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Introduction

This thesis consists of the results that I have obtained during my graduate
studies at University of Aarhus. The following section contains a summary
as well as a historical review of the three main themes: the wonderful com-
pactification, the unipotent variety, and Frobenius splittings. The results
of this thesis concerns with the relation of these themes.

Summary

The paper is organized in 5 chapters. In the first chapter, I settle the
notation and recall several well-known facts of linear algebraic groups and
representations of these.

In chapter 2, I review the construction of the wonderful compactifica-
tion of a connected semi-simple adjoint linear algebraic group Gad over an
algebraically closed field of positive characteristic and show the properties
of it. The main ideas go back to the original paper [DC-P] by De Concini
and Procesi in 1983. They construct the wonderful compactification of any
symmetric variety in characteristic zero. Note that a symmetric variety is
the quotient of Gad with the fixpoint set under an involution of Gad. The
wonderful compactificationX is a smooth, irreducible compactification con-
taining the symmetric variety as an open subset. The boundary is a finite
union of smooth G-stable divisors with normal crossings. Further, the com-
pactification has finitely many Gad-orbits. Also, De Concini and Procesi
proved that the Picard group Pic(X) of the wonderful compactification is
a sublattice of the Λ× Λ where Λ is the weight space.

Consider the involution (x, y) 7→ (y, x) of Gad ×Gad. Then the fixpoint
set is the diagonal ∆(Gad) = {(g, g) | g ∈ Gad} and hence the symmetric
variety is Gad×Gad/∆(Gad) ' Gad. Thus, Gad is a symmetric variety. The
wonderful compactification of Gad is called the group compactification. In
her paper [Str] from 1987, Strickland constructs the group compactification
in positive characteristics and proves the properties mentioned above. Fur-
ther, she proves that the wonderful compactification is Frobenius split and
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iv Introduction

also gives an explicit description of Pic(X): It is the elements on the form
(−woλ, λ) for a weight λ ∈ Λ. Hence, in the group compactification, the
Picard group is isomorphic to the weight space Λ.

In 1999 in their paper [DC-S], De Concini and Springer generalized the
results of [DC-P] to all positive characteristics. Also, they proved that the
wonderful compactification of any symmetric variety is Frobenius split and
the global sections of any ample line bundle on X has a good filtration.

The third chapter covers the unipotent variety U, i.e. the subset of
all unipotent elements of G. Especially, it is proven that U is a complete
intersection and that it is regular in codimension 1 which combined implies
that U is normal.

The proof that U is a complete intersection, goes back to the paper [St1]
from 1965. Herein, the Steinberg map and the cross-section C are introduced
which are essential parts of the proof. Also, a algebraic geometric result by
Kostant [K] (1963) is used. The proof of normality relies also on the paper
[St1] where Steinberg obtained several criteria for regularity. Actually, he
extended the definition of regularity by Chevalley ([Chev] p. 7-03) such
that an element of a semi-simple linear algebraic group G is regular (in
the sense of Steinberg; see [St1] §1) when the dimension of its centralizer
equals the rank of G. In particular, Steinberg proves in [St1] Theorem 6.11
that the regular elements in U form a open set and the complement has
at least codimension 2 in U. Since he also proved in [St1] Theorem 3.3
that the regular unipotent elements are all conjugate, the regular unipotent
elements are non-singular in U (cf. [St2] Theorem 3.10.7). Thus, U is normal
by Serre’s normality criterion (for a locally complete intersection; see e.g.
[Ha1] Proposition II.8.23(b)). However, the approach in this thesis uses
the ‘shortcut’ that there are finitely many unipotent conjugacy classes, to
prove the existence of regular unipotent element. This well-known, but non-
trivial result is due to Richardson in characteristic zero ([Ri]) and Lusztig
in positive characteristics ([Lu]). Chapter 3 ends with a result that shows
that the unipotent variety of G maps bijectively onto the unipotent variety
of Gad under a central isogeny π : G→ Gad.

The unipotent variety U of a connected semi-simple linear algebraic
group is studied in many details. However the closure of U in the group
compactification has not been studied as closely. A natural question (at
least for an algebraic geometer) is if the closure Ū is Frobenius split. Here,
we answer affirmative in certain cases. In fact, this is the main result of this
thesis and appears in chapter 4 where we find a explicit Frobenius splitting
of the group compactification X such that the boundary divisors and the
closure of U in X is compatibly Frobenius split. This is however under
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the very restrictive assumption that the fundamental characters1 map the
identity element of G to zero in k. See Remark 4.3.5 on page 48 for the
explicit cases. Further, the Frobenius splitting constructed is B-canonical.

We begin the chapter by reviewing the general theory of Frobenius split-
tings as defined by Mehta and Ramanathan in their fundamental paper
[M-R] from 1985. The (absolute) Frobenius map on a scheme Z is the
identity on points and the p’th power map on the level of the functions
OZ → F∗OZ . Then Z is Frobenius split if OZ → F∗OZ splits. The main
reason that the method of Frobenius splittings turn out so powerful is that
the pull back F∗L of a line bundle on a Frobenius split scheme equals Lp.
This implies among other things the vanishing of all the higher cohomology
groups of ample line bundles on the Frobenius split projective scheme.

As Mehta and Ramanathan discovered in [M-R] then the flag variety G/B
is Frobenius split compatibly splitting the Schubert varieties in G/B. Here
B is a Borel subgroup of a semi-simple algebraic group G. Actually, flag
varieties and Schubert varieties are one of main classes of examples of Frobe-
nius split varieties. From a Frobenius splitting of a flag variety, Strickland
showed how to construct a Frobenius splitting of the group compactification
X compatibly splitting all orbit-closures in X. A crucial ingredient of her
proof is that G/B × G/B is the unique closed orbit in X. In section 4.2, we
look closely at this relation between Frobenius splittings ofX and Frobenius
splitting of G/B×G/B. Further, we give a criterion for Frobenius splittings of
G/B×G/B due to Lauritzen and Thomsen [L-T]. Other important examples
(from the view of this thesis) of Frobenius split varieties are the wonder-
ful compactifications of arbitrary symmetric varieties (cf. [DC-S]) and the
large Schubert varieties (cf. [B-P2]), i.e. the closure in the group compact-
ification of double cosets BẇB of G. Here the ẇ is a representative in the
normalizer of a maximal torus T (contained in the Borel subgroup B) of G
where w is an element of the Weyl group of G with respect to T . Actually,
the latter paper (i.e. [B-P2]) has been of great inspiration in our attempt
to prove that the wonderful compactification Ū of the unipotent variety U

is Frobenius split. Here, Ū is the closure in the group compactification of
the unipotent variety U.

Section 4.3 contains our main result. It is joint work with my advisor
Jesper Funch Thomsen. We construct a global sections φi of certain line
bundles Li on the group compactification X such that φi|Gad

◦ π equals
the fundamental characters where π : G → Gad is a simply connected
covering. The common zero subset of fundamental characters is related to

1A fundamental character is the composition of the trace map and the representation
associated with the fundamental weight



vi Introduction

the unipotent variety giving us the result together with the results developed
in section 4.2.

After a short crash course on B-canonical endomorphisms, we can prove
that the Frobenius splitting constructed in the previous section (section 4.3)
is B-canonical. The notion of B-canonical endomorphism is due to Mathieu
in his paper [Mat] from 1990. Here, he proves what is the motivation for
definition (and for us); namely, that if a G-scheme B-canonical Frobenius
split then the global sections of a G-linearized line bundle allow a good
filtration. We use a criterion for a smooth projective variety to be B-
canonical Frobenius split due to van der Kallen in [vdK2]. With this, we
prove that the Frobenius splitting of X which compatibly splits U is in fact
also B-canincal. This implies that Ū is B-canonical F-split.

The last chapter provides some geometric applications of the main result
in chapter 4. Using that the wonderful compactification Ū of the unipotent
variety is Frobenius split in certain cases, we prove that Ū is a locally
complete intersection and is regular in codimension 1 in these cases. Thus,
U is normal by [Ha1] Proposition II.8.23(b). We also give a partial result
on the Picard group of U using that U is a locally complete intersection (in
certain cases). The map Pic(X) → Pic(Ū) induced by the inclusion map
Ū → X is injective.

I include two appendices. In the first, we find the restrictions on Gad

coming from the condition that all fundamental characters χi map the iden-
tity element e of G to zero. Observing that χi(e) is the dimension of the
representation associated to the fundamental weight ωi. When answering
one question, more questions arise. In appendix B, I have gathered some of
these questions that I have not been able to answer; this may be ascribed
lack of time as well as my mathematical limitations.

I should note that general references are [Spr], [Jan], [Ha1], [E], and
[Hum]. In chapter 2 and 4, I have referred to [B-K] and in chapter 3, the
main reference is [Hum2]. I hope this proves to be of some convenience for
the reader. I have tried to include historical comments to give the reader a
feeling of the development of the theories.
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Chapter 1

Prerequisites

This chapter fixes notation not already defined and reviews some known
results which shall be used in the subsequent chapters. General references
are [Spr], [Jan], [Ha1], [E], and [Hum].

1.1 Linear Algebraic Groups

Let G denote a connected reductive linear algebraic group over an alge-
braically closed field k of characteristic p > 0. Let T (respectively B ⊇ T )
be a maximal torus (respectively a Borel subgroup) of G. Let B− be the
opposite Borel subgroup, i.e. B ∩ B− = T . The dimension of T is called
the rank of G and is denoted `.

Let Φ denote the roots of G wrt. T (see e.g. [Spr] §7.4.3) and we
denote the positive roots wrt. B with Φ+ ([Spr] Proposition 7.4.6). Then
the characters X∗(T ) of T is a sublattice of the weight lattice Λ. Let
∆ be the simple roots, i.e. linearly independent positive roots such that
any other positive root is a linear combination of these roots with non-
negative coefficients cf. [Spr] Theorem 8.2.8(iii). Indexing the simple roots
∆ = {α1, . . . , α`} let ωi be the corresponding fundamental weight of αi
(see [Spr] Exercise 8.2.11(3)). The fundamental weights form a basis of
the weights Λ cf. [Hum] §13.1. Let ρ =

∑`
i=1 ωi = 1/2

∑
α∈Φ+ α. Note

that a character of B gives a character of T . Conversely, by [Spr] Theorem
6.3.5(iv) B = TBu where Bu is the unipotent radical of B and hence we get
a map γ : B → B/Bu → T . Thus, if χ ∈ X∗(T ) then the composition χ ◦ γ
a character of B.

The finite group W = NG(T )/T is called the Weyl group ([Spr] §7.1.4).
By [Spr] Theorem 8.2.8(i) W is generated by the simple reflections si = sαi

,
i.e. the reflections associated to the simple roots αi ∈ ∆. Let wo denote

1



2 Chapter 1. Prerequisites

the unique element of W such that wo(Φ
+) = −Φ+ cf. [Spr] Proposition

8.2.4(ii). Note that −Φ+ is the positive roots in Φ wrt. B−. Further, wo
is the longest element in W by [Spr] Lemma 8.3.2(ii). Note that −woρ = ρ
by definition of wo (i.e. wo(Φ

+) = −Φ+).

For each root α ∈ Φ, we have a homomorphism of groups uα : Ga → G
which is an isomorphism on its image Uα by [Spr] Proposition 8.1.1. Thus,
Uα is a unique closed subgroup which we call the root subgroup associ-
ated with α. Further, tuα(x)t

−1 = uα(α(t)x) for t ∈ T, x ∈ k. By
Chevalley’s commutator formula ([Spr] Proposition 8.2.3) we have that
Uw :=

∏
α∈Φ(w) Uα is a subgroup of Bu for any ordering of the roots and

any w ∈ W where Φ(w) = {α ∈ Φ+|w(α) ∈ −Φ+} (see also [Spr] Lemma
8.3.5). In particular, Bu = Uwo =

∏
α∈Φ+ Uα. Hence, Uw is an affine

space of dimension |Φ(w)| = l(w) where the length l(w) is defined to be
the smallest integer such that w is a product of l(w) simple reflections.
By [Spr] Exercise 8.1.12(2) there exist non-zero constants cw,α such that
ẇuα(x)ẇ

−1 = uw(α)(cw,αx) for all x ∈ k, w ∈ W, α ∈ Φ. Therefore,
B− = woBw

−1
o .

For a set of chosen representatives ẇ ∈ NG(T ) of w ∈ W we consider
the B × B-orbits BẇB w ∈ W . Then we have the Bruhat’s Lemma ([Spr]
Theorem 8.3.8): G is a disjoint union of BẇB for w ∈ W . This implies the
Bruhat decomposition ([Spr] Corollary 8.3.9), i.e. that an element g ∈ G
can be written uniquely in the form uẇb with w ∈ W, u ∈ Uw−1 , b ∈ B.
Observe that BẇoB is the unique1 open double coset in G.

For the rest of the thesis, we let Gad denote a connected semisimple
adjoint linear algebraic group over an algebraically closed field k of char-
acteristic p > 0. Let Tad (respectively Bad ⊇ Tad) be a maximal torus
(respectively a Borel subgroup) of Gad. Let B−

ad be the opposite Borel sub-
group, i.e. Bad ∩B−

ad = Tad.

Consider the simply connected covering π : G → Gad, i.e. a surjective
homomorphism of algebraic groups from the connected, semisimple, simply
connected linear algebraic group G to Gad where the kernel lies in the center
Z(G) of G (cf. [Spr] Exercise 10.1.4(1)). Let T , B, and B− be a maximal
torus, respectively Borel subgroups of G such that π(T ) = Tad, π(B) = Bad,
and π(B−) = B−

ad. By [Spr] §8.1.11 X∗(Tad) is the root lattice and X∗(T )
the weight lattice. Unless explicitly stated otherwise, G denote the simply
connected covering of Gad.

Example 1.1.1. This is the standard example in this thesis which we will
refer to again and again.

1it is unique among the the cosets on the form BẇB for w ∈ W
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Let p = 2 and Gad = PSl2. The simply connected covering is G = Sl2.
Note that the kernel of π : G → Gad is {± [ 1 0

0 1 ]}. Let T be the diagonal
matrices, B the upper triangular matrices, and B− the lower triangular
matrices in G. Then α : T → k given by

[
t 0
0 t−1

]
7→ t2 is the only positive

root. Further, ρ = ωα is the weight
[
t 0
0 t−1

]
7→ t.

1.2 Representations

A (rational) representation of a (general) algebraic group H in a finite
dimensional vector space over k is a homomorphism of algebraic group
r : H → Gl(V ). We use the words ’(rational) representation of G’ and
’G-module’ interchangably. Note that if V is a H-module then P(V ) is a
G-variety, i.e. a variety Z with an action of G such that G × Z → Z is a
morphism of varieties.

A very important G-module is H0(G/B,LG/B) with the line bundle on
G/B. Let kλ denote B-module k where the action of B is given by b.x =
λ(b)−1x for x ∈ k, b ∈ B. Then G ×B kλ is a G-equivariant line bundle
on G/B defined by λ (see e.g. [Spr] §8.5.7). Let LG/B(λ) denote the cor-
responding locally free sheaf of rank 1 cf. [Ha1] Exercise II.5.18. Then
H0(λ) := H0(G/B,LG/B(λ)) is finite dimensional vector space by [Spr] 8.5.8.
Further, H0(λ) 6= 0 if and only if λ ∈ Λ+, the dominant weights. By [Spr]
§8.5.7, we can regard H0(λ) as the following subset of the coordinate ring
k[G]

{f ∈ k[G]|f(gb) = λ(b)f(g) , ∀b ∈ B, g ∈ G}

where λ ∈ X∗(T ) is considered as a character of B. Furthermore, H0(λ) is
a G-module. From the proof of [Spr] Theorem 8.5.8, any weight χ of H0(λ)
satisfies −λ ≤ χ ≤ −woλ where the ordering ≤ of the weights is given by
µ ≤ ν if ν − µ is a non-negative linear combination of the simple roots.
This ordering is called the dominant ordering on Λ. A dominant weight is
called regular if when written as a linear combination of the fundamental
weights all coefficients are positive.

Let V (λ) = H0(λ)∗ and hence V (λ) is a G-module with highest weight
λ and lowest weight woλ. It is called the Weyl module. Another important
G-module is the Steinberg module H0((p− 1)ρ). It is denoted St. By [Jan]
§II.3.18 and Corollary II.2.5, St is selfdual and irreducible since −woρ = ρ.

Having H-modules (for any group H) M,N we consider M � N as a
H×H-module via the action (g, h).m⊗n = g.m⊗h.n, m ∈M,n ∈ N, g, h ∈
H. It is called the external tensor product .

Now, the character group X∗(T ×T ) of T ×T is isomorphic to X∗(T )×
X∗(T ). Hence, let LG/B×G/B(λ, µ) be the corresponding G×G-equivariant
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line bundle on G/B × G/B defined as before (use G × G, B × B in stead of
G, B). Similarly, H0(λ, µ) := H0(G/B × G/B,LG/B×G/B(λ, µ)) is a G × G-
module. Furthermore, we have an isomorphism H0(λ, µ) ' H0(λ) � H0(µ)
as G×G-modules.

Note that a Gad-module is also a G-module via π : G → Gad. The
following Lemma is the criterion on a G-module V for the action of G on
P(V ) to factorize through the action of Gad. It seems to be a well known
result but we have included a proof since we were not able to find a reference.

Lemma 1.2.1. Let V = ⊕λ∈ΛVλ be a G-module. Then the action of G on
P(V ) factors through the action of Gad if the difference of any two weights
of V is in the root lattice.

Proof. Assume that any difference of two weights of the G-module V is
in the root lattice X∗(Tad). For x ∈ V write x = (xλ1 , . . . , xλN

) with
N = dim(V ). Let [x] = [(xλ1 , . . . , xλN

)] denote the image of x in P(V ).
Let P(V )λi

denote the standard open subset of P(V ), e.g. the subset of
x ∈ P(V ) such that xλi

6= 0. Observe that P(V )λi
' AN−1 by [Ha1]

Proposition I.2.2.
Note that the center of G is Z(G) = ∩α∈Φ ker(α) by [Spr] Proposition

8.1.8(i) and Z(G) ⊆ T by [Spr] Corollary 7.6.4(iii). Therefore for g ∈ Z(G)
and x ∈ P(V )λ1 we have

[g.x] = [(λ1(g)xλ1 , . . . , λN(g)xλN
)] = [(xλ1 , (λ2−λ1)(g)xλ2 , . . . , (λN−λ1)(g)xλN

)]

Since λi − λ1 ∈ X∗(Tad) for i ≥ 2 and g ∈ Z(G) = ∩α∈Φ ker(α) we have
that (λi − λ1)(g) = 1 (again for i ≥ 2). Thus, [g.x] = [x].

Therefore, we can define an action (on the level of points) of Gad on
P(V )λi

by g.[x] = [g.x] for each i. It remains to prove that Gad×P(V )λi
→

P(V )λi
is a morphism for all i.

Consider the following diagram:

T ×P(V )λi

π|T×id
��

i×id // G×P(V )λi

π×id
��

φ // P(V )i

Tad ×P(V )λi

iad×id// Gad ×P(V )λi

φad

77ppppppppppp

where i : t→ G and iad : Tad → Gad are the inclusion maps. First we prove
that the map φad|Tad

: Tad ×P(V )λi
→ P(V )λi

is a morphism of varieties.
Identify P(V )λi

with the affine space AN−1 then the action of G on
AN−1 is t.a = (µ1(t)a1, . . . , µN−1(t)aN−1) where a = (a1, . . . , aN−1) ∈ AN−1

and µi lies in the root lattice for all i. Since Z(G) ⊆ T we can define
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similarly (at least on the level of points) the action of Tad on AN−1 for some
µ̃i in the root lattice. By [Spr] §9.6.1, π defines a bijection of the roots Φ.
Further, π induces a injective map π∗ : X∗(Tad) → X∗(T ). As µi lies in
the root lattice, µi lies in the image of π∗. Thus, µi = π∗(µ̃i) for µ̃i and all
i. Therefore, the morphism φ|T : T × P(V )λi

→ P(V )λi
factors through π

and φad|Tad
: Tad × P(V )λi

→ P(V )λi
. Thus, we conclude that φad|Tad

is a
morphism.

We know that Bu × B−
u × T (respectively (Bad)u × (B−

ad)u × Tad) is
an open dense subset of G (respectively of Gad). Again using that π is a
central isogeny we get a bijection of the roots in Tad onto the roots of T
and furthermore the root subgroups Uα ' Uβ,ad are isomorphic under π
where β is the image of α under this bijection. Therefore, we deduce that
Bu ' (Bad)u and B−

u ' (B−
ad)u. Thus φad is a morphism of varieties when

restricted to the open dense set (Bad)u × (B−
ad)u × Tad and therefore φad is

a morphism of varieties.

In the following chapter, we need the next Lemma. Again, we have
included a proof since we could not find a reference.

Lemma 1.2.2. Let φi ∈ H 0(−woωi)ωi
. Then φi is B × B-eigenvector of

weight (ωi,−woωi) and the zero-subset VG(φi) is the closure in G of BsiwoB.

Proof. We know that φi satisfies φi(gb) = (−woωi)(b)φi(g) and b.φi =
ωi(b)φi for all b ∈ B, g ∈ G. Since the action of G × G on G is given
by (g, h).x = gxh−1 for all g, h, x ∈ G we also have that G×G acts on the
coordinate ring k[G] of G by ((g, h).f)(x) = f((g−1, h−1).x) = f(g−1xh) for
g, h, x ∈ G, f ∈ k[G]. Thus,

((b, b′).φi)(x) = φi(b
−1xb′) = ωi(b)(−woωi)(b′)φi(x)

for b, b′ ∈ B, x ∈ G. This shows that φi is a B × B-eigenvector of weight
(ωi,−woωi).

