}

The list is ordered in order of time; that is, when scanning the list, we scan the nodes
backward according to the valid ordering of H.

B.2 Branching tree representation 137

BNode0

BNode1 BNode3BNode2

BNode11 BNode12 BNode21 BNode23BNode22 BNode24

nullLevel

0

1

2

Heap

Figure B.1: The branching tree when using Branching Operation 4.1.2, 4.2.1 or 5.4.1.

B.2 Branching tree representation

The branching tree defining the subhypergraphs used in the K best procedures when
using Branching Operation 4.1.2, 4.2.1 or 5.4.1 is implemented using a dynamic branching
tree of branching tree nodes (BTNode) as shown in Figure B.1 which is similar to the
branching tree shown in Figure 4.1 on page 38. Each branching node BTNode defines a
sub(hyper)graph in G (in H) and contains

BTNode

flt w // weight/lb of the hyperpath in the subhypergraph

ptr pGArc // ptr to arc removed/fixed in G (null otherwise)

idx hIdx // idx of the hyperarc we remove, idx<0 if arc

// and idx>0 if true hyperarc (0 otherwise)

ptr prev // ptr to the previous BTNode

... // other data types

A heap of branching tree node pointers is used to sort and maintain the candidate
set (see Tarjan [87]). If K best strategies procedures are considered, we only branch on
hyperarcs in H, i.e. pointer pGArc can be removed in all branching tree nodes.

Consider the problem of finding the K best path-strategies using Branching Opera-
tion 4.2.1 on π. Note that we create subgraphs of G, if the hyperpath π does not already
define a path-strategy. Consider the subgraphs created when using Branching Opera-
tion 4.2.1 (see Definition 4.2.1). For subgraph Gi, i = 1, ..., q − 1, a BTNode is created
with pGArc pointing to the arc we remove and hIdx = 0. For subgraph Gq we fix the
whole path Pπ, i.e. we create a BTNode with both pGArc = null and hIdx = 0. More-
over, if waiting is allowed and Pπ corresponds to an o-d path in G, we may use Branching
Operation 4.1.2 on the subgraph Gq defined by Pπ. In this case we have index hIdx �= 0
and pGArc = null. The sub(hyper)graph represented by a branching tree node can now

138 Basic data structures

BNode0

BNode1 BNode3BNode2

BNode1,a1
BNode1,a2

BNode2a1
BNode2a3

BNode2a2
BNode3a1

nullLevel

0

1

2

Heap

Figure B.2: The branching tree when using Branching Operation 4.2.2.

be built by traversing the unique path from the branching tree node to the root of the
branching tree.

When using Branching Operation 4.2.2, i.e. multiple branching, the branching tree is
modified as shown in Figure B.2 representing Branching Operation 4.2.2 on a subpath

Pπ = (o = u1, a1, u2, a2, u3, a3, u4)

containing three arcs. BTNode1− BTNode3 represent each arc in the subpath. Recall
that, for each arc ai in the subpath with tail ui, we fix the arcs in FS (ui) \ {ai} one at
a time. In the branching tree, this is modelled in the following way

1. For each BTNodei we create BTNodeia for all a ∈ FS (u) \ {ai} all with pGArc
pointing to the arc a we fix.

2. Each BTNodeia points to BTNodei where pGArc is pointing to the arc ai in Pπ.

The sub(hyper)graph represented by a branching tree node can now be built by travers-
ing the unique path from the branching tree node to the root of the branching tree. Fi-
nally, note that, if waiting is allowed and Pπ corresponds to an o-d path in G, we may
use Branching Operation 4.1.2 on the sub(hyper)graph defined by Pπ. In this case the
branching tree below the branching tree node we consider will look as shown in Figure
B.1.

Appendix

C
A remark on the
definition of a
hyperpath

In the last two decades, several problems arising from different application areas have
been modelled in terms of hyperpaths in directed hypergraphs. A general theory of directed
hypergraphs was developed for the first time by Gallo et al. [29]. Their paper proposed a
definition of hyperpath (called B-path) based on an intuitive concept of hyperconnection
(called B-connection). The definition aimed at characterizing the topological structure
of a minimum weight subhypergraph hyperconnecting a pair of nodes. However, the
definition seems to fail in some cases. Here we present a counter-example that satisfies
the definition but is not a hyperpath, i.e. it does not hyperconnect two nodes as supposed.

Note that the theoretical results given in [29] are not affected, since they are based on
the sound concept of hyperconnection, and do not rely on the definition of a hyperpath. In
particular the procedures for finding minimum weight hyperpaths are correct. The same
holds true for other papers (e.g. Nguyen, Pretolani, and Markenzon [68] and Pretolani
[77]) that adopted the definition given by Gallo et al. [29].

