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Preface

This thesis is the culmination of my years as a PhD student at the
Department of Mathematics at the University of Aarhus during the
period 1999-2003. I have studied some relatively uncorrelated problems
in the theory of automorphic forms and have obtained results in the
theory of modular symbols, properties of Eisenstein series twisted with
modular symbols and the asymptotic density of Maass newforms.

The thesis is organized as follows. The first chapter is a survey con-
veying and highlighting most of the main results of the thesis, along
with some history of the problems in question. Then follows a chap-
ter which fixes further notation and reviews some known results to be
used in the subsequent chapters. In Chapter 3 we study the asymptotic
distribution of modular symbols using methods from spectral theory,
probability theory and analytic number theory. The main object of
study in this chapter is Eisenstein series twisted with modular sym-
bols. In chapter 4 we prove that these Eisenstein series all satisfy a
functional equation analog to the classical functional equation of the
non holomorphic Eisenstein series. We then go on to study some of the
properties the scattering matrices involved. In Chapter 5 we study the
asymptotic densities of Maass newforms and discusses the relevance of
this to the Jacquet-Langlands correspondence.

I would like to take the opportunity to express my gratitude to some
people without whom this thesis would have been impossible for me to
write: Erik Balslev, my thesis advisor, for many useful discussions and
much encouragement, Alexei B. Venkov, who along the way became my
de facto co-advisor, for inspiring conversations and helpful advice, the
Max Planck institute of Mathematics for its hospitality during spring
2002, Andreas Strömbergsson for generously sharing with me unpub-
lished ideas and results and Yiannis N. Petridis, my coauthor on the
material presented in chapter 3, for being a wonderful mathematical
mentor and friend. Last but not least I thank my wife Sigrid for her
patience, understanding and support.

Aarhus, February 28th., 2003.





CHAPTER 1

Introduction

1. The distribution of modular symbols

Let M be a hyperbolic Riemann surface of finite volume. Hence
the universal covering of M is the upper halfplane, H, and the covering
group, Γ, is a discrete subgroup of PSL2(R). Let f(z)dz be a holomor-
phic 1-form on M . If c is a curve on M we may integrate f(z)dz along
the curve to get ∫

c

f(z)dz.

We have a bijection between the covering group Γ and the funda-
mental group π1(M, ẑ0) given by sending γ ∈ Γ to the unique geodesic
between z0 and γz0 in H where z0 lies above ẑ0, and then projecting
this curve to M . By integrating along this curve we get an additive
homomorphism

Γ → C

γ 7→
∫ γz0

z0

f(z).

It is the distribution of this map we wish to study. We assume that
M has a cusp at i∞ and that f(z)dz is cuspidal, i.e. that f(z) is a
cusp form of weight two. Due to the cusp condition the stabilizer of
i∞ is of the form

Γ∞ =

〈(
1 h
0 1

)〉
⊆ Γ

for some h ∈ R. It turns out that the above homomorphism factors
through the quotient Γ∞\Γ. We let (c, d) be the lower row of γ and
when c2 + d2 > 1 we define

[γ, f ] =

√
vol(Γ \H)

2 log(c2 + d2)

∫ γz0

z0

f(z)dz.

If c2 + d2 ≤ 1 we set [γ, f ] = 0 We assume that the Petersson norm
‖f‖ = 1.

Our main result is the following

1



2 1. INTRODUCTION

Theorem A. Asymptotically [γ, f ] has a normal distribution. More
precisely, for any fixed rectangle R in C,

#
{
γ ∈ (Γ∞ \ Γ)T |[γ, f ] ∈ R

}
#(Γ∞ \ Γ)T

→ 1

2π

∫
R

exp

(
−x

2 + y2

2

)
dxdy

as T →∞.

Here

(Γ∞ \ Γ)T =
{
γ ∈ Γ∞ \ Γ| c2 + d2 ≤ T

}
.

Since a cuspidal harmonic 1-forms, α, may be written as α(z) =
<(f(z)dz) we also get a result about these also. Let

[γ, α] =

√
vol(Γ \H)

2 log(c2 + d2)

∫ γz0

z0

α.

Assume that ‖f‖ = 1.

Theorem B. Asymptotically [γ, α] has a normal distribution. More
precisely, for any a ≤ b,

#
{
γ ∈ (Γ∞ \ Γ)T |[γ, α] ∈ [a, b]

}
#(Γ∞ \ Γ)T

→ 1√
2π

∫ b

a

exp

(
−x

2

2

)
dx

as T →∞.

This work uses heavily Eisenstein series twisted by modular sym-
bols, introduced by Goldfeld. The general framework is as follows. Let
f(z), g(z) be holomorphic cusp forms of weight 2 for a fixed cofinite
discrete subgroup Γ of SL2(R). In (Goldfeld 1999b, Goldfeld 1999a)
Goldfeld introduced Eisenstein series associated with modular symbols
defined in a right half-plane as

Em,n(z, s) =
∑

γ∈Γ∞\Γ

〈γ, f〉m 〈γ, g〉
n
=(γz)s, (1.1)

where for γ ∈ Γ the modular symbol 〈γ, f〉 is given by

〈γ, f〉 = −2πi

∫ γz0

z0

f(z) dz, (1.2)

and one defines similarly 〈γ, g〉. Here z0 is an arbitrary point in the
upper half-plane H.

If we take f(z) to be a Hecke eigenform for Γ0(N) and Ef is the
elliptic curve over Q corresponding to it by the Eichler-Shimura theory,
then

〈γ, f〉 = n1(f, γ)Ω1(f) + n2(f, γ)Ω2(f),



1. THE DISTRIBUTION OF MODULAR SYMBOLS 3

where ni ∈ Z and Ωi are the periods of Ef . The conjecture ni � Nk

for |c| ≤ N2 and some fixed k (Goldfeld’s conjecture) is equivalent to
Szpiro’s conjecture D � NC for some C, where D is the discriminant
of Ef . This was the motivation to study the distribution of modular
symbols.

As an example of such a distributional result Goldfeld conjectured
in (Goldfeld 1999b) that ∑

c2+d2≤T

〈γ, f〉 ∼ R(i)T, (1.3)

where R(z) is the residue at s = 1 of E1,0(z, s), and we sum over
the elements in Γ∞ \ Γ with lower row (c, d). This is now proved in
(Goldfeld & O’Sullivan 2003, Theorem 7.3). He also suggested that,
when f = g, the twisted Eisenstein series E1,1(z, s) should have a
simple pole at s = 1 with the zero Fourier coefficient of the residue
proportional to the Petersson norm ‖f‖2. He concludes the conjectural
asymptotic formula ∑

c2+d2≤T

|〈γ, f〉|2 ∼ R∗(i)T, (1.4)

where R∗(z) is the residue of E1,1(z, s) at s = 1 and where the sum-
mation is again over matrices in Γ∞ \ Γ with lower row (c, d). In this
work we, among other things, reprove (1.3) while settling (1.4) in the
negative. But our result shows that the Petersson norm does indeed
play a role, see Theorem G below. Averages of functions of modular
symbols have been investigated also in (Manin & Marcolli 2002).

It turns out to be crucial to consider Eisenstein series associated
with the real harmonic differentials αi = <(fi(z)dz) or αi = =(fi(z)dz)
where fi are holomorphic cusp forms of weight two. We shall write

〈γ, αi〉 = −2πi

∫ γz0

z0

αi. (1.5)

As in (Petridis 2002) we define

E(z, s,~ε) =
∑

γ∈Γ∞\Γ

χ~ε(γ)=(γz)s, (1.6)

where χ~ε is a n-parameter family of characters of the group defined by

χ~ε(γ) = exp

(
−2πi

(
n∑

k=1

εk

∫ γz0

z0

αk

))
. (1.7)
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The convergence of (1.6) is guaranteed for <(s) > 1 by comparison with
the standard Eisenstein series. The Eisenstein series with a character
transform as

E(γz, s,~ε) = χ̄~ε(γ)E(z, s,~ε). (1.8)

We see that

∂nE(z, s,~ε)

∂ε1 . . . ∂εn

∣∣∣∣
~ε=~0

=
∑

γ∈Γ∞\Γ

n∏
i=1

〈γ, αi〉 =(γz)s, (1.9)

by termwise differentiation whenever the sum is absolutely convergent.
By taking linear combinations of these we may of course recover the
original series (1.1). This observation allowed the first author to give
a new approach to the Eisenstein series twisted with modular symbols
using perturbation theory. In particular, a new proof of the analytic
continuation was given in (Petridis 2002) and the residues of E1,0(z, s)
on the critical line were identified. In this paper we further pursue this
method. We start by giving a third much shorter proof of the main
theorem in (O’Sullivan 2000).

Theorem C. (O’Sullivan 2000, Petridis 2002)
The functions Em,n(z, s) have meromorphic continuation to the whole
s-plane. In <(s) > 1 the functions are analytic.

The last claim of the theorem, which does not seem to have been
explicitly stated before, enables us to evaluate the growth of the mod-
ular symbols as γ runs through the group Γ. The best known result in
this aspect is

〈γ, f〉 = O(log(c2 + d2)).

This is due to Eichler (see (Eichler 1965)). Using the above theorem
we get the following slightly weaker result.

Theorem D. For any ε > 0 we have

〈γ, f〉 = Oε((c
2 + d2)ε).

We then continue to study the singularity of Em,n(z, s) at s = 1
when f = g. In particular we study the pole order and the leading term
in the singular part of the Laurent expansion. In principle the method
gives the full Laurent expansion of Em,n(z, s) but only in terms of the
coefficients in the Laurent expansions of the resolvent kernel and the
usual non holomorphic Eisenstein series at s = 1. The combinatorics
involved in getting useful expressions is quite ponderous. As a result
we settle with calculating some of the most interesting coefficients and
evaluate the pole orders. As an example of this type of result we have:
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Theorem E. At s = 1, E2,0(z, s) has a simple pole with residue

1

vol(Γ \H)

(
2πi

∫ z

i∞
f(z)dz

)2

while E1,1(z, s) has a double pole with residue

4π2

vol(Γ \H)

∣∣∣∣∫ z

i∞
f(z)dz

∣∣∣∣2
+

16π2

vol(Γ \H)

∫
Γ\H

(E0(z
′)− r0(z, z

′))y′
2 |f(z′)|2 dµ(z′).

The coefficient of (s− 1)−2 is

16π2 ‖f‖2

vol(Γ \H)2
.

Here the coefficient r0(z, z
′) is the constant term in the Laurent ex-

pansion of the resolvent kernel around s = 1. The coefficient E0(z) is
the constant term in the Laurent expansion of the usual non holomor-
phic Eisenstein series and is given by Kronecker’s limit formula. For
Γ = SL2(Z) this is classical, see, for instance (Lang 1973, p. 273–275).
For a generalization to all Γ see (Goldstein 1973).

We wish to use these results to obtain results à la (1.3). We do
this using the method of contour integration but, in order to make
this work, we need to prove a result on the growth of Em,n(z, s) as
=(s) →∞. We can prove

Theorem F. The functions Em,n(z, s) grow at most polynomially
on vertical lines with σ > 1/2. More precisely: for every ε > 0 and
σ ∈ (1/2, 1] and z ∈ K, a compact set, we have

Em,n(z, σ + it) = O(|t|(6(m+n)−1)(1−σ)+ε). (1.10)

Using the above theorems and contour integration we get asymp-
totic expansions for summatory functions like the one in (1.3). An
example of the results we prove is:

Theorem G. There exists δ > 0 such that∑
c2+d2≤T

〈γ, f〉2 =
1

vol(Γ \H)

(
−2πi

∫ z

i∞
f(τ) dτ

)2

T +O(T 1−δ)

∑
c2+d2≤T

|〈γ, f〉|2 =
(16π2)

vol(Γ \H)2
‖f‖2 T log T +O(T ).

The summations are over (c, d) lower row of γ ∈ Γ∞ \ Γ.
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This settles the conjectural status of (1.4) in the negative. How
small we can make 1 − δ in the above theorem depends on how good
polynomial bounds we have in Theorem F and whether the Laplacian
has small eigenvalues. If there are no such eigenvalues we can prove

1− δ =
12

13
+ ε.

By using similar asymptotic expansions we can calculate the moments
of the normalized modular symbols and prove the distributional result
in Theorem A, which is the main theorem of our work.

The usual nonholomorphic Eisenstein series satisfies a functional
equation of the form

~E(z, s) = Φ(s) ~E(z, 1− s). (1.11)

We show that the Eisenstein series twisted with modular symbols has
an analog functional equation. We state a result for g = f .

Theorem H. The function ~Em,n(z, s) satisfies a functional equa-
tion of the form

~Em,n(z, s) =
∑

m′+n′≤m+n

Φm−m′,n−n′(s) ~E
m′,n′(z, 1− s).

We find explicit, though quite complicated, expressions for the ma-
trices Φk,l(s) in terms of the usual scattering matrix Φ(s) and various
L-functions.

The idea of putting the Eisenstein series in a continuous family
to study how the spectrum changes as the parameters change is very
fruitful, see for instance (Bruggeman 1994), where the parameter is the
weight of the modular form. The study of Em,n(z, s) using perturbed
Eisenstein series is an interesting application of the spectral deforma-
tions used in (Phillips & Sarnak 1987, Phillips & Sarnak 1991, Phillips
& Sarnak 1994, Petridis 2000). In (Petridis 2002) the Eisenstein series
with modular symbols was put into this framework. In this work we
apply the same techniques to produce results which at least to us seem
difficult to attack with the methods used by Goldfeld, O’Sullivan et.al.

2. Spectral correspondences for Maass forms

For a Fuchsian group of the first kind, Γ, we let ∆Γ be the automor-
phic Laplacian related to Γ. The Jacquet-Langlands correspondence
(See (Jacquet & Langlands 1970, Chapter3), (Gelbart 1975, Theorem
10.5)) gives (among other things) a correspondence between the λ-
eigenspace of ∆Γc , and the λ-eigenspace of ∆Γnc . Here Γc, Γnc are
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certain arithmetical Fuchsian groups of the first kind, where Γc is co-
compact while Γnc is non-cocompact but cofinite. This correspondence
is usually described using the language of representation theory and
adelic trace formulaes.

Parts of this theory was reproved in a succession of papers by Hejhal
(1985), Bolte & Johansson (1999a)(1999b) and Strömbergsson (2001b)
using classical techniques á la Selberg (1989). Here the correspondence
is given by an integral transform Θ. The cocompact group Γc is the unit
group in a maximal order in an indefinite rational quaternion algebra
with reduced discriminantD. Hence d is the product of an even number
of different primes, and any such number may be realized in this way.
Let Γnc = Γ0(d) be the Hecke congruence group of level d.

In (Strömbergsson 2001b) it is proved that Θ gives a bijection be-
tween the λ-eigenspace of ∆Γc and the λ-new eigenspace of ∆Γnc when
λ 6= 0. This is proved by a careful comparison of Selberg Trace Formu-
las for modular correspondences (Hecke operators) in the two pertinent
settings.

Now for cocompact groups Γc the spectral counting function

NΓc(λ) = #{λn ≤ λ|λn eigenvalue of ∆Γc}

has an asymptotic expansion of the form

NΓc(λ) =
vol(Γc\H)

4π
λ+O(

√
λ/ log(λ)),

while for congruence groups Γnc

NΓnc(λ) =
vol(Γnc\H)

4π
λ+O(

√
λ log(λ)).

We notice the difference in the error terms in the compact and the non-
cocompact case. Using the “classical” case of the Jacquet-Langlands
correspondence quoted above we find that if we define a spectral count-
ing function Nnew

Γ0(M)(λ) which only counts the newforms then when d is
the product of an even number of different primes we have

Nnew
Γ0(d)(λ) =

vol(Γc\H)

4π
λ+O(

√
λ/ log(λ))

i.e. the sort of expansion characteristic to the cocompact case.
We can now ask whether Nnew

Γ0(M)(λ) has the same type of expansion
for any M not an even number of different primes? When

Nnew
Γ0(M)(λ) = cMλ+O(

√
λ/ log(λ))
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for some constant cm we shall say that Nnew
Γ0(M)(λ) is of cocompact type.

By making an asymptotic expansion of the scattering determinant re-
lated to Γ0(M) at the halfline 1

2
+ it we can determine asymptotic

expansions of Nnew
Γ0(M)(λ) with error term O(

√
λ/ log λ).

We can hence answer the above question. We write M = t2n where
n is square free

Theorem I. The spectral counting function Nnew
Γ0(M)(λ) is of cocom-

pact type if and only if at least one of the following holds:

(1) n contains at least two primes.
(2) n is a prime and 4 ‖M .

Hence there are an abundance of cases where Nnew
Γ0(M)(λ) is of co-

compact type but M is not a product of an even number of different
primes.

At this point it would be interesting to revert the reasoning and see
if Nnew

Γ0(M)(λ) of cocompact type implies that there is a NΓc with Γc co-

compact or a linear combination of those that coincides withNnew
Γ0(M)(λ).

In other words: Are there spectral correspondences which are respon-
sible for the remaining cases in Theorem I.

In (Strömbergsson n.d.) it is shown that if Γc(M) is the unit group
in an Eichler order of level M in an indefinite rational quaternion di-
vision algebra with reduced discriminant D then there is a correspon-
dence given by an integral operator such that for λ 6= 0 a certain
λ-new eigenspace of ∆Γc(M) is in bijection with the λ-new eigenspace
of ∆Γ0(DM). Hence we still get a bijection with the λ-new eigenspace of
∆Γ0(DM) if we only “lift” the λ new eigenforms at the quaternion level.

We choose a slightly different approach. For D|M ′ we define the
λ D-old eigenspace of ∆Γ0(M ′) to be the subspace of the λ eigenspace
spanned by {

f(dz)

∣∣∣∣f in the λ eigenspace of ∆Γ0(K)

Kd|M ′ K 6= M ′ M ′|KD

}
.

We then define the λ D-new eigenspace to be the orthogonal comple-
ment in the λ-eigenspace of ∆Γ0(M ′). If (M,D) = 1 we can prove, using
the trace formula calculations of (Strömbergsson n.d.), the following

Theorem J. When λ 6= 0 there is a bijection between the λ-
eigenspace of ∆Γc(M) and the λ D-new eigenspace of ∆Γ0(MD) given
by an integral transform.

This theorem as well as the one in (Strömbergsson n.d.) gives
correspondences “responsible for” the result of Theorem I forDM when
(D,M) = 1 and D is a product of an even number of different primes.
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There are still may cases where Nnew
Γ0(M)(λ) is of cocompact type

that has not been explained in this way. We note however that in
all the cases M contains at least two different primes. This leaves
some hope that there might be some quaternion division algebra in
play. The smallest level that we have not “explained” is M = 12. Are
there cocompact groups responsible for the fact that Nnew

Γ0(12)(λ) is of
cocompact type or is this accidental?





CHAPTER 2

Prerequisites

This chapter fixes notation not already defined and reviews some
known results which shall be used in the subsequent chapters. General
references are (Shimura 1971, Venkov 1982, Hejhal 1983, Selberg 1989,
Bruggeman 1994, Iwaniec 1995).

1. Fuchsian groups

Let
H = {z ∈ C|=(z) > 0}

be the upper halfplane. We equip this with the Poincaré metric

ds2 =
dx2 + dy2

y2
,

and get an associated measure

dµ(z) =
dxdy

y2
.