To prove the second assertion, we consider (t.φi)(ẇ) where t ∈ T and ẇ a
representant of w ∈ W = NG(T )/T . First observe that (t.φi)(ẇ) = ωi(t)φi(ẇ)
by definition of φi. Now, this can be calculated differently:

(t.φi)(ẇ) = φi(t
−1ẇ) = φi(ẇẇ

−1t−1ẇ) = (−woωi)(ẇ−1t−1ẇ)φi(ẇ)

since ẇ ∈ NG(T ). Now, (−woωi)(ẇ−1t−1ẇ)φi(ẇ) = (wwoωi)(t)φi(ẇ). This
implies that either φi(ẇ) = 0 or wwoωi = ωi. Put otherwise; if wwoωi 6= ωi
then φi(ẇ) = 0.

Consider w = siwo. Then wwoωi = siωi = ωi − αi 6= ωi. Therefore
φi(ẇ) = 0. Since φi is B × B-eigenvector, we have that the closure of
B ˙siwoB in G is contained in the zero subset VG(φi).
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Now, k[G] is a unique factorisation domain as G is simply connected2.
Hence, we can write φi =

∏
j φij where φij are prime elements in k[G]. Since

φ(gb) = ωi(b)φ(g) for all b ∈ B and g ∈ G also φij(gb) = χij(b)φij(g) where∑
j χij = ωi.
As the fundamental weights form a basis for the weight space Λ, we

conclude that only one of the χij is non-zero, i.e. this non-zero weight is ωi.
Hence, φ is irreducible and it implies that VG(φ) is irreducible. Therefore,
VG(φ) is the closure in G of B ˙siwoB by [Spr] Proposition 1.8.2 since both
sets are closed, irreducible, and of the same dimension (i.e. codimension
1).

Example 1.2.3. We continue our example (see the previous example 1.1.1).
We identify the Steinberg module St = H0((p − 1)ρ) with k2. Let the

G-action on k be the obvious, namely [ a bc d ] ( xy ) =
(
ax+by
cx+dy

)
.

Let mρ,m−ρ denote the basis vectors ( 1
0 ), respectively ( 0

1 ). Notice that
mρ is a highest weight vector in St and m−ρ is a lowest weight vector.

1.3 Filtrations and Tilting Modules

It turns out that tilting modules are important for the construction of the
wonderful compactification of Gad as we will see in the next chapter. Here
we introduce tilting modules and their properties.

Definition 1.3.1. Let M be a G-module.
(i) M is said to have a good filtration if there exists a filtration (0) = F0 ⊆
F1 ⊆ . . . of G-submodules such that ∪iFi = M and for any i ≥ 1 we have
Fi/Fi−1 ' H0(λi) with λi ∈ Λ+.
(ii) M is said to have a Weyl filtration if there exists a filtration (0) = F0 ⊆
F1 ⊆ . . . of G-submodules such that ∪iFi = M and for any i ≥ 1 we have
Fi/Fi−1 ' H0(λi)

∗ with λi ∈ Λ+.
(iii) Assume furthermore that M is finite dimensional. Then M is called a
tilting module if M has both a Weyl filtration and a good filtration.

Remark 1.3.2. (i) A Weyl filtration and a good filtration are usually dis-
tinct in characteristic p > 0 since H0(λ)∗ is not always isomorphic to H0(µ)
for some µ ∈ Γ.
(ii) It is clear that M has a Weyl filtration if and only if M∗ has a good
filtration. Thus, M is a tilting module if both M and M∗ have a good
filtration.

2It follows by [Iv] Theorem 2.7 and [Ha1] Proposition II.6.2 and Corollary II.6.16
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In characteristic zero, it is easy to see that tilting modules exist because
H0(λ) is a tilting module for each λ ∈ Λ+. More generally, if H0(λ) is
irreducible then H0(−woλ) is a tilting module since H0(−woλ)∗ ' H0(λ).
But in positive characteristics, the existence of tilting modules is not trivial.
Fortunately, we have:

Theorem 1.3.3. ([Jan] Lemma II.E.3 + Lemma II.E.5)
(i) For any λ ∈ Λ+, there is a unique indecomposable tilting module T (λ)
such that dimT (λ)λ = 1 and any weight µ of T (λ) satisfies µ ≤ λ where ≤
is the dominant order on Λ.
(ii) T (µ) ' T (λ) if and only if µ = λ. Especially, T (λ)∗ = T (−woλ).





Chapter 2

The wonderful
compactification of Gad

For the construction of the wonderful compactification X of Gad as well
as some of the properties of X, we follow [B-K] chapter 6. The main
ideas come from the original paper on the wonderful compactifications of
symmetric varieties [DC-P] by De Concini and Procesi. The results were
obtained in characteristic zero. Strickland in [Str] generalized the theory
for compactification of the adjoint group. Later in [DC-S], De Concini and
Springer extended the results of [DC-P] to positive characteristics (except
characteristic 2).

2.1 Construction

Let Gad be a connected, semisimple, adjoint linear algebraic group over k.
Consider the simply connected covering π : G → Gad, i.e. a surjective
homomorphism of algebraic groups from the connected, semisimple, simply
connected linear algebraic group G to Gad where the kernel lies in the center
Z(G) of G (cf. [Spr] 10.1.4(1)). Then we will in this section construct a
smooth Gad × Gad-equivariant compactification X of Gad (here we extend
the Gad ×Gad action on Gad given by left and right multiplication to X).

The main idea is to embed Gad into the projective space P(Endk(M))
of endomorphism of some suitable G-module M . It can be done G × G-
equivariantly. Therefore, the closure ofGad inP(Endk(M)) is an equivariant
compactification of Gad.

Next, we summarize some of the properties needed for the G-module
M :

9
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Lemma 2.1.1. ([B-K] Lemma 6.1.1)
Let λ ∈ Λ be a regular dominant weight. Then there exists a finite dimen-
sional G-module M with the following properties:
(i) The T -eigenspace Mλ has dimension 1, and all other weights of M are
� λ
(ii) For α ∈ Φ+ we have g−αMλ 6= 0
(iii) gαM

∗
−λ 6= 0 for all α ∈ Φ+ where M∗

−λ is the T -eigenspace of weight
−λ in M∗

Proof. Let M be the indecomposable tilting module T (λ) cf. [Jan] Propo-
sition II.E.6. From this proposition (i) is clear (see also Theorem 1.3.3 on
page 7).

To prove (ii) observe that gαMλ = 0 since λ is the highest weight of M .
Therefore for α ∈ Φ+, Xα ∈ gα, X−α ∈ g−α, and m ∈Mλ gives

XαX−α.m = [Xα, X−α].m = 〈λ, α∨〉m

It suffices to prove that 〈λ, α∨〉 differs from zero when considered as an
element of k.

We have that V (λ)λ ' Mλ since dim(Mλ) = 1. Hence V (λ) ⊆ M
because M is indecomposable and V (λ) is generated by the B-stable line
of weight λ by [Jan] Lemma II.2.13(b). Therefore (ii) follows from [Jan]
Lemma II.8.4 since λ is a regular dominant weight.

Since T (λ)∗ ' T (−woλ), the highest weight line wrt. B in M∗ also satis-
fies (ii) (i.e. g−αM

∗
−woλ

6= 0 for all simple roots α). As Bwo = woB
− we get

by multiplying with wo that woM
∗
−woλ

is line consisting of B−-eigenvectors.
Hence we have that gαM

∗
−λ 6= 0 for all simple roots α showing (iii).

Remark 2.1.2. In characteristic zero, M can be taken as the simple G-
module with highest weight λ (λ is still a regular dominant weight), e.g.
H0(λ). When char(k) = p > 0 the Steinberg module St = H0((p− 1)ρ) can
be chosen (i.e. λ = (p− 1)ρ).

Another remark - although stated here as a Lemma - shows how to
construct a G-module satisfying the properties (i) to (iii) of Lemma 2.1.1
above.

Lemma 2.1.3. (a) Let M = M1 ⊗ · · · ⊗Ms where Mi is a tilting module
with highest weight λi such that

∑s
i=1 λi is a regular dominant weight. Then

M satisfies (i)–(iii) in Lemma 2.1.1.
(b) Let M ′,M ′′ be G-modules that satisfies (i)–(iii) of Lemma 2.1.1. Then
M = M ′ ⊗M ′′ also satisfies (i)–(iii) of Lemma 2.1.1. More generally, M ′′

only has to satisfy (i) in Lemma 2.1.1.
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Proof. Note first that M is a G-module with the action g.(v1 ⊗ · · · ⊗ vs) =
g.v1 ⊗ . . . g.vs for g ∈ G and vi ∈Mi.

Since Mi is a finitely dimensional module with highest weight λi, M is a
finitely dimensional module with highest weight

∑s
i=1 λi. Also, the weights

of Mi are less than λi in the dominant ordering. Hence M satisfies condition
(i).

Observe that the Lie algebra action of g is

A.(v1 ⊗ · · · ⊗ vs) =
s∑
i=1

v1 ⊗ · · · ⊗ A.vi ⊗ · · · ⊗ vs

for A ∈ g. Therefore to prove condition (ii), we note that for each α ∈ ∆
there exists i ∈ {1, . . . , s} such that 〈λi, α∨〉 6= 0 since

∑s
i=1 λi is regular.

By the calculations in the proof of condition (ii) in Lemma 2.1.1 on page 9,
we deduce that condition (ii) holds for M .

To prove the last condition, notice that M∗ is a tilting module with
highest weight

∑s
i=1−woλi. This is again a regular dominant weight. So

argueing similarly as for condition (ii) proves condition (iii) of Lemma 2.1.1.
To prove (b), we can argue similarly to prove (i). Now, observe that

the Lie algebra action is factorwise. Thus, since M ′ satisfy (ii) and (iii) in
Lemma 2.1.1 so does M .

Fix a choice for a weight λ ∈ Λ and a G-module M satisfying conditions
(i) to (iii) in Lemma 2.1.1 on page 9. Consider the G×G-module EndkM '
M∗⊗M . Let h ∈ Endk(M) denote the identity whereas [h] denotes its image
in P(Endk(M)). We will need the following observations later:

Remark 2.1.4. ([B-K] Lemma 6.1.5)
We can write h =

∑
µ hµ ∈ Endk(M) where hµ is a 1 × T -eigenvector of

weight µ. Choose a basis (mi) of T -eigenvectors of M and let (m∗
i ) denote

the dual basis of M∗. Since Endk(M) 'M∗⊗M we get that hµ =
∑
m∗
i⊗mi

where the sum is over those i such that mi has weight µ. From Lemma 2.1.1
(i) and (ii), the properties below of hµ are easily deduced:
(i) hλ = m∗

λ ⊗mλ

(ii) hλ−α 6= 0 for all positive roots α ∈ Φ+

(iii) If hµ 6= 0 then µ ≤ λ

Consider the closure in P(Endk(M)) of (G×G).[h]. We will denote this
closure by X. We claim that X is in fact the wonderful compactification of
Gad:

Lemma 2.1.5. ([B-K] Lemma 6.1.3)
The orbit (G × G).[h] ⊆ P(Endk(M)) is isomorphic to the homogeneous
space Gad.
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Proof. Observe that by Lemma 1.2.1 on page 4Gad×Gad acts onP(Endk(M))
since M satisfis condition (i)–(iii) in Lemma 2.1.1 on page 9. Therefore, the
orbit (Gad × Gad).[h] equals the orbit (G × G).[h] since Gad is isomorphic
to G/Z(G) as abstract groups.

Consider the isotropy group (Gad×Gad)[h]. It consists of the pairs (g1, g2)
such that g1g

−1
2 acts on M by a scalar; thus g1g

−1
2 ∈ Z(Gad) implies that

g1 = g2.
In the same way, the isotropy Lie algebra (g× g)[h] consists of the pairs

(x, x). So we can conclude that we have the above isomorphism by [Spr]
Theorem 5.3.2(c) since Gad×Gad/∆(Gad) ' Gad.

Notice that by Lemma 2.1.5 above, X is a Gad × Gad-equivariant com-
pactification of Gad such that Gad is an open subset of X (cf. [Spr] Lemma
2.3.3(i)). The next section will show that X satisfies the rest of the prop-
erties of the wonderful compactification, e.g. that X is smooth and has `
smooth boundary divisors which cross normally.

Example 2.1.6. We continue our example (see the previous examples -
examples 1.1.1, 1.2.3).

We choose λ = ρ and M = St = k2 as described in Example 1.2.3
on page 6. Let m∗

ρ,m
∗
−ρ denote the dual basis of mρ,m−ρ. Then h =

m∗
ρ ⊗mρ +m∗

−ρ ⊗m−ρ ∈ St∗ ⊗ St. This is G-invariant as follows:

([ a bc d ] , [ a bc d ]).h = ( bd )⊗ ( ac ) + ( ac )⊗ ( bd ) = h

in characteristic p = 2. Since St∗⊗St ' Mat2(k), we get thatP(Endk(St)) '
P3. As Gad = PSl2 has dimension 3, we conclude that the wonderful com-
pactification of Gad is X = P3. Let the isomorphism St∗ ⊗ St ' k4 be
given by m∗

ρ ⊗ mρ 7→ [ 1 0
0 0 ], m∗

ρ ⊗ m−ρ 7→ [ 0 0
1 0 ], m∗

−ρ ⊗ mρ 7→ [ 0 1
0 0 ], and

m∗
−ρ ⊗m−ρ 7→ [ 0 0

0 1 ].
Observe that

([ 1 0
0 1 ] , [ a bc d ]).h = a ·m∗

ρ⊗mρ + b ·m∗
−ρ⊗mρ + c ·m∗

ρ⊗m−ρ + d ·m∗
−ρ⊗m−ρ

which maps to [ a bc d ] under the isomorphism St∗ ⊗ St ' Mat2(k) as defined
above. Therefore, the G × G-action on Mat2(k) is (g1, g2).A = g−1

1 Ag2.
Hence, we get a Gad ×Gad-action on P3 when points in P3 are considered
as matrices by the above isomorphism.

2.2 Properties of X

We have constructed aGad×Gad-equivariant compactification ofGad, namely
X. We will in this subsection show that the constructed X is actually the
celebrated wonderful compactification cf. [DC-P], [Str], and [DC-S].
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To be more precise, we will show the following theorem:

Theorem 2.2.1. ([B-K] Theorem 6.1.8)
(i) X is an irreducible, smooth, projective Gad × Gad-equivariant variety
containing Gad as an open subset.
(ii) The boundary ∂X := X \ Gad is the union of ` smooth prime divisors
X1, . . . , X` with normal crossings.
(iii) For each subset I ⊆ {1, . . . , `}, the intersection XI := ∩i∈IXi is the
closure YI of a unique Gad×Gad-orbit. Conversely, any closure of a Gad×
Gad-orbit in X equals YI for a unique I.
(iv) The unique closed Gad×Gad-orbit in X is Y := Y{1,...,`} = ∩`i=1Xi which
is G×G-isomorphic to G/B × G/B.

The outline of the proof is as follows: We will first prove that Tad can be
embedded in the affine space A` such that A` \Tad is the union of ` smooth
hyperplanes of A` that have normal crossings. Furthermore, the closure of
Tad-orbits are in 1-1 correspondence with subsets of {1, . . . , `} similar to
(iii) of the Theorem 2.2.1 above. To relate these results to X, we find an
open affine subset Xo of X such that Tad ∩ Xo ' A`. Further, we prove
that X = (G×G).Xo and, most significantly, that Xo = (Bu ×B−

u ).A`.
Following the idea outlined above we consider Tad. By Lemma 2.1.5 we

have that Tad can be identified with the orbit (T × T ).[h]. Let Tad denote
the closure in X of Tad (viewed as the orbit (T ×T ).[h]). Consider the affine
subset Po in P(End(M)) defined to be the elements where the coefficient to
m∗
λ⊗mλ equals 1. Note that Po is B×B−-stable. Define Tad,o = Tad ∩Po.

This is an affine open T × T -invariant subset of Tad.
Consider A` as a T -variety with T -action given by

t.(x1, . . . , x`) = (α1(t
−1)x1, . . . , α`(t

−1)x`)

Then A` is an embedding of Tad (i.e. t 7→ t.(1, . . . , 1)).
The next result shows that there is an isomorphism of A` onto Tad,o.

Further, A` \ Tad has the required properties.

Lemma 2.2.2. ([B-K] Lemma 6.1.6)
(i) Define γ : A` → P(Endk(M)) by

(x1, . . . , x`) 7−→
[ ∑

(n1,...,n`)∈N`

xn1
1 · · ·xn`

` hλ−n1α1−···−n`α`

]
(2.1)

Then γ is isomorphism onto its image and Im(γ) = Tad,o.
(ii) The Weyl group W of G with respect to T acts on Tad,o via the diagonal
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action1 and Tad = ∪w∈W (w,w).Tad,o
(iii) The boundary A`\Tad is the union of ` hyperplanes which have normal
crossings. Further, the T -orbit closures are in 1-1 correspondance to subsets
of {1, . . . , `}.

Proof. The coefficient in front of hλ in the expression (2.1) is 1 and hence
Im(γ) ⊆ Po. Further, the coefficient in front of hµ (for µ ≤ λ in the
dominant order) is a polynomial expression of the coefficients in front of
hλ−αi

for i = 1, . . . , `. These are non-zero (by Remark 2.1.4 on page 11) and
linearly independent as the simple roots are. Especially, γ is an isomorphism
onto its image.

To find Im(γ), consider the T × T -action on h. By Remark 2.1.4, we
get:

(1, t).h =
∑
µ

µ(t)hµ

=
∑

(n1,...,n`)∈N`

(λ− n1α1 − · · · − n`α`)(t)hλ−n1α1−···−n`α`

This shows that the map Tad → (Tad×Tad).[h], t 7→ (1, t).[h] factors through
γ and the map Tad → A`, t 7→ t.(1, . . . , 1).

Now, Tad,o is closed in Po and hence γ−1(Tad,o) is closed in A`. We
also have that γ−1(Tad,o) contains the open dense subset Tad of A`. Thus,
γ−1(Tad,o) = A`. Therefore Im(γ) ⊆ Tad,o. But the calculation above shows
that they must be equal since Tad is an open subset of Tad,o.

To prove (ii), observe that NG(T ) acts on Tad by (n, n).t = ntn−1 for
t ∈ Tad and n ∈ NG(T ). Thus NG(T ) acts on the closure Tad. Hence T acts
on Tad and furthermore, T acts trivially on Tad. Consequently, W = NG(T )/T
acts on Tad.

Since Tad,o is an open subset of Tad then Z :=
⋃
w∈W (w,w).Tad,o is also an

open subset of Tad. We will prove that Z is complete. Hence Z = Z = Tad
since the latter is irreducible. By (i), Tad,o is the toric variety associated
with the negative Weyl chamber. Thus Z is the toric variety associated
with all Weyl Chambers and hence Z is complete by [Fult] Proposition 2.4
finishing the proof of (ii).

For the last assertion, observe that A` \ Tad is the closed subvariety of
A` where at least one coordinate is zero. Hence A` \Tad is the union of the
coordinate hyperplanes Hi in A`, i.e. Hi is the subvariety of A` where the
i-th coordinate is zero. Thus, Hi ' A`−1. So we have that the hyperplanes

1The action of w ∈ W on x ∈ Tad is the element (w,w).x (the action here being that
of G×G)
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Hi are closed smooth subvarieties ofA` of codimension 1. Furthermore they
cross normally (cf. [Ha1] page 391, line 2) since ∩i∈IHi is the subvariety
where the i’th coordinate is zero for all i ∈ I. Thus, ∩i∈IHi ' A`−|I|.

Define [hI ] ∈ A` such that the i-th coordinate is 0 if i ∈ I and 1
otherwise. Notice that the i’th coordinate of t.[hI ] is zero if i ∈ I. Therefore,

A
` \ Tad =

⋃
∅6=I⊆{1,...,`}

T.[hI ]

The union is disjoint.
This shows that every T -orbit equals one of the above, i.e. there exists

a subset I ⊆ {1, . . . , `} such that the orbit equals T.[hI ].
Note that since the closure of Tad.[hI ] with I = {i} is the hyperplane

Hi we get that for an arbitrary I ⊆ {1, . . . , `}, the closure of Tad.[hI ] is the
intersection of the hyperplanes Hi with i ∈ I.

To follow the outlined idea, we need to construct an affine subset Xo

of X with the mentioned properties. It is not hard to define Xo. Let
Xo := X ∩ Po. Observe that Xo is an affine open B × B−-stable subset of
X. Notice that Xo ∩ Tad = Tad,o ' A` by Lemma 2.2.2 on page 13.

We can give an explicit description of the B × B−-structure on Xo.
Consider map Γ : Bu × B−1

u × A` → X by (u, v, x) 7→ (u, v).γ(x). Notice
that Im(Γ) ⊆ Xo since Im(γ) = Tad,o and Xo is B × B−-stable. Hence, Γ
is a Bu × B−

u -equivariant morphism where Bu × B−
u acts on Bu × B−

u ×
A` via multiplication componentwise on the first two factors. Our crucial
proposition is

Proposition 2.2.3. ([B-K] Proposition 6.1.7)
Γ : Bu ×B−

u ×A` → Xo is an isomorphism.

Proof. We will construct a Bu ×B−
u -equivariant morphism β : Xo → Bu ×

B−
u such that the restriction of β ◦Γ to Bu×B−

u ×Tad is the map (u, v, t) 7→
(u, v). Hence β is surjective onto Bu × B−

u . Let β−1(1, 1) denote the fibre
of β over (1, 1) ∈ Bu × B−

u . Hence, we can define the map Γ′ : Bu × B−
u ×

β−1(1, 1) → Xo by (u, v, x) 7→ (u, v).x.
Using the Bu × B−

u -equivariance of β we find that Ψ : Xo → Bu ×
B−
u × β−1(1, 1) given by x 7→ (β(x), β(x)−1.x) is a Bu × B−

u -equivariant
morphism such that Γ′ ◦ Ψ = IdXo and Ψ ◦ Γ′ = IdBu×B−

u ×β−1(1,1) by
the construction of Γ′ and Ψ. Thus, Γ′ is an isomorphism. In particu-
lar, the scheme-theoretic fiber β−1(1, 1) is a irreducible variety since Xo

is. Furthermore, dim(β−1(1, 1)) = dim(Xo) − dim(Bu) − dim(B−1
u ) = `.

