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Let no one else’s work evade your eyes,

Remember why the good Lord made your eyes,

So don’t shade your eyes,

But plagiarize, plagiarize, plagiarize . . .

Only be sure always to call it please research.

-Tom Lehrer in The Lobchevsky Song

I have left out many of the things which could have been added so as to

make the practice of the analysis more easy. I can assure you, nevertheless,

that I have omitted all that quite deliberately since I felt sure that some

people who boast that they know everything would not miss the chance

of saying that they knew already what I had written, if I had made myself

easily intelligible to them.

-Rene Descartes (as quoted by Hersh, Math. Intell., 1997)
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1 Introduction

How to Read This Thesis

This thesis is the outcome of my 4-year PhD study at the Department of Operations

Research at the University of Aarhus. The thesis has three parts. The first part,

which you are reading now, is a brief non-technical overview (mindmap, summaries

of included manuscripts) of the thesis. The second part is a survey of the relevant

literature and how my work relates to, contributes to, and extends the various fields.

Cynics would say that the second part exists so that you will not have to read the third

part. The survey has two subparts. One is on issues from mathematical finance, fixed

income models in particular, and one is on estimation of discretely observed diffusion

processes. It is the intention that each subpart has a chronologically logic structure.

This, however, does not mean that my work was done in that order since the lines of

thought are not always straight. The third part of the thesis contains the “original

manuscripts”. These can – and preferably should – be read seperately. This means

that there is some (but not tremendously much) overlap between the papers and that

I have made no attempt to harmonize notation across manuscripts.

How to Avoid Reading This Thesis

Place the thesis on your desk/shelf, right next to the other n things you really must

read. As time passes n will tend to infinity. (And do so frighteningly fast.)

Acknowledgements

Many people have provided me with valuable input during my PhD study. I thank

Morten Bai Andersen, Jesper Andreasen, Ken Bechmann, Jochen Beisser, Tomas

Björk, Claus Vorm Christensen, Asbjørn Hansen, Peter Honoré, Bjarke Jensen, Peter

Løchte Jørgensen, Jesper Lund, Marek Musiela, Ken Nyholm, Jan Pedersen, Jesper

Lund Pedersen, Michael Sørensen, Ole Østerby, and last but not least my advisors

Bent Jesper Christensen and Jørgen Aase Nielsen.
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Summaries of the Papers in the Thesis

A picture can say more than a thousand words. In this case I am content if Figure 1

can say roughly the same as the (according to the word-counting program wc) next

591 words.

Refereed Publications

Andreasen, Jesper, Bjarke Jensen, and Rolf Poulsen (1998), ”Eight Valuation

Methods in Financial Mathematics: The Black-Scholes Formula as an Example”,

Mathematical Scientist, Vol 23(1), pp. 18-40.

Abstract: This paper describes a large number of valuation techniques used in

modern financial mathematics. Though the approaches differ in generality and rigour,

they are consistent in a very noteworthy sense: each model has the celebrated Black-

Scholes formula for the price of a call-option as a special case.

Working Papers

“Stability of Derivative Prices in Market Models”

Describes the “market model” lognormal LIBOR specification that has recently en-

joyed much success in term structure modelling. A simulation algorithm based on

measure relations is developed and is applied in order to justify some of the ap-

proximations used when deriving closed-form expressions for advanced fixed income

derivatives.

“Approximate Maximum Likelihood Estimation of Discretely Observed Diffusion

Processes” (CAF working paper no. 29, submitted to Econometric Theory)

A new estimation technique for discretely observed diffusion processes based on nu-

merical solution of a partial differential equation related to the likelihood function

is developed, implemented and applied. The estimator is shown to be asymptot-

ically equivalent to the maximum likelihood estimator, a computationally optimal

discretization rule is found, and the CKLS short rate model is estimated.

“A simple regime switching term structure model” (joint with A. T. Hansen)

(CAF working paper no. 30, conditional acceptance at Finance and Stochastics)
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We extend the classical Vasicek Ornstein-Uhlenbeck short rate model by allowing the

unconditional mean parameter to exhibit jumps. Decomposition formulae for bonds

and bond options are found and an efficient numerical method for price calculations

is implemented.

“A Comparison of Approximation Techniques for Transition Densities of Diffusion

Processes” (joint with B. Jensen)

We give detailed description of many of the competing techniques for approximating

the densities of a diffusion process. A numerical comparison of the techniques for

some models with known transition densities gives a remarkably clear ordering based

on speed/accuracy trade-off considerations.

“Optimal Martingale and Likelihood Methods for Models of the Short Rate of

Interest, With Monte Carlo Evidence for the CKLS Specification and Applications to

Non-Linear Drift Models ” (joint with B. J. Christensen)

New improved estimation methods for discretely observed diffusion models for the

short rate of interest are introduced. We consider both optimal martingale estimat-

ing equations and maximum likelihood methods based on second order convergent

numerical solution of the forward partial differential equation for the transition den-

sity. The new methods are compared to well-known methods, namely GMM, Indirect

Inference and GQML, both theoretically, in an application to U.S. data, and in Monte

Carlo experiments. The benchmark model used for illustration and comparison is the

CKLS short rate model. We find that the new martingale and likelihood methods

reduce bias, true standard errors, and bias in estimated standard errors, relative to

the established methods, in particular for the key parameter of interest, the elasticity

of variance. In weekly data from 1982 to 1995, the new methods estimate this param-

eter to about 0.78. Finally, we use the approximate maximum likelihood method to

estimate non-linear drift short rate models. We find the terms commonly suggested

as drift augmentations insignificant.

“Should He Stay or Should He Go? Estimating the Effect of Sacking the Manager

in Association Football” (submitted to Chance)

A not-so-serious paper where I use English data and a generalized linear model to

empirically document that football clubs that are performing poorly should indeed

sack their managers.
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Figure 1: A mindmap of the thesis. Referring to the summaries, the abbrevia-

tions/acronyms should be obvious. It is not an error that Sack does not appear

on the map.
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2 Mathematical Finance

We take a guided tour of the main results of mathematical finance in general and

fixed income modelling in particular (the “main street”, in reference to the title

of the thesis) with descriptions and appropriate placement of my own contribu-

tions/investigations. These are labelled “excursions”, and have nothing to do with

the probabilistic concept of that name (cf. Karatzas & Shreve (1992, Chapter 6)).

An even more “pun intended”-term would be random field trips.

2.1 General Definitions and Results for Modelling Continu-

ous Financial Markets

The results in this section are our fixed points when travelling on the high waters

of mathematical finance. The “standard references” for this probabilistic/martingale

approach are the seminal papers Harrison & Kreps (1979) and Harrison & Pliska

(1981). These two references are a “must-have” for many papers; sometimes they

are credited results that do not appear in the actual papers. But the blame for this

lies solely on the “citer” not on the “citee”. Therefore: The presentation in the rest

of Section 2.1 is similar to that given in Jamshidian (1997) since this is the most

self-contained description (but neither the most general one, nor the one most easy

to understand).

Let (Ω,F , {Ft}t∈[0;T ],P) be a filtered probability space satisfying the usual condi-

tions. Let S denote the space of real continuous (so there goes the Poisson-process)

semimartingales (so there goes fractional Brownian motion), S+ the space of strictly

positive continuous semimartingales, and Sn and Sn+ their n-dimensional analogies.

For X, Y ∈ S, < X, Y > denotes the quadratic covariation (< X >=< X,X >). For

X ∈ S, uX denotes the additive compensator (i.e., X − uX is a local martingale),

while for X ∈ S+, UX is the multiplicative compensator (i.e., X/UX is a local martin-

gale). Finally, for X ∈ S we let L(X) be the space of “processes that can reasonably

be integrated w.r.t. X”, i.e.,

L(X) =

{
predictable process Z :

∫ T

0

Z2(s)d < X >s +

∫ T

0

|Z(s)||duX(s)| <∞ a.s.

}

We now give a financially motivated and carefully chosen definition.
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Definition 2.1 S ∈ Sn is called (locally) arbitrage-free if there exists ξ ∈ S+ (called

a state price deflator) with ξ(0) = 1 such that

∀i : ξSi is a (local) P-martingale.

This implies that there are “no free lunches”.

Theorem 2.1 Let C ∈ S and ξ ∈ S+. Suppose ξC is a martingale and C(T ) > 0

a.s. Then

i) C(t) ≥ 0 a.s. for all t,

and

ii) C(0) = 0 a.s. ⇒ C(t) = 0 a.s. for all t.

We are saving ourselves a lot of trouble by not trying to state the converse i.e.,

“something like Theorem 2.1” implies “something like Definition 2.1”. The statement

“Theorem 2.1 ⇔ Definition 2.1” is called the fundamental theorem of asset pricing

and does not hold in the general setting we use – but almost. See the discussion in

Musiela & Rutkowski (1997, 10.1.5).

Locally arbitrage-free price systems and their state price deflators can be charac-

terized from a linear constraint between the “volatilities” and the “expected rates of

return”.

Theorem 2.2 Let S ∈ Sn+ and assume that there exist (pathwise bounded predictable)

processes V = [vij ] and µ = [µi] such that

d < lnSi, lnSj >= vijdt,

d < USi >= µidt.

Suppose there exist sufficiently regular processes λ = [λj ] and r such that

µ = r1 + V λ and 1>λ = 0.

Then S is locally arbitrage-free and the state price deflator is given by

ξ(t) = exp

(
−

n∑
j=1

∫ t

0

λj
Sj
dSj +

∫ t

0

(
1

2
λ>V λ− r)ds

)

:= exp

(
−
∫ t

0

r(s)ds

)
η(t).

The main regularity condition is that the above η process (which is always a non-

negative local martingale, hence a supermartingale) is a martingale.
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Definition 2.2 A pair (θ, S) where S ∈ Sn and θ ∈ L(S) is called a self-financing

trading strategy if

d(θ>S) = θ>dS.

Mathematically the above definition is general, and financially it makes good sense if

we think of S as the price af a traded cash security with no intermediate cash flows.

(As a rule there will be no dividends in this thesis. This is not completely without

loss of generality, but dividends can often be treated with only minor adjustments,

see Björk (1998, Chapter 11).)

The next theorem states when a claim can be hedged.

Theorem 2.3 Let S ∈ Sn be arbitrage-free, Sn > 0 and ξSn be a martingale. Suppose

further that dU ξ/dt and d < Si, Sj > /dt are bounded and that

rank([d < Si/Sn, Sj/Sn > /dt]) = d a.s.

Assume that there exists a d-dimensional Brownian motion W̃ , whose completed fil-

tration we denote by F̃ , such that Si/Sn is F̃-adapted for all i. Finally, let C(T ) be

an integrable and F̃T -measurable random variable. Then there exists a self-financing

strategy θ (called the replicating strategy) such that C(T ) = θ>(T )S(T ) (and we say

that C(T ) can be hedged) and (θ>S)/Sn is a martingale.

Theorem 2.3 is basically a martingale representation theorem. The reason it may

look a little more complicated than in most financial textbooks is that we have not

assumed the existence of “a locally risk free asset”, an asset whose price process is of

bounded variation.

Theorem 2.4 Let S ∈ Sn be arbitrage free with state price deflator ξ. Let A ∈ S+

be such that ξA is a P-martingale. Then ξA/A(0) is a non-negative martingale with

mean 1 and we define the numeraire measure PA ∼ P on (Ω,FT ) by

dPA

dP
=
ξ(T )A(T )

A(0)
.

Suppose that ξC is a P-martingale. Then C/A is a PA-martingale,

C(t)

A(t)
= EP

A

t

(
C(T )

A(T )

)
for all t ≤ T.
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Theorem 2.4 is the well-known result that “no arbitrage implies existence of an equiv-

alent martingale measure”, but it also stresses that for any asset with positive price

there is a measure such that prices discounted by this asset are martingales under

that measure. This is commonly called “numeraire invariance”, and when used in

conjunction with Girsanov’s Theorem it is a (surprisingly) powerful tool as we shall

see. (For Girsanov’s Theorem, as well as most of the other results from stochastic

calculus used in finance, the reader is referred to Øksendal (1995); this is not the most

prestigious reference (something French or Russian would be better) but a terribly

effective one.)

2.2 The Black-Scholes Model

Combining Theorems 2.2 and 2.3 we get what might be termed “The Portmanteau

Result of Contingent Claim Pricing”.

Theorem 2.5 Suppose we have an arbitrage-free economy with n + 1 assets. One

asset (the savings account) has a price process that is of bounded variation

dβ(t) = r(t)β(t)dt,

where r is a sufficiently regular stochastic process. The other n assets ( stocks) have

a price process S = (S1, . . . , Sn) that follows

dS(t) = ISµ(t)dt+ ISΣ>(t)dW (t),

where IS = diag(S1, . . . , Sn), µ ∈ Rn , Σ ∈ Rd×n (adapted processes) and W is a

d-dimensional Brownian motion. Suppose that there exists a regular process ν such

that

µ− r1 = Σ>ν for all t and P − a.a. ω.

Then there exists a measure Q ∼ P (dQ/dP|Ft = exp(
∫ t

0
νdW − 1/2

∫ t
0
ν>νds)) and a

Q -Brownian motion WQ (dWQ = dW + νdt) such that

dS = ISr(t)dt+ ISΣ>(t)dWQ(t),

implying in particular that

Si(t) = ISE
Q
t

(
exp

(
−
∫ T

t

r(s)ds

)
Si(T )

)
.

Suppose further that Σ is adapted to the Brownian filtration and has an invertible

d×d submatrix. Then any claim in the filtration generated by β and S can be hedged.



Finance 9

And to avoid confusion we give the following definition.

Definition 2.3 When we refer to the martingale measure, or write Q , we mean (any

of) the measure(s) Q ∼ P mentioned in Theorem 2.5, i.e., a measure such that all

price processes discounted by the savings account are Q -martingales.

By the Feynman-Kac formula (cf. Øksendal (1995, Theorem 8.6)), Theorem 2.5 has

a partial differential equation (PDE) version that applies to Markovian cases.

Theorem 2.6 Suppose we have a Q -Markovian setting,

r = r(S, t), Σ = Σ(S, t).

Consider an asset whose terminal price is

C(T ) = g(S(T )).

Then C(t) = F (S(t), t) where F : Rn+1 7→ R solves the the PDE

rF = Ft + r1>ISFS +
1

2
tr(ISΣ>ΣISFSS) (1)

subject to the terminal condition F (S(T ), T ) = g(S(T )). Further, the replicating

strategy is θ> = (θβ , θS>) where

θS = FS

is the number of stocks held and

θβ =
F − θ>S S

β

is the number of units of the locally risk-free asset held (so “we have F − θ>S S $ in

the savings account”).

We say that a PDE is parabolic if it involves a first derivative in “time”, and the

coefficient to the second derivative in “space” is positive definite - preferably strictly

(actually, the statement is meaningless, but the reader should get the point). A PDE

formulation as in Theorem 2.6 is important because parabolic PDEs lend themselves

to numerical methods that can be much more rapidly converging than the simulation

approach that Theorem 2.5 would inspire, see Wilmott, Dewynne & Howison (1998,

Chapters 16-22), Duffie (1996, Chapter 11) or Strikwerda (1989).
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Theorem 2.6 deals only with claims that have a simple payoff structure. However,

the PDE approach can be applied to a much larger class. Typical ways of doing

this are “Markovization by extra state variables” (works for example for Asian and

Lookback options) and “reformulation of boundary conditions” (American and bar-

rier options). For an excellent description of how to formulate exotic option pricing

problems as PDEs, see Wilmott et al. (1998).

We now look at the classic Black-Scholes model (cf. Black & Scholes (1973)

and Merton (1973)). It would be more accurate to call it the Black-Scholes-Merton

(-Samuelson) model, but it is usual to compensate Merton by referring to more ad-

vanced versions of the model (with dividends and stochastic interest rates) with his

name only. See Bernstein (1992, Chapter 11) for an interesting historic account of

the Black-Scholes formula. The model consists of three assets.

i) A savings account with constant interest rate r, i.e.,

β(t) = exp(rt).

ii) A non-dividend paying stock whose price follows a geometric Brownian motion

dS(t) = S(t)µdt+ S(t)σdW (t), S(0) = s(0),

where µ and σ > 0 are constants, so

S(t) = s(0) exp((µ− σ2/2)t+W (t)).

iii) A call-option written on the stock with expiry date T and strike K, i.e., an

asset whose price at time T is

C(T ) = (S(T )−K)+.

The question is then: What should the call-option cost? If C/β is a Q -martingale

then the economy is arbitrage-free, i.e., we should require that

C(t)/β(t) = E
Q
t (C(T )/β(T ))

or in other words that

C(t) = e−r(T−t)EQt ((S(T )−K)+).

By the latter part of Theorem 2.5 there is a hedging strategy, so the above price is

the only one that precludes arbitrage. Calculating the conditional mean leads to the

celebrated Black-Scholes formula.
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Theorem 2.7 The unique arbitrage-free call-option price in the Black-Scholes model

is Call(t) = F (S(t), t) where

F (x, t) = xΦ(z)− e−r(T−t)KΦ(z − σ
√
T − t) (2)

z =
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

and Φ denotes the cumulative density of the standard normal distribution. In order

to hedge a call-option we should hold

θS(t) = Fx(S(t), t) = Φ(z) shares of stock

and

C(S(t), t)− θS(t)S(t) $ on the savings account.

If you could pick only one result from mathematical finance, this would have to be

it; the most astonishing thing at a first sight is that the P-expected rate of return on

the stock, µ, does not enter into the option price formula. The reason for this is that

we are allowed to continuously readjust our portfolio and we are trying to determine

the price of a derivative (the call-option) relative to a traded asset (the stock) that

entails all the uncertainty in the economy (“no. assets = no. sources of risk = dim

(W )”).

Excursion; 8+ B-S proofs

The derivation of the Black-Scholes formula that was just outlined is “an 80’ies

proof”, but the formula is older, and financial mathematics has progressed since, so

there must be other proofs. There are. In fact there are so many proofs that it

is interesting to collect, harmonize, and compare them. This is done in Andreasen,

Jensen & Poulsen (1998), where 8 methods of proof are given. The methods are

all more or less sampled from the literature, and we refer the paper for complete

references.

The Backward PDE Approach This is a direct derivation of the PDE (1) based

on the following argument:

- Assume (reasonably) that the call price satisfies Call(t) = F (S(t), t) for some

smooth (but yet unknown) function F . Apply the Itô formula to find dCall(t).
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- Assume there exists a self-financing trading strategy, θ> = (θ0, θ1), in the sav-

ings account and the stock such that θ0(t)β(t) + θ1(t)S(t) = Call(t) for all t.

By the self-financing property and linearity of stochastic integration this gives

another expression for dCall(t).

- By a uniqueness theorem the drift and diffusion coefficients must be the same

in the two dCall-expressions. Matching diffusion terms shows that θ1 = Fx

and matching drift terms gives the PDE (1), where we note that the call-option

structure of the derivative is used “only” in the boundary condition F (x, T ) =

(x−K)+.

- The PDE can be transformed into the heat equation and solved using a Fourier

transform technique.

The Martingale Approach This is, more or less, the argument first outlined. The

great advantage of this approach is that it does not hinge on the Markovian structure,

neither in the stock price process nor in the derivative payoff.

The Numeraire Invariance Approach It is easy to see that

dQS

dQ
|Ft = e−rt

S(t)

S(0)

defines a measure QS ∼ Q . By Girsanov’s Theorem WQS = WQ − σt is a Brownian

motion under this measure, dS = S(r+ σ2)dt+ SσdWQS , and by the abstract Bayes

rule (see Musiela & Rutkowski (1997, Lemma A.0.4), for instance) we have for any

derivative with price process C that

C(t)

S(t)
= E

QS

t

(
C(T )

S(T )

)
.

The latter formula is useful for some options (e.g. Asian), but not here. Rather,

consider WLOG t = 0 and use the general martingale approach to write

Call(0) = EQ (e−rTS(T )1{S(T )>K})− e−rTKEQ (1{S(T )>K})

= S(0)QS (S(T ) > K)− e−rTKQ (S(T ) > K).

Since S is also lognormally distributed under QS this yields the Black-Scholes formula

without calculating a single integral.
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A Proof Based on Local Time of Brownian Motion Consider for a moment

the following trading strategy: If the present value of the strike price K is below the

stock price hold one share of the stock. Finance this by using borrowed funds. If

the stock price falls below the present value of the strike price liquidate the position.

Formally, this means that θ1(t) = 1{S(t)>Kβ(T−t)} and θ0(t) = −1{S(t)>Kβ(T−t)}K. It

is easy to see that the value of this strategy, say Y , satisfies

Y (t) = (S(t)−Kβ(T − t))+ for all t. (3)

In particular, the terminal pay-off equals the call-option payoff and if S(0) < K/β(T )

the strategy cost nothing to initiate. Provided our general theory is correct, then

this strategy cannot be self-financing. However, a careless application of the Itô

formula to (3) could easily lead one to believe otherwise: The function is piecewise

linear, so first derivatives are constants, second derivatives are 0, and self-financing

follows immediately, right? Wrong! The function on the RHS of (3) is not even once

differentiable. And even though this problem occurs only at a single value (0) it still

renders an application of the Itô formula invalid. But all is not lost, the function is

convex so we may apply a generalized Itô formula (as given in Karatzas & Shreve

(1992, Theorem 6.22)) to find dY . When doing this, some rather lengthy calculations

involving the local time of Brownian motion (basically the time a Brownian motion

spends at 0) yields the correction term needed for self-financing to hold and eventually

recovers the Black-Scholes formula.

A Proof Based on a Forward PDE If we let φ(x, T ) denote the Q -density of

S(T ) in the point x given S(0) we can write the martingale pricing relation for the

call-option as

Call(0) = e−rT
∫ ∞
K

(x−K)φ(x, T )dx.

Combining this with the Fokker-Plank forward equation for φ (see Øksendal (1995,

Chapter 8) or Section 3 in this paper) a number of partial integrations show that if

we let C̃all(K,T ) denote the initial price of a call-option with strike K and expiry T

then C̃all solves the PDE

0 = −∂C̃all
∂T

− rK∂C̃all

∂K
+

1

2
σ2K2∂

2C̃all

∂K2
(4)

subject to the initial boundary condition C̃all(K, 0) = (S(0)−K)+. Solution of this

PDE again yields to Black-Scholes formula. It should be stressed that the PDE (4),
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as opposed to (1) holds only for call-options. But by noting that (4) also holds for

volatility of the form σ = σ(S(t), t), we arrive at an important feature. Supposing that

we can estimate the partial derivatives in (4) empirically from market data, then we

can use this to get an estimate of the σ-function. This advanced implied modelling was

first suggested in Dupire (1997) and has since been successfully extended and applied

in for example Andersen & Brotherton-Ratcliffe (1998) and Andreasen (1996).

The B-S formula as the Limit of Binomial Models The binomial option pricing

model suggested in Cox, Ross & Rubinstein (1979) is widely used both in trading and

as an illustrative class-room tool to explain the fundamental concepts of arbitrage

pricing. That call-option prices in the binomial model (can be made to) converge to

the Black-Scholes price can by shown by using the put-call parity and a Lindeberg-

Feller version of the Central Limit Theorem.

It is also possible to do

A Proof Based on The Consumption Based Capital Asset Pricing Model

and

A Proof Based on a Representative Investor

But since we have not developed the notation and terminology for a short and accurate

description of these approaches in this paper we refer to Andreasen et al. (1998). It is,

however, interesting to note that Black and Scholes first derivation of the fundamental

pricing PDE was based on the standard capital asset pricing model.

More Proofs It has later been brought to our attention by John van der Hoek that

the above list is not complete.

- In van der Hoek (1998) the formula is derived using a probabilistic approach, but

without the mentioning of “market prices of risk”, “measure changes” and “Gir-

sanov’s Theorem”, in fact much like Section 2.1 (except Theorem 2.4) works.

(And the derivation also gives the main idea in a proof of Girsanov’s Theorem.)

- Mceneaney (1997) considers a robust control framework for option pricing. This

framework in useful when dealing with market imperfections, e.g. stochastic

volatility or (worse) transaction costs. But as a special case the Black-Scholes

formula drops out.
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2.3 Fixed Income Modelling

We now turn to the modelling of interest rates, bond prices and their derivatives and

we shall use the term “fixed income modelling” to describe this. Without doubt, fixed

income modelling is one of the most active fields of finance. There are many reasons

for this. First, bond markets are (especially in Denmark) very large. Second, there is

no empirical or theoretical agreement as to which model – or even which modelling

framework – to use. And last but not least, the subject poses intriguing consistency

problems, basically because there is (to a larger extent than in stock markets) a limit

to how differently different bonds can behave; a fact that is reflected in Theorems 2.8

and 2.17. Berkeley professor William Keirstad expressed it thus “if one understands

fixed income modelling, then everything else in finance is easy.”

For the rest of this thesis we shall uphold the following notation.

• P (t, T ) is the price at time t of a zero coupon bond (ZCB) maturing a time T

(i.e., an asset whose sole payment is 1$ at time T ).

• The yield (to maturity) is y(t, T ) = −(lnP (t, T ))/(T − t)

• The instantaneous forward rate with maturity date T contracted at time t is

f(t, T ) = −∂ lnP (t, T )

∂T
,

so P (t, T ) = P (t, s) exp(−
∫ T
s
f(t, u)du) for all t ≤ s ≤ T . This rate can be

interpreted as the interest rate one must pay on a loan between T and T + dT

when the loan in agreed upon at time t.

• The instantaneous short rate is

r(t) = f(t, t).

• The savings account is

β(t) = exp

(∫ t

0

r(s)ds

)
.

• By “the term structure (of interest rates)” we mean the mapping

T 7→ P (t, T ),

or some deterministic translation hereof. So it may be ZCB prices (sometimes

also called discount factors), yields or forward rates.
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On an over-all scale there are two approaches to building a model for the fixed

income market

- The Indirect Approach

Here we specify the short rate and try to determine bond prices by arbitrage

arguments.

- The Direct Approach

Here we specify directly the all ZCB prices (or at least those of interest to us)

and try to work from there.

The question “Which of the two approaches is the right one?” is roughly similar to

“Which came first, the chicken or the egg?” They are not totally equivalent (see in

the vicinity Theorem 2.20 for details), but on the other hand we cannot have one

without the other. A further discussion of this topic will be given at the end of this

section when “the smoke clears & we have done the math” (see also Rebonato (1998,

18.5)).

2.3.1 The Indirect Approach

The main result in the indirect approach is the following which may be derived form

the results in Section 2.1 or found in any good text book, for instance Musiela &

Rutkowski (1997, Proposition 12.2.1) or Björk (1998, Proposition 16.3).

Theorem 2.8 Suppose we have an economy consisting only of a savings account,

β(t) = r(t)βdt,

where r has dynamics,

dr(t) = µr(t)dt+ σ>r (t)dW (t),

and W is a d-dimensional P-Brownian motion. Now suppose ZCBs of all maturities

are introduced in the economy. Then a necessary - and essentially sufficient - con-

dition for the economy to remain arbitrage-free is the existence of a d-dimensional

process ν such that with

dQ

dP
|Ft = exp

(∫ t

0

ν>dW − 1

2

∫ t

0

ν>νds

)
(5)
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we have

P (t, T ) = E
Q
t

(
exp

(
−
∫ T

t

r(s)ds

))
, (6)

where the Q -dynamics of r is given by

dr(t) = (µr(t)− σ>r (t)ν(t))dt+ σ>r dW
Q(t),

where WQ is a d-dimensional Q -Brownian motion (dWQ = dW + νdt).

Further, if µr and σr are adapted to the Brownian filtration we have

dP (t, T ) = P (t, T )(µP (t, T )dt+ σ>P (t, T )dW (t)),

where (for any vector T = [T1, . . . , Td] (Ti > t) of maturity dates) ν solves

ΣP (t, T )ν(t) = (ηP (t, T )− r(t)1),

ηP (t, T ) = [µP (t, T1), . . . , µP (t, Td)]
>, and

ΣP (t, T ) =


σ>P (t, T1)

...

σ>P (t, Td)

 .
In other words, ν is “universal”.

Theorem 2.8 tells us that ZCB prices are not uniquely determined by the P-dynamics

of the short rate, whereas by definition a specification of Q -dynamics of the short

rate enables us to calculate ZCB prices. A process of risk-premia, ν, is needed.

These cannot be asset specific, have to satisfy certain integrability conditions, but

can otherwise be arbitrary. But if we know the drift and volatility of d ZCBs then we

can find ν. The determination/specification of ν is not “just an academic problem

for pricing”, the risk premia influence the Q -dynamics of short rate, i.e., they effect

the conditional mean we have to calculate to find bond prices. This is because we are

trying to express bond prices by means of something that is not a traded quantity

(the short rate), which means that we do not a priori know what its drift is under Q .

Of course by the Feynman-Kac Formula, Theorem 2.8 has a PDE version in the

case when r is a Markov process.

Theorem 2.9 Let the general setting be as in Theorem 2.8, but assume further that

r(t) = R(X(t)), where X follows

dX(t) = µ(t,X(t))dt+ Σ>(t,X(t))dW (t).
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Then P (t, T ) = F (X(t), t, T ), where F solves

Ft + (µ−Σ>ν)>Fx +
1

2
tr(Σ>ΣFxx) = RF, F (·, T, T ) = 1. (7)

The PDE version was initially established by Vasicek (1977) when he applied the

hedge argument used by Black, Scholes and Merton to bonds. In fact Vasicek was

very close to also giving the probabilistic version (cf. Eqn. (18) in Vasicek (1977)).

A recipe for a research paper involves one or more of the following ingredients:

a) Pick out some “factors”, that you think explain bond prices.

b) Specify a description on the P-dynamics of the factors, and how the factors

influence the short rate.

c) Determine risk-premia, i.e., the ν-process. Ideally, this is a purely empirical

question. In reality it usually amounts to either i) assuming them have a form

that preserves the structure of the model (and then using them as “degrees

of freedom” to fit observed bond prices once a ZCB pricing formula has been

found) or, ii) making up a story as to why they should be 0.

d) Solve the PDE or alternatively calculate the conditional expectation, in order

to find ZCB prices.

e) Find conditional expectations of more or less advanced functions of ZCB prices

or the factors.

Referring to Figure 1 these points drift from right to left on the mindmap. The points

a) and b) are empirical questions, c) is sort of in-between, and d) and e) gradually

take us further and further into financial engineering.

We shall now give what we believe are the main results and findings in the liter-

ature.

Empirical Findings 2.1 (Factors in the Bond Market) Approximately 3 factors

give an adequate description of yield curve movements. The predominant of these fac-

tors is (closely related to) the short rate itself (in a Markovian sense).

The analysis leading to the above findings are usually based on a regression approach

or principal components analysis. The reader is referred to Steeley (1990), Litterman
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& Scheinkman (1991) and Knez, Litterman & Scheinkman (1994). It may be tempting

to use as “factors” some specific bond market related quantities, for example the yield

of a particular bond. This may, however, introduce subtle consistency problems:

Suppose that a factor is some (non-linear) function of ZCB prices. To calculate ZCB

prices the factor dynamics (and risk premia) are needed. But by the Itô formula the

factor dynamics can be derived from ZCB prices and in general there is no guarantee

that the derived factor dynamics are the same as those initially postulated (and

empirically verified). A problem of this nature, that is as of yet unresolved, arises in

the Brennan & Schwartz (1979) two-factor model, where one of the state variables is

taken as the yield of a consol bond, see Duffie, Ma & Young (1995).

But all in all, we may feel reasonably reassured that single-factor short rate models

are a good place to start empirical investigations. A very frequently considered para-

metric model is the CKLS-equation (such acronym’ed after Chan, Karolyi, Longstaff

& Sanders (1992))

drt = (α+ βrt)dt+ σrγt dWt. (8)

This specification has several virtues.

- It nests many of the commonly used short rate models.

- If β < 0 it has a (linear) mean reversion feature. This means that if the

volatility is “not too nasty” (for precise, and somewhat surprising, statements

see Conley, Hansen, Luttmer & Scheinkmann (1997)) then rt has a limiting

distribution (with mean −α/β) as t tends to infinity.

- Linear mean reversion is analytically tractable; a standard trick is to remove

r-dependency in the drift by using an “integrating factor”, i.e., looking at

(exp(−βt)r(t)).

The conditional densities in the CKLS model are unknown (so likelihood inference

is hard, but see Section 3); we do not even know conditional moments beyond the

first (so consistent moment based inference is problematic). Despite this – or maybe

because of this – a huge body of literature in which the CKLS model is estimated

exists. The methods differ (some will be described in Section 3), the data differ, and

results also differ. But we can summarize the “median findings”.
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Empirical Findings 2.2 (Estimation of the CKLS-model) Many empirical stud-

ies have found the for the CKLS-model (8)

i) β is negative but not “significantly”, i.e., there is weak evidence of linear mean

reversion.

ii) γ is large, typically larger than 1, i.e., only weak solutions need exist and usual

discretization schemes explode.

Further, −α/β is almost the sample mean and σ and γ are almost perfectly correlated.

The reason we put “ “-signs around significantly is that if β is 0 then standard asymp-

totic results used to derive confidence intervals cannot be applied (typically) because

the model is non-stationary. An incomplete list of papers that discuss estimation

of the CKLS-model is Chan et al. (1992), Broze, Scaillet & Zakoian (1995), Ander-

sen & Lund (1996), Nowman (1997), Koedijk, Nissen, Schotman & Wolff (1997) and

Honoré (1998a, Essay 1). (Quite possibly, every single author on this list will argue

that Empirical Findings 2.2 do not reflect the finer points in his analysis.)

Point ii) was the first people tried to remedy, probably because many tools and

models for this already existed. In the CKLS-model the short rate volatility depends

only on the current level of the short rate. A high γ-value means that the volatility is

very sensitive to the short rate level. It is easy to imagine that this could be induced

if there was in fact “an extra stochastic term in from of ’dW”’ that we were forced

to explain solely by the short rate dependency. And that is how stochastic volatility

(SV) models were born. The main problem with SV models is that the volatility is

not directly observable (unless you can come up with a very good story).