Gallo et al. [29] considered a more general class of directed hypergraphs. The subclass
of directed hypergraphs considered in Chapter 2 are denoted B-graphs in Gallo et al. [29].
Basically the difference is that, in the general case, hyperarcs may have more than one
head node. Here we only consider B-graphs, i.e. the directed hypergraphs considered in
Chapter 2.

C.1 Hypergraphs, hyperconnection, hyperpaths

A directed hypergraph is a pair H = (V , E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node.

A path Pst in H is a sequence

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u
if a path Puv exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular

140 A remark on the definition of a hyperpath

s

v1

v2 v3

t

e1

e2

e4

e3

Figure C.1: A counterexample: Hypergraph H.

true if t = s. A path is cycle-free if it does not contain any subpath which is a cycle, i.e.
vi ∈ T (ej) ⇒ j ≥ i, 1 ≤ i ≤ q + 1. If H contains no cycles, it is acyclic.

The concept of hyperconnection in hypergraphs is captured by the following intuitive
definition similar to Proposition 3.1 in Gallo et al. [29].

Definition C.1.1 Hyperconnection to node s in a hypergraph H = (V , E):

1. Node s is hyperconnected to itself;

2. If for some e ∈ E all the nodes in T (e) are hyperconnected to s, then node u = h(e)
is hyperconnected to s.

The concept of a hyperpath generalizes the notion of simple path in a directed graph.
A hyperpath from node s to node t in a hypergraph H is a minimal subhypergraph of H
where t is B-connected to s according to Definition C.1.1. Here, minimality is intended
with respect to the deletion of nodes and hyperarcs.

A hyperpath can be defined as a sequence of hyperarcs used to prove that t is hyper-
connected to s (see e.g. Ausiello et al. [3]). The following topological characterization of
a hyperpath, not directly related to Definition C.1.1, has been proposed in Gallo et al.
[29].

Definition C.1.2 A hyperpath πst from s to t in H = (V , E) is a minimal subhypergraph
Hπ = (Vπ , Eπ) satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ =
⋃

e∈Eπ
(T (e) ∪H(e))

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ by means of a cycle-free path.

Unfortunately, Definition C.1.2 is too weak, a counter-example is provided by hyper-
graph H in Figure C.1. Hypergraph H fulfils Definition C.1.2; for example, it contains
a cycle-free path from node s to node t, namely (s, e1, v1, e2, v3, e4, t). However, accord-
ing to Definition C.1.1, node t is not hyperconnected to s in Hst; the reader can easily
check that only node v1 is hyperconnected to s. Note that H contains a cycle. Defini-
tion C.1.2 can be made correct by further imposing that πst must be acyclic; equivalently,
Definition C.1.2 is correct for acyclic hypergraphs (see Property 2.1 in [77]). However,
Definition 2.2.1 on page 8 seems to be a more concise and elegant characterization of a
hyperpath.

Bibliography

[1] V.G. Adlakha. A Monte Carlo technique with quasirandom points for the stochastic
shortest path problem. American Journal of Mathematical and Management Sci-
ences, 7(3-4):325–358, 1987.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[3] G. Ausiello, P.G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, al-
gorithmic results, and a novel decremental approach. Lecture Notes in Computer
Science, 2202:312–328, 2001.

[4] G. Ausiello, G.F. Italiano, and U. Nanni. Optimal traversal of directed hypergraphs.
Technical Report TR–92–073, International Computer Science Institute, Berkeley,
CA, September 1992.

[5] G. Ausiello, U. Nanni, and G.F. Italiano. Dynamic maintenance of directed hyper-
graphs. Theoretical Computer Science, 72(2–3):97–117, 1990.

[6] J.A. Azevedo, M.E.O.S. Costa, J.J.E.R.S. Maderira, and E.Q. V. Martins. An algo-
rithm for the ranking of shortest paths. European Journal of Operational Research,
69:97–106, 1993.

[7] J.A. Azevedo, J.J.E.R.S. Madeira, and E.Q.V. Martins. A computational improve-
ment for a shortest paths ranking algorithm. European Journal of Operational Re-
search, 73:188–191, 1994.

[8] C. Berge. Graphs and hypergraphs. North-Holland, 1973.

[9] J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Series
in Operations Research. Springer-Verlag, 1997.

[10] J. Brambaugh-Smith and D. Shier. An empirical investigation af some bicriterion
shortest path algorithms. European Journal of Operational Research, 43:216–224,
1989.

[11] T.H. Byers and M.S. Waterman. Determining all optimal and near-optimal solutions
when solving shortest path problems by dynamic programming. Operations Research,
32:1381–1384, 1984.

142 Bibliography

[12] I. Chabini. Discrete dynamic shortest path problems in transportation applications:
Complexity and algorithms with optimal run time. Transportation Research Record,
1645:170–175, 1998.

[13] H. Chang and U. Lai. Empirical comparison between two k-shortest path methods
for the generalized assignment problem. Journal of Information & Optimization
Sciences, 19(2):153–171, 1998.