Observe that Γ(1 × 1 × Tad) ⊆ β−1(1, 1) by the construction of β. Thus
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β−1(1, 1) ⊇ Γ(1 × 1 ×A`) = γ(A`) = Tad,o and Tad,o is closed in Xo hence
in β−1(1, 1). Therefore, β−1(1, 1) = Tad,o by [Spr] Proposition 1.8.2 as they
are closed, irreducible varieties of the same dimension.

It remains to construct theB×B−-equivariant map β. ConsiderP(End(M))
as a space of rational self-maps of P(M) and consider the basis (mi) of T -
eigenvectors of M and its dual basis (m∗

i ) cf. Remark 2.1.4 on page 11. Ev-
ery morphism in Endk(M) 'M∗⊗M can then be written as

∑
µ,ν≤λ aµ,νm

∗
µ⊗

mν . Po is then the rational maps in P(End(M)) that are defined in [mλ] and
map [mλ] to a point of P(M)o, the subset of P(M) with non-zero coefficient
for mλ because if [φ] ∈ Po then aλ,λ = 1 where φ =

∑
µ,ν≤λ aµ,νm

∗
µ ⊗mν as

above.
Observe that ((g1, g2).h)(m) = g1.h(g

−1
2 .m) = g1g

−1
2 .m since h is the

identity map in Endk(M). Hence elements in (G × G).[h] map G.[mλ] to
G.[mλ].

Consider the subset A := {φ ∈ Endk(M) |φ(G.mλ) ⊆ G.mλ}. First
notice that A =

⋂
g∈G{φ ∈ Endk(M) |φ(g.mλ) ⊆ G.mλ}. Since the map

G ×B Mλ → M is a closed map then {φ ∈ Endk(M) |φ(g.mλ) ⊆ G.mλ} is
closed in Endk(M). Thus, we deduce that each element of Xo is a rational
self-map of G.[mλ] because elements of Xo are contained in {[φ] |φ ∈ A}.

From Bruhat’s Lemma (cf. [Spr] Theorem 8.3.8), we find that G =
∪w∈WBẇB ' ∪w∈WB−ẇB since woBw

−1
o = B− and ẇoW = W (the ẇ’s

are chosen representatives for w ∈ W ). Hence, G.[mλ] = ∪w∈WB−ẇ.[mλ]
since B.[mλ] = [mλ] by Lemma 2.1.1 on page 9. If ẇ.[mλ] 6= [mλ] then
ẇ.[mλ] is a weight vector of weight w−1.λ � λ hence B−ẇ.[mλ]∩P(M)o = ∅.
So we conclude that G.[mλ] ∩P(M)o = B−

u .[mλ].
Consider the obvious map B−

u → B−
u .[mλ] (i.e. u 7→ u.[mλ]). It is an iso-

morphism (of homogeneous spaces for B−
u ) by [Spr] Theorem 5.3.2(iii) and

by Lemma 2.1.1 (ii) on page 9. Therefore, we have a morphism Xo → B−
u

given by φ 7→ vφ where vφ ∈ B−
u is the unique (from Bruhat decomposition

cf. [Spr] Corollary 8.2.9) element such that φ([mλ]) = vφ.[mλ].
Regarding P(End(M)) ' P(End(M∗)) as a space of rational self-maps

of P(M∗), we find by the arguments as above a morphism Xo → Bu map-
ping ψ to uψ where ψ([m∗

λ]) = uψ.[m
∗
λ]. Now, we can define β : Xo →

Bu×B−
u as the product morphism, i.e. the morphism given by φ 7→ (uφ, vφ)

in the above notation. Clearly, β sends any φ ∈ Tad to (1, 1). Furthermore,
β is Bu×B−

u -equivariant by construction. Thus, (β ◦Γ)(u, v, t) = (u, v) for
all (u, v, t) ∈ Bu ×B−

u × Tad is satisfied as required and therefore the proof
is completed.

Hence Xo is an affine space. Thus Xo is smooth. So we only need
to prove the last assertion for Xo, namely that X is the union of G × G-
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translates of Xo. This follows from a more general result:

Lemma 2.2.4. If Y is the unique closed orbit in a G-variety X and if V
is a open subset of X satisfying V ∩ Y 6= ∅ then X =

⋃
g∈G g.V

Proof. Obviously the inclusion ‘⊇’ holds. So consider an element x ∈ X,
but not in the union

⋃
g∈G g.V . Hence, g.x 6∈ V for all g ∈ G and therefore

G.x ⊆ V c. Since V is open we get G.x ⊆ V c. Thus, G.x ∩ V = ∅.
As G.x is closed and G-stable, G.x contains a closed G-orbit. But a

closed G-orbit in G.x is also a closed G-orbit of X. Therefore Y ⊆ G.x.
Hence Y ∩ V = ∅ contradicting the assumption of the Lemma.

Hence, it suffices to prove that X contains a unique closed G×G-orbit
intersecting Xo non-trivially. First observe that X contains a closed G×G-
orbit since X is closed and G×G-stable by definition.

Lemma 2.2.5. X contains a unique closed G × G-orbit, namely Y :=
(G×G).[hλ]. And Y ∩Xo 6= ∅.

Proof. Since a closed orbit in X is also a closed orbit in P(End(M)), we
only need to prove that the latter has a unique closed orbit. Then this
closed orbit actually lies in X.

Let (G × G).[m] be a closed orbit in P(End(M)) where m ∈ End(M)
is non- zero. Then (G × G).[m] ' G×G/(G×G)[m] is projective and hence
(G×G)[m] is parabolic. Thus, it contains some Borel subgroup of G×G by
[Spr] Theorem 6.2.7(i) and therefore we have x ∈ G×G such that B×B ⊆
x(G × G)[m]x

−1. Notice that for y ∈ (G × G)[m] we have (xyx−1).(x.m) =
x.(y.m) ∈ k(x.m) which implies that x.m is a B × B-eigenvector. Hence
x.m ∈M∗

−woλ
⊗Mλ. Now, as Mλ and M∗

−woλ
are 1-dimensional, x.m ∈ khλ.

Now, therefore [hλ] = [x.m] = x.[m] and thus, (G×G).[m] = (G×G).[hλ].
This proves that Y := (G × G).[hλ] is closed and unique. Furthermore

that (G × G).[hλ] ' G×G/B×B by Lemma 2.1.1 on page 9. Now, Y ∩Xo =
Y ∩ Po which clearly contains the element [hλ]. Therefore, Y ∩Xo is non-
empty.

This description of Xo finally enables us to prove Theorem 2.2.1 on
page 13:

Proof of Theorem 2.2.1. To prove (i), the only thing we need to show
is the smoothness of X. We know by Lemma 2.2.5 and 2.2.4 that X =
(G×G).Xo. Since Xo is smooth so is X.

For (ii) and (iii), recall the definition of [hI ] in the proof of Lemma 2.2.2
on page 13 for a subset I of {1, . . . , `}. Observe that if λ − µ ∈

∑
i6∈I Nαi
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then the coefficient in front of hµ in γ([hI ]) is 1 cf. definition of γ in
Lemma 2.2.2 on page 13. Therefore [hI ] ∈ P(End(M)) is the projection to
the sum of those weight subspaces Mµ with λ − µ ∈

∑
i6∈I Nαi. As this is

never M (because I 6= ∅) we find in particularly that [hI ] 6∈ Gad. Therefore
together with Proposition 2.2.3 on page 15, we deduce that Γ restricts to
an isomorphism Bu × B−

u × (A` \ Tad) → Xo \ Gad = Xo ∩ ∂X. Together
with X is (G×G)-translates of Tad,o ' A`, this implies that ∂X is a union
of ` smooth prime divisors Xi with normal crossings proving (ii).

This also proves (iii) by the isomorphism Bu×B−
u ×(A`\Tad) → Xo∩∂X

and Lemma 2.2.2 on page 13.
The unique closed orbit is (G×G).[hλ] ' G/B×G/B as found in the proof

of Lemma 2.2.5 on the previous page. Now, [hλ] = [h{1,...,`}] by Lemma 2.2.2
on page 13. Thus, the unique closed orbit is ∩`i=1Xi.

So far the construction of X depends on a choice of a regular dominant
weight and a choice for the G-module M(λ) that has the properties (i)–(iii)
of Lemma 2.1.1 on page 9. We will prove independence of both of these
choices. Before that we need the following ’observation’:

Lemma 2.2.6. ([DC-S] Proposition 3.15)
Let Mi be G-modules with highest weight λi for i = 1, . . . , N . Assume that
the tensorproduct ⊗N

i=1Mi satisfies the conditions (i)–(iii) of Lemma 2.1.1
on page 9. Let hi ∈ Endk(Mi) be the identity element and let [hi] denote
its image in P(Endk(Mi)). Then X is isomorphic to the closure of the
G×G-orbit of the following element:

([h1], . . . , [h`]) ∈
N∏
i=1

P(Endk(Mi))

Proof. We prove the case where N = 2 because this case together with
induction will take care of the general case.

It is clear that the element h = h1 ⊗ h2 ∈ M is the identity map in
Endk(M) where M = M1 ⊗M2. Thus, the closure of the G × G-orbit of
[h] ∈ P(Endk(M)) is isomorphic to the variety X constructed above.

Consider the Segre embedding:

s : P(Endk(M1))×P(Endk(M1)) ↪→ P(Endk(M))

It is G × G-equivariant since Endk(Mi) is a G × G-module for i = 1, 2.
Furthermore, the Segre embedding s is a closed map. Hence, the closure
of the G×G-orbit of the element ([h1], [h2]) maps isomorphically onto the
closure of the G×G-orbit of [h] which is the variety X.



2.3. The Picard group of X 19

We are ready to prove independence of the choice of λ and of a G-module
that satisfies properties (i)–(iii) of 2.1.1.

Proposition 2.2.7. X is independent of the choices of the regular dominant
weight λ and the associated G-module M(λ) that satisfies the properties (i)–
(iii) in Lemma 2.1.1 on page 9.

Proof. Consider two compactifications X ′, X ′′ of Gad associated with two
different choices of regular dominant weights λ′, λ′′ and G-modules M ′ =
M(λ′),M ′′ = M(λ′′) having the properties (i)–(iii) of Lemma 2.1.1 on
page 9.

Now, we can embed Gad diagonally in X ′ × X ′′. From Lemma 2.2.6
above we get that X ′×X ′′ ⊆ P(Endk(M

′⊗M ′′)). Therefore we can define
X to be the closure of ∆(Gad) in X ′×X ′′. Then X is Gad×Gad-equivariant
compactification of Gad with two equivariant projections π′ : X → X ′

and π′′ : X → X ′′. The closures of Tad in X ′ and X ′′ are the same by
Lemma 2.2.2 on page 13 such that the closure of Tad in X ′×X ′′ is mapped
isomorphically to these via the projections π′, π′′.

Define Xo to be the preimage of X ′
o under π′. Then Xo ' Bu × B−

u ×
Tad,o by Proposition 2.2.3 on page 15. Therefore, π′ restricted to Xo is an
isomorphism π′ : Xo → X ′

o. Because all Gad×Gad-orbits meet Xo and π′ is
equivariant, it is an isomorphism everywhere, i.e. X ' X ′ proving that X
is independent of the choices made when constructing X.

Example 2.2.8. We continue our example (see the previous examples -
examples 1.1.1, 1.2.3 , 2.1.6).

Notice that Gad is the subset

{[ a bc d ] | ad− bc 6= 0} ⊆ P3

Thus, ∂X is the closed set {[ a bc d ] | ad−bc = 0}. This is also Y = G/B×G/B =
P1 ×P1.

2.3 The Picard group of X

In this section, we determine the Picard group of the wonderful compact-
ification X of Gad. Since X is a smooth variety, we have that the Picard
group Pic(X) is isomorphic to the divisor class group Cl(X) (see e.g. [Ha1]
Corollary II.6.16).

The first result due to M. Brion (see [DC-S] Proposition 4.4) describes
the divisor class group of X:
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Lemma 2.3.1. ([B-K] Proposition 6.1.9)
The irreducible components of X \Xo are the prime divisors BṡiB− where
si is the simple reflection in W associated with αi. The equivalence classes
of these prime divisors generate the abelian group Cl(X) freely.

Proof. All irreducible components of X \Xo have codimension 1 by [Ha2]
Proposition II.3.1 as Xo is affine (cf. Proposition 2.2.3 on page 15). Further,
Xo has the property (proved by Lemma 2.2.4 on page 17 and Lemma 2.2.5
on page 17) that it meets all Gad×Gad-orbits. Thus X \Xo does not contain
any Gad ×Gad-orbits.

We claim that this implies that Gad \ Xo is dense in X \ Xo. If not
there exists an irreducible component C of X \Xo such that C " Gad \Xo.
Consider the open subset Gad∩C of C. We have that Gad∩C ⊆ C∩Gad \Xo

per choice of C. This implies that the closure in C of Gad ∩C is the empty
set since C is irreducible. Thus, C ⊆ X \ Gad. But then C is one of the
divisors Xi since it has codimension 1 in X by [Ha2] Proposition II.3.1.
But these are G×G-stable contradicting that X \Xo does not contain any
Gad ×Gad-orbits. Therefore, Gad \Xo is dense in X \Xo.

Now, observe that Gad ∩Xo ' Bu ×B−
u × Tad which is nothing else but

the big cell of Gad. Therefore the Bruhat decomposition ([Spr] Theorem
8.3.8) reveals that Gad \Xo =

⋃
w 6=idBẇB

−. Being a dense subset of X \Xo

we find when taking closures in X that X \ Xo =
⋃
w 6=idBẇB

−. By [Spr]
Proposition 8.5.5, this can be refined:

X \Xo =
⋃̀
i=1

BṡiB−

proving the first assertion of the Lemma.
To prove the second assertion, let D be a divisor of X. As Xo is an

affine space, Cl(Xo) is trivial cf. [Ha1] Proposition II.6.2. Hence, Cl(X) is
generated by the irreducible components of X \Xo which are the BsiB−’s
(i = 1, . . . , `) according to the first assertion.

In order to finish the proof, we need to prove that the BṡiB−’s are
linearly independent in Cl(X). Assume for contradiction that there exists a
trivial linear combination of the BṡiB−’s. Hence there exists a non-constant
rational function on X which has zeros and poles along divisors contained
in X \Xo. But then the restriction f|Xo is a non-constant invertible function
of the affine space Xo giving a contradiction. Thus, the second assertion is
proved.

As mentioned above Pic(G) ' Cl(X) since X is smooth. This Lemma
then gives one description of Pic(X). The definition of Pic(X) is the group
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of isomorphism classes of line bundles on X. Since G is semisimple and
simply connected and X is normal we have that any line bundle L ∈ Pic(X)
admits a unique G × G-linearization. The restriction of L to the unique
closed Gad × Gad-orbit Y ' G/B × G/B is then also a G × G-linearized line
bundle on Y .

It is a well-known result that Pic(G/B) ' X∗(T ) = Λ (see e.g. [Jan]
§4.2) and thus Pic(Y ) ' Λ × Λ. Define LY (λ, µ) := L(λ) � L(µ). Now,
as a G×G-linerized invertible sheaf on Y the restriction of L ∈ Pic(X) is
isomorphic to L(λ) � L(µ) for uniquely determined weights λ, µ ∈ Λ.

Since X is a smooth variety, there is a line bundle LX(D) associated
to each divisor D on X ([Ha1] Proposition II.6.11 and Prosition II.6.13).
Define Di = BsiwoB where the closure is taken in X. Then Di is a prime
divisor on X. Let τi denote the unique (up to a scalar) section of LX(Di)
such that the zero subset of τi is Di. Observe that the classes of Di form a
basis of Cl(X) since Di = (1, ẇo)BsiB− is linear equivalent to BsiB−.

Further, let σi denote the unique (up to a scalar) section of the line
bundle LX(Xi) such that the zero subset of σi is Xi. For the action of
G×G on H0(X,LX(Di)) we have that τi is a B×B-eigenvector. Similarly,
σi is G×G-invariant.

Now, we determine Pic(X) as an explicit subset of Pic(Y ):

Proposition 2.3.2. ([B-K] Proposition 6.1.11)
The restriction map ı∗ : Pic(X) → Pic(Y ) is injective where ı : Y → X is
the inclusion map. Further, the image of ı∗ consists of LY (−woλ, λ) with
λ ∈ Λ.

Proof. Note that there is a unique (up to scalar) B×B-eigenvector in k[G]
of weight (ωi,−woωi) such that the zero subscheme of this eigenvector is the
closure in G of BsiwoB cf. Lemma 1.2.2 on page 5. Hence also τi has weight
(ωi,−woωi) since VX(τi)∩G is the closure in G of BsiwoB. The restriction
of τi to Y is contained in H0(λ) � H0(µ) for unique λ, µ ∈ Λ. As τi is a
B×B-eigenvector of weight (ωi,−woωi) we must have that λ = −woωi and
µ = ωi. Thus, ı∗LX(Di) = LY (−woωi, ωi).

Any divisor D on X is generated by the Di’s by Lemma 2.3.1 and hence
the image of ı∗ is as described since Cl(X) ' Pic(X). Assume that a divisor
D on X has trivial image under ı∗. Write D =

∑`
i=1 niDi. Hence, LX(D) =⊗`

i=1 LX(Di)
⊗ni . Then ı∗LX(D) = ⊗`

i=1LY (−woωi, ωi)⊗ni = LY (−woλ, λ)

where λ =
∑`

i=1 ωi. By our assumption ı∗LX(D) is trivial and hence λ = 0.
Thus, LX(D) is trivial proving that ı∗ is injective.

As Cl(X) ' Pic(X) we will also call ı∗ the restriction to Y and denote
it with resY . Let LX(λ) denote the line bundle on X with restriction to Y



22 Chapter 2. The wonderful compactification of Gad

equaling LY (−woλ, λ) which makes sense by Proposition 2.3.2 above. Thus,
the map Λ → Pic(X), λ 7→ LX(λ) is an isomorphism of (abstract) groups.

Remark 2.3.3. ([B-K] Proposition 6.1.11)
The line bundle LX(Xi) corresponding to the prime divisor Xi is the line
bundle LX(αi) with the description above. Further, the canonical sheaf of
X is ωX = LX(−2ρ− αi − · · · − α`).

Proof. Consider the restriction of LX(Xi) to Xo. Since Xo ∩ ∂X ' Bu ×
B−
u × A` \ Tad (cf. the proof of Theorem 2.2.1 on page 13 on page 17)

then we have that Xo ∩ Xi = VXo(xi) where k[A`] = k[x1, . . . , x`] (i.e. xi
is the regular function of A` picking out the coefficient in front of the i’th
coordinate). By Proposition 2.2.3 on page 15, xi is a regular function of
Xo.

We already have a B × B−-action on Xo and therefore we can define
a B × B-action on Xo by conjugating the second faktor with ẇo because
ẇoBẇo = B−. If t ∈ Tad the Γ(u, v, t) = utv−1 for u ∈ Bu, v ∈ B−

u (the
product taken in Gad). Thus, xi(Γ(u, v, t)) = αi(vt

−1u−1) = αi(t
−1). Let

b, c ∈ B then

((b, c).xi)(utv
−1) = xi((b

−1, ẇoc
−1ẇ−

o ).utv−1) = xi(b
−1utv−1ẇocẇ

−1
o )

= αi(ẇoc
−1ẇ−1

o vt−1u−1b) = (−wo.αi)(c) · αi(b) · αi(t−1)

Hence, the B ×B-weight of xi is (αi,−wo.αi).
Therefore, the restriction of xi to Y gives a B×B-eigenvector of weight

(αi,−wo.αi). Consequently, the restriction of xi to Y is contained in
H0(Y,LY (−wo.αi, αi)) showing that LX(Xi) = LX(αi).

The idea is now to combine this with [Ha1] Proposition II.8.20 to prove
the second assertion. Notice that the ideal sheaf IXi

= LX(−Xi) = LX(−αi)
by [Ha1] Proposition II.6.18. Since the boundary divisors Xi cross nor-
mally, σ1, . . . , σ` are linear independent (modM2

y) where y ∈ Y , My is
the maximal ideal in the regular local ring OX,x and σi define the di-
visors Xi. Thus, IY/I2Y has a basis consisting of these σi’s showing that
IY/I2Y ' LX(−Xi) ⊗ · · · ⊗ LX(−Xi). Therefore the normal sheaf NY/X '⊗`

i=1 LX(αi). Therefore by [Ha1] Proposition II.8.20 we have that the
canonical sheaf ωY of Y is ωY = ωX ⊗ LX(α1 + · · ·+ α`) which proves the
claim.

Example 2.3.4. We continue our example (see the previous examples -
examples 1.1.1, 1.2.3 , 2.1.6, 2.2.8).

As wo = sα we get that D = BsαwoB = B. As a subset of P3 (in matrix
notation) we have

B = {[ a bc d ] ∈ P3 | c = 0}
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By [Ha1] Corollary II.6.17, Pic(X) ' Z. We also have that Pic(X) '
Cl(X) since X is smooth. Thus, the isomorphism Z ' Pic(X) is given by
1 7→ OX(1) ' LX(ωα) = LX(B). Observe that Pic(X) → Pic(Y ) is the
diagonal map since Pic(Y ) ' Z×Z and every weight λ equals mρ for some
m ∈ Z. Hence, LX(mρ) = LX(ρ)⊗m ' OX(m). Especially, ω−1

X = OX(4)
by Remark 2.3.3 on the preceding page.