SV models can be formulated both discretely (by some *GARCH* type process) as

for example in Koedijk et al. (1997) or in a diffusion setting (by letting σ be governed

by an SDE). Examples of this include Longstaff & Schwartz (1992), Andersen &

Lund (1996). Despite these papers giving nice results, SV models have not nearly

“caught on” as much in fixed income modelling as in the modelling of stock returns.

A good reason for this is that for the purposes of ZCB price modelling the “stochastic

component” of the short rate volatility is “only a third order effect” (the “first order

effect” is the drift and the “second order effect” is the average volatility), see for

example Schlögl & Sommer (1997).

Therefore, it should come as no surprise that point i) of Empirical Findings 2.2

has received much attention recently. At first it might appear to be “a good idea”
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that the short rate is a martingale. But at least as a property under Q it is far from

desirable since it causes yields to tend to −∞ as T tends to ∞. Ergo, something

has to be done. And that is how non-linear drift models were born. The idea is that

for “usual” interest rate levels the process behaves “as a martingale” but for very

high or low levels the rate will have a very strong “pull” down- or upwards through

basic economic forces (“the invisible hand” of Adam Smith 200+ years on?) Non-

linear drift models are considered in Conley et al. (1997), Ait-Sahalia (1996), Stanton

(1997), Pritsker (1998), Honoré (1998a, Essay 3) and Chapman & Pearson (1999)

and discussed in further detail in the following excursion.

Excursion; Non-linear Drift

Consider a non-linear drift short rate model given by the SDE

dr(t) =
(a−1

r
+ κ(θ − r) + a2r

2
)
dt+ σrγdW (t). (9)

This model is the “parametric intersection” of the models proposed in Conley et al.

(1997) (were the drift is allowed the more general form
∑k

i=−l air
i) and Ait-Sahalia

(1996) (where the volatility is allowed the more general form b0 + b1r + b2r
b3).

Ait-Sahalia considers the following estimation procedure:

- Estimate the unconditional (or stationary or marginal) short rate density by a

non-parametric kernel smoothing method; from this we get the estimate φ̂NP .

- For a diffusion process we have an explicit relation between the parametrized

drift µ and volatility σ2 and the stationary density (cf. Karlin & Taylor (1981,

Section 15.6)),

φ∞(x;ψ) =
ξ(ψ)

σ(x;ψ)
exp

(∫ x

x#

2µ(y;ψ)

σ2(y;ψ)
dy

)
, (10)

where the lower limit of integration can be any interior point in the domain of

the diffusion and ξ ensures that φ∞ integrates to 1. (At this point one can see

identification problems – but that is a minor point.)

- Given T observations, r1, . . . , rT , estimate ψ by

ψ̂ = arg min
1

T

∑
i

(φ∞(ri;ψ)− φ̂NP (ri)).

This estimator is consistent and
√
T (ψ̂ − ψ0) is asymptotically normally dis-

tributed.
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(This is in fact not a completely loyal description of what Ait-Sahalia does. He has

some considerations about using the transition densities in estimation, but his major

conclusions are based on the above method.) Using daily observations on U.S. short

rate data covering the period 1973-95 (as well as the sub-sample 1982-95), Ait-Sahalia

concludes that the non-linearities in the short rate drift specification offer significant

improvement; he strongly rejects models with affine drift.

Later, the above approach has been criticized, primarily because its conclusions are

based on asymptotic results for the estimators that - while not incorrect - do not

give adequate descriptions of finite sample properties for relevant sample sizes. The

asymptotic distribution of the non-parametric kernel estimator treats data as if they

were independent and identically distributed, which means that in finite samples with

persistent (positively autocorrelated) data standard deviations of estimates may be

“too optimistic” (i.e., small). In fact Pritsker (1998) considers the Vasicek model,

“reverses the question” and concludes that “to attain the accuracy of the kernel

estimator implied by its asymptotic distribution with 22 years of data ... in fact

requires 2255 years of data”. Chapman & Pearson (1999) also address small sample

behaviour. They give Monte Carlo evidence (for the CIR model) indicating that

the Ait-Sahalia estimation technique tends to find non-linearities in the drift even

where there are none. Further, they also find clear indications that Ait-Sahalia’s

standard errors are “too small to small samples” for realistic data, and stress co-

linearity problems with the proposed drift specification.

In Christensen & Poulsen (1999) we also investigate non-linear drift specifications.

However, we do it from a strictly parametric and likelihood based point of view. We

use a numerical solution technique for the Fokker-Plank PDE to find the likelihood

function numerically; this method will be described in detail in Section 3 (see also

Poulsen (1999a)). We consider weekly observations of U.S. short rate data covering

the period 1982-95. This is a different data-set than Ait-Sahalia, but a well-recognized

one (it is used, among other places, in Andersen & Lund (1997)). Some results are

reported in Table 1. We find that:

- The coefficients a−1 and a2 are not significantly different from 0.

- Drift coefficient estimates are highly correlated.

- The discretization bias effect of using a simple Euler approximation to the
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transition density is small for weekly data (and thus even smaller in daily data.)

(Cannot be seen from Table 1.)

- Using the uniform residuals suggested in Pedersen (1994) for model control, we

find that the CKLS-model is indeed well-specified (the test-probability is about

13%). (Cannot be seen from Table 1.)

- The estimate of the γ-parameter is about 0.8 (with a standard error of about

0.07).

- But life is not a complete bed of roses; the estimate of the mean-reversion

parameter is not “significantly” (see previous discussion about “ “’s ) different

from 0.

All this indicates that (as it is put in Chapman & Pearson (1999)) “non-linearity of

the short rate drift is not a robust stylized fact”. But it is perhaps not so surprising

that we are unable to detect the non-linearities with conventional statistical tools even

if we use the best method we can think of (maximum likelihood). The very motivation

behind the models is that the non-linearities should “kick in” for very large or very

small interest rates. Or in other words for extremal events, so by definition we will

have very few observations for which the non-linearities can be expected to have any

effect. Notice also that the high persistence of high-frequency interest rate data means

that data sets that “look big” really are not when it comes to drift estimation. So in

short rate data sets of realistic sizes we would think it is very hard to find significant

non-linearities. Therefore we find the approach taken in Honoré (1998b) where cross-

sectional information (interest rates of 10 different maturities) is used the right way

to proceed.
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Estimator Parameter estimate

a−1 θ κ a2 σ γ

ψAML 0.0021 0.0530 2.315 -14.37 0.0955 0.7880

(0.003) (0.010) (3.983) (23.32) (0.019) (0.068)

Std. dev./correlation matrix of est. param.

0.003 0.200 -0.977 -0.950 -0.061 -0.067

0.200 0.010 0.010 0.115 -0.088 -0.097

-0.977 0.010 3.983 0.994 0.030 0.033

-0.950 0.115 0.994 23.322 0.032 0.034

-0.061 -0.088 0.030 0.032 0.019 0.994

-0.067 -0.097 0.033 0.034 0.994 0.068

Loglikelihood at non-linear ψAML 3347.8352 (mag. of num. err.: 0.1)

Loglikelihood at CKLS ψAML 3346.9673 (mag. of num. err.: 0.05)

Test probability of restricted model 42.0 % (in χ2(2)-dist.)

Table 1: Approximate Maximum Likelihood estimation of the non-linear drift short

rate model (9) on U.S. weekly data covering 1982-95.

As pointed out earlier, indirect modelling (or more general any model with non-

hedgeable claims, in the sense of Theorem 2.3) requires determination/specification

of risk premia. The “high road” to achieving this would be empirical analysis (“the

market decides which martingale measure is the right one”, as Björk (1998) puts it)

or introduction of agent preferences in the model – although we have never heard
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of anybody who knew their utility function despite the Von Neumann-Morgenstern

axioms (cf. Kreps (1990)) being reasonable or Luenberger’s humorous risk quiz (cf.

Luenberger (1998, Figure 9.5)). In practice we just use a convenient specification.

Therefore, considerable commotion ways stirred up when Cox, Ingersoll & Ross (1985,

Section 5) gave an example of a seemingly harmless specification that lead to a model

that was clearly not arbitrage-free. However, a careful inspection (cf. Morton (1988))

shows that this specification would cause the η-process in Theorem 2.2 not to be

a martingale, hence dQ/dP|Ft does not define a probability measure and no state

price deflator exists. So the problem lies not with the “martingale measure pricing

methodology”. In fact, from Rogers (1995) we have the following reassuring result.

Theorem 2.10 Suppose S ∈ Sn is locally arbitrage-free. Then there exists an econ-

omy for which S is an equilibrium price process.

One might suspect the proof of Theorem 2.10 to be very abstract; for example to

involve a martingale representation theorem. It is not; you basically just have to

equip the (only) agent with logarithmic utility and an appropriate endowment process

(which is also how a similar result is obtained from Exercise 10.3 in Duffie (1996).)

Theorem 2.10 does not imply that there is no use for references to preferences (or:

equilibrium based models). In models that are “grossly incomplete” it can be a

simple and elegant way of finding/justifying pricing relations. For example, this is

the case in “random jump size” models such as the Merton jump-diffusion model (cf.

Merton (1976)) and many of the models used in insurance. Nonetheless, for the rest

of Section 2.3 we shall unless clearly indicated focus on models formulated directly

under measures relevant for pricing.

From Duffie & Kan (1996) we have the following major structural result.

Theorem 2.11 Suppose that r(t) = R(X(t)), where X is a d-dimensional process

satisfying

dX(t) = µ(X(t))dt+ Σ>(X(t))dWQ(t),

where WQ is a d-dimensional Q -Brownian motion. Then under mild regularity and

degeneracy conditions:

ZCB prices are exponentially affine, i.e., lnP (t, T ) = A(T − t) +B(T − t)X(t)

m

µ, Σ>Σ and R are affine functions.
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Further, A and B solve ODEs of the form

B′(t) = QB(B(t)), B(0) = 0,

A′(t) = QA(B(t)), A(0) = 0,

where QA : Rd 7→ R and QB : Rd 7→ Rd are quadratic functions.

The basic idea in the proof is quite simple, namely that if α + β>x = 0 for all x in

some open set, then α = 0 and β = 0. This is then used in conjunction with the

fundamental PDE (7).

Suppose in the notation of Theorem 2.11 we have d = 1 and R(x) = x. If we have

µ(x) = κ(θ − x), Σ(x) = σ

say that we have a Vasicek model (after Vasicek (1977)).

If we have

µ(x) = κ(θ − x), Σ(x) = σ
√
x

say that we have a Cox-Ingersoll-Ross (CIR) model (after Cox et al. (1985)).

These models have known closed form solutions for (among other things) ZCB prices

(the ODEs in Theorem 2.11 are by far the easiest way of determining ZCB prices in

the CIR model) and have been throughly analyzed, applied and extended.

Excursion; Jumping Mean

As the previous discussion indicates, recently there has been considerable focus on

the modelling of the drift of the short rate. In Hansen & Poulsen (1999) we suggest

a model that has some common features with the non-linear drift models (e.g. the

possibility of several roots of the drift), but is quite different in other respects (two

sources of risk, semi-closed ZCB price and ZCB option price formulae are available).

We extend the usual Brownian filtration setting in indirect models by letting the

short rate dynamics depend also on a Poisson process. We are by no means the

first to consider fixed income models with jumps; general treatments are given in

Shirakawa (1991) and Björk, Kabanov & Runggaldier (1997), while specific models

with a similar structure to the one we propose can be found in Naik & Lee (1994)
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Figure 2: A sample path of the “jumping mean” process described by (11).

and Landén (1999). We aim to keep the model simple and intuitive while at the same

time seeing how far we can carry the analysis. More formally, we look at a model

where Q -dynamics of the short rate are given by

drt = κ(θt + σλ(t)/κ− rt)dt+ σdWQ
t , (11)

with WQ being a Q -Brownian motion and

dθ(t) = (θH − θL)
(
1{(θ(t−)=θL} − 1{θ(t−)=θH}

)
dNQ(t), (12)

where θ0 ∈ {θL, θH} and NQ is a Q -Poisson process (independent of WQ) with inten-

sity λQ
N

. Figure 2 shows a sample path of such a process. Supposing for a moment

that λ(t) ≡ 0, then the short rate process is mean reverting towards a stochasticly

shifting long term level (θ(t)) with κ being the speed of mean reversion and σ being

the volatility parameter. The local mean level (θ(t)) can take on two values; a high

level θH and a low level θL. Because the changes are controlled by arrivals from a

Poisson-process, θ is “memoryless”; the (distribution of the) time we have to wait

for the next change does not depend on how long we have been in the current state.

The λ process is assumed to be deterministic and to represent the translation (of the

Brownian motion) from P into Q (so putting λ(t) ≡ 0 gives - up to the intensity of

the Poisson process - the P-dynamics). By using the Itô formula on (eκtrt) we get a

decomposition result for the short rate.
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Theorem 2.12 Let r(0) = r0, θ(0) = θ0 ∈ {θL, θH}, and A denote the set of odd

numbers. The short rate can then be written as

r(t) = a(t) + b(t) + c(t)

where

a(t) = r0e
−κt + κ

∫ t

0

e−κ(t−s)θ0ds+ σ

∫ t

0

e−κ(t−s)dWQ(s),

b(t) =

{
κ(θH − θL)

∫ t
0
e−κ(t−s)1{NQ

s ∈A}ds if θ0 = θL

κ(θH − θL)
∫ t

0
e−κ(t−s)1{NQ

s 6∈A}ds if θ0 = θH

and

c(t) = σ

∫ t

0

e−κ(t−s)λ(s)ds.

In particular (a(t)) is independent of (b(t)) and

a(t) ∼ N

(
θL + e−κt(r0 − θL),

σ2

2κ
(1− e−2κt)

)
. (13)

This decomposition is important because of the general bond price formula (6). Before

stating a decomposition result for zero coupon bond prices, let us now introduce some

further notation. For arbitrary real numbers θ0 and θ̂0 we define

h(θ0, T ) = EQ
(

exp

(
−κ(θ̂0 − θ0)

∫ T

0

∫ t

0

e−κ(t−s)1{NQs ∈A}dsdt

))
and

ĥ(θ0, T ) = EQ
(

exp

(
−κ(θ0 − θ̂0)

∫ T

0

∫ t

0

e−κ(t−s)1{NQs 6∈A}dsdt

))
.

Since 1{NQs ∈A} + 1{NQs 6∈A} = 1, we get that

h(θ0, T ) = ĥ(θ0, T )em(bθ0;0,T )−m(θ0;0,T ),

where

n(t, T ) =
1− exp(−κ(T − t))

κ
, (14)

m(θ; t, T ) =
(n(t, T )− (T − t))(κ2θ − σ2/2)

κ2
− σ2n(t, T )2

4κ
. (15)

We shall adapt the convention that thê-notation is used to denote “complementary

state” i.e.,

θ̂0 = θL if θ0 = θH ,

θ̂0 = θH if θ0 = θL,

and similarly θ̂(t) = θL if θ(t) = θH , θ̂(t) = θH if θ(t) = θL.
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Theorem 2.13 Let r(0) = r0, θ(0) = θ0 ∈ {θL, θH}, and A be the odd numbers.

Then the price of the T -maturity ZCB equals

P (t, T |rt, θt) = P θ(t)
V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
h(θ(t), T − t), (16)

and

P (t, T |rt, θt) = P
bθ(t)
V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
ĥ(θ(t), T − t), (17)

where P θ
V(r0, t, T ) denotes the price of a ZCB in a Vasicek model with θ as the long

term level of the short rate and is explicitly given by

P θ
V(rt, t, T ) = exp(m(θ, t, T )− rtn(t, T )),

where the functions m and n are given by (15) and (14), respectively.

Alternatively, we have

P (t, T |r0, θ0) = P θL

V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
×
(
h(θL, T − t)1{θ(t)=θL} + ĥ(θH , T − t)1{θ(t)=θH}

)
(18)

and

P (t, T |r0, θ0) = P θH

V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
×
(
h(θH , T − t)1{θ(t)=θH} + ĥ(θL, T − t)1{θ(t)=θL}

)
. (19)

This result can be seen as a (slight) generalization of the Duffie-Kan result from

Theorem 2.11 (for more general results about stochastic mean models see Balduzzi,

Das, Foresi & Sundaram (1998)). It follows easily from Theorem 2.13 that ZCB

prices in this model exhibit jumps (despite the short rate being a continuous process).

Further, the theorem makes it easy to calibrate the model to market data using the

ideas in Hull & White (1990). Specifically, let P obs(0, T ) denote the observed ZCB

prices and put

f(T ) = − ln

 P obs(0, T )

P θL
V (0, T )EQ

(
exp(−

∫ T
0
b(s)ds)

)
 .
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If we assume κ, θL, θH , σ, and λQ
N

have been estimated, for example from time series

data, the model is calibrated by choosing λ such that

f(T ) = σ

∫ T

0

∫ s

0

e−κ(s−u)λ(u)duds for all T. (20)

Differentiating (20) twice w.r.t. T gives the very neat result that

λ(T ) =
f ′′ − κf ′

σ
for all T.

To actually calculate ZCB prices we may WLOG assume that θ(0) = θL and then

have to calculate

g(θt, t;T ) = EQ
(

exp(−
∫ T

t

b(s, t)ds)|Ft
)
,

where

b(s, t) = κ(θH − θL)

∫ s

t

exp(−κ(s− u))1{θu=θH}du.

It is possible to evaluate this in terms of certain special functions, but rather we give

two numerical methods that are easy to comprehend, program and extend, yet also

effective. One is simulation based and the other is an approximation (that converges

at our will) based on backward induction. In particular the latter is very efficient;

determination of the fully term structure up to maturities of 10 years with an accuracy

of 1 basispoint (one hundredth of a percent) takes around 0.1 seconds.

Finally, the homogeneity of the payoff function for a call-option and the multiplicative

ZCB decomposition enables us to derive (by a careful application of the “useful rule”,

see Hoffmann-Jørgensen (1994, 6.8.14)) a valuation formula for a call-option expiring

at time TE on a ZCB maturing at time TM that involves only the θ-process and only

the time-interval [0;TE].

Theorem 2.14 Let r(0) = r0, θ(0) = θ0. Assume that c ≡ 0 and let Callθ
L

V (r0, K)

denote the call-option price in a θL-Vasicek model (an explicit formula can be found

e.g. in Jamshidian (1989)). The price (at time 0) of a call-option with strike price

K expiring at time TE on a zero coupon bond maturing at time TM satisfies

Call(r0, θ0, K) = EQ
(

exp

(
−
∫ TE

0

b(s)ds

)
e−n(TE ,TM )b(TE) ξ(θ(TE), TM − TE)

×Callθ
L

V

(
r0,

K

ξ(θ(TE);TM − TE)

))
,
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where the random variable ξ(θ(TE), TM − TE) is given by

ξ(θ(TE);TM − TE) = h(θL, TM − TE)1{θ(TE)=θL} + ĥ(θH , TM − TE)1{θ(TE)=θH}

with

θ(TE) = θ0 + (θ̂0 − θ0)1{NQTE∈A}
= θ̂0 + (θ0 − θ̂0)1{NQTE 6∈A}

.

Gaussian models, such as the Vasicek model, are analytically tractable (for an al-

most exhaustive account of what you can do in Gaussian term structure models, see

Jamshidian (1991)), but have the drawback that negative interest rates are possible.

If you have “something” that you want to make non-negative, then two ways imme-

diately come to mind, i) squaring it or, ii) exponentiating it. It also works like that

in interest rate modelling. (For a quite different way of achieving positive interest

rates, see Flesaker & Hughston (1996).)

Let us first look at the “squaring” option. Modelling the interest rates as “some-

thing Gaussian squared” was proposed in Beaglehole & Tenney (1991), the idea is

also used in Constantinides (1992), and has a tendency to be “rediscovered” from

time to time. If Y = α + β>X for constants α ∈ R, β ∈ Rn and an n-dimensional

random variable X, where Xi is non-central χ2-distributed with νi degrees of freedom

and non-centrality parameter λi (cf. Johnson, Kotz & Balakrishnan (1994, Chapter

29)), then we write Y ∈ χ2
n(α, β, ν, λ). From Jamshidian (1996) we have the following

interesting result.

Theorem 2.15 i) Suppose that r(t) =
∑n

i=1Xi(t), where the Xi’s follow independent

CIR-processes under Q . Then lnP (t, T ) ∈ χ2
n. Further, ZCB option prices can be

expressed in terms of a single (i.e., one-dimensional) integral.

ii) Suppose that r(t) =
∑n

i=1Xi(t), where the Xi’s follow independent Vasicek-

processes under Q . Then lnP (t, T ) ∈ χ2
n. Further, ZCB option prices can be expressed

in terms of a single integral.

iii) Suppose that

r(t) = Qr(X(t)),

where Qr : Rn 7→ R is a quadratic function (with time homogeneous coefficients and

symmetric second order coefficient matrix) and

dX(t) = (α+ βX)dt+ Σ>dWQ(t)
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for constants α, β, and Σ. Then

lnP (t, T ) = QP (X(t)),

where QP : Rn 7→ R is a quadratic function with time dependent coefficients. These

coefficients can by characterized as the solution to a nonlinear system of ODEs with

no known closed-form solution.

The main point in the proofs (besides the calculation of truncated means of expo-

nentiated χ2
n-variables) of parts i) and ii) in Theorem 2.15 is that the χ2

n property

is preserved under changes to forward measures (that will be formally described in

Definition 2.5 and Theorem 2.21) which reduce problems to being one-dimensional.

Part iii) is an “extended Duffie-Kan” result, but other than that primarily negative.

Next, we consider the “exponentiating” option. The first problem is that in log-

normal short rate models no closed form solution for ZCB prices is known, basically

because the calculation involves (the exponential of) the “stylized sum”
∫
r(s)ds of

lognormal variables, which is not lognormal and generally has an unknown distribu-

tion (however, for the case of exponentiated Brownian motion with drift, one should

consult Geman & Yor (1993)). This has given rise to many suggestions regarding

efficient numerical procedures for the lognormal short rate models (see for instance

Black, Derman & Toy (1990), Hull & White (1994), Buttimer, Muller & Reeves

(1995), Bjerksund & Stensland (1996)). But problems do not end there, in Hogan &

Weintraub (1993) we find the following discomforting fact.

Theorem 2.16 Suppose that either

dr(t) = αrdt+ σrdWQ(t),

or

d ln r(t) = (α+ β ln r)dt+ σdWQ(t).

Then for any s < t < T we have

EQs (P−1(t, T )) =∞, EQs (β(t, T )) =∞.

The result in Theorem 2.16 is surprisingly difficult to prove (Hoffman (1993) offers a

different proof). You might think it could be done using the fact that lognormal vari-

ables do not have exponential moments along with elementary “Jensen Inequality”-

estimates. This appears not to be the case.
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Looking at Theorems 2.15 and 2.16 you would think that the former, which con-

tains mainly positive results, had induced widespread investigation and application

of χ2
n-models, while the latter, a negative result, meant the end of the road for mod-

els with lognormal interest rates. But as we shall see towards the end of the next

subsection, old habits die hard and there are plenty of people “qualified to give them

life support”.

2.3.2 The Direct Approach

The first steps in the “Direct Approach”, i.e., in trying to model directly all ZCB

prices simultaneously, were taken in a discrete model in Ho & Lee (1986). Direct

modelling in continuous-time models was introduced by Heath, Jarrow & Morton

(1992). When comparing those two articles we see the usual “discrete vs. continuous”

effect; The ideas may be the same, the mathematics in the discrete models is not too

deep, but the formulas get quite messy, whereas the continuous models use quite deep

mathematical results, but the formulas can look much simpler (cf. (24)).

From Heath et al. (1992) we have the following.

Theorem 2.17 Suppose we have a model where ZCBs of all maturities less that T
are traded and that the forward rates f follow

df(t, T ) = µf(t, T )dt+ σ>f (t, T )dW (t). (21)

Then a necessary, and essentially sufficient, condition for the model to be arbitrage-

free is the existence of a process ν such that

µf(t, T ) = −σ>f (t, T )

(
ν(t)−

∫ T

t

σf (t, u)du

)
. (22)

The “ essentially” part relates to integrability conditions on ν.

The drift condition in Theorem 2.17 involves an unspecified risk-premium process

and is not particularly intuitive at first sight. This, however, all changes when we

formulate the result in terms of ZCB price related objects.

Theorem 2.18 Consider a set-up as in Theorem 2.17, put

η(t) = exp
(∫ t

0
ν(s)dW (s)− 1

2

∫ t
0
ν>(s)ν(s)ds

)
, and define Q ∼ P by dQ/dP|Ft =

η(t). Then

dP (t, T ) = r(t)P (t, T )dt− σP (t, T )P (t, T )dWQ(t), (23)
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where WQ is a Q -Brownian motion and −σP (t, T ) =
∫ T
t
σf (t, u)du. In short: Q is

an equivalent martingale measure. Further, with Q -superscripts indicating Q -drifts

we have

µQf (t, T ) = σ>f (t, T )

∫ T

t

σf (t, u)du. (24)

The “4-line” way to see is to rely on Theorem 2.5 and say that under Q all prices (in

particular those of ZCBs) have the short rate as expected rate of return, hence (23).

Then use the Itô formula on lnP (t, T ) and differentiate (formally) w.r.t. T to obtain

(24). A HJM-economy consists of an uncountably infinite number of assets, but at

the same time we maintain our definitions from Section 2.1. For the results regarding

state price deflators it does not matter much, but note that trading strategies can

by definition only involve a finite number of assets. This has the consequence that

we cannot strictly construct the savings account from ZCBs since this would involve

continuously rolling investments over in the instantly maturing ZCB. This can be

remedied in two ways; we may explicitly assume there exists an asset with dynamics

“dβ(t) = r(t)βdt” or we may allow for so-called measure-valued portfolios (cf. Björk,

di Masi, Kabanov & Runggaldier (1997)). We will not go into that, but the reader

should rest assured that using the savings account or talking about Q can be rigorously

justified.

For the forward rates f(t, T ), T is the time of maturity (a specific date, e.g.

“September 24th”). Often it is more relevant to use a fixed time to maturity (e.g.

“3 months”). In this case the drift restriction looks slightly different (when trying to

determine the dynamics of f(t, t+ τ) we have to remember t enters both arguments),

explicitly we have the following result from Musiela (1993).

Theorem 2.19 Consider the set-up as in Theorem 2.18. For any x ≥ 0 define the

forward rate f̃ by f̃(t, x) = f(t, t + x). Put σ̃(t, x) = σf (t, t + x) and D(t, x) =

σ̃>(t, x)
∫ t

0
σ̃(t, u)du. Then we have

df̃(t, x) =

(
∂

∂x
f̃(t, x) +D(t, x)

)
dt+ σ̃(t, x)dWQ(t).

One thing is that this result is a useful reminder in empirical contexts when data are

often given in time to maturity format. But more importantly the whole -̃notation

underlines the fact that (21) is really an infinite dimensional SDE or a stochastic

PDE. For each T there is an equation, and it is an inherent part of the model that

they are “connected” (by (22) or (24)). This leads to the realization that it might not
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- and typically will not - be possible to give a Markovian representation of the whole

term structure in terms of a finite number of observable quantities, even though the

“number of sources of risk” = dim(W ) is finite.

Fortunately, it turns out to be easy to characterize the models where such a

representation is possible. This issue has been addressed by several authors and the

conclusion is as follows.

Theorem 2.20 Suppose the forward rate volatility can be written as

σf (t, T ) =

(
β1(t, r(t)) exp(−

∫ T

t

κ1(u)du), . . . , βd(t, r(t)) exp(−
∫ T

t

κd(u)du)

)>
,

for functions β1, . . . , βd and κ1, . . . , κd. Then the term structure has Markovian rep-

resentation by means of d(d + 3)/2 state variables. These variables can be chosen

such that for the first d of them, say X1, . . . , Xd, we have

r(t) = f(0, t) +
d∑
i=1

Xi(t),

while the last d(d + 3)/2 − d = d(d + 1)/2, say (Vij)j≤i, are of bounded variation.

Further, if the βi’s do not depend on r then the Vij’s are deterministic.

Conversely, if r is Markovian w.r.t. its own filtration then

σf (t, T ) =

(
β1(t) exp(−

∫ T

t

κ1(u)du), . . . , βd(t) exp(−
∫ T

t

κd(u)du)

)>
for functions β1, . . . , βd and κ1, . . . , κd.

Theorem 2.20 basically says that forward rate volatility must by multiplicative sepa-

rable in T . The first part of the theorem (as well as explicit characterization of the

state variables and their dynamics) follows from Ritchken & Sankarasubramanian

(1995) (for d = 1) or Cheyette (1995) (for d ≥ 1), while the best proof of the second

part can be found in Musiela & Rutkowski (1997, Proposition 13.2.3). In general the

Vij’s in the representation are “integrated volatility”.

One could contemplate using a “proportional volatility” model,

σf (t, T ) = σf(t, T ),

but only for a brief moment, though. That model does not have a finite-dimensional

Markovian representation so hopes of closed form solutions (for, say, options) seems
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futile since we would have to keep track of the whole term structure in our calculations.

And even worse: Morton (1988) shows (in a quite cunning way) that with proportional

volatility forward rates become infinite in finite time with positive probability. Note

that this is a different and more severe problem than the “Hogan-Weintraub” problem

outlined in Theorem 2.16.

A major breakthrough in models of this type came by going “back to basics”.

Among first things you learn in a finance course is “always quote interest rates on

a continuously compounded basis to avoid confusion”. (Actually, it is an elemen-

tary school exercise to inspire hostility against banks by letting pupils show that

3% compounded quarterly is not equivalent to 12% compounded yearly.) Among

first things you learn in a finance course with dynamic modelling is “always to work

with instantaneous interest rates”. This, however, is not how practioners think of or

quote interest rates. They typically use an “add-on” convention as given in the next

definition.

Definition 2.4 Let δ > 0 be given. The simple forward rate, or the forward δ-

LIBOR, Kδ(t, T ), is defined by the relation

P (t, T ) = (1 + δKδ(t, T ))P (t, T + δ). (25)

Originally, LIBOR was an acronym for London Interbank Offer Rate, an average of

several interbank rates, i.e., rates that leading banks offered other leading banks on

deposits (so there should be no default risk involved). But we shall use LIBOR as a

generic term for any rate that has the “add-on” form

return = principal + investment period× interest rate× principal,

as described by (25).

An invaluable tool in interest rate models is the forward measure. It is a special

case of “numeraire invariance” which was described abstractly in Theorem 2.4 and

revealed its computational powers in one of the Black-Scholes proofs (cf. Section 2.2).

Now it becomes an invaluable tool in the model construction. There is some debate

whether the construction and usefulness was first established by Hélyette Geman or

by Farshid Jamshidian. We have no remarks on that, just the following definition.

Definition 2.5 A probability measure QT ∼ Q on (Ω,FT ) with Radon-Nikodym

derivative given by

dQT

dQ
=

β−1(T )

EQ (β−1(T ))
=

1

β(T )P (0, T )
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is called the forward measure for the settlement date T .

When restricted to Ft, the Radon-Nikodym derivative satisfies

η(t) :=
dQT

dQ
|Ft = E

Q
t

(
1

β(T )P (0, T )

)
=

P (t, T )

β(t)P (0, T )
.

Suppose that ZCB prices fulfill (23), then we may write

η(t) = exp

(
−
∫ t

0

σP (u, T )dW (u)− 1

2

∫ t

0

σ>P (u, T )σP (u, T )du

)
,

and get by Girsanov’s Theorem that

WQT (t) = WQ(t) +

∫ t

0

σP (u, T )du

defines a QT -Brownian motion. Theorem 2.4 and/or an application of the Itô formula

gives us the next result.

Theorem 2.21 Suppose we have an arbitrage-free economy. Then the price of any

asset, say C, discounted by the T -ZCB is a QT -martingale, i.e.,

C(s)

P (s, T )
= EQ

T

s

(
C(t)

P (t, T )

)
for all s ≤ t ≤ T.

Further, Kδ(t, T ) is a QT+δ -martingale.

Of course, you could use the first (or the second, for that matter) part of Theorem

2.21 to define the forward measure and Definition 2.5 would then be a theorem. It

is also useful to note that Brownian motions under different forward measures are

related through

dWQT+T ′
(t) = dWQT (t) +

∫ T+T ′

T

σf (t, u)dudt (26)

With the first part of Theorem 2.21, it is now easy to see why the use of the forward

measure may offer a simplification in interest rate modelling. Suppose we want to

find the price (at time t) of a call-option (expiring at TE) on a ZCB (maturing at

TM). We then have to calculate

Call(t)

β(t)
= E

Q
t

(
(P (TE, TM)−K)+

β(TE)

)
.

In a model with stochastic interest rates β(TE) and P (TE, TM) can evidently not be

independent, so calculation of the above expression would involve a 2-dimensional
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integral. But changing to the TE forward measure and using that P (TE, TE) = 1 we

get

Call(t)

P (t, TE)
= E

Q
t

(
(P (TE, TM)−K)+

P (TE, TE)

)
= E

QTE

t ((P (TE, TM)−K)+),

which involves only a 1-dimensional integral. Of course, we now have to determine

the QTE -distribution of P (TE, TM), but this is often easy (using Girsanov’s Theorem

which boils down to (26)).

We shall now illustrate how the second part of Theorem 2.21 is helpful in model

building. To this end let us for given T0 and δ define the δ-tenor structure as the set

given by

{T0 + δn | n ∈ Z},

and in the rest of the paper Tj = T0 + jδ, for j ≥ 0, unless clearly otherwise stated.

We always think of the tenor-structure as capturing the dates where something “in-

teresting” happens.