[14] Y.L. Chen, D. Rinks, and K. Tang. The first K minimum cost paths in a time-
schedule network. Journal of the Operational Research Society, 52(1):102 – 108,
2001.

[15] Y.L. Chen and K. Tang. Minimum time paths in a network with mixed time con-
straints. Computers & Operations Research, 25(10):793–805, 1998.

[16] J.C.N. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11:399–404, 1982.

[17] J. Cohen. Multiobjective Programming and Planning. Academic Press, New York,
1978.

[18] K.L. Cooke and E. Halsey. The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications, 14:493–
498, 1966.

[19] G.A. Corea and V.G. Kulkarni. Shortest paths in stochastic networks with arc lengths
having discrete distributions. Networks, 23(3):175–183, 1993.

[20] J.M. Coutinho-Rodrigues, J.C.N. Climaco, and J.R. Current. An interactive bi-
objective shortest path approach: Searching for unsupported nondominated solu-
tions. Computers & Operations Research, 26:789–798, 1999.

[21] J.R. Current, C.S. ReVelle, and J.L. Cohen. An interactive approach to identify the
best compromise solution for two objective shortest path problems. Computers &
Operations Research, 17(2):187–198, 1990.

[22] N. Deo and C. Pang. Shortest-path algorithms: Taxonomy and annotation. Networks,
14:275–323, 1984.

[23] M. Ehrgott. Multicriteria optimization, volume 491 of Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, Berlin, 2000.

[24] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR Spektrum, 22(4):425–460, 2000.

[25] A. Eiger, P.B. Mirchandani, and H. Soroush. Path preferences and optimal paths in
probabilistic networks. Transportation Science, 19(1):75–84, 1985.

[26] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):
653–674, 1999.

[27] H. Frank. Shortest paths in probabilistic graphs. Operations Research, 17:583–599,
1969.

Bibliography 143

[28] G. Gallo, C. Gentile, D. Pretolani, and G. Rago. Max Horn SAT and the minimum
cut problem in directed hypergraphs. Mathematical Programming, 80:213–237, 1998.

[29] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and appli-
cations. Discrete Applied Mathematics, 42:177–201, 1993.

[30] G. Gallo and S. Pallottino. Hypergraph models and algorithms for the assembly
problem. Technical Report 6, Dipartimento di Informatica, Università di Pisa, March
1992.

[31] G. Gallo and M.G. Scutellà. Minimum makespan assembly plans. Technical Re-
port 10, Dipartimento di Informatica, Università di Pisa, September 1998.

[32] G. Gallo and M.G. Scutellà. A note on minimum makespan assembly plans. European
Journal of Operational Research, 142(2):309–320, 2002.

[33] M. Garey and D. Johnson. Computers and Intractability. A Guide of the Theory of
NP-Completeness. W.H. Freeman, 1979.

[34] F. Guerriero and R. Musmanno. Parallel asynchronous algorithms for the K shortest
paths problem. Journal of Optimization Theory and Applications, 104(1):91–108,
2000.

[35] E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algo-
rithm for finding K shortest simple paths. Networks, 34(2):88–101, 1999.

[36] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm
for the vehicle routing problem based on q-paths and k-shortest paths relaxations.
Annals of Operations Research, 61:21–43, 1995.

[37] R.W. Hall. The fastest path through a network with random time-dependent travel
times. Transportation Science, 20(3):182–188, 1986.

[38] G.Y. Handler and I. Zang. A dual algorithm for the constrained shortest path prob-
lem. Networks, 10:293–310, 1980.

[39] P. Hansen. Bicriterion path problems. In Multiple Criteria Decision Making, Theory
and Application, number 177 in Lect. Notes Econ. Math. Systems, pages 109–127.
Springer-Verlag, Berlin, 1979.

[40] M.I. Henig. The shortest path problem with two objective functions. European
Journal of Operational Research, 25:281–291, 1986.

[41] J.E. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A
new algorithm and its implementation. In Proc. 5th Worksh. Algorithm Engineering
and Experiments (ALENEX). SIAM, 2003.

[42] P.G Hoel, S.C. Port, and C.J. Stone. Introduction to Probability Theory. Houghton
Mifflin, 1971.

[43] W. Hoffman and R. Pavley. A method for the solution of the N ’th best path problem.
Journal of the Association for Computing Machinery, 6:506 – 514, 1959.

144 Bibliography

[44] F. Huarng, P.S Pulat, and L.S. Shih. A computational comparison of some bicriterion
shortest path algorithms. Journal of the Chinese Institute of Industrial Engineers,
13(2):121–125, 1996.

[45] P. Jaillet. Shortest path problems with node failures. Networks, 22(6):589–605, 1992.

[46] R.G. Jeroslow, K. Martin, R.L. Rardin, and J. Wang. Gainfree Leontief substitution
flow problems. Mathematical Programming, 57:375–414, 1992.