The Laplacian associated with the metric ds2 is

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

The group of holomorphic automorphisms of H is isomorphic to

PSL2(R) = SL2(R)/{±I}
via the map

PSL2(R) → Aut(H)
γ 7→ (z 7→ γz = az+b

cz+d
),

where γ =

(
a b
c d

)
. The group PSL2(R) is also isomorphic to the

group of orientation preserving isometries of H as a Riemannian via the
same map. We note that the map γ extends continuously to H∪R∪{∞}
in the obvious way. We see that any subgroup Γ of SL2(R) gives rise to
a subgroup of Aut(H). We shall often not specify whether Γ is a group
of matrices or a group of automorphisms of H. We shall always assume
Γ (or a corresponding group of matrices) to be a discrete subgroup of

11
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PSL2(R). We shall say that a set FΓ ⊂ H is a fundamental domain if it
contains at most one element from each Γ-orbit, Γz , while its closure
must contain at least one element from each orbit. It is always possible
to choose a fundamental domain which is open and connected.

The volume of the quotient, Γ \H, is defined as

vol(Γ \H) =

∫
FΓ

dµ(z).

When the volume of the quotient is finite we say that Γ is cofinite. We
shall always assume this to be the case.

We call γ ∈ Γ elliptic (resp. parabolic, resp. hyperbolic) if Tr (γ) =
|a+ d| < 2 (resp. Tr (g) = 2, resp. Tr (g) > 2.) This corresponds to
γ having exactly one fixed point in H (resp. exactly one in R ∪ {∞},
resp. two fixed points in R ∪ {∞}). Since Tr (σγσ−1) = Tr (γ) the
conjugacy classes of Γ is divided into elliptic, parabolic or hyperbolic
classes.

Theorem 1. The number of parabolic conjugacy classes of Γ is
finite if and only if Γ is cofinite.

When there are no parabolic conjugacy classes the quotient Γ \H is
compact in the quotient topology, and we may choose complex charts
to make it a compact Riemann surface (See (Shimura 1971)) If Γ has
only hyperbolic elements H is the universal covering of Γ \H and Γ is
the group of deck transformation of Γ \H. If Γ has parabolic elements
the quotient is noncompact but we may compactify by adding fixpoints
of parabolic elements (We call such a fixpoint a cusp) and open sets
around these to obtain a compact space, Γ \H∗. We can also add
complex charts at the cusps to obtain a compact Riemann surface.
This is done as follows:

Fix a maximal set of inequivalent cusps a1, . . . , an. Let Γai
be the

stabilizer of the cusp ai. Then Γai
is cyclic with Γai

= 〈γi〉 and can
choose scaling matrices σ1, . . . σn such that σi(∞) = ai and

σ−1
i Γai

σi =

{(
1 m
0 1

)∣∣∣∣m ∈ Z
}

We may choose an open set U ⊂ Γ \H∗ containing only one cuspidal
orbit Γaj. The chart around aj is given by

φaj
: U → C

Γz 7→ e2πiσ−1
j z.
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2. Automorphic forms

Let k be an even integer let γ ∈ GL2(R). We then define

j(γ, z) = cz + d.

Let χ : Γ → S1 be a unitary character. For f : H → H we define

f |[γ]k(z) = det(γ)k/2j(γ, z)−kf(γz).

If k = 0 we simply write f |γ instead of f |[γ]0 .

Definition 2. A smooth function f : H → H is called a modular
form of weight k and character χ if

(1) f is holomorphic,
(2) f |[γ]k = χ(γ)f for all γ ∈ Γ,
(3) f is polynomially bounded as =(σ−1

j z) →∞.

The space of such functions is denoted Mk(χ,Γ).

Definition 3. A function g : H → H is called an automorphic
function with eigenvalue λ, character χ (or a Maass form) if

(1) ∆g = λg,
(2) g|γ = χ(γ)g for all γ ∈ Γ,
(3) g is polynomially bounded as =(σ−1

j z) →∞.

The space of such functions is denoted by Ã(λ, χ,Γ). We could also de-
fine Maass forms of weight different from zero (see (Bruggeman 1994))
but we shall not use them here.

We now assume that Γ has at least one cusp. If

γj = σj

(
1 1
0 1

)
σ−1

j

and χ(γj) = e2πiκj then if f ∈Mk(χ,Γ) or f ∈ Ã(λ, χ,Γ) we have that
e−2πiκjzf |[σj ]k is invariant under z → z+1, and has a Fourier expansion

e−2πiκjzf |[σj ]k(z) =
∞∑

n=−∞

an(y)e2πinx.

If f ∈Mk(χ,Γ) we have

an(y) =

{
0 if n < 0

qne
−2πny if n ≥ 0

where qn ∈ C. Hence

e−2πiκjzf |[σj ]k(z) =
∞∑

n=0

qne
2πinz.



14 2. PREREQUISITES

If q0 = 0 for all cusps we say that f is a holomorphic cusp form and
we write Sk(χ,Γ) for the set of holomorphic cuspforms related to the
character χ and the cofinite group Γ. For such an f we define the
Petersson norm

‖f‖2 =

∫
FΓ

|f(z)| ykdµ(z).

If χ = 1 we shall often write Sk(Γ) instead of Sk(χ,Γ).
If f ∈ Ã(λ, χ,Γ) then

an(y) = qn
√
yKs−1/2(2π |n| y) when n 6= 0.

where qn ∈ C. Here λ = s(1 − s) and Ks−1/2 is the exponentially
decaying Bessel function

Kµ(z) =
1

2

∫ ∞

0

exp
(
−z

2

(
t+ t−1

))
t−µ−1dt.

If a0(y) = 0 for all cusps we say that f is a nonholomorphic cusp form
and we write A(λ, χ,Γ) for the set of nonholomorphic cuspforms related
to the eigenvalue λ, the character χ and the cofinite group Γ. If χ = 1
we shall often write A(λ,Γ) instead of A(λ, χ,Γ).

3. The non-holomorphic Eisenstein series

A very important example of an automorphic function is the non-
holomorphic Eisenstein series related to any cusp a such that χ(γa) = 1
defined as

Ea(z, s) =
∑

γ∈Γa\Γ

χ(γ)−1=(σ−1
a γz)s

where z ∈ H. This is absolutely convergent for <(s) > 1 and for
<(s) ≥ 1 + δ it converges uniformly. It transforms as

Ea(γz, s) = χ(γ)Ea(z, s),

and as a function of z it is an eigenfunction of the Laplacian, i.e.

−∆Ea(z, s) = s(1− s)Ea(z, s)

The zero’th Fourier coefficient at the cusp b is given by

δaby
s + φab(s)y

1−s

where δab is the Kronecker delta.

Theorem 4. As a function of s Ea(z, s) may be meromorphically
continued to the whole complex plane. In <(s) > 1/2 there are only
finitely many poles all lying at the real axis and s = 1 is always a simple
pole with residue

Res
s=1

(Ea(z, s)) = vol(Γ \H)−1.
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The matrix Φ(s) = {φab(s)}ab is called the scattering matrix. The
Eisenstein series satisfies the functional equation

~E(z, s) = Φ(s) ~E(z, 1− s).

Here ~E(z, s) = {Ea(z, s)}a is the vector of Eisenstein series indexed
according to the cusps of the group. The scattering matrix satisfies

Φ(s)Φ(1− s) = I

Φ

(
1

2
+ it

)
Φ∗
(

1

2
+ it

)
= I

Φ∗(t) = Φ(t) for t ∈ R
Φ(s) = Φ(s)

where the star denotes the conjugate transpose.

4. The automorphic Laplacian

We let L2(Γ, χ, dµ) be the set of measurable functions f : H → C
that transforms as f(γz) = χ(γ)f(z) and satisfies∫

Γ\H
|f(z)|2 dµ(z).

This is a Hilbert space with the inner product

(f, g) =

∫
Γ\H

f(z)g(z)dµ(z).

Since Γ is cofinite the (Γ-automorphic) constants belong to L2(Γ, χ, dµ).
We define the automorphic Laplacian (L̃,D(L̃)) to be the operator

L̃ : D(L̃) → L2(Γ, χ, dµ)
f 7→ −∆f.

where

D(L̃) =

f : H → C

∣∣∣∣∣∣
f smooth
f,∆f bounded
f(γz) = χ(γ)f(z)

 .

This set is dense in L2(Γ, χ, dµ) and −L̃ is densely defined, nonnegative
and essentially selfadjoint. We denote by −L its selfadjoint closure. We
shall sometimes use −∆Γ to emphasize the dependence of the group Γ.
The spectrum is contained in the positive real axis [0,∞[.

We shall consider the resolvent R(s) = (L + s(1 − s))−1, defined
off the spectrum of L. Since we shall only use this in the case χ = 1,
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we restrict ourselves to this case. When <(s) is sufficiently large the
kernel of the resolvent may be constructed as follows. Let

u(z, z′) =
|z − z′|2

4=(z)=(z′)
.

This is a point pair invariant i.e. u(γz, γz′) = u(z, z′). We set

φ(u, s) =
1

4π

∫ 1

0

(t(1− t))s−1(t+ u)−sdt.

We then define

r(z, z′, s) = −1

2

∑
γ∈Γ

φ(u(z, γz′), s).

This is the resolvent kernel. Then for <(s) � 0 and f : H → C
bounded and smooth we have

R(s)f =

∫
FΓ

r(z, z′, s)f(z′)dµ(z′).

The resolvent cannot be meromorphically continued across the halfline
<(s) = 1/2, but one may attach a meaning to the meromorphic contin-
uation of the resolvent kernel in the s-plane. We note that the s-plane
is a two sheeted covering of the λ = s(1 − s)-plane, and that the λ-
plane cut along the the positive real axis [0,∞[ corresponds to the right
halfplane <(s) > 1/2 cut along 1/2 ≤ s ≤ 1.

Theorem 5. For s, 1−s non-singular we have the limiting absorp-
tion principle

r(z, z′, s)− r(z, z′, 1− s) =
1

1− 2s

∑
a

Ea(z
′, s)Ea(z, 1− s) (2.1)

If λ0 = s0(1− s0) is an eigenvalue of L of multiplicity l then we has
the following expression for the resolvent near s0

r(z, z′, s) =
1

s(1− s)− λ0

l∑
i=1

vi(z)vi(z
′) + r+(z.z′, s) (2.2)

where {vi}l
i=1 is a real orthonormal basis of the λ0-eigenspace, and

r+(z, z′, s) is analytic in s in a neighborhood of s0.
If the fundamental domain, FΓ, is chosen to be a normal polygon

we may decompose the fundamental domain FΓ into

FΓ = F0

⋃
a

Fa(T0) (2.3)
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where the closure of F0 is compact and Fa is isometric to

Π = {z ∈ H| − 1/2 < <(z) ≤ 1/2, =(z) ≥ T0}

by simply setting

Fa(T0) = F ∩ σa{z ∈ H| − 1/2 < <(z) ≤ 1/2, =(z) ≥ T0}.

We assume that T0 is chosen large enough that this gives disjoint sets.
Faddeev (Faddeev 1967) introduces weighted Banach spaces that we
shall now define. For a Γ-automorphic function, we set f0(z) = f(z)
for z ∈ F0 and fa(z) = f(σaz) for z ∈ Π. For µ ∈ R we let Bµ be the
Banach space of complex-valued functions f whose components f0 and
fa are continuous on Φ0 and Fa respectively with

|fa(z)| ≤ Cyµ

for some constant C. We define the norm by

‖f‖µ = sup
z∈F0

|f0(z)|+
∑

a

sup
z∈π

y−µ |fa(z)| .

For a fixed µ ≤ 1/2 the meromorphically continued resolvent kernel,
r(z, z′, s) defines a meromorphic continuation of the resolvent consid-
ered as the integral operator

R(s) : Bµ → B1−µ

g 7→
∫

Γ\H
r(z, z′, s)g(z′)dµ(z′).

whenever <(s) > µ.
A different approach due to Müller (Müller 1996) uses weighted

L2-spaces of the form

L2
δ(F ) =

{
f : X → C|f measurable and

∫
F

|f(z)|2 e2δρ(z)dµ(z)

}
where ρ(z) = 1 for z ∈ F0 and ρ(z) = =(σ−1

a z) for z ∈ Fa. We note
that when δ > 0

L2
δ(F ) ⊆ L2(F ) ⊆ L2

−δ(F ). (2.4)

This gives a meromorphic continuation of the operator

R(s) : L2
δ(F ) → L2

−δ(F )

whenever δ > 0.
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5. Modular symbols

Let f ∈ S2(Γ). By the transformation properties of f we see that
f(z)dz is Γ invariant and hence defines a holomorphic 1-form on the
Riemann surface Γ \H. We define modular symbols, 〈γ, f〉 by

〈γ, f〉 = −2πi

∫ γz0

z0

f(z)dz.

Here z0 is any point in the (extended) upper halfplane and the integral
is along any curve from z0 to γz0. Since f is holomorphic the modular
symbol is independent of the path chosen. Since f(z)dz is Γ-invariant
it is easy to see that the modular symbols are also independent of z0.
Hence 〈·, f〉 defines an additive homomorphism

〈·, f〉 : Γ → (C,+).

This map has a weight k analogue (period polynomials) due to Eichler,
Manin, Shimura and others, and a Maass cusp form analogue (period
functions) due Lewis, Zagier, Mayer, Chang and others, but we shall
not study these at the moment.

We have

Lemma 6. If γ is elliptic or parabolic then 〈γ, f〉 = 0.

Proof. If γ is elliptic then γ is of finite order m and hence

m 〈γ, f〉 〈γm, f〉 = 0.

If γ is parabolic then γ can be conjugated into γl
a. We shall prove that

〈γa, f〉 = 0. Since 〈·, f〉 is additive it follows that 〈γ, f〉 = 0.
If

γj = σj

(
1 1
0 1

)
σ−1

j ,

then since f is a cusp form of weight two we have

f |[σj ]2(z) =
∞∑

n=1

qne
2πinz.

Hence ∫ z1+1

z1

(f |[σj ]2)(z)dz = 0.
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By a change of variables, σjz
′ = z we find

〈γj, f〉 =

∫ γjz0

z0

f(z)dz =

∫ σ−1
j z0+1

σ−1
j z0

f(σjz
′)j(σj, z

′)−2dz′

=

∫ σ−1
j z0+1

σ−1
j z0

f |[σj ]2(z
′)dz′ = 0,

which completes the proof. �

Since 〈·, f〉 is additive it is also trivial on the commutator subgroup
[Γ,Γ]. Hence its kernel is rather big.

Proposition 7. (Eichler 1965) We have the following bound

〈γ, f〉 = O(log(c2 + d2))

Eichlers proof of this is purely geometrical. In the next chapter we
shall show that we can “almost” recover this using spectral methods.





CHAPTER 3

The distribution of modular symbols

In this chapter we shall investigate the distribution of modular sym-
bols using methods from spectral theory, perturbation theory, analytic
number theory and probability theory. We do this by studying Eisen-
stein series twisted with modular symbols. The setup is still, as in
the previous chapter, that of a general cofinite discrete subgroup, Γ, of
PSL2(R). We mentioned in the introduction that it is crucial for our
method to “twist” with symbols associated with real harmonic differ-
entials α = <(f(z)dz) or α = =(f(z)dz) where f(z) ∈ S2(Γ). In fact it
turns out to be convenient to use compactly supported smooth 1-forms
w. We start by showing how we may approximate α by such a w.

1. Approximating cuspidal harmonic forms with compactly
supported forms

We note that we can always assume that the real harmonic differ-
ential αi is the real part of a holomorphic cusp form since

=(f(z)dz) = <(−if(z)dz)

and −if is a holomorphic cusp form of weight two. We want to ap-
proximate a real harmonic differential α = <(f(z)dz) where f ∈ S2(Γ)
with a compactly supported real differential. We do this as follows.
Let a1, . . . , am be a maximal set of inequivalent cusps. We may assume
that a1 = i∞. When we write a we shall always assume that a = aj

for some j = 1, . . . ,m.
Let

f |[σj ]2(z) =
∞∑

n=1

qj
ne

2πinz

be the Fourier expansion of f(z) at the cusp αj. We define

Faj
(z) =

∞∑
n=1

qj
n

2πin
e2πinσ−1

j z.

Then
dFaj

dz
(z) = f(z).

21
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Since αi(z) = <(f(z)dz) we have αi(z) = d<(F (z)). We have the
decomposition (See (2.3))

FΓ = F0

⋃
a

Fa(T0)

We then choose a smooth function ψ̃ : R → [0, 1] such that

ψ̃(t) =

{
1, if t ≤ 0,

0, if t ≥ 1.

We then define, for T > T0, ψ
T : F → [0, 1] by

ψT (z) =
m∏

j=1

(ψ̃(=(σ−1
j z)− T )).

For z ∈ F we define

wT = d(ψT<(Fa))

gT = (1− ψT )<(Fa),

when z ∈ Fa(T0). When z ∈ Fo we set wT = α, g = 0. We can
now extend these to smooth Γ automorphic functions on H by setting
wT

i (γz) = wT
i (z) and gT

i (γz) = gT
i (z) for each γ ∈ Γ. Then we have

α = wT + dgT . (3.1)

Proposition 8.

(1) The smooth 1-form wT is compactly supported on Γ \H.
(2) If z ∈ F and =(σ−1

j z) ≤ T for all j = 1, . . . ,m then

wT (z) = α(z).

(3) If z ∈ F and =(σ−1
j z) ≤ T then∫ z

a

wT =

∫ z

aj

α.

(4) 〈γ, αi〉 =
〈
γ, wT

i

〉
for all γ ∈ Γ and all T > T0.

Proof. We note that (1) and (2) follows from the observation that
when =(σ−1

j z) ≤ T for every j = 1, . . . ,m we have ψ(z) = 1 by defini-
tion. To prove (3) we note that∫ z

a

α−
∫ z

a

wT =

∫ z

a

dgT = gT (z)− gT (a) = 0−<(Fa(a)) = 0.

The identity in (4) is proved by observing that

〈γ, α〉 −
〈
γ, wT

〉
= −2πi

∫ γz0

z0

dg = −2πi(g(γz0)− g(z0)) = 0.
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�

We shall often exclude T from the notation and simply write

α = w + dg.

2. Finding Laurent expansions using perturbation theory

We now let fk ∈ S2(Γ) and we let αk(z) = <(fk(z)dz) or αk(z) =
=(fk(z)dz). Using the approximation method from the last section we
set αk = wk + dgk. We define χ~ε(γ) as in (1.7). We note that by
Proposition 8 (4)

χ~ε(γ) = exp

(
−2πi

(
n∑

k=1

εk

∫ γz0

z0

wk

))
. (3.2)

We consider the space L2(Γ \H, χ̄~ε) of square integrable functions that
transform as

h(γ · z) = χ̄~ε(γ)h(z), γ ∈ Γ

under the action of the group. We introduce unitary operators

U(~ε) : L2(Γ \H) → L2(Γ \H, χ̄~ε)

given by

(U(~ε)h)(z) := U(z,~ε)h(z) = exp

(
2πi

(
n∑

k=1

εk

∫ z

i∞
wk

))
h(z).