Let k[Z11, Z12, Z21, Z22] be the homogeneous coordinate ring for X = P3

where Zij is the function [ a11 a12
a21 a22 ] 7→ aij for i, j ∈ {1, 2}. Then ∂X =

VX(Z11Z22 − Z12Z21) and the unique (up to a scalar) global section σ of
LX(α) = OX(2) is Z11Z22 − Z12Z21. We also have B = VX(Z21) and hence
the unique (up to a scalar) global section σ of LX(ρ) = OX(1) is Z21.





Chapter 3

Unipotent varieties

In this section we will study the unipotent variety U, i.e. the subset of
a linear algebraic group H consisting of all unipotent elements. We will
prove that when G is connected, semi simple, and simply connected, U is
a complete intersection and furthermore normal. We also prove that the
central isogeny π : G→ Gad maps U bijectively onto the unipotent variety
Uad of the adjoint linear algebraic group Gad.

3.1 The Unipotent Varieties

Let G denote a linear algebraic group. Then an element x ∈ G is called
unipotent if the image of x in some embedding of G as a closed subset of
Gln(k) have all eigenvalues equal to 1. By Jordan decomposition (see e.g.
[Spr] Theorem 2.4.8) this is independent of the choice of embedding. Let
U denote the subset of all unipotent elements in G. The condition for an
element in Gln(k) to be unipotent is that x− I is nilpotent where I is the
identity element in Gln(k). This is a polynomial condition and therefore U

is a closed subset of G. But we can show more than that:

Theorem 3.1.1. ([Hum2] Theorem 4.2)
The subset U of all unipotent elements in a connected reductive linear alge-
braic group G is a closed irreducible subvariety of G of dimension dim(G)−`
where ` = rank(G).

Proof. Let η : G×G→ G be defined by (g, x) 7→ g−1xg. Since the unipotent
radical Bu of B is closed in G the pullback Z := η−1(Bu) is closed in G×G.
Let Z ′ denote the image of Z under the map prG/B× id : G×G→ G/B×G.
Then

Z ′ = Im(prG/B × id) = {(gB, x)| g−1xg ∈ Bu}

25
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This description of Z ′ makes sense since b−1xb ∈ Bu for all b ∈ B and
x ∈ Bu. Now, prG/B×id is an open map cf. the quotient topology. Therefore
Z ′ is closed since (prG/B × id)((G × G) \ Z) = (G/B × G) \ Z ′ is open in
G/B ×G.

By definition of Z ′ we have that the map G×Bu → Z ′ given by (g, x) 7→
(gB, g−1xg) is surjective. Hence Z ′ is irreducible as G×Bu is ([Spr] Lemma
1.2.3(ii)).

Consider the projection G/B × G → G. It is a closed map since G/B
is complete (cf. [Spr] 6.1.1). Furthermore, Z ′ is mapped onto U via this
projection since U =

⋃
g∈G gBug

−1. Thus, U is closed and irreducible.
Therefore, we can regard U as a closed subvariety of G by putting the
reduced structure on U.

We need to find the dimension of U, but first we find the dimension of
Z ′. Consider the other projection G/B × G → G/B. Under this projection
Z ′ is sent to G/B with fibres isomorphic to gBug

−1. Therefore, the fibres all
have dimension equal to dim(Bu). Thus,

dim(Z ′) = dim(G/B) + dim(Bu)
= dim(G)− dim(B) + dim(Bu) = dim(G)− rank(G)

So to prove the last assertion we only need to check that there exists a finite
fibre of the surjection Z ′ → U. We have to show that there exists a x ∈ Bu

that only is contained in gBug
−1 for finitely many g ∈ G. This follows from

the Lemma:

Lemma 3.1.2. (Contained in [Hum2] Proposition 4.1)
There exists x ∈ Bu lying in only finitely many Borel subgroups.

Proof. Consider the root subgroup maps uα : k → Uα cf. [Spr] Proposition
8.1.1. Choose an ordering α1, . . . , αs of the positive roots such that the
simple roots are the first `. We have Bu =

∏s
i=1 Uα by [Spr] Proposition

8.2.3.
Let x ∈ Bu such that when writing x =

∏s
i=1 uαi

(xi) for xi ∈ k then
uαi

(xi) 6= e. We will prove that x lies in a unique Borel subgroup.
Assume that x lies in some other Borel subgroup B′. Then we have

unique w ∈ W, v ∈ Uw−1 , b ∈ B such that B′ = vẇbBb−1ẇ−1v−1 =
vẇBẇ−1v−1 by the Bruhat decomposition ([Spr] Corollary 8.3.9) and the
fact that all Borel subgroups in G are conjugated ([Spr] Theorem 6.2.7).
Hence ẇ−1v−1xvẇ ∈ B. Notice that Uw−1 is a subgroup of Bu by [Spr]
Lemma 8.3.5.

From [Spr] Proposition 8.2.3 we deduce that if y =
∏s

i=1 uαi
(yi) is an ele-

ment of the commutator subgroup (Bu, Bu) then uαi
(yi) = e for i = 1, . . . , `.
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Hence this is the case for x−1v−1xv. Therefore, if v−1xv =
∏s

i=1 uαi
(zi) then

zi = xi 6= 0 for i = 1, . . . , `.
Now, ẇ−1v−1xvẇ =

∏s
i=1 uw−1.αi

(cw,αzi) by [Spr] Exercise 8.1.12(2).
Note that cw,αzi 6= 0 for 1 ≤ i ≤ `. Further, ẇ−1v−1xvẇ ∈ Bu. From
[Spr] Proposition 8.2.1 and Exercise 8.1.12(1) we deduce that B∩ ẇBẇ− =
Uwow−1

∏
α∈Φ+,w−1.α∈Φ+ Uα. Therefore, we find that w−1.αi ∈ Φ+ for all

simple roots α1, . . . , α`. Thus, w−1 = 1 implying that ẇ ∈ B. Thus,
B′ = vBv−1 = B since v ∈ Uw−1 ⊆ Bu. This concludes the proof of the
Lemma.

Therefore, since there is one finite fibre, dim(U) = dim(X) = dim(G)−`
by [Spr] Corollary 5.2.7.

The closed subvariety U of G is called the unipotent variety.

Example 3.1.3. Let the situation be as in Example 1.1.1 on page 2. Then
the unipotent variety of G = Sl2 is

U = {[ a bc d ] ∈ G | a+ d = 0}

(since we are in characteristic p = 2).

3.2 Properties of the Unipotent Varieties

In this section, we prove that the unipotent variety of a connected, semi
simple, simply connected linear algebraic group is a complete intersection.
Further, it is normal.

We will need the following Lemma from commutative algebra due to
Kostant:

Lemma 3.2.1. ([K] Lemma 1.6.4)
Let f1, . . . , fr ∈ k[G] and set

X := VG(f1, . . . , fr) P = IX(X)

Assume that X is irreducible and that there exists x ∈ X such that (dfi)x
are linearly independent in ΩG/k. Then P is generated by f1, . . . , fr as an
ideal.

Proof. Let I be the ideal generated by f1, . . . , fr in k[G]. Consider the local
ring k[G]x with unique maximal ideal Mx. By the definition of X we have
that the fi’s belong to Mx.
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Since (dfi)x are linearly independent we get that fi + M2
x are linearly

independent in Mx/M2
x. Hence, they form part of a basis for Mx/M2

x. By
Nakayama’s Lemma ([E] Corollary 4.8) f1, . . . , fr are part of a generat-
ing set of Mx (also called a regular system of parameters at x cf. [E]
page 242). Consider the local ring R := k[G]x/k[G]xI and let M denote
its maximal ideal. By the principal ideal theorem ([E] Theorem 10.2)
dimR/M(M/M2) ≥ dim(R). We know that the vector space M/M2 is a quotient
of Mx/M2

x. Therefore dimR/M(M/M2) ≤ dim(k[G]x) − r. On the other hand,
dim(R) ≥ dim(k[G]x)−r. Thus, dimR/M(M/M2) = dim(R)−r and therefore
R is regular local ring. Thus, R is an integral domain by [E] Corollary 10.14
implying that k[G]xI is a prime ideal in k[G]x.

By Hilbert’s Nullstellensatz ([E] Theorem 1.6) we have that the radical√
I = P. Hence localizing

√
k[G]xI = k[G]xP. In fact, k[G]xI = k[G]xP

because k[G]xI is a prime ideal. By [E] Proposition 2.2, P = k[G]∩ k[G]xP
as P is a prime ideal (by the assumption that X is irreducible). Thus,
P = k[G] ∩ k[G]xI.

Take an irredundant primary decomposition I = Q1 ∩ · · · ∩Qs (see cg.
[E] Theorem 3.10). Notice that the radical ideals

√
Qi are actually prime

ideals. Since P =
√
I is prime, P ⊆

√
Qi for all i. As I is generated by

codim(I) elements, the unmixedness Theorem ([E] Corollary 18.14) implies
that all the

√
Qi are minimal primes over I. Hence, they all equal P implying

that I is a primary ideal. Thus, I = k[G] ∩ k[G]xI by [E] Theorem 3.1(c).
Therefore I = P.

Consider the fundamental characters χ1, . . . , χ`: For the fundamen-
tal weight ωi corresponding to the simple root αi we have a G-module
H0(−woω) = H0(G/B,LG/B(−woωi)). The fundamental character is then
defined to be the composition of the homomorphism of algebraic groups
and the trace map, i.e. χi : G → Gl(H0(−woωi)) → k. Especially, χi is a
class function, i.e. χi(gxg

−1) = χi(x) for all g, x ∈ G.

Notice that in the embedding G → Gl(H0(−woωi)), the unipotent el-
ements of G are map to elements with all eigenvalues equaling 1. Thus,
χi(g) = χi(e) for all i if g is unipotent.

In [Hum] Theorem 23.1 and the appendix to section 23, it is proven
that the G-invariant polynomial functions on a semi simple Lie algebra
L are isomorphic to the W -invariant polynomial functions on a Cartan
subalgebra H of L. The arguments can be extended to show that the set
of class functions k[G]G in G (the action of G is conjugation) is isomorphic
to k[T ]W , the algebra of regular functions on T which are constant on W -
orbits. Further, since G is simply connected, k[G]G is freely generated by
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the fundamental characters 1. This implies that two semisimple elements
s, t in G are conjugate if and only if χi(s) = χi(t) for all i.

Thus, k[T ]W is the coordinate ring of an affine space A` when G is
simply connected. This gives a surjective morphism κ : G → A` given by
g 7→ (χ1(g), . . . , χ`(g)); It is named the Steinberg map .

Consider the closed subvariety C := Uα1 ṡ1 . . . Uα`
ṡ` where si are the

simple reflections, i.e. si ∈ W is the reflection corresponding to the simple
root αi. Investigating κ, we find that the restriction of κ to C is isomorphic
onto A`:

Theorem 3.2.2. ([Hum2] Theorem 4.17) The restriction of the Steinberg
map κ to C induces a isomorphism of varieties C ' A`. In particular, the
dχi’s are linearly independent in each point x ∈ C.

Sketch of proof. From [Spr] Lemma 8.3.6(i) we have the following isomor-
phism A` → C given by (c1, . . . , c`) 7−→ uα1(c1)ṡ1 . . . uα`

(c`)ṡ`. Hence, we
can regard κC : C → A` as a map from A`. Therefore it suffices to prove
that to each ci we can find a polynomial P in ` indeterminals such that
ci = P (χ1(g), . . . , χ`(g)) where g = uα1(c1)ṡ1 . . . uα`

(c`)ṡ`.
This requires a somewhat complicated, but not too difficult book-keeping

with roots and weights. See the proof of [Hum2] Theorem 4.17 for de-
tails.

Now we have what is needed to prove that U is a complete intersection.

Proposition 3.2.3. ([Hum2] Theorem 4.24(a))
The ideal in k[G] vanishing on U is generated by χi − χi(e) for 1 ≤ i ≤ `.
Thus, U is a complete intersection.

Proof. We will make use of Lemma 3.2.1 above. First, we claim that if
χi(g) = χi(e) for all i then g ∈ G is unipotent. Actually, we prove that
χi(g) = χi(gs) where gs is the semisimple part of g in Jordan decomposition
(see e.g. [Spr] Theorem 2.4.8(i)).

To prove the claim, let g ∈ G. Then g lies in some Borel subgroup ([Spr]
Theorem 6.4.5). Hence a conjugate of g lies in B = TBu with gs ∈ T, gu ∈
Bu. Write gu =

∏
α∈Φ+ uα(cα). For a non-zero element c ∈ k, we can find

t ∈ T such that αi(t) = c for all simple roots. Therefore,

tgt−1 = gs(tgut
−1) = gsuc, where uc :=

∏
α∈Φ+

uα(c
mαcα)

Here mα =
∑`

i=1 ni with α =
∑`

i=1 niαi.

1These results are contained in [Hum2] chapter 3 in full detail
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Now, let C denote the conjugacy class in G of g then uc ∈ g−1
s C for all

non-zero c ∈ k. For any f ∈ k[G] vanishing on g−1
s C, the map c 7→ f(uc)

vanishes on k \ {0}. Hence, it vanishes on k. In particular, f(e) = 0 as
u0 = e. Thus, e ∈ g−1

s C. So we conclude that gs ∈ C which implies that
χi(g) = χi(gs) for all i.

If χi(g) = χi(e) for all i then by the claim we have that χi(gs) = χi(e)
for all i. Thus, gs and e are conjugated. Therefore gs = e and hence g is
unipotent.

Since U is the common zero subset of χ1−χ1(e), . . . , χ`−χ`(e) and U is
irreducible by Theorem 3.1.1 on page 25 we only need to find a point x ∈ U

such that dχi are linearly independent in x.
From Theorem 3.2.2 above the element x := κ−1

|C (χ1(e), . . . , χ`(e)) is
unipotent and the dχi’s are linearly independent in x. This concludes the
proof.

We will also prove normality of the unipotent variety U. Since U is a
complete intersection by the Proposition 3.2.3 above, it suffices to prove
that U is regular in codimension 1 cf. [Ha1] Proposition 8.23(ii). In order
to do so, we introduce the notion of regular elements in G:

Definition 3.2.4. An element g in G is regular if the dimension of the
centralizer CG(g) equals the rank of G.

This is the smallest possible dimension by the following proposition:

Proposition 3.2.5. ([Hum2] Proposition 1.6)
Let G be a connected reductive linear algebraic group. For all g ∈ G,
dim(CG(g)) ≥ rank(G) = `

Proof. Consider a Borel subgroup B of G containing g (exists by [Spr] The-
orem 6.4.5(i)). The commutator subgroup (B,B) is contained in the unipo-
tent radical Bu of B. Thus, (B, g) ⊆ Bu implying that C := {bgb−1|b ∈
B} ⊆ {ug|u ∈ Bu}. The latter has dimension at most dim(Bu). We have
that dim(CB(g)) = codim(C,B) ≥ codim(Bu, B) = `. Now, CB(g) ⊆
CG(g) finishing the proof.

Next we show that there exist regular unipotent elements in G. In
doing so, we will make use of the following non-trivial, but well-known
result without proof:

Theorem 3.2.6. ([Hum2] Theorem 3.9 and Theorem 3.11)
Let G be a connected reductive linear algebraic group. Then G has finitely
many unipotent conjugacy classes.
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By using this Theorem, we are able to prove the existence of regular
unipotent elements:

Proposition 3.2.7. ([Hum2] Section 4.3)
Let G be a connected reductive linear algebraic group. Then regular unipo-
tent elements exist in G and form a unique conjugacy class which is an open
dense set of U. Further, the regular unipotent elements are non-singular el-
ements in U.

Proof. By Theorem 3.2.6 above, G has only finitely many orbits and there-
fore there exists at least one conjugacy class C with dim(C̄) = dim(U).
For an element c ∈ C, we have that dim(CG(c)) = dim(G/C̄) = dim(G) −
dim(U) = ` by Theorem 3.1.1 on page 25. Thus, c is regular (by definition).
As U is irreducible, C̄ = U. And therefore C is open and hence dense in U

by [Spr] Lemma 2.3.3(i). Therefore, U\C is a proper closed subset and any
unipotent conjugacy class C ′ 6= C must have strictly less dimension than
C. Hence, elements not in C are not regular. Therefore, the only regular
unipotent elements are the elements in C.

To prove the last assertion, recall that the set of non-singular points
of any variety form an open dense subset of that variety (see eg. [Ha1]
Corollary 8.16). Thus, there is a non-singular point in C showing that C
consists of non-singular points since C is a G-orbit.

We found that if x ∈ G is a unipotent, but not regular then the con-
jugacy class of x has dimension strictly less than dim(C). We can be even
more precise:

Proposition 3.2.8. ([Hum2] Proposition 4.1 and Theorem 4.6)
Let G be a connected reductive linear algebraic group and let x ∈ G be a
unipotent, but not regular element. Then dim(CG(x)) ≥ `+ 2.

Proof. We claim that u ∈ G is conjugated to an element of the form∏
α∈Φ+

uα(xα) , xαi
6= 0 for i = 1, . . . , ` (3.1)

if and only if u is a regular unipotent element. Here, we have predetermined
an order of the positive roots like in the proof of Lemma 3.1.2 on page 26.
While proving this claim we actually prove the assertion of the proposition.

Assume that u is a regular unipotent element that is not conjugated to
an element as in equation (3.1). We can find g ∈ G such that u′ = gug−1 ∈
Bu since any two Borel subgroups are conjugated ([Spr] Theorem 6.2.7(iii)).
Note that u′ is also regular. When writing u′ =

∏
α∈Φ+ uα(xα) (wrt. the
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ordering chosen) then by assumption u′ does not equal any element as
in equation (3.1). Hence there exists j such that xαj

= 0. Therefore,
u′ ∈ Ru(Pj), the unipotent radical of the minimal parabolic subgroup Pj =
B ∪BṡjB cf. [Spr] Theorem 8.4.3.

Let C ′ denote the conjugacy class of u′ in Pj. We have C ′ ⊆ Ru(Pj).
From [Spr] Theorem 8.4.3(iii) we find that dim(Pj)−dim(Ru(Pj)) = dim(Lj)
where Lj is the Levi subgroup of Pj. It is a connected reductive group of
semisimple rank 1 hence dim(Lj) = `+2 by [Spr] §7.3.2. Therefore we con-
clude that dim(CPj

(u′)) = dim(Pj)− dim(C ′) ≥ dim(Pj)− dim(Ru(Pj)) =
`+ 2. But this contradicts the regularity of u′ since CPj

(u′) ⊆ CG(u′).
Assume now that u is conjugate to an element v of equation (3.1). It

suffices to prove that u is conjugated to a unipotent regular element. Let
x be a regular unipotent element. By what we have proved so far x is
conjugated to an element y of equation (3.1). We will prove that y and v
are conjugate.

Write v =
∏

α∈Φ+ uα(vα) and y =
∏

α∈Φ+ uα(yα) (wrt. to the chosen
ordering of the positive roots) with vαi

6= 0 and yαi
6= 0 for i = 1, . . . , `.

Observe that for t ∈ T we get

tvt−1 =
∏
α∈Φ+

uα(α(t)vα)

by [Spr] Proposition 8.1.1. Since the simple roots are linearly independent
(see cf. [Spr] 8.2.8(iii)) we can choose t ∈ T such that αi(t)vαi

= yαi
for

i = 1, . . . , `.
Consider the set V := {zyz−1y−1|z ∈ Bu}. We have that V is isomorphic

(as varieties) to the conjugacy class V ′ = {zyz−1|z ∈ Bu}. Further, V ⊆ H
whereH = {

∏
α∈Φ+ uα(zα) | zαi

= 0, 1 ≤ i ≤ `}. Note that codim(H,Bu) =
`. Also, we have that V is closed in Bu since every conjugacy class in Bu

is closed (cf. [Spr] 2.4.14). Thus, codim(V,Bu) = codim(V ′, Bu). As y is
regular, codim(V ′, Bu) = dim(CBu(y)) ≤ dim(CG(y)) = `. Hence V ⊆ H is
closed, irreducible, and of the same dimension as H and therefore have to
be equal by [Spr] Proposition 1.8.2. Observe that V ⊆ (Bu, Bu) ⊆ H and so
the arguments above prove that V = (Bu, Bu). Therefore, vy−1 = zyz−1y−1

for some z ∈ Bu and hence v = zyz−1. Therefore v (and hence u) is regular.
This ends the proof of the claim.

Now, observe that in the first part of the proof, we proved that dim(CG(x)) ≥
` + 2 for x that is not conjugated to an element of (3.1). We now know
that this is equivalent to requiring that x is a unipotent, but not regular
element.

Finally, we can prove that U is normal:
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Proposition 3.2.9. ([Hum2] Theorem 4.24)
The unipotent variety U in G is regular in codimension 1 and hence normal.

Proof. By Theorem 3.2.6 on page 30 we have that the regular unipotent
elements form a unique conjugacy class C in U and all other unipotent
conjugacy classes have dimension strictly less than dim(C). From Proposi-
tion 3.2.8 on page 31 we find that if x 6∈ C then dim(CG(x)) ≥ ` + 2 and
therefore codim(C ′, G) ≥ ` + 2 where C ′ is the conjugacy class contain-
ing x. Since codim(U, G) = ` by Theorem 3.1.1 on page 25 we conclude
that codim(C ′,U) ≥ 2 for all unipotent conjugacy classes C ′ 6= C. Hence
codim(U \ C,U) cannot be less than 2. Therefore U is regular in codimen-
sion 1 since all regular unipotent elements are non-singular points of U.
As U is a complete intersection, U is hence normal by [Ha1] Proposition
8.23(b).