[47] V.M. Jiménez and A. Marzal. A new algorithm for finding the N -best sentence
hypotheses in continuous speech recognition. In F. Casacuberta and A. Sanfeliu,
editors, Advances in Pattern Recognition and Applications, pages 180–187. World
Scientific, 1994.

[48] V.M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm
and an experimental comparison. Lecture Notes in Computer Science, 1668:15 – 29,
1999.

[49] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple
paths. Networks, 12:411–427, 1982.

[50] D.E. Kaufman and R.L. Smith. Fastest paths in time-dependent networks for intel-
ligent vehicle-highway systems application. IVHS journal, 1:1–11, 1993.

[51] E.L. Lawler. A procedure for computing theK best solutions to discrete optimization
problems and its application to the shortest path. Management Science, 18(7):401–
405, March 1972.

[52] R.P. Loui. Optimal paths in graphs with stochastic or multidimensional weights.
Communications of the ACM, 26:670–676, 1983.

[53] P. Marcotte and S. Nguyen. Hyperpath formulations of traffic assignment problems.
In Equilibrium and advanced transportation modelling, pages 175–200. Dordrecht:
Kluwer Academic Publishers, 1998.

[54] E.Q.V. Martins. An algorithm for ranking paths that may contain cycles. European
Journal of Operational Research, 18:123–130, 1984.

[55] E.Q.V. Martins. On a multicriteria shortest path problem. European Journal of
Operational Research, 16:236–245, 1984.

[56] E.Q.V Martins and M.M.B. Pascoal. A new implementation of Yen’s ranking loopless
paths algorithm. Technical report, Univ. de Coimbra, Portugal, 2000.

[57] E.Q.V. Martins and J.L.E. Santos. A new shortest path ranking algorithm. Technical
report, Univ. de Coimbra, 1996.

[58] E.D. Miller-Hooks. Adaptive least-expected time paths in stochastic, time-varying
transportation and data networks. Networks, 37(1):35–52, 2000.

[59] E.D. Miller-Hooks and H.S. Mahmassani. Least possible time paths in stochastic,
time-varying networks. Computers & Operations Research, 25:1107–1125, 1998.

Bibliography 145

[60] E.D. Miller-Hooks and H.S. Mahmassani. Optimal routing of hazardous materials in
stochastic, time-varying transportation networks. Transportation Research Record,
1645:143–151, 1998.

[61] E.D. Miller-Hooks and H.S. Mahmassani. Least expected time paths in stochastic,
time-varying transportation networks. Transportation Science, 34(2):198–215, 2000.

[62] E.D. Miller-Hooks and H.S. Mahmassani. Path comparisons for a priori and time-
adaptive decisions in stochastic, time-varying networks. European Journal of Oper-
ational Research, 146(1):67–82, 2003.

[63] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53:81–92, 1991.

[64] I. Murthy and S. Sarkar. A relaxation-based pruning technique for a class of stochas-
tic shortest path problems. Transportation Science, 30(3):220–236, 1996.

[65] S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large-scale transit
networks. European Journal of Operational Research, 37(2):176–186, 1988.

[66] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In Combinatorial
optimization (Como, 1986), volume 1403 of Lecture Notes in Math, pages 258–271.
Springer, 1989.

[67] S. Nguyen, S. Pallottino, and M. Gendreau. Implicit enumeration of hyperpaths in
a logit model for transit networks. Transportation Science, 32(1):54–64, 1998.

[68] S. Nguyen, D. Pretolani, and L. Markenzon. On some path problems on oriented
hypergraphs. Theoretical Informatics and Applications, 32:1 – 20, 1998.

[69] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the k shortest hyperpaths.
To appear in Computers & Operations Research.

[70] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bicriterion shortest hyperpaths
in random time-dependent networks. To appear in IMA Journal of Management
Mathematics, 2003.

[71] L.R. Nielsen and D. Pretolani. A remark on the definition of a B-hyperpath. Technical
report, Department of Operations Research, University of Aarhus, 2001.

[72] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the Association for Computing Machinery,
37(3):607–625, 1990.

[73] A. Orda and R. Rom. Minimum weight paths in time-dependent networks. Networks,
21(3):295–319, 1991.

[74] S. Pallottino and M.G. Scutellà. Shortest path algorithms in transportation mod-
els: Classical and innovative aspects. In Equilibrium and advanced transportation
modelling, pages 245–281. Kluwer Academic Publishers, 1998.

[75] A. Perko. Implementation of algorithms for k shortest loopless paths. Networks, 16
(2):149–160, 1986.

146 Bibliography

[76] M. Pollack. The kth best route through a network. Operations Research, 9:578, 1961.

[77] D. Pretolani. A directed hypergraph model for random time-dependent shortest
paths. European Journal of Operational Research, 123:315–324, 2000.

[78] J.S. Provan. A polynomial-time algorithm to find shortest paths with recourse.
Networks, 41(2):115–125, 2003.