We notice that this extends in the obvious way to an operator from the
set of all Γ-automorphic functions to the set of all (Γ, χ̄~ε)-automorphic
functions. We set

L(~ε) = U(~ε)−1∆U(~ε)

We notice that for (L(~ε)h)(z) = (∆h)(z) for z “close to a cusp” since
U(z,~ε) is constant outside a compact set.

We also define L̃(~ε) = U(~ε)−1(L)U(~ε), where L is the automorphic
Laplacian. We let h(y) ∈ C∞(R+) be a smooth function which is 0 if
y ≤ T0 + 1 and 1 if y ≥ T0 + 2. Let

Ω~ε = {s ∈ C|<(s) > 1/2 s(1− s) /∈ spec(L̃(~ε))}.

Lemma 9. (Colin de Verdière 1981, Petridis 2002) For s ∈ Ω~ε there
exists a unique Da(z, s,~ε) such that

Da(γz, s,~ε) =Da(z, s,~ε) for all γ ∈ Γ,

(L(~ε) + s(1− s))Da(z, s,~ε) =0

and
Da(z, s,~ε)− h(σ−1

a z)=(σ−1
a z)s ∈ L2(Γ, dµ).



24 3. THE DISTRIBUTION OF MODULAR SYMBOLS

Moreover, s 7→ Da(z, s,~ε) is holomorphic, while ~ε 7→ Da(z, s,~ε) is real
analytic.

Proof. Given a candidate

Da(z, s,~ε) = h(σ−1
a z)=(σ−1

a z)s + g(z, s,~ε)

we have

(L(~ε) + s(1− s))g(z, s,~ε) = −(L(~ε) + s(1− s))h(σ−1
a z)=(σ−1

a z)s,

which is compactly supported. We let

H(z, s,~ε) = −(L(~ε) + s(1− s))h(σ−1
a z)=(σ−1

a z)s.

Since this is now in particular in L2(Γ, dµ) we can invert as long as
s(1− s) is off the spectrum. We therefore get

g(z, s,~ε) = (L(~ε) + s(1− s))−1H(z, s,~ε). (3.3)

This proves uniqueness and using (3.3) as a definition we also get the
existence. The operator (L(~ε) + s(1 − s))−1 is holomorphic outside
the spectrum and depends real analytically on the parameter ~ε (See
(Kato 1976, II 1.3. and IV 3.3)). �

We note that

Ea(z, s,~ε) = exp

(
2πi

l∑
k=1

εk

∫ i∞

a

wk

)
U(~ε)Da(z, s,~ε). (3.4)

This follows from the known asymptotical behavior of Ea(z, s,~ε) (see.
e.g (Kubota 1973, Thm. 2.12.)) and the fact that

(∆ + s(1− s))Ea(z, s,~ε) = 0.

We note that Ea(z, s,~ε) is independent on the cohomology class, i.e.
independent on T ,while Da(z, s,~ε) and U(~ε) are not. We also remark
that (Petridis 2002, Remark 2.2) is only true for z0 = a, since both
Ea(z, s,~ε) and Da(z, s,~ε) have asymptotic behavior at a of the form
=(σ−1

a z)s for <(s) > 1 and, consequently, U(z, ε) should tend to 1, as
z → a.

For the rest of this chapter we assume for simplicity that Γ has only
one cusp which we assume to be located at i∞. We also assume that
it is reduced i.e. that h = 1. The generalization to the multiple cusp
case is straightforward.

In the rest of the paper we will use the following convention. A
function with a subscript variable will denote the partial derivative of
the function in that variable.
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Lemma 10. Let n ≥ 1. For <(s) sufficiently large we have

Dε1,...,εn(z, s,~0) ∈ L2(Γ, dµ).

Proof. Since the function D(z, s,~ε) is Γ-automorphic we see that

also Dε1,...,εn(z, s,~0) is Γ-automorphic. From (3.4) we obtain that

Dε1,...,εn(z, s,~0) =
∑

~m∈{0,1}n

n∏
k=1

(
−2πi

∫ z

i∞
wk

)mk

E
ε
1−m1
1 ,...,ε1−mn

n
(z, s,~0).

(3.5)

We note that since wi is compactly supported all the terms with ~m 6= ~0
becomes compactly supported. Now in order to control the term with
~m = ~0 we need some bound on the growth of 〈γ, αi〉. Any bound of
the form

|〈γ, αi〉| ≤ C(c2 + d2)b

will do. We quote (O’Sullivan 2000, Lemma 1.1) with z = i to get
b = 1. If we use the inequality (see (Knopp 1974, Lemma 4))

(c2 + d2) ≤ |cz + d|2

y

1 + 4|z|2

y

we get: ∣∣∣Eε1,··· ,εn(z, s,~0)
∣∣∣ ≤ ∑

γ∈Γ∞\Γ
γ 6=I

∣∣∣∣∣
n∏

j=1

〈γ, αj〉

∣∣∣∣∣=(γz)σ

= C

(
1 + 4 |z|2

y

)n ∑
γ∈Γ∞\Γ

γ 6=I

=(γz)σ−n

We note that the sum is Oσ(y1−σ+n) by (Kubota 1973, p. 13) so we
get

≤ C ′

(
1 + 4 |z|2

y

)n

y1−σ+n

≤ C ′′y1−σ+2n

Hence we conclude that for σ > 2 + 2n we have Dε1,...,εn(z, s,~0) ∈
L2(Γ, dµ(z)). �

We define

〈f1dz + f2dz̄, g1dz + g2dz̄〉 = 2y2(f1ḡ1 + f2ḡ2)

δ(pdx+ qdy) = −y2(px + qy).
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Lemma 11. The conjugated operator L(~ε) is given by

L(~ε)h = ∆h+ 4πi
n∑

k=1

εk〈dh, wk〉 − 2πi

(
n∑

k=1

εkδ(wk)

)
h

−4π2

(
n∑

k,l=1

εkεl〈wk, wl〉

)
h. (3.6)

Proof. The proof uses induction on n. We start with n = 1

L(ε)h =U(ε)−14y2 ∂2

∂z∂z
U(ε)h

=U(ε)−14y2

(
U(ε)

∂2h

∂z∂z
+
∂U(ε)

∂z

∂h

∂z
+
∂U(ε)

∂z

∂h

∂z
+
∂2U(ε)

∂z∂z
h

)
If w1(z) = v1(z)dz + v2(z)dz we have Uz(ε) = 2πiεv1U(ε) and Uz(ε) =
2πiεv2U(ε). We therefore get

=∆h+ 8πiεy2(v1(z)hz + v2(z)hz) + 8πiy2∂v2

∂z
h− 16π2y2v1v2ε

2h

Using w1 = w1 we see that v1 = v2 and we get

=∆h+ 4πiε 〈dh, w1〉 − 2πi

(
−4y2∂v2

∂z

)
h− 4π2ε2 〈w1, w1〉 .

Using

−4y2∂v2

∂z
=− 2y2

(
∂v2

∂z
+
∂v1

∂z

)
=− y2

(
∂v2

∂x
− i

∂v2

∂y
+
∂v1

∂x
+ i

∂v1

∂y

)
= δ(w)

we obtain the result for n = 1. We now move on to the general result.
With the convention that U(εk) = U((0, . . . , 0, εk, 0, . . . , 0)) we see that

L(~ε)h =U(εn)−1U(ε1, . . . εn−1, 0)−1∆U(ε1, . . . εn−1, 0)U(εn)h

=U(εn)−1

(
∆U(εn)h+ 4πi

n−1∑
k=1

εk〈dU(εn)h,wk〉

−2πi

(
n−1∑
k=1

εkδ(wk)

)
U(εn)h− 4π2

(
n−1∑
k,l=1

εkεl 〈wk, wl〉

)
U(εn)h

)
.

We apply the result for one variable once more in the εn variable and
use the chain rule in the form

d(U(εn)h) = U(εn)dh+ 2πiεnU(εn)hwn
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to get the result. �

Lemma 11 gives

Lεk
(~0)h = 4πi〈dh, wk〉 − 2πi(δwk)h, (3.7)

Lεkεl
(~0)h = −8π2〈wk, wl〉h. (3.8)

and all higher order derivatives vanish. Differentiating the eigenvalue
equation

(L(~ε) + s(1− s))D(z, s,~ε) = 0 (3.9)

we get

(∆ + s(1− s))Dεk
(z, s,~0) = −

(
Lεk

(~0)D(z, s,~0)
)

(3.10)

and

(∆+s(1− s))Dε1,...,εn(z, s,~0) = −

(
n∑

k=1

Lεk
(~0)Dε1,.,ε̂k,.,εn(z, s,~0) (3.11)

+
n∑

k,l=1
k<l

Lεkεl
(~0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)

 .

Here ε̂k means that we have excluded εk from the list. When <(s) is
sufficiently large we can use Lemma 10 and invert (3.10) and (3.11) by
applying the resolvent of the Laplace operator, R(s) = (∆Γ+s(1−s))−1.
We get

Dεk
(z, s,~0) = −R(s)

(
Lεk

(~0)D(z, s,~0)
)

(3.12)

and

Dε1,...,εn(z, s,~0) = −R(s)

(
n∑

k=1

Lεk
(~0)Dε1,.,ε̂k,.,εn(z, s,~0) (3.13)

+
n∑

k,l=1
k<l

Lεkεl
(~0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)

 .

This will turn out to be identities of great importance for the proofs of
many results in this and the following chapter. Using these identities
we may now give a short proof of the analytic continuation of the
functions defined in a half-plane by (1.1)

Lemma 12. The functions Dε1...εn(z, s,~0) have meromorphic con-
tinuation to C. In <(s) > 1 the functions are analytic.
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Proof. The proof uses induction on n. For n = 0 the function
is the classical Eisenstein series and one of the many known proofs
may be found in (Kubota 1973). We note that by (3.7) and (3.8)

Lεk
(~0)Dε1,.,ε̂k,.,εn(z, s,~0) and Lεkεl

(~0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0) are compactly
supported. Hence from (3.13) and (Müller 1996, Theorem 1) (Or the
results cited in Section 2.4) the conclusion follows. �

From the above lemma, (3.4) and (1.9) we find that

∂nE(z, s,~ε)

∂ε1 . . . ∂εn

∣∣∣∣
~ε=~0

has meromorphic continuation and that in <(s) > 1 these functions are
analytic. By taking linear combinations of these (see (1.9)) we obtain
Theorem C.

Proposition 13. The sum defining Em,n(z, s) is absolutely con-
vergent whenever <(s) > 1.

Proof. Note that if we can prove the above for f = g and m = n
then we get the general result by appealing to the elementary inequality
2ab ≤ a2 + b2 for a, b ∈ R. This gives∣∣∣〈γ, f〉m〈γ, g〉n∣∣∣ ≤ 1

2

(
|〈γ, f〉|2m + |〈γ, g〉|2n) ,

and comparison with f = g and m = n type Eisenstein series gives the
result.

We now consider the case f = g and m = n. This follows a proof
due to Landau (See e.g. (Titchmarsh 1975, Section 9.2)). We write
F (z, s) = Em,m(z, s) Notice that in the case we are considering the
sum, ∑

γ∈Γ∞\Γ

|〈γ, f〉|2m=(γz)s, (3.14)

defining F (z, s) is convergent in a right halfplane if and only if it is
absolutely convergent in that halfplane. Assume now that this sum is
convergent for <(s) > c. Assume furthermore that F (z, s) is analytic
at s = c. We claim that there exists an ε0 > 0 such that the sum is
convergent for <(s) > c − ε0. Let a = c + 1. Then F (z, s) is analytic
at s = a, and has an absolute convergent power series expansion at a,

F (z, s) =
∞∑

k=0

F (k)(z, a)

k!
(s− a)k
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with convergence radius R > 1. Since the sum (3.14) is uniformly
convergent in every closed halfplane inside the domain of absolute con-
vergence we may calculate the derivative as the following sum of deriva-
tives

F (k)(z, a) =
∑

γ∈Γ∞\Γ

|〈γ, f〉|2m log(=(γz))k=(γz)a, (3.15)

and we hence get

F (z, s) =
∞∑

k=0

1

k!

∑
γ∈Γ∞\Γ

|〈γ, f〉|2m log(=(γz))k=(γz)a(s− a)k.

Since R > 1 there exists ε0 > 0 such that this is valid for s = c − ε
where ε ≤ ε0. The double series has nonnegative terms for this s from
some point =(γz) < 1 so we may change the order of summation and
get

F (z, c− ε) =
∑

γ∈Γ∞\Γ

|〈γ, f〉|2m=(γz)c−ε,

which settles the claim. By Theorem C we get the first singularity of
Em,m(z, s) at s = 1 or further to the left. �

Clearly Eε1,...,εn(z, s,~0) is also absolutely convergent for <(s) > 1
by the same proof. We immediately get the following corollary:

Corollary 14. For any fixed z ∈ H, ε > 0 we have

〈γ, f〉 = o(|cz + d|ε)
〈γ, α〉 = o(|cz + d|ε)

as |cz + d| → ∞.

Proof. Since the terms in an absolutely convergent series tend to
zero Proposition 13 implies that for any m ∈ N ,

〈γ, f〉m=(γz)2 = 〈γ, f〉m y2

|cz + d|4
→ 0.

Hence 〈γ, f〉 = o(|cz + d|4/m). Similar with 〈γ, α〉. �

We note that by picking z = i we get Theorem D. Hence we
“almost” recover the bound in Proposition 7 using completely different
methods.

Lemma 15. The function Dε1,...εn(z, s,~0) has the series representa-
tion

Dε1,...εn(z, s,~0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
−2πi

∫ γz

i∞
wk

)
=(γz)s, (3.16)
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when <(s) > 1.

Proof. Once more we use induction on n. The claim is true for
n = 0, since in this case D(z, s,~0) is the usual Eisenstein series. From
E(z, s,~ε) = U(~ε, z)D(z, s,~ε) we conclude that

Eε1,...,εn(z, s,~0) =
∑

~m∈{0,1}n

n∏
k=1

(
2πi

∫ z

i∞
wk

)mk

D
ε
1−m1
1 ,...,ε1−mn

n
(z, s,~0),

(3.17)

where ~m = (m1, . . . ,mn). We separate Dε1,...,εn(z, s,~0) by taking ~m =
~0. By inductive hypothesis we find that

Dε1,...,εn(z, s,~0) =

∑
γ∈Γ∞\Γ

 n∏
k=1

〈γ, wk〉−
∑

~m∈{0,1}n

~m6=~0

n∏
k=1

(
2πi

∫ z

i∞
wk

)mk
(
−2πi

∫ γz

i∞
wk

)1−mk

=(γz)s.

Since

〈γ, wk〉 = 2πi

∫ z

i∞
wk − 2πi

∫ γz

i∞
wk, (3.18)

for any z ∈ H, the result follows. �

Combining this with Proposition 8 (3), we see that, if z ∈ F and
=(z) < T , then

Dε1,...εn(z, s,~0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
−2πi

∫ γz

i∞
αk

)
=(γz)s. (3.19)

In particular

lim
T→∞

Dε1,...εn(z, s,~0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
−2πi

∫ γz

i∞
αk

)
=(γz)s, (3.20)

for all z ∈ H.

Lemma 16. For σ > 1 we have∑
γ∈Γ∞\Γ

∣∣∣∣∣
n∏

k=1

(
−2πi

∫ γz

i∞
αk

)∣∣∣∣∣=(γz)σ = O(y1−σ) (3.21)

as =(z) → ∞ for z ∈ F . In particular limT→∞Dε1,...εn(z, σ + it,~0) =
O(y1−σ).
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Proof. We have for σ > 1 (see (Kubota 1973, p.13))∑
γ∈Γ∞\Γ

γ 6=I

=(γz)σ = Oσ(y1−σ) (3.22)

as =(z) →∞. From Corollary 14 we see that if we fix e.g. z0 = i there
exists a constant C > 0 such that∣∣∣∣∣

n∏
k=1

〈γ, αk〉

∣∣∣∣∣ ≤ C=(γz0)
−ε.

this gives, using 〈I, αk〉 = 0,∑
γ∈Γ∞\Γ

∣∣∣∣∣
n∏

k=1

〈γ, αk〉

∣∣∣∣∣=(γz)σ ≤ C
∑

γ∈Γ∞\Γ
γ 6=I

=(γi)−ε=(γz)σ

If we use the inequality (see (Knopp 1974, Lemma 4))

(c2 + d2) ≤ |cz + d|2

y

1 + 4|z|2

y

this is majorized by

C
∑

γ∈Γ∞\Γ
γ 6=I

=(γz)σ−ε

(
1 + 4|z|2

y

)ε

= Oσ(y1−σ).

In the last equality we used (3.22). The claim now follows by induction

from (3.17) by isolating Dε1,...,εn(z, s,~0), using Lemma 15 and the fact
that

−2πi

∫ z

i∞
αk

is O(e−2πy) as =(z) →∞. �

Lemma 17. For <(s) > 1 we have∫
Γ\H

|〈d lim
T→∞

Dε1,...,ε̂j ,...εn(z, s,~0), αj〉|dµ(z) <∞.

Proof. Using (3.20) we see that for <(s) > 1

d lim
T→∞

Dε1,...,ε̂j ,...,εn(z, s,~0) =
∑

γ∈Γ∞\Γ

d

 n∏
k=1
k 6=j

(
−2πi

∫ γz

i∞
αk

)
=(γz)s

 .

(3.23)
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Using

d

(
−2πi

∫ γz

i∞
αk

)
= −2πiαk

d=(γz)s =
s

2y

(
−i
(
cz + d

cz + d

)
=(γz)sdz + i

(
cz + d

cz + d

)
=(γz)sdz

)
we find that

〈d lim
T→∞

Dε1,...,ε̂j ,...,εn(z, s,~0), αj〉 =

2y2

 n∑
l=1
l 6=j

−2πi
fl

2

fj

2

∑
γ∈Γ∞\Γ

n∏
k=1
k 6=j,l

(
−2πi

∫ γz

i∞
αk

)
=(γz)s


+
−is
2y

fj

2

∑
γ∈Γ∞\Γ

n∏
k=1
k 6=j

(
−2πi

∫ γz

i∞
αk

)(
cz + d

cz + d

)
=(γz)s


+ complex conjugate.

The claim now follows from Lemma 16, since fi(z) = O(e−2πy) as
=(z) →∞. �

Using this lemma we can prove the following important result

Lemma 18. For all j = 1, . . . , n and <(s) > 1∫
Γ\H

〈dDε1,...,ε̂j ,...εn(z, s,~0), wj〉dµ(z) → 0 as T →∞.

Proof. We start by showing that∫
Γ\H

〈d lim
T→∞

Dε1,...,ε̂j ,...εn(z, s,~0), αj〉dµ(z) = 0.

If we let FM = {z ∈ F |=(z) ≤ M} then by lemma 17 the left-hand
side is ∫

FM

〈d lim
T→∞

Dε1,...,ε̂j ,...εn(z, s,~0), αj〉dµ(z) + ε(T )



2. FINDING LAURENT EXPANSIONS USING PERTURBATION THEORY 33

where ε(T ) → 0 as T →∞. We have∫
FM

〈d lim
T→∞

Dε1,...,ε̂j ,...εn(z, s,~0), αj〉dµ(z) =∫
FM

∂

∂z

(
lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,~0)

) fj

2
dxdy (3.24)

+

∫
FM

∂

∂z

(
lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,~0)

) fj

2
dxdy.