Unless explicitly stated otherwise, G denotes a connected semisimple
simply-connected linear algebraic group. Not all the above results were here
proven to hold more generally. The following result relates the unipotent
conjugacy classes of G and Gad.

Proposition 3.2.10. ([Hum2] Proposition 1.8)
The surjective homomorphism of linear algebraic groups π : G → Gad re-
stricts to bijective morphism of U and the unipotent variety Uad of Gad.
Further, it induces a bijection of the unipotent conjugacy classes of G and
the unipotent conjugacy classes of Gad.

Proof. Let g ∈ G be unipotent. Then by [Spr] Theorem 2.4.8(ii) π(g) =
π(gs)π(gu) where gs is the semi simple part of g and gu the unipotent part
of g in Jordan decomposition. Hence π(g) is unipotent. So π restricts to a
map that maps unipotent elements of G to unipotent elements of Gad.

To prove that this map is injective we assume that g1, g2 ∈ G are two
unipotent elements such that π(g1) = π(g2). Hence, g2 ∈ Ker(π)g1. Now,
the kernel of π is central, i.e. g2 = zg1 for some z ∈ Z(G). Hence z is
semisimple and commutes with g2. Thus by the uniqueness of the Jordan
decomposition ([Spr] Theorem 2.4.8(i)) z = 1 and g1 = g2.

Next, we prove that it is surjective. Let g′ ∈ Gad be unipotent. By
surjectivity of π we can find g ∈ G such that g′ = π(g). Let g = su be the
Jordan decomposition ([Spr] Theorem 2.4.8(i)) of g. Then π(g) = π(s)π(u)
is the Jordan decomposition of g′ by [Spr] Theorem 2.4.8(ii). Thus π(s) = e
and π(u) = g′.

Therefore, we have a bijective map from the unipotent variety in G to
the unipotent variety of Gad. Furthermore, if the unipotent elements g1, g2
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in G are conjugate then clearly π(g1), π(g2) are also conjugate unipotent
elements of Gad. Hence, we have a bijection of the unipotent conjugacy
classes of G and of Gad.

Consider the unipotent variety Uad in Gad and let Ū denote its closure
in the wonderful compactification X of Gad as described in chapter 2. We
call Ū the wonderful compactification of Uad.

Example 3.2.11. We continue our example cf. examples 1.1.1, 1.2.3, and
3.1.3.

The fundamental character χα : G → Gl(St) → k is the trace map
[ a bc d ] → a+ d. This is also the Steinberg map κ : G→ A1.

The closed subset C is the subset

{
[ −a 1
−1 0

]
| a ∈ k}

since ṡα = [ 0 1
−1 0 ] by [Spr] Lemma 8.1.4(a). Then U ∩ C = {[ 0 1

−1 0 ]}. Notice
that the centralizer of [ 0 1

−1 0 ] is SO2 = {
[
a b
−b a

]
∈ G | a, b ∈ k}. Thus, [ 0 1

−1 0 ]
is regular since dim(SO2) = 1.

We also have that Uad = {[ a bc d ] ∈ Gad | (a + d)2 = 0}. We have to take
squares by the description of the coordinate ring k[Gad] in [Spr] Exercise
2.1.5(3). Therefore, Ū is the following subset of P3:

{[ a bc d ] ∈ P3 | a+ d = 0}



Chapter 4

Frobenius Splittings

Having an algebraic variety, it is natural (at least for an algebraic geometer)
to ask whether it is Frobenius split or not. In this chapter we will prove
that Ū is Frobenius split when the fundamental characters χi considered
in Chapter 3 all equal 0 at the identity e of G. We use a result due to
Strickland ([Str]) which enables us to construct Frobenius splittings of X
by extending a Frobenius splitting of the unique closed orbit Y = G/B×G/B.
See Theorem 4.2.1 on page 40 for a more precise statement. Now, Frobenius
splittings are closely related to global sections of the p− 1’st power of the
canonical sheaf and hence we find such a section which determines a Frobe-
nius splitting and whose image under first restriction to Gad composed with
the map π∗ : k[Gad] → k[G] is divisable by a product of p − 1’st powers of
the fundamental characters χi’s since they determine the unipotent variety
Ũ by Proposition 3.2.3 on page 29.

First, we introduce the general concept of Frobenius splittings in sec-
tion 4.1 recapping some of the well-developed theory (see [M-R], [RR], and
[R]). For the convenience of the reader and ourselves, we follow the book
’Frobenius Splittings Method in Geometry and Representation Theory’ of
[B-K]. In section 4.2 we look into extending Frobenius splittings of G/B×G/B
to X. To gain control of the Frobenius splittings of X, we find an explicit
criterion for Frobenius splittings of Y and furthermore, a G×G-equivariant
map f : St�St→ H0(X,LX((p−1)ρ)) such that the composition with the
restriction map to G/B×G/B is non-zero. In section 4.3, these results enable
us to prove the main result: That Ū is Frobenius split when χi(e) = 0 for
1 ≤ i ≤ `. After a short crash-course on B-canonical split schemes we show
that Ū is actually B-canonical split.

35
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4.1 Basics on Frobenius splittings

This subsection is a review of the concept of Frobenius splittings. The
notion ‘Frobenius splittings’ was defined in 1985 by Mehta and Ramanathan
in [M-R] and many of the results in this section are due to them.

Let p := char(k) > 0. Having a scheme Z, the absolute Frobenius
morphism F : Z → Z is the identity on point spaces and locally it raises the
functions to the p’th power. Note that the absolute Frobenius morphism
is not a morphism of schemes over k. The starting point of Frobenius
splittings is the following definition due to Mehta and Ramanathan ([M-R]
Definition 2):

Definition 4.1.1. A scheme Z is called Frobenius split (or shorter F-split )
if the map of OX-modules F# : OZ → F∗OZ defined by ϕ 7→ ϕp admits a
splitting s : F∗OZ → OZ (i.e. s◦F# = id). Such a map is called a F-splitting
of Z .

The second assertion of the following remark is due to Ramanathan ([R]
Remark 1.3).

Remark 4.1.2. ([B-K] Remark 1.1.4 and Proposition 1.2.1)
(i) A F-splitting of Z is an endomorphism φ of OZ (considered as a sheaf of
abelian groups on Z) satisfying φ(1) = 1 and φ(fpg) = fφ(g) for f, g ∈ OZ

(ii) A F-split scheme Z is reduced.

Proof. Observe that for a sheaf F of OZ-modules, F∗F equals F as sheaves
but the OX-module structure is twisted with F , i.e. f ·s = fps for local sec-
tions s ∈ F, f ∈ OZ . This gives immediately that φ ∈ HomOZ

(F∗OZ ,OZ).
Since φ(fp) = fφ(1), the composition φ ◦ F# is multiplication with φ(1).
Since φ ◦ F# is a regular function on Z, φ is a F-splitting if and only if
φ(1) = 1 proving (i).

(ii) Let φ be a splitting of Z. Consider an affine open subset U of Z and
a nilpotent element f ∈ H0(Z,OZ), i.e. there exists an integer m such that
fp

m
= 0 in H0(Z,OZ). But

fp
m−1

= φ(F#(fp
m−1

)) = φ(fp
m

) = 0

Hence by induction in m we get f = 0. Therefore Z is reduced.

Another important notion is ‘compatibly F-split’, also introduced in
[M-R] Definition 3:

Definition 4.1.3. Let V ⊆ Z be a closed subscheme with ideal sheaf IV .
Then V is compatibly F-split in Z if we can choose a F-splitting s of Z such
that s(F∗IV ) ⊆ IV .
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Observe that if V is compatibly F-split in Z then V itself is F-split. We
have collected some useful results about F-splittings in the next Lemma
which slightly generalize [M-R] Lemma 1 and [R] Proposition 1.9, respec-
tively:

Lemma 4.1.4. ([B-K] Lemma 1.1.7 and Proposition 1.2.1)
Let φ be a Frobenius splitting of a scheme Z.
(i) Let V be a closed irreducible subscheme of Z. If U is an open subset of
Z such that V ∩U 6= ∅ then V is compatibly F-split in Z wrt. φ if and only
if U ∩ V is compatibly F-split in U wrt. φ|U .
(ii) Assume furthermore that Z is noetherian. Let V1, V2 be closed sub-
schemes of Z. If V1 and V2 are compatibly F-split in Z wrt. φ then V1∩V2,
and V1 ∪ V2 and any irreducible component of these are compatibly F-split
in Z.

Proof. Note that φ(1) = 1. Since φ restricts to a OU -linear map F∗OU → OU

it is a F-splitting of U such that U∩Y is compatibly F-split as φ(F∗IV ) ⊆ IV
(by definition of compatibly F-split). This proves the ’only if’ part in (i).

In order to prove the ’if’ part of (i), we have to prove that φ(F∗IV ) ⊆ IV .
Since φ(fp) = f for any local section f ∈ OZ (by definition of a F-splitting),
we get that IV ⊆ φ(F∗IV ). By [Ha1] Proposition II.5.7 and Proposition
II.5.8 we have that φ(F∗IV ) is quasi-coherent. It therefore determines a
closed subscheme V ′ of Z by [Ha1] Proposition II.5.9 and further, V ′ is
contained in V as φ(F∗IV ) ⊇ IV . As φ|U is a compatibly F-splitting of
U ∩ V in U we get V ′ ∩ U = V ∩ U . The ideal sheaf of V ′ (i.e φ(F∗IV ))
vanishes on the dense subset U ∩ V of V because IV ⊆ φ(F∗IV ). Since V is
reduced, the ideal sheaf φ(F∗IV ) vanishes on V . Thus V ′ = V proving that
φ(F∗IV ) = IV . Hence V is compatibly F-split in Z.

Next, we prove the first assertion of (ii) by straightforward calculations:

φ(F∗IV1∩V2) = φ(F∗(IV1 + IV2)) ⊆ φ(F∗IV1) + φ(F∗IV2) ⊆ IV1 + IV2 = IV1∩V2

and similarly we find that φ(F∗IV1∪V2) ⊆ IV1∪V2 . Therefore, V1 ∪ V2 and
V1 ∩ V2 are compatibly F-split wrt. φ.

To complete the proof, it suffices to prove that every irreducible com-
ponent of Z is compatibly F-split in Z wrt. φ. Let C be an irreducible
component of Z and let D be the union of all other irreducible components
of Z. Again, we have that φ(F∗IC) is a coherent sheaf of ideals of OZ con-
taining IC . Further, both sheaves vanish on X \D. And, X \D = C \D
which is dense in C. Since X is reduced, the ideals vanish on C and hence
φ(F∗IC) = IC .
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We now examine HomOZ
(F∗OZ ,OZ) more closely in order to find a

criterion for a smooth variety to be F-split.

For the rest of this section let Z denote a smooth irreducible variety
of dimension N .

Let ωZ denote the canonical sheaf. Let z be a point of Z. Then
the local ring OZ,z is regular, i.e. the maximal ideal Mz of ΩZ,z satisfies
dimk(Mz/M2

z) = N (= dim(Z)). Take elements in Mz such that their images
is a basis for the vector space Mz/M2

z. Then by Nakayama’s Lemma (eg. [E]
Corollary 4.8) these elements generate the maximal ideal Mz. Such a set
of minimal generators of Mz is called a regular system of parameters . By
[E] Proposition 10.16 the completion of OZ,z is isomorphic a power series
ring k[[t1, . . . , tN ]] where the variables t1, . . . , tN can be chosen to be the
elements in a regular system of parameters. Therefore we also call a regular
system of parameters for local coordinates at the point z. Now, let t1, . . . , tN
be local coordinates at z ∈ Z then dt1 ∧ · · · ∧ dtN generate the stalk ωZ,z
since ωZ,z is locally free sheaf of rank 1 (see [Ha1] §II.5).

We adopt the multi-index notation: We will denote the monomial tc11 · · · t
cN
N

by tc where c = (c1, . . . , cN) ∈ NN . It turns out that (p − 1, . . . , p − 1)
plays an important role and will be denoted p − 1. With this notation let
f ∈ OZ,z and consider the image of f in the completion k[[t1, . . . , tN ]] for
local coordinates at z. Write f =

∑
c fct

c. Define

Tr : k[[t1, . . . , tN ]] → k[[t1, . . . , tN ] , f 7−→
∑

c,c=p−1+pd

f 1/p
c td

Having fixed the notation, we can give a local description of the evaluation
map HomOZ

(F∗OZ ,OZ) → OZ(Z) given by φ 7→ φ(1). Actually, we will
consider it defined on sheaves:

ε : HomOZ
(F∗OZ ,OZ) → OZ , φ 7→ φ(1)

From [Ha1] Exercise III.6.10 we have that HomOZ
(F∗OZ ,OZ) = F∗(F

!OZ).
The next theorem tells that F !OZ ' ω1−p

Z and furthermore gives a local
description. It was proved in the original paper [M-R] §2 for smooth pro-
jective varieties by using Serre duality. The approach of Brion and Kumar
in [B-K] is via duality for the Frobenius morphism following [vdK1]. An
essential ingredient of the proof is the Cartier operator defined in [Cart]
(see also [Katz]). We will not give a proof, but refer to [B-K].

Theorem 4.1.5. ([B-K] Theorem 1.3.8)
The sheaf F !OZ is isomorphic to ω1−p

Z identifying the evaluation map ε :
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F∗(F
!OZ) → OZ to the map τ : F∗(ω

1−p
Z ) → OZ. Let z ∈ Z and let

t1, . . . , tN be local coordinates in z then

τ(f(t1, . . . , tN)(dt1 ∧ · · · ∧ dtN)1−p) = Tr(f)

Thus, Z is F-split if and only if there exists φ ∈ H0(Z, ω1−p
Z ) such that

τ(φ) = 1.
If, furthermore Z is projective, Z is F-split if and only if there exists φ ∈
H0(Z, ω1−p

Z ) such that the monomial tp−1 occurs in the local expansion of φ
at some closed point z ∈ Z.

Therefore, we call a global section of ω1−p
Z for a splitting section of Z if

its image under τ is a non-zero scalar, i.e. a splitting section determines a
F-splitting up to a scalar.

Next, we prove that if Z is F-split wrt. p − 1’st power of a global
section σ of ω−1

Z then σp−1 gives compatibly F-splittings of the irreducible
components of the subset of zeros of σ which is found as a remark after
Proposition 8 in [M-R].

Proposition 4.1.6. ([B-K] Proposition 1.3.11)
Assume that Z is projective. Let σ ∈ H0(Z, ω−1

Z ) such that σp−1 is a splitting
section of Z then any irreducible component of the zero subset VZ(σ) is
compatibly F-split (wrt. the splitting section σp−1).

Proof. Choose a non-singular point x of the zero set of σ. Let Z ′ denote
the unique irreducible component of that zero set such that x ∈ Z ′. Note
that Z ′ is a divisor. Since Z is non-singular, Z ′ corresponds to a line
bundle LZ′ of Z. Choose an open subset U of Z such that the line bundles
LZ′ and ωZ restrict isomorphically to the structure sheaf OU on U . Then
there is a global section f ∈ LZ′|U(U) ' OU(U) such that the zero subset
VG(f) = Z ′ ∩ U . Find a regular system of parameters t1, . . . , tN in OU,x

such that t1 = f . Consider σ as an element of ωU,x ' OU,x and hence as

an element in the completion ÔU,x. The completion ÔU,x is isomorphic to

k[[t1, . . . , tn]] by [E] Theorem 7.7. That is, σ (as an element of ÔU,x) can be
written as

tm1 g(t1, . . . , tN)(dt1 ∧ · · · ∧ dtN)−1

where g(t1, . . . , tN) is not divisible by t1. As σ vanishes on Z ′ we have that
m ≥ 1. Now, since σp−1 is an F-splitting section of Z we have that the
coefficient of tp−1 in t

m(p−1)
1 g(t1, . . . , tN)p−1 is non zero (cf. Theorem 4.1.5).

Hence m ≤ 1. Therefore m = 1 and Z ′ is compatibly F-split in Z wrt. σp−1

at x. Thus, Z ′ is compatibly F-split in an open subset containing x. By
Lemma 4.1.4 on page 37 Z ′ is compatibly F-split in Z.
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4.2 Frobenius splittings of Y and of X

In Strickland’s paper ([Str]) it is proved that X is F-split. In particular,
she shows how to extend a F-splitting section on Y = G/B × G/B to a
F-splitting section on X. In this section, we will explore the F-splitting
section of Y to get good control on the F-splitting sections of X. Mehta
and Ramanathan proved that G/B is F-split in [M-R]. This can easily be
generalized to G/B×G/B. In [L-T], Lauritzen and Thomsen showed that the
Steinberg module St plays a central role in the F-splitting of G/B giving a
very explicit criterion for F-splittings of G/B.

But first the starting point, namely Strickland’s result1:

Theorem 4.2.1. ([Str] Theorem 3.1)
Assume that φ ∈ H0(2(p − 1)(ρ, ρ)) is a splitting section of Y . If ψ ∈
H0(X,LX(2(p− 1)ρ)) satisfies that ψ|Y = φ then ψ

∏`
i=1 σ

p−1
i is a splitting

section of X where σi is the global section of LX(Xi) having Xi as divisor.

Proof. Observe that ωX = LX(2ρ+
∑p−1

i=1 αi) by Remark 2.3.3 on page 22.

Thus ψ
∏`

i=1 σ
p−1
i ∈ H0(X,ω1−p

X ).
Since φ ∈ H0(Y,LY ((p − 1)(ρ, ρ))) is a splitting section it satisfies that

there exists a point y ∈ Y such that the term (
∏d

i=1 t
p−1
i )(dt1∧ · · · ∧ dtd)1−p

has non-zero coefficient in the local expansion of φ at y (Theorem 4.1.5 on
page 38). Here t1, . . . , td (d = dim(Y )) is a regular system of parameters in
OY,y.

We have that Y = ∩`i=1Di and hence we get that the ideal sheaf IY
of Y is locally generated by the elements σ1, . . . , σ` because the Di’s have
normal crossings (cf. Theorem 2.2.1 on page 13). Since X is smooth we find
that t′1, . . . , t

′
d, σ1, . . . , σ` form a regular sequence in OX,y where t′i ∈ OX,y

denotes a lift of ti. Hence the local expansion of ψ is a polynomial in
t′1, . . . , t

′
d, σ1, . . . , σ`.

Our assumption that ψ|Y = φ implies that the coefficient of (t′1 . . . t
′
d)
p−1

in the local expansion of ψ is non-zero times (dt′1, . . . , dt
′
d, dσ1, . . . , dσ`)

1−p.

Multiplying ψ with
∏`

i=1 σ
p−1
i and using Theorem 4.1.5 on page 38 again

gives that ψ
∏`

i=1 σ
p−1
i is a F-splitting section of X.

It would however be useless unless Y is F-split. This is fortunately the
case which will be proven in Theorem 4.2.3 on page 42. Since our goal is to
find an F-splitting of X such that Ū is compatibly F-split wrt. it, we are
interested in finding rather explicit descriptions of F-splittings of Y .

We will first prove that G/B is F-split which in turn as a corollary gives
that Y is F-split. Note that ωG/B = LG/B(−2ρ) ([Jan] II.4.2.(5) and (6))

1This is, in fact, a weaker statement but we will not need more
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and hence that H0(G/B, ω1−p
G/B) ' H0(2(p− 1)ρ). Consider the multiplication

map m : H0((p−1)ρ)⊗H0((p−1)ρ) → H0(2(p−1)ρ). Hence, the Steinberg
module St = H0((p− 1)ρ) becomes interesting. Which elements of St⊗ St
map to splitting sections of G/B?

Before answering that question we need an observation: Since St is
selfdual ([Jan] §II.3.18 and Corollary II.2.5) we can choose an isomorphism
γ : St→ St∗ which then gives a unique G-equivariant bilinear form χ : St�
St → k given by χ(u ⊗ v) = γ(u)(v). Let v−, v+ ∈ St denote respectively
the lowest and highest weight vector in the Steinberg module St.

Proposition 4.2.2. ([B-K] Theorem 2.3.1 and Corollary 2.3.5)
For any u, v ∈ St, m(u⊗v) is an F-splitting section (up to non-zero scalar)
of G/B if and only if χ(u⊗ v) 6= 0.

Proof. Equivalently, we have to prove that τ(m(u ⊗ v)) 6= 1 if and only if
χ(u⊗ v) 6= 0.

The multiplication map m : St ⊗ St → H0(2(p − 1)ρ) is G-equivariant
by Frobenius reciprocity (see e.g. [Jan] Proposition I.3.4b). Now also τ is
G-equivariant under the canonical G-structures of OG/B and F∗OG/B and
by Theorem 4.1.5 on page 38.

Since the G-equivariant for χ : St ⊗ St → k is unique (by Frobenius
reciprocity), the composition τ ◦m is equal to χ up to a scalar z ∈ k. To
prove the proposition, it suffices to show that z 6= 0.

To prove this, we will show rather explicitly that τ(m(v− ⊗ v+)) 6= 0
showing that z must be non-zero.

We know from [Jan] Lemma 2.13(b) that St∗ ' V ((p−1)ρ) is generated
by a highest weight vector v∗ (as a G-module). Viewing St as the double
dual St∗∗, we have m(v− ⊗ v+)(g) = v−(g.v∗)v+(g.v∗). For g ∈ B−

u , this
expression simplifies to m(v−⊗v+)(g) = v+(g.v∗) since g.v∗ then has weight
strictly less than (p− 1)ρ (for g ∈ Bu).