[79] H.N. Psaraftis and J.N. Tsitsiklis. Dynamic shortest paths in acyclic networks with
Markovian arc costs. Operations Research, 41(1):91–101, 1993.

[80] K.A. Rink, E.Y. Rodin, and V. Sundarapandian. A simplification of the double-
sweep algorithm to solve the k-shortest path problem. Applied Mathematics Letters,
13(8):77–85, 2000.

[81] E. Ruppert. Finding the k shortest paths in parallel. Algorithmica, 28(2):242–254,
2000.

[82] N.G.F. Sancho. A multi-objective routing problem. Engineering Optimization, 10:
71–76, 1986.

[83] C.E. Sigal, A.A.B. Pritsker, and J.J. Solberg. The stochastic shortest route problem.
Operations Research, 28(5):1122–1129, 1980.

[84] A.J.V. Skriver. A classification of bicriteria shortest path (BSP) algorithms. Asia-
Pacific Journal of Operational Research, 17:199–212, September 2000.

[85] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers & Operations Research, 27:507–524, sep 2000.

[86] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
Wiley Interscience. Wiley, 1986.

[87] R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF
Conference Series. SIAM, 1983.

[88] D.M. Topkis. A k shortest path algorithm for adaptive routing in communications
networks. IEEE Transactions on Communications, 36(7):855–859, 1988.

[89] C. Tung and K.L. Chew. A multicriteria Pareto-optimal path algorithm. European
Journal of Operational Research, 62(2):203–209, 1992.

[90] E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to
solve biobjective combinatorial optimization problems. Foundations of Computing
and Decision Sciences, 20(2):149–165, 1994.

[91] M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch-
and-bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization, 12:139–155, 1998.

[92] A. Warburton. Approximation of pareto optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70–79, 1987.

Bibliography 147

[93] J.H. Wu, M. Florian, and P. Marcotte. Transit equilibrium assignment: A model
and solution algorithms. Transportation Science, 28(3):193–203, 1994.

[94] J.Y. Yen. Finding the K shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

[95] A.K. Ziliaskopoulos and H.S. Mahmassani. A time-dependent shortest path al-
gorithm for real-time intelligent vehicle/highway system. Transportation Research
Record, 1408:94–104, 1993.

Index

A

a priori . v, 1, 3, 20
acyclic . 8
arc

in H . 8
set in G . 21

B

backward
branching 34, 38
representation 134
star . 8

base . 29
Bellman’s

generalized equations.13
principle of optimality.20

best strategy . v, 1
bi-SP . 77
bicriterion route choice 2, 77
branching operation 39, 50, 55
branching tree 41, 51, 56, 99

data structure 137

C

C/C. 102
candidate set . 40, 51
cardinality . 7
correlation type

negcor .30
nocor . 30
time and cost 102

criteria . 23–24
cycle . 8

decreasing . 12

D

data structures 41, 93, 133–138
destination . 21
Dijkstra’s

algorithm . 13
theorem. .13

dummy
arc .25
hyperarc . 124
node . 124

E

ε-approximation 80, 91
ε-dominance . 80
efficient

hyperpath. .79
path-strategy100, 116
strategy v, 2, 87

end-tree . 14, 39, 54

F

fix
a hyperarc 37, 40, 42, 46
an arc in G . 52

forward
branching.34, 37, 50
representation 135
star . 8

frontier . 80

H

head. 7
height . 29
hyperarc . 7

set in H . 7

150 Index

hyperconnected . 9
hyperconnection . 140
hypergraph . 7

acyclic . 8
directed . 7
non-acyclic . 131
time-expanded 25, 124

hypergraph class
one criterion . 60
two criteria . 102

hyperpath . 8
efficient . 79

hypertree . 9

I

inner-nodes . 15

K

K
best

path-strategies 35, 47, 48, 56
strategies.2, 35, 37

minimum weight
hyperpaths 2, 35, 37, 131
weight paths in G49

shortest paths33
Yen’s algorithm. 34

L

label correcting algorithm.85
large triangles 89, 107
leaf-nodes . 15
loopless path . 33

M

MEC . 24
MET . 24
minimize

expected cost
leaving time known 24
leaving time not known 124

expected travel time
leaving time known 24
leaving time not known 124

maximum cost
leaving time known 24
leaving time not known 124

maximum travel time
leaving time known 24
leaving time not known 124

minimum
cut in a hypergraph 35
makespan assembly problems. . . .36
weight

hyperpath . 12
hyperpath problem 12
hypertree . 12

MMC . 24
MMT . 24
multiple branching approach 55

N

node. .7
set

in G . 21
in H . 7

O

ordered nondominated set 80
origin. .21

P

parallel algorithms.34
path . 8

of maximal weight in π97
path-like .62, 64, 69
path-strategy . 23
peak. .29
peak dependent costs 29
peak increase parameter 29
phase