Recall that to completely specify HJM-type model we need (along with an initial

term structure) to specify the bond price volatility −
∫ T
t
σf (t, u)du for all t and T (or

at least for T ≥ t.) Two specifications have primarily been considered (see Andersen

& Andreasen (1998) for more general volatility choices). Both have σf (t, T ) = 0 for

T ≤ t+δ (this is a perhaps not totally realistic but quite convenient initial condition).

- The Gaussian δ-LIBOR model in which∫ T+δ

T

σf (t, u)du = γG(t, T ) for T ≥ t+ δ, (27)

where γG : R2 7→ Rd is deterministic. This means that

dKδ(t, Tj−1) = γ>G(t, Tj−1)dWQ
Tj

(t), (28)

so Kδ(t, Tj−1) is normally distributed under QTj . And we note that from (26)

we have

dWQT+δ

(t) = dWQT (t) + γG(t, T )dt,

so normality is preserved under forward measure changes.
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- The lognormal δ-LIBOR model in which∫ T+δ

T

σf (t, u)du =
δKδ(t, T )

1 + δKδ(t, T )
γ(t, T ), for T ≥ t+ δ, (29)

where γ : R2 7→ Rd is deterministic. This means that

dKδ(t, Tj−1) = Kδ(t, Tj−1)γ>(t, Tj−1)dWQTj (t), (30)

implying that Kδ(t, Tj−1) is lognormally distributed under QTj . So interest rates

are positive (under any of the equivalent forward measures), but from (26) we

have

dWQT+δ

(t) = dWQT (t) +
δKδ(t, T )

1 + δKδ(t, T )
γ(t, T )dt, (31)

which shows that the lognormality is not preserved under forward measure

changes.

The above volatility definitions ((27) and (29)) are for arbitrary T s; in other words we

have models where formally ZCBs of all maturities exists. Really, this is “overkill”.

We could (typically) make do with only ZCBs of maturities equal to a tenor-structure

and still obtain the same pricing an hedging results. We shall not discuss these finer

points (see Musiela & Rutkowski (1997, Chapter 16)), rather we are content when

final pricing formulas indicate only dependence on a few ZCB prices.

As short rate specifications these models are quite hopeless. For example Brace,

Gatarek & Musiela (1997) note that if r is a semimartingale then it is of bounded

variation and can (thus) only be Markovian if it is deterministic. However, as we

shall soon see, the models have other virtues.

In the following we shall focus on the lognormal specification. From (25) it is clear

that EQ
T+δ

t (P−1(T, T+δ)) <∞. In fact from Remark 2.3 in Brace et al. (1997) we get

that Q -expected roll-over gains are finite (the fact that lognormality of interest rates

with strictly positive compounding periods removes “Hogan-Weintraub” problems

was first shown in Sandmann & Sondermann (1997).)

Theorem 2.22 In the lognormal δ-LIBOR model we have that for any s < t

EQs (P−1(t, T )) <∞, EQs (β(t, T )) <∞.

Theorem 2.22 is a nice result, but the lognormal δ-LIBOR model is of little in-

terest unless we are able to find closed form expressions for prices of “plain vanilla”
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derivatives. As we shall soon see, such prices can be found. To this end we first

consider a δ-caplet settled in arrears with strike level κ, which is a contract with

pay-off

δ(Kδ(Tj−1, Tj−1)− κ)+ at Tj .

Note that the payment is made at Tj but known one δ-period in advance. The caplet

price satisfies

C(t)

P (t, Tj)
= E

Q
Tj

t

(
δ

(Kδ(Tj−1, Tj−1)− κ)+

P (Tj, Tj)

)
,

or

C(t) = P (t, Tj)E
Q
Tj

t

(
δ(Kδ(Tj−1, Tj−1),−κ)+

)
(32)

where Kδ(·, Tj−1) is a lognormal martingale under QTj . Hence we get the follow-

ing result by the same calculation as used in the computation of the Black-Scholes

formula.

Theorem 2.23 In the lognormal δ-LIBOR model the price of a δ-caplet settled in

arrears with strike level κ is given by

Caplet(t) = δP (t, Tj)
(
Kδ(t, Tj−1)Φ(d̃1)− κΦ(d̃2)

)
where

d̃1,2 =
ln(Kδ(t, Tj−1)/κ)± 1

2
ṽ2

ṽ

and

ṽ2 =

∫ Tj−1

t

λ>(u, Tj−1)λ(u, Tj−1)du.

One could ask why the apparently very simple result in Theorem 2.23 is a major step

forward in interest rates modelling. The first answer is that it is interesting because

it is simple, but besides that:

- Equation (32) and the line of text immediately following it reflects what has

been “market practice” for many years when pricing caplets, see the discussion

in Musiela & Rutkowski (1997, Section 17.3) or Miltersen, Sandmann & Sonder-

mann (1997). This is why models of this type are often called “market models”;
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they mimic what the market (or rather: the market participants) does. It was

believed that this was “only an approximation” (just looking at (32) it would

appear that you are taking the discount factor and the underlying to be inde-

pendent), or at least it was unclear whether the formula could be supported by

a formal term structure model.

- It is not just caplets we can price. The price of a (forward) cap contract is

just the sum of caplet prices and a floor contract is priced by parity arguments.

Further, since easy calculations show that

E
Q
t

(
δ

(Kδ(Tj−1, Tj−1)− κ)+

βTj

)
= E

Q
t

((
1

1+κδ
− P (Tj−1, Tj)

)+

βTj−1

)
,

we see that caplet pricing is similar to pricing put options on ZCBs.

- An academic “whodunit” debate always adds extra spice. It is probably safe

to say that the idea was first developed by Miltersen et al. (1997) (its origin

dating back to earlier papers by Sandmann), while Brace et al. (1997) were

more rigorous in the model construction.

- Despite no finite dimensional representation of the whole term structure being

available in the lognormal δ-LIBOR model (the volatility is evidently not multi-

plicatively T -separable) it is often still possible to express the derivative prices

of interest by a the prices of a few bonds (alternatively by a few LIBORs), just

as we see in Theorem 2.23. This also means that the derivatives can be hedged

easily; in fact a hedge-PDE type argument using ZCBs was exactly how The-

orem 2.23 was derived in Miltersen et al. (1997). In a subtle way this is also

reflected in the formulation of Theorem 2.3, but rather than elaborating in that

we refer the reader to Jamshidian (1997).

Another frequently considered contract in fixed income markets is the swap and its

“natural” derivative the swaption.

A swap contract is a private agreement between two companies to exchange cash

flows in the future after some prearranged formula. A payer swap settled in arrears

exchanges LIBOR Kqδ(Tj−q, Tj−q) against a fixed rate κ at n intervals of length qδ,

i.e., payments are made at dates T0 + qδ, T0 + 2qδ, . . . , T0 + nqδ but known one qδ-

period in advance. The cash flow structure of payer swap is illustrated in Figure 3.
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t T0 Tq T(n−1)q Tnq

Cash flow

Time

qδ(Kqδ(T0, T0)− κ)

?
paid

����������
known

δ
qδ

nqδ

qδ(Kqδ(T(n−1)q, T(n−1)q)− κ)

?
paid

����������
known

Figure 3: The ”time & money”-structure of an interest rate payer swap settled in

arrears.

For t ≤ T0 general theory gives us that the value of the swap is

Swap(q)(t) = E
Q
t

(
nq∑
j=1

qoz(j, q)δ
β(t)

β(Tj)
[Kqδ(Tj−q, Tj−q)− κ]

)
,

where the ”q or zero” function is defined by qoz(j, q) = q1{(j mod q)=0}(j). By simple

manipulations we can recast the swap price as

Swap(q)(t) =

nq∑
j=1

δP (t, Tj)[Kδ(t, Tj−1)− qoz(j, q)κ]. (33)

The swap rate ω(q) (corresponding to the specific swap described) is the value of κ

that makes the value of the swap 0, i.e.,

ω(q)(t) =
P (t, T0)− P (t, Tnq)∑nq
j=1 δqoz(j, q)P (t, Tj)

. (34)

A swaption is an option on the swap rate. Specifically, the basis swaption exchanges

the time T0 swap rate against a strike, κ, when ω(q)(T0) ≥ κ, thus it has a price

determined by

Swaption(q)(t) = E
Q
t

(
βt
βT0

Swap(T0)+

)
.
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Again, simple manipulations give the following equivalent forms for the swaption price

Swaption(q)(t) =

nq∑
j=1

δP (t, Tj)E
QTj
t ([Kδ(T0, Tj−1)− qoz(j, q)κ]1A) (35)

= E
Q
t

(
βt
βT0

(
1−

nq∑
j=1

CjP (T0, Tj)

)+)
, (36)

where A = {ω(q)(T0) ≥ κ} = {Swap(q)(T0) ≥ 0}, Cj = qoz(j, q)δκ for j = 1, . . . , nq−
1

and Cnq = 1 + qoz(j, q)δκ. This shows two important things

i) A swaption is similar to a put-option on a coupon bearing bond. This gives us

a strong idea as to how to price it: Use the techniques in Jamshidian (1989).

These techniques are part of the “vocabulary of the financially articulate”.

ii) The determination of the swaption price requires assessment of the distribution

of a variety of LIBORs under a variety of measures. Unfortunately, given a

δ-tenor structure and a lognormal δ-LIBOR model we have

Kiδ(t, Tn)
QTn+jδ

∼ logN ⇔ i = j = 1.

So it does not seem possible to obtain a closed-form exact solution for the

general swaption in the lognormal δ-LIBOR model.

In Brace et al. (1997), ii) is overcome by making “various lognormal approximations”

and the ideas from i) are then used to derive the following approximate formula for

the swaption price.

Theorem 2.24 Consider a δ-tenor structure, the lognormal δ-LIBOR model, and

the swaption described above. Define

µ(Tl−1) =
δKδ(0, Tl−1)

1 + δKδ(0, Tl−1)
, (37)

∆ = (4ij) :=

(∫ T0

0

γ>(u, Ti−1)γ(u, Tj−1)du

)
(∈ Rnq×nq), (38)

D = (Dj) :=

(
j∑
l=1

µ(Tl−1)4jl

)
(∈ Rnq ). (39)

Consider the rank-1 approximation

∆ ≈ ΓΓ>,
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where Γ is the product of the square root of the largest of the eigenvalues of ∆ (all of

which are positive) and its corresponding eigenvector. Define the function J by

J(s) :=

nq∑
j=1

δKδ(0, Tj−1)(exp(Γj(s+ dj)− 1
2
Γ2
j)− qoz(j, q)κ)∏j

i=1(1 + δKδ(0, Tj−1) exp(Γi(s+ di)− 1
2
Γ2
i ))

.

Then J has a unique root s∗ and an approximation to the swaption price is given by

Swaption(q)(0) =

nq∑
j=1

δP (0, Tj)[Kδ(0, Tj−1)Φ(hj)− qoz(j, q)κΦ(hj − Γj)], (40)

where hj = Γj − s∗ − dj and Φ is the standard normal distribution function.

Excursion; Simulation and Approximation Quality in

Lognormal LIBOR Models

The swaption price approximation in Theorem 2.24 leaves some open questions that

are investigated in Poulsen (1997).

The formulation of Theorem 2.24 indicates that the two approximations are used.

i) The rank d (=the dimension of the driving Brownian motion) covariance matrix

4 is approximated by a rank 1 matrix. This means that all results can be

expressed directly in terms of Φ; otherwise we would get expressions involving

multidimensional normal integrals.

ii) The stochastic drift correction from (31) is substituted by a deterministic cor-

rection based on initial data (cf. (37)). In Brace et al. (1997) it is referred to

as a “Wiener Chaos expansion of order 0”, but still one should note that two

the terms we interchange do not even have to same mean.

A further, somewhat more subtle question is

iii) How do prices depend on δ? Different values of δ (and corresponding tenor

structure) give models with different dynamic properties and different derivative

prices. To illustrate: Recall the definition of the swap contact. Suppose we were

interested in pricing a swaption on a swap with δ = 1, q = 1 and n = 3. This is

readily done by Theorem 2.24. But exactly the same swaption is described by

a model with δ = 1/2, q = 2 and n = 3, or indeed any choice δ = 1/i, q = i and

n = 3. Theorem 2.24 still works, but the prices are not the same. Note also that
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limδ→0 Kδ(t, T ) = f(t, T ), so by letting δ tend to 0 we get (at least formally)

the “proportional volatility” model, which we saw earlier was an inherently bad

model. The question is then when - or indeed if - things go awry.

Another logic question is:

iv) How do we determine exact prices numerically? More specificly, how do we

simulate in lognormal LIBOR models?

In Poulsen (1997) issues ii)-iv) are addressed (issue i) is also relevant, but does not

particularly hinge on the lognormal LIBOR model being used). The paper concludes

the following.

- Simulation in lognormal LIBOR model is not hard, but it does require rewriting

of pricing expressions, knowledge of the measure transforms used in defining the

model, and some careful bookkeeping.

In the simple case of flat initial term structures and volatility we find

- The deterministic drift approximation appears not to be a problem. Even for

swaptions with very long maturities (10 years) the approximation gives prices

that are with 1 % of the true prices (and the error is increasing in the length of

the swaption).

- The δ-discrepancy can be detected even for medium length swaptions (both for

approximate and true prices). Pricing an at-the-money “ δ = 1, q = 1, n = 3”

swaption in its “natural” “ δ = 1, q = 1, n = 3” model as in the limi→∞ of

“δ = 1/i, q = 1, n = 3’-models gives a relative pricing difference of 5 %. This,

however is the most extreme case w.r.t. sensitivity. First, the payments on the

underlying are quite far apart (1 year), so there is “a lot of room for δ-effects”.

Second the swaption is at-the-money (by which we mean that the strike (κ) in

equal to the current swap rate). And third, a decreasing volatility structure (by

which we mean that T 7→ γ(t, T ) is decreasing, there are sound empirical and

theoretical arguments for this) also tends to lower the δ-effect.
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Reflections on Fixed Income Modelling

The modelling methodologies described in the fixed income section show a clear ten-

dency towards higher and higher inclusion of market information. We started with

the indirect approach where a few interest rates were described and then claimed to

be representative of the market. We then went to the direct HJM-approach where the

whole yield curve was modelled and the current term structure – which by the way is

not trivial to estimate – thus directly included. In practice, however, we want mod-

els with simple finite dimensional representations, so we often end up with something

that looks like a yield factor model (see Brace & Musiela (1994) and Björk & Gombani

(1999)). Finally, we came to market models which could be understood as a spin-off

of the HJM-approach were volatility specifications were created directly to achieve

simple formulae for liquid fixed income derivatives such as caps and swaptions which

effectively means that these prices can be fitted be choosing appropriate volatility

parameters (a.k.a. implied modelling). This pretty much takes us to “the state of

the art” in fixed income modelling which we shall now briefly reflect upon. From

both a theoretical and a practical point of view the methodology is sound enough.

Arbitrage pricing is always a question of pricing something relative to something else

(and with the widespread use of numeraire changes this is to be taken quite liter-

ally). For example in the Black-Scholes model we do not say what the stock “should”

cost, but given the current stock price (and of course its dynamics) we say what the

option has to cost. Likewise it makes good sense in fixed income markets to take a

number of objects as given. The market models have structures that make any hope

of closed form solutions for objects other than those they are “made” to price seem

futile. Certainly this is true for the highly specialized fixed income products that are

traded “over-the-counter” by many investment banks. Thus there is a wide playing

field for numerical creativity or financial engineering. So the models have obvious ad-

vantages and possibilities of future research. But there are other directions or skeptic

remarks. One was the mutual inconsistency of models addressed in the previous ex-

cursion (see also Rebonato (1999)). Another is the question “How much model is

actually left?” Since the models take “almost everything as given” it may be argued

that their explanatory power is low. There is no “good story” behind the models

and quite unclear how to do critical model control/comparison. Regarding the “good

story”-issue we fully agree that models should have some plausible motivation, but

the reflection of traders beliefs is not a bad such. The “model control”-issue is highly
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relevant and leads us into hitherto unchartered land. The models fit today’s prices

but may give us a false sense of security. If the dynamics – the volatility specifications

– are wrong, then our prices and dynamic hedging strategies will be wrong. In other

words, we will be losing money or taking unnecessary risks. We do not see how to

solve the problem with “conventional” statistical methods. First we must find a good

criterion for comparison and then we need to take into account both time-series and

cross-sectional information and use data on many different types of contracts. It is

all a question of finding a balance between historical data and the current state of

the market.
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3 Estimation of Discretely Observed Diffusion Pro-

cesses

This section has only one subsection and the main part of it consists of 3 “excursions”.

We feel that the ordering of the material reflects a “natural progression” when it

comes to estimation of discretely observed diffusion processes (so of course the papers

were written the other way round). First, we adapt results form the literature that

tell us that i) diffusions are Markovian so to determine the likelihood function we

only have to find the (1-step) transition densities (it is enough to condition only on

the previous observation) and, ii) (under weak conditions) the maximum likelihood

estimator has the usual good properties. Unfortunately, the transition densities and

hence the likelihood function are not generally known in closed form.

It is then natural to look for approximations to the densities. Since many charac-

terizing features (probabilistic and analytic) of diffusions are known, many approx-

imations have been suggested. The first excursion (based on Jensen & Poulsen

(1999)) compares some of these methods. We ask questions such as: How fast are

the approximations to calculate? How accurate are they? How can we tell? Do they

converge? Of which order and what can we do to help them? How easy are they to

implement?

The second excursion (based on Poulsen (1999a)) then proposes a new estimator

based on one of the methods that “scores highly” in the first excursion; namely

solution of the PDE for the transition density by finite difference methods. At the

risk of sounding arrogant or ignorant, for people with “basic training” in mathematical

finance it seems a blatantly obvious way to construct an estimator, yet we have not

seen it used before.

In the third excursion (based on a part of Christensen & Poulsen (1999), the

other part of that paper we encountered in the excursion related to non-linear drift

models in Section 2.3.1) we compare the estimator proposed in the second excursion

to some of the (many) other estimators used in the literature. We use both simulated

data and “real” data for a model with unknown likelihood function. Compared to

the other estimators, we find that the proposed new estimator has properties that

most closely resemble those we would expect the maximum likelihood estimator to

have based on asymptotic results. But we also find differences in the behaviour of the

various estimators are quite small for models with “financially realistic parameters”.
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3.1 General Definitions and Results

We consider a set-up with a n-dimensional diffusion process X with dynamics gov-

erned by the SDE

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dWt, (41)

where W is a d-dimensional Brownian motion on some filtered probability space,

ψ ∈ Ψ ⊆ Rd , µ : Rn × Ψ 7→ Rn σ : Rn × Ψ 7→ Rd×n are functions such that (41)

(with some initial condition) is well-defined and has a (weak) solution and (versions

of) transition densities that are absolutely continuous w.r.t. the Lebesque measure

and sufficiently smooth. By

φ(t, x, y)

we denote the density of Xt given X0 = x, i.e., φ is a density ’in y for fixed t and x’

and we put l(xi−1, xi;ψ) = lnφ(4, xi−1, xi) .

The parameter ψ is unknown but we seek statistical inference about it from (dis-

cretely observed) data points x0, x1, . . . , xT . We make the following notational con-

vention/assumption.

Assumption 3.1 Assume that:

i) The true parameter is ψ0.

ii) The observations are equidistant, 4 apart.

iii) X is stationary and ergodic.

Part iii) of this assumption may be tricky to check for multidimensional diffusions,

i.e., when n > 1. Even for one-dimensional models the condition may fail to hold

(but this is relatively easy to check). The trick is then (with the Itô formula as a key

tool) to find an appropriate transform of the model that is stationary and ergodic.

Typical example: look at log-returns rather that stock prices. In fact this idea can

be applied “backwards” to build diffusion models (see for example Bibby & Sørensen

(1997), Jensen & Pedersen (1997), Rydberg (1999)).

Since X is a Markov process w.r.t. its own filtration(cf. Øksendal (1995, Theorem

7.2)), the loglikelihood function lT is easy to write down,

lT (ψ) =
T∑
i=1

l(xi−1, xi;ψ),
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and the maximum likelihood estimator (MLE) is defined in the usual way,

ψML
T = arg sup

ψ∈Ψ

1

T
lT (ψ).

Theorem 3.1 Under Assumption 3.1 and weak regularity conditions (see

e.g. Barndorff-Nielsen & Sørensen (1994)), which we assume hold, the MLE is con-

sistent and asymptotically normal,

ψML
T

Pr→ ψ0,
√
T (ψML

T − ψ0)
∼→ N(0, i−1(ψ0)),

where i(ψ) is the Fisher information matrix,

i = lim
T→∞

−E
(

1

T

∂2lT (ψ)

∂ψ∂ψ>

)
.

Also, for any other consistent and asymptotically normal estimator with asymptotic

covariance matrix V , we have that

V − i is positive semi-definite,

i.e., asymptotically ψML
T has the “smallest possible variance”.

Unfortunately, we do not generally know what φ looks like.

Excursion; Density Approximation

Several times we have stated that we do not know the transition densities of a dif-

fusion process in general. But many ways of approximating the densities have been

suggested. In Jensen & Poulsen (1999) we investigate the quality of such approxima-

tions. We look at 5 different suggestions.

Simple Analytic Approximation If 4 is small we can think of dXt as X4−X0 =

X4 − x0, approximate any Xt’s occurring on the RHS of (41) with X0 and perceive

’dWt’ as a N(0,4)-variable. This leads to the approximation

φA(4, x, y) = n(y; x+ µ(x)4, σ2(x)4).
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This is called an Euler-approximation and is (a certain sense) a first order approxi-

mation w.r.t. time, i.e., it is “good” when 4 is “small”. Alas, 4 is typically not a

quantity we (the statisticians or the financial modellers) can control.

For one-dimensional diffusions it is easy to characterize the stationary density (see

(10)). If i) 4 is large or, ii) φ does not ’depend very much’ on x, then this can be

used as an approximation.

Simulation Recall that we seek the distribution of X4 given some value of X0. If we

could simulate outcomes of X4, say (xi4)ni=1 then we could use statistical/econometric

methods to estimate the density of X4. But since we cannot solve the SDE (if we

could we would effectively know the transistion densities), we cannot simulate out-

comes of X4 exactly. This means that a simulation based determination of transition

densities has to address 3 major questions.

- How do we simulate solutions of SDEs?

To do this we use discretization schemes (such as the Euler, the Milstein, or

some higher order scheme) described in Kloeden, Platen & Schurz (1991).

- How do we generate long sequences of normally distributed numbers?

The standard way to do this is to use pseudo random numbers. Specifically,

we use numbers that “behave like independent U(0, 1) draws” supplied from

a linear congruential operator and transform these into “independent N(0, 1)”

by the Box-Muller transform. The independence means that we can use the

Central Limit Theorem to asses quantitatively the accuracy of the results.

Recently, the use of so-called quasi random numbers has been advocated. Quasi

random numbers, or more tellingly low discrepancy sequences, are series of num-

bers where the marginal distributions are, say, N(0, 1), but the numbers have

a non-zero correlation structure. It can be shown that by choosing “cunning

sequences”, we can obtain higher rates of convergence of terms like 1
n

∑n
i=1 x

i
4

than indicated in the Central Limit Theorem.

- How do we estimate the density from the xi4s?

We are now in the land of kernel smoothers and bandwidth choices. There is a

trade-off between how smooth you want our density estimate and how accurate

you want it. Since smoothness is not our main concern, we use a rectangular

kernel.
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Binomial Approximation With Cox et al. (1979), binomial models were an instant

classic in finance. In a binomial model we construct a tree (with splitting index 2)

with probabilities assigned to branches and each route through the tree representing

a sample path. In Nelson & Ramaswamy (1989) it is shown how to construct a

sequence of recombining trees – lattices – such that the binomial models converge

weakly to a specified diffusion. A binomial approximation in a natural way gives rise

to an approximation of the density we seek.

Numerical Solution of the Fokker-Planck PDE We already saw in the excursion

about Black-Scholes proofs in Section 2.2 that φ solves the one-dimensional parabolic

PDE (where the ψ-dependence has been suppressed)

∂

∂t
φ(t, x, y) = − ∂

∂y
(µ(y)φ(t, x, y)) +

1

2

∂2

∂y2

(
σ2(y)φ(t, x, y)

)
, (42)

with initial condition φ(0, x, y) = δ(y − x), where δ(·) is the Dirac-δ function. If we

are careful, quite useful approximations to the solution of this PDE can be obtained

using finite difference methods, such as the Crank-Nicolson (CN) method. Since the

CN method is pivotal for the calculation of the approximate likelihood estimator we

present in the next excursion, we shall now describe it in some detail.

Let subscripts denote differentiation, suppress “x” and other arguments where it

causes no confusion, and rewrite (42) as

φt(t, y) = a(y)φ+ b(y)φy + c(y)φyy, (43)

where

a(y) = (σy)
2 + σσyy − µy =

1

2
(σ2)yy − µy,

b(y) = 2σσy − µ = (σ2)y − µ,

c(y) =
1

2
σ2.

Now consider a time/space grid (as depicted in Figure 4) with step sizes k and h.

For any grid point (m,n) away from the boundaries (say yL and yH) we consider the

approximation vnm ≈ φ(nk, yL +mh) defined by the equation

vn+1
m − vnm

k
= aδ0(h) + bδ1(h) + cδ2(h), (44)

where the δ’s are difference operators and the arguments of a, b, and c have been

notationally suppressed; the functions should all be evaluated at the space point
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Figure 4: A finite difference grid for numerical solution of the forward PDE (42) for

the transition density.

corresponding to the LHS, i.e., at yL + mh. It is the particular choice of δ’s that

determines the accuracy and stability (and popular name) of the finite difference

method. For the CN method the operators act in the following way:

δ0(h) =
1

2
vn+1
m +

1

2
vnm, (45)

δ1(h) =
1

2

vn+1
m+1 − vn+1

m−1

2h
+

1

2

vnm+1 − vnm−1

2h
, (46)

δ2(h) =
1

2

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+

1

2

vnm+1 − 2vnm + vnm−1

h2
. (47)

Taylor expansions show that this method is locally second order accurate in both h

and k. Also, the Crank-Nicolson method is unconditionally stable for parabolic PDEs

(for a proof of this, or perhaps just to find out what it means, see Strikwerda (1989)).

This allows us to use the Lax-Richtmeyer Equivalence Theorem Strikwerda (1989,

Theorem 10.5.1) to conclude that the numerical solution converges. This theorem,

however, does not give any statement about the order of convergence.
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Defining λ = kh−2 and inserting in (44) gives(
bhλ

4
− cλ

2

)
vn+1
m−1 +

(
1− ak

2
+ cλ

)
vn+1
m +

(
−bhλ

4
− cλ

2

)
vn+1
m+1 =(

−bhλ
4

+
cλ

2

)
vnm−1 +

(
1 +

ak

2
− cλ

)
vnm +

(
bhλ

4
+
cλ

2

)
vnm+1. (48)

Considering v as known on the boundaries and using the initial condition, (48) defines

a sequence of tridiagonal linear systems of equations. These systems can be solved

recursively and each system requires only a number of operations that is proportional

to the number of state space steps when the tridiagonal structure is exploited, e.g.

by the routine tridag from Numerical Recipes. If we consider only diffusions with

inaccessible boundaries (no reflection or absorption) then it is reasonable to put v = 0

on the grid boundaries. The grid boundary levels are chosen “sufficiently far apart”

(the actual numbers are parameter dependent, but choosing them is not a problem).

The initial condition is treated like this:

v1
m = n(yl +mh; x+ µ(x)k, σ2(x)k), (49)

where n is the normal density. This is a first-order approximation to the density (in a

certain sense). By definition of the Dirac-δ function this converges to the true initial

condition as k → 0. The CN method tends to behave badly for non-smooth initial

data (as pointed out in Strikwerda (1989, page 121)), therefore the above choice is

crucial.

Hermitian Expansion The idea of expanding an (unknown) density function by the

use of Hermite polynomials goes back to Cramér (1925). Unfortunately, he showed

that the class of densities, for which the Hermite expansion converges is rather lim-

ited. The density has to be “almost” normal to be in the class. Since most of the

transition densities looked at in finance do not belong to that class, the idea of Her-

mite expansions has not been of much use in finance, until recently. A novel paper by

Ait-Sahalia (1999) has changed this view completely. The main idea of his paper is

to transform the diffusion (41) into another diffusion with a density that belongs to

the class of converging Hermite expansions. A brief overview of the transformations,

assumptions, main results and some ‘trick of the trade’ now follows. For a thorough

understanding and in-depth analysis of the idea of Hermite expansions of a financial

transition density, the reader is referred to Ait-Sahalia (1999). We first transform X

into Y , where Y satisfies

dYt = µY dt+ dW (t),
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(the transformation is basically f : x 7→=
∫ x
x#

1
σ(u)

du), and then further into

Z =
√
4(Y4 − y0).

Now define the Hermite polynomials as

Hj (z) := e
z2

2
dj

dzj

[
e−

z2

2

]
, j ≥ 0.

(yes, that does define polynomials) and the J ’th truncated density of Z as

φ
(J)
Z (∆, y0, z) := n (z)

J∑
j=0

ηj (∆, y0)Hj (z) , (50)

where n (z) is the standard normal density and

ηj (∆, y0) :=
1

j!

∫ +∞

−∞
Hj (z)φ

(J)
Z (∆, y0, z) dz.

The J ’th truncated density of Y and X are then

φ
(J)
Y (∆, y0, y) = ∆−

1
2φ

(J)
Z

(
∆, y0,∆

− 1
2 (y − y0)

)
, (51)

φ
(J)
X (∆, x0, x) =

φ
(J)
Y (∆, f (x0) , f (x))

σ (x)
. (52)

In Ait-Sahalia (1999) it is shown that under regularity conditions

φ
(J)
X (∆, x0, y)→ φ (∆, x0, y) , for J →∞,

for all x0, y in the domain of the diffusion. Suppose that the f -transformation and its

inverse have been found and some J sufficiently large for our liking has been fixed. We

then need the coefficients ηj (∆, y0) , j = 0, . . . , J , to compute φ
(J)
Z (∆, y0, z). Explicit

calculations yield

ηj (∆, y0) =
1

j!
E
(
Hj

(
∆−

1
2 (Yt+∆ − y0)

)
|Yt = y0

)
,

and this expectation can be evaluated using a Taylor-approximation around ∆.

We use the Vasicek, the CIR and the Black-Scholes models as benchmarks and

compare the methods with a quantitative measure of the speed/accuracy trade-off,

run-time vs. error (maximal absolute and relative average),
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Figure 5: Speed (run-time in seconds) vs. accuracy (maximal absolute error) trade-off

for density approximation techniques applied to the CIR model. The binomial and

CN approximations have been Richardson extrapolated. There should also be a line

for the Hermitian expansion, but it would be almost vertical.

as well as discuss the more qualitative features of the methods, such as flexibility

and algorithm complexity. In short, the ordering of the descriptions of the methods

also (and strongly) gives the speed/accuracy ordering. Figure 5 shows what a typical

graphical representation of the speed/accuracy trade-off looks like. The run-time (x-

axis with log-scale) is measured in seconds, the y-axis (also log-scale) measures the

maximal absolute deviation from the true density function.

The simple analytic approximations are fast and easy to understand, but are inac-

curate (and it is hard to tell how much) and their convergence is not within our

control. The simulation methods are slow; it does not matter much whether we use

pseudo random numbers or the more “fancy”quasi random numbers. The binomial

approximation technique is reasonably fast, but can be a bit inflexible. Solution of

the Fokker-Planck PDE by the Crank-Nicolson method may require some finesse to

“fine tune”, but is very fast and simple to program. However, on speed/accuracy

considerations the Hermitian expansion developed by Ait-Sahalia stands head and

shoulders above the other methods. The method does require some tedious model

dependent analytic calculations, but (nowadays) these can easily be done with a sym-
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bolic calculator.

Excursion; AML Estimation

In Poulsen (1999a) we use the CN solution technique for the PDE to construct a new

estimator. The idea for this approach comes from papers by Asger Pedersen (Pedersen

(1995a) and Pedersen (1995b)), where the idea is to construct an approximation to

the diffusion model in such a way that the quality of this approximation is controlled

by the statistician and can be made arbitrarily good.

Formally, assume we have a second order approximation to the true likelihood.

Assumption 3.2 Assume that the approximate loglikelihood can be written as

lAT,h(ψ) =
T∑
i=1

lAh (xi−1, xi;ψ) (53)

=
T∑
i=1

(
l(xi−1, xi;ψ) + h2a(xi−1, xi;ψ) + o(h2)b(xi−1, xi;ψ)

)
(54)

= lT (ψ) + h2aT (ψ) + o(h2)bT (ψ), (55)

where lT is the true (but generally unknown) loglikelihood function and h is a param-

eter chosen by the statistician such that the time needed to compute the left hand side

of (53) does not grow faster than T/h2.

The reader should note that Assumption 3.2 could equally well be formulated with

“just h’s” (instead of h2’s), but we use h2 deliberately as suggestive notation, since

h will then correspond to the discretization step size in our numerical solution pro-

cedure. The reader may argue that if we use the CN method, then there are two

discretization step sizes (one in time, one in space), but if a method is second order

accurate in both directions then clearly we can combine these conceptually into one

and obtain an approximation satisfying Assumption 3.2.

Define the approximate maximum likelihood estimator (AML) by

ψAML
T,h = arg sup

ψ∈Ψ

1

T
lAT,h(ψ).

In Poulsen (1999a) the following result is shown to hold under regularity conditions.
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Theorem 3.2 Suppose h = h(T ) = T−δ. Then:

i) ψAML
T,h is consistent if (and only if) δ > 0, i.e.,

ψAML
T,h

Pr→ ψ0 for T →∞.

ii) If δ = 1/4, then
√
T (ψAML

T,h −ψ0) converges in distribution to a normal variable

or more precisely,

√
T
(
ψAML
T,h − ψ0

) ∼→ N

(
1

2

∂2ψh
∂h2
|h=0, i

−1(ψ0)

)
.

iii) If δ > 1/4 then

√
T (ψAML

T,h − ψ0)
∼→ N(0, i−1(ψ0)),

i.e., the AML estimator is asymptotically equivalent to the ML estimator.