For any real differentiable function h : U → C where U ⊂ C and
any bounded domain R ⊂ U with piecewise differentiable boundary
Stokes theorem implies that

2i

∫
R

∂

∂z
hdxdy =

∫
∂R

h.

We apply this to the second integral in (3.24). Since fj is holomorphic,
the integral equals

− i
2

∫
∂(FM )

lim
T→∞

Dε1,...,ε̂j ,...,εn(z, s,~0)fj.

The fundamental domain is the union of conjugated sides. These con-
jugated sides cancel in the integral. Hence this integral equals the line
integral along the top of the truncated fundamental domain FM . But
this goes to zero by lemma 16. We observe that when s is real the first
integral in (3.24) is the complex conjugate of the second one. Hence
this also vanishes and we have∫

Γ\H
〈d lim

T→∞
Dε1,...,ε̂j ,...εn(z, s,~0), αj〉dµ(z) = 0.

Using
∣∣∫ z

i∞wi

∣∣ ≤ ∣∣∫ z

i∞ αi

∣∣ and the same approach as in the proof of
lemma 17, we see that for <(s) > 1 there exist U(z, s) independent on
T such that ∣∣∣〈dDε1,...,ε̂j ,...,εn(z, s,~0), wj

〉∣∣∣ ≤ U(z, s)

and ∫
Γ\H

U(z, s)dµ(z) <∞.
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Hence for any given ε0 > 0 there exists a constant, M , independent on
T such that∣∣∣∣∫

Γ\H

(
〈d lim

T→∞
B(z, s), αj〉−〈dB(z, s), wj〉

)
dµ(z)

∣∣∣∣
≤
∣∣∣∣∫

FM

(
〈d lim

T→∞
B(z, s), αj〉−〈dB(z, s), wj〉

)
dµ(z)

∣∣∣∣+ ε0.

Here B(z, s) = Dε1,...,ε̂j ,...εn(z, s,~0). Hence if we choose T > M and use
(3.19), (3.20) and Proposition 8 (2), we see that the integral over FM

vanishes which finishes the proof. �

Using this we can now prove

Lemma 19. The function

lim
T→∞

(−R(s)Lεj
(~0)Dε1...,ε̂j ,...,εn(z, s,~0)) (3.25)

is regular at s = 1.

Proof. We shall write B(z, s) = Dε1,...,ε̂j ,...εn(z, s,~0). We note that
since αj is the real part of a holomorphic differential δ(αj) = 0 Since
δ(wj) = δ(αj) for =(z) < T (Proposition 8) we find from Lemma 18
that

lim
T→∞

∫
Γ\H

Lεj
(~0)B(z, s)dµ(z) = 0.

From (3.13) it is clear that s = 1 is not an essential singularity. Assume
that it is a pole of order k > 0. Hence

lim
s→1

(s− 1)k lim
T→∞

(−R(s)Lεj
(~0)B(z, s)) 6= 0. (3.26)

But

lims→1(s− 1)k lim
T→∞

(−R(s)Lεj
(~0)B(z, s))

= − lim
s→1

(s− 1)k lim
T→∞

(∫
Γ\H

r(z, z′, s)Lεj
(~0)B(z′, s)dµ(z′)

)
where r(z, z′, s) is the resolvent kernel

= − lim
s→1

lim
T→∞

(∫
Γ\H
(s− 1)r(z, z′, s)(s− 1)k−1Lεj

(~0)B(z′, s)dµ(z′)

)
= vol(Γ \H)−1 lim

T→∞

(∫
Γ\H

lim
s−1

(s− 1)k−1Lεj
(~0)B(z′, s)dµ(z′)

)
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since r(z, z′, s) has a simple pole with residue −vol(Γ \H)−1. See re-
mark 20

= vol(Γ \H)−1 lim
s→1

(s− 1)k−1 lim
T→∞

∫
Γ\H

Lεj
(~0)B(z′, s)dµ(z′)

= 0

by lemma 18. But this contradicts (3.26), which completes the proof.
�

Remark 20. Using the above lemma, (3.13) and the fact that the
resolvent kernel for ∆ respectively the Eisenstein series has expansions
at 1 of the form (see e.g (Venkov 1982, Theorem 2.2.6) or (2.2))

r(z, z′, s) =
vol(Γ \H)−1

s(1− s)
+

∞∑
m=0

r̃m(z, z′)(s− 1)m

=
−vol(Γ \H)−1

(s− 1)
+

∞∑
m=0

rm(z, z′)(s− 1)m,

(3.27)

respectively

E(z, s) =
vol(Γ \H)−1

s− 1
+

∞∑
m=0

Em(z)(s− 1)m, (3.28)

we may now in principle write down the full Laurent expansion of the
function limT→∞Dε1...εn(z, s,~0) at s = 1 in terms of rm(z, z′), Em(z)
and the real harmonic differentials. From this and (3.4) we may also cal-

culate the Laurent expansion of Eε1,...,εn(z, s,~0) and hence of Em,n(z, s).
Since general expressions are quite complicated and the combinatorics
become quite cumbersome we restrict ourselves to a some particular
cases of special interest.

We let Σ̃2m be the elements of the symmetric group on 2m letters
1, 2, . . . , 2m for which σ(2j − 1) < σ(2j) for j = 1, . . . ,m. We notice
that this has (2m)!/2m elements, which is easily seen by induction.

Lemma 21. If n is even limT→∞Dε1,...εn(z, s,~0) has a pole at s = 1
of at most order n/2 + 1. The (s− 1)n/2+1 coefficient in the expansion

of the function limT→∞Dε1,...εn(z, s,~0) around s = 1 is

(−8π2)n/2

vol(Γ \H)n/2+1

∑
σ∈Σ̃n

n/2∏
r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

 .

If n is odd, limT→∞Dε1,...εn(z, s,~0) has a pole at s = 1 of at most order
(n− 1)/2.
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Proof. For n = 0 the claim is obvious, and for n = 1 (3.12) and
Lemma 19 give the result. Assume that the result is true for all n ≤ n0.
By (3.13), (3.8), Lemma 19 and the fact that

lim
T→∞

(−R(s)(−8π2 〈wk, wl〉Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)))

can have pole order at most 1 more than limT→∞Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0))
at s = 1, we obtain the result about the pole orders. For even n we
notice that by induction and using (3.27) we find that the (s− 1)n/2−1

coefficient is

−8π2

vol(Γ \H)

(−8π2)(n−2)/2

vol(Γ \H)(n−2)/2+1
·

n∑
k,l=1
k<l

∑
σ∈Σ̃n−2

(n−2)/2∏
r=1

′
∫

Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

∫
Γ\H
〈αk, αl〉 dµ(z),

where the prime in the product means that we have excluded αk, αl

from the product and enumerated the remaining differentials accord-
ingly. The result follows. �

Using this we can prove

Theorem 22. For all n Eε1,...εn(z, s,~0) has a pole at s = 1 of at
most order [n/2] + 1. If n is even the (s − 1)[n/2]+1 coefficient in the

Laurent expansion of Eε1,...εn(z, s,~0) is

(−8π2)n/2

vol(Γ \H)n/2+1

∑
σ∈Σ̃n

n/2∏
r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

 .

If n is odd the (s − 1)[n/2]+1 coefficient in the Laurent expansion of

Eε1,...εn(z, s,~0) is

(−8π2)[n/2]

vol(Γ \H)[n/2]+1

n∑
k=1

2πi ∫ z

i∞
αk

∑
σ∈Σ̃n−1

[n/2]∏
r=1

′
∫

Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

 ,

where the prime in the the product means that we have excluded αk from
the product and enumerated the remaining differentials accordingly.

Proof. This follows from (3.17) Lemma 21, and the fact that
Eε1,...εn(z, s) is independent on the cohomology class of the real dif-
ferentials involved. �
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We notice that

〈<(f(z)dz),<(f(z)dz)〉 = 〈=(f(z)dz),=(f(z)dz)〉 = y2 |f(z)|2 ,
(3.29)

while
〈<(f(z)dz),=(f(z)dz)〉 = 0. (3.30)

Hence many of the involved integrals may be expressed in terms of the
Petersson norm defined in the weight two case by

‖f‖ =

(∫
Γ\H

y2 |f(z)|2 dµ(z)

)1/2

. (3.31)

We shall write E<l,=n−l
(z, s) := Eε1,...,εn(z, s,~0) where αi = <(f(z)dz)

for i = 1, . . . , l and αi = =(f(z)dz) for i = l + 1, . . . , n. As a special
case of Theorem 22 we have the following

Theorem 23. The function E<2m,=2n
(z, s) has a pole of order m+

n + 1 at s = 1, and the (s − 1)−(m+n+1) coefficient in the Laurent
expansion expansion is

(−8π2)
m+n

vol(Γ \H)m+n+1 ‖f‖
2(m+n) (2m)!(2n)!

2m+n

(
m+ n

n

)
. (3.32)

If n or m is odd then the pole order of E<m,=n
(z, s) at s = 1 is strictly

less than (m+ n)/2 + 1.

Proof. The first part follows from Theorem 22, (3.29) and (3.30)
once we count the number of nonzero terms in the sum indexed by

Σ̃2m+2n. This is the set of elements{
σ ∈ Σ̃2m+2n

∣∣∣∣σ(2i− 1), σ(2i) ≤ 2m or σ(2i− 1), σ(2i) > 2m

for all i = 1, . . . ,m+ n

}
.

We shall denote this by Σ̃2m
2m+2n. This set contains

(2m)!

2m

(2n)!

2n

(
m+ n

n

)
elements which can be seen by noticing that each element may be

obtained uniquely by applying σ1 ∈ Σ̃2m to 1, . . . , 2m and σ2 ∈ Σ̃2n

to 2m+ 1, . . . , 2m+ 2n and then shuffling (σ1(1), σ1(2)), . . . , (σ1(2m−
1), σ1(2m)) with (σ2(2m+1), σ2(2m+2)), . . . , (σ2(2m+2n−1), σ2(2m+
2n)).

If m+ n is odd then Theorem 22 says that the pole order at s = 1
is at most [(m+ n)/2] + 1 which is strictly less than (m+ n)/2 + 1.

If m and n is odd then Theorem 22 says that the pole order at s = 1
is at most (m + n)/2 + 1, but since one of the factors in the product
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of the (m + n)/2 + 1 term has to be zero the pole is at most of order
(m+ n)/2. �

We now turn to Em,n(z, s). We assume f = g.

Theorem 24 (See also (Goldfeld & O’Sullivan 2003)). At s = 1,
E1,0(z, s) has a simple pole with residue

1

vol(Γ \H)

(
2πi

∫ z

i∞
f(z)dz

)
.

Proof. This follows directly from Theorem 22 and

E1,0(z, s) = E<(z, s) + iE=(z, s).

�

Theorem 25. The Eisenstein series Em,m(z, s) has a pole of order
m + 1. The (s − 1)m+1 coefficient in the Laurent expansion around
s = 1 is

(16π2)m

vol(Γ \H)m+1m!2 ‖f‖2m .

Proof. Since 〈γ, f〉 = 〈γ,<(f(z)dz)〉+ i 〈γ,=(f(z)dz)〉 we have

|〈γ, f〉|2m = (−1)m

m∑
n=0

(
m

n

)
〈γ,<(f(z)dz)〉2n 〈γ,=(f(z)dz)〉2(m−n) .

Hence

Em,m(z, s) = (−1)m

m∑
n=0

(
m

n

)
E<2n,=2(m−n)

(z, s).

From Theorem 23 we hence find that the leading term of Em,m(z, s) is

(8π2)m

vol(Γ \H)m+1 ‖f‖
2m

m∑
n=0

(
m

n

)
(2n)!(2(m− n))!

2m

(
m

n

)
.

The sum equals (m!)22m from which the result follows. �

Theorem 26. At s = 1, E2,0(z, s) has a simple pole with residue

1

vol(Γ \H)

(
2πi

∫ z

i∞
f(z)dz

)2

while E1,1 has a double pole with residue

4π2

vol(Γ \H)

∣∣∣∣∫ z

i∞
f(z)dz

∣∣∣∣2 (3.33)

+
16π2

vol(Γ \H)

∫
Γ\H

(E0(z
′)− r0(z, z

′))y′
2 |f(z′)|2 dµ(z′).
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The coefficient of (s− 1)−2 is

16π2 ‖f‖2

vol(Γ \H)2
.

Proof. We start by noticing that as a special case of (3.17) we
have

Eε1ε2(z, s,~0) =− 4π2

∫ z

i∞
α1

∫ z

i∞
α2E(z, s) + 2πi

∫ z

i∞
α1 lim

T→∞
Dε2(z, s,~0)

+ 2πi

∫ z

i∞
α2 lim

T→∞
Dε1(z, s,~0) + lim

T→∞
Dε1ε2(z, s,~0).

The first term has a simple pole at s = 1 with residue

−4π2

vol(Γ \H)

∫ z

i∞
α1

∫ z

i∞
α2,

while the two middle terms are regular at s = 1 by (3.12) and Lemma
19. The singular part of the expansion of the fourth term equals the
singular part of the expansion of

lim
T→∞

(−R(s)(Lε1ε2E(z, s))) = 8π2

∫
Γ\H

r(z, z′, s) 〈α1, α2〉E(z, s).

This follows from (3.13) and Lemma 19. But by using (3.27) and (3.28)
we find that this is

−8π2

vol(Γ \H)2

∫
Γ\H
〈α1, α2〉 dµ(z)(s− 1)−2

+
−8π2

vol(Γ \H)

∫
Γ\H

(E0(z
′)− r0(z, z

′)) 〈α1, α2〉 dµ(z′)(s− 1)−1.

Hence we know the singular part of the expansion of Eε1,ε2(z, s) at
s = 1. It is easy to see that

E2,0(z, s) = E<2
(z, s) + 2iE<,=(z, s)− E=2

(z, s)

E1,1(z, s) = −E<2
(z, s)− E=2

(z, s).

Using the above explicit expressions for the expansions of Eε1,ε2(z, s,~0)
now gives the result when using (3.29) and (3.30). �

We note that this is Theorem E. We state, without proof, the result
for the m+ n = 3 case.

Theorem 27. At s = 1 E3,0(z, s) has a simple pole with residue

1

vol(Γ \H)

(
2πi

∫ z

i∞
f(z)dz

)3
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while E2,1(z, s) has a double pole with leading term

32π2

vol(Γ \H)2

(
2πi

∫ z

i∞
f(z)dz

)
‖f‖2 .

3. Growth on vertical lines

By Proposition 13 we see that Em,n(z, s) = OK(1) for <(s) = σ > 1
and z in a fixed compact set K. In this section we show that when we
only require σ > 1/2 then we have at most polynomial growth on the
line <(s) = σ.

We take the opportunity to correct Theorem 1.5 in (Petridis 2002).
We first prove :

Lemma 28. The standard nonholomorphic Eisenstein series E(z, s)
has polynomial growth in s in <(s) ≥ 1/2. More precisely we have for
any ε > 0 and 1/2 ≤ σ ≤ 1

E(z, σ + it) = OK(|t|1−σ+ε) (3.34)

for all z ∈ K, a fixed compact set in Γ \H.

Proof. According to (Selberg 1990) the scattering function φ(s)
is given by

φ(s) =

√
πΓ(s− 1/2)

Γ(s)
ab1−2sL(s),

where a, b are positive constants and L(s) is a Dirichlet series with
constant term 1. In particular, L(s) tends to 1 as <(s) → ∞. This
implies that for <(s) sufficiently large, say <(s) ≥ σ0 > 1, we have
|L(s)− 1| ≤ 1/2. Hence

E(z, s)

L(s)

is bounded for <(s) ≥ σ0 and fixed. By the functional equation we
have

E(z,−σ0 + it)

L(−σ0 + it)
=
φ(−σ0 + it)E(z, 1 + σ0 − it)

L(−σ0 + it)

=E(z, 1 + σ0 − it)
Γ(−σ0 + it− 1/2)

Γ(−σ0 + it)

√
πab1+2σ0−2it.

(3.35)

The asymptotics of the Gamma function (Stirling’s formula, see. e.g.
(Ivić 1985, A.34))

|Γ(σ0 + it)| ∼
√

2πe−
1
2
π|t| |t|σ0−1/2 as |t| → ∞
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imply that the quotient of the Gamma factors in (3.35) is asymptotic to

|t|−1/2 as |t| → ∞. In particular, we get that E(z, s)/L(s) is bounded
on the line <(s) = −σ0. We want to use Phragmén-Lindelöf to conclude
that it is bounded for −σ0 ≤ <(s) ≤ σ0, so we need to verify that
E(z, s)/L(s) is of finite order in this strip.

The poles of E(z, s) and φ(s) are the same (See (Iwaniec 1995,
Theorem 6.9-11)) So E(z, s)/L(s) has no poles, with the possible ex-
ception of finite many in any vertical strip coming from Γ(s − 1/2).
These poles γ1, γ2, . . . γk can be easily dealt with by considering (s −
γ1)(s− γ2) · · · (s− γk)E(z, s)/L(s). Since φ(s) is a meromorphic func-
tion of order ≤ 2 (see (Selberg 1989, Theorem 7.3) or (Müller 1992,
Theorem 3.20)) and Γ(s) has order 1, we see that L(s) is of finite order
and by (Hejhal 1983, Th. 12.9(d) p. 164) we see that E(z, s) is of
finite order. We can therefore apply the Phragmén-Lindelöf principle
(see e.g. (Patterson 1988, Appendix 5)) in the strip −σ0 ≤ <(s) ≤ σ0.

Since φ(s) is bounded for <(s) ≥ 1/2, |=(s)| > 1 (see (Müller 1983,
Lemma 8.8) or (Selberg 1989, (8.6))) we see, using Stirlings formula
again, that

E(z, s) =
E(z, s)

L(s)
φ(s)

Γ(s)

Γ(s− 1/2)
(
√
πa)−1b2s−1

is O(|t|1/2) for <(s) ≥ 1/2.
Now we can even improve the result by applying Phragmén-Lindelöf

in the strip 1/2 ≤ <(s) ≤ 1 + δ for some small δ > 0 using the
fact that E(z, s) is bounded for <(s) = σ > 1. The finite number
of poles s0, s1, . . . sk in this region can be dealt by multiplying with
(s− s0)(s− s1) · · · (s− sk). We get as result

E(z, s) = OK(|t|1−σ+ε)

for all z ∈ K, a fixed compact set in Γ \H. �

Remark 29. We remark that the functions Ez(z, s) and Ez̄(z, s)
have no poles in <(s) > 1/2, s /∈ (1/2, 1], and that they are holomorphic
on the line <(s) = 1/2. This follows from (Roelcke 1966, Satz 10.3 and
Satz 10.4 1)), where this statement is proved for the Eisenstein series
Ek(z, s) of weight k. If we set

Ek(z, s) =
∑

γ∈Γ∞\Γ

(
cz̄ + d

cz + d

)k/2

=(γz)s,
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then Ez(z, s) = −isE2(z, s)/(2y) and Ez̄(z, s) = isE−2(z, s)/(2y),
since by termwise differentiation we have

Ez̄(z, s) =
is

2

∑
γ∈Γ∞\Γ

=(γz)s−1(cz + d)
−2

Ez(z, s) =
−is
2

∑
γ∈Γ∞\Γ

=(γz)s−1(cz + d)−2.