one 3, 83, 88, 96
two 3, 84, 89, 96

point
dominated . 79
extreme . 80
lower/right. .83
nondominated.79
nonextreme . 80
supported . 79
unsupported . 79
upper/left. .83

pointer . 41, 51, 133
predecessor . 9

Index 151

function .9, 38
procedure

add(Φ,W) . 83
calcW (u, er) . 46
delMin() . 42
findOrd(π) . 42
findP(π̃, ã) . 52
findSubP(π) . 49
insert(τ) . 42
K-BPS (H, G, s, t,K) 52
K-BPS MB(H, G, s, t,K) 56
K-BPSreopt(H, G, s, t,K) 54
K-BS (H, s, t,K) 43
K-BSreopt(H, s, t,K) 47
modF (H̃, er, ef) 42
modG(G̃, ar, af) 52
next(Φ,W) . 83
phaseOne(H) 83
setF (τ)

a priori route choice 52
time-adaptive route choice 41

setFP(τ) .46
SHT (s,H) . 13
SHTacyclic(H, λ) 83
SHTacyclic(s,H)14
SHTgreedy . 96

proper subhypergraph 8
propositional satisfiability 35

Max Horn SAT 35

R

random costs . 29
random perturbation 30

range of .30
removing

a hyperarc 40, 42
an arc in G . 52

reoptimization14–18, 46
a priori route choice54
distance weighting function . 18, 46
mean weighting function 17, 46
time-adaptive route choice 44

route choice
a priori v, 1, 3, 20
time-adaptive v, 1, 3, 21
when cost not known 125
when leaving time not known . . 123

S
SCH . 129
size of H .8
source . 8
standard deviation mean ratio 29
STD network . 1, 21
stochastic .1, 19

time-independent networks 19
strategy . 22
subhypergraph. .8

T
T/C. 102
tail . 7
target . 8
TEGP .28, 60, 102
time horizon . 22
time-dependent 1, 3, 19

non-stochastic networks 19
topological network 21
transit networks . 36
two-phase approach 3, 82

U
upper bound

of the triangle84
on ε . 92
on the parametric weight 96

V
valid ordering . 8

W
waiting . 26

allowed56, 68, 72, 101
arc .26
not allowed 49, 100

weight
of a hyperpath 10
of a path .10
of a path in G 49
parametric . 82

weighting function 10
cost . 35
distance. .10, 36
mean . 10
sum. .10, 36
value. .10

List of notation

A

A – the arc set of G 21
Aπ – the set of arcs in Gπ 62
ae(u) – the multiplier of hyperarc e in

node u . 10
α (e) – real number in the function w(e, λ)

of e . 125
arc (e) – the arc in G corresponding to

the e in H .48

B

b – base of the grid network (input pa-
rameter to the TEGP generator) . . 29

β (e) – real number in the function w(e, λ)
of e . 125

BS(u) – the backward star of u 8

C

ĉi (u, v, t) – the i’th cost for leaving node
u at time t along arc (u, v) before the
random perturbation is applied 30

ci (u, t, t′) – the i’th cost of waiting in
node u from time t to time t′ before
the random perturbation is applied 30

ci (u, v, t) – the i’th cost for leaving u at
time t along arc (u, v) 30

ci (u, v) – the i’th cost for leaving u in
an off-peak along arc (u, v) before the
random perturbation is applied 29

c (u, v, t) – the cost of leaving node u at
time t along arc (u, v) 25

D

d ∈ N – destination node in G 21

δ – the length of the time period which
is discretized into a time instance. .22

Dm (S) – the domain of S 22

E

e – a hyperarc in H 7
ed (t) – the dummy arc in H linking the

dummy node s and node dt25
euv (t) – the hyperarc in H corresponding

to arc (u, v) in G when leaving at time
t along arc (u, v) 25

eu (t, t′) – the waiting arc in H corre-
sponding to waiting in node u from
time t to time t′ 26

|e| – the cardinality of e 7
Eπ – the set of hyperarcs in π 8
Eη – the set of nodes in η 14
E – the set of hyperarcs in H 7
ε – parameter used to measure how good

an approximation is found 80
ε1 – a lower bound on fη (ui) used in

Rule 5.4.4 . 91
ε2 – a lower bound which is used in Rule

5.4.5 . 92
εub – an upper bound on the epsilon ne-

eded for the approximation to ε-domi-
nate Weff . 92

ES
C (o) – the expected cost of travelling
to node d when the leaving time from
the origin o is not known 124

ES
T (o) – the expected arrival time at node
d when the leaving time from the ori-
gin o is not known 124

ES
C (u, t) – the expected cost for travel-
ling to the node d when leaving node

154 List of notation

u at time t following strategy S . . . 24
ES

T (u, t) – the expected arrival time at
the node dwhen leaving node u at time
t following strategy S 24