This result shows that the AML estimator can be made to behave like the MLE

and gives an asymptotically optimal trade-off between sample size and discretization

choice in the finite difference solution method. In a way, the result should not be

very surprising; for example in Cox & Hinkley (1974) it is noted that “estimates that

differ from the ML estimate by o(1/
√
T ) [which holds if δ > 1/4] are also efficient”.

But note that the error term is controlled by us, the statisticians. The regularity

conditions in Poulsen (1999a) can probably be weakened considerably. But that is

not the aim of the paper. The main point is that by using the CN method described

in the previous excursion it is possible - and in fact easy - to construct a likelihood

approximation satisfying 3.2. It is also described how to verify numerically the second

order accuracy; otherwise you should never trust “global” order statements based on

“local” order considerations (derived from Taylor expansions).

It it now clear how to proceed: Use a “Black Box” to optimize, apply to data,

and compare to other estimators. In practice we use a Quasi-Newton method for

optimization. The optimization of a numerically determined function could be tricky,

but is not since the function is concave, quite smooth and we have good starting

points. The results of the application and comparison are given in the next excursion.

Excursion; Estimation of Short Rate Models

In Christensen & Poulsen (1999) we describe and compare some of the many different
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estimators that have been proposed for the estimation of discretely observed diffusion

processes. In that paper we give a thorough description of the methods including

both theoretical and implementational issues as well as Monte Carlo comparison and

empirical results. Rather than repeating full method description here, we will just

mention the methods considered in “buzz-word”/”key-reference”form.

(For obvious reasons:) Approximate Maximum Likelihood as described in the

previous excursion.

Generalized Method of Moments Hansen (1982) is a standard ’theory’ reference,

which has little to do with SDEs, Chan et al. (1992) is a standard ’application’ refer-

ence, the main objections to which have little to do with GMM.

Martingale methods The martingale property can also be used to great effect in

this part of statistics as illustrated in Bibby & Sørensen (1995) in Sørensen (1997).

Indirect Inference Gouriéroux, Monfort & Renault (1993), Broze et al. (1995),

Broze, Scaillet & Zakoian (1998).

Efficient Method of Moments A particularly cunning form of indirect inference,

see Gallant & Long (1997), Gallant & Tauchen (1996b), and Gallant & Tauchen

(1996a), Andersen & Lund (1997) is a successful application.

For Monte-Carlo comparison we use the CKLS-model with α = 0.2, β = −2, σ = 0.2

and γ = 0.8 and a sampling frequency corresponding to weekly data and 500 obser-

vations in each of the (500) data sets. The β parameter may a bit large numerically,

but otherwise the parameters are financially realistic. We find that

- All methods estimate the unconditional mean (−α/β) accurately; but this

should be a minimal requirement.

- All methods that use correct first moments exhibit considerable bias in the

estimation of β; β is estimated to be too large. This is bad news from a

financial point of view since the β-estimates are already considerably closer to

0 than we like them. In fact, if we use the values estimated from real data in

Monte Carlo, then we get quite horrible β-estimates.

- Methods that use (almost) correct second moments estimate γ quite accurately,

and among these the AML performs best (albeit narrowly.)
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- The standard error estimates produced by the various methods are quite reli-

able.

- The AML estimator tends to have the smallest variance among the estimators,

as we should expect from its asymptotic equivalence to the MLE.

- It is interesting to note that undoubtedly the AML estimators have lower stan-

dard errors than the estimators that correspond to the starting points in the

numerical optimization. The means that we are not just adding “white noise

through a complicated numerical procedure”.

- Quantile plots indicate normality of estimators.

Beside the conclusions already mentioned we arrive at the following conclusions ap-

plying the estimators to actual U.S. short rate data.

- Clear indication of a separate interest rate regime between October 1979 and

October 1981 (this is well-known in the literature.)

- High γ-estimates (> 1.2 for all methods) when no 1979-1981 dummy is in-

cluded, while γ is less than 1 for the period after 1981. This indicates that

“misspecification is picked up in γ-estimates”.

- Considerably larger variation between estimators than for simulated data.
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4 Conclusion

4.1 What’s New?

What have we done in this thesis? Or perhaps more accurately: What are the

contributions of the manuscripts included?

Andreasen et al. (1998) is a pedagogical “general to specific” introduction to

financial mathematics.

Hansen & Poulsen (1999) presents a toy model for the short term interest rate,

where the unconditional mean in a Vasicek model is allowed to exhibit jumps. More

general models nesting ours have been proposed, but we are able to do a great deal

of analysis in an explicit and direct way.

Poulsen (1997) discusses the much-considered “lognormal LIBOR models”. A

number of the more or less subtle problems in derivative pricing in models of that

type are investigated an generally found to be of little influence in practice.

Jensen & Poulsen (1999) gives a detailed description and comparison of tech-

niques suggested for density approximation of diffusion processes. If Andreasen et al.

(1998) might be called “Introduction to Financial Mathematics”, then an alternative

title to Jensen & Poulsen (1999) is “Introduction to Numerical Methods in Financial

Mathematics”. While the paper documents that the finite difference technique used

in the AML construction is faster and more accurate than most other methods, it is

“overtaken” by the Hermitian expansion technique suggested by Ait-Sahalia. This

technique, however, does require some rather tedious “long-hand” calculations.

Poulsen (1999a) introduces a new estimator in the much-considered statisti-

cal/econometric field “estimation of discretely observed diffusion processes”. The

estimator (referred to as the AML estimator) is based on numerical solution of the

PDE for the likelihood function and is (in an appropriate sense and under ditto con-

ditions) equivalent to the MLE. Further, the method is easy to program, quite flexible

and relatively fast. (Some might want to interchange the two latter adjectives.)

Christensen & Poulsen (1999) documents the advantages of the AML method

and estimates the much-considered “non-linear drift short rate model”. As opposed

to previous studies we find virtually no evidence of non-linearities in the drift, and

we prove that the CKLS-models passes goodness-of-fit tests.

Poulsen (1999b) is one of the first papers to quantitatively analyze the much-

used option “sacking the manager”. While a Poisson general linear model is used,
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and there are some delicate points regarding inference (related to “self-selection”),

the paper is mainly included to “end on a happy note”. (That is, unless you happen

to manage an ill-performing football team.)

4.2 What’s Next?

I am always quite skeptical of sections entitled “topics for future research”. The

ideas that people outline in such sections are by their very nature likely to be either

extremely difficult to carry out, very vague, or plain “wild goose chases”. Otherwise,

they would already have pursued them themselves, or at the very least they wold not

tell me.1 This does not mean that research will not progress, but does mean that you

should have little faith (and the younger the person, the smaller the faith) in people

telling you what a “sure bet” is. In other words the “market” for research does not

have many “arbitrage opportunities”. Nonetheless, there are a number of “obvious”

areas that call for further investigation.

- The numerical procedures in the lognormal LIBOR model may be used to solve

“real” rather than “academic” problems which is what they are primarily used

for as it stands.

- It may be possible to improve the numerical solution procedure used to ob-

tain the approximate likelihood function used in the construction of the AML

estimator.

- The conclusion based on sound likelihood analysis that the CKLS-model is well-

specified and that no significant improvement is provided by non-linear drift

terms is “nicely controversial”. But still, all is not well short rate modelling.

Firstly, when we perform Monte Carlo studies with parameter values equal to

the estimates from real data, the estimates in simulated data behave very little

like the original estimates. This suggests that the “large sample effect” has not

“kicked in” yet, and may lead us on a quest to find estimators with better small

sample properties.

1There are, of course, exceptions. Two famous examples are Hilbert’s 23 open problems in

mathematics presented at a conference in Paris 1900 (and they have been the focus of much the

mathematics in this century) and Watson and Crick who proposed the double helix structure of

DNA in the conclusion of an April 1953 article in Nature (and delivered the promised “details” the

following month in the same journal).
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Finally, on a more general note, the papers in this thesis largely take “partial

views”, it’s either P or Q ; either time-series or cross-sectional. The future calls

for serious attempts to merge the two approaches. The analysis can be both ab-

stract/theoretical (as in Björk & Christensen (1999), Björk, Christensen & Gombani

(1998) and Björk & Gombani (1999)) or empirical (as in Honoré (1998b)). By serious

we mean that the P − Q cross-over is taken as an integral part of the analysis. In

other words we must seek to perform analysis that incorporates as much of the in-

formation in the market and its history as possible/reasonable. At the same time we

must be critical about any particular parametric model specification. But because

controlled experiments are not within our realm as economic researchers we should

always require good or at least plausible stories behind the models, so we should not

let the analysis be totally data driven and fall into the trap of data mining.
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1 Introduction

This paper serves as an account of the sophisticated and varied techniques that have

been developed in financial mathematics during the last 20 years. We illustrate how

these can be used to derive a result that most people with interest in finance are

familiar with, the Black-Scholes formula. The real power of the techniques naturally

lies in their ability to cope with different generalisations of the basic set-up of Black

and Scholes. Some methods are easily described in a more general setting and the

Black-Scholes formula then appears as a special case. Other methods are not possible

to describe in generality within limited space. When this is the case, we consider the

basic Black-Scholes set-up, derive the formula using the particular method, and then

indicate the range and applicability of the method. In either case this should allow

the reader not familiar with the subject to gain insight into the techniques used in

financial mathematics. For people who are familiar with the field, ’we aim to please.’

The hope is that any person in this group will see at least one proof and say ’Ah, yes.

I hadn’t thought of that one.’

The outline of the paper is as follows: In Section 2 we formulate the problem, intro-

duce some central concepts, and present the Black-Scholes formula. In other words

we ask the question and give the answer up front. The next 8 sections describe ways

of getting from point A to point B(.S.) Ways that lead us past answers to more gen-

eral questions than the one originally posed. By a hedge argument (which was the

ingenious insight of Black, Scholes and Merton) the fundamental partial differential

equation (PDE) for arbitrage free asset prices is derived in Section 3. Section 4 shows

how martingale techniques can be used to solve the pricing problem and stresses the

relationship between means of solutions of stochastic differential equations (SDEs)

and PDEs. Section 5 shows how the seemingly neutral concept of using different nu-

meraires can turn out to be a very powerful tool, in fact we derive the Black-Scholes

formula without calculating a single integral. In Section 6 we initially try to ’mess

with your head’ by proposing a strategy that seemingly contradicts the previous re-

sults. But we show that a careful inspection and some advanced stochastic calculus

not only resolves the paradox, but also provides an extra proof. It is shown in Section

7 that the price of the call-option also satisfies a PDE that runs in strike price and

maturity date, a forward equation. Not only does this give another proof of the re-

sult but also has practical implications for numerical purposes. Section 8 derives the

formula as a limiting case of a discrete binomial model. The proposed convergence

proof is different from most other convergence proofs in the literature and highlights
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an interesting similarity between numeraire/measure changes in discrete and contin-

uous cases. Section 9 shows that we can also derive the formula from the continuous

time CAPM model, which links together two of the most celebrated results in finan-

cial economics. Utility maximisation of a representative agent with a utility function

exhibiting constant relative risk aversion is shown also to do the trick in Section 10.

Section 11 sums up the contributions of the paper and discusses the results.

2 The question and the answer

The basic Black-Scholes set-up consists of non-dividend paying stock, the price of

which is assumed to be the solution to the SDE

dSt
St

= µdt+ σdWP
t , (1)

where µ and σ are constants and (WP
t ) is a Brownian motion on some filtered prob-

ability space (Ω, (Ft),P), and a bond with price dynamics given by

dBt

Bt
= rdt, BT = 1,

where r is the (continuously compounded) interest rate which is assumed to be

constant.1

Our aim is to price a European call-option on the stock with maturity date T and

strike price K. This is a security that gives the bearer the right, but not the obliga-

tion, to buy one share of stock at time T (and only at that time) for a price of K $.

Hence the contract has a terminal pay-off of

max(ST −K, 0) ≡ (ST −K)+

and no intermediate payments.

We will assume that there are no transactions costs, no short-selling constraints and

that all assets are perfectly divisible. Furthermore we will allow investors to contin-

uously readjust their portfolios. Specifically, a trading strategy (at, bt) is a predictable

stochastic process satisfying certain technical conditions.2 To us, at will represent the

1Notice that this is an ordinary differential equation with solution given by: Bt = e−r(T−t).
2The trading strategy will be stochastic because it depends on the stock and bond whose price

evolution is stochastic. However, at any given time t we will know how much to hold. Among other

reasons the technical conditions the strategy has to fulfill is to exclude doubling strategies. See Duffie

(1992) for details.
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number of stocks held at time t, while bt is the bond holdings. Vt = atSt + btBt is the

value process. A trading strategy is called self-financing if

dVt = atdSt + btdBt,

which means that we only make an investment today. The gains are reinvested, and we

do not use extra funds to cover our losses (this does not necessarily mean constantly

calling your stock-broker, ’buy-and-hold’-strategies are evidently self-financing). An

arbitrage opportunity is a self-financing trading strategy such that either

V0 ≤ 0, P(VT ≥ 0) = 1, P(VT > 0) > 0,

or3

V0 < 0, P(VT ≥ 0) = 1.

So, an arbitrage opportunity is ’something for nothing’ or ’a free lunch’. Reasonably,

though human intuition about stochastic phenomena is notoriously poor, we cannot

have such strategies in the economic equilibrium. There would be an infinite demand

for the ’arbitrage strategy’, while no agent (without a serious financial death wish)

would be willing to supply it.

From pure static arbitrage considerations the only bounds that can be put on the

call-option price are:4

St ≥ Ct ≥ (St −BtK)+ .

The main contribution of Black & Scholes (1973) is that they close the gap and give

an exact pricing formula by dynamic arbitrage arguments.

Result 1 (The Black-Scholes Formula) If the setting is as described above then

to prevent arbitrage opportunities we must have Ct = C(St, t) where

C(x, t) = xΦ(z) − e−r(T−t)KΦ(z − σ
√
T − t) (2)

z =
ln( x

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

and Φ denotes the cumulative density of the standard normal distribution.

In order to replicate the pay-off of the call-option we should hold

at =
∂C

∂S
(St, t) = Φ(z)

3In incomplete markets the two conditions are not equivalent.
4This is given that the call-option contract is the only existing derivative security written on the

stock. If there exists several option contracts in the economy, say with different strikes, there would

be static arbitrage bounds between these contracts.
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shares of stock and

C(St, t)− atSt
in bonds.

This is a remarkable result that has been twisted and turned in the literature for more

than twenty years. The most noteworthy thing is that the instantaneous expected

return of the stock, µ, does not enter the expression. In other words: Two investors

need not agree on the expected return of the stock in order to agree about the option

price.5

Note the, at least mathematical, simplicity of the replicating portfolio, and that the

position in the stock is bounded above by 1.

This method of pricing is relative. We price the option in terms of the stock and bond,

whose prices are taken as given. We do not need any general equilibrium constraints

on the economy other than there being ’no free lunches’. We shall later see that

we can arrive at the result from a general equilibrium model, but this is in a sense

’overkill’: The above conditions are exactly what we need.

3 The hedge argument and the fundamental PDE

The technique presented in this section is the one originally used by Black & Scholes

(1973) to derive the formula that now bears their names. The result was simulta-

neously and independently derived by Merton (1973b). Let Yt denote the price of a

call-option with strike K and maturity T . Now assume that Yt can be written as a

twice continuously differentiable function of St (hence, no dependence on past Su’s)

and t. That is

Yt = C(St, t).

The Ito formula applied to Yt yields

dYt =

(
µSt

∂C

∂S
+
∂C

∂t
+

1

2
σ2S2

t

∂2C

∂S2

)
dt+

∂C

∂S
σStdW

P
t , (3)

where some of the dependences have been notationally suppressed.

In the notation of Section 2 assume that a self-financing trading strategy (at, bt) exists

5It is worth noting that increasingly frequent discrete sampling of the underlying stock gives an

improved estimate of the volatility but high frequency sampling does not necessarily improve the

estimate of the drift. So if the stock price is only observed at frequent but discrete times it is likely

that investors will agree on the volatility but not necessarily on the drift. For a derivation of this

see Ingersoll (1987).
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such that

atSt + btBt = Yt, ∀t ∈ [0, T ]. (4)

By linearity of stochastic integrals and the self-financing condition we have

dYt = (atµSt + btrBt)dt+ atσStdW
P
t .

We now have two Ito-expressions for dYt. This means (by the Unique Decomposition

Theorem, see e.g. Duffie (1992)) that the drift and diffusion terms in these must be

equal.

Matching diffusion terms yields (since St > 0 P -a.s.)

at =
∂C

∂S
(St, t),

which gives us the number of shares of stock to hold. On the other hand from (4)

St
∂C

∂S
(St, t) + btBt = C(St, t),

so

bt =
1

Bt
(C(St, t)− St

∂C

∂S
(St, t)).

From the drift terms we get

rSt
∂C

∂S
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
(St, t) +

∂C

∂t
(St, t) = rC(St, t),

which holds if the function C satisfies the PDE

rx
∂C

∂x
(x, t) +

1

2
σ2x2∂

2C

∂x2
(x, t) +

∂C

∂t
(x, t) = rC(x, t). (5)

We immediately note that the exact same argument holds for all types of derivative

assets whose prices depend only on time and some Markov process St . The only

things that differ are the boundary conditions. For this reason (5) is referred to as

the fundamental PDE for arbitrage free asset pricing.

As we are considering a European call-option, C should further satisfy the boundary

condition6

C(x, T ) = (x−K)+. (6)

To find the arbitrage free call-option price we have to solve (5)-(6). Given Section 2,

the easiest thing is to verify the result by a direct calculation. Originally, Black and

6In fact we should also require x ≥ C(x, t) ≥ (x − e−r(T−t)K)+, but this turns out to be

automatically satisfied in this case.
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Scholes (probably) used a Fourier transform technique which is mainly of historical

interest nowadays.

Is this price unique, one might ask. Yes it is. Given that (5)-(6) has been solved we

have found a (hopefully) self-financing trading strategy that replicates the option. If

the option had any other price than the initial investment in this replicating portfo-

lio, we would just sell the option and buy the replicating portfolio (or the other way

round, depending on which is the cheaper alternative). This would leave us with a

risk-free profit. An arbitrage opportunity !

Now, the reader might argue: ’How do we know that the proposed trading strategy

is indeed self-financing?’ This is a fair point to make, we have just assumed so far,

that this was the case, and made explicit use of it. However, using (5) (which in

particular means that C is C2) and the Ito formula it is easy to show that (at, bt) is

indeed self-financing. We make this seemingly ’round-about’ comment because later

(in Section 6) we will meet a trading strategy that is obviously self-financing. Except:

It isn’t !

By a hedge argument this section derived the fundamental PDE for asset prices. By

specifying the right boundary condition, the Black-Scholes formula emerged. This

approach generalises easily to the case of dividend paying assets. Provided that co-

variance matrix for stock returns is of full rank (’a complete market’), the results also

carry over to higher dimensions (see e.g. Duffie (1992)). The technique also works for

American type assets (see Ingersoll (1987)), though the boundary conditions become

more subtle, in fact determination of these becomes part of the solution. What this

approach is NOT suitable for is non-Markovian settings, such as stochastic volatility

in the stock or path dependent features in the derivative (e.g. Asian options). The

next section develops a more general valuation technique, that coincides with the

PDE approach when the latter is applicable.

4 The martingale approach

In this section we will derive the martingale pricing approach that does not depend

on the Markov property of the stock and draw the analogy to the PDE obtained

in the previous section. Using the martingale valuation technique we calculate the

Black-Scholes formula.

The martingale pricing technique was pioneered by Cox & Ross (1976) and later on

further developed and refined by Harrison & Kreps (1979), Harrison & Pliska (1981),

and others.
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We start by defining the quantity η = (µ− r)/σ and the Girsanov factor

ξt = exp(−1

2
η2t− ηWP

t ).

The Girsanov factor is a positive P-martingale with mean 1, so we can define a new

probability measure Q, equivalent to P, by setting

dQ = ξtdP (7)

on Ft. According to the Girsanov Theorem we have that under Q

WQ
t = WP

t + ηt

is a Brownian motion.7 Plugging this into (1) yields that under Q, the stock price

evolves according to the SDE

dSt
St

= rdt+ σdWQ
t . (8)

Let us now define

Gt = BtE
Q
t

[
(ST −K)+

]
= BtE

P
t

[
ξT
ξt

(ST −K)+

]
.

We observe that from the definition (e−rtGt) must be a Q-martingale with respect

to the filtration (Ft). By the Martingale Representation Theorem we therefore have

that

d
[
e−rtGt

]
= γtdW

Q
t

for some process γ.8 Introducing Γ = ertγ/G, using the Ito formula and reintroducing

the P Brownian motion we get

dGt = Gt(rdt+ ΓtdW
Q
t ) = Gt((r + Γtη)dt+ ΓtdW

P
t ).

Now consider a self-financing strategy with value V and no consumption flow before

T consisting of a stocks and the remaining amount is put in b = (V − aS)/B bonds.

Such a strategy evolves according to

dVt = atdSt +
Vt − atSt

Bt
dBt

= (atStση + rVt)dt+ atσStdW
P
t . (9)

7For the Girsanov Theorem in the context of financial economics see for example Duffie (1992).
8A possible reference for the Martingale Representation Theorem is Duffie (1992).
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Choosing V0 = G0 and

a =
ΓV

σS

we see that G and V have the same evolution and the same starting value, hence

Vt = Gt for all t. Since CT = GT we conclude that Ct = Gt for all t. Otherwise

there exists an arbitrage because Gt can be replicated through the dynamic trading

strategy outlined above. We have now obtained the martingale pricing equation

Ct = e−r(T−t)EQt
[
(ST −K)+

]
. (10)

Note that this relation does not depend on µ and/or σ being constants. In fact

the measure Q is unique and the replication argument goes through as long as only

the diffusion coefficient, but not necessarily the drift, of the stock is adapted to the

filtration generated by the stock.9 Investors need not have the same beliefs about the

drift of the stock for the arbitrage pricing to be valid. All they have to agree about is

the diffusion coefficient. In a continuous-time economy this means that all they have

to agree about are the zero-sets for the stock price evolution.

If (St) happens to be a Markov process under under Q, then (virtually by definition)

we deduce from (10) that the option price is a smooth function of current time and

stock price only, i.e. Ct = C(St, t). But then the Ito formula and ’coefficient matching’

recovers the fundamental PDE of Section 3. In other words, there is consistency

between the methods. Note that it is sufficient that (St) is Markov under Q, so nasty

drifts do not prohibit us from using a PDE approach. This is of course what one

would conjecture since the drift does not enter the fundamental PDE.

To compute the Black-Scholes formula we use that sitting at time 0, lnST is normal

under Q with mean and variance

m = EQ [lnST ] = lnS0 + (r − 1

2
σ2)T (11)

v2 = VarQ [lnST ] = σ2T , (12)

so

C0 = e−rT
∫ ∞

lnK−m
v

(em+vx −K)
e−

1
2
x2

√
2π

dx

= S0Φ

(
ln(S0/K) + rT

σ
√
T

+
1

2
σ
√
T

)
− e−rTKΦ

(
ln(S0/K) + rT

σ
√
T

− 1

2
σ
√
T

)
.

9For obscure stock price processes ξ might not be a P-martingale, which implies that Q as defined

by (7) is not an equivalent probability measure. But if Q is well-defined it is unique.
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5 Change of numeraire

This section reviews a popular technique for solving the valuation equation

C0 = e−rTEQ
[
(ST −K)+

]
.

The technique is often referred to as the change of numeraire technique because it

involves a change of discounting factor from the bank-account to the underlying asset.

The technique will prove to be extremely powerful: in this section we will derive the

Black-Scholes formula without evaluating a single integral. But more than being a

technical tool the change of numeraire approach also exposes an intriguing interpre-

tation of the probabilities in the Black-Scholes formula as will be demonstrated in

this section.

The change of numeraire technique showed up in several papers in the late eighties

but it was probably known in the financial research community long before.

The idea is the following. We note that the martingale approach in the last section

does not depend on the bank-account being used as numeraire for the pay-offs. In fact

we could choose S as the numeraire of another martingale measure, Q′, and under

this measure Ct/St would be a martingale. To see this observe that

e−rt
St
S0

= exp(−1

2
σ2t+ σWQ

t )

is a positive Q-martingale with mean 1. Hence, we can define a new equivalent

probability measure related to Q and P by:

dQ′ = e−rt
St
S0
dQ = e−rt

St
S0
ξtdP

on Ft. The Brownian motion under Q′ is then given by

WQ′
t = WQ

t − σt = WP
t + ηt− σt.

Straightforward application of this yields the valuation equation

C0 = S0EQ
′
[

(ST −K)+

ST

]
, (13)

where
dSt
St

= (r + σ2)dt+ σdWQ′
t .

But this does not reduce the complexity of derivation of the Black-Scholes formula.

We will still have to evaluate an integral like the one in the previous section. So
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instead we reconsider our initial valuation equation. We split up the pay-off to get:

C0 = EQ
[
e−rTST1{ST>K}

]
− e−rTKEQ

[
1{ST>K}

]
= S0Q′(ST > K)− e−rTKQ(ST > K). (14)

We feel that this equation has a very nice interpretation: Given that the European

option finishes in-the-money, the option pay-off can be decomposed into two compo-

nents, the first component is the uncertain amount ST , and the second component is

the fixed amount −K. The present value of receiving ST at time T is of course S0.

But this has to be weighted with some risk-adjusted probability of finishing in-the-

money. Q′ is the right measure to use because it exactly off-sets the ‘S’-risk. In other

words under Q′ pay-offs are valued as if one were ‘risk-neutral’ with respect to the

risk of the underlying stock. The second component −K is a fixed dollar amount.

The proper probability measure to apply is therefore the measure Q under which

pay-offs are measured relative to the risk-less bond.

The formula is general, in the sense that it does not depend on the underlying stock

following a geometric Brownian motion. In fact, if an equivalent martingale measure

with the bank account as numeraire exists (and this measure need not be unique)

then one can derive the above formula. In a subsequent section we will show that

the European option price of the Cox, Ross & Rubinstein (1979) model has a similar

interpretation.

To obtain the Black-Scholes formula we simply have to evaluate the two probabilities

in the above equation. We observe that under Q′, lnST is normal with mean and

variance given by

EQ
′
[lnST ] = lnS0 + (r +

1

2
σ2)T (15)

VarQ
′
[lnST ] = σ2T . (16)

Using this and the distribution of S(T ) under Q given in the previous section we

immediately obtain

Q′(ST > K) = Φ

(
ln(S0/K) + rT

σ
√
T

+
1

2
σ
√
T

)

Q(ST > K) = Φ

(
ln(S0/K) + rT

σ
√
T

− 1

2
σ
√
T

)
,

and thereby the Black-Scholes formula.

The change of numeraire technique is a very powerful tool that can be applied to other

types of option contracts and to more general models. In the fixed income literature
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this technique has elegantly been applied to option pricing problems under the name

of ”forward-risk-adjustment”, see for example Jamshidian (1989) and El Karoui &

Rochet (1989). In the context of exotic options the technique has shown useful in

the evaluation of Asian options, lookback options, barrier options, and various other

exotica. See for example Ingersoll (1987), Babbs (1992), Dufresne, Kierstad & Ross

(1996), and Graversen & Peškir (1995).

6 Shaking your foundation

In this section we will use the so-called local-time to derive the Black-Scholes formula.

The idea of using local-times in finance is due to Carr & Jarrow (1990). Analysing

what is known as the stop-loss start-gain strategy they get terms involving local-times.

The stop-loss start-gain strategy has also been carefully analysed in the literature by

Seidenverg (1988) and Dybvig (1988). The financial insight using this somewhat

cumbersome method is the proposal of a trading strategy which is not self-financing

and still gives the Black-Scholes formula by taking care of the extra external financing.

Moreover one should notice that recently local-times have been used to price American

options. See for instance Myneni (1992) and Carr, Jarrow & Myneni (1992). Consider

the following trading strategy:

If the present value of the strike price K is below the stock price hold one share of

the stock. Finance this by using borrowed funds. If the stock price falls below the

present value of the strike price liquidate the position. As we shall see below this

strategy will at terminal date T be worth exactly the same as the call-option. Now

if the stock price initially is worth less than the present value of the strike price the

strategy costs nothing initially. Therefore if the strategy is self-financing this would

create arbitrage-opportunities in the Black Scholes-economy. To analyse this strategy

we proceed more formally. Let:

at = 1{St>KBt},

bt = −1{St>KBt}K, ∀t ∈ [0, T ].

Then the value of the portfolio at time t, Yt, is equal to:

Yt = atSt + btBt

= 1{St>KBt}St − 1{St>KBt}KBt

= (St −KBt)
+ . (17)
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Now we see that the value of the portfolio is always the lower bound for a call-option

and furthermore since BT = 1 we see that we have duplicated the call’s payoff.

Therefore if S0/B0 < K then the portfolio initially costs nothing. To examine if this

portfolio is self-financing we notice that the self-financing condition described with

the bond as numeraire is:

Yt
Bt

=
Y0

B0
+
∫ t

0
audFu, ∀t ∈ [0, T ], (18)

where Ft = St/Bt is the stock price with the bond as numeraire (the forward price).

Inserting at and Yt in (18) we get that the stop-loss and start-gain strategy is self-

financing if and only if

(Ft −K)+ = (F0 −K)+ +
∫ t

0
1{Fu>K}dFu, ∀t ∈ [0, T ]. (19)

Fortunately this is not the case - otherwise there could be arbitrage in the economy

as described above. To see that the strategy is not self-financing we use the Tanaka-

Meyer-formula on Yt/Bt.
10 It gives us:

(Ft −K)+ = (F0 −K)+ +
∫ t

0
1{Fu>K}dFu + Λt(K), ∀t ∈ [0, T ]. (20)

We see that the difference between (19) and (20) is the term Λt(K) which is called

the local time at K by time t in the stochastic calculus literature. Now we will show

that Λt(K) is positive with positive probability for any t, which shows us that the

stop-loss and start-gain strategy is not self-financing.

If we take the “risk-neutral” expectation of (20) we get:

EQ0
[
(Ft −K)+

]
= (F0 −K)+ + EQ0 [Λt(K)] , ∀t ∈ [0, T ], (21)

where the expectation of the “dFu” integral is zero because F is a Q-martingale and

thereby we have that the integral-term is a Q-martingale. It is obvious from the

results in the previous sections that Q(Ft > K) > 0, Q(Ft < K) > 0.

Furthermore: Because g(x) = (x−K)+ is strictly convex over an interval containing

K we get that Jensen’s inequality holds strictly for g(x). I.e.:

EQ0
[
(Ft −K)+

]
>
(
EQ0 [Ft]−K

)+
= (F0 −K)+ . (22)

Combining (21) with (22) we get EQ0 [Λt(K)] > 0. Since Λt(K) ≥ 0 it follows that

Q (Λt(K) > 0) > 0, ∀t ∈ (0, T ]. Therefore P (Λt(K) > 0) > 0, ∀t ∈ (0, T ], which

10The Tanaka-Meyer formula can for instance be found in Karatzas & Shreve (1988) p. 220.
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shows us that the strategy is not self-financing.

In our setting Λt(K) has a very nice interpretation. Suppose that we change our

strategy in the following way:

Buy one share of stock each time F rises from K to K + ε, ε > 0. In this case we

should also go short in K bonds. We see that every time the transaction takes place

it requires an additional ε bonds. Furthermore we liquidate the portfolio every time

F goes back to K.

Now let Ut(ε) denote the number of times F has risen from K to K + ε until time

t. Then we see that with the above mentioned strategy we would have to invest in

εUt(ε) bonds at time t to handle the external financing. Now it can be shown that:

lim
ε↓0

εUt(ε) = Λt(K).

That is: The additional local time term from equation (20) can be interpreted as the

external financing required to trade by the stop-loss start-gain strategy.

Now we will show that evaluating (21) for t = T yields the Black-Scholes formula.

From the previous section we notice thatC0/B0 = EQ
0 [(FT −K)+] = EQ

0 [(ST −K)+] .

I.e.:

C0 = (S0 − e−rTK)+ + e−rTEQ
0 [ΛT (K)] . (23)

(23) has a nice interpretation: The first term on the right-hand side is the option’s

intrinsic value and is according to (17) equal to the initial investment required in

the stop-loss start-gain strategy. The residual (e−rTEQ
0 [ΛT (K)]) is referred to as the

option’s time value which in this case is the present value of the expected external

financial costs.

From the previous section we know that F is a Q-martingale. By Girsanov’s theorem

we therefore have that:

dFt = σFtdW
Q
t .

That is:

Ft = F0 exp{σWQ
t −

1

2
σ2t}.

Therefore we get the following transition density for F :

ψ(Ft, t;F0, 0) =
1

Ftσ
√
t
φ

 ln
(
F0

Ft

)
− 1

2
σ2t

σ
√
t

 , (24)

where φ(z) ≡ 1√
2π

exp
(
−1

2
z2
)

is the standard normal density function.
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Using a theorem about local times yields:11

EQ0

[∫ T

0
k(Fs)d < F >s

]
= EQ0

[
2
∫ ∞
−∞

k(x)ΛT (x)dx
]
, (25)

where k is a Borel-measurable function. Using that d < F >t= σ2F 2(t)dt on the left

side and employing Fubini‘s theorem on the right side of (25) gives us:∫ ∞
−∞

k(x)
∫ T

0
σ2x2ψ(x, t;F0, 0)dt dx =

∫ ∞
−∞

k(x)2EQ0 [ΛT (x)] dx. (26)

Now choose k(x) = 1{x∈A}, where A ∈ F . (26) then becomes:

∫
A

∫ T

0
σ2x2ψ(x, t;F0, 0)dt dx =

∫
A

2EQ0 [ΛT (x)] dx.