Ordering the positive roots Φ+ = {β1, . . . , βN} then we have a kind of
Taylor series2 (cf. [Jan] §I.7.8 and §I.7.12)

u−βi
(z).v∗ =

∑
j≥0

zj(f
(j)
βi
.v∗)

where fβ ∈ g−β and f
(j)
β =

fj
β

j!
⊗ 1 ∈ Dist(Ga,Z)⊗Z k as in [Jan] §I.7.6. By

[Spr] Proposition 8.2.1, we find an isomorphism of varieties

η : GN
a → B−

u , (z1, . . . , zN) 7−→
N∏
i=1

u−βi
(zi)

2This is not the standard name but this is how I like to see it
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Thus, for (z1, . . . , zN) ∈ GN
a

m(v− ⊗ v+)(η(z1, . . . , zN)) = v+

( ∑
(k1,...,kN )∈ZN

+

zk11 · · · zkN
N f

(k1)
β1

· · · f (kN )
βN

.v∗
)

Now, St has a basis consisting of f
(kj)
βj

with 0 ≤ kj < p for all roots β ∈ Φ+

by [Jan] §3.18 (2) and (4). Therefore, f
(p−1)
β1

· · · f (p−1)
βN

.v∗ is the only element
in V ((p−1)ρ) ' St of lowest weight−(p−1)ρ; thus it is non-zero. Therefore,
the coefficient of zp−1

1 · · · zp−1
N is non-zero and hence, by Theorem 4.1.5 on

page 38, m(v− ⊗ v+) is a splitting section (up to a scalar multiple). Thus,
τ(m(v− ⊗ v+)) 6= 0 implying that z 6= 0 which proves the proposition.

As a corollary we will generalize this result to Y ' G/B × G/B:

Theorem 4.2.3. ([B-K] Theorem 2.3.8)
Let u1 ⊗ u2, v1 ⊗ v2 ∈ St � St then m2(u1 ⊗ u2 ⊗ v1 ⊗ v2) is a F-splitting
section (up to a scalar) of Y if and only if 〈u1 ⊗ u2, v1 ⊗ v2〉 6= 0 where
〈u1⊗u2, v1⊗v2〉 = χ(u1⊗v1)χ(u2⊗v2), the unique (up to a scalar) G×G-
equivariant bilinear form on (St� St)⊗ (St� St) and m2 : (St� St)⊗2 →
H0(2(p− 1)ρ, 2(p− 1)ρ) the standard multiplication map.

Proof. We have that B×B is a Borel subgroup of the product group G×G.
Hence the Steinberg module for G×G is H0((p− 1)ρ, (p− 1)ρ) ' St� St.
Note that m2((f1 ⊗ f2)⊗ (g1 ⊗ g2)) = m(f1 ⊗ g1)⊗m(f2 ⊗ g2). Now apply
Proposition 4.2.2 above on G×G/B×B ' G/B × G/B.

Consider St�St. We can view St�St as a G-module via the action of
the diagonal ∆(G) of G which we then denote St⊗ St. Since St is selfdual
([Jan] II.3.18(4)-(6) and Corollary II.2.5) we have St ⊗ St ' St∗ ⊗ St '
Homk(St, St). Whence by Frobenius reciprocity ([Jan] Proposition I.3.4b)
St⊗ St contains a unique (up to scalar) G-invariant element v.

Observe that the ∆(G)-invariant element v ∈ St � St corresponds to
the identity endomorphism in End(St) ' St∗ ⊗ St ' St⊗ St. Thus, when
expressing v in a basis consisting of weight vectors, the coefficient of v+⊗v−
is non-zero. Hence 〈v−⊗ v+, v〉 = χ(v−⊗ v+) ·χ(v+⊗ v−) 6= 0. This implies
that m2((v−⊗v+)⊗v) is a F-splitting section of Y by Theorem 4.2.3 above.

To gain more control of the global sections of LX((p−1)ρ) which restrict
to F-splittings on Y we have the following crucial result due to Brion and
Polo:

Lemma 4.2.4. (Proof of [B-P2] Theorem 2)
There exists a G×G-homomorphism

f : St� St→ H0(X,LX((p− 1)ρ))
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of which the restriction to Y is non-zero (i.e. f splits).

Proof. In the proof of Proposition 2.3.2 on page 21 we have that the global
section τi of LX(Di) ' LX(ωi) is a B×B-eigenvector of weight (ωi,−woωi).
Therefore, theB×B-eigenvector τ =

∏`
i=1 τ

p−1
i is contained in H0(X,LX((p−

1)ρ)) as
∑`

i=1 ωi = ρ. Thus, we have a B ×B-homomorphism:

k−(p−1)(ρ,ρ) → H0(X,LX((p− 1)ρ))

given by 1 7→ τ . When first dualizing and then using Frobenius reciprocity
([Jan] Proposition I.3.4b) on this map, we get the G×G-homomorphism

H0(X,LX((p− 1)ρ))∗ → IndG×GB×B(k(p−1)(ρ,ρ)) ' St� St

Hence by the selfduality of the St ([Jan] II.3.18(4)-(6) and Corollary II.2.5)
we get the map

f : St� St→ H0(X,LX((p− 1)ρ))∗∗ ' H0(X,LX((p− 1)ρ))

Now, the eigenvector τ restricts to a non-zero element of St�St since Y is
not contained in Di for i = 1, . . . , `.

This provides good control on F-splitting sections of X constructed as
in Theorem 4.2.1 on page 40 because resY ◦ f is the identity.

Example 4.2.5. We continue our example (see the previous examples -
examples 1.1.1, 1.2.3 , 2.1.6, 2.2.8, 2.3.4).

We will also need the G-action of St∗. In general, St∗ ' St (as St is
selfdual) and we let G act on St∗ regarded as k2 in the same way as before
(see Example 1.2.3 on page 6).

The isomorphism γ : St→ St∗ is in this example given by mρ 7→ m∗
ρ =

( 0
1 ) and m−ρ 7→ m∗

−ρ = ( 1
0 ) under γ. Hence, the G-invariant bilinear form

χ : St⊗ St→ k is given by ( ab )⊗ ( xy ) 7→ ay − bx since

χ([ a bc d ] ( xy )⊗ [ a bc d ] ( zw )) = χ(
(
ax+by
cx+dy

)
⊗

(
az+bw
cz+dw

)
) = xw − yz

using that ad− bc = 1.
Notice that the ∆(G)-invariant element v of St ⊗ St is the element

m−ρ⊗mρ+mρ⊗m−ρ. By Remark 4.3.1 on the following page, f(v)|Gad
◦π

is the character associated with St. Thus, f(v)|Gad
◦ π = χα considered in

Example 3.2.11 on page 34. Observe that f equals the map g of Lemma 4.3.2
on page 45 which explains why we get this result.
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We need an explicit description of the G×G-equivariant map f : St⊗
St → H0(X,LX(ρ)). As we saw in the construction of f (cf. Lemma 4.2.4
on page 42), we have the B ×B-equivariant map kρ ⊗ kρ → H0(X,LX(ρ))
given by 1⊗1 7→ τ = Z21. Thus, f(mρ⊗mρ) = Z21. Using that f is G×G-
equivariant, we get f(g1.mρ ⊗ g2.mρ) = (g1, g2).Z21. As [ 0 −1

1 0 ] ( 1
0 ) = ( 0

1 ),
we get that f maps

mρ ⊗m−ρ 7→f −Z22, m−ρ ⊗mρ 7→ Z11, m−ρ ⊗m−ρ 7→ −Z12

Hence f(v) = f(m−ρ ⊗ mρ + mρ ⊗ m−ρ) = Z11 − Z22 and f(v− ⊗ v+) =
f(m−ρ ⊗mρ) = Z11.

4.3 Frobenius splitting of Ū

In this section, we will prove one of our main results, namely that Ū is
F-split when χi(e) = 0 in k for 1 ≤ i ≤ `. Hence U = VG(χ1, . . . , χ`). This
turns out to be essential in what follows.

Now, we have seen that m2((v−⊗v+)⊗v) is a F-splitting section of Y by
4.2.3 since 〈v−⊗v+, v〉 6= 0. Since resY (f(v−⊗v+) f(v)) = m2((v−⊗v+)⊗v)
by construction, we find that f(v−⊗v+) f(v)

∏`
i=1 σ

p−1
i is F-splitting section

of X. Is Ū compatibly F-split wrt. this F-splitting section?
Unfortunately, it is not easy to give an affirmative answer. What we

could hope for is, that f(v)|Gad
◦π is equal to a product of the fundamental

characters to the p − 1’st power. Since the common zero set in G of these
fundamental characters is the unipotent variety U, it would therefore give
important imformation about the closure Ū. But as the following remark
states, this is too much to hope for.

Remark 4.3.1. f(v)|Gad
◦ π 6=

∏`
i=1 χ

p−1
i .

Proof. We will construct a counterexample, but first we need to get a
more explicit expression of f(v)|Gad

◦ π. We claim that (f(v)|Gad
◦ π)(g) =

χ((e, g).v) where v ∈ St � St is the ∆(G)-invariant element and g ∈ G (e
is the neutral element in G).

The coordinate ring k[G] allows a good filtration as a G × G-module
(the action is given by (g1, g2).g = g1gg

−1
2 ) c.f. [Jan] Proposition II.4.20

where one of the factors (which only occur with multiplicity 1) is St ⊗
St. Therefore, since there is only one (up to a scalar) G × G-equivariant
map from St ⊗ St to itself it suffices to check that the claimed function
in k[G] is G × G-equivariant as a homomorphism St � St → k, i.e. that
(g1, g2).χ((e, g).v) = χ((e, g)(g1, g2).v).
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Notice that χ is ∆(G)-invariant, i.e. χ(gv1 ⊗ gv2) = χ(v1 ⊗ v2). Since
(e, g)(g−1, g−1) = (g−1, e) we have that χ((e, g).v) = χ((g−1, e).v). As (g 7→
χ((e, g).v)) ∈ k[G] we have that (g1, g2)χ((e, g).v) = χ((e, (g−1

1 , g−1
2 ).g).v) =

χ((e, g−1
1 gg2)). Using the observation above we find the required proporty

which proves the claim.
In fact, we can get an even more explicit formula for f(v)|Gad

◦ π. Let
{v1, . . . , vd} be a basis of St (where d = dimk(St)) and {v∗1, . . . , v∗d} its dual
basis. Identifying St ⊗ St ' St∗ × St ' End(St) where the first map is
γ ⊗ id and observing that the identity map is the ∆(G)-invariant element
in End(St) we find that v =

∑d
i=1 γ

−1(v∗i ) ⊗ vi. Hence (f(v)|Gad
◦ π)(g) =

χ((e, g).v) =
∑d

i=1 v
∗
i (g.vi) by the definition of χ. But

∑d
i=1 v

∗
i (g.vi) is the

trace of g’s action on St, i.e. f(v)|Gad
◦ π is the character associated with

St.
We are now ready to construct a counterexample. Consider G = Sl3

in characteristic p = 3 and the element t = diag(a, b, c). Using that St is
direct sum of its weight spaces we find:

χSt(t) = a4b2 + a4c2 + a3b3 + a3c3 + a3 + a2b4 + 2a2b+ a2c4 + 2a2c

+2ab2 + 2ac2 + b4c2 + b3c3 + b3 + b2c4 + 2b2c+ 2bc2 + c3 + 3

We have used that abc = 1 and that α1(t) = ab−1 and α2(t) = bc−1.
Also ρ = α1 + α2 hence ρ(t) = ac−1. Further calculations reveal that
χSt(t) = (a− b)2(a− c)2(b− c)2.

Now, χ1(t) = a + b + c and χ2 = bc + ac + ab. Therefore we see that
the coefficient of for example a3 is 1 in χSt(t) while 2 in χ2

1(t)χ
2
2(t) (in

characteristic 3). Therefore the claim of the remark is proved.

Consequently, we are seeking global sections si of X such that resGad
◦

π is the fundamental characters χi on G because of Proposition 3.2.3 on
page 29. So we need the following map (as will become apparent later!):

Lemma 4.3.2. There exists a G×G-equivariant map

g : Z :=
⊗̀
i=1

(H0(−woωi)∗ � H0(−woωi))⊗(p−1) → H0(X,LX((p− 1)ρ))

satisfying resY ◦ g 6= 0

Proof. LetM be aG-module that satisfies conditions (i)–(iii) in Lemma 2.1.1
on page 9. ThenM⊗

⊗`
i=1 H0(−woωi)∗ also satisfies (i)–(iii) of Lemma 2.1.1

by Lemma 2.1.3 on page 10. Thus,X ↪→ P(Endk(M))×
∏`

i=1P(Endk(H
0(−woωi)∗))

by Lemma 2.2.6 on page 18.
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Consider the following commutative diagram:

Y
� � // X

φj ++

� � // P(Endk(M))×
∏`

i=1P(H0(−woωi) � H0(−woωi)∗)
prj

��
P(H0(−woωj) � H0(−woωj)∗)

The map Y → P(H0(−woωj) � H0(−woωj)∗) is given by (gB, g′B) 7→
(g, g′).[x] where x ∈ H0(−woωj)�H0(−woωj)∗ is a highest weight vector wrt.
B ×B. Consider the twisting sheaf Oj(1) of P(H0(−woωj) � H0(−woωj)∗).
Then we have that φ∗jOj(1) ' LX(ωj) by [B-P1] §2.2 since LX(λ) is the
sheaf whose restriction to Y is LY (−woλ, λ) (cf. 2.3.2).

This induces a map from Oj(1)(P(H0(−woωj)�H0(−woωj)∗)) → LX(ωj)(X).
Again by [B-P1] §2.2 we identify

Oj(1)(P(H0(−woωj) � H0(−woωj)∗)) ' H0(−woωj)∗ � H0(−woωj)

Therefore we have maps gj : H0(−woωj)∗ � H0(−woωj) → H0(X,LX(ωj)).
Thus since all maps considered are G × G-equivariant we get the G × G-
equivariant map

g :
⊗̀
i=1

(H0(−woωi)∗ � H0(−woωi))⊗(p−1) → H0(X,LX((p− 1)ρ))

Again, we have used that
∑`

i=1 ωi = ρ.
In order to prove that resY ◦ g 6= 0, we will prove that there exists an

element t ∈ Z such that g(t)|Y = v where v is the ∆(G)-invariant element
in St ⊗ St. Let tj ∈ H0(−woωj)∗ � H0(−woωj) denote the ∆(G)-invariant
sections. These exist and are unique up to scalar under identification of
H0(−woωj)∗ � H0(−woωj) with Endk(H

0(−woωj)). Let tj correspond to
the identity map in Endk(H

0(−woωj)). Define the ∆(G)-invariant element

t =
⊗`

i=1 t
p−1
i .

Observe that when writing tj w.r.t. a basis consisting of weight vectors
the coefficient of the highest weight vector is non-zero.

Since g is a G⊗G-equivariant map and since v ∈ St� St is the unique
(up to scalar) ∆(G)-invariant element we only have to show that g(t) is non-
zero when restricted to Y . So consider the map Z → St � St. Frobenius
reciprocity gives a B × B-equivariant map Z → k(p−1)(ρ,ρ). When writing
t in a basis consisting of weight vectors then the coefficient of the highest
weight vector of Z is non-zero by the above observation. Thus g(t)|Y 6= v
which proves the Lemma.
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The next Lemma shows that gi(ti) is an extension of the fundamental
characters χi in the sense that gi(ti)|Gad

◦ π = χi:

Lemma 4.3.3. We have that gi(ti)|Gad
◦ π equals χi up to a scalar.

Proof. Consider the following maps for some weight λ ∈ X∗(T ):

H0(X,LX(λ)) → H0(Gad,LX(λ)|Gad
) → H0(G, π∗LX(λ)|Gad

)

Since G is simply connected, the Picard group of G is trivial implying that
up to a scalar we have the following isomorphism

H0(G, π∗LX(λ)|Gad
) ' H0(G,OG) = k[G]

By the realization of X in the above proof of Lemma 4.3.2, we get the
following map G → P(H0(−woωj) � H0(−woωj)∗) given by g 7→ (g, e).[hj]
where hj is the identity element in Endk(H

0(−woωj)∗). Now we have seen
that Oj(1)(P(H0(−woωj)�H0(−woωj)∗)) ' H0(−woωj)∗�H0(−woωj). Now
the trace map Trj : Endk(H

0(−woωj)) → k is the image of [hj] under
this isomorphism. Therefore, g 7→ Trj((g, e).[hj]) is the regular function
gi(ti)|Gad

◦ π on G. But this is the map

gi(ti)|Gad
◦ π : G→ Gl(H0(−woωj)) →Tr k

which is nothing else but the fundamental character χi considered in sec-
tion 3.

We have now reached our main result, namely that the closure in X of
the unipotent variety Uad of Gad is compatibly F-split in X when G = Slq.
Let again v denote the ∆(G)-invariant element in St� St.

Proposition 4.3.4. The element f(v− ⊗ v+)g(t)
∏`

i=1 σ
p−1
i ∈ H0(X,ω1−p

X )
is a F-splitting section of X such that ∩`i=1VX(gi(ti)) and X1, . . . , X` are
simultanously compatibly F-split with respect to this element.
If, furthermore, we assume χi(e) = 0 in k for 1 ≤ i ≤ ` then Ū is also
compatibly F-split wrt. the F-splitting section above.

Proof. We have seen that m2((v− ⊗ v+) ⊗ v) is a F-splitting section of
Y = G×G/B×B. Therefore the element f(v− ⊗ v+)f(v)

∏`
i=1 σ

p−1
i is a F-

splitting section of X by Strickland’s result which works for any pullback
of (v− ⊗ v+) ⊗ v (cf. Theorem 4.2.1 on page 40). Thus, the element φ =
f(v− ⊗ v+)g(t)

∏`
i=1 σ

p−1
i is a F-splitting section of X since g(t)|Y = v by

the proof of Lemma 4.3.2 on page 45.
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Observe that v+ = µ(u
⊗(p−1)
+ ) and v− = µ(u

⊗(p−1)
− ) where u+, u− are

highest, respectively lowest weight vector in H0(ρ) and µ : H0(ρ)⊗(p−1) →
H0((p − 1)ρ) is the multiplication map. Thus, when writing f(v− ⊗ v+) =
νp−1 we have that φ = (ν

∏`
i=1 gi(ti)σi)

p−1. Now, by Proposition 4.1.6

on page 39, any irreducible component of VX(ν
∏`

i=1 gi(ti)σi) = VX(ν) ∪⋃`
i=1(VX(gi(ti)) ∪ VX(σi)) is compatibly F-split. Hence each of the irre-

ducible components of VX(gj(tj)) is. Furthermore by Proposition 4.1.6 on
page 39 any irreducible component of ∩`i=1VX(gi(ti)) is compatibly F-split.
Thus, by 4.1.4, ∩`i=1VX(gi(ti)) is compatibly F-split. Since the zero subset
of σi is the irreducible divisor Xi by definition, Xi is compatibly F-split by
Proposition 4.1.6 on page 39.

Now ∩`i=1VX(gi(ti))∩Gad = ∩`i=1VGad
(gi(ti)|Gad

). Recall from Lemma 4.3.3
on the previous page that gi(ti)|Gad

◦ π = χi. Since U = ∩`i=1VG(χi− χi(e))
by Proposition 3.2.3 on page 29, so under our assumption (i.e. χi(e) = 0
in k), we get that Uad = ∩`i=1VGad

(gi(ti)|Gad
). We know that Uad ⊆ Gad is

irreducible and has codimension rank(Gad) = ` in Gad (c.f. Theorem 3.1.1
on page 25). Its closure in X satisfies the same and therefore Ū is an ir-
reducible component of the intersection ∩`i=1VX(gi(ti)) (having the highest
possible codimension by Krull’s Hauptidealsatz). Thus Ū is compatibly
F-split in X.

Remark 4.3.5. It is worth observing that the variety ∩`i=1VX(gi(ti)) is F-
split in all positive characteristics.

The assumption that χi(e) = 0 in k for all i is rather restrictive in the
sense that it is only satisfied in the following case as shown in appendix A.

Type An: when n = pm and p = char(k) > 0 and m ∈ N.

Type Cn: when n = 2m − 1 and 2 = char(k) (m ∈ N)

Type Dn: when n = 2m (m ∈ N) and 2 = char(k).

Type E6: when char(k) = 3

Type E8: when char(k) = 31

Type F4: when char(k) = 13

Type G2: when char(k) = 7

Example 4.3.6. We continue our example (see the previous examples -
examples 1.1.1, 1.2.3, 2.1.6, 2.2.8, 2.3.4, 3.1.3, 3.2.11, 4.2.5).

We get that f(v− ⊗ v+)f(v)σ = Z11 · (Z11 − Z22) · (Z11Z22 − Z12Z21).
Observe that the coefficient of Z11Z12Z21Z22 is 1 in the product above.
Thus, it is F-splitting section of X.

Now, Ū = VX((Z11 + Z22)) cf. Example 3.2.11 on page 34. Therefore,
we have that Ū is compatibly split by Proposition 4.1.6 on page 39.
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4.4 Ū is B-Canonical split

In this section we proceed by showing that the F-splitting section of the
previous section is actually a B-canonical splitting section of X.

The notion ‘B-canonical split’ was introduced in [Mat] where Mathieu
used it to prove that the global sections of a G-linearized line bundle on a
B-canonical split G-scheme allow good filtration cf. the following theorem.
We will omit the proof (as we do not use it in this thesis) and refer to the
given reference for the details.

Theorem 4.4.1. ([B-K] Theorem 4.2.13)
Let Z be a G-scheme which is B-canonical split. Then for any G-linearized
line bundle L on Z, the G-module H0(X,L) admits a good filtration.

This is our motivation for proving that Ū is B-canonical split. We show
that the F-splitting section of X is actually B-canonical when viewing X
as a G-variety. As a by-product, we find that it is also B ×B-canonical.

Consider the absolute Frobenius morphism F : Z → Z of the scheme Z.
We can identify F∗OZ with OZ as sheaves of abelian group where the OZ-
structure is f · g = fpg for f, g ∈ OZ . Thus, we can define an OZ-structure
on EndF (Z) := HomOZ

(F∗OZ ,OZ) by (f ∗ φ)(g) = φ(fg) for f, g ∈ OZ and
φ ∈ EndF (Z). In particular, we find the k-linear structure on EndF (Z) is
given by (z ∗ φ)(f) = φ(zf) = z1/pφ(f).