E – a subset of Eη15
Eη – the set of leaf-nodes in η 15
η – end-tree of hyperpath π14
ηk,i – the end-tree contained in πk,i when

using Branching Operation 4.1.2 . . .39

F
F

(
W 1, e

)
– function F (e) using weights

W 1 of the nodes in T (e) 45
F

(
W Ts , e

)
– function F (e) using weights

W Ts of the nodes in T (e) where Ts de-
notes the minimal hypertree 54

F (e) – function of the weights in the tail
of e . 10

Fj (e) – function of the weights in the tail
of e using criterion j 96

fη (v) – the sum of the “probabilities” of
the paths from v to t contained in the
end-tree η . 15

fπ (v) – the sum of the “probabilities” of
the paths from v to t contained in the
hyperpath π .11

FS(u) – the forward star of node u . . . 8
FSπ(u) – the forward star of node u in

hyperpath π .11

G
G – the directed graph representing the

topological STD network 21
Gi,a – the subgraph of G corresponding

to subset P i,a . 55
Gi – the subgraph of G corresponding to

set P i . 50
Gπ – the subgraph corresponding to hy-

perpath π . 62
γ (W,λ) – the parametric weight of point
W . 82

γ (λ) – the minimum parametric weight
of H . 82

gd (t) – penalty cost of arriving at node
d at time t . 22

H
Hi,a – the subhypergraph corresponding

to Gi,a . 55
Hi – the subhypergraph corresponding

to Gi .50
Hk,i – the i’th subhypergraph of Hk when

using Branching Operation 4.1.2 . . .39
Hk – the subhypergraph corresponding

to Πk . 39
Hλ – the hypergraph where the hyperarc

weights are equal to wλ (e) 87
H̃ – a subhypergraph 8
H – a directed hypergraph 7
H – the set of possible leaving and arrival

times (time horizon).22
h – height of the grid network (input pa-

rameter to the TEGP generator) . . 29
h(e) – the head node of e 7

I
i – used as an index 8
Iη – the set of inner-nodes in η 15
I (u, v, t) – the set of arrival times at node
v when leaving node u at time t . . . 22

J
j – used as an index 8

K
K – number of strategies found 35
k – the index for the k’th strategy . . . 35
κ – the total number of possible travel

times (size of input) 23
κ (u, v, t) – the number of possible arrival

times at node v when leaving node u
at time t . 22

L
λ – parameter . 82
lbi (u) – a lower bound on the weight

of the best path-strategy in node u in
subhypergraph Hi 54

lbi – a lower bound on the weight of the
best path-strategy in Hi51

[lbC , ubC] – the off-peak cost interval (in-
put parameter to the TEGP genera-
tor) . 29

[lbT , ubT] – the off-peak travel time in-
terval, µ (u, v) ∈ [lbT , ubT] (input pa-
rameter to the TEGP generator) . . 29

List of notation 155

lη (v) – the maximal weight of a v-t path
contained in η . 17

lηλ(v) – the maximal weight of a v-t path
in end-tree η using weights wλ (e) . 94

lηj (v) – the maximal weight of a v-t path
in end-tree η using weights wj (e) . .94

lπ (v) – the maximal weight of a v-t path
contained in π .12

LS (v) – set of labels in node v 86
L (u) – the set of possible leaving times

from node u . 22
L (u, v) – the set of possible leaving times

from node u along arc (u, v) 22
LS(o) – The set of leaving times from the

origin o with θo (t) > 0 124

M

m – the number of hyperarcs in H 7
mk,i

j (u) – the j’th weight of the minimal
s-u hyperpath in Hk,i 90

MS
C (u, t) – the maximum cost for trav-
elling to node d when leaving node u
at time t following strategy S24

MS
T (u, t) – the maximum arrival time at
the destination d when leaving node u
at time t following strategy S24

MS
C (o) – the maximum cost for travel-
ling to node d when the leaving time
from the origin o is not known . . . 124

MS
T (o) – the maximum arrival time at
node d when the leaving time from the
origin o is not known 124

µ (u, v) – mean travel time for leaving
node u at a off-peak time along arc
(u, v) . 29

µuv (t) – the mean of the travel time den-
sity X (u, v, t) . 29

N

N – the node set of G 21
Nπ – the set of nodes in Gπ 62
n – the number of nodes in H7
node (v) – the node in G corresponding

to node v in H . 48

O

o ∈ N – origin node in G 21

P

Pπ – the subpath used in Branching Op-
eration 4.2.1 or in Branching Opera-
tion 4.2.2 .49