Realizing that the integrands are nonnegative and that both integrals are equal for

any A ∈ F we get: ∫ T

0
σ2x2ψ(x, t;F0, 0)dt = 2EQ0 [ΛT (x)] . (27)

Combining (24) with (27) yields:

EQ0 [ΛT (K)] =
σK

2

∫ T

0

1√
t
φ

 ln
(
F0

K

)
− 1

2
σ2t

σ
√
t

 dt. (28)

If we substitute (28) back into (23) we get:

C0 =
(
S0 − e−rTK

)+
+ e−rT

σK

2

∫ T

0

1√
t
φ

 ln
(

S0

Ke−rT

)
− 1

2
σ2t

σ
√
t

 dt.
Now changing variable by ν ≡

√
tσ√
T

gives us:

C0 =
(
S0 − e−rTK

)+
+ e−rTK

√
T
∫ σ

0
φ

 ln
(

S0

Ke−rT

)
− 1

2
ν2T

ν
√
T

 dν.
Finally we have reached the Black-Scholes formula. This is seen by noticing that (2)

differentiated with respect to σ is:

e−rTK
√
Tφ

 ln
(

S0

Ke−rT

)
− 1

2
σ2T

σ
√
T

 , (29)

with the boundary condition that C0 = (S0 − e−rTK)+ when σ = 0.

11The theorem can for instance be found in Karatzas & Shreve (1988) p.218.
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7 The forward equation of European option prices

Compared to the technique applied in Section 5 the following derivation of the Black-

Scholes formula might seem cumbersome. On the other hand the result that we

will derive will shed further light on the European option pricing problem and will

expose an interesting duality of the pricing problem that we consider. In the spirit

of Dupire (1993) we derive a forward partial differential equation for the European

option prices. In this equation the variables are the strike and the maturity whereas

the current spot and time are fixed. This is opposed to the standard backward partial

differential equation derived in Section 3, where the spot and time are the variables

and strike and maturity are fixed. Examining this forward equation reveals that the

option pricing problem can be solved in a dual economy where every parameter is

turned upside down: the strike price is the underlying, the option is a put with strike

equal to the current spot, time is reversed, etc.

Again we start from the valuation equation

C0 = e−rTEQ
[
(ST −K)+

]
= e−rT

∫ ∞
K

(x−K)ψ(x, T )dx, (30)

where ψ(x, T ) is the Q-density of ST in the point x given S0 at time 0.

Due to the Markov property of the spot price we have that ψ solves the forward

Fokker-Planck equation12

0 = −∂ψ
∂T
− ∂

∂x
[rxψ] +

1

2

∂2

∂x2

[
σ2x2ψ

]
subject to the initial boundary condition ψ(x, 0) = δ(x− S0), where δ(·) is the Dirac

Delta function.13 We will use this to derive a forward equation for the option prices.

Assuming that

rxψ(x, T )→ 0, σ2x2ψ(x, T )→ 0,
∂

∂x

[
σ2x2ψ(x, T )

]
→ 0,

for x → ∞, which is clearly satisfied in the Black-Scholes model, integration of the

forward equation over the interval (y,∞) yields:

0 = − ∂

∂T

∫ ∞
y

ψ(x, T )dx+ ryψ(y, T )− 1

2

∂

∂y

[
σ2y2ψ(y, T )

]
.

Integrating once more, this time over (K,∞), yields

0 = − ∂

∂T

∫ ∞
K

∫ ∞
y

ψ(x, T )dx dy + r
∫ ∞
K

yψ(y, T )dy+
1

2
σ2K2ψ(K,T )

12See Revuz & Yor (1991) p 269 for the Fokker-Planck equation.
13The Dirac Delta function is defined by δ(x) = 0, for all x 6= 0, and

∫ ε
−ε δ(x)dx = 1, for all ε > 0.
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Now we go back to the pricing equation. Integrating by parts we get that

C0 = e−rT
∫ ∞
K

∫ ∞
y

ψ(x, T )dx dy,

so
∂

∂T

∫ ∞
K

∫ ∞
y

ψ(x, T )dx dy = rerTC0 + erT
∂C0

∂T
.

Further we have that ∫ ∞
K

yψ(y, T )dy = erTC0 −KerT
∂C0

∂K

ψ(K,T ) = erT
∂2C0

∂K2
. (31)

If we let C(K,T ) denote the initial price of a European call-option with strike K

expiring at time T , we obtain the following forward partial differential equation for

the European call-option prices

0 = −∂C
∂T
− rK ∂C

∂K
+

1

2
σ2K2 ∂

2C

∂K2
(32)

subject to the initial boundary condition C(K, 0) = (S0 −K)+.

The forward equation can now be solved to yield the Black-Scholes formula.

The advanced reader might observe that the forward equation could be derived from

the valuation equation under the Q′ measure, (13), combined with the time homo-

geneity of the stock price process in the Black-Scholes model. Under the assumption

of a positive dividend yield of the underlying stock, Andreasen & Gruenewald (1996)

apply this technique to obtain a forward equation for American call-options in the

Black-Scholes model as well as in the jump-diffusion model of Merton (1976).14 But

the forward equation (32) is more general; under assumption of sufficient regularity

it holds for all Ito processes of the type

dSt
St

= µ(t;ω)dt+ σ(St, t)dW
P
t

if additionally the interest rate is only a function of time and the stock price. For

stock option pricing and short maturities it is in most cases reasonable to assume

(at most) time-dependent interest rates. Given todays yield curve it is then possible

to uniquely determine the function σ(S, t) from a full double continuum of option

prices, C(K,T ), by the forward equation (32). The trick is simply to estimate the

14The positive dividend yield implies that the American call-option might be exercised

prematurely.
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derivatives in (32) and isolate the function σ(·, ·). In other words from a full set of

marketed options we can ‘infer the option pricing model of the market’. This was

first observed by Dupire (1993), but already Breeden & Litzenberger (1978) noted

the relation (31). This relation tells us that we can infer the stock’s risk-adjusted

distribution at a given maturity date from a continuum of option prices of different

strikes.15

Another interesting implication of the forward equation is that when the volatility

coefficient (now possibly a function of time and spot) is given we can price all options

on the market by only solving one partial differential equation numerically. Andreasen

(1996) observes that this also goes for the hedge ratios of the European options. To

see this define

∆(K,T ) =
∂C(K,T )

∂S
|S=S0. (33)

Differentiation of the forward equation (32) now yields

0 = −∂∆

∂T
− rK ∂∆

∂K
+

1

2
σ2K2 ∂

2∆

∂K2

subject to the initial boundary condition ∆(K, 0) = 1{S0≥K}.

Similar forward equations might be derived for other ‘Greeks’, i.e partial derivatives

of the option price w.r.t. other parameters.

The equation can also be used to show how to hedge exotic options statically. In

Carr, Ellis & Gupta (1998) a model with zero interest and a symmetry condition on

σ(·, ·), which is clearly satisfied in the Black-Scholes setting, is developed. It is then

shown how to hedge for instance down-and-out calls statically by ’standard’ options.

The last point to be stated is the duality of the option pricing problem implied by

the forward equation. Suppose that the time axis is reversed, S0 is a fixed quantity,

and that we are sitting at time T evaluating

ER
[
(S0 −K0)+|KT = K

]
(34)

for the process
dKt

Kt
= (−r)d(−t) + σdWR

t

where WR is some backward running Brownian motion under some probability mea-

sure R. Then the forward equation (32) is the backward equation resulting for this

problem. So we conclude that the option pricing problem might be solved in a dual

economy where time is reversed, the strike is the underlying that pays a proportional

15For further exploration of this see for example Shimko (1991), Derman & Kani (1994), Rubinstein

(1994), and Jackwerth & Rubinstein (1996).
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dividend of r, the option is a put on the initial stock price, and finally the interest rate

is equal to zero. Further we see that in this ”space” the hedge ratio of the original

economy will be a digital option. The option pricing can therefore be performed in a

reversed binomial tree.16

Note that under R we have

K0 = K exp
(

(−r − 1

2
σ2)T + σ(WR

0 −WR
T )
)
.

Using this in (34) gives the Black-Scholes formula by essentially the same calculations

as those at the end of Section 4.

Using (33) we get the following expression for the hedge ratio

ER
[
1{K0≤S0}|KT = K

]
= Φ

(
ln(S0/K) + rT

σ
√
T

+
1

2
σ
√
T

)
.

8 A convergence proof

Cox et al. (1979) were the first to publish a paper with a formal convergence proof

along the lines of this section. A much less known paper with the same result (and

from the same year) is by Rendleman & Bartter (1979). But the use of binomial

models for economic reasoning is much older, dating (at least) back to Arrow and

Debreu in the 50’ies.

Let us consider the following situation: A stock today has a price of S0 and can in

the next period either go up to uS0 or down to dS0. This happens with probabil-

ities p and 1 − p, respectively. In the economy there further exists a risk-free zero

coupon bond maturing in the next period with (discretely compounded) interest rate

rd (u > 1 + rd > d > 0, to avoid dominance), and a call-option on the stock with

exercise price K. The situation is illustrated in Figure 1.

We are interested in hedging the option by trading a shares of stock and b bonds. A

perfect hedge, i.e. an exact replication of the option’s pay-off in every possible future

state, is achieved by letting

a =
Cu − Cd

(u− d)S0
b =

uCd − dCu
(u− d)

(notice that a ≈ ∂C
∂S

, so the analogy to the continuous case is striking).

To prevent arbitrage opportunities the price of the hedge portfolio must be equal to

16For more on the duality see Dupire (1994) and Andreasen (1996).
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dS0 1 Cd = (dS0 −K)+

Figure 1: The One-Period Binomial Model

the present price of the call-option. Writing this out and reshuffling leads to

C0 = R−1(qCu + (1− q)Cd) (35)

where q = (R − d)/(u− d) and R = 1 + rd . From this we see that the price of the

call-option is the discounted expected future value where the expectation is under a

measure that gives probability q of an ’up-jump’. Notice that the original probabilities

do not enter the expression. This hedge argument is the key in Cox et al. (1979).

Notice that we can write (35) as

C0

B0
= EQ0

(
CT
BT

)
, B0 = R−T

with obvious subscript notation and Q denoting the measure naturally induced by q.

So: Using the bond as numeraire, the call price is a Q-martingale. In other words the

notation is consistent with that of Section 5. At this point let us make an observation.

If we let q′ = (uq)/(1 + rd) then a direct inspection reveals that

C0

S0
= EQ

′
0

(
CT
ST

)
with Q′ being the measure induced by q′. Again the notation is consistent: Using the

stock as numeraire, the call price is a Q′-martingale.

The argument is easily extended to a setting with n independent multiplicative bino-

mial movements per unit of time ensuring us that the martingale pricing techniques

of Section 4 carry over in a discrete setting. Using the arguments from Section 5 we

can thus still write out the call price as

C0 = S0Q′(S(n)
T > K)−KB0Q(S

(n)
T > K) (36)
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where

S
(n)
T = S0u

jdTn−j , B0 = R−Tn ,

j
Q∼ bi(Tn, q) , j

Q′∼ bi(Tn, q′),

and ’bi’ denotes the binomial distribution. Again we claim that the call price at

any time can only be a function of current stock price and time. This claim is then

justified by our ability to exactly replicate the final pay-off which only depends on

ST by a dynamic trading strategy in the stock and the bond.

For computational purposes (36) is often rewritten as

C0 = S0Φ̃(m;Tn, q′)−KB0Φ̃(m;Tn, q) (37)

with m being the smallest non-negative integer greater than ln(K/(S0d
Tn))/ ln(u/d)

and Φ̃(m;Tn, q′) denoting the complementary binomial distribution function.

Now let anything with an ’n’ on it refer to a binomial model with n moves per time

unit. Our aim is to show that as n approaches infinity the call price in the n-model

converges to that of the Black-Scholes model. Because of the decompositions and

(14) and (36) and the distribution results (11)-(12) and (15)-(16) our main task is to

choose the parameters of the binomial model such that

lnS
(n)
T

Q→ N(lnS0 + (r − σ2

2
)T, σ2T ) (38)

lnS
(n)
T

Q′→ N(lnS0 + (r +
σ2

2
)T, σ2T ). (39)

Regarding interest rates we don’t have much choice but to let Rn = er/n. This means

that the key parameters we have to choose are the sizes of the up and down moves,

un and dn. A good choice is

lnun =
σ√
n

(40)

ln dn = − σ√
n
. (41)

With Mn and Vn denoting mean and variance of lnS
(n)
T we then have

MQn = lnS0 + Tn(qn lnun + (1− qn) ln dn)

V Qn = Tnqn(1− qn)(lnun − ln dn)2,

and likewise for Q′. Remembering that qn = er/n−dn
un−dn allows us to rewrite Mn and Vn

by Taylor expanding the exponential function to the second order. This reveals that

MQn → lnS0 + (r − σ2

2
)T

V Qn → σ2T,
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and by similar calculations we get convergence ofQ′-moments. So the first and second

moments converge, under the respective measures, and the jumps vanish in the limit.

This allows us to invoke (basically) a Lindeberg-Feller version of the Central Limit

Theorem (see e.g. Duffie (1992)) to confirm the validity of (38) and (39). Finally

dominated convergence ensures that the elements of the binomial decomposition (36)

converge to their continuous counterparts, which establishes the desired result.

We have not used the original probabilities for anything (except that we have implic-

itly assumed them to be non-zero). It is easy to see that we can add any term of order

n or higher in (40) and (41) and still have the same Q (and Q′) convergence results.

This could, if we were such inclined, help us establish convergence of the underlying

process.

The model described in this section illustrates the fundamentals of pricing by no

arbitrage using only linear algebra. Therefore it is ideal for teaching purposes. It is

not the most advanced model in the paper, but it is ’solid as a rock.’ It is also very

handy when we want initial price estimates for exotic derivatives in cases where it is

unclear how more advanced methods work, if indeed they do.

9 The continuous-time CAPM

This section shows that one might also obtain the Black-Scholes formula in the

continuous-time capital asset pricing model by Merton (1971). The derivation is

basically taken from Ingersoll (1987) but a similar derivation appears in Cox & Ru-

binstein (1985). Suppose that the market in total contains N (non-dividend paying)

risky assets that evolve according to the N-dimensional stochastic differential equa-

tion

dSt = ISt(µdt+ ΣdWP
t ),

where IS is the diagonal matrix with diagonal elements (S1, . . . , SN), µ is an N-

dimensional constant vector, Σ is a constant N × N matrix, and WP is an N-

dimensional Brownian motion under P. For simplicity we will suppose that Σ has full

rank. Suppose that there additionally exists a risk free asset paying a constant con-

tinuously compounded interest rate r. Consider an investor that maximises expected

additive utility on some time horizon [0, τ ],

EP
[∫ τ

0
u(xt, t)dt

]
,
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over consumption flow, x, and risky portfolio holdings vector, a, subject to the self-

financing constraint or dynamic budget constraint (where ′ denotes transposition)

dVt = a′tdSt + (Vt − a′tSt)rdt− xtdt
= (Vtθ

′
t(µ− r1) + rVt − xt)dt+ Vtθ

′
tΣdW

P
t

where Vt is the current wealth and θ is the N dimensional vector with elements

θi = aiSi/V . θi is the fraction of the investor’s wealth invested in risky asset i.

Defining the indirect utility as

J(Vt, t) = max
(θs,xs)s≥t

EPt

[∫ τ

t
u(xs, s)ds

]
,

we get the Bellman-Hamilton equation17

0 = max
θ,x

u+
∂J

∂t
+ (V θ′(µ− r1) + rV − x)

∂J

∂V
+

1

2
V 2θ′ΣΣ′θ

∂2J

∂V 2
.

The first order conditions imply that in optimum

θ = − ∂J/∂V

V ∂2J/∂V 2
(ΣΣ′)−1(µ− r1).

Observe that for all i, j the ratio θi/θj is independent of wealth and utility. So if all

investors have additive separable utility they will all hold the same portfolio of risky

assets. This means that the market portfolio of risky assets will be given by

θM = k(ΣΣ′)−1(µ− r1)

for some one-dimensional process k. The expected instantaneous excess return of the

(risky) market portfolio is therefore

µM − r = k(µ− r1)′(ΣΣ′)−1(µ− r1),

and the local variance of the market return is

v2
M = k2(µ− r1)′(ΣΣ′)−1(µ− r1).

The vector of local covariances between the market portfolio and instantaneous return

of the assets is given by

c = k(µ− r1).

17For an intuitive proof of the Bellman-Hamilton equation see for example Ingersoll (1987).
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Combining these equations we get

µi = r +
ci
v2
M

(µM − r).

Now suppose an option contract on Si is introduced on the market in zero net supply.

Since the market is dynamically complete the market equilibrium is not changed and

the above expected return relation is still valid. If the option price is only a function

of the underlying stock and time, the Ito formula implies that the local covariance of

the return of the option with the market return can be written as

1

C

∂C

∂S
ci

Therefore the expected instantaneous return of the option contract is given by

r +
1

C

∂C

∂S

ci
v2
M

(µM − r).

Using the Ito formula on the option price, C(Si(t), t), yields that the instantaneous

return of the option contract is given by

1

C

[
∂C

∂t
+ µiSi

∂C

∂Si
+

1

2
‖Σi‖2S2

i

∂2C

∂S2
i

]
.

Equating this to the return of the option and inserting the expected return of the

underlying stock yields the partial differential equation

rC =
∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
,

where we have omitted the subscript on the stock and introduced the notation

σ2 = ‖Σi‖2. We have thereby derived the Black-Scholes partial differential equa-

tion in the context of the continuous-time CAPM. The formula for the European call

can be calculated as in Section 3. This approach relies on the assumption that the

option price is a function of time and current stock only. As shown in Section 3 this

assumption can be justified by the Black-Scholes hedging argument that uniquely

fixes the option price given no arbitrage possibilities. But here our argumentation

is not based on a hedging argument but rather a risk-return relation. Therefore the

above derivation shows the consistency of the Black-Scholes formula with the CAPM

pricing relation.

From the last equations it is tempting to conclude that the Black-Scholes formula or

a preference-free pricing formula can be derived in the context of any linear factor

model of expected asset return like the continuous-time CAPM. This is only true
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though if the market additionally is dynamically complete or effectively complete. In

general, if a new asset is introduced in an incomplete economy, a new equilibrium will

be the outcome and the prices of the existing assets will change. As mentioned, an

exception to this is when an incomplete market is effectively complete. An example

of this situation is the consumption based capital asset pricing model described in

Merton (1973a) where the state variables determining the investment opportunity set

are spanned by the marketed assets.18

10 A representative investor approach

In this section we show that the Black-Scholes formula can be derived in a model where

the continuous-trade assumption is replaced by the assumption of a representative

investor with power utility. The approach was introduced by Rubinstein (1976).

First, let us consider a one-period model where trading can be performed at the times

0, T . Suppose an agent maximises expected utility of terminal consumption

EP [u(xT )]

subject to the budget constraint

xT = a′ST

V0 = a′S0,

where a is the vector of portfolio holdings, S is the vector of prices of the marketed

assets, and V0 is the initial wealth. Forming the Lagrangian yields the first order

condition

S0 = λ−1EP [u′(xT )ST ] ,

where the prime denotes the first derivative and λ is the Lagrange multiplier of the

budget constraint. Specifically we get for the risk-free asset

e−rT = λ−1EP [u′(xT )] .

Combining these equations we get the valuation equation

S0 = e−rTEP
[

u′(xT )

EP [u′(xT )]
ST

]
.

18See also Christensen, Graversen & Miltersen (1996).
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With these preliminaries let us now assume that the market has a representative

investor with power utility function

u(x) =
x1+γ

1 + γ
,

with γ < 0, i.e. −γ is the constant relative risk aversion of the representative investor.

Now we redefine the notation; let S be the price of one particular stock, and V0 be

initial aggregate wealth.

Assume that aggregate consumption at time T and the time T stock price are jointly

log-normally distributed, so that we can write

ST = S0e
(µ− 1

2
σ2)T+σWPT

xT = V0e
(µx− 1

2
σ2
x)T+σxWPx,T ,

where WP ,WP
x are P-Brownian motions with constant correlation ρ.

Note that
u′(xT )

EP [u′(xT )]
= e−

1
2
γ2σ2

xT+γσxWPx,T .

For the market to be in equilibrium we must have that the valuation equation holds

for the stock. Inserting the above in the valuation equation yields

S0 = S0e
−rTEP

[
e(µ− 1

2
(σ2+γ2σ2

x))T+σWPT +γσWPx,T
]

= S0e
(µ+σγσxρ−r)T ,

so

µ = r − γρσσx. (42)

Now we want to evaluate a call-option on ST with strike K. Using the valuation

equation and the above derivations we get:

C0 = e−rTEP
[
e−

1
2
γ2σ2

xT+γσxWPx,T (ST −K)+
]

= S0EP
[
e−

1
2

(σ2+2γρσσx+γ2σ2
x)T+σWPT +γσxWPx,T1{ST≥K}

]
−Ke−rTEP

[
e−

1
2
γ2σ2

xT+γσxWPx,T1{ST≥K}
]

By introducing the joint density of (WP ,WP
x )T we could calculate the expectations

to give us the Black-Scholes formula. But it is much easier to make use of the change

of measure induced by the Girsanov factors under the expectations.

Define two new equivalent probability measure Q′ and Q by the Radon-Nikodym

derivatives

dQ′
dP = e−

1
2

(σ2+2γρσσx+γ2σ2
x)T+σWPT +γσxWPx,T

dQ
dP = e−

1
2
γ2σ2

xT+γσxWPx,T .
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Using these probability measures we can write

C0 = S0Q′(ST > K)− e−rTKQ(ST > K).

The Girsanov Theorem together with relation (42) imply that

ST = S0e
rT+ 1

2
σ2T+σWQ

′
T

= S0e
rT− 1

2
σ2T+σWQT ,

whereWQ′,WQ are some standard normal Brownian motions under the two respective

probability measures.19 Using this we immediately obtain the Black-Scholes formula.

In this section the assumption of continuous trade was replaced by the assumption

of existence of a representative investor. Unless investors have identical or very sim-

ilar preferences a representative investor is in general not guaranteed to exist in an

incomplete market like the one analysed. Even if a representative investor exists, the

market equilibrium, prices of existing assets, and the representative preferences might

change when a new asset (in this case the option) is introduced on an incomplete mar-

ket. Despite these drawbacks this approach is widely used in models of incomplete

markets.

11 Discussion

Economics has been described as the only field where people can win Nobel Prizes

for saying the exact opposite things. This paper has shown that in the subset of

economics known as ’financial mathematics’ there is a very high degree of consistency

between models and approaches.

We did this by showing that as special cases they could produce the Black-Scholes

formula which, despite its widespread recognition and use, certainly is no trivial result.

Some of the methods seemed different (compare the PDEs of Section 3 to the SDEs

of Section 4) - but were in fact very similar. Some approaches seemed at a first

glance to offer little extra (comparing Section 4 to Sections 5 and 7 it is unclear

what could possibly be the benefit of ’counting in units of the stock’ or ’letting

time run backwards’ in a time-homogeneous model) - but they did. One model

was very intuitive (Section 8) - one was very much the opposite (Section 6). Two

models (Sections 9 and 10) build on the long-honoured economic concept of utility

19Notice: The correlation between the two coordinates is ρ no matter which of the two measures

(Q or Q′) we use.
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maximisation, and produced the Black-Scholes formula as a special case when utility

functions and/or distributions of returns were restricted.

Still, after eight proofs of the Black-Scholes formula skeptics could ask if the finance

community has not progressed beyond that result. We believe that it has, and that

the criticism is unreasonable. We have illustrated that by, in each of the Sections 3

through 10 outlining the applicability of the particular model or approach to more

general cases than the one originally considered by Black, Scholes and Merton. This

included both more advanced dynamics of fundamentals and contractually more so-

phisticated derivatives. Hence we hope to have convinced the reader that each method

has validity beyond the basic setting, which in turn justifies the research done in the

past, as well as the research that will continue for a long time. If the reader was

already aware of this, we hope to have provided ’a couple of cheap thrills.’
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We extend the short rate model of Vasicek (1977) to include jumps in the

local mean. Conditions ensuring existence of a unique equivalent martingale
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1 Introduction

Many papers have extended the classical mean reversion interest rate models of Va-

sicek (1977) and Cox, Ingersoll & Ross (1985) as well as their parametric generali-

sation in Chan, Karolyi, Longstaff & Sanders (1992). Examples of such extensions

include Longstaff & Schwartz (1992), Andersen & Lund (1996), and Conley, Hansen,

Luttmer & Scheinkmann (1997). Typically one or more additional sources of Wiener-

noise are introduced through the volatility parameter or through the level towards

which the short rate reverts.

The former approach introduces stochastic volatility interest rate models. How-

ever, recent analysis suggests that stochastic short rate volatility has little effect on

bond prices; especially for short term bonds. This conclusion is for instance sug-

gested in the work of Schlögl & Sommer (1997). They examine what impact different

parametrisations of the diffusion coefficient has on the class of yield curves in oth-

erwise similar interest rate models. They find that any term structure from Cox et

al. (1985) can be well approximated by some term structure from the Vasicek (1977)

or indeed by some term structure from any member of the CKLS-family. Thus if

term structure modelling is our primary aim it seems more interesting to introduce

an additional noise factor through the drift specification of the short rate.

We choose the computationally tractable Vasicek (1977) model as our basis model

and augment it by letting the level to which the process reverts change. These

changes are governed by arrivals from a Poisson-process. This means that jumps

will be present in the drift of the short rate process. The short rate process remains

continuous but as we shall see, zero coupon bond prices jump. In other words we will

see rapid shifts in the term structures. Moreover the term structures generated over

time can easily cross each other. Both these features will make the traditional static

duration measures perform badly.

The paper proceeds as follows: In Section 2 the model is presented and in Section

3 we demonstrate how an equivalent martingale measure can be constructed. This is

important for derivative pricing and since our modelling framework is “indirect” all

assets in the fixed income market, including bonds, are derivatives on the short rate

and the mean factor. Taking an equivalent martingale measure as given in Section 4

we show that zero coupon bond prices are multiplicatively separable in a “Vasicek”

and a “jump” component. This makes calibration to the current term structure easy.

We derive computationally efficient algorithms for calculation of bond prices. In
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Section 5 we investigate the pricing of more complex derivatives, zero coupon bond

options in particular. Section 6 concludes the paper and outlines topics for future

research.

2 The model

We consider a time interval [0, T ] on with the stochastic basis (Ω,F , (Ft)t∈[0,T ], P )

satisfying the usual conditions. On the stochastic basis we assume that there exists

a Wiener process (Wt) and a Poisson process (independent of (Wt)) (Nt) with P -

intensity λP .

The short rate process (r(t)) (or sometimes: (rt)) is defined by the stochastic

differential equation

dr(t) = κ(θ(t−)− r(t−))dt+ σdW (t) (1)

where κ, σ > 0 and

dθ(t) = (θH − θL)
(
1{(θ(t−)=θL} − 1{θ(t−)=θH}

)
dN(t) (2)

given r0 and θ0 ∈ {θL, θH}. The interest rate process is mean reverting towards a

stochasticly shifting long term level (θ(t)) with κ being the speed of mean reversion

and σ being the volatility parameter. The local mean level (θ(t)) can take on two

values; a high level θH and a low level θL. Because the changes are controlled by

arrivals from a Poisson-process, θ is “memoryless”; the (distribution of the) time we

have to wait for the next change does not depend on how long we have been in the

current state. Note that if θ were constant, (1) would be the short rate specification

from Vasicek (1977).

3 Martingale measures

In this section we address the existence of equivalent martingale measures. Recall

that the existence of an equivalent martingale measure will imply that our model is

arbitrage consistent. Martingale measure characterizations in jump-diffusion interest

rate models have earlier been obtained by Shirakawa (1991). However, in the model

of Shirakawa (1991) the jumps directly impact the level of the short rate whereas the

jump specification in the present paper only indirectly affects the short rate through

the drift of this process.
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Assumption 1. Zero coupon bond prices depend only and smoothly on r, θ and time.

Specifically,

P (t, T ) = HT (r(t), θ(t), t),

where HT ∈ C2,2,1(R3) for all T . Further, there exists a bank account in the market

with B(0) = 1 and price dynamics given by

dB(t) = r(t)B(t)dt.

With subscripts denoting partial derivatives we can now define

αT (t) =
1

HT

(
HT
r κ(θ(t)− r(t)) +

1

2
HT
rrσ

2 +HT
t

)
,

δT (t) = σ
HT
r

HT
,

and

CT (t) = (1{θ(t)=θL} − 1{θ(t)=θH})(H
T (r(t), θH , t)−HT (r(t), θL, t)).

Assumption 2. The system of equations

λ(t) =
αT (t) + CT (t)λQ

N − r(t)
δT (t)

(3)

has a continuous solution (λ, λQ
N

) that (i) does not depend on T , (ii) is unique (iii)

is deterministic, and (iv) has constant second argument, λQ
N

.

The following result is proven in Appendix A.

Proposition 1. Assumptions 1 and 2 imply that a unique equivalent martingale

measure (corresponding to the bank account as numeraire) Q exists; in particular

there are no arbitrage opportunities.

The Q-dynamics are given by

drt = κ(θt + σλ(t)/κ− rt)dt+ σdWQ
t , (4)

with WQ being a Q-Brownian motion and

dθ(t) = (θH − θL)
(
1{(θ(t−)=θL} − 1{θ(t−)=θH}

)
dNQ(t), (5)

where θ0 ∈ {θL, θH} and NQ
t is a Q-Poisson process (independent of WQ) with inten-

sity λQ
N

.
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Assumption 2 and Proposition 1 can be interpreted in the following way. A P -

specification of the short rate dynamics is not enough to determine zero coupon bond

prices; risk premia corresponding to the “sources of risk” are needed (see for instance

Björk (1998, Chapter 16).) These risk premia must be “universal”, i.e. not asset

specific. This is reflected in Assumption 2(i) and, when taken in conjunction with

parts (iii) and (iv), means that the uniqueness part will rarely be a problem. The

risk premia can then be used to introduce the martingale measure Q, the existence of

which we know precludes arbitrage. Proposition 1 shows why Assumption 2(iii)−(iv)

are needed; they ensure the model has same structure under P and Q. Put differently,

if we exogenously specify the dynamics of two zero coupon bonds in such a way that

Assumption 2 (ii)−(iv) hold then we know exactly what Q looks like, what dynamics

zero coupon bonds must have, and how to price and hedge interest rate derivatives.

Alternatively, one could take the latter part of Proposition 1 as the denfinition of

the model, but this does not fully reflect the fact that despite jumps be present, the

model is not “grossly incomplete”. Ideally, Equations (1)-(2) and Assumption 2 are

things that could and should be verified empirically. This, however, is far beyond the

scope of this paper.

4 Bond prices

In Section 3 we established the existence of an equivalent martingale measure for

our model. In this section we develop manageable expressions for zero coupon bond

prices.

We have the following decomposition result.

Proposition 2. Let r(0) = r0, θ(0) = θ0 ∈ {θL, θH}, and A denote the set of odd

numbers. The short rate can then be written as

r(t) = a(t) + b(t) + c(t)

where

a(t) = r0e
−κt + κ

∫ t

0

e−κ(t−s)θ0ds+ σ

∫ t

0

e−κ(t−s)dWQ(s),

b(t) =

{
κ(θH − θL)

∫ t
0
e−κ(t−s)1{NQ

s ∈A}ds if θ0 = θL

κ(θH − θL)
∫ t

0
e−κ(t−s)1{NQ

s 6∈A}ds if θ0 = θH
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and

c(t) = σ

∫ t

0

e−κ(t−s)λ(s)ds.

In particular (a(t)) is independent of (b(t)) and

a(t) ∼ N

(
θL + e−κt(r0 − θL),

σ2

2κ
(1− e−2κt)

)
. (6)

Proof. Using Ito’s formula on (eκtrt) gives us that

rt = r0e
−κt + κ

∫ t

0

e−κ(t−s)(θs + σλ(s)/κ)ds+ σ

∫ t

0

e−κ(t−s)dWQ(s).

By noting that we may write

θ(t) =

{
θ0 + (θH − θL)1{NQ

t ∈A}
if θ0 = θL

θ0 + (θH − θL)1{NQ
t 6 ∈A}

if θ0 = θH ,

the first part follows. The independence is evident, and since
∫ t

0
h(s)dWQ(s) ∼

N(0,
∫ t

0
h2(s)ds) for any deterministic, continuous function h, we have the last part.

♦

This decomposition is important because of the generic bond price formula (which

follows form the very definition of Q)

P (t, T ) = EQ

(
exp(−

∫ T

t

rsds)|Ft
)
.

But before stating a decomposition result for zero coupon bond prices, let us now

introduce some further notation. For arbitrary real numbers θ0 and θ̂0 we define

h(θ0, T ) = EQ

(
exp

(
−κ(θ̂0 − θ0)

∫ T

0

∫ t

0

e−κ(t−s)1{NQ
s ∈A}dsdt

))
and

ĥ(θ0, T ) = EQ

(
exp

(
−κ(θ0 − θ̂0)

∫ T

0

∫ t

0

e−κ(t−s)1{NQ
s 6∈A}dsdt

))
.

Since 1{NQ
s ∈A} + 1{NQ

s 6∈A} = 1, it is clear that

h(θ0, T ) = ĥ(θ0, T )EQ

(
exp

(
−κ(θ̂0 − θ0)

∫ T

0

∫ t

0

e−κ(t−s)dsdt

))
= ĥ(θ0, T )em(bθ0;0,T )−m(θ0;0,T ),
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where

n(t, T ) =
1− exp(−κ(T − t))

κ
, (7)

m(θ; t, T ) =
(n(t, T )− (T − t))(κ2θ − σ2/2)

κ2
− σ2n(t, T )2

4κ
. (8)

(It may seem that the m-function is defined in a strange way; it will soon become

apparent why we do this.) We shall adapt the convention that the -̂notation is used

to denote “complementary state” i.e.,

θ̂0 = θL if θ0 = θH ,

θ̂0 = θH if θ0 = θL,

and similarly θ̂(t) = θL if θ(t) = θH , θ̂(t) = θH if θ(t) = θL.