Lemma 30. The function Dεj
(z, s,~0) has polynomial growth in s in

<(s) > 1/2. More precisely we have for any ε > 0 and 1/2 < σ ≤ 1

Dεj
(z, σ + it,~0) = O(|t|5(1−σ)+ε). (3.36)

The constant involved depends on σ, wj and ε

Proof. We have by (3.13) and (3.7)

Dεj
(z, s,~0) = −R(s)(4πi〈dE(z, s), wj〉 − 2πi(δwj)E(z, s)). (3.37)

We need to control dE(z, s) = Ez(z, s)dz + Ez̄(z, s)dz̄ in some sense.
We note that by differentiating the functional equation for E(z, s) we
get the functional equation

Ez(z, s) = φ(s)Ez(z, 1− s).

Since Ez(z, s) has zero Fourier coefficient

−i(sys−1 + φ(s)(1− s)y−s)/2,

which could vanish only for s = 0 or s = 1/2, Ez(z, s) does not vanish
for any s ∈ C\{1/2, 1}. Since we know that that Ez(z, s) has no poles
for <(s) ≥ 1/2, s /∈ (1/2, 1] (see Remark 29) we can conclude that
the poles of Ez(z, s) are the same as the poles E(z, s) with the same
multiplicity with the exception of finitely many in the interval [0, 1].

We repeat the Phragmén-Lindelöf argument for E(z, s)/L(s) with
Ez(z, s)/L(s). The only difference is that since

Ez(z, s) = − is

2y
E2(z, s)

with E2(z, s) bounded on vertical lines for <(s) = σ > 1 we start
with the bound Ez(z, s) = O(|t|) when <(s) = σ > 1 and we get

Ez(z, s) = O(|t|3/2) for <(s) ≥ 1/2. Applying Phragmén-Lindelöf again
in 1/2 ≤ <(s) ≤ 1 + ε as above we find Ez(z, s) = OK(|t|2−σ+ε).
Similarly Ez̄(z, s) = OK(|t|2−σ+ε). This gives a L2 = L2(Γ \ H, dµ)
bound for the function in (3.37) to which we apply the resolvent. Since

‖R(z)‖∞ ≤ 1

dist (z, SpecA)
(3.38)
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for the resolvent of a general self-adjoint operator A on a Hilbert space
and

dist(s(1− s), Spec∆) ≥ |=(s(1− s))| = |t| (2σ − 1)

we get for 1/2 < σ = <(s) ≤ 1∥∥∥Dεj
(z, s,~0)

∥∥∥
L2

= Oσ

(
|t|2−σ+ε

|t| (2σ − 1)

)
= Oσ(|t|1−σ+ε).

We finally need to get a pointwise bound from the L2 bound, for which
we use the Sobolev embedding theorem (see (Warner 1983, 6.22 Corol-
lary (b))), which in dimension 2 implies that

‖u‖∞ ≤ c ‖u‖H2 ,

where for any second order elliptic operator P there exist a c′ such that

‖u‖H2 ≤ c′(‖u‖L2 + ‖Pu‖L2).

(See (Warner 1983, 6.29)) In our case Dεj
(z, s,~0) we have

∆u = −(s(1− s)u+ Lεj
(~0)E(z, s),

and since we already evaluated Dεj
(z, s,~0) Lεj

(~0)E(z, s) in L2-norm we

obtain Dεj
(z, s,~0) = OK(|t|3−σ+ε) We now apply Phragmén-Lindelöf

again in the strip 1/2 + δ ≤ <(s) ≤ 1 + δ for some small δ > 0 gives
the result. �

Lemma 31. The function Dε1,...,εn(z, s,~0) has polynomial growth in
t in <(s) > 1/2. More precisely we have for any ε > 0 and 1/2 < σ ≤ 1

Dε1,...,εn(z, σ + it,~0) = O(|t|(6n−1)(1−σ)+ε). (3.39)

The involved constant depends on ε, σ and w1, . . . , wn.

Proof. This is induction in n. For n = 1 we refer to Lemma 30.
We now assume that

Dε1,...,εm(z, σ + it,~0) = O(|t|(6m−1)(1−σ)+ε) (3.40)

Lεk
(~0)Dε1,.,ε̂k,.,εm(z, s,~0) = O(|t|(6m−1)(1−σ)+ε) (3.41)

whenever m ≤ n − 1. By (3.13) we see that we need to estimate the
two type of terms

Lεkεl
(0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)

Lεk
(~0)Dε1,.,ε̂k,.,εn(z, s,~0)
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when we apply the resolvent. We can control the first (in L2) by in-

duction hypothesis as we note that Lε1ε2(~0) is a compactly supported
multiplication operator (see 3.8). We get∥∥∥Lεkεl

(0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)
∥∥∥

L2
= O

(
|t|(6(n−2)−1)(1−σ)+ε

)
.

By using that wi is compactly supported we easily deduce from (3.7)
that∥∥∥Lεk

(0)Dε1,.,ε̂l,.,εn(z, s,~0)
∥∥∥

L2
≤ C

(∥∥∥Dz,ε1,.,ε̂k,.,εn(z, s,~0)
∥∥∥

L2(O)
+∥∥∥Dz,ε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥L2(O) +
∥∥∥Dε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
L2(O)

)
,

(3.42)

where O is an open set lying between the support of w1 and some other
compact set. We now evaluate these three terms separately. To handle
the first term we note that∥∥∥Dz,ε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
L2(O)

≤
∥∥∥Dε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
H1(O)

≤
∥∥∥Dε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
H2(O)

≤c′
(∥∥∥Dε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
L2(O)

+
∥∥∥∆Dε1,.,ε̂k,.,εn(z, s,~0)

∥∥∥
L2(O)

)
.

(3.43)

We note that by (3.13) and the induction hypothesis∥∥∥∆Dε1,.,ε̂k,.,εn(z, s,~0)
∥∥∥

L2(O)
= O(|t|(6(n−1)−1))(1−σ)+ε+2). (3.44)

Hence the left hand side of (3.43) is O(|t|(6(n−1)−1)(1−σ)+ε+2). The sec-
ond term of (3.42) may be evaluated in the same manner, while the
third term is even smaller. We thus get∥∥∥Lεk

(0)Dε1,.,ε̂k,.,εn(z, s,~0)
∥∥∥

L2
= O(|t|(6(n−1)−1)(1−σ)+ε+2) (3.45)

By (3.13), (3.38) and the above we find∥∥∥Dε1,...,εn(z, s,~0)
∥∥∥

L2
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≤ ‖R(s)‖∞

∥∥∥∥∥
(

n∑
k=1

Lεk
(~0)Dε1,.,ε̂k,.,εn(z, s,~0)

+
n∑

k,l=1
k<l

Lεkεl
(~0)Dε1,.,ε̂k,.,ε̂l,.,εn(z, s,~0)


∥∥∥∥∥∥∥

L2

= O(t(6(n−1)−1)(1−σ)+ε+1).

To get a pointwise bound we also need∥∥∥∆Dε1,...,εn(z, s,~0)
∥∥∥

L2
= O(|t|(6(n−1)−1)(1−σ)+1+2+ε), (3.46)

which follows from (3.38) and the above. From the Sobolev embedding
theorem we get∥∥∥Dε1,...,εn(z, s,~0)

∥∥∥
∞
≤ C

∥∥∥Dε1,...,εn(z, s,~0)
∥∥∥

H2

= O
(
|t|(6(n−1)−1)(1−σ)+3+ε

)
Applying Phragmén-Lindelöf once again in the strip 1/2 + δ ≤ <(s) ≤
1 + δ finishes the proof. �

We notice that we can get polynomial bounds on Dε1,...,εn(z, s) with-
out using Lemma 30. We would then have to start the induction in
Lemma 31 at n = 0 by citing Lemma 28. This would lead to slightly
larger exponents. Using the above lemma we conclude

Theorem 32. The functions Eε1,...,εn(z, s,~0) and Em,n have polyno-
mial growth in t in <(s) ≥ 1/2. More precisely we have for any ε > 0
and 1/2 < <(s) ≤ 1

Eε1,...,εn(z, s,~0) = O(|t|(6n−1)(1−σ)+ε). (3.47)

Em,n(z, s) = O(|t|(6(m+n)−1)(1−σ)+ε). (3.48)

The involved constant depends on ε, σ, f , g and α1, . . . , αn.

Hence we have also proved Theorem F.

4. Estimating various sums involving modular symbols

Using the results of the previous two sections we would now like to
obtain asymptotics as T →∞ for sums like∑

γ∈Γ∞\Γ
‖γ‖z≤T

ωγ (3.49)
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where ωγ = 1, 〈γ, α1〉 · · · 〈γ, αn〉 or ωγ = 〈γ, f〉m 〈γ, g〉
n
. Here ‖γ‖z =

|cz + d|2 with c, d the lower row in γ and z ∈ H. We let

Ẽ(z, s) =
∑

γ∈Γ∞\Γ

ωγ=(γz)s,

and assume that this is absolutely convergent for <(s) > 1, that it has
meromorphic continuation to <(s) ≥ h where h < 1, and that in this
region it has at most polynomial growth on vertical lines as a function
of s. We further assume that s = 1 is the only pole in <(s) ≥ h, and
that for all ε > 0

ωγ = O(‖γ‖ε
z) as ‖γ‖z →∞. (3.50)

We note that Theorem C, Corollary 14 and Theorem 32 establish these
properties for the relevant Eisenstein series.

Let φU : R → R, U ≥ U0 , be a family of smooth decreasing
functions with

φU(t) =

{
1 if t ≤ 1− 1/U

0 if t ≤ 1 + 1/U,

and φ
(j)
U (t) = O(U j) as U →∞. For <(s) > 0 we let

RU(s) =

∫ ∞

0

φU(t)ts−1dt

be the Mellin transform of φU . Then we have

RU(s) =
1

s
+O

(
1

U

)
as U →∞ (3.51)

and for any c > 0

RU(s) = O

(
1

|s|

(
U

1 + |s|

)c)
as |s| → ∞. (3.52)

Both estimates are uniform for <(s) bounded. The first is a mean value
estimate while the second is successive partial integration and a mean
value estimate. The Mellin inversion formula now gives∑

γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=

∑
γ∈Γ∞\Γ

ωγ
1

2πi

∫
<(s)=2

RU(s)

(
‖γ‖z

T

)−s

ds

=
1

2πi

∫
<(s)=2

Ẽ(z, s)

ys
RU(s)T sds.

We note that by (3.52) the integral is convergent as long as Ẽ(z, s)
has polynomial growth on vertical lines. We now move the line of
integration to the line <(s) = h with h < 1 by integrating along a box
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of some height and then letting this height go to infinity. Assuming the
polynomial bounds on vertical lines the Phragmén-Lindelöf principle
implies that there is a uniform polynomial bound O(ta) in h ≤ <(s) ≤ 2
(excluding a small circle around s = 1) and using (3.52) we find that the
contribution from the horizontal sides goes to zero. Since we assume
that s = 1 is the only pole of the integrand with <(s) ≤ h then using
Cauchy’s residue theorem we obtain

1

2πi

∫
<(s)=2

Ẽ(z, s)

ys
RU(s)T sds

= Res
s=1

(
Ẽ(z, s)

ys
RU(s)T s

)
+

1

2πi

∫
<(s)=h

Ẽ(z, s)

ys
RU(s)T sds.

If we choose c = a + ε the last integral is convergent and O(T hUa+ε)
uniformly for z in a compact set.

Assume that Ẽ(z, s) has a pole of order l with (s− 1)−l coefficient
a−l then if l > 1 we have

Res
s=1

(
Ẽ(z, s)

ys
RU(s)T s

)

=
1

(l − 1)!
lim
s→1

dl−1

dsl−1

(
(s− 1)l

(
Ẽ(z, s)

ys
RU(s)T s

))

=
1

(l − 1)!

∑
n1+n2+n3=l−1

∂n1(s− 1)lẼ(z, s)/ys

∂sn1

∣∣∣∣∣
s=1

∂n2RU(s)

∂sn2

∣∣∣∣
s=1

∂n3T s

∂sn3

∣∣∣∣
s=1

The first factor in the sum is independent on U and T , while the second
is independent of T and bounded in U . The third factor has leading
term T (log T )n3 and a reminder O(log T n3−1). Hence the leading term
is the one corresponding to n1 = n2 = 0, n3 = l − 1 and we get, using
(3.51),

=
a−l

(l − 1)!y
T (log T )l−1 +O(T (log T )l−2 + T log T l−1/U).

This gives∑
γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=

a−l

(l − 1)!y
T (log T )l−1

+O(T (log T )l−2 + T log T l−1/U + T hUa+ε).
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If l = 1 then by (3.51)

Res
s=1

(
Ẽ(z, s)

ys
RU(s)T s

)
=
a−1

y
T +O(T/U),

and we get∑
γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=
a−1

y
T +O(T/U + T hUa+ε).

If Ẽ(z, s) has a nonsimple pole we choose U = log T and we get∑
γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=

a−l

(l − 1)!y
T (log T )l−1+O(T (log T )l−2). (3.53)

In the simple pole case we choose U = T (1−h)/(a+1+ε) in order to balance
the error terms and we get∑

γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=
a−1

y
T +O(T

a+h+ε
a+1+ε ). (3.54)

At this point we note that if ωγ is non-negative for all γ ∈ Γ∞ \ Γ, then

by further requiring φU(t) = 0 if t ≥ 1 and φ̃U(t) = 1 for t ≤ 1, we
have ∑

γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
≤

∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ ≤
∑

γ∈Γ∞\Γ

ωγφ̃U

(
‖γ‖z

T

)

from which it easily follows that the middle sum has an asymptotic
expansion. As an application we use this on the usual nonholomorphic
Eisenstein series and from the above, Theorem 4 and Lemma 28 we
find that ∑

γ∈Γ∞\Γ
‖γ‖z≤T

1 =
T

yvol(Γ \H)
+O(T/U + T hU1−h+ε), (3.55)

where we have used that we may choose a = 1−h+ ε (see Lemma 28).

We choose U = T
1−h

2−h+ε to balance the error terms, and get

Lemma 33. Assume that the only pole of E(z, s) in <(s) ≥ h is
s = 1. Then ∑

γ∈Γ∞\Γ
‖γ‖z≤T

1 =
T

yvol(Γ \H)
+O(T

1
2−h

+ε). (3.56)



4. ESTIMATING VARIOUS SUMS INVOLVING MODULAR SYMBOLS 49

Using this lemma we can now deal with the general case. To get a
result without φU from (3.53) and (3.54) we notice that if we choose
φU such that φU(t) = 1 for t ≤ 1 then∑

γ∈Γ∞\Γ

ωγφU

(
‖γ‖z

T

)
=

∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ +
∑

γ∈Γ∞\Γ
T<‖γ‖z≤T (1+1/U)

ωγφU

(
‖γ‖z

T

)
.

Using (3.50) we see that we may evaluate the last sum in the following
way. For any ε > 0 this is less than a constant times

(T (1 + 1/U))ε
∑

γ∈Γ∞\Γ
T<‖γ‖z≤T (1+1/U)

1 ≤ (2T )ε
∑

γ∈Γ∞\Γ
T<‖γ‖z≤T (1+1/U)

1.

The sum is O(T/U) + O(T
1

2−h
+ε) by Lemma 33. Using this with the

above choices of U we find

Theorem 34. Assume that Ẽ(z, s) has a pole at s=1 of order l
with (s− 1)−l coefficient a−l. If l = 1, i.e. if the pole is simple then∑

γ∈Γ∞\Γ
‖γ‖z≤T

ωγ =
a−1

y
T +O(Tmax(a+h

a+1
, 1
2−h)+ε).

If l > 1 then ∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ =
al

(l − 1)!y
T log T l−1 +O(log T l−2).

Using this we now get an expansion of the summatory function
(3.49) in all the cases that we studied in section 2. We only state the
result in a few cases.

Corollary 35. Let α = <(f(z)dz) and β = <(f(z)dz). Then∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, α〉2m 〈γ, β〉2n =
(−8π2)m+n ‖f‖2m+2n

yvol(Γ \H)m+n+1

(2m)!

m!2m

(2n)!

n!2n
T logm+n T

(3.57)

+O(T logm+n−1 T ),

and if m or n is odd then∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, α〉m 〈γ, β〉n = O(T logk T ) (3.58)

for some k ∈ N strictly less than (m+ n)/2.
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Proof. This follows from Theorem 34, Theorem 32, Corollary 14
and Theorem 23, once we notice that

(2m)!(2n)!

2m+n(m+ n)!

(
m+ n

n

)
=

(2m)!

m!2m

(2n)!

n!2n
. (3.59)

�

Corollary 36. We have∑
γ∈Γ∞\Γ
‖γ‖z≤T

|〈γ, f〉|2m =
(16π2)mm!

yvol(Γ \H)m+1
‖f‖2m T logm T +O(T logm−1 T ).

(3.60)

Proof. This follows from Theorem 34, Theorem 32, Corollary 14
and Theorem 25. �

We notice that this settles Goldfelds conjecture (1.4) in the negative
once we choose z = i.

Corollary 37. There exists δ1 > 0 such that∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, f〉 =
1

yvol(Γ \H)

(
−2πi

∫ z

i∞
f(τ) dτ

)
T +O(T 1−δ1). (3.61)

Proof. This follows from Theorem 34, Theorem 32, Corollary 14
and Theorem 24. �

We note that by picking z = i this reproves (1.3).

Corollary 38. There exists δ2 > 0 such that∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, f〉2 =
1

yvol(Γ \H)

(
−2πi

∫ z

i∞
f(τ) dτ

)2

T +O(T 1−δ2).

(3.62)

Proof. This follows from Theorem 34, Theorem 32, Corollary 14
and Theorem 26. �

Remark 39. How small we can prove 1 − δi to be in the above
corollaries depends of course on how good polynomial bounds we have
and how far to the left we may move the line of integration. Assuming
no eigenvalues s(1 − s) ∈ (0, 1/4) we can move just to the right of
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s = 1/2, and using the bound of Theorem 32 we get

1− δ1 =
6

7
+ ε

1− δ2 =
12

13
+ ε

for any ε > 0.

5. The distribution of modular symbols

We now show how to obtain a distribution result for the modular
symbols from the asymptotic expansions of Corollary 35. We renor-
malize the modular symbols in the following way. Let

〈̃γ, f〉 =

√
vol(Γ \H)

8π2 ‖f‖2 〈γ, f〉

〈̃γ, α〉 =

√
vol(Γ \H)

8π2 ‖f‖2 〈γ, α〉

〈̃γ, β〉 =

√
vol(Γ \H)

8π2 ‖f‖2 〈γ, β〉

where α = <(f(z)dz), β = =(f(z)dz). Let furthermore

(Γ∞ \ Γ)T := {γ ∈ Γ∞ \ Γ| ‖γ‖z ≤ T} . (3.63)

By Lemma 33 we have

#(Γ∞ \ Γ)T =
T

vol(Γ \H)y
+O(T 1−δ), (3.64)

for some δ > 0. Now let XT be the random variable with probability
measure

P (XT ∈ R) =

#

{
γ ∈ (Γ∞ \ Γ)T

∣∣∣∣ 〈̃γ,f〉√
log‖γ‖z

∈ R
}

#(Γ∞ \ Γ)T
. (3.65)

for R ⊂ C (we set ˜< γ, α >/
√

log ‖γ‖z = 0 if ‖γ‖z ≤ 1. Note that
there are only finitely many such elements.) We consider the moments
of XT

Mn,m(XT ) =
∑

γ∈(Γ∞\Γ)T

[
<
(

〈̃γ,f〉√
log‖γ‖z

)]n [
=
(

〈̃γ,f〉√
log‖γ‖z

)]m

#(Γ∞ \ Γ)T
, (3.66)
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and note that

<(〈̃γ, f〉) = i〈̃γ, β〉

=(〈̃γ, f〉) = −i〈̃γ, α〉.