If Z is an H-scheme for an algebraic group H, then H acts k-linearly
on EndF (Z) by

(h ? φ)(f) = h(φ(h−1f))

where h ∈ H, φ ∈ EndF (Z), and f ∈ F∗OZ . The action of H on F∗OZ is
defined to be the action of H on OZ under the identification of F∗OZ with
OZ as sheaves of abelian groups.

Recall from [Jan] §I.7.8 and §I.7.12 that we have a ’Taylor series’ for
each root β ∈ Φ+, z ∈ k, and m in a G-module:

uβ(z).m =
∑
j≥0

zj(e
(j)
β .m)

where eβ ∈ gβ and e
(j)
β =

ej
β

j!
.

Definition 4.4.2. ([B-K] Lemma 4.1.6)
Let Z be a B-scheme and let φ ∈ EndF (Z). Then φ is called B-canonical if

φ is T -invariant (under the ?-action) and for every simple root αi, e
(j)
αi ?φ = 0

for all 1 ≤ i ≤ ` and j ≥ p.
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If φ ∈ EndF (Z) is a F-splitting of Z and at the same time is B-canonical
then φ is called a B-canonical splitting of Z. If there is a B-splitting of Z
then we call Z B-canonical split .

Lemma 4.4.3. ([B-K] Lemma 4.1.6)
Let the notation be as in Definition 4.4.2 above. Then if φ is assumed
furthermore to be T -invariant then φ is B-canonical if and only if φ is in
the image of a B-module map θφ : St⊗ k(p−1)ρ → EndF (Z).

Proof. Consider the following map η : Dist(Bu) → St given by A 7→ A.v−.
Here Dist(G) denotes the algebra of distributions on G (cf. [Jan] §I.7.7). It
is surjective by the proof of [Jan] Proposition 2.11 since St is irreducible.
By [Polo] Proposition Fondamentale, we find that the kernel

ker(η) = {
∑̀
i=1

∑
j≥p

Dist(G).e(j)αi
}

Assume that φ = θφ(v− ⊗ a). Then e
(j)
αi ? φ = 0 for all j ≥ p and 1 ≤ i ≤ `

by the description of ker(η) above.
On the other hand, if φ is B-canonical then A?φ = 0 for all A ∈ ker(η).

Thus, the map Dist(G) → EndF (Z) given by A 7→ A ? φ factors through
St⊗ k(p−1)ρ by the arguments so far. This shows the Lemma.

Having a B-stable subscheme Z ′ of a B-scheme Z, it is natural to ask
when a B-canonical endomorphism in EndF (Z) induces a B-canionical en-
domorphism in EndF (Z ′). We find:

Remark 4.4.4. ([B-K] §4.1.16)
Let Z be B-scheme and Z ′ a B-stable subscheme. Assume that φ ∈ EndF (Z)
satisfies φ(IZ′) ⊆ IZ′, where IZ′ ⊆ OZ is ideal sheaf of Z ′. Then the induced
endomorphism φ′ ∈ EndF (Z ′) is B-canonical. In particular, if φ is a B-
canonical F-splitting of Z such that Z ′ is compatibly split wrt. φ then Z ′ is
B-canonical split.

Proof. Define EndF (Z ′, Z) to be the B-submodule of EndF (Z) consisting
of those φ such that φ(IZ′) ⊆ IZ′ . Then the induced map EndF (Z ′, Z) →
EndF (Z ′) given by φ→ φ′ is a B-module map. Thus, if φ ∈ EndF (Z ′, Z) is
B-canonical then the induced endomorphism φ′ is in the image of a B-
module map St ⊗ k(p−1)ρ → EndF (Z ′) and hence φ′ is B-canonical by
Lemma 4.4.3 above.

The next Lemma now gives a criterion for a smooth G-variety to be
B-canonical split.
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Lemma 4.4.5. ([vdK2] Lemma 2.3)
Let Z be a smooth G-variety. Then Z is B-canonical split if and only if
there is a G-module map Θ : St ⊗ St → H0(Z, ω1−p

Z ) such that τ ◦ Θ 6= 0
where τ is the trace map of Theorem 4.1.5 on page 38.

Proof. By definition EndF (Z) = HomOZ
(F∗OZ ,OZ) and hence, EndF (Z) '

H0(Z, ω1−p
Z ). Note also that there is only one (up to scalar) G-equivariant

map χ : St ⊗ St → k by Frobenius reciprocity (([Jan] Proposition I.3.4b);
see also section 4.2).

If τ ◦ Θ 6= 0 then there is a non-zero B-module map St ⊗ k(p−1)ρ →
k (again by Frobenius reciprocity). Under this map, the T -invariants in
St ⊗ k(p−1)ρ are mapped isomorphically to k. Hence, identifying k(p−1)ρ '
St(p−1)ρ (via the map 1 7→ v+), we have that Θ(v+ ⊗ v+) is a B-canonical

splitting (under the identification EndF (Z) ' H0(Z, ω1−p
Z )).

Conversely, assume that Z is B-canonical split. A B-module map St⊗
k(p−1)ρ → M for some G-module M can be extended to a map St ⊗ St →
M by [Jan] Lemma II.2.13(a). Let φ denote a B-canonical splitting of
Z then by Lemma 4.4.3 on the preceding page φ is in image of the map
St ⊗ k(p−1)ρ → H0(Z < ω1−p

Z ). Thus, there exists a map Θ : St ⊗ St →
H0(Z, ω1−p

Z ) such that φ ∈ Im(Θ). Since φ is a F-splitting of Z, τ(φ) 6= 0
and therefore τ ◦Θ 6= 0.

Next, we prove the main result of this section:

Proposition 4.4.6. The F-splitting section f(v−⊗v+)g(t)
∏`

i=1 σ
p−1
i is B-

canonical. In particular, this implies that ∩p−1
i=1 VX(gi(ti)) is B-canonical

split.
Thus, if χi(e) = 0 in k for all i, the closure Ū of the unipotent variety of
Gad is B-canonical split.

Proof. Consider the map of G-spaces St⊗St→ H0(X,LX(2(p−1)ρ)) given
by u 7→ f(u)g(t), u ∈ St⊗St. This is a G-equivariant map where the action
of G is the one of the diagonal of G.

By composing with the map that multiplies with the element
∏`

i=1 σ
p−1
i

we get a map Θ : St⊗St→ H0(X,ω1−p
X ). Now consider the highest and low-

est weight vectors v+, v− ∈ St. Then Θ(v−⊗v+) = f(v−⊗v+)g(t)
∏`

i=1 σ
p−1
i .

Hence τ(Θ(v− ⊗ v+)) 6= 0 by Proposition 4.3.4 on page 47 which then in
turn implies that X is B-canonical split by Lemma 4.4.5. Furthermore,
∩`i=1VX(gi(ti)) is compatibly F-split with respect to this B-canonical split-
ting (see again Proposition 4.3.4 on page 47). Thus, ∩`i=1VX(gi(ti)) is B-
canonical split by Remark 4.4.4 on the preceding page.
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Under the additional assumption that χi(e) = 0 for all i, Ū is compat-
ibly F-split in X wrt. the element Θ(v− ⊗ v+) above. Therefore, using
Remark 4.4.4 on page 50, we get that Ū is B-canonical split.

The following remark is due to Brion and Polo in [B-P2] but is first
written down in [Rit]

Remark 4.4.7. In the proof of Proposition 4.4.6 above, we showed that X
is B-canonical split. More general, X is also B ×B-canonical split.

Proof. Consider the G × G-equivariant map (St � St) ⊗ (St ⊗ St) →
H0(X,ω1−p

X ) given by u1 ⊗ u2 7→ f(u1)f(u2)
∏`

i=1 σ
p−1
i , u1, u2 ∈ St� St.

The image of the ∆(G)-invariant element v ∈ St � St and the highest
and lowest weight vectors v+, v− ∈ St is f(v− ⊗ v+)f(v)

∏`
i=1 σ

p−1
i whose

image under the natural map τ : H0(X,ω1−p
X ) → k is non-zero as we have

already seen in Proposition 4.3.4 on page 47. Hence by Lemma 4.4.5 above
X is B ×B-canonical split.



Chapter 5

Further properties of Ū

In this chapter, we look at some applications of Proposition 4.3.4 on page 47.
We find that the main result of the previous section implies that Ū is a
locally complete intersection and normal. We also have a partial result on
the Picard group of Ū using that Ū is a locally complete intersection.

5.1 Geometric properties of Ū

We generalize two known results of U to its closure in X, namely that
U is a complete intersection (Proposition 3.2.3 on page 29) and normal
(Proposition 3.2.9 on page 33). Here, we prove that Ū is a locally complete
intersection and normal when χi(e) = 0 in k for 1 ≤ i ≤ `. This implies
that Ū is Cohen-Macauley and Gorenstein in these cases.

The next two Lemmas are helpful tools. First, we show that if a F-
splitting is a product of global sections of some line bundles raised to (p−
1)’st power then the sections form a regular sequence in the local ring OX,x

in any point where all these sections are zero. We then use this to prove
that the zero subsets of some of these sections has codimension equal to the
number of sections. More precisely:

Lemma 5.1.1. Let X denote a projective, smooth variety with canoni-
cal sheaf ωX . Assume L1, . . . ,LN are line bundles such that ⊗N

i=1Li '
ω−1
X . Assume furthermore that there exist global sections fi of Li such that∏N
i=1 f

p−1
i ∈ H0(X,ω1−p

X ) is a F-split section and such that VX(f1, . . . , fN) 6=
∅.
Then (i) fi1 , . . . , fis form a regular sequence in OX,x for all x ∈ VX(f1, . . . , fN)
and for all 1 ≤ s ≤ N such that 1 ≤ ij ≤ N are different for j = 1, . . . , s
(ii) Let C ⊆ ∩i∈IVX(fi) be any irreducible component where I ⊆ {1, . . . , N}.
Then codim(C) = |I|

53
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Proof. Let x ∈ VX(f1, . . . , fN) and let i1, . . . , is ∈ {1, . . . , N}. Assume for
contradiction that fij is a zero divisor in

OX,x/〈fi1
,...,fij−1

〉OX,x

Hence there exist ar ∈ OX,x such that
∑j

r=1 arfir = 0 where some ar 6= 0.

Thus, we have that
∑N

i=1 aifi = 0 (again ai ∈ OX,x) and assume without
loss of generality that a1 6= 0 (for example by renumbering). Then a1f1 =
−

∑N
i=2 aifi. This implies that

(a1s)
p−1 = fp−1

2 . . . fp−1
N

∑
j2+···+jN=p−1

(
p− 1

j2 . . . jN

) N∏
r=2

(−arfr)jr

Observe that in each summand there exists a r ≥ 2 such that fpr divides
that summand.

Consider the trace map τ : F∗(ω
1−p
Z ) → OZ for some non-singular variety

Z. Then we know that Z is F-split with respect to φ ∈ H0(Z, ω1−p
Z ) if and

only if τ(φ) = 1 by Theorem 4.1.5 on page 38.
Now, τ(fpg) = fτ(g) which by the above observation shows that τ((a1s)

p−1) ∈
〈f2, . . . , fN〉 hence also τ(ap1s

p−1) ∈ 〈f2, . . . , fN〉. Since sp−1 is a splitting
section τ(sp−1) = 1 whence τ(ap1s

p−1) = a1τ(s
p−1) = a1. This shows that if

aijfij = 0 in OX,x/〈fi1
,...,fij−1

〉OX,x then aij is already zero in that ring. This
proves the first claim.

We next prove (ii) from (i) by using induction in the number of elements
in I. When |I| = 1 then Krull’s Principal Ideal Theorem ([E] Theorem 10.2)
and [Ha1] exercise II.3.20 takes care of it. Now assume |I| > 1 and that the
claim is true for all subsets J & I.

Let C ⊆ ∩i∈IVX(fi) be any irreducible component. Note that Krull’s
Hauptidealsatz gives that codim(C,X) ≤ |I|. Then C is also a closed and
irreducible subset of ∩i∈JVX(fi) where J = I \ {j} for some j ∈ I. Hence
C is contained in an irreducible component C ′ of ∩i∈JVX(fi). Observe that
induction gives that codim(C ′, X) = |J | = |I| − 1. And we claim that
C & C ′ which in turn implies:

|I| ≥ codim(C,X) > codim(C ′, X) = |I| − 1

proving (ii).
To prove the claim that C & C ′ we assume for contradiction that C =

C ′. Note that if U ⊆ X is open such that C ∩ U 6= ∅ then codim(C,X) =
codim(C ∩ U,U). Let A be the union of the finitely many irreducible com-
ponents of ∩i∈JVX(fi) except C then the complement U = X \ A is open



5.1. Geometric properties of Ū 55

and contains C∩U . Furthermore C∩U = ∩i∈JVX(fi)∩U = ∩i∈JVU(fi|U) 6=
∅. Thus ∩i∈JVU(fi|U) ⊆ VU(fj|U). By possibly restricting to an even
smaller open subset of X (which we also will denote U) we can assure
that fi|U ∈ OU(U) for all i ∈ J . Therefore using Hilbert’s Nullstellensatz

we get
√
〈fj|U〉 ⊆

√∑
i∈J〈fi|U〉 which then implies that fMj|U ∈ 〈fi|U |i ∈ J〉

for some M � 0.

Hence fp
d

j|U ∈ 〈fi|U |i ∈ J〉 where d satisfies pd ≥M . Using the F-splitting

determined by the splitting section sp−1 several (actually d) times we get
that fj|U ∈ 〈fi|U |i ∈ J〉. Hence fj is a zero divisor in OX,x/〈fi1

,...,fij−1
〉OX,x

which contradicts (i).

The above lemma will become useful when we show that Ū is a locally
complete intersection. But we need another Lemma to prove that it is
normal. This Lemma is communicated to us by professor M. Brion:

Lemma 5.1.2. Let Y ⊆ X be a subvariety of any smooth variety X. And
let D ⊆ X be an irreducible divisor of X. Then if the scheme-theoretically
intersection Z := Y ∩D is reduced every irreducible component of Z contains
a smooth point of Y .

Proof. If Y ⊆ D then the assertion of Lemma is easily seen to be fullfilled.
Assume now that Y " D.

Observe that each irreducible component of Z contains a smooth point
in Z since the smooth points form a dense subset of a reduced scheme.

The claim is now that every smooth point of Z is also a smooth point
of Y . This is a local question so we can assume that X is affine such that
there exists a regular function f ∈ k[X] with the property that VX(f) = D.
Hence also D, Y and, Z are affine as they are closed in X.

Let z ∈ Z be a smooth point (of Z). By Hilbert’s Nullstellensatz we
get that the ideal of D in k[X] is IX(D) =

√
〈f〉 = 〈f〉 as D is assumed

irreducible. Consider the following commutative diagram of short exact
sequences

0 // IX(Y )

��

// k[X]

id
��

// k[Y ]

��

// 0

0 // IX(Z) // k[X] // k[Z] // 0

Using the snake Lemma we obtain the isomorphism IY (Z) ' IX(Z)/IX(Y ).
We have that IX(Z) = IX(Y )+ IX(D) as Z is the scheme-theoretical inter-
section Y ∩D. Hence IY (D) ' IX(D)/IX(Y )∩IX(D) and we therefore conclude
that IY (Z) = 〈f|Y 〉.
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The point z is assumed to be smooth. Hence the local ring OZ,z '
k[Z]MZ,z

is regular where MZ,z denotes the maximal ideal of k[Z] that van-
ishes in z. This implies that MZ,z is generated by d = dim(Z) elements.
Denote these f1, . . . , fd.

Using the surjectivity of the map OY,z → OZ,z we let f ′i ∈ OY,z denote
a lift of fi and consider the ideal I generated by f ′1, . . . , f

′
d and f|Y . Notice

that I ⊆ MY,z where MY,z ⊆ OY,z is the maximal ideal. This is because
f ′i(z) = fi(z) = 0 since f ′i|Z = fi ∈ MZ,z. And f|Y vanishes on Z and hence
especially in z so also f|Y belongs to MZ,z. We claim that I = MY,z.

Let g ∈ MY,z then g|Z ∈ MZ,z hence there exist functions λ1, . . . λd such

that g|Z =
∑d

i=1 λifi Therefore g|Z −
∑d

i=1 λifi is identically zero on Z.
Thus letting λ′i denote a lift of λi we have that

g −
d∑
i=1

λ′if
′
i ∈ IY (Z) = 〈f|Y 〉

Thus MY,z = I which implies that dimk(MY,z/M2
Y,z) = d + 1 = dim(Y ).

Therefore OY,z is regular, which is equivalent to z being a smooth point of
Y .

We are now ready to prove the main result of this section:

Proposition 5.1.3. Assume that χi(e) = 0 for all i. Then
i) Ū is a locally complete intersection
ii) Ū is normal

Proof. We claim that Ū = VX(g1(t1), . . . , g`(t`)) =: V which proves i).
To prove the claim, notice that Ū is actually an irreducible component

of V since it is irreducible, closed, and of codimension (in X) `. Let C ⊆ V
be an irreducible component. Note that codim(C,X) = ` by Lemma 5.1.1
on page 53. Then consider the intersection C ∩Gad.

If Gad ∩ C = ∅ then C ⊆ X \ Gad = ∪`i=1Xi. Since C is irreducible
C ⊆ Xj for some j. But then C ⊆ V ∩Xj is an irreducible component since
it is maximal closed and irreducible subset and hence has codimension `+1
by Lemma 5.1.1 on page 53 contradicting codim(C,X) = `.

Hence C ∩ Gad 6= ∅. Now, since C ∩ Gad ⊆ V ∩ Gad = Uad we get that
C ⊆ Ū implying that C = Ū. Hence Ū = ∩`i=1VX(gi(ti)) and therefore a
locally complete intersection.

To prove (ii) it suffices to prove that Ū is regular in codimension one by
(i) and [Ha1] II.8.23(b).

Now by Theorem 2.2.1 on page 13 we have that X = Gad∪
⋃`
i=1Xi. The

intersections Ū ∩Xi are reduced since Xi and Ū are simultaneously F-split
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in X by Proposition 4.3.4 on page 47. Now the preceding Lemma 5.1.2
gives that each irreducible component of the intersections Ū ∩Xi contains
smooth points of Ū.

Let Ūsing be the singular locus of Ū and let C denote an irreducible
component of Ūsing. If C∩Gad 6= ∅ then codim(C, Ū) = codim(C∩Gad,Uad)
since Gad is an open subset of X. Observe that C ∩ Gad is irreducible
(since open in the irreducible component C) and closed in Gad. Therefore,
C is contained in an irreducible component C ′ of Gad. Thus codim(C ∩
Gad, Gad) ≥ codim(C ′, Gad). Note also that Ūsing ∩ Gad = U

sing
ad is the

singular locus of Uad. Thus, C ′ ⊆ U
sing
ad and hence it suffices to prove that

dim(Using
ad ) ≤ dim(U)− 2.

Recall that the regular elements Ureg in U form an open G-orbit (in U)
by Proposition 3.2.7 on page 31. Hence we get that π(Ureg) is an open
subset of Uad which then implies that U

sing
ad ⊆ Uad \ π(Ureg). Thus the pull-

back π−1(Using
ad ) ⊆ U \Ureg. Restricting π to π−1(Using

ad ) we get a surjective
map π−1(Using

ad ) → U
sing
ad which gives that dim(Using

ad ) ≤ dim(π−1(Using
ad )) ≤

dim(U \ Ureg) ≤ dim(U)− 2 since U is regular in codimension 1 by Propo-
sition 3.2.7 on page 31. Thus, the codimension of C in Ū is at least 2 when
C ∩Gad 6= ∅.

If C ∩Gad = ∅ then C is an closed and irreducible subset of Xi ∩ Ū and
hence contained in a irreducible component C ′ of Xi ∩ Ū. Because every
irreducible component of Xi ∩ Ū contains smooth points (cf. Lemma 5.1.2
on page 55), C $ C ′. This implies that codim(C, Ū) > codim(C ′, Ū) = 1
by Krull’s Hauptidealsatz.

Therefore, in either case the codimension of C is greater than (or equal
to) 2 showing that Ū is regular in codimension 1 and hence normal by (i)
and [Ha1] proposition II.8.23.

Remark 5.1.4. Assume that χi(e) = 0 for all i.
(i) Since Uad is an open subvariety of Ū the proposition tells us that Uad is
also normal and a locally complete intersection1.
(ii) The Proposition 5.1.3 implies that Ū is Cohen-Macauley by [Ha1] Propo-
sition II.8.23(a). It is also Gorenstein by [E] Corollary 21.19 since Ū is a
locally complete intersection.

Example 5.1.5. Since Ū = VX(Z11 +Z22), we easily get that Ū is a locally
complete intersection. Furthermore, it shows that Ū ' P2. Hence, it is
normal.

1This is propably well-known although I have not been able to find a specific reference
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5.2 The Picard group of Ū

We now exploit the Picard group of Ū. Unfortunately, we only have a
partial result, namely that the natural map Pic(X) → Pic(Ū) induced by
the inclusion map is injective.

First, we consider the following commutative diagram:

Ū ∩ Y

��

// Y

��
Ū // X

(5.1)

There is a G-equivariant morphism

ξ : G×B G/B → G/B × G/B , (x, yB) 7→ (xB, xyB)

Let Sw denote the Schubert variety , i.e. the closure in G/B of BẇB/B.
Then G×B Sw is called the G-Schubert variety . All closed, irreducible G-
stable subsets of G/B× G/B are the image of G-Schubert varieties under the
isomorphism ξ (see [B-K] Definition 2.2.6). Observe that ξ(G×B {eB}) =
∆(G/B).