Proposition 3. Let r(0) = r0, θ(0) = θ0 ∈ {θL, θH}, and A be the odd numbers.

Then the price of the T -maturity zero coupon bond equals

P (0, T |r0, θ0) = P θ0
V (r0, 0, T ) exp

(
−
∫ T

0

c(s)ds

)
h(θ0, T ), (9)

and

P (0, T |r0, θ0) = P
bθ0
V (r0, 0, T ) exp

(
−
∫ T

0

c(s)ds

)
ĥ(θ0, T ). (10)

where P θ
V(r0, t, T ) denotes the price of a zero coupon bond in a Vasicek model with θ

as the long term level of the short rate and is explicitly given by

P θ
V(rt, t, T ) = exp(m(θ, t, T )− rtn(t, T )),

where functions m and n are given by (8) and (7), respectively.

The ratio of bond prices immediately before and after a jump is

P (0, T |r0, θ
L)

P (0, T |r0, θH)
=

h(θL, T )

ĥ(θH , T )

=
EQ
(

exp(−κ(θH − θL)
∫ T

0

∫ t
0

1{NQ
s ∈A}e

−κ(t−s)dsdt)
)

EQ
(

exp(−κ(θH − θL)
∫ T

0

∫ t
0

1{NQ
s 6∈A}e

−κ(t−s)dsdt)
) . (11)

Since (r(t), θ(t)) is jointly Markov, we also have

P (t, T |rt, θt) = P
θ(t)
V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
h(θ(t), T − t), (12)
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and

P (t, T |rt, θt) = P
bθ(t)
V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
ĥ(θ(t), T − t). (13)

Finally,

P (t, T |r0, θ0) = P θL

V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
×
(
h(θL, T − t)1{θ(t)=θL} + ĥ(θH , T − t)1{θ(t)=θH}

)
(14)

and

P (t, T |r0, θ0) = P θH

V (r(t), t, T ) exp

(
−
∫ T

0

c(s)ds

)
×
(
h(θH , T − t)1{θ(t)=θH} + ĥ(θL, T − t)1{θ(t)=θL}

)
. (15)

Proof. Note that the distribution of a(t) is exactly that of the short rate in a θ0-

standard Vasicek model. Using this for θ0 = θL, combining it with Proposition 2, the

generic bond price formula and the bond price formula in e.g. Vasicek (1977) gives

(9). Equation (10) is also clear since in the Vasicek model

P
bθ0
V (r0, 0, T ) = P θ0

V (r0, 0, T )em(bθ0;0,T )−m(θ0;0,T ).

Equation (11) follows if we use (9) with θ0 = θL and (10) with θ0 = θH . Equations

(12)-(13) are immediate generalizations. Finally, when combining (12)-(13) we get

(14)-(15). ♦

Let us note that the above arguments work only for a model with deterministic

short rate volatility. Specifically, the decomposition of bond prices does not hold in

a CIR- or CKLS version of the model.

Figure 1 depicts a typical trajectory for the short rate process. Note that we can

do exact simulation of the short rate process by first simulating jumps from a Poisson

process and then using the distribution result for a(t) given in Proposition 2.

Figure 1 GOES ABOUT HERE

We will refer to the last factor on the LHS of (9) as a jump premium. If θL < θH ,

it is less that 1 meaning that bond prices are lower than in a θL-Vasicek model,

which is what we expect because the short rate sometimes reverts to a higher level.

Note also that the ratio in (11) clearly is not equal to 1, so bond prices, and hence

yields (y(t, T ) = −(lnP (t, T ))/(T − t)) of strictly positive maturities exhibit jumps
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in our model even though the short rate itself is a continuous process. Further the

ratio is independent of σ (which is intuitively reasonable) and r0. Also, (22), and

the multiplicative decomposition of bond prices shows us that the Wiener-part is the

same as in a Vasicek model.

Consider for a moment the jump premium as a known function (the following

section will show how to calculate it.) Proposition 3 makes it very easy to calibrate

the model to market data using the ideas in Hull & White (1990). Specifically, let

P obs(0, T ) denote the observed zero coupon bond prices and put

f(T ) = − ln

 P obs(0, T )

P θL
V (0, T )EQ

(
exp(−

∫ T
0
b(s)ds)

)
 .

If we assume κ, θL, θH , σ, and λQ
N

have been estimated, for example from time series

data1, the model is calibrated by choosing λ such that

f(T ) = σ

∫ T

0

∫ s

0

e−κ(s−u)λ(u)duds for all T. (16)

Differentiating (16) twice w.r.t. T gives the very neat result that

λ(T ) =
f ′′ − κf ′

σ
for all T.

In practice, however, it is doubtful whether enough points on the yield curve are

known to actually perform the double differentiation. In this case we would calibrate

by a forward algorithm applied to (16).

4.1 Backward induction

We now give an efficient numerical evaluation method for pricing of zero coupon

bonds. The technique generalizes to any model where the short rate can be decom-

posed as a sum of independent Markov-processes.

To simplify the exposition suppose (without loss of generality for the purposes of

this section) θ(0) = θL and let

g(θt, t;T ) = EQ

(
exp(−

∫ T

t

b(s, t)ds)|Ft
)

1This is not without subtle points, none-less-so because we need the Q-intensity of the Poisson

process. Notice also that the λ-process will depend on the estimates.
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where

b(s, t) = κ(θH − θL)

∫ s

t

exp(−κ(s− u))1{θu=θH}du

(so the b(s)-notation in the previous section is then shorthand for b(s, 0).) Note that

from (14) we have

P (t, T |r0, θ0) = P θL

V (r0, θ0) exp(−
∫ T

t

c(s)ds)g(θ(t), t;T ),

so if we can find g, then we can calculate bond prices. For the rest of this section we

suppress the last argument of g.

Since g(θ(T ), T ) = 1 are able to compute g(θ0, 0) by backward induction. This

backward induction technique is for instance well-known from lattice methods of

pricing contingent claims (e.g. finite difference methods and binomial methods.) As

it is often the case in such situations we shall be able to compute values for g at all

time points used in the backward equation. This in turn allows us to characterize the

entire term structure going backward through time just once. In the present set-up

the backward induction technique will be extremely efficient because the underlying

Markov state variable θ can take two values only. We will now denote the intensity

λQ
N

simply by λ; this should cause no confusion.

Proposition 4. Consider a discretization of the time interval [0, T ] through the n+1

points 0 = t0 ≤ t1 · · · ≤ tn−1 ≤ tn = T and set 4i = ti− ti−1. For i < n, a first-order

accurate (as sup{4j} → 0) approximation to g is given by the recursive formulae

ĝ(θL, ti−1) = e−λ4i
(
ĝ(θL, ti)f̂(θL, 0; ti) + λ4iĝ(θH , ti)f̂(θL, 1; ti)

)
(17)

ĝ(θH , ti−1) = e−λ4i
(
ĝ(θH , ti)f̂(θH , 0; ti) + λ4iĝ(θL, ti)f̂(θH , 1; ti)

)
(18)

where ĝ(·, tn) = f̂(·, ·; tn) = 1 and

f̂(θL, 0; ti) = 1,

f̂(θH , 0; ti) = exp

(
(θL − θH)

(
4i −

e−κ(T−ti) − e−κ(T−ti−1)

κ

))
,

f̂(θH , 1; ti) = exp
(

(θL − θH)
(4i

2
− 1

κ

( 2(1− e−κ4i − κ4ie
−κ4i)

κ4i

+e−κT
(
eκti − eκti − eκti−1

κ4i

))))
,

f̂(θL, 1; ti) = exp
(

(θL − θH)
(4i

2
− e−κT

κ

(eκti − eκti−1

κ4i
− eκti

)))
.
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A proof can be found in Appendix B.

Using Proposition 4 and time-shifting we can calculate the whole term structure.

In practical applications we prefer to use e−λ4/(e−λ4(1 +4λ)) = 1/(1 +4λ) rather

than e−λ4 as multiplication factor in equations (17)-(18). This does not change the

order and it gives better results for small n (large 4) (an inspection of the O(·)-term

in the proof of Proposition 4 reveals why.)

Different yield curves shapes are shown in Figure 2.

Figure 2 GOES ABOUT HERE

The output from the algorithm is so smooth that the accuracy/speed can by improved

by some extrapolation technique. We used Richardson extrapolation (cf. Press,

Teukolsky, Vetterling & Flannery (1992).) This does not increase speed very much,

but the calculations can be used to check whether the algorithm has global first-order

accuracy (it has) and to give an error-estimate.

Figure 3 shows what the yield curve looks like immediately before and after a

regime switch.

Figure 3 GOES ABOUT HERE

4.2 Simulation

There are other ways of looking at the jump premium. We now give an evaluation

approach based on simple simulation techniques. An advantage of this approach is

that it easily extends to path-dependent parameter specifications or models with more

than two θ-levels.

Define τi as the time of the ith jump, i.e. τi = inf{t|NQ
t > i − 1} (τ0 ≡ 0), and

look at

I(T ) :=

∫ T

0

b(t)dt

= (θH − θL)

∫ T

0

∞∑
i=1

(e−κ(t−τ2i∧t) − e−κ(t−τ2i−1∧t))dt, (19)

where the second equality hinges on A being the odd numbers. If we let m(T ) :=

sup{i|τ2i−1 ≤ T} (so m(T ) < ∞ for almost all ω) then the terms in the seemingly

infinite sum in (19) vanish for i > m(T ) and we get

I(T ) = (θH − θL)

m(T )∑
i=1

{∫ T

0

(e−κ(t−τ2i∧t) − e−κ(t−τ2i−1∧t))dt

}
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= (θH − θL)

2m(T )∑
i=1

(−1)i
{
τi ∧ T −

e−κ(T−τi) − e−κ(τi∧T−τi)

κ

}
. (20)

We can now implement a Monte Carlo simulation approach in a way that is both

easy (w.r.t. ”time needed to program”) and efficient (compared to simulating paths

of the short rate process.) To simulate an outcome of I(T ) (call this Ĩk(T )) we only

have to simulate independent exp(λ)-distributed variables, because we know that the

successive waiting times, τi − τi−1, are independent and exp(λ)-distributed. Finally,

with K simulations we approximate by

EQ(exp(−I(T ))) ≈ 1

K

∑
k

exp(−Ĩk(T )).

In a computer implementation we simulate a (long) series of τi’s and generate Ĩk(T )

for different values T thus giving us several points on the yield curve. To speed up

this process we rewrite (20) as

I(T )

(θH − θL)
=

2m(T )∑
i=1

(−1)i(τi ∧ T )− e−κT

κ

2m(T )∑
i=1

(−1)ieκτi +
e−κT

κ

2m(T )∑
i=1

(−1)ie−κ(τi∧T−τi).

A small increase in T effects only the last few terms in the first two sums, and the

last sum is ”almost telescoping”. Thus, we can update in a simple fashion without

having to redo all the sums. Further, careful programming allows us to calculate

Ĩk(T ) without exponentiating numerically large numbers.

Table 1 compares numerical methods:

• “Naive simulation” is just that. We first simulate jump times and then use the

Euler scheme on (4) (treating θ as deterministic) to generate paths of the short

rate. Sufficiently many paths give an estimate of the term structure.

• The simulation method described in this section (unmodestly referred to as

“smart”.)

• The backward induction technique.

Table 1 GOES ABOUT HERE

The experiment has been designed such that the 10-year yield is determined within 1

basispoint (the error/uncertainty is quite insensitive to maturity.) The methods agree

(as they should, of course) on yield-estimates but differ markedly in the time needed
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to obtain these. Unsurprisingly the “naive” method is very slow, but we see that the

backward induction technique is about 15 times faster than the “smart” simulation.

Also, the absolute runtime for the backward induction is of a magnitude that justifies

thinking of the bond price as a “known function” in the following.

5 Pricing bond options

In this section we look at pricing of more advanced interest rate derivatives, call-

options on zero coupon bonds in particular.

This means that we will be looking at the generic call-option price formula for the

time t price of a call-option expiring at time TE on a zero coupon bond maturing at

time TM

call(t) = EQ
(
e−

R TE
0 r(s)ds (P (TE, TM)−K)+ |Ft

)
.

The homogeneity of the pay-off function and the multiplicative bond price decompo-

sition are key features in reducing the problem to one that involves only the θ-process.

Specifically, we have the following proposition.

Proposition 5. Let r(0) = r0, θ(0) = θ0. Assume that c ≡ 0 and let callθ
L

V (r0, K)

denote the call option price in a θL-Vasicek model (an explicit formula can be found

e.g. in Jamshidian (1989).) The price (at time 0) of a call-option with strike price

K expiring at time TE on a zero coupon bond maturing at time TM satisfies

call(r0, θ0, K) = EQ

(
exp

(
−
∫ TE

0

b(s)ds

)
e−n(TE ,TM )b(TE) ξ(θ(TE), TM − TE)

× callθ
L

V

(
r0,

K

ξ(θ(TE);TM − TE)

))
where the random variable ξ(θ(TE), TM − TE) is given by

ξ(θ(TE);TM − TE) = h(θL, TM − TE)1{θ(TE)=θL} + ĥ(θH , TM − TE)1{θ(TE)=θH}

with

θ(TE) = θ0 + (θ̂0 − θ0)1{NQ
TE
∈A} = θ̂0 + (θ0 − θ̂0)1{NQ

TE
6∈A}

and (as previously)

b(t) =

{
κ(θH − θL)

∫ t
0
e−κ(t−s)1{NQ

s ∈A}ds if θ0 = θL

κ(θH − θL)
∫ t

0
e−κ(t−s)1{NQ

s 6∈A}ds if θ0 = θH
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A proof can be found in Appendix C.

The advantage of the result in Proposition 5 is that the expectation involves only

the θ-process and only the time-interval [0;TE]. Therefore it can be easily evaluated

by the simulation technique described in Section 4.2. The computation time needed to

obtain a certain degree of accuracy is of course platform- and parameter dependent but

for “reasonable” choices (meaning, in particular, the one considered in the following)

accuracy within 0.1 % of the option price for at-the-money options takes less than

0.2 second. To compare to option prices in the Vasicek model define the spread as

δ := θH − θL

and consider this set-up:

Bond: r0 = (θH + θL)/2, κ = 2, σ = 0.02, λ = 1.

Option: TE = 1, TM = 10, K = 0.50933.

So, δ = 0 gives a Vasicek-model (with a very flat yield curve) and δ < 0 means

that the short rate is “on its way up”. The strike price has been chosen such that

the option in the Vasicek model is “forward-at-the-money” meaning that the strike

is equal to the forward price of the underlying i.e. K = P (0, 10)/P (0, 1). Figure

4 shows call prices for negative spreads (for positive spreads the call-option price is

monotonely increasing.) We notice a peculiar effect: For numerically small, negative

values of δ the call price is less than the Vasicek price, but for δ numerically large,

the price is higher. The explanation for this can be found from the decomposition

rTE = a(TE) + κδ

∫ TE

0

1{NQ
s ∈A}e

−κ(TE−s)ds.

A larger value of θL (i.e. δ < 0) will (by a symmetry-argument) increase the expected

value of rTE , which tends to decrease bond price at time TE, hence lowering the call

price. On the other hand, a numerically larger δ increases the variance of rTE (only

the last part of the decomposition is affected, so std.dev.(rTE) ∝ |δ|) which increases

the variance of the time TE bond price; this will tend to increase the call price.

However, it could easily be argued that the comparison of call-option prices is like

comparing apples and pears since varying δ creates different initial term structures.

In market applications we would include risk premia and fit to the (partially) observed

initial term structure as outlined in the previous section. But another, more simple,

way of making reasonable comparisons is to correct the strike price of the option
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such the it is always forward-at-the-money (and otherwise doing as outlined above.)

Call-option prices obtained in this way are also shown in Figure 4; we see that the

“mean-effect” disappears.

The algorithm for computing zero coupon bond option prices extends (at little

extra computational cost) to options on coupon bearing bonds when the results in

Jamshidian (1989) are used.

Finally, let us note that Eurodollar futures prices can also easily be found. Fol-

lowing Musiela & Rutkowski (1997, Section 16.1.3) we have

EDF = 2− EQ

(
1

P (T, T + δ)

)
= 2− EQ

(
1

ξ(θ(T ); δ)

)
(2− EDFθ

L

V ),

where EDFθ
L

V , the Eurodollar futures price in the Vasicek model, is easy to find.

6 Conclusion

In this paper we developed a regime switching fixed income model. This was done

by augmenting the Vasicek (1977) model allowing the interest local mean to shift

between a high and a low state.

We gave sufficient conditions for the model to and arbitrage free and found a

(convenient) equivalent martingale measure.

A semi-analytic formula for zero coupon bond prices was found and we gave ef-

ficient numerical methods for calculating these prices. This made calibration to the

current term structure easy. Finally, we looked at pricing of other interest rate deriva-

tives and found that these could also easily, though numerically, be priced in the

model.

In analysing the term structures we remarked the possibility of extensive and rapid

shifts in the curves. In particular we noted that when the steady state level of the

short rate switches the yield curve might change shape and that we might experience

non-parallel shifts in the term structure over a small horizon of time. We remarked

that the large impact on the interest rate model of introducing jumps in the drift of

the short rate process is consistent with the work of Schlögl & Sommer (1997).

The model is of course very simple since θ only has two levels. An obvious gener-

alization is letting it follow a finite-state Markov chain independent of W . We then
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still obtain a decomposition into a “Vasicek” and a “jump” part (as in Proposition 3.)

Some results for models of this type can be found in Naik & Lee (1994) and Landén

(1998). However, implementing these more general models in a computationally effi-

cient way seems to be hard.

Others have considered altering the specification of the drift of the short rate. By

specifying the θ-process as a Gaussian mean-reverting process (under an equivalent

martingale measure) we can end up in the class of affine yield-curve models in which

closed-form solutions for bond prices are known (see Balduzzi, Das, Foresi & Sun-

daram (1998).) Models of this type do not have the bi- (or multi-)modal short rate

distribution that is a characterizing feature of our and the above mentioned regime

switching models.

A way to obtain qualitatively the same short rate behaviour (two “local levels”)

is to use the one-factor framework of Conley et al. (1997) were the drift is a linear

combination of powers of r and can have multiple roots. Models of this type have

enjoyed some empirical success but are not very feasible for bond pricing and term

structure calibration.

In conclusion, many criteria should be considered (simplicity, “time-series”-, and

“cross-sectional”-behaviour, derivative pricing, computational aspects) when choosing

an interest rate model. We have presented a model that we feel meets a number of

the requirements and has proved worthy of investigation.
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A Proof of Proposition 1

Pick an arbitrary T . The equations in the following are then understood to be valid

for t < T . An extended version of Ito’s formula (see Jacod & Shiryaev (1987)) implies

that

dHT (r(t), θ(t), t) = HT
r (r(t−), θ(t−), t−)dr +

1

2
HT
rr(r(t−), θ(t−), t−)(dr)2

+HT
t (r(t−), θ(t−), t−)dt+HT (r(t), θ(t), t)−HT (r(t−), θ(t−), t−).

Noting that

HT (r(t), θ(t), t)−HT (r(t−), θ(t−), t−) =

(1{θ(t−)=θL} − 1{θ(t−)=θH})(H
T (r(t−), θH , t−)−HT (r(t−), θL, t−))dN(t)

and inserting from (1) we obtain

dHT (r(t), θ(t), t) =

{
HT
r κ(θ(t−)− r(t−)) +

1

2
HT
rrσ

2 +HT
t

}
dt

+(1{θ(t−)=θL} − 1{θ(t−)=θH})(H
T (r(t−), θH , t−)−HT (r(t−), θL, t−))dN(t)

+HT
r σdW

P (t). (21)

We look for the probability measures under which the discounted price process HT/B

is a martingale. Applying Ito’s formula and making use of (21) we get

d

(
HT (t)

B(t)

)
=
HT (t−)

B(t)

(
(αT (t−)− r(t−))dt+ δT (t−)dW P (t) + CT (t−)dN(t)

)
.

(22)

Task is now changing to a measure that allows us to rewrite (22) as integrals w.r.t.

martingales. We can define a measure QN by the Radon-Nikodym density

dQN

dP
= exp

(
(λP − λQN )

(
λP

λQN

)NT)
.

From standard theory (and Assumption 2) it follows that Nt is a standard QN -Poisson

process with intensity λQ
N

. Since (Nt − λQ
N
t) is a QN -martingale we rewrite (22) as

d

(
HT (t)

B(t)

)
=

H1(t−)

B(t)
δT (t−)

{(
αT (t−)− r(t−) + CT (t−)λQ

N

δT (t−)

)
dt

+dW (t) +
CT (t−)

δ1(t−)
(dN(t)− λQNdt)

}
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Hence, HT/B is a local martingale under if and only if Wt +
∫ t

0
λ(s)ds is a QW -

Brownian motion for some measure QW . But from Girsanov’s Theorem this is the

case if and only if

dQW

dP
= exp

(
−1

2

∫ t

0

λ2(s−)ds+

∫ t

0

λ(s−)dWt

)
.

Since the (λ(t), λQ
N

) is deterministic we can use Q = QW⊗QN as martingale measure

for the price processes. The same change of measure works for all T (by Assumption

2 (i)) and we conclude that we have found an equivalent martingale measure. It is

well-known that this ensures absence of arbitrage.

Any attempt to construct a martingale measure would involve finding a T -independent

solution to system (3), but by assumption there is just such one solution. Hence there

is only one martingale measure.

The latter statements of the proposition follow easily.
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B Proof of Proposition 4

We start by observing g(θtn , tn) = 1. Now look at 0 < i < n and let 4i = ti − ti−1.

Having obtained g(θti , ti), the key is to find g(θti−1 , ti−1). We do this the following

way: From the definition

g(θti−1 , ti−1) = EQ

(
exp(−

∫ T

ti−1

b(s, ti−1)ds)|Fti−1

)
.

Now,∫ T

ti−1

b(s, ti−1)ds =

∫ T

ti

b(t, ti)dt+

∫ T

ti

(b(t, ti−1)− b(t, ti))dt+

∫ ti

ti−1

b(s, ti−1)ds

where∫ T

ti

(b(s, ti−1)− b(s, ti))ds = κ(θH − θL)

∫ T

ti

exp(−ks)
∫ ti

ti−1

exp(κu)1{θu=θH}duds

and ∫ ti

ti−1

b(s, ti−1)ds = κ(θH − θL)

∫ ti

ti−1

exp(−κs)
∫ s

ti−1

exp(κu)1{θu=θH}duds.

Therefore, using the law of iterated expectations we find

g(θti−1 , ti−1) = EQ
(
g(θti , ti)f(ti)|Fti−1

)
,

where f(ti) is the Fti-measurable variable given by

f(ti) = exp

(
κ(θL − θH)

∫ T

ti

exp(−κs)
∫ ti

ti−1

exp(κu)1{θu=θH}duds

)
× exp

(
κ(θL − θH)

∫ ti

ti−1

exp(−κs)
∫ s

ti−1

exp(κu)1{θu=θH}duds

)
. (23)

By the characteristics of the Poisson-process

g(θti−1 , ti−1) = EQ

(
1{NQ

ti
−NQ

ti−1
≤1}g(θti, ti)f(ti)|Fti−1

)
+O(42

i ),

which gives rise to the approximate value ĝ satisfying

ĝ(θti−1 , ti−1) = EQ

(
1{NQ

ti
−NQ

ti−1
≤1}ĝ(θti , ti)f(ti)|Fti−1

)
(and of course ĝ(·, tn) = 1.) We have to look at 4 cases corresponding to the elements

in {θL, θH} × {0, 1}.
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θti−1 = θH and NQ
ti −N

Q
ti−1

= 0 In this case ĝ(θti , ti) = ĝ(θH , ti) and (23) can be

calculated exactly resulting in

f̂(θH , 0; ti) = exp

(
(θL − θH)

(
4i −

e−κ(T−ti) − e−κ(T−ti−1)

κ

))
.

θti−1 = θL and NQ
ti −N

Q
ti−1

= 0 Clearly, ĝ(θti , ti) = ĝ(θL, ti) and f(ti) = 1 = f̂(θL, 0; ti).

θti−1 = θH and NQ
ti −N

Q
ti−1

= 1 Evidently, ĝ(θti , ti) = ĝ(θH , ti). Letting τ denote

the jump time and calculating (23) yields

f(ti) = exp

(
(θL − θH)

(
ti − τ −

2(e−κ(ti−τ) − e−κ(4i)) + e−κ(T−ti−1) − e−κ(T−τ)

κ

))
:= exp(X).

Since τ ∼ U([ti−1; ti]) we have EQ(τ) = (ti + ti−1)/2 and EQ(exp(κτ)) = (exp(κti)−
exp(κti−1))/(κ4i), hence we can find EQ(X) and use the first order approximation

EQ(exp(X)) ≈ exp(EQ(X)). This gives the approximation

f̂(θH , 1; ti) = exp
(

(θL − θH)
(4i

2
− 1

κ

( 2(1− e−κ4i − κ4ie
−κ4i)

κ4i

+e−κT
(
eκti − eκti − eκti−1

κ4i

))))
.

θti−1 = θL and NQ
ti −N

Q
ti−1

= 1 Similar to the (θH , 1)-case, but now the the ap-

proximation becomes

f̂(θL, 0; ti) = exp
(

(θL − θH)
(4i

2
+
e−κT

κ

(eκti − eκti−1

κ4i
− eκti

)))
.

All in all, this leads us to the recursive formulae (accurately, it might be called ̂̂g
since it is an approximation to ĝ - but it is still a first order approximation to g)

ĝ(θL, ti−1) = Q(NQ
ti −N

Q
ti−1

= 0)ĝ(θL, ti)f̂(θL, 0; ti) +Q(NQ
ti −N

Q
ti−1

= 1)ĝ(θH , ti)f̂(θL, 1; ti)

ĝ(θH , ti−1) = Q(NQ
ti −N

Q
ti−1

= 0)ĝ(θH , ti)f̂(θH , 0; ti) +Q(NQ
ti −N

Q
ti−1

= 1)ĝ(θL, ti)f̂(θH , 1; ti)

where Q(NQ
ti −N

Q
ti−1

= k) = exp(−λ4i)(λ4i)
k/k! for k = 0, 1.
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C Proof of Proposition 5

We note that rTE = a(TE) + b(TE) and use Equation (14) from Proposition 3 to get

P (TE, TM) = exp(m(θL;TE, TM)− n(TE;TM)a(TE))

× exp(−n(TE , TM)b(TE))ξ(θ(TE);TM − TE).

At time 0 the call-option price is

call = EQ
(
e−

R TE
0 a(s)dse−

R TE
0 b(s)ds (P (TE, TM)−K)+

)
,

from which we get

call = EQ
(
e−

R TE
0 a(s)dse−

R TE
0 b(s)dse−n(TE ,TM )b(TE)ξ(θ(TE);TM − TE)

×
(
P θL

V (a(TE);TE, TM)−K/ξ(θ(TE);TM − TE)
)+
)
.

Let (F θt ) denote the filtration generated by (θt). We then condition on F θTE and arrive

at

call = EQ
(
e−

R TE
0 b(s)dse−n(TE ,TM )b(TE)ξ(θ(TE);TM − TE)

× EQ
(
e−

R TE
0 a(s)ds(P θL

V (a(TE);TE, TM)−K/ξ(θ(TE);TM − TE))+|F θTE
))

Because a(TE) and
∫ TE

0
a(s)ds are independent of F θTE and ξ(θ(TE);TM −TE) is F θTE -

measurable we can apply the useful rule (cf. Hoffmann-Jørgensen (1994), (6.8.14))

to calculate the inner expectation; it reduces to an unconditional expectation where

ξ(θ(TE);TM − TE) is treated as known. But this yields that call-option price in the

θL-Vasicek model and the proposition follows.
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Figure 2: Yield curves with c ≡ 0 (i.e. zero Wiener risk premia), θL = 0.05, θH = 0.10,

κ = 1, σ = 0.02, r0 = 0.05 and λQ
N

= 7 as parameters, and r0 = 0.05, 0.10, θ0 =

0.05, 0.1 as values of the state variables.
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Figure 3: Fully drawn curves: Yield curves immediately before and after a jump.

Again, c ≡ 0, θL = 0.05, θH = 0.10, κ = 1, σ = 0.02, r0 = 0.05 and λQ
N

= 7. Dotted

curves: Corresponding effect in the ”pure Vasicek” model.
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CALL OPTION PRICES IN THE REGIME SWITCHING MODEL
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Numerical 10-year yield Uncertainty Average runtime

method (basispoints) (± basispoints) (seconds)

Naive simulation 732.8 1.0 60

Smart simulation 732.9 1.0 1.7

Backward induction 733.1 1.0 0.1

Table 1: Comparison of numerical methods. Parameters: θL = 0.05, θH = 0.10,

κ = 1, σ = 0.02, r0 = 0.05, and λ = 1. Runtimes are given on a HP-9000 Unix

computer. “Uncertainty” means (half) the width of 95%-confidence intervals for

simulation methods and the error estimate produced by the Richardson extrapolation

for the backward induction.
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Abstract

An arbitrage free multi-factor term structure model with nonnegative rates

is constructed. It takes the current yield curve as input and uses directly observ-

able LIBORs as fundamental building blocks. Closed form approximations to

swaption prices are derived. The quality of the approximations is investigated

and found to be high. Stability questions relating to the technical construction

of the model are also investigated. We find that the problems with pricing of

Eurodollar futures contracts that occur in a limiting case of the model do not

have any practical effects.
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1 Introduction and Motivation

Traditional HJM-type term structure models (see Heath, Jarrow & Morton (1992))

focus on continuously compounded instantaneous (forward) rates. Theoretically this

convenient, but in market practice such rates play a very little role (try calling your

broker to get a quote.) Recently,1 several authors (Brace, Gatarek & Musiela (1997)

and Miltersen, Sandmann & Sondermann (1997) are key references) have shifted the

focus (if not the actual framework, asomewhat subtle matter) to ”market rates”, such

as LIBOR or swap rates. Firstly, this puts the emphasis on rates that are actually (and

frequently) quoted in markets. Secondly, cunning model-building makes it possible

create models that are arbitrage-free (both in a static and a dynamic sense) and in

which price formulae of (certain) derivative assets look like the Black-Scholes formula,

the mother of all derivative prices. Such closed form solutions are very useful since

speed is imperative in financial markets. This practice of formulae that are ”made

to measure” is not without cost. The dynamic specifications that allow different

derivatives to be priced in a ”Black-Scholes-like” manner are not consistent with

each other. Using models that are tailor-made to specific assets has recently become

academic as well as market practice, see the discussion in Jamshidian (1997).

In this paper we present a family of LIBOR-models and give the generic derivation

of a closed form derivative price. We investigate the consistency problems within

the family and some of the approximations that are made to derive the closed form

expressions. We also find a limiting case of the family of models and demonstrate

that a problem with derivative prices in the limiting model does not effect the prices

in any of the approximating models.

The outline of the rest of the paper is as follows. In Section 2 we describe the model

and (re)derive some results concerning pricing of interest rate swaps and options on

these. The model and some of the theoretical results are so new they are not part of

the standard financial vocabulary which justifies the somewhat detailed exposition.

In particular we have to set up a notation that facilitates the subsequent analysis.

Section 3 looks at the dependence of the closed form expressions on the fundamental

1It can also been seen as a successful attempt of formalising what has been market practice

for many years. According to Schmidt (1996) (and many others) standard market practice when

pricing caps has been to assume lognormal distribution of LIBORs and then use a version of the

Black-formula (see Black (1976)).
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parameter δ, the compounding period, something that we have not seen discussed

previously in the literature. In Section 4 we investigate a drift approximation that

is crucial for the derivation of closed-form expression for prices in the model. And

having set-up the simulation algorithm we show numerically (for those who do not

think this is a contradiction in terms) that a problem with the limit model does not

arise for any realistic discretisations of the model. Section 5 concludes, discusses, and

outlines topics for future research of both practical and theoretic nature.

2 The Model and Derivation of the Swaption Price

The results in this section are not original (see e.g. Brace et al. (1997), Brace &

Musiela (1997), Miltersen et al. (1997), and Musiela & Rutkowski (1997b)), but they

are new.

2.1 General Framework and Results

We start by considering a HJM-framework where P (t, T ) denotes the zero coupon

bond price and we have

dP (t, T ) = P (t, T )

(
rtdt−

∫ >
t

σ(t, u)du · dW (t)

)
, (1)

where W is a d-dimensional Brownian motion under the spot martingale measure

P, and we work on a filtered probability space (Ω, {Ft},F ,P) satisfying ”the usual

conditions.” Note that σ(t, T ) is the volatility of the instantaneous forward rates.

Hence the form of the bond price volatility follows from the definition of instantaneous

forward rates (f(t, T ) = −∂T lnP (t, T ), which also explains the sign convention) and

the form of the drift is dictated by absence of arbitrage.

Let (βt) be the bank account i.e., the value at time t of 1 $ continuously rolled over

in the shortest (instantly maturing, in this case) ZCB. Given T0 and δ we define

T (T0, δ), which we call the on-beat dates, to be the set given by

T (T0, δ) = {T0 + δn | n ∈ Z},

and in the rest of the paper Tj = T0+jδ, for j ≥ 0, unless clearly otherwise stated. For

q ∈ N we have by a simple arbitrage argument, that the forward price, FTj−q(t, Tj),

at time t for delivery at time Tj−q of a ZCB maturing at time Tj satisfies

FTj−q(t, Tj) =
P (t, Tj)

P (t, Tj−q)
:=

1

1 + qδK(q)(t, Tj−q)
,
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where the last equation defines K(q)(t, Tj−q), called the forward rate over [Tj−q;Tj].