By partial summation we have

Mn,m(XT ) =
in+m(−1)m

#(Γ∞ \ Γ)T

 ∑
γ∈(Γ∞\Γ)T

〈̃γ, β〉
n

〈̃γ, α〉
m 1

log T (m+n)/2

+
m+ n

2

∫ T

0

∑
γ∈(Γ∞\Γ)t

〈̃γ, β〉
n

〈̃γ, α〉
m 1

t(log t)(m+n)/2+1
dt

 .

If we now apply Corollary 35 and (3.64) we find that as T →∞

Mn,m(XT ) →

{
n!

(n/2)!2n/2
m!

(m/2)!2m/2 , if m and n are even,

0, otherwise.
(3.67)

We notice that the right-hand side is the moments of the bivariate
Gaussian distribution with correlation coefficient zero. Hence by a
result due to Fréchet and Shohat (see (Loève 1977, 11.4.C)) we conclude
the following:

Theorem 40. Asymptotically 〈̃γ,f〉√
log‖γ‖z

has bivariate Gaussian dis-

tribution with correlation coefficient zero. More precisely we have

#

{
γ ∈ (Γ∞ \ Γ)T

∣∣∣∣ 〈̃γ,f〉√
log‖γ‖z

∈ R
}

#(Γ∞ \ Γ)T
→ 1

2π

∫
R

exp

(
−x

2 + y2

2

)
dxdy

(3.68)
as T →∞.

As an easy corollary we get

Corollary 41. Asymptotically <(〈̃γ,f〉)√
log‖γ‖z

has Gaussian distribu-

tion. More precisely we have

#

{
γ ∈ (Γ∞ \ Γ)T

∣∣∣∣ <(〈̃γ,f〉)√
log‖γ‖z

∈ [a, b]

}
#(Γ∞ \ Γ)T

→ 1√
2π

∫ b

a

exp

(
−x

2

2

)
dx

(3.69)
as T →∞.
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The same holds for =(〈̃γ, f〉). We note that by putting z = i in
Corollary 41 and Theorem 40 we obtain Theorem A and Theorem B.





CHAPTER 4

Functional equations of twisted Eisenstein series

In this section we shall study the transformation properties of the
twisted Eisenstein series Em,n(z, s) as s maps to 1− s. We work again
in the multiple cusp case. We shall show that Em,n(z, s) satisfies a func-
tional equation similar to that of the usual nonholomorphic Eisenstein
series i.e.

~E(z, s) = Φ(s) ~E(z, 1− s), (4.1)

where Φ(s) = {φab(s)}. In fact we shall see that (4.1) together with
the limiting absorption principle gives the functional equation of the
twisted Eisenstein series via an induction argument. This chapter is
“work in progress” and therefore stops rather abruptly, and many of
the results appears somewhat unpolished.

1. An example

We shall start by considering the case of E1,0(z, s), since this makes
more transparent the driving mechanisms in the proof of the general
statements. From (3.12) we find that if

α1 = <(f(z)dz)

α2 = =(f(z)dz)

then using Theorem 5 we see that

Daεi
(z, s,~0) = −

∫
Γ\H

r(z, z′, s)Lεi
(~0)Ea(z

′, s)dµ(z′)

=−
∫

Γ\H
r(z, z′, 1− s)Lεi

Ea(z
′, s)dµ(z′)

− 1

1− 2s

∑
b

Eb(z, 1− s)

∫
Γ\H

Eb(z
′, s)Lεi

(~0)Ea(z
′, s)dµ(z′)

=
∑

b

φab(s)

(
−
∫

Γ\H
r(z, z′, 1− s)Lεi

Eb(z
′, 1− s)dµ(z′)

)
+
∑

b

Eb(z, 1− s)
1

2s− 1

∫
Γ\H

Eb(z
′, s)Lεi

(~0)Ea(z
′, s)dµ(z′)

55
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=
∑

b

φab(s)Dbεi
(z, 1− s,~0)

+
1

2s− 1

∫
Γ\H

Eb(z, s)Lεi
(~0)Ea(z, s)dµ(z)Eb(z, 1− s).

We let ρab(s) = 1
2s−1

∫
Γ\HEb(z, s) limT→∞(Lε1 + iLε2(~0)Ea(z, s)dµ(z).

Hence by using (3.4) and (1.9) we find, letting T →∞ as in the proof
of Lemma 18,

E1,0
a (z, s)

= lim
T→∞

(Daε1(z, s,~0) + iDaε2(z, s,~0)) + 2πi

∫ z

a

f(z)dzEa(z, s)

=
∑

b

φab(s) lim
T→∞

(
Dbε1(z, 1− s,~0) + iDbε2(z, 1− s,~0)

)
+ ρab(s)Eb(z, 1− s) + φab(s)2πi

∫ z

a

f(z)dzEb(z, 1− s)

=
∑

b

φab(s)

(
lim

T→∞
(Dbε1(z,1−s,~0)+iDbε2(z,1−s,~0))+2πi

∫ z

b

f(z)dzEb(z,1−s)
)

+

(
2πi

∫ b

a

f(z)dzφab(s) + ρab(s)

)
Eb(z, 1− s)

=
∑

b

φab(s)E
1,0
b (z, 1−s) +

(
2πi

∫ b

a

f(z)dzφab(s) + ρab(s)

)
Eb(z, 1− s).

We have proved

~E1,0(z, s) = Φ(s) ~E1,0(z, s) + Φ∗(s) ~E(z, 1− s) (4.2)

where

Φ∗
ab(s) = 2πi

∫ b

a

f(z)dzφab(s) + ρab(s).

This agrees with the result given in (Chinta & O’Sullivan 2002, p. 25)
once we take into account the different normalization of the modular
symbol in that paper. We note that a similar but different functional
equation was given in (Chinta & Goldfeld 2001) and (Petridis 2002)
but both contained errors.

We note that

ρab(s) =
8πi

2s− 1

∫
Γ\H

Eb(z, s)y
2∂Ea(z, s)

∂z
f(z)dµ(z).
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Using Stokes Theorem as in the proof of Lemma 18 we see that we
may move the differentiation to Eb(z, s) if we change the sign. This
proves that ρab(s) = −ρba(s), and hence Φ∗

ab(s) = −Φ∗
ba(s) (compare

(O’Sullivan 2000, Prop. 4.2)). We also note that using

∂Ea(z, s)

∂z
=
is

2

∑
γ∈Γa\Γ

=(σ−1
a γz)s−1j(σaγ, z)

−2

we can unfold the integral to get

− 4πs

2s− 1

∫
Γ∞\H

ys+1Eb(σaz, s)f |[σa]2(z)dµ(z).

If we now use the Fourier expansions

f |[σa]2(z) =
∞∑

n=1

aa
ne

2πinz

Eb(σaz, s) =δbay
s + φba(s)y

1−s+
∞∑

n=−∞

φba
n (s)

√
yKs−1/2(2π |n| y)e2πinx

we get

− 4πs

2s− 1

∑
m+n=0

aa
nφ

ba
m (s)

∫ ∞

0

ys−1/2Ks−1/2(2π |m| y)e−2πnydy.

The integral may be solved using (Erdélyi, Magnus, Oberhettinger &
Tricomi 1954, 6.8 (28)), and we find

ρab(s) = −Γ(2s− 1)π1−s

Γ(s)22s−1

∞∑
n=1

φba
−n(s)aa

n

ns+1/2

We shall see below how this generalizes to Em,n(z, s).

2. The general functional equation

It is convenient to use the following notational convention. We let
A = {1, . . . , n} and for any subset B = {n1, . . . , nk} ⊆ A we write

DaB(z, s) = Daεn1 ,...,εnk
(z, s,~0) =

∂k

∂εn1 · · · ∂εnk

Da(z, s,~ε)

∣∣∣∣
~ε=~0

EaB(z, s) = Eaεn1 ,...,εnk
(z, s,~0) =

∂k

∂εn1 · · · ∂εnk

Ea(z, s,~ε)

∣∣∣∣
~ε=~0
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We note that using this convention (3.13) may be written as

DaB(z, s) = −R(s)

∑
{k}⊆B

Lεk
DaB\{k}(z, s) +

∑
{k,l}⊆B

Lεkεl
DaB\{k,l}(z, s)


(4.3)

where we have also written Lεk
= Lεk

(~0) and Lεkεl
= Lεkεl

(~0).

Theorem 42. We have the functional equation

~DA(z, s) =
∑
C⊆A

ΨC(s) ~DA\C(z, 1− s)

where ΨC(s) is a matrix indexed by cusps. The ab entry is equal to

1

2s− 1

∫
Γ\H
Eb(z, s)

∑
{k}⊆C

Lεk
DaC\{k}(z, s)+

∑
{k,l}⊆C

Lεkεl
DaC\{k,l}(z, s)

dµ(z)

if C 6= ∅ and Φ∅(s) is the usual scattering matrix i.e. the one from
(4.1).

Proof. The proof is induction in |A|, i.e. the number of elements
in the set A. We note that the case A = ∅ is contained in (4.1) since
~D∅(z, s) = ~E(z, s).

We now assume that we have proved the result for any A′ with at
most n elements. Assume that A has n+1 elements. By (4.3) we have

DaA(z, s)=−R(s)

∑
{k}⊆A

Lεk
DaA\{k}(z, s)+

∑
{k,l}⊆A

Lεkεl
DaA\{k,l}(z, s)

 .

By applying the representation of the resolvent as an integral operator
in a right halfplane this is

−
∫

Γ\H
r(z, z′, s)

∑
{k}⊆A

Lεk
DaA\{k}(z

′, s)+
∑

{k,l}⊆A

Lεkεl
DaA\{k,l}(z

′, s)

 dµ(z′).

If we apply the limiting absorption principle, i.e. Theorem 5 we get

−
∫

Γ\H
r(z, z′, 1− s)

∑
{k}⊆A

Lεk
DaA\{k}(z

′, s)+
∑

{k,l}⊆A

Lεkεl
DaA\{k,l}(z

′, s)

dµ(z′)
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+
1

2s− 1

∑
b

Eb(z, 1− s)·

∫
Γ\H
Eb(z

′, s)

∑
{k}⊆A

Lεk
DaA\{k}(z

′, s)+
∑

{k,l}⊆A

Lεkεl
DaA\{k,l}(z

′, s)

dµ(z′).

We note that the last two lines is the term in the functional equation we
are trying to prove corresponding to C = ∅ with the correct coefficient.
We now consider the first line. Using the induction hypothesis this is∑

b

−
∫

Γ\H
r(z, z′, 1− s)

∑
{k}⊆A

 ∑
H⊆A\{k}

ΦHab(s)Lεk
DbA\({k}∪H)(z

′, 1− s)


+
∑

{k,l}⊆A

∑
H′⊆A\{k,l}

ΦH′ab(s)DbA\({k}∪H′)(z
′, 1− s)

 dµ(z′).

In these sums we now collect the terms coming from the same C ⊆ A
and note that every subset appears in the sum except C = A. We get∑

b

∑
C⊆A
C 6=A

ΦCab(s)

−∫
Γ\H
r(z, z′, 1− s)

 ∑
{k}⊆A\C

Lεk
Db(A\C)\{k}(z

′, 1− s)

+
∑

{k,l}⊆A\C

Lεkεl
Db(A\C)\{k,l}(z

′, 1− s)

 dµ(z′)

 .

By (4.3) and the induction hypothesis this is∑
b

∑
C⊆A
C 6=A

ΦCab(s)DbA\C(z, 1− s))

which finishes the proof. �

We call the matrices in the above theorem scattering matrices. We
note that in the notation introduced in the chapter the correspondence
(3.17) reads

EaA(z, s) =
∑
B⊆A

(∏
j∈B

2πi

∫ z

a

wj

)
DaA\B(z, s).

We also have

DaA(z, s) =
∑
B⊆A

(∏
j∈B

−2πi

∫ z

a

wj

)
EaA\B(z, s)
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which is seen from E(z, s,~ε)U(−~ε, z) = D(z, s,~ε) by differentiation. We

can hence shift back and forth between the ~DA(z, s) functions and the
~EA(z, s) functions. We find

Theorem 43. We have the functional equation

~EA(z, s) =
∑
C⊆A

ΦC(s) ~EA\C(z, 1− s),

where ΦC(s) is a matrix indexed by the cusps. The ab entry is equal to

∑
K⊆C

ΨKab

 ∏
j∈C\K

2πi

∫ b

a

wj

 .

We note that applying this theorem twice we see that these scat-
tering matrices satisfies∑

B∪C=D
B∩C=∅

ΦC(s)ΦB(1− s) =

{
I if D = ∅
0 otherwise.

By using that ~Em,n(z, s) may be written as a complex linear com-

bination of ~EA(z, s) the above theorem gives a functional equation for
these. If f = g we get a functional equation of the form

~Em,n(z, s) =
∑

m′+n′≤m+n

Φm−m′,m−n′(s) ~E
m′,n′(z, 1− s)

where Φm′,n′(s) is a complex linear combination of ΦC(s). This proves
Theorem H.

When f 6= g we get a functional equation involving series of the
form ∑

γ∈Γa\Γ

〈γ, f〉m
′
〈γ, g〉k

′
〈γ, f〉

l′

〈γ, g〉
n′

=(σ−1
a γz)s.

3. Scattering matrices in terms of L-functions

We shall now investigate the components in the the scattering ma-
trices found in the previous section. Since Em,n(z, s) and EA(z, s) are
independent of the cohomology class we picked when we substituted
compactly supported forms for αi we can now let T →∞ as in Lemma
18.

From Theorem 42 and Theorem 43 we see that the entries of the
scattering matrices for the twisted Eisenstein series are linear combi-
nations of terms of the form limT→∞ ΦC(s).
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Lemma 44. The function

lim
T→∞

 ∑
{k}⊆C

Lεk
DaC\{k}(z, s) +

∑
{k,l}⊆C

Lεkεl
DaC\{k,l}(z, s)


has a series representation

4πi
∑
{k}∈C

∑
γ∈Γa\Γ

∏
j∈C\{k}

(
−2πi

∫ γz

a

αj

)〈
d=(σ−1

a γz)s, αk

〉
.

Proof. We notice that

lim
T→∞

DaA(z, s) =
∑

γ∈Γa\Γ

(∏
j∈A

2πi

∫ γz

a

αj

)
=(σ−1

a γz)s

lim
T→∞

Lεk
h = 4πi 〈dh, αk〉

lim
T→∞

Lεkεl
h = −8π2 〈αk, αl〉

(compare (3.20)). Since d
∫ γz

a
αj = αj we find that

lim
T→∞

 ∑
{k}⊆C

Lεk
DaC\{k}(z, s)


=4πi

∑
{k}⊆C

〈
d
∑

γ∈Γa\Γ

 ∏
j∈C\{k}

−2πi

∫ γz

i∞
αj

=(σ−1
a γz)s, αk

〉

=4πi
∑
{k}⊆C

 ∑
{l}⊆C\{k}

−2πi 〈αl, αk〉
∑

γ∈Γa\Γ

 ∏
j∈C\{l,k}

−2πi

∫ γz

a

αj

=(σ−1
a γz)s

+
∑
Γa\Γ

∏
j∈C\{k}

(
−2πi

∫ γ

a

zαj

)〈
d=(σ−1

a γz)s, αk

〉
=− lim

T→∞

∑
{k,l}⊆C

Lεkεl
DaC\{k,l}(z, s)

+ 4πi
∑
{k}∈C

∑
Γa\Γ

∏
j∈C\{k}

(
−2πi

∫ γ

a

zαj

)〈
d=(σ−1

a γz)s, αk

〉
.

�
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Using the above lemma we can use the usual unfolding technique
to find

ΨabC(s)

=
4πi

2s− 1

∑
{k}∈C

∫
Γa\H
Eb(z, s)

∏
j∈C\{k}

(
−2πi

∫ z

a

αj

)〈
d=(σ−1

a z)s, αk

〉
dµ(z)

Since〈
d=(σ−1

a w)s, αk

〉∣∣
w=σaz

=
is

2
ys+1

(
fk|[σa]2(z)− fk|[σa]2(z)

)
, (4.4)

2πi

∫ σaz

a

αj =
1

2

∞∑
nj=1

aja
nj

nj

e2πinjz +
1

2

∞∑
nj=1

aja
nj

nj

e2πinjz (4.5)

when

fj|[σa]2(z) =
∞∑

nj=1

aja
nj
e2πinjz,

we note that Ψab(s) may be written as a linear combination of elements
of the form s

2s−1
times

∫
Γ∞\H
ys+1Eb(σaz, s)

∏
j∈B1

∞∑
nj=1

aja
nj

nj

e2πinjz
∏
j∈B2

∞∑
nj=1

aja
nj

nj

e2πinjzfk|[σa]2(z)dµ(z)

(4.6)
or∫

Γ∞\H
ys+1Eb(σaz, s)

∏
j∈B1

∞∑
nj=1

aja
nj

nj

e2πinjz
∏
j∈B2

∞∑
nj=1

aja
nj

nj

e2πinjzfk|[σa]2(z)dµ(z).

(4.7)
We consider (4.6), which is easily seen to be equal to

∑∫ ∞

0

ys−1φ̃ba
m (y, s)

∏
j∈B1

aja
nj

nj

∏
j∈B2

aja
nj

nj

aka
nk
e−2π(nk+

∑
j∈B1

nj+
∑

j∈B2
nj)ydy.

(4.8)
The sum is subject to the condition m+nk+

∑
B1
nj−

∑
B2
nj = 0, m ∈

Z, nj ∈ N. As usual φ̃ba
m (y, s) is the Fourier coefficients of Eb(σaz, s).

The case B1 = B2 = ∅ is the case we dealt with in section 4.1 so we
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exclude that case below. The part of the above sum with m 6= 0 is

∑
φba

m (s)
∏
j∈B1

aja
nj

nj

∏
j∈B2

aja
nj

nj

aka
nk∫ ∞

0

ys−1/2Ks−1/2(2π |m| y)e−2π(nk+
∑

j∈B1
nj+

∑
j∈B2

nj)ydy.

The integral may be found (Erdélyi et al. 1954, 6.8 (29)) to be

π−s

22s+1

|m|s−1/2

(nk +
∑

j∈B1
nj +

∑
j∈B2

nj)2s

Γ(2s)

Γ(s+ 1)
·

2F1

(
s+ 1/2, s, s+ 1, 1−

(
|m|

(nk +
∑

j∈B1
nj +

∑
j∈B2

nj)

))
where 2F1 is Gauss’ hypergeometric series.