P i
π – the subpath of Pπ containing the
first i nodes . 50

Pj – a maximum weight path in hyper-
path πk using weights wj(e) 98

Pst – an s-t path . 8
P – the set of loopless o-d paths in net-

work G .49
P i,a – a subset of P when using Branch-

ing Operation 4.2.2 55
P i – the i’th subset of P when using

Branching Operation 4.2.1.50
Pπ – set of s-t paths contained in π . . 17
p (v) – the predecessor hyperarc of node
v . 9

pk – the predecessor function defining hy-
perpath πk . 38

Φ – an ordered nondominated set 80
Π – the set of s-t hyperpaths in H . . . 79
Π1 – the set of s-t hyperpaths in H . . 37
Πk,i – the i’th subset of Πk 38
Πk – the subset where πk was picked

from . 38
ΠPS – the set of s-t hyperpaths corre-

sponding to a path-strategy 100
ΠP1P2 – the set of s-t hyperpaths in H

containing path P1 and P2 98
Πeff – set of efficient hyperpaths 79
π – a hyperpath . 8
π (λ) – a minimum parametric weight hy-

perpath . 82
πSut – the hyperpath corresponding to

strategy Sut . 25
πk,i – a minimum weight hyperpath in

subset Πk,i when Branching Operation
4.1.2 is used . 39

πk – the k ’th minimal hyperpath 38
πst – an s-t hyperpath 8
(π̃, H̃) – a pair in the candidate set rep-

resenting a subset of Π1 40
pk1 – peak period where the traffic in-

creases . 29
pk2 – peak period where the traffic stays

the same . 29

156 List of notation

pk3 – peak period where the traffic de-
creases . 29

ψ – the peak increase parameter (input
parameter to TEGP) 29

Q

Q – a candidate set for storing nodes in
hypergraph H . 13

q – used as an index 8
qk – the number of hyperarcs in πk . . 38

R

r – used as an index 98
ρ – the standard deviation mean ratio

(input parameter to TEGP) 29
[−rξ, rξ] – the interval of the random per-

turbation (rξ input parameter to the
TEGP generator) 30

S

S – a strategy . 22
S (u, t) – the arc followed when leaving

node u at time t following the strategy
S . 23

Sot – a strategy providing route choice
for travelling from node o leaving at
time t towards destination d 23

s – source node of π 8
σuv (t) – the standard deviation of the

travel time density X (u, v, t) 29
size(H) – the size of hypergraph H . . . 8

T

Ts – a hypertree with root node s 9
t – target node of π 8
t, ti, ta – a time instance 22
T (e) – the set of tail nodes of e 7
τ (k, i) – the branching tree node corre-

sponding to pair (πk,i,Hk,i) 41
θuvt (ti) – the probability of arriving at

node v at time ti when leaving node u
at time t . 22

θo (t) – the probability of leaving the ori-
gin o at time t 124

U

u, ui – a node in H or G 7

ut – the node in H corresponding to node
u in G for time t 25

ub – an upper bound for a triangle . . . 84

V

V – a valid ordering 8
VP1P2 – a valid ordering of P1 ∩ P2 . . .98
VH – a valid ordering of H 37
Vπ – a valid ordering of π 10
Vη – the set of nodes in η 14
VH (u) – the set of nodes in H corre-

sponding to node u in G.48
Vπ

(
P i

π

)
– the set of inner-nodes in the

end-tree corresponding to P i
π 54

Vπ (u) – the set of nodes in π correspond-
ing to node u in G 48

V – the set of nodes in H 7
Vπ – the set of nodes in π8
v, vi – a node in H or G 7
vlast – The last node in a valid ordering
V . 8

vt – the node in H corresponding to node
u in G for time t 25

W

W (λ) – the weight of a minimal hyper-
path using weights w(e, λ)126

W (π, λ) – the weight of hyperpath π us-
ing weights w (e, λ) 126

W (π) – the weight of π. In Chapter 5 a
two-dimensional vector 10

W (v) – the weight of v in the hyper-
path/hypertree under consideration.
In Chapter 5 the weight is a two-di-
mensional vector 10

W k,i (v) – the weight of node u in a min-
imum weight hypertree in subhyper-
graph Hk,i . 45

W k (v) – the node weight in node u of a
minimum weight hypertree in Hk . . 45

Wub
λ – the weight found using procedure
SHTgreedy .96

Wj (π) – the j’th weight of π 79
W k,i

j (u) – the j’th weight in node u in
πk,i . 91

W k
j (u) – the j’th weight of node u in
hyperpath πk .91

List of notation 157

(W1 (π) ,W2 (π)) – the point correspond-
ing to π . 80

w (e, λ) – the weight of e given λ . . . 125
wλ (e) – the parametric weight of e . . 87
wj (e) – the j’th weight on e 79
W – the criterion space 79
W≥ – area containing the nondominated

points . 79
Weff – set of nondominated points . . . 79

X
ξ – random perturbation.30
X (u, v, t) – the travel time when leaving

node u at time t along arc (u, v) . . . 22

Y

Y S
T

(
o, t̂, v

)
– the arrival time at node v

when leaving node o at time t̂ following
strategy S .27

Y S
T (u, t) – the arrival time at the desti-
nation d when leaving node u at time
t following strategy S 23

Z

ζ – a bound used to check when Rule
5.4.5 shall be used.108