For an arbitrary T define the measure PT on (Ω,FT ), called the forward measure, by

specifying its Radon-Nikodym derivative to be

dPT
dP

=
β−1
T

E (β−1
T )

=
1

βTP (0, T )

(evidently, this does define an equivalent probability measure.) When restricted to

Ft (t ∈ [0;T ]) the R-N derivative satisfies

dPT
dP
|Ft = E

(
1

βTP (0, T )
|Ft
)

=
P (t, T )

βtP (0, T )
:= ηTt .

Using that dβt = rtβtdt, (1), and the Ito formula gives us that (ηTt ) can also be

represented as

η>t = exp

(
−
∫ t

0

∫ T

u

σ(u, s)ds · dW (u) − 1

2

∫ t

0

|
∫ T

u

σ(u, s)ds|2du
)
,

which by Girsanov’s theorem allows us to conclude that (W T (t)) defined by

dW T (t) = dW (t) +

∫ T

t

σ(t, s)dsdt (2)

is a BM under PT . It is now a straightforward exercise to show that FTj−q(t, Tj) is a

PTj−q -martingale. Note that for any asset, say with price process S, with drift equal

to the short rate under the spot martingale measure (which up to technicalities has

to be true for every non-dividend paying asset to prevent arbitrage) the T -forward

price, S(t)/P (t, T ), is a martingale under the T -forward measure. We note the T -

forward price can also be seen as the price when the T -ZCB is used as numeraire.

This is the economic intuition behind the different measures, as pointed out in Duffie

(1992) (probably the first textbook recognising the computational power of forward

measures.)

Moreover, we get that 1/FTj−q(t, Tj) is a PTj -martingale, specifically

d

(
1

FTj−q(t, Tj)

)
=

1

FTj−q (t, Tj)

∫ Tj

Tj−q

σ(t, u)du · dW Tj (t), (3)

this implying that K(q)(t, Tj−q) is a PTj -martingale.

We also introduce the ”q or zero” function by

qoz(j, q) = q1{(j mod q)=0}(j).
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t T0 Tq T(n−1)q Tnq

Cash flow

Time

qδ(K(q)(T0, T0)− κ)

?
paid

����������
known

δ
qδ

nqδ

qδ(K(q)(T(n−1)q, T(n−1)q)− κ)

?
paid

����������
known

Figure 1: The ”time & money”-structure of an interest rate payer swap settled in

arrears.

2.2 Interest Rate Swaps

A swap contract is a private agreement between two companies to exchange cash

flows in the future after some prearranged formula. This is a very broad definition,

we now describe the simplest (”basis”, ”plain vanilla”) interest rate swap. A payer

swap settled in arrears exchanges the forward rate K(q)(Tj−q, Tj−q) against a fixed

rate κ at n intervals of of length qδ as shown in Figure 1 i.e., payments are made at

dates T0 + qδ, T0 + 2qδ, . . . , T0 +nqδ (but known one qδ-period in advance.) Thus, for

t ≤ T0 general arbitrage pricing theory gives us that

Pswap(q)(t) = E

(
nq∑
j=1

qoz(j, q)δ
βt
βTj

[K(q)(Tj−q, Tj−q)− κ] | Ft

)

is the value of the swap. Applying the abstract Bayes’ rule, we get

Pswap(q)(t) =

nq∑
j=1

qoz(j, q)δ
E Tj

(
(η
Tj
Tj

)−1 βt
βTj

[K(q)(Tj−q, Tj−q)− κ]|Ft
)

E Tj

(
(η
Tj
t )−1|Ft

)
=

nq∑
j=1

qoz(j, q)δP (t, Tj)E Tj ([K
(q)(Tj−q, Tj−q)− κ]|Ft)

=

nq∑
j=1

qoz(j, q)δP (t, Tj)[K
(q)(t, Tj−q)− κ],

where the last equality follows by the martingale property.
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Time Action Net cash flow

0 Sell short 1 Tj-ZCB

Buy 1 Tj−1-ZCB P (0, Tj)− P (0, Tj−1)

Tj−1 Use the pricipal received from the Tj−1-ZCB

to buy 1/P (Tj−1, Tj) Tj-ZCBs 0

Tj Close position 1/P (Tj−1, Tj) − 1 = K(Tj−1, Tj−1)

Table 1: A simple trading strategy that pays out the LIBOR.

Introduce the simple forward rate, or the forward LIBOR (if t = Tj−1 we omit the

term “forward”) through

P (t, Tj−1) = (1 + δK(t, Tj−1))P (t, Tj) (4)

Remark Originally, LIBOR was an acronym for London Interbank Offer Rate, an

average of several interbank rates. But we shall use LIBOR as a generic term for any

rate that has the “add-on” form

return = principal + investment period× interest rate× principal,

as described by (4). It is convinient/important that this in accordance with market

conventions. Note also that, contrary to the instantaneous rates we usually work with

in mathematical finance, the LIBOR is in fact a traded asset, as can be seen from the

simple trading strategy given i Table 1.

We can recast the swap price as

Pswap(q)(t) =

nq∑
j=1

δP (t, Tj)[K(t, Tj−1)− qoz(j, q)κ]. (5)

The swap rate ω(q) (corresponding to the specific swap described) is the value of κ

that makes the value of the swap 0, i.e.

ω(q)(t) =
P (t, T0)− P (t, Tnq)∑nq
j=1 δqoz(j, q)P (t, Tj)

. (6)

When dealers talk about ”the swap price” they refer to the rate on the fixed leg and

will quote it as a spread relative to the yield on a particular bond. This means that
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we have to be careful when comparing quotes for the fixed and the floating side since

the money market (where the LIBOR ”lives”) and the bond market (where the spread

stems from) use different have different conventions, e.g. regargding day count.

A swaption is an option on the swap rate. Specifically, the basis swaption exchanges

the time T0 swap rate against a strike, κ, when ω(q)(T0) ≥ κ, thus it has a price

determined by

Pswptn(q)(t) = E

(
βt
βT0

Pswap(T0)+|Ft
)

= E

(
nq∑
j=1

qoz(j, q)δ
βt
βTj

[ω(q)(T0)− κ]1A|Ft

)
,

where A = {ω(q)(T0) ≥ κ} = {Pswap(q)(T0) ≥ 0}. We have the following equivalent

formulations for the swaption price

Pswptn(q)(t) = E

(
δ
βt
βT0

nq∑
j=1

qoz(j, q)P (T0, Tj)[ω
(q)(T0)− κ]1A|Ft

)
(7)

= P (t, T0)E T0

(
Pswap(T0)+|Ft

)
(8)

=

nq∑
j=1

δP (t, Tj)ETj ([K(T0, Tj−1)− qoz(j, q)κ]1A|Ft) (9)

= E

(
βt
βT0

(
1−

nq∑
j=1

CjP (T0, Tj)

)+

|Ft

)
, (10)

where Cj = qoz(j, q)δκ for j = 1, . . . , nq − 1 and Cnq = 1 + qoz(j, q)δκ. (7), which

follows by conditioning on FT0 and using that P (T0, Tj−1) = βT0E (β−1
Tj−1
|FT0), shows

that we can also see the swaption as series of call options on a swap rate, where the

options are not separately exercisable. In particular a one-period swaption is a caplet.

From (10) we note the similarity with a put option on a coupon bearing bond. (8) is

the most compact formulation, while (9) is the most handy expression for analytical

computations.

The above formulae are general, in particular the value of the swap and the swap

rate are independent of δ provided qδ is fixed. We have not used in any way assump-

tions about the functional form of σ(t, T ), just that the model was arbitrage free.2

The formulas relating to basis swaps settled in arrears were derived using concepts of

2This does put some subtle constraints on σ(t, T ). We don’t really know and we really don’t care

in this paper.
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equivalent martingale measures and forward measures, but may derived using simple

trading strategies. A number of market conventions may obscure the clean-cut analy-

sis; different settlement conventions, different day-count conventions on the different

legs, etc. Also a huge variety of exotic swaps contracts exist; the floating rate can

be almost anything you want (the yield of a particular bond, an average of rates),

option-like features, quantos,... So even though basis swaps can be priced by static

hedge arguments, there are still good reasons to use a probabilistic framework.

2.3 A Specification and a Swaption Price Formula.

There is not yet consensus about the name the model we work with. A describtive

name would be ”the lognormal LIBOR model”, but we choose to call it ”the market

model”. This term covers other volatility specifications than the one we will give

here, but seems to be the preferred one. Models have been developed (conditionally)

independently by the authors of Brace et al. (1997) and Miltersen et al. (1997).

To completely specify the model we need to specify the bond price volatility b(t, T ) =

−
∫ T
t
σ(t, u)du for all t and T (or at least for T ≥ t.) We consider a specification

where σ(t, T ) = 0 for T ≤ t + δ (this is a perhaps not totally realistic but quite

convenient initial condition) and∫ T+δ

T

σ(t, u)du =
δK(t, T )

1 + δK(t, T )
γ(t, T ), for T ≥ t+ δ,

where γ : R2 7→ Rd is deterministic. This completely specifies the model since

b(t, T ) = −
b(T−t)/δc∑

k=1

δK(t, T − δk)

1 + δK(t, T − δk)
γ(t, T − δk).

Specifically, we get using the results in the previous section that our main objects of

interest are (PTj -)nicely behaved

dK(t, Tj−1) = K(t, Tj−1)γ(t, Tj−1) · dW Tj (t), (11)

and thus (explaining why this called a lognormal model)

K(T0, Tj−1) = K(t, Tj−1) exp

(∫ T0

t

γ(u, Tj−1) · dW Tj (u)− 1

2

∫ T0

t

|γ(u, Tj−1)|2du
)
.

(12)

The astute reader may point out that we are cheating a bit here; can we be sure that

the SDEs are well-defined? The bonds are specified by means of the LIBORs, who
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are themselves specified in terms of the bonds. The answer is yes i.e., the SDEs are

all well-defined, see Musiela & Rutkowski (1997b).

From (2) we get

dW Tj (t) = dW T0 (t) +

j∑
l=1

δK(t, Tl−1)

1 + δK(t, Tl−1)
γ(t, Tl−1)dt,

which involves a nasty stochastic Girsanov drift correction. We therefore use a deter-

ministic approximation based on the initial data,∫ Tj

T0

σ(t, u)du ≈
j∑
l=1

δK(0, Tl−1)

1 + δK(0, Tl−1)
γ(t, Tl−1) (13)

:=

j∑
l=1

µ(Tl−1)γ(t, Tl−1). (14)

This makes it easy for us to shift computations from one forward measure to another.

We now derive a formula for the swaption price. Since we saw that the swaption

was similar to a put option on a coupon bond, it is not surprising that the following

argument is similar to that given in Jamshidian (1989). Assume WLOG t = 0 and

recall that the exercise, or cut-off, region for the swaption is

{Pswap(T0) ≥ 0} =

{
nq∑
j=1

δP (T0, Tj)[K(T0, Tj−1)− qoz(j, q)κ] ≥ 0

}

=

{
nq∑
j=1

δ[K(T0, Tj−1)− qoz(j, q)κ]∏j
l=1(1 + δK(T0, Tl−1))

≥ 0

}
, (15)

so (12) tells us that considering

X = (Xj) :=

(∫ T0

0

γ(u, Tj−1) · dW Tj (u)

)
is the key to solving the swaption pricing problem. Using (14) we see that

X ∼ N(D,∆) under PT0 ,

where

∆ = (4ij) :=

(∫ T0

0

γ>(u, Ti−1)γ(u, Tj−1)du

)
(∈ Rnq×nq)

D = (Dj) :=

(∫ T0

0

j∑
l=1

µ(Tl−1)γ>(u, Tj−1)γ(u, Tl−1)du

)
=

(
j∑
l=1

µ(Tl−1)4jl

)
(∈ Rnq )
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∆ is a positive semi-definite nq × nq matrix of rank d. We consider the rank-1

approximation

∆ ≈ ΓΓ>,

where Γ is the product of the square root of the largest eigenvalue of ∆ and its

corresponding eigenvector. We then have D = (Γj
∑j

l=1 µ(Tl−1)Γl) := (Γjdj), and we

can write Xj as

Xj = Γj(z + dj),

where z ∼ N(0, 1) under PT0 , and the simple forward as

K(T, Tj−1) = K(0, Tj−1) exp(Γj(z + dj)−
1

2
Γ2
j).

This makes it possible to express the cut-off region in terms of a single stochastic

variable. To evaluate (8) we have to integrate over the region where

J(s) :=

nq∑
j=1

δK(0, Tj−1)(exp(Γj(s+ dj)− 1
2
Γ2
j)− qoz(j, q)κ)∏j

i=1(1 + δK(0, Tj−1) exp(Γi(s+ di)− 1
2
Γ2
i ))

≥ 0.

Fortunately, one can show about that J has a unique root (it’s easy to see that it has

at least one root, the uniqueness follows by showing monotonicity.) This root i.e.,

the s such that J(s) = 0 is often called Jamshidian’s s (although s is not the best

letter in a world where integration dummies flow freely.) Using (9) (rather than (8))

we have

Pswptn(q)(0) =

nq∑
j=1

δP (0, Tj)ETj

(
[K(0, Tj−1) exp(Xj −

1

2
Γ2
j)− qoz(j, q)κ]1{Xj≥Γj(s+dj)}

)
.

(16)

BecauseXj ∼ N(0,Γ2
j) under PTj , this leads to the following formula for Pswptn(q)(0)

by essentially the same calculations as those leading to the Black-Scholes formula

(which can be done very compactly, see Appendix A).

Pswptn(q)(0) =

nq∑
j=1

δP (0, Tj)[K(0, Tj−1)Φ(hj)− qoz(j, q)κΦ(hj − Γj)], (17)

where hj = Γj − s− dj and Φ is the standard normal distribution function. Though

it is approximate such a closed form solution is important . Firstly, it is fast to

evaluate, which is important if way are going to use the formula ”backwards” to get

out implied volatility. Secondly, we find hedge strategies much better than from a

simulation approach (typically the latter would not give any hedging iformation.)
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Note that this formula depends only on quantities corresponding to on-beat dates (and

can thus be hedged using only these assets and one other ZCB.) The devil’s advocate

would say this in another way; that the formula can only be used for contracts with on-

beat payments. Either way, to be on solid HJM-ground we had to assume the existence

of a full double continuum of ZCB prices. But it does not seem surprising that this

assumption can be relaxed (see Musiela & Rutkowski (1997a) and Jamshidian (1997).)

Remark If we model
∫ T+δ

T
σ(t, u)du as deterministic then we arrive at a model in

which bond prices become lognormal, and forward rates are not precluded from being

negative. In models with this specification, the above calculations virtually all carry

over, some even as exact results not approximations, with δK(t, Tj−1) substituted by

1 + δK(t, Tj−1). See Brace & Musiela (1997) and Rutkowski (1997). Another way of

deriving closed form solutiopns for swaption prices is by noting (showing) that the

swap rate is a martingale under the measure corresponding to an annuity bond as

numeraire and the specifying dynamics under this measure.

Remark A computer implementation implementation of the model is pretty straight-

forward, at least if one makes use of the routines from Press, Teukolsky, Vetterling &

Flannery (1992). One thing should be noted: Since we are going to work with small

values of δ, the ∆-matrix, of which we have to find eigenvalues and eigenvectors,

becomes rather large. Because standard routines for finding (and sorting) eigenvalues

are cubic in the size of the matrix, this becomes a very time-consuming part of the

process. However much faster algorithms can be applied if we remember that we only

need the (few) largest eigenvalue(s) (and corresponding vector(s).)

3 Dependency on the Compounding Period

This section works with the previously described lognormal model, but many of the

issues are just the same for the normal version mentioned in the Remark.

To apply the formulae to a particular swaption or other asset, we can simply choose

a T and a δ that makes all payments on-beat, and then apply the relevant formula.

But different δ’s will give different models. In particular, a swaption paying at 6-

months intervals will not have the same price in (the natural) ”δ = 0.5”-model as in

a ”δ = 0.25”-model. In this section we investigate how the (approximate) derivative
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prices depend the choice on δ.

3.1 Swaption Prices

Consider the lognormal model with:

• Flat initial term structure at 10 %.

• One-dimensional flat volatility at 20 % i.e., γ ≡ 0.2.

Let

Swptn(T, δ, κ, q, n)

denote the time 0 swaption price in the lognormal δ-model of a payer swaption written

on a swap settled in arrears with strike κ and cash flows at times T + δq, T + 2δq, . . .,

T + nδq. The ”moneyness” is based on comparison between κ and the current swap

rate, ω(0) (where the notational dependence on q has been dropped because we keep

δq fixed).

Figure 2 depicts the functional relationship between δ and caplet prices, specifically(
δ , 100Swptn(0.5,

0.25

i
, κ, i, i)

)
for i = 1, 2, . . . , 64 and κ = 0.10126, which means that that caplet is at-the-money,

with the usage of the term given above. Figure 3 depicts(
δ , 100Swptn(1,

1

i
, κ, i, 3i)

)
for i = 1, 2, . . . , 64 and κ = 0.1051, which makes this swaption at-the-money.
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as a function of δ in the lognor-

mal model.

Once the computer programs have been made, we can vary the parameters to our

hearts content and our readers dismay. The results can be summarised as follows.

1. For the at-the-money caplet as in Figure 2 the relative change in price when

going from δ = 1/4 to δ = 1/64 is 1.2 %. Going from δ = 1 to δ = 1/64 for

the at-the-money Figure 3-swaption changes the price by 5.0 %. The (perhaps

more practically relevant) difference between ”δ = 1/2” and ”δ = 1/4” is around

1.2 %. Differences of this magnitude suggest that is might be advantageous to

take into account the δ-effect when calibrating to, say, caplets in models with

different δ’s.

2. The prices are decreasing in δ. When the initial term structure is flat and

γ is constant then it is not hard to show that the LHS of (13) increases as

δ tends to 0 - but it does require cumbersome notation since K(0, ·), j and

Tl−1 all implicitly depend on δ. We are basically approximating the integral of

an increasing function by left sums. This means higher bond volatility, hence

higher option prices.

3. The price is very close to being linear in δ. This is nice, we like linear functions

! In particular it means that the model is well-behaved (at least with respect

to swaption prices) when δ → 0. Concerns about the stability of a model

with lognormal continuously compounded rates was what originally lead to the
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formulation of discrete-tenor models (that, and of course the fact that (semi-)

closed form expressions for derivatives can be found).

4. The price is most δ-sensitive when the swaption is at-the-money, which again

is what one would conjecture.

Remark The analysis was carried out under the assumption of flat yield curve and

volatility structure. As long we do not look at too pathological examples the de-

pendency on δ is smooth and not to large As an example of particular interest, the

δ-dependency becomes less significant but still almost linear in a model with expo-

nentially decaying volatility. Again tedious manipulation with the LHS of (13) can

justify this. The ”left sum integral approximation” is now of a product of an increas-

ing (K/(1 + δK)) and a decreasing (γ) function, so we don’t know the sign of the

error. Exponentially decaying volatility is often seen empirically, and as we will see

in Subsection 3.2, it corresponds to mean reversion effect in (short) rates.

Remark The previous analysis was carried out under the assumption that payments

were made in arrears at exactly equidistant dates. In real life market practice, week-

ends, holidays and the sheer construction of our calendar is bound to interfere with

this. Step -1 towards remedying this is saying, as loud as you can, ”I don’t know &

I don’t care - and besides it’s trivial”. The former constitute legal points of view,

the latter is not necessarily true, see Rutkowski (1997). Step 0 is finding out exactly

when cash flows occur for a given contract, an equally tedious and important task.

The next logical step is then to use the current term structure to construct an ap-

proximate standardised contract (e.g. adjust the κ slightly), and then use a version

of our pricing formulae. Since the payments are random, this is only a first order

approximation. This subject seems too tedious to be treated in the literature, with

Schmidt (1996) as an exception. But it is important, especially because swap markets

are very large and competitive, so ”we need all we can get.”

3.2 A Limiting Case of the Market Model

LetKδ(t, Ti) denote the forward δ-LIBOR i.e., Kδ(t, Ti) = (P (t, Ti)/P (t, Ti + δ)− 1) /δ.

With f(t, Ti) denoting the continuously compounded forward rate we have

Kδ(t, Ti) =
1

δ
(exp(

∫ Ti+δ

Ti

f(t, u)du)︸ ︷︷ ︸
:=l(δ)

−1 )
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=
l(δ)− l(0)

δ
δ→0→ l′(0)

= f(t, Ti),

as, of course, it should be. Recall that Kδ(t, Ti) is modeled as being a lognormal

martingale under the forward measure corresponding to the date Ti + δ i.e.,

Kδ(t, Ti) = Kδ(0, Ti) +

∫ t

0

γ(u, Ti)Kδ(u, Ti)dW Ti+δ(u) , for Ti ∈ T (T0, δ), (18)

where γ(·, ·) is a deterministic function and W Ti+δ, the BM under PTi+δ, is assumed

to be one-dimensional. Because we want to consider the case of δ → 0, we are not

immensely keen on having expressions involving a δ-dependent BMs. To fix this,

recall that the BM under the spot martingale measure is linked to the BM under

PTi+δ through

dW (t) = dW Ti+δ(t)−
∫ Ti+δ

t

σ(t, u)dudt.

Our specification of the market model links σ(·, ·) to γ(·, ·) through the equations∫ T+δ

T

σ(t, u)du =
δKδ(t, T )

1 + δKδ(t, T )
γ(t, T ) (19)

Let τi’s be the numbers of the form

τi = T0 − (mδ − i)δ , for i = 1, 2, . . . , (m+ n)q,

where mδ = d(T0 − t)/δe. We can then write∫ Ti+δ

t

σ(t, u)du =

mδ+i+1∑
j=1

δKδ(t, τj)

1 + δKδ(t, τj)
γ(t, τj) + o(δ).

BecauseKδ(t, τj)/(1+δKδ(t, τj))
δ→0→ f(t, τj), we have (pick your favourite convergence

theorem)
mδ+i+1∑
j=1

δKδ(t, τj)

1 + δKδ(t, τj)
γ(t, τj)

δ→0→
∫ Ti

t

γ(t, u)f(t, u)du.

Substituting into (18) we get

Kδ(t, Ti) = Kδ(0, Ti)−
∫ t

0

(
mδ+i+1∑
j=1

δKδ(u, τj)

1 + δKδ(u, τj)
γ(t, τj)

)
γ(u, Ti)Kδ(u, Ti)du−

∫ t

0

o(δ)du

+

∫ t

0

γ(u, Ti)Kδ(u, Ti)dW (u).

III.15



Letting δ → 0, and merrily interchanging limits and integrals, we get the following

as the δ-limiting case of the market model:

f(t, Ti) = f(0, Ti)−
∫ t

0

γ(s, Ti)

(∫ Ti

s

γ(s, u)f(s, u)du

)
︸ ︷︷ ︸

:=X
Ti
s

f(s, Ti)ds+

∫ t

0

γ(s, Ti)f(s, Ti)dW (s),

or

df(t, Ti) = −γ(t, Ti)X
Ti
t f(t, Ti)dt+ γ(t, Ti)f(t, Ti)dW (t).

Note that this is, as it should be, exactly what we would get if we specified the forward

rate volatility as γ(t, T )f(t, T ) in a classical HJM-formulation, and then applied the

drift restriction.

By the Ito formula we get

d ln f(t, Ti) = −(γ(t, Ti)X
Ti
t +

1

2
γ2(t, Ti))dt+ γ(t, Ti)dW (t).

The SDE for ln f(t, Ti) still contains XTi
t , which is a rather nasty integral over the

yield curve. See Miltersen (1994) for a further discussion of of such SDEs.

Now, more specifically, assume that γ(·, ·) is multiplicatively separable,

γ(t, T ) = g(t)h(T ),

where g and h are positive functions. We want to look at the short rate r, which is

defined by rt = limδ→0 f(t, t + δ). Letting Y T
t :=

∫ T
t
h(u)f(t, u)du, integrating, and

setting T = t, we get

ln rt = ln f(0, t)−
∫ t

0

g2(s)h(t)(Y t
s +

1

2
h(t))ds︸ ︷︷ ︸

:=d(t)

+h(t)

∫ t

0

g(s)dW (s).

Note that d is not a Markov process. This gives the following dynamics of ln rt

d ln rt = d′(t)dt+ h′(t)

∫ t

0

g(s)dW (s)︸ ︷︷ ︸
=

ln rt−d(t)
h(t)

dt+ h(t)g(t)dW (t)

= (d′(t)− d(t)
h′(t)

h(t)
+
h′(t)

h(t)
ln rt)dt+ g(t)h(t)dW (t). (20)

So, if h′ < 0 i.e., volatility is decreasing in maturity, then we have a linear mean

reversion feature in the log of the short rate, albeit still to a nasty stochastic process,

h(t)d′(t)/h′(t)− d(t). If we approximate in similar fashion as previously,

XTi
t ≈

∫ Ti

t

γ(t, u)f(0, u)du,
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then d(t) becomes deterministic, f(t, Ti) becomes lognormal, and we have that r fol-

lows an Ornstein-Uhlenbeck process in logs. The Black-Karasinski-model (see Black

& Karasinski (1991)), in other words. If γ(·, ·) is exponentially decaying in time to

maturity ,

γ(t, T ) = σ exp(−κ(T − t)),

where σ and κ are positive, then the volatility of the log of the short rate becomes

time-homogeneous, d(t) + d′(t)/κ determines the level that the log of the short rate

locally reverts to, and κ is the speed of mean reversion.

Remark We speak quite uninhibitly about ”convergence”, without formally defining

in which sense it is to be understood. For the sheer short rate considerations, the

”correct” sense is ”weak convergence of stochastic processes”. We basically estab-

lished convergence of the local first and second moment (the drift and volatility),

which is about half-way there; we need a uniformity condition on the ”discrete” pro-

cess, something like ”jumps vanishing uniformly on compacts”. But one should be

aware that ”weak convergence” is just that, there is no guarantee that objects related

to the processes (such as derivative prices and hedge ratios) also exhibit convergence

He (1990) and Nelson & Ramaswamy (1989) among others treat the subject in a

financial context.

4 Simulation Studies

The swaption price formula was derived using a deterministic approximation to the

drift. We now perform a simulation study to check the accuracy of this approximation.

4.1 Swaption Prices

By general risk-neutral pricing and simple manipulations we have the following swap-

tion price

Pswptn(t) = E

(
βt
βT

Pswap(T )+ | Ft
)
, (21)

where Pswap(T ) is given by (5). The version of (21) that is most convenient for

obtaining closed form expressions is not the most suitable one for simulation. We

have by definition of the bank account, iterated expectations the abstract Bayes’ rule
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that

Pswptn(t) = ETnq

(
(η
Tnq
Tnq

)−1

(η
Tnq
t )−1

βt
βTnq

Pswap(T0)+

P (T, Tnq)
| Ft

)

= P (t, Tnq)E Tnq

(
Pswap(T0)+

P (T0, Tnq)
| Ft
)
. (22)

Now consider the market model, and note that we have

dW Tnq−j (t) = dW Tnq (t)−
∫ Tnq

Tnq−j

σ(t, u)dudt , for j = 1, . . . , nq.

We ”simulate backwards” using the following algorithm. It works perfectly well also

for the case of d ≥ 2, but results are given only for the truly one-dimensional case.

1. Simulate a sample path of (W Tnq (t))
T0
0 under PTnq i.e., simulate a standard BM.

Assuming we want W Tnq (τi) at τi’s that are ε (some small number compared to

T0) apart, then it is just a question of simulating independent N(0, ε)-variables

and adding these.

2. Using the simulated path of W Tnq we simulate a path of (K(t, Tn−1))T0 using the

relevant SDE. The smartest is using the well-known exact solution of in terms

of the BM:

K(τi, Tnq−1) = K(t, Tnq−1) exp

(
(

∫ τi

t

γ(u, Tnq−1)dW Tnq (u))− 1

2

∫ τi

t

γ2(u, Tnq−1)du

)
,

which is of course particularly simple in the case of time-homogeneous γ-function

i.e., γ is constant in the first argument.

3. Then calculate a simulated path of the Girsanov correction by∫ Tnq

Tnq−1

σ(τi, u)du =
δK(τi, Tnq−1)

1 + δK(τi, Tnq−1)
γ(τi, Tnq−1),

and a simulated path of (W Tnq−1 (t))T0
0 through

dW Tnq−1 (τi) = dW Tnq (τi)− ε
∫ Tnq

Tnq−1

σ(τi, s)ds

Note that this is W Tnq−1 simulated under PTnq .
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4. Repeat steps 1.-3., storing relevant results (thus making the algorithm linear in

space) until W T0 has been simulated (again, under PTnq ). A relevant result for

(22) is P (T, Tj), for j = 1, . . . , nq, which is found by the recursive relation

P (T0, Ti+1) =
P (T0, Ti)

1 + δK(T0, Ti)
,

and the initial condition P (T0, T0) = 1.

5. Calculate

Pswptnm = P (t, Tnq)
Pswap(T0)+

P (T0, Tnq)
,

by using (5).

6. For anti-thetic variance reduction, repeat steps 1.-5. with−W Tj (τi) as simulated

BM, hence calculating Pswptnm,A.

7. Repeat above steps a large number of times, say M . Calculate the approximate

swaption price

Pswptn ≈ PswptnSIM :=
1

2M

∑
m

(
Pswptnm + Pswptnm,A

)
,

the hope being that if M is large and ε is small, then this will be an accurate

approximation.

Note that for the swaption we only have to simulate the BMs between times 0 and

T , not all the way out to Tnq.

In this particular case our knowledge of the structure of the model also allows us to

do better than the above. To ease already cumbersome notation, we drop t-notational

dependence and the ”anti-thetic indications” in the following. By using the closed-

form expression for the swaption price in the model with deterministic drift, we are

able to use a (simple) control variate technique for further variance reduction. At little

extra computational effort a simulated swaption price in the model deterministic drift,

say PswptnDm, can be calculated for each simulation. With PswptnD denoting the

known true swaption price in the deterministic drift model, we then consider the

regression equation

Pswptnm − (PswptnDm −PswptnD) = Pswptn + νm,
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Naive Anti-thetic Control variate

Swptn (1,1,0.1,1,3) SwptnSIM 24.60 · 10−3 SwptnSIM 24.52 · 10−3 SwptnSIM 24.50 · 10−3

[35.6 · 10−3] [35.5 · 10−3] [0.5 · 10−3]

SwptnD (1,1,0.1,1,3) SwptnDSIM 24.65 · 10−3 SwptnDSIM 24.57 · 10−3

[35.7 · 10−3] [35.6 · 10−3]

M =50000

rel. abs. diff. 0.20% rel. abs. diff 0.20% rel. abs. diff.* 0.20%

ε = 1/170

Table 2: Simulation techniques for determination of swaption prices and relative

difference between the full model and the model with deterministicly approximated

drift. 24.55 · 10−3 is the true swaption price in the the latter model. [] indicate

standard errors, σ̃·. *: relative absolute difference compared to the true ”det. drift”-

swaption price. Current term structure and volatility as in previous sections (flat at

10 and 20 %, respectively).

where the νm’s are iid(0, σ2
ν), and the hope is that σν is ”small” because the full

model and the model with deterministic drift are ”close”. The regression equation

provides us with a new estimate of Pswptn and a standard deviation of this. Firstly,

this provides an estimate of Pswptn that we hope has a lower standard error than

the first estimate. Secondly, looking at the change in standard errors of Pswptn-

estimates, we get an indication of how good our control variate is i.e., how good the

(or bad) the model with deterministic drift is. We can do this for any approximation

that allows for closed-form swaption price expression (as long the approximate model

can be simulated.)

We see from Table 2 that the anti-thetic method produces somewhat better estimates,

but the control variate technique is is the way to go, it reduces the standard deviation

with roughly a factor 70. Since the size the confidence intervals are approximately

3.92σ̃·/
√
M determination of the price with three significant digits requires less than

1000 simulations with the control variate method (run-time: 2 − 3 seconds, with

ε = 1/170), but about 2,000,000 simulations with the naive method (meaning that

our potential clients have long left). If anything, this use gives an excellent reason for

developing models in which we approximate at an analytic level in order to obtain

closed-form expressions.

We also note that for the considered swaption, the underlying of which has payments

2, 3 and 4 years from today, the difference between the full model and the approxi-

mation is about 0.2 %, with the ”deterministic price” being the higher. There is a
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discretisation error in our simulations, so another question is ”How should ε be cho-

sen?”(note that the number of computations grows linearly in (T0 − t)/ε). Since the

main difference between models with different ε’s are the relative errors between the

full and the deterministic drift model, we consider a fixed, large M and calculate the

estimate of the aforementioned difference that various ε’s lead to. In Figure 4 this has

been done for our favourite 3-year swaption (same setting as always and M = 50000).

We see that the model quickly stabilises ”in ε”, which is nice. 360 steps is clearly

”overkill”, computer-time and -power can be put to much better use.

Figure 5 shows that the δ-linearity also holds quite nicely for the full model. Note

however, that the lines in Figure 5 are not parallel, the relative absolute difference in

prices increases form 0.20 % to 0.34 % as δ goes from 1 down to 1/64. As Figure 6

shows, the discrepancy between the two models becomes larger as the volatility in-

creases, as one might expect. Figure 7 shows that the longer the underlying swap is,

the more imprecise is the deterministic approximation. Certainly, these observations

will shake neither the market nor the academia. Or in less poetic fashion: ”Just as

we would expect.”