We want to parameterize the sum in terms of q = a−b
a+b

, where a =
nk +

∑
j∈B1

nj and b =
∑

j∈B2
nj. Clearly every such q is in Q∩]−1, 1[,

and q = e/f with e < f may be represented by a = f + e, b = f − e.
If q is represented by two pairs (a, b) and (a′, b′) with a ≤ a′ then
(ra, rb) = (a′, b′) for some r ∈ N and (ar, ar) represents the same q as
(a, b) for any r ∈ N. We let (aq, bq) be the representation of

q =
aq − bq
aq + bq

with aq + bq minimal. Notice that if q = e/f with e < f and (e, f) = 1
then

aq = f + e bq = f − e

if f + e is odd, while

aq = (f + e)/2 bq = (f − e)/2

if f + e is even. We note that q = 0 corresponds to m = 0. Using
this parameterization we get that s

2s−1
times the part of (4.8) that

corresponds to q 6= 0 equals

π−sΓ(2s− 1)

22s−1Γ(s)

∑
q∈Q∩]−1,1[

q 6=0

|q|s−1/2 2F1(s+ 1/2, s, s+ 1, 1− q2)

(aq + bq)s+1/2

∞∑
r=1

Cfk,B1,B2,q,r

rs+1/2

(4.9)
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where

Cfk,B1,B2,q,r =
∑

aqr=nk+
∑

j∈B1
nj

bqr=
∑

j∈B2
nj

φba
r(bq−aq)(s)a

ka
nk

∏
j∈B1

aja
nj

n

∏
j∈B2

aja
nj

n
.

This type of L series does not seem to have been investigated.
The part of (4.8) with m = 0 is zero if B2 = ∅, and otherwise it is∑∫ ∞

0

ys−1(δbay
s + φba(s)y1−s)e−2π(nk+

∑
j∈B1

nj+
∑

j∈B2
nj)ydy·

∏
j∈B1

aja
nj

nj

∏
j∈B2

aja
nj

nj

aka
nk
.

The integral is easily seen to be

δba

(2πr)2s
Γ(2s) + φba(s)

1

(2πr)

where r = (nk +
∑

j∈B1
nj +

∑
j∈B2

nj). so we get

s

2s− 1

(
δbaΓ(2s)

∞∑
r=1

C̃fk,B1,B2,r

(4πr)2s
+ φba(s)

∞∑
r=1

C̃fk,B1,B2,r

4πr

)
where

C̃fk,B1,B2,r =
∑

r=nk+
∑

j∈B1
nj

r=
∑

j∈B2
nj

aka
nk

∏
j∈B1

aja
nj

n

∏
j∈B2

aja
nj

n
.

Clearly (4.7) may be dealt with in the same fashion.



CHAPTER 5

Asymptotic densities of the number of newforms

Let Γ be a cocompact discrete subgroup of PSL2(R). It is well
known that in this case the weight 0 selfadjoint automorphic Laplacian,
∆Γ, acting on Γ-automorphic functions has infinitely many eigenvalues,

0 = λ0 ≤ λΓ
1 ≤ . . . ≤ λΓ

i ≤ . . . ,

listed with their multiplicities which are finite. Selberg has proved that
the counting function

NΓ(λ) = #{i|λΓ
i ≤ λ}

has an asymptotic expansion on the form

NΓ(λ) =
|FΓ|
4π

λ+O(
√
λ/ log λ), (5.1)

where |FΓ| is the area of a fundamental domain of Γ.
If Γ is non-cocompact but of finite area then the situation is some-

what more complicated. The Roelcke-Selberg conjecture, which claims
that also in this case there are infinitely many eigenvalues, seems to
have lost credit rather than gained it over the years. But we do still
have the following expansion (See (Venkov 1982, Theorem 5.2.1))

NΓ(λ)− 1

4π

∫ T

−T

φ′Γ
φΓ

(
1

2
+ ir

)
dr

=
|FΓ|
4π

λ− kΓ

π

√
λ ln

√
λ+

kΓ(1− ln 2)

π

√
λ+O(

√
λ/ ln

√
λ)

(5.2)

where φΓ is the determinant of the scattering matrix, λ = 1/4 + T 2

and kΓ is the number of cusps of Γ. From this it is clear that in order
to estimate the number of eigenvalues it is essential to estimate the
logarithmic derivative of the scattering determinant. For congruence
subgroups Selberg showed that

NΓ(λ) =
|FΓ|
4π

λ+O(
√
λ log λ). (5.3)

In this chapter we investigate what happens if we only count the eigen-
values corresponding to newforms. In particular we are interested in

65
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knowing when various counting functions have the same asymptotic ex-
pansion as if they where counting eigenvalues related to a cocompact
group. We say that a function N : R → R is of cocompact type if

N(λ) = cλ+O(
√
λ/ log λ), (5.4)

for some constant c, and we want to find out for which Hecke congru-
ence groups the counting function for newforms is of cocompact type.

1. Newforms and oldforms

The theory of newforms was originally developed by Atkin & Lehner
(Atkin & Lehner 1970) for holomorphic forms. Their theory can be
translated into a similar theory of Maass forms which are the ones we
are studying. This has been done independently by various people and
details may be found in e.g. (Strömbergsson 2001a). We shall only
need one result (Lemma 51 below) and shall hence only sketch enough
of the theory for this result to make sense.

For any λ > 0 , M ∈ N we denote by A(λ,M) the λ-eigenspace for
∆Γ0(M), where Γ0(M) is the Hecke congruence group of level M i.e.

Γ0(M) =

{
γ ∈ SL2(Z)

∣∣∣∣γ =

(
a b
c d

)
c ≡ 0 mod M

}
.

Then it is obvious that

NΓ0(M)(λ) = 1 +
∑

0<λ̃≤λ

dimA(λ̃,M), (5.5)

where the sum is certainly finite.
We define the λ-oldspace to be

Aold(λ,M) := span{f(dz)|f ∈ A(λ,K) Kd|M K 6= M}.

This is contained in A(λ,M) by the SL2(R)-invariance of ∆Γ, and the
fact that f(dz) is Γ0(M)-invariant when f(z) is Γ0(K)-invariant and
Kd|M . We then define the λ-newspace to be the orthogonal comple-
ment in A(λ,M) with respect to the inner product

(f, g) =

∫
FΓ0(M)

f(z)g(z)dµ(z),

i.e.

Anew(λ,M) := A(λ,M)	 Aold(λ,M).
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We then define new spectral counting functions

Nold
Γ0(M)(λ) := 1 +

∑
0<λ̃≤λ

dimAold(λ̃,M) M > 0

Nnew
Γ0(M)(λ) :=

∑
0<λ̃≤λ

dimAnew(λ̃,M) M > 0.

For M = 1 we of course define Nold
Γ0(1)(λ) = 0 and Nnew

Γ0(1)(λ) = NΓ0(1)(λ).

2. Evaluating the scattering matrix for Hecke congruence
groups

As suggested by (5.2) it is essential to evaluate the logarithmic
derivative of the scattering matrix in order to find the asymptotic ex-
pansion for the counting function. In this section we estimate the
scattering matrix for the congruence groups Γ0(M) by using an explicit
expression due to M. Huxley .

Theorem 45. (Huxley 1984) Let φM(s) be the determinant of the
scattering matrix for the Hecke congruence group of level M, Γ0(M),
and let Λχ be the completed L-function of an Dirichlet character mod
K ,χ , i.e.

Λχ(s) = Γ
(s

2

) ∞∑
n=1

χ(n)

ns
when <(s) > 1.

Then

φM(s) = (−1)l

(
A(M)

πkM

)1−2s kM∏
i=1

Λχi
(2− 2s)

Λχi
(2s)

where l ∈ N, the χi’s are some Dirichlet characters mod K where K|M ,
and

A(M) =
∏

χ primitive mod q
q|m, mq|M

qM

(m,M/m)
.

The set {χi|i = 1, . . . , kM} is closed under complex conjugation.

We now use this to evaluate the integral in (5.2) and get
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Theorem 46. The counting function NΓ0(M)(λ) satisfies the follow-
ing asymptotic formula

NΓ0(M)(λ) =
|FM |
4π

λ− 2kM

π

√
λ log

√
λ

+
1

π
[(2− log 2 + log π)kM − log(A(M)]

√
λ

+O(
√
λ/ log

√
λ).

In particular we get the following

Corollary 47. The counting function for Γ0(M) is never of co-
compact type.

Proof of Theorem 45. We let B(M) = A(M)

πkM
. From the above

we conclude that

φ′M
φM

(
1

2
+ ir

)
= −2

(
lnB(M) +

kM∑
i=1

Λ′
χi

Λχi

(1− 2it) +
Λ′

χi

Λχi

(1 + 2it)

)
.

An easy consideration then shows that

− 1

4π

∫ T

−T

φ′M
φM

(
1

2
+ ir

)
dr =

T

π
lnB(M) +

kM∑
i=1

1

π

∫ T

−T

Λ′
χi

Λχi

(1 + 2ir)dr.

We must therefore evaluate∫ T

−T

Λ′
χi

Λχi

(1 + 2ir)dr,

and we observe that∫ T

−T

Λ′
χi

Λχi

(1 + 2ir)d =
1

2

∫ T

−T

Γ′

Γ

(
1

2
+ ir

)
dr +

∫ T

−T

L′χ
Lχ

(1 + i2r) dr.

We shall address each term separately. To evaluate the first term we
use Stirling’s approximation formula i.e.

Γ′

Γ
(s) = log(s)− 1

2s
+O(|s|−2),

valid for | arg(s)−π| > ε (See (Ivić 1985, A.35)). We see that for |r| > ε
we have∣∣∣∣Γ′

Γ

(
1

2
+ ir

)
−
(

log |r|+ i arg

(
1

2
+ ir

)
− (1 + i2r)−1

)∣∣∣∣
≤
∣∣∣∣Γ′

Γ

(
1

2
+ir

)
−
(

log

∣∣∣∣12 + ir

∣∣∣∣+ i arg

(
1

2
+ ir

)
− (1 + i2r)−1

)∣∣∣∣
+

∣∣∣∣log

∣∣∣∣12 + ir

∣∣∣∣− log |r|
∣∣∣∣ .
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It is easy to see check that the last summand is O((|r| log |r|)−1) while
the first is O(|r|−2) by Stirling’s approximation formula. Hence

1

2

∫ T

−T

Γ′

Γ

(
1

2
+ ir

)
dr

=
1

2

∫ T

−T
|r|>ε

log |r|+ i arg

(
1

2
+ir

)
−(1+i2r)−1 dr +O

(∫ T

ε

dr

r log r

)
.

The integral over (1+i2r)−1 is bounded and the integral over i arg(1/2+
ir) vanishes. We conclude that

1

2

∫ T

−T

Γ′

Γ

(
1

2
+ ir

)
dr = T log T − T +O(log(log T )).

To evaluate the integral over the logarithmic derivative of Lχ(1 +
2ir) we note that∫ T

ε

L′χ
Lχ

(1 + 2ir)dr = −2i(logLχ(1 + 2iT )) + C

where C is a constant and that the first term is O(log T ) by (Apostol
1976, Theorem 12.24). We conclude that

− 1

4π

∫ T

−T

φ′M
φM

(
1

2
+ir

)
dr=

T

π
logB(M)+

kM

π
(T log T−T )+OM(log(T ))

which finishes the proof. �

3. Dirichlet convolution

In order to calculate the main terms of Nnew
Γ0(M) we remind about

some well known structure theory of arithmetical functions. When f, g :
N → C are arithmetical functions we define the Dirichlet convolution,
f ∗ g : N → C to be the arithmetical function

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

We say that f is multiplicative if f(mn) = f(m)f(n) whenever (m,n) =
1. The structure theory we shall use is the following:

Theorem 48. The set of arithmetical functions form a commu-
tative group under Dirichlet convolution. The identity element is the
function

I : N → C

n 7→
[

1
n

]
=

{
1 if n = 1
0 otherwise.

The multiplicative arithmetical functions form a subgroup.
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Proof. This follows from (Apostol 1976, Theorems 2.6,2.8,2.14,
2.16) �

Example 49. (See (Apostol 1976, §2.13) for details.) Consider the
arithmetical function

σα(n) =
∑
d|n

dα.

Then this in a multiplicative arithmetical function whose inverse may
be calculated to be

σ−1
α (n) =

∑
d|n

dαµ(d)µ
(n
d

)
, (5.6)

where µ is the Möbius function, i.e.

µ(n) =

 1 if n = 1
(−1)k if n = p1 · · · pk

0 otherwise.

The Mangoldt Λ-function

Λ(n) =

{
log p if n = pmwhere p is a prime and m ≥ 1
0 otherwise,

is an example of a non-multiplicative function. Another multiplicative
arithmetical function we will use is Eulers totient function

Φ(n) = #{d ∈ N|1 ≤ d ≤ n ∧ (d, n) = 1}.

We can now begin to calculate asymptotic densities of newforms.
We cite a result from (Strömbergsson 2001a).

Lemma 50.

dimA(λ, ·) = σ0 ∗ dimAnew(λ, ·).

Proof. This is Theorem 4.6.c) in Chapter III of (Strömbergsson
2001a). �

Let now fi, i = 1 . . . n be real positive functions of decreasing order
i.e

fi+1 = o(fi) for i = 1 . . . n− 1.

Proposition 51. Assume that for any M ∈ N

NΓ0(M)(λ) =
n−1∑
i=1

ci(M)fi(λ) +O(fn(λ)).
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Then

Nnew
Γ0(M)(λ) =

n−1∑
i=1

cnew
i (M)fi(λ) +O(fn(λ)).

where cnew
i = ci ∗ σ−1

0 .

Proof. The M = 1 case is clear by the definitions of Nnew
Γ0(1)(λ) and

cnew
i (1). We observe that by lemma 50 we have

NΓ0(M)(λ) = 1 +
∑
K|M

σ0

(
M

K

) ∑
0<λ̃≤λ

dimAnew(λ̃, K)

=
∑
K|M

σ0

(
M

K

)
Nnew

Γ0(K)(λ).

By the definition of cnew
i we have

ci(M) =
∑
K|M

σ0

(
M

K

)
cnew
i (K)

and therefore∣∣∣∣∣Nnew
Γ0(M)(λ)−

n−1∑
i=1

cnew
i (M)fi(λ)

∣∣∣∣∣ ≤
∣∣∣∣∣NΓ0(M)(λ)−

n−1∑
i=1

ci(M)fi(λ)

∣∣∣∣∣
+
∑
K|M
K 6=M

σ0

(
M

K

) ∣∣∣∣∣Nnew
Γ0(K)(λ)−

n−1∑
i=1

cnew
i (K)fi(λ)

∣∣∣∣∣ .
Induction in M now gives that this is ≤ Cfn(λ) which is the desired
result. �

The above Proposition together with Theorem 48 enables us to con-
clude that cnew

i (N) is multiplicative if and only if ci(N) is multiplicative.
It also shows that since we know the expansion of the counting func-
tion for eigenvalues of ∆Γ0(M) for any M ∈ N by Theorem 46 it is easy
to compute the corresponding counting function for newforms. In the
next section we shall do that.

4. The asymptotic expansion of the newform counting
function

Theorem 46 now puts us in a situation where proposition 51 can be
applied with
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f1(λ) = λ

f2(λ) =
√
λ log

√
λ

f3(λ) =
√
λ

f4(λ) =
√
λ/ log

√
λ.

From (Shimura 1971, Theorem 1.43) we conclude that

kM =
∑
d|M

Φ((d,M/d)) (5.7)

|FM | =
π

3
M

∏
p|M

p prime

(1 + p−1). (5.8)

This means that we have explicit expressions for all the terms in the-
orem 46 except A(M). We need to know the number of primitive
Dirichlet characters mod K. We hence define

D(K) = #{χ primitive Dirichlet character mod K}.
Then we have

Lemma 52. The arithmetical function D(K) is multiplicative and
satisfies

D(K) = (Φ ∗ µ)(K).

Proof. From (Apostol 1976) theorem 6.15 and theorem 8.18 we
conclude that Φ(K) =

∑
d|K D(d) = (u ∗ D)(K) where u(n) = 1 for

n ∈ N. Since Φ and u are multiplicative we use theorem 48 to conclude
that D is multiplicative. Theorem 2.1 in (Apostol 1976) proves that
u−1 = µ so

Φ ∗ µ = u ∗D ∗ µ = u ∗ u−1 ∗D = D

which concludes the proof. �

We now calculate cnew
1 , cnew

2 and cnew
3 .

4.1. The first coefficient. We start by calculating cnew
1 (M). This

is the simplest of the three coefficients.

Proposition 53. The arithmetical function v(M) = 12cnew
1 (M) is

multiplicative and satisfies

v(pn) =


1 if n = 0
p− 1 if n = 1
p2 − p− 1 if n = 2
(p3 − p2 − p+ 1)pn−3 if n ≥ 3

(5.9)
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when p is a prime. We furthermore have

Lv(s) :=
∞∑

n=1

v(n)

ns
=

ζ(s− 1)

ζ(2s)ζ(s)
,

where ζ(s) is Riemann’s zeta function.

Proof. By using proposition 51, theorem 46 and (5.8) we conclude
that

M
∏
p|M

p prime

(1 + p−1) = (σ0 ∗ v)(M).

Since the left hand side and σ0 are multiplicative theorem 48 says that
v is multiplicative. By considering the case where M = pm we see that

pm + pm−1 =
∑
d|pm

σ0(d)v

(
pm

d

)
=

m∑
i=0

(i+ 1)v(pm−i).

By applying the theory of generating functions to this relation we find
that if

fp(c) =
∞∑

n=0

v(pn)xn then fp(x) =
(1− x2)(1− x)

1− px
.

By making formal expansion we get (5.9). Since v is multiplicative the
claim about Lv follows. �

We now make a small deroute to investigate the size of the asymp-
totical fraction of newforms using the results obtained in the last sec-
tion. More precisely we investigate the size of the asymptotical fraction
It is clear from the results we have about the counting functions, Nnew

Γ0(N)

and NΓ0(N), that

f(N) =
v(N)

N
∏

p|N(1 + p−1)
.

We note that both nominator and denominator are multiplicative.
Hence the asymptotic fraction of newforms is multiplicative.

f(N) = lim
λ→∞

Nnew
Γ0(N)(λ)

NΓ0(N)(λ)
=
cnew
1 (N)

c1(N)
.

Proposition 54. There is no lower nor upper bound for the size
of the asymptotic fraction, i.e. ∀ε > 0 ∃N0,M0 ∈ N such that

0 < f(M0) < ε and 1 > f(N0) > 1− ε.
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Proof. From (5.9) follows easily that

f(pn) ≥ 1− p−1 − p−2

1 + p−1
, (5.10)

where we have equality if and only if n = 2. We hence have

f(N) ≥
∏
p|N

1− p−1 − p−2

1 + p−1
,

with equality if and only if N is the square of a square free. Hence the
nonexistence of a lower bound is equivalent to∏

p prime

1− p−1 − p−2

1 + p−1
= 0

which is equivalent to the divergence of∑
p prime

− log

(
1− p−1 − p−2

1 + p−1

)
.