We can give a very explicit description of Ū ∩ Y :

Lemma 5.2.1. Assume that χi(e) = 0 for all i.
Then Ū ∩ Y =

⋂`
i=1G×B Swosαi

Proof. Consider the ∆(G)-invariant element ti ∈ H0(−woωi)∗ � H0(−woωi)
of Lemma 4.3.2 on page 45. We know that d := dim(H0(−woωi)) is finite.
Let I = {1, . . . , d}. Take a basis {tij}j∈I for H0(−woωi) consisting of weight
vectors and let {t∗ij}j∈I denote the dual basis for H0(−woωi)∗. As in the

proof of Lemma 4.3.2 ti =
∑

j∈I t
∗
ij⊗ tij. Choose ti1 ∈ H0(−woωi) to be the

highest weight vector, i.e. the evaluation map Ev : H0(−woωi) → k−woωi

given by f 7→ f(1) maps ti1 to 1 and Ev(tij) = 0 for j > 1.
Using Frobenius reciprocity ([Jan] Proposition I.3.4b) we find that H0(ωi)�

H0(−woωi) has a ∆(G)-invariant element. Furthermore, there is a G-
module map θ : H0(−woωi)∗ → H0(ωi) (also by Frobenius reciprocity)
which maps highest weight vectors to highest weight vectors. Let xi ∈
H0(−woωi) � H0(ωi) be the image of ti under the map θ × id. Thus, xi is
∆(G)-invariant and we can write xi =

∑
j∈I xij ⊗ tij where xij = θ(t∗ij).

Now, consider xi(ẇ, 1) for w ∈ W . First note that xi(ẇ, 1) =
∑

j∈I xij(ẇ)⊗
tij(1) = xi1(ẇ)⊗ ti1(1) by the above observation. Let t ∈ T then

t.ti1(1) = ti1(t
−1.1) = ωi(t

−1)ti1(1)
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hence ti1(1) has weight −ωi. The T -action on the first factor reveals

t.xi1(ẇ) = xi1(t
−1ẇ) = xi1(ẇ(ẇ−1t−1ẇ)) = (−wo.ωi)(ẇ−1t−1ẇ)xi1(ẇ) = (wwo.ωi)(t)xi1(ẇ)

Hence xi1(ẇ) has weight w−1wo.ωi. Since xi is ∆(G)-invariant, we get

xi(ẇ, 1) = (t, t).xi(ẇ, 1) = (−ωi + wwo.ωi)(t)xi(ẇ, 1)

Thus, if wwo.ωi 6= ωi then xi(ẇ, 1) = 0. Observe that if w = sjwo then
wwo.ωi = ωi for j 6= i while for j = i we have wwoωi = ωi−αi 6= ωi. Hence
VY (xi) ⊇ ξ(G×B Ssiwo).

Now, by Lemma 5.1.1 on page 53, VX(gi(ti)) ∩ Y = VY (xi) has pure
codimension 1 in Y . Therefore VY (xi) is a union of codimension 1 G-
Schubert varieties. From the same Lemma (Lemma 5.1.1) we get that
VY (xi) ∩ VY (xj) has pure dimension 2 for i 6= j. Hence, we conclude that
a codimension 1 G-Schubert variety only lies in VY (xi) for one 1 ≤ i ≤ `.
Therefore, VY (xi) = ξ(G×B Ssiwo). Thus, we have proved the Lemma since
Ū ∩ Y = ∩`i=1VY (xi).

It follows from this description that G×B{eB} ⊆ Ū∩Y . Using [Ha1] Ex-
ercise II.6.8(a) we get from the diagram in (5.1) the following commutative
diagram of homomorphisms

Pic(X)

��

// Pic(Y )

��
Pic(Ū) // Pic(Ū ∩ Y ) // Pic(G×B {eB})

(5.2)

By Proposition 2.3.2 on page 21, we have that the homomorphism Pic(X) →
Pic(Y ) is injective and the image is line bundles on the form LY (−woλ, λ)
for λ ∈ X∗(T ). Hence, Pic(X) ' X∗(T ). Note also that G ×B {eB} '
∆(G/B) ⊆ Y = G/B × G/B. Therefore, Pic(Y ) → Pic(G ×B {eB}) '
Pic(G/B) ' X∗(T ) is given by (λ, µ) 7→ λ + µ where we have identified
Pic(Y ) with X∗(T )×X∗(T ).

For our main result of this section:

Proposition 5.2.2. Assume that χi(e) = 0 for all i.
Let i : Ū → X denote the inclusion map. Then the induced map i# :
Pic(X) → Pic(Ū) is injective.

Proof. Let L ∈ Pic(X) and assume that L|Ū is the trivial line bundle on Ū.

Then L has trivial image in Pic(Ū∩ Y ) and hence also in Pic(G×B {eB}).
We know from Proposition 2.3.2 on page 21 that L = LX(λ) for some

λ ∈ X∗(T ). Further, the image of LX(λ) in Pic(Y ) is LY (−woλ, λ) '
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LG/B(−woλ) � LG/B(λ). The image in Pic(G ×B {eB}) of the latter line
bundle is LG/B(−woλ + λ) as observed above. Since the diagram in (5.2)
commutes, LG/B(−woλ + λ) is trivial. Thus, woλ = λ which only λ = 0
satisfies. Therefore, LX(λ) is the trivial line bundle on X proving that the
homomorphism Pic(X) → Pic(Ū) is injective.

Example 5.2.3. We have seen that Ū ' P2 and hence Pic(Ū) ' Z. By
[Ha1] Exercises II.6.2(d) and II.6.8(c), we get that Pic(X) → Pic(Ū) is
multiplication with 2 as Ū is hypersurface in X = P3 of degree 2.

Note that Swosα = {eB} and therefore Y ∩ Ū ' ∆(G/B). In our example,
we then know the maps in the diagram (5.2). The map Pic(X) → Pic(Y )
is given by m 7→ (m,m). And the map Pic(X) → Pic(∆(G/B)) is the map
(m,n) 7→ m+ n.

We conjecture that Pic(Ū) ' Z` and that the map Pic(Ū) → Pic(∆(G/B))
is bijective.
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Appendix A

Dimensions of the fundamental
representations

Note that the fundamental character evaluated on the identity element e of
G is nothing but the dimension of the representation corresponding to the
fundamental weight, ωi, i.e. χi(e) = dim(H0(ωi)). These dimensions can
be found in various tables - the following has been taken from [M-P-R].Our
goal in this section is to determine when χi(e) = 0 in k for all 1 ≤ i ≤ `.

We use the following fact about binomial coefficients: If p is a prime
then writing n = n0p

0 + n1p
1 + · · ·+ nmp

m and similarly for i we get(
n

i

)
≡

(
n0

i0

)(
n1

i1

)
. . .

(
nm
im

)
modulo p (A.1)

Notice that p|
(
n
i

)
if and only if ∃j : nj < ij.

TypeAn:

χi(e) =

(
n+ 1

i

)
for i = 1, . . . , n

These binomial coefficients are zero modulo p if and only if n+ 1 = pm for
some integer m by the equation (A.1)

TypeBn:

χn(e) = 2n , χi(e) =

(
2n+ 1

i

)
for i = 1, . . . , n− 1

Since
(
2n+1

1

)
= 2n+1 is odd and χn(e) = 2n these numbers do not all vanish

in any charateristic p.

63
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TypeCn:

χi(e) =

(
2n

i

)
−

(
2n

i− 2

)
for i = 1, . . . n

(Note that we set
(
m
l

)
= 0 when l < 0). First observe that

(
2n
1

)
= 2n and(

2n
2

)
− 1 = n(2n − 1) − 1. From this we conclude that only the prime 2

can divide both these expressions and the latter only when n is odd. Using
equation (A.1) above we note that if i is odd then 2|

(
2n
i

)
and furthermore

we get for i = 2j:(
2n

2j

)
−

(
2n

2j − 2

)
≡

(
n

j

)
−

(
n

j − 1

)
modulo 2 ≡

(
n

j

)
+

(
n

j − 1

)
modulo 2

Now
(
n
j

)
+

(
n
j−1

)
=

(
n+1
j

)
and by using equation (A.1) we get that 2|

(
n+1
j

)
for all 1 ≤ j ≤ n−1

2
if and only if n = 2m − 1 for some integer m.

TypeDn:

χn−1(e) = 2n−1, χn(e) = 2n−1, χi(e) =

(
2n

i

)
for i = 1, . . . , n− 2

The only case where all these dimensions can be zero modulo p is when
p = 2. Again, by equation (A.1) we get that 2|

(
2n
i

)
for all i = 1, . . . , n − 2

if and only if n = 2m for some m.

TypeE6: χ1(e) = 27 = 33

χ2(e) = 351 = 33 · 13

χ3(e) = 2925 = 32 · 52 · 13

χ4(e) = 351 = 33 · 13

χ5(e) = 27 = 33

χ6(e) = 78 = 2 · 3 · 13

TypeE7: χ1(e) = 133 = 7 · 19

χ2(e) = 8645 = 5 · 7 · 13 · 19

χ3(e) = 365750 = 2 · 53 · 7 · 11 · 19

χ4(e) = 27664 = 24 · 7 · 13 · 19

χ5(e) = 1539 = 34 · 19

χ6(e) = 56 = 23 · 7
χ7(e) = 912 = 24 · 3 · 19
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TypeE8:
χ1(e) = 248 = 23 · 31
χ2(e) = 30380 = 22 · 5 · 72 · 31

χ3(e) = 2450240 = 26 · 5 · 13 · 19 · 31

χ4(e) = 146325270 = 2 · 3 · 5 · 72 · 132 · 19 · 31
χ5(e) = 6899079264 = 25 · 3 · 72 · 112 · 17 · 23 · 31

χ6(e) = 6696000 = 26 · 33 · 53 · 31
χ7(e) = 3875 = 53 · 31
χ8(e) = 147250 = 2 · 53 · 19 · 31

TypeF4: χ1(e) = 52 = 22 · 13
χ2(e) = 1274 = 2 · 72 · 13

χ3(e) = 273 = 3 · 7 · 13
χ4(e) = 26 = 2 · 13

TypeG2: χ1(e) = 14 = 2 · 7 χ2(e) = 7

To summarize, our arguments show that χi(e) = 0 for all i in the fol-
lowing cases:

Type An: when n = pm and p = char(k) > 0 and m ∈ N.
Type Cn: when n = 2m − 1 and 2 = char(k) (m ∈ N)
Type Dn: when n = 2m (m ∈ N) and 2 = char(k).
Type E6: when char(k) = 3
Type E8: when char(k) = 31
Type F4: when char(k) = 13
Type G2: when char(k) = 7
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Comments

Here, I have gathered some questions that I have not been able to answer
due to lack of time as well as my mathematical limitations.

Question 1: Is Ū F-split always?

The hard thing is to find global sections of line bundles onX that restrict
to constants on Gad. That is why we assume that χi(e) = 0 for all i.

Note that in the cases summarized in the previous appendix, π : G →
Gad is bijective. This suggests that it may be more natural to switch the
point of view to the simply connected group G in stead of the adjoint
group Gad. But for a simply connected group G there is not a canonical
compactification like the wonderful compactification of Gad. Normality and
smoothness of a compactification can not be taken for granted.

Note that the subset V := ∩`i=1VX(gi(ti)) of Proposition 4.3.4 on page 47
satisfies that V ∩G = κ−1(0, . . . , 0) where κ : G→ A` is the Steinberg map
considered in chapter 3. More generally, question 1 can be restated as “Is
the Steinberg fibres F-split in any reductive embedding1 and any positive
charateristic?”

Some recent but so far not published results of Jesper Funch Thomsen
indicate that the closure of any Steinberg fibre in any reductive embedding
is compatibly split.

Question 2: Find the line bundles on Ū2.

If one can give an explicit description of the Picard Group of Ū then
one can probably prove some vanishing results. Also, one could look more
closely at the good filtration that the global sections of an ample line bundle
on Ū admit.

1see [Rit] or [B-K] Section 6.2
2This still denotes the wonderful compactification of Uad
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Question 3: Is Ū globally F-regular?

The paper [B-P2] on large Schubert varieties have inspired us, and there-
fore it would be natural to seek ideas to prove globally F-regularity of Ū by
‘similar’ methods as in [B-T].

Question 4: Find a desingularization of Ū.

It can be proved that the set Z ′ considered in the proof of Theorem 3.1.1
on page 25 is actually a desingularization of U. This problem is related to
find a equivariant desingularization of the large Schubert variety B̄ad; see
[B-P2]. To my knowledge, this has not been constructed so far.

I would like to end by drawing the attension to a recent article [He] of
Xuhua He where he proves that the boundary of Ū (Ū \ U) is a union of
certain G-stable sets defined by Lutztig. This can prove helpful in further
studies of Ū.
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tielles, C. R. Acad. Sci. Paris 244 (1957), pp. 426–428
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algébriques, two volumes (1956–1958), Paris

[DC-P] C. De Concini and C. Procesi, Complete Symmetric Vari-
eties, Invariant Theory, Lect. Notes in Math. vol. 996 (1983),
Springer, pp. 1–44

[DC-S] C. De Concini and T. Springer, Compactification of Symmetric
Varieties, Transform. Groups 4 (1999), no. 2–3, pp. 273–300

[E] D. Eisenbud, Commutative Algebra with a View Toward Alge-
braic Geometry, Graduate Texts in Mathematics 150 (1995),
Springer

[Fult] W. Fulton, Introduction to Toric Varieties, Annals of Math.
Studies 131 (1993), Princeton University Press

[Ha1] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathe-
matics 52 (1977), Springer

69



70 Bibliography

[Ha2] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lec-
ture Notes in Math. 156 (1970), Springer

[He] Xuhua He, Unipotent Variety in the Group Compactification,
preprint: arXivmath.RT/0410199 v2 31 Oct 2004

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representa-
tion Theory, Graduate Texts in Mathematics 9 (1970), Springer

[Hum2] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic
Groups, Math. Surveys and Mono. 43 (1995), AMS

[Iv] B. Iversen, The Geometry of Algebraic Groups, Adv. in Math.
20 (1976), pp. 57–85

[Jan] J. C. Jantzen, Representations of Algebraic Groups, 2nd edition,
Math. Surveys and Mono. 107 (2003), AMS

[vdK1] W. van der Kallen, Lectures on Frobenius Splittings and B-
modules, Tata institute of Fundamental Research, Bombay 1993

[vdK2] W. van der Kallen, Steinberg Modules and Donkin Pairs,
preprint: arXiv:math.RT/9908026 v3 15 Sep 1999

[Katz] N. M. Katz, Nilpotent Connections and the Monodromy Theo-
rem, Publ. Math. I.H.E.S. 39 (1970), pp. 175–232

[K] Kostant, Lie Group Representations on Polynomial Rings,
Amer. J. Math. 85 (1963), pp. 327–404

[L-T] N. Lauritzen and J. F. Thomsen, Frobenius Splitting and Hy-
perplane Sections of Flag Manifolds, Invent. Math. 128 (1997),
pp. 437–442

[Lu] G. Lusztig, On the finiteness of the number of unipotent classes,
Invent. Math. 35 (1976), pp. 201–213

[Mat] O. Mathieu, Filtrations of G-modules, Ann. Sci. Éc Norm. Supér
23 (1990), pp. 625–644

[M-P-R] W. G. McKay, J. Patera, and D. W. Rand, Tables of Repre-
sentations of Simple Lie Algebras, volume 1, Les publications
CRM 1990



71

[M-R] V.B. Mehta and A. Ramanathan, Frobenius Splitting and Co-
homology Vanishing for Schubert Varieties, Ann. of Math. 122
(1985), pp. 27–40

[Polo] P. Polo, Variétés de Schubert et excellentes filtrations,
Astérisque 173-174 (1989), pp. 281–311

[RR] S. Ramanan and A. Ramanathan, Projective Normality of Flag
Varieties and Schubert Varieties, Invent. Math. 79 (1985),
pp. 217–224

[R] A. Ramanathan, Equations defining Schubert Varieties and
Frobenius Splittings of Diagonals, Publ. Math. I.H.E.S. 65
(1987), pp. 61–90

[Ri] R. W. Richardson, Jr., Conjugacy Classes in Lie Algebras and
Algebraic Groups, Ann. Math. 86 (1967), pp. 1–15

[Rit] A. Rittatore, Reductive embeddings are Cohen-Macaulay, Proc.
Amer. Math. Soc. 131 (2003), pp. 675–684

[Spr] T. Springer, Linear Algebraic Groups, 2nd edition, Progress in
Mathematics 9, Birkhäuser 1998
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List of Notations

Unless explicitly stated otherwise, the following notation is used throughout
this thesis

Chapter 1

Section 1.1

k algebraically closed field of characteristic p > 0

Gad connected, semi-simple, adjoint linear algebraic group over
k

Tad maximal torus of Gad

Bad Borel subgroup of Gad

π : G→ Gad simply connected covering of Gad, i.e. G is a connected,
semi-simple, simply connected linear algebraic group over
k with a surjective morphism of algebraic groups π : G→
Gad and the kernel of π is central.

T maximal torus of G such that π(T ) = Tad

` = dim(T ), the rank of G.

B Borel subgroup of G such that π(B) = Bad

B− Borel subgroup of G such that π(B−) = B−
ad and B∩B− =

T

Φ Root system of G wrt. T (is the root system of Gad wrt.
Tad)

Φ+ The positive roots in Φ wrt. B

∆ The simple roots in Φ+. We index the simple roots {α1, . . . , α`}.
Λ = X∗(T ); the weight lattice is equal to the characters of

T .

X∗(Tad) The characters of Tad is the root lattice, the sublattice of
Λ spanned by the roots over Z.

ωi the fundmental weight corresponding to the simple root αi
for 1 ≤ i ≤ `. They form a basis of X∗(T ).

ρ =
∑`

i=1 ωi = 1/2
∑

α∈Φ+ α

Bu The unipotent radical of B

W = NG(T )/T ; the Weyl group of G wrt. T
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si = sαi
; the reflection corresponding to the the simple root

αi

wo the unique element in W such that wo.Φ
+ = −Φ+.

uα : Ga ' Uα For each root α ∈ Φ there is an isomorphism uα of G onto
a closed subgroup Uα such that tuα(x)t

−1 = uα(α(t)x) for
all t ∈ T, x ∈ k. Uα is called the root subgroup.

Φ(w) = {α ∈ Φ+|w(α) ∈ −Φ+}
Uw =

∏
α∈Φ(w) Uα

l(w) the length of the element w of W

Section 1.2

kλ The one dimensional vector space with B-action b.x = λ(b)−1x

LG/B(λ) The locally free sheaf corresponding to the line bundle G×B kλ

Λ+ the dominant weights of Λ

k[G] the coordinate ring of G

H0(λ) = H0(G/B,LG/B(λ)). Note that thisG-module has highest weight
−woλ and lowest weight −λ for a dominant weight λ. Else, it
is zero.

V (λ) = H0(λ)∗. Note that this G-module has highest weight λ and
lowest weight woλ for a dominant weight λ. Else it is zero

M �N The external product of 2 G-modules is regarded as a G × G-
module via the action (g, h).m⊗ n = g.m⊗ h.n.

H0(λ, µ) = H0(G/B × G/B,LG/B×G/B(λ, µ)) = H0(λ) � H0(µ).

St H0((p−1)ρ); the Steinberg module. It is irreducible and selfdual.

Section 1.3

T (λ) The indecomposable tilting module of highest weight λ
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Chapter 2

h the identity element of Endk(M) where M satisfies conditions
(i)–(iii) of Lemma 2.1.1.

[h] the image of h in P(Endk(M))

X the closure in P(Endk(M)) of (G × G).[h]. It is the wonderful
compactification of Gad.

∂X = X \ Gad; the boundary of Gad which is a union of ` smooth
Gad ×Gad-stable divisor with normal crossings.

Xi a smooth G×G-stable boundary divisor.

Y =
⋂`
i=1Xi ' G/B × G/B; the unique closed orbit in X.

Po The affine open subset of P(Endk(M)) such that when writing
the element in the basis defined in Remark 2.1.4 then the coef-
ficient of hλ = m∗

λ ⊗mλ equals 1. Po is B ×B−-stable.

Tad The closure in X of (T × T ).[h] ' Tad by Lemma 2.1.5.

Tad,o = Tad ∩Po

Xo = X ∩ Po. For the very important properties see Proposi-
tion 2.2.3, Lemma 2.2.5, Lemma 2.2.4.

Cl(X) The divisor class group of X.

Pic(X) The Picard group of X.

σ The unique (up to a scalar) G×G-invariant global section of the
line bundle LX(Xi) such that the zero subset of σi is Xi

Di := BsiwoB; a prime divisor on X in the boundary of Xo.

τ The unique (up to a scalar) B×B-stable global section of LX(Di)
such that the zero subset is Di.

LX(λ) The line bundle on X such that the restriction to Y is th eline
bundle LY (−woλ, λ).
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Chapter 3

U The unipotent variety in G, i.e. the subset of all unipotent
elements in G

χi The fundamental character G → Gl(H0(−woωi)) → k. The
first map is the representation and the last one is the trace
map.

κ : G→ A` The Steinberg map defined by g 7→ (χ1(g), . . . , χ`(g)).

Uad The unipotent variety of Gad

Ū The closure in X of Uad.

Chapter 4

tc =
∏N

i=1 t
ci
i where t = (t1, . . . , tN)

p − 1 = (p− 1, . . . , p− 1)

Tr The map is defined on page 38.

τ The trace map is defined in Theorem 4.1.5 on page 38.

v−, v+ The lowest, respectively highest weight vector in St.

v The δ(G)-invariant element in St� St.

EndF (X) := HomOZ
(F∗OZ ,OZ).

Chapter 5

Sw The Schubert variety associated to w ∈ W , i.e. the closure in
G/B of BẇB/B.

Pic(Ū) The Picard group of Ū
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