Remark It would be possible to use other, better approximations to the drift. Sawa

(1997) considers and approximation based on the idea that the swaption is exercised

at T0, so he uses an appropriate conditional mean of K(T0, ·). However, based on the

results in this section, we doubt that there will be much gain in pursuing this line of

research.
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4.2 Eurodollar Futures Prices

In Subsection 3.1 we showed that the swaption prices in the model with deterministic

drift were well behaved as δ → 0. In Subsection 4.1 we concluded that the linearity

also holds nicely for the swaption prices in the full model. But not all that glitters is

gold, and not all derivative assets are (structurally similar to) swaptions. One type

type of LIBOR-derivative for which the δ-stability of the market model is particularly

interesting to investigate is the Eurodollar3 futures contract. Why? Well, we showed

that the market model converges to a model somewhat like the BK-model as δ → 0.

In fact, for the deterministic approximation, it WAS the BK-model. On the other

hand, in Hogan & Weintraub (1993) and Hoffman (1993) it is shown that Eurodollar

futures prices are infinite in the BK-model. So something must go awry as δ → 0, or

there is a discontinuity at ”δ = 0”. In either case, we would like to know.

The conjecture is that for any reasonable δ (say, > a day) the instability is not a

problem. Two highly unscientific reasons for this are: (1) a discretised version of

the BK-model is the Black-Derman-Toy-model (see Black, Derman & Toy (1990)), if

this model produced unreasonable Eurodollar futures prices, Fisher Black and his co-

workers would have noticed and not proposed and used the model, and (2) it is NOT

easy to show the infinite prices, initial attempts, like using the Jensen inequality, fail

(believe us!). But enough sweet-talk, let’s get to work.

The Eurodollar futures contract is a futures contract with the LIBOR as underlying

asset. By market convention, the Eurodollar futures ”price” (as always, we should

rather say ”index”) at maturity, T , is

U(T, T ) = 1− δUKδU (T, T )

= 2− P (T, T + δU)−1.

It is well-known from general arbitrage pricing theory that the price of a continuously

marked-to-market futures contract is a martingale under the spot martingale measure

P (Musiela & Rutkowski (1997b) takes this as the definition, Duffie (1988) proves it

from the specification of the futures contract as an index generating cash flows). This

means that

U(t, T ) = 2− E (P (T, T + δU)−1|Ft),
3Why this peculiar name? See Hull (1993) or Hoffman (1993). Futures contracts of this type are

among the most frequently traded interest rate derivatives.
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which we as in the previous subsection would like to express as a PT+δU -mean, because

PT+δU is the natural measure to simulate under. Assuming WLOG t = 0, calculations

as before gives us that

2− U(0, T ) = E T+δU

(
P (0, T + δU)βT+δU

P (T, T + δU)

)
.

Assume that δU/δ ∈ N , and T/δ ∈ N , so the current date (0) is on-beat, which is

NOT completely WLOG. In the δ-market model, the bank account at on-beat dates

has a value equal to the value of 1 $ repeatedly rolled over from time 0 in the shortest

possible bond i.e.,

βT+δU =

T+δU
δ
−1∏

i=0

P (δi, δ(i+ 1))−1,

which can easily be recast in terms of δ-LIBORs, thus showing that the essential part

is determining

ET+δU


T+δU
δ
−1∏

i=0

(1 +Kδ(iδ, iδ))

T+δU
δ
−1∏

i=T
δ

(1 +Kδ(T, iδ))

 , (23)

which is illustrated in painstaking detail in Figure 8. We now have all the information

we need to perform simulations along the lines of the previous subsection in order to

determine the Eurodollar futures price. Let us stress, that when we say δ → 0, then

this precisely what we mean i.e., δU is going nowhere fast !

In Figure 9 we see no indication of δ-instability for the full model. The only indication

of some problem is that the confidence intervals are about 15 % broader in the left

than in the right hand side of the figure. For the ”deterministic drift”-model the

picture is much the same, in fact for the given simulation parameters (M, ε) the test

probability that the prices are equal is extremely high. The design of the experiment

can be criticised. We should use a sample size, M , such that we are able to distinguish

at some reasonable level of significance between prices that we know are cannot be

the same. But this would take roughly forever, in particular for small δ’s since the

computation time grows quadratically in 1/δ.

Remark What the bank account is on off-beat dates does not concern us because

we have been devious enough to make the current date on-beat. However, note that

the process Gt = P (t, Tbt/δc+1)
∏t/δ

i=0 1/P (δi, δ(i + 1)) which coincides with the bank

account for on-beat t’s, is not of bounded variation, hence does not qualify for a bank
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Figure 8: Schematic illustration of the simulation procedure for the Eurodollar future.

Not a terribly important figure, but it took several hours to draw it, so now you are

forced to look at it.

account. The martingale measure corresponding to G as numeraire is called the spot

LIBOR measure and has been studied in Jamshidian (1997).

Remark Because lognormal distributions have moments of any order, it is easy to

see by the Hölder inequality, that the mean we are trying to determine in the ”de-

terministic drift” model is in fact finite for any δ > 0. In the this model we know

exactly the joint distribution of all the cells in Figure 8 (perceived as a matrix). One

could get the impression that it is then ”easy” to calculate (23) exactly and pass to

the limit. This would tell us whether the model has a ”discontinuity at 0”, something

that would be quite possible. However we have not been able to show a result like

this analytically, the problem is basically that the lognormal distributions are not

sum-(but product)stable, and we are dealing with quantities like ”
∏n(1 + logN/n)”.
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Figure 9: The simulated Eurodollar futures price in the full model. t=0, T=1, δU =

0.25, otherwise the usual setting. δ/ε = 5, M = 50000. *’s are estimates, lines show

95 %-confidence interval.

5 Conclusion and Discussion

In this paper we have described a lognormal model for the LIBOR. The model was

similar to the HJM-framework in that it took the current term structure as direct

input, but the focus was shifted to rates with strictly positive compounding periods.

This is surely this first, major step that is to be taken when we want a model the pro-

duce realistic prices i.e., prices that can be quoted in the market. We were able to find

closed form solutions for swaptions if we were willing to make a number of approx-

imations. These prices depended on the fundamental parameter δ in a non-obvious

manner. We showed that this dependence was very well approximated linearly, in

particular the prices were stable. We also showed that when a deterministic drift

approximation was used, the model converged weakly to the well-known BK-model.

This lead to concerns about the δ-stability of other derivatives, especially the Eu-

rodollar futures contract, because the price connected with this contract has been

shown to be infinite in the BK-model. Simulation studies revealed no indications of

any instability for reasonable choices of δ. Without the deterministic drift approxi-

mation we have to determine swaption prices by simulation. We did this and showed

III.26



that (a) there was not much difference between the two prices, and (b) using the

closed form expression to generate control variates markedly reduced computer-time.

The question of infinite Eurodollar futures prices was specific to a lognormal model,

both otherwise a normal LIBOR-model can be treated with virtually the same, or

even simpler, calculations. Structural similarities also allow for calculation of prices

of other types of derivatives. We did not do this explicitly, but adapted a result from

Brace & Musiela (1997) that allowed us to determine the risk neutral density of linear

combinations of ZCBs.

Some of the approximations were not investigated. In Brace & Musiela (1997) it is

shown how to get around the rank-1 approximation to covariance matrix in a normal

model specification by using a ”conditioning, linearising, and integrating out”-trick.

Sawa (1997) considers approximations of this type in the lognormal model. There

better, or at least more sophisticated, drift approximations are also considered.

Since the lognormal model, as opposed to the normal specification, forces us to make

both analytical and numerical approximations as well as poses possible instability

problems, the logical question is ”Why use it?” A first answer is ”Because it”s there!”

A second is saying, in the same tone of voice that Buddhist monks use when reciting

their mantras, that it prevents negative interest rates. A third reason is that might

explain empirical behaviour better, which in turn leads to the issue of is model choice,

one that there has not yet been much discussion about in the literature in the particu-

lar context described in this paper. In the framework of one-factor short term interest

rates there seems to be no end to articles and working papers estimating and testing

different specifications against each other. But believing that you can choose between

models of this type by using conventional statistical methods seems futile. Firstly, the

model is specified under numerous probability measures. The arbitrage free measure

could be the objective probability measure (”the local expectations hypothesis”), but

assuming that the forward measures coincides to the objective probability is easily

seen to imply that interest rates cannot be stochastic. What could help us is that the

volatility is the same under the different measures, so we could just do some factor

analysis to validate models. But how do you consistently separate out drifts, whose

functional form you do not know when you only have discrete observations ? In prac-

tical applications we would calibrate the model (meaning that we find the volatility)

to the most liquid derivatives, typically caplets. This is very good on a day-to-day
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basis but can be dangerous in the long run since it is hard to determine whether the

dynamics of your model are wrong. Indications of this would be wildly fluctuating

implied estimates, poor hedges and, eventually, bankrupt! The widespread use of

implied volatility also raises the question whether there is any relation between the

implied volatility and the actual volatility (perhaps even the one the model claims

there is?) Highly reliable data from both sides of the market can be obtained, which

would greatly facilitate an analysis of this question.

Another question regarding model choice is where to start. Our model started in

the LIBOR-market. This seems very reasonable; the market is liquid and LIBORs

are easy to observe (as opposed to ”the short rate”, which is a highly theoretical

concept). From this we then find the swap rates (see (6)), which have unknown, but

numerically not too different from lognormal, distributions. Jamshidian (1997) starts

by specifying swap rate dynamics (under a particular measure). A topic for research

is how different, numerically, models of these types are. LIBOR and swap markets are

probably the only ones liquid enough to justify they use a ”dynamic building block”.
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A Lest we forget....

There may be a lot of things we can’t do in finance. But we’re good at calculating

means of truncated normally and lognormally distributed variables. To get from (16)

to (17) it suffices to look at

ETj

(
[K(0, Tj−1) exp(Xj −

1

2
Γ2
j)− qoz(j, q)κ]1{Xj≥Γj(s+dj)}

)
.

Under PTj we have Xj ∼ N(0,Γ2), which we can write in the following fancy way;

Xj = Xj(1) where

dXj(t) = ΓjdW Tj (t).

By symmetry around 0 we have

ETj
(
qoz(j, q)κ1{Xj≥Γj(s+dj)}

)
= qoz(j, q)κΦ(−s− dj).

As a bolt from the blue introduce a probability measure Q through

dQ

dPTj
= exp(Xj −

1

2
Γ2
j).

Girsanov’s theorem gives us that dW Q (t) = dW Tj (t)−Γjdt defines a Q -BM and that

dXj(t) = Γ2
jdt+ ΓjdW Q (t),

so that Xj ∼ N(Γ2
j ,Γ

2
j) under Q and we get by simple manipulations that

E Tj

(
exp(Xj −

1

2
Γ2
j)1{Xj≥Γj(s+dj)}

)
= EQ

(
1{Xj≥Γj(s+dj)}

)
= Φ(Γj − s− dj),

which when collecting all the terms proves (17) without calculating a single integral.
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Transition Densities of Diffusion Processes
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Abstract

We give a detailed comparison of a large number of techniques used to

approximate the transistion densities of a diffusion process. The techniques

considered are simple normal approximations, simulation-based methods, bino-

mial approximations, numerical solution of the Fokker-Plank partial differential

equation, and Hermitian expansion. From speed/accuracy trade-off considera-

tions this list also indicates the qualitative ordering of the methods.
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1 Introduction

Diffusion processes are widely used in financial and statistical modelling and are

characterized by their transition densities. Unfortunately, we are in general unable

to express these in a way that would commonly be accepted as “closed-form.” We

do, however, know many features of the densities; features that can be of both prob-

abilistic and analytical nature and can lead in natural ways to approximations of the

densities. In this paper we give a detailed comparison some of the methods most

commonly and recently suggested in the literature.

The philosophy behind the comparisons can be expressed in two “bullet points”:

• “General to specific”

– First we describe the methods in a setting that allows for implementa-

tion for quite general parameter specifications, at least when we restrict

ourselves, as we shall do, to one-dimensional process. Then we base error
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comparisons on some of the few – but of course widely used – models where

the transition densities are known.

– We also aim for generality by trying to find the transition densities. Teoret-

ically, they characterize the process and with them at hand we can do many

things easily. If we are “financially inclined” we can price any European-

type contingent claim by (at most) numerical integration. Also, having

implemented the algorithms a number of more exotic financial contracts

can be priced with only minor revisions (but it may require quite some

ingenuity to see which revisions). If we are “statistically inclined” we will

use the transistion densities and the Markov property to write down the

likelihood function. Maximizing this function (over “parameters”, which

may somewhat delicate numerically) gives us benefits in statistical infer-

ence (“under mild conditions”: consistency, asymptotic normality, and

efficiency).

• “Multi-criteria”

Contrary to what mathematical analysts will have you believe, approximation

techniques should be compared not just by “the order of the remainder in a

Taylor expansion”. The following questions, with answers that are increasingly

hard to quantify, should be asked:

– How accurate is the approximation?

– How long does it take to calculate the approximation?

– How long time does it take to program (and debug) the algorithm?

– How flexible is the method?

We shall try to address all these issues, even if the treatment of the latter points

is by nature subjective.

The remainder of this section describes the general set-up. For the outline of the rest

of the paper we refer to the table of contents.

We consider a set-up with a one-dimensional diffusion process X with dynamics gov-

erned by the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0, (1)
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where W is a Brownian motion on some filtered probability space (Ω, (F)t,F , Q), and

µ, σ : R 7→ R are functions such that Equation (1) is well-defined and has a (weak)

solution and (versions of) transition densities that are absolutely continuous wrt. the

Lebesque measure and sufficiently smooth. We seek these transition densities. That

is, we are looking for φ : R+ ×R ×R 7→ R+ (referred to as the transition density)

such that

y 7→ φ(4, x, y)

is the density of X4 given X0 = x.

2 Models

In this section we describe the three most well-known models to the financial commu-

nity. They are all characterized by a closed-form expression of the transition density.

2.1 The Vasicek Model

The term ’Vasicek model’ is in tribute to Vasicek (1977); people outside the financial

community would call it an Ornstein-Uhlenbeck process. The dynamics of the SDE

are

dXt = κ(θ −Xt)dt+ σV dWt,

for κ, σV ∈ R+ and θ ∈ R. In this caseX4|X0 = x is normally distributed, specifically

the transition density is

φV (4, x, y) = n(y;m(4, x), v(4, x)),

where n is the normal density and the conditional moments are

m(t, x) = E(Xt|X0 = x) = e−κtx+ θ(1− e−κt)

v(t, x) = V ar(Xt|X0 = x) =
σ2
V (1− e−2κt)

2κ
.

2.2 The Cox-Ingersoll-Ross Model

The term ’Cox-Ingersoll-Ross model’ is in tribute to Cox, Ingersoll & Ross (1985),

from which we have also adapted the density and moment formulae. The dynamics
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of the SDE are

dXt = κ(θ −Xt)dt+ σCIR
√
XtdWt,

for κ, θ, σCIR ∈ R+ such that 2κθ > σ2
CIR. In this case X4|X0 = x is non-central

χ2-distributed, specifically the transition density is

φCIR(4, x, y) = c exp(−u− v)
(v
u

)q/2
Iq(2
√
uv) for x, y ∈ R+,

where

c =
2κ

σ2
CIR(1− exp(−κ4))

, q =
2κθ

σ2
CIR

− 1,

u = cx exp(−κ4), v = cy,

and Iq is the modified Bessel function of order q. Modified Bessel functions can

be evaluated using routines from Numerical Recipes (Press, Teukolsky, Vetterling

& Flannery (1992)). It should be noted that for large z (meaning z > 2) we have

Iq(z) ≈ exp(z). For the parameters we consider this is likely to be the case, so a

slight modification in the routines is needed.

The conditional mean is given by the same expression as for the Vasicek model, while

v(t, x) = x
σ2
CIR(e−κt − e−2κt)

κ
+ θ

σ2
CIR(1− e−κt)2

κ
.

2.3 The Black-Scholes Model

Naturally, the term ’Black-Scholes model’ is also a tribute to Robert Merton; others

would call it a Geometric Brownian motion with drift. The dynamics of the SDE:

dXt = rXtdt+ σBSXtdWt,

for r, σBS ∈ R+. In this case X4|X0 = x is lognormally distributed, specifically the

transition density is

φBS(4, x, y) =
1

σBSy
√
4
√

2π
exp

(
−(ln y − (lnx+ (r − σ2

BS/2)4))2

2σ2
BS4

)
, for x, y ∈ R+,

and

m(t, x) = xert

v(t, x) = x2e2rt(eσ
2
BSt − 1).
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3 Approximation Techniques

3.1 Simple Analytic Approximations

Two, quite different, approaches are used in the literature to obtain (effectively)

analytic approximations to φ.

3.1.1 Small Time Steps

If 4 is small we can think of dXt as X4 − X0 = X4 − x0, approximate any Xt’s

occurring on the RHS of (1) with X0 and perceive ’dWt’ as a N(0,4)-variable. This

leads to the approximation

φA(4, x, y) = n(y; x+ µ(x)4, σ2(x)4).

In a certain sense this (often called an Euler-approximation) is a first order approx-

imation wrt. 4, i.e. it is ’good’ when ’4 is small’. See Kloeden, Platen & Schurz

(1991) for precise statements and examples of how to use such approximations (or:

go to Section 3.2 of this paper).

Alas, 4 is typically not a quantity we (the statisticians or the financial modelers) can

control; it is thrust upon us by God or ’The Market’ or . . . . Also, the error, which is

highly dependent on the functional form of the drift and volatility functions, is hard

to approximate in a simple and constructive manner.

Suppose the conditional first and second moments of X are known. Then we could

use

φA(4, x, y) = n(y;m(4, x), v(4, x)).

This is also a first order approximation wrt. 4 but for many reasons a better one.

For example, if it is used in statistical applications to discretely observed data, we

obtain consistent estimates by maximizing the approximate loglikelihood function.

Of course, there is a huge overlap between models where the transistion density is

known and models where the conditional moments are known. But finding moments

by numerical methods, e.g. simulation, seems an easier task than trying to determine

the whole transistion density.

3.1.2 Large Time Steps

The material in this section is covered in ’second course’-books on stochastic processes

(e.g. Karatzas & Shreve (1992) and Karlin & Taylor (1981)).
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Let DX = (x, x) denote the domain of X. In finance the only two cases relevant are

the ones where DX = (−∞,∞) or DX = (0,∞) . Define

s(x) = exp

(
−2

∫ x

x#

µ(y)

σ2(y)
dy

)
,

and

ν(x) =
1

σ2(x)s(x)
,

where x# is an arbitrary point in DX . We introduce the speed measure by requiring

its density to be ν. Assume also that the following conditions hold∫ x#

x

s(x)dx =

∫ x

x#

s(x)dx =∞∫ x

x

ν(x)dx ≡ ν <∞.

Then X is ergodic with invariant measure

φ∞(y) = lim
t→∞

φ(t, x, y) (2)

given by

φ∞(y) =
ν(y)

ν
.

Finally, if X0 ∼ φ∞ (which in statistical applications may largely be a matter of

perception), then X is stationary, i.e. Xt ∼ φ∞ for all t. Note that it is the un-

conditional density that is the same for all t. Often φ∞ can be found in closed form

(also for models with unknown conditional densities) or it can easily be determined

by numerical integration. Therefore it is reasonable to think of the approximation

φA(t, x, y) = φ∞(y)

as analytic.

When is this a good approximation? Looking at (2) we note two things about φ∞:

i) It is the limit as t tends to infinity.

ii) It does not depend on x.
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This leads us to the conclusion that φ∞ is a good approximation if i) 4 is large or,

ii) φ does not ’depend very much’ on x. The latter means that if X is used to model

’reasonably uncorrelated events’ then φ∞ is a good approximation. This is often the

case when stock returns are modeled.

For the Vasicek model we see that

φ∞(y) = n

(
y; θ,

σ2
V

2κ

)
.

For the Cox-Ingersoll-Ross model one can show that

φ∞(y) =
wv

Γ(v)
yv−1e−wy

where v = 2κθ/σ2
CIR and w = 2κ/σ2

CIR (so the invariant measure corresponds to a

Γ-distribution).

The Black-Scholes model does not have an invariant measure (but (ln(e−rtXt)) does).

3.2 Simulation

Monte Carlo simulation methods in finance are mainly used to price derivatives.

The first paper published in finance using the idea of Monte Carlo simulation was

Boyle (1977). In this paper the value of standard European call-options generated by

Monte Carlo simulation were analyzed. The main idea of Monte Carlo simulations is

to use the Law of Large Numbers known from basic probability theory. From basic

arbitrage-theory it is known that the fair value of a European claim, c, maturing at

time T with X as the underlying asset and pay-off structure given by f̃ (·) is:

c0 = EQ
[
e−rT f̃ (XT )

]
,

where r is the (constant) risk-free interest rate and the expectation is taken with

respect to the risk-neutral measure Q. Therefore; simulating N independent realiza-

tions of XT (under the measure Q) by the Monte Carlo method will result in the

following unbiased estimate of the claim’s price:

cest0 = e−rT
1

N

N∑
j=1

f̃
(
Xj
T

)
,

where Xj
T denotes the j’th simulation of XT . Before discussing how to simulate XT it

is worth to make some comments regarding the standard error of the estimate cest0 :
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1. Let σ
[
f̃ (XT )

]
:=

√
VAR

(
f̃ (XT )

)
denote the standard error coming from

simulations of XT . Then it is easily seen that the standard error for the estimate

cest0 is:

STD
(
cest0

)
= e−rT ·

σ
[
f̃ (XT )

]
√
N

.

Therefore it is noticed that if a reduction in STD(cest0 ) of (for instance) a fac-

tor of 10 is required a number of 100 · N simulations are required. From a

computational point of view this can be a quite time-consuming task.

2. Instead of increasing the number of simulations in order to decrease the stan-

dard error of the estimate, STD(cest0 ) it may be more advantageous to simulate

XT such that the estimate cest0 is still unbiased, and such that the standard

error STD(cest0 ) is smaller than the standard error described above using the

‘crude’ Monte Carlo method, i.e. to reduce the standard error σ
[
f̃ (XT )

]
. Sev-

eral methods, some of which will be described in subsection 4.1.2, have been

proposed. However, before implementing these methods, one has to be sure

that the extra computer-time required for this ‘sophistication’ of the Monte

Carlo method does not become larger than the extra computer-time required,

increasing the number of simulations using the ‘crude’ method, in order to get

the same decreased standard error, STD(cest0 ). An example:

Suppose that the standard error estimated using N ‘crude’ simulations can (and

should) be decreased by a factor of 10 using a ‘sophisticated’ method. For N

simulations this method requires an addition of s seconds on the CPU. If an

increase of simulations to 100 · N results in an increase of less than s seconds

on the CPU it is seen that it is more desirable to simply increase the number

of simulations instead of implementing the ‘sophisticated’ method.

For an excellent survey about this topic (and the general topic of Monte Carlo

simulation in finance) see Boyle, Broadie & Glasserman (1997). However it

should be noticed that ‘sophisticating the simulation’ techniques normally just

increase the computer-time with a fraction compared to increasing the number

of simulations - at least for a reasonable number of simulations.

After discussing how to estimate option-prices from simulations now comes a brief

discussion regarding the simulation of XT . Since (1) describes a continuous-time
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stochastic differential equation a discretization-scheme is needed to compute realiza-

tions of XT . The book by Kloeden et al. (1991) gives a detailed analysis regarding

this subject. In this paper such a detailed description will not be given. Two differ-

ent discretization-schemes will now be described: The Euler scheme (EU) and The

Milstein scheme (MI) which approximate (1) by the following discrete schemes:

X(i+1)δ −Xiδ = µ (Xiδ) δ + σ (Xiδ)
√
δÑ (EU), (3)

X(i+1)δ −Xiδ = µ (Xiδ) δ + σ (Xiδ)
√
δÑ

+
1

2
σ (Xiδ)σ

′ (Xiδ) δ
{
Ñ

2
− 1
}

(MI), (4)

i = 0, 1, . . . ,M − 1,

where X0 = x0 is given, the volatility function σ (·) is differentiable, M is a fixed

number of discretization-times, δ = T
M

is the time-length (chosen by us) between two

discretizations and Ñ is a standard normal generator giving independent standard

normal distributed realizations: n1, n2, . . . , nM .

It is observed from (3) and (4) that the Milstein-scheme is a refinement of the Euler-

scheme leading to higher order accuracy (see Kloeden et al. (1991)).1 However consid-

ering the Vasicek model it is seen that the two schemes coincide because the volatility

in that model is independent of state-variable and therefore implies a zero extra term

going from the Euler-scheme to the Milstein-scheme.

Generating M independent standard normal variables therefore lead to one realization

ofXT using either The Euler-scheme or the Milstein-scheme. This leads us to conclude

that N ·M independent standard normal variables are needed to simulate a price of

an option when the underlying process follows (1). However if the antithetic variates

technique (as described above) is used, just half the size
(

1
2
N ·M

)
is needed.

Notice that although the explicit solutions to the differential equations analyzed in

this paper could be written down and from that point on, one could start the simu-

lation (requiring only
(

1
2
N
)

independent standard normal variables) it is not done.2

This is not done because in the general case there exists no explicit solution to the

1It should be mentioned that Kloeden et al. (1991) introduce schemes of even higher orders. The

implementation of one of these schemes might decrease the number of time approximation steps

dramatically to get as good an approximation as, for instance, the Euler scheme.
2For instance: In the Black-Scholes model one could simulate XT using the explicit solution:

XT = X0 exp
{(

r − 1
2
σ2

)
T + σ

√
TÑ

}
.
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stochastic differential equation and the only hope of simulating the density function

is to use a discretization-scheme.

Another thing to consider is the optimal relationship between the numbers of sim-

ulations (N) and the number of time-discretizations (M) with a fixed amount of

computer-time. Duffie & Glynn (1995) have done some investigations regarding that

problem. Their main-result is an asymptotic result stating that it is optimal to

quadruple the number of simulations with each doubling of time-discretizations for

the Euler-scheme. For the Milstein-scheme one should make 16 times as many simu-

lations when the number of time-discretizations are doubled.3 We will return to this

subject when the numerical results are discussed in a later section.

Generating random-numbers on a computer is a rather sophisticated thing to do.

In finance mainly two types of generators are used: The pseudo-generator and the

quasi-generator. A brief discussion of the two types and how they are implemented

in the analysis of this paper follows:

1. The pseudo-generator: A linear congruential formula is used generating pseudo-

random-numbers. The generator will return numbers in the interval [0, 1) which

can be seen as independent realizations of a uniform random variable taking its

values in the interval [0, 1).4 The linear congruential formula is:

Un+1 = (aUn + c) MOD m, n ≥ 1.

To start the algorithm generating the numbers Un one has to initialize the

formula. This is done by stating a start-value for U1. The n’th number displayed

by this generator will then be Un
m

which is located in the interval [0, 1).

To transform the uniform random variables to standard normal variables Box-

Muller’s method is used. This method is based on the theorem that if Ũ and Ṽ

are two independent U (0, 1) distributed random variables, then:

Ñ1 =

√
−2 ln

(
Ũ
)

cos
(

2πṼ
)

and

Ñ2 =

√
−2 ln

(
Ũ
)

sin
(

2πṼ
)

3It should be noticed that the Milstein-scheme used in the paper by Duffie & Glynn (1995) is a

little different from the Milstein-scheme used in this paper. However the results from the theorem

still applies.
4This hypothesis is accepted by various statistical tests for independence and distribution.
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are two independent standard normal variables. Therefore transforming the

realizations made by the above described generator using Box-Muller´s method

generate independent standard normal distributed realizations.

The pseudo-generator has been criticized for generating too many ‘clustered’

numbers meaning that a histogram made on the interval [0, 1) of the realizations

will result in too many ‘peeks’ and ‘valleys’ or if multi-dimensional simulation is

used: plotting the numbers in the unit hypercube result in too many bare areas.

To overcome this problem one has to simulate a lot of numbers (remember that

the standard error of the simulated price is of order N−
1
2 ) or use what is known

as quasi-random numbers.5

2. The quasi-random generator: Instead of using pseudo-random numbers one can

use a quasi-random generator. This method generates sequences of numbers in

the interval [0, 1) in such a way that the ‘clustering’ problem described above has

decreased. Of course, one has to be very careful using these numbers because

they can no longer be seen as independent draws. For a thorough understanding

of these methods see Galanti & Jung (1997) and Joy, Boyle & Tan (1996).

The quasi-random generator used in this study is the one generating Faure

sequences. The base of the Faure sequence is going to be the smallest prime

number (p) equal to or bigger than the number of time-approximations (in the

above denotedM). Initializing the Faure sequence to start at the value p4 should

result in good numbers that do not cluster around zero.6 For completeness here

comes the algorithm generating Faure sequences. Furthermore an example with

Faure numbers will be provided to indicate the way the numbers are constructed.

Let n go through the list {p4, p4 + 1, . . . , p4 − 1 +N} . For each n the fol-

lowing algorithm will provide M numbers in the interval (0, 1) that can be

used to generate one pricepath for XT according to one of the above described

discretization-schemes.

Algorithm 1 • Convert n into its representation in the base p number sys-

5They are also known as low-discrepancy sequences.
6See Galanti & Jung (1997).
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tem, i.e., find (the unique) numbers a0 (n) , a1 (n) , . . . , aJ (n) such that:

n =
J∑
j=0

aj (n) pj ,

where J equals the integer part of ln(n)
ln(p)

.

• Reflect the found numbers aj (n) around the decimal point to get the first

Faure number

α1 (n) ≡
J∑
j=0

aj (n) p−j−1.

• For each k in the list {2, 3, . . . ,M} reorder the numbers aj (n) to bk0 (n) ,

bk1 (n) , . . . , bkJ (n) by the following rule:

bki (n) ≡
[

J∑
j≥i

(
j

i

)
(k − 1)j−i aj (n)

]
MOD p.

• Reflect the found numbers bki (n) around the decimal point to get the k’th

Faure number

αk (n) ≡
J∑
i=0

bki (n) p−i−1.

An example using the above algorithm (an actually used in the numerical study)

now follows.

Example 2 Let M = 4. Then it is obvious that p = 5 and that the sequence

start at n = 54 = 625. For the three different numbers: 625,626 and 632 it is

obvious that J equals 4. The corresponding values of aj (n) , bki (n) and αk (n)

are therefore:

n = 625 n = 626 n = 632

a0 a1 a2 a3 a4 α1 a0 a1 a2 a3 a4 α1 a0 a1 a2 a3 a4 α1

0 0 0 0 1 1
3125

1 0 0 0 1 626
3125

2 1 0 0 1 1376
3125

b2
0 b2

1 b2
2 b2

3 b2
4 α2 b2

0 b2
1 b2

2 b2
3 b2

4 α2 b2
0 b2

1 b2
2 b2

3 b2
4 α2

1 4 1 4 1 1171
3125

2 4 1 4 1 1796
3125

4 0 1 4 1 2546
3125

b3
0 b3

1 b3
2 b3

3 b3
4 α3 b3

0 b3
1 b3

2 b3
3 b3

4 α3 b3
0 b3

1 b3
2 b3

3 b3
4 α3

1 2 4 3 1 991
3125

2 2 4 3 1 1616
3125

0 3 4 3 1 491
3125

b4
0 b4

1 b4
2 b4

3 b4
4 α4 b4

0 b4
1 b4

2 b4
3 b4

4 α4 b4
0 b4

1 b4
2 b4

3 b4
4 α4

1 3 4 2 1 1111
3125

2 3 4 2 1 1736
3125

1 4 4 2 1 1236
3125
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Since the numbers in a Faure sequence can no longer be regarded as independent

the Box-Muller method cannot be used. Instead Moro’s inverse normal function

approximation is used. Again, for completeness, here comes Moro’s inverse

normal function:7

Let Φ (x) denote the normal distribution function then Moro’s inverse normal

distribution is given by:

Φ−1 (x) =


y
P3
n=0 any

2n

P4
n=0 bny

2n if |y| ≤ 0.42

h (z) if 0.42 < y < 0.5

−h (z) if − 0.5 < y < −0.42

,

where: y = Φ (x) − 0.5, z = k1 [2 ln (− ln [0.5− |y|])− k2] and h (z) is given

recursively by:

d10 = d9 = 0,

dj = 2zdj+1 − dj+2 + cj , j = 8, 7, . . . , 1,

h (z) = d0 = zd1 − d2 +
c0

2
.

The constants an, bn, cn and k1 and k2 are given by:

n an bn cn

0 2.500662823884 1.00 7.7108870705487895

1 −18.61500062529 −8.47351093090 2.7772013533685169

2 41.39119773534 23.08336743743 0.3614964129261002

3 −25.44106049637 −21.06224101826 0.0373418233434554

4 3.13082909833 0.0028297143036967

5 0.0001625716917922

6 0.0000080173304740

7 k1 k2 0.0000003840919865

8 0.4179886424926431 4.2454686881376569 0.0000000129707170

The last thing to notice about this generator is that the difference

|c0 − cest0 |
7For technical details about this inverse distribution function the reader is referred to Joy et al.

(1996).
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asymptotically is of order (lnN)M

N
, which for a suitable chosen N will be smaller

than the error induced using pseudo numbers. However as will be seen in this

numerical study the efficiency of the quasi numbers compared with the pseudo

numbers is absolutely not overwhelming, especially not when computer-time is

also included in the evaluation.

After describing the main features of Monte-Carlo simulation and the pricing of op-

tions it is time to focus on simulation of densities. Simulation of transition densities

arising from diffusion processes have not been the topic of many research articles

in finance. In fact we have not been able to find any papers considering Monte-

Carlo simulation of transition-densities. All papers in finance using simulation are

mainly focused on the techniques used; be it: The choice of generator, the choice of

time-discretization-scheme and/or the choice of standard error reduction technique.

Normally these choices are based on a specific option-pricing problem. However,

as argued in the introduction: To measure the efficiency of a method, how well it

approximates the (one-dimensional) density, is the right measure.

To simulate a transition density one has to make a histogram on the real axis R or

the half-axis [