But this follows from the fact that − log
(

1−p−1−p−2

1+p−1

)
≥ p−1 for p suf-

ficiently large. This proves the nonexistence of a lower bound.
The nonexistence of an upper bound follows from (5.10) by choosing

N0 = p2 with p a sufficiently large prime. �

4.2. The second coefficient. We now calculate cnew
2 (M). We

remind that by proposition 51 and theorem 46 we have

cnew
2 (M) = − 2

π
(k(·) ∗ σ−1

0 )(M)

We hence need to have more information about the number of cusps of
Γ0(M)

Lemma 55. The number of cusps, kM , of Γ0(M) is a multiplicative
arithmetical function and satisfies

kpm =


1 if m = 0
2 if m = 0
2pn if m = 2n+ 1 where n > 1
(p+ 1)pn−1 if m = 2n where n > 1

(5.11)

Proof. We noted earlier in (5.7) that

kM =
∑
d|M

Φ((d,M/d)).
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Let M1,M2 ∈ N and assume (M1,M2) = 1. Then

kM1M2 =
∑

d|M1M2

Φ((d, (M1M2)/d))

=
∑

d1|M1

∑
d2|M2

Φ((d1d2, (M1M2)/(d1d2)))

=
∑

d1|M1

∑
d2|M2

Φ((d1,M1/d1)(d2,M2/d2))

=
∑

d1|M1

Φ((d1,M1/d1))
∑

d2|M2

Φ((d2,M2/d2))

=kM1kM2 .

Hence kM is multiplicative. The claim about kpm is clear for m = 0
and m = 1. Assume m ≥ 2. We then have

kpm =
m∑

i=0

Φ((pi, pm−i))

=
m∑

i=0

Φ(pmin(i,m−i))

= 2 +
m−1∑
i=1

(p− 1)pmin(i,m−i)−1

We now assume m = 2n+ 1.

= 2 + (p− 1)

(
n∑

i=1

pi−1 +
2n∑

i=n+1

p2n−i

)

= 2 + 2(p− 1)
n−1∑
i=0

pi

= 2 + 2(p− 1)
1− pn

1− p
= 2pn.

The even case is similar. �

From the above we can now prove the following
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Proposition 56. The arithmetical function ,−π
2
cnew
2 (M), is a mul-

tiplicative arithmetical function and satisfies

−π
2
cnew
2 (pm) =


1 if m = 0
0 if m = 2n+ 1
p− 2 if m = 2
(p+ 1)2pn−1 if m = 2n where n > 1.

(5.12)

Proof. From lemma 55 and theorem 48 follows that cnew
2 (M) is

multiplicative. From (5.6) it is easy to see that

σ−1
0 (pm) =


1 if m = 0

−2 if m = 1
1 if m = 2
0 otherwise.

Hence

cnew
2 (pm) = − 2

π
(kpm − 2kpm−1 + kpm), when m ≥ 2.

Using lemma 55 it is now easy to check the claim. We omit the details.
�

As an easy corollary we get the following

Corollary 57. The second coefficient, cnew
2 (M), is non-zero if and

only if M = t2 where t ∈ N is not of the form t = 2t′ with (2, t′) = 1.

4.3. The third coefficient. We finally calculate cnew
3 (M). This

is the most difficult of the three coefficients.
We start by observing that by proposition 51 and theorem 46

cnew
3 (M) =

1

π

(
(2− log 2 + log π)

(
−π

2
cnew
2 (M)

)
− L(M)

)
where

L(M) =
(
logA(·) ∗ σ−1

0

)
(M).

We hence direct our attention to L(M).

Lemma 58. Assume (M1,M2) = 1. Then

L(M1M2) = U(M1)L(M2) + U(M2)L(M1)

where

U(M) =
∑
d|M

∑
m|d

∑
q|(m, d

m
)

D(q)σ−1
0

(
M

d

)
.
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Proof. We have

L(M1M2) =
∑

d|M1M2

logA(d)σ−1
0

(
M1M2

d

)

=
∑

d|M1M2

∑
q|m
mq|d

D(q) log

(
qd

(m, d
m

)

)
σ−1

0

(
M1M2

d

)

=
∑

d|M1M2

∑
m|d

∑
q|(m,d/m)

D(q) log

(
qd

(m, d
m

)

)
σ−1

0

(
M1M2

d

)
=
∑

d1|M1

∑
d2|M2

∑
m1|d1

∑
m2|d2

∑
q1|(m1,

d1
m1

)

∑
q2|(m2,

d2
m2

)

D(q1q2) log

(
q1q2d1d2

(m1m2,
d1d2

m1m2
)

)
σ−1

0

(
M1M2

d1d2

)
.

The summand is clearly

D(q1)D(q2)σ
−1
0

(
M1

d1

)
σ−1

0

(
M2

d2

)(
log

(
q1d1

(m1,
d1

m1
)

)
+log

(
q2d2

(m2,
d2

m2
)

))
.

We have∑
d1|M1

∑
d2|M2

∑
m1|d1

∑
m2|d2

∑
q1|(m1,

d1
m1

)

∑
q2|(m2,

d2
m2

)

D(q1)D(q2)σ
−1
0

(
M1

d1

)
σ−1

0

(
M2

d2

)(
log

(
q1d1

(m1,
d1

m1
)

))
= U(M2)L(M1),

from which the identity easily follows. �

It turns out that U is a very nice arithmetical function. In fact we
have the following.

Lemma 59. The function U(M), is a multiplicative arithmetical
function and satisfies

U(pm) =


1 if m = 0
0 if m = 2n+ 1
p− 2 if m = 2
(p2 − 2p+ 1)pn−2 if m = 2n where n > 1.

(5.13)
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Proof. Let M1,M2 ∈ N be coprime. Then

U(M1M2) =
∑

d|M1M2

∑
m|d

∑
q|(m, d

m
)

D(q)σ−1
0

(
M1M2

d

)
=
∑

d1|M1

∑
d2|M2

∑
m1|d1

∑
m2|d2

∑
q1|(m1,

d1
m1

)

∑
q2|(m2,

d2
m2

)

D(q1)D(q2)σ
−1
0

(
M1

d1

)
σ−1

0

(
M2

d2

)
= U(M1)U(M2).

Hence U is multiplicative.
Let p be a prime and m ∈ N. We assume m ≥ 2 Then

U(pm) =
m∑

i=0

i∑
j=0

min(j,i−j)∑
l=0

D(pl)σ−1
0

(
pm−i

)
=

m−2∑
j=0

min(j,m−2−j)∑
l=0

D(pl)− 2
m−1∑
j=0

min(j,m−1−j)∑
l=0

D(pl) +
m∑

j=0

min(j,m−j)∑
l=0

D(pl)

Assume j ≤ n−2− j. Then j ≤ n−1− j ≤ n− j and we have that all
minimum values are j. Hence these terms cancels out. We now assume
m = 2n+ 1. Hence we may sum from j ≥ (2n+ 1)/2− 1 = n− 1/2.

=
m−2∑
j=n

min(j,m−2−j)∑
l=0

D(pl)− 2
m−1∑
j=n

min(j,m−1−j)∑
l=0

D(pl) +
m∑

j=n

min(j,m−j)∑
l=0

D(pl)

=
m−2∑
j=n

m−2−j∑
l=0

D(pl)− 2
m−1∑
j=n

m−1−j∑
l=0

D(pl) +
m∑

j=n+1

m−j∑
l=0

D(pl) +
m∑

l=0

D(pl)

=
m−2−n∑

l=0

D(pl)− 2
m−1−n∑

l=0

D(pl) +
n∑

l=0

D(pl)

+
m−2∑

j=n+1

(
m−2−j∑

l=0

D(pl)− 2

m−1−j∑
l=0

D(pl) +

m−j∑
l=0

D(pl)

)

− 2

m−1−(m−1)∑
l=0

D(pl) +

m−(m−1)∑
l=0

D(pl) +
m−m∑
l=0

D(pl)

=−D(pn)+
m−2∑

j=n+1

(−2D(pm−1−j) +D(pm−1−j) +D(pm−j)) +D(p)
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=−D(pn)−
n−1∑
j=1

D(pj) +
n∑

j=2

D(pj) +D(p)

= 0.

The even case is similar but slightly easier. The m = 1 case is also
similar. �

Remark 60. By successive use of the two lemmas above we find
that

L(pn1
1 . . . pnk

k ) =
k∑

i=1

 ∏
j∈{1,...,k}\{i}

U(pnj

j )

L(pni
i ),

when p1, . . . , pk are different primes. Notice that L(pni
i ) is of the form

m̃i log pi where m̃i ∈ Z. We also note that U(M) ∈ Z. Hence L is on
the form

m1 log p1 + . . . ,mk log pk where mi ∈ Z.
By unique factorization in N this is zero if and only if mi = 0 for all
i’s. We would therefore like to know when L(pm) is zero.

Lemma 61. The function L(pm) satisfies

L(pm) =


2
(∑n

j=0D(pj)
)

log p if m = 2n+ 1(∑n−1
j=0 D(pj) +mD(pn)

)
log p if m = 2n

0 if m = 0.

(5.14)

In particular L(pm) is never zero, when m ≥ 1.

Proof. This follows by a lengthy but elementary calculation sim-
ilar to that in the proof of lemma 59. �

From the above lemma and the preceding remark we conclude that

L(pn1
1 . . . pnk

k ) = 0

if and only if U(pni
i ) = 0 for at least two different primes. Since

cnew
2 (M) = cnew

3 (M) = 0 if and only if cnew
2 (M) = L(M) = 0 we have

proved the following which settles the question of when Nnew
Γ0(M)(λ) is of

cocompact type.

Theorem 62. Let M ∈ N and let n, t ∈ N be the integers defined
uniquely by the requirements that n should be square free and M = t2n.
Then Nnew

Γ0(M)(λ) is of cocompact type if and only if n, t satisfies one of
the following:

(1) n contains more than one prime.
(2) n is a prime and 4 ‖M .
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Remark 63. From proposition 53 we conclude that

Nnew
Γ0(M)(λ) =

1

12
λ+O(

√
λ log

√
λ)

if and only if M ∈ {1, 2, 4}. This shows that theorem 2 of (Balslev &
Venkov 1998) cannot be generalized to more general Hecke congruence
groups by simply choosing another character.

Remark 64. We wish to draw attention to a particular case of
theorem 62 namely the case when M > 1 is square free with an even
number of primes. Hence, by Theorem 62 (1) Nnew

Γ0(N)(λ) has the same
form as if it were the counting function for the eigenvalues related to
a co-compact group with invariant area 4πcnew

1 (M). We can give an
alternative and much more sophisticated proof of this by referring to
the Jacquet-Langlands correspondence. A part of this correspondence
is described classically in (Strömbergsson 2001b) where the following
is proven:

Let O be a maximal order in an indefinite rational
quaternion division algebra over Q, and let d = d(O)
be its (reduced) discriminant. This is always a square
free integer with an even number of prime factors.
The norm one unit group O1 can be viewed as a Fuch-
sian group which is cocompact. Then:

The eigenvalues of the Laplacian on O1 \ H are ex-
actly the same (with multiplicities) as the eigenvalues
corresponding to the newspace on Γ0(d) \ H.

Hence Nnew
Γ0(N)(λ) is the counting function for the eigenvalues related

to a cocompact group, and hence obviously has the corresponding type
as predicted by (5.1). This has our theorem 62 as an easy corollary.
We note that any square free d with an even number of primes may be
constructed in this way.

Our calculation indicates that there might be a similar correspon-
dence in a lot of other cases. This is the subject of the next sections.

5. D-newforms

We wish to describe correspondences similar to the one described
in Remark 64. One way is to proceed as in (Strömbergsson n.d.), but
we choose a slightly different road. Instead of reducing the domain of
definition of the operator in play we enlarge the allowed image. To
this end we introduce the concept of D-newforms. Assume D|M . We
define the (λ,D)-oldspace AD -old(λ,M) to be

span{f(dz)|f ∈ A(λ,K) Kd|M K 6= M M |KD}.
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This is contained in A(λ,M) by the SL2(R)-invariance of ∆Γ, and the
fact that f(dz) is Γ0(M)-invariant when f(z) is Γ0(K)-invariant and
Kd|M . As for the usual newform oldform dichotomy we define the
(λ,D)-newspace as the orthogonal complement to the (λ,D)-oldspace,
i.e.

AD -new(λ,M) := A(λ,M)	 AD -old(λ,M).

Remark 65. We note that the space of (λ,M)-oldforms is the usual
space of oldforms while the space of (λ, 1)-oldforms is the empty set.
Hence we have

AM -new(λ,M) = Anew(λ,M)

A1 -new(λ,M) = A(λ,M)

We also note that Anew(λ,M) is a subspace of AD -new(λ,M)

We let f
(M)
1 . . . f

(M)
mM be the newforms basis of Anew(M,λ).

Proposition 66. Let λ > 0. If (D,M/D) = 1 then AD -new(M,λ)
has

B = {f (K)
i (dz)| dK|M i = 1 . . .mK D | K}

as a basis.

Proof. By (Strömbergsson 2001a, Theorem 4.6 c) A(M,λ) has as
a basis

f
(K)
i (dz) dK |M i = 1, . . . ,mK , (5.15)

so the elements of B are linearly independent. Assume D - K. Then
since dK | M we may make the following factorization K = K1K2,
K1 | D, K2 | M/D, d = d1d2, d1 | D d2 | M/D, where K1d1 |
D and K2d2 | M/D. We notice that K1 6= D by assumption. By
(Strömbergsson 2001a, Lemma 4.4 e) we have f(d2z) ∈ A(λ, d2K) =
A(λ,K1d2K2) ⊂ A(λ,K1M/D). If we let K ′ = K1M/D and d′ =
d1, then K ′d′ | M , M 6= M and M | K ′D. Hence by definition
f(d1(d2z)) ∈ AD -old(M,λ). To see that the elements of B is in the
orthogonal complement of AD -old(M,λ), we notice that if f ∈ A(λ,K),
Kd|M , K 6= M and M | KD then it may be written in the basis (5.15)
where all the elements have M/D|K. But by (Strömbergsson 2001a,
p.96 l. 9− − 5−) these are all orthogonal to the elements of B. �

Remark 67. We notice that in the above proposition (2) is not
true if (D,M/D) > 1. Consider M = p2 and D = p. In this case
newforms in A(λ, p) are D-oldforms.
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Remark 68. It follows that when (D,M/D)=1 and M = M ′D
then

dimAD -new(M ′D,λ) =
∑

K′|M ′

σ0

(
M ′

K ′

)
dimAnew(λ,DK ′), (5.16)

which is a Dirichlet convolution

dimAD -new(M ′D,λ) = (σ0 ∗ dimAnew(λ,D · −))(M ′)

Now by (5.6) we can invert and get

dimAnew(λ,DM ′)) = σ−1
0 ∗ dimAD -new(λ,− ·D)

Now this gives immediately

Nnew
Γ0(DM ′)(λ) = σ−1

0 ∗ND -new
Γ0(−·D)(λ),

where

ND−new
Γ0(M) (λ) =

∑
0<λ̃≤λ

dimAD -new(λ,M)

is the counting function of D-newforms. We will show in the following
section that when (D,M/D) = 1 and D is a product of an even number
of primes then ND -new

Γ0(M) is not only asymptotically equal to, but in fact
identical to a counting function related to a cocompact Fuchsian group
of the first kind. This will give an alternative proof of Theorem 62
when M = DM ′ where D is the product of an even number of primes
and (D,M ′) = 1.

6. A spectral correspondence for Maass waveforms

Let A be an indefinite rational quaternion division algebra and let
D be the discriminant of A. Then D is an even number of different
primes (Vignéras 1980, Theoreme 3.1). We fix a maximal order O in
A and fix isomorphism

Av ' M2(Qv) for v ∈ {∞} ∪ {p|p prime, p - D}, (5.17)

such that we get isomorphimsOp ' M2(Zv) for all prime p - D. Now for
each M ∈ N with (D,M) = 1 we have Eichler orders O(M) uniquely
defined by the following conditions:

(i) O(M)p is equivalent to the unique maximal order in Ap for
p | d.

(ii) O(M)p is equivalent to

(
Zp Zp

MZp Zp

)
for p - d.



6. A SPECTRAL CORRESPONDENCE FOR MAASS WAVEFORMS 83

The norm 1 unit group ΓO(M) can be identified with a cocompact Fuch-
sian group though (5.17) for v = ∞. We consider the λ-eigenspaces
AΓO(M)

(λ) of ∆ΓO(M)
. Let for (n,MD) = 1, T̃n : AΓO(M)

(λ) → AΓO(M)
(λ)

be the Hecke operators. These operators form a commuting family of
selfadjoint operator and we may choose a basis f1 . . . fk of common
eigenfuntions. The thetamap Θ : AΓO(M)

(λ) → AΓ0(MD)(λ), is defined

as in (Bolte & Johansson 1999b, (5.1) and (4.8)). This is a linear inte-
gral transformation which, under some assumption about a reference
point z0 has trivial kernel. (See (Strömbergsson 2001a, Theorem 1.3
and (6.2)) ). This map commutes with the Heckeoperators i.e.

ΘT̃nf = TnΘf.

We have the following fundamental equality

Theorem 69. Let λ > 0 and assume (M,D) = 1. Then

Tr
(
Tn|AD -new(DM,λ)

)
= Tr

(
T̃n

∣∣∣
AΓO(M)

(λ)

)
. (5.18)

Proof. From Proposition 66 and (Strömbergsson 2001a, p.49 l.1-
4) we find

Tr
(
Tn

∣∣
AD -new(DM,λ)

)
=
(
σ0 ∗ Tr

(
Tn

∣∣
A-new(−·D,λ)

))
(M)

From (Strömbergsson n.d.) we get that

Tr

(
T̃n

∣∣∣
AΓO(M)

(λ)

)
= σ0 ∗ Tr

(
T̃n

∣∣∣
Anew

ΓO(·)
(λ)

)
(M)

and

Tr
(
Tn|Anew(λ,MD)

)
= Tr

(
T̃n

∣∣∣
Anew

ΓO(M)
(λ)

)
The result follows immediately. �

Now we are ready to state the main theorem of this section. We
still assume that the reference point z0 which is used in the definition
of Θ is chosen such that Θ has trivial kernel.

Theorem 70. Assume λ > 0. Then Θ gives a bijection between
AΓO(M)

(λ) and AD -new(λ,MD).

Proof. . We start by noticing that Theorem 69 with n = 1 gives
us that the two spaces have the same dimension. The proof goes as
in (Strömbergsson 2001a, III 6.), and we shall not repeat the argu-
ment in detail. We only need to replace dB in (Strömbergsson 2001a)
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with DM . Note also that the argument on p. 61 l. 14-20 general-
izes simply by noticing that if f (DK′)(z) is a newform in Anew(DK ′, λ)
with Hecke eigenvalues τ(p) for p any prime, then in the basis given

in (Strömbergsson 2001a, Theorem 4.6) only f
(DK′)
i (dz), dK ′|M have

the right eigenvalues for p - DM by (Strömbergsson 2001a, Theo-
rem 4.6.d) and Lemma 4.4 g)). Therefore - using the notation from

(Strömbergsson 2001a) - Θ(f̃j) is in the span of the elements f
(DK′)
i (dz).

Hence Θ maps AΓO(M)
(λ) into AD -new(λ,MD) by Proposition 66, and

the result follows since Θ has trivial kernel. �

Remark 71. Notice that ifM = 1 this is the result cited in Remark
64.
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in Mathematics, Birkhäuser Boston Inc., Boston, MA.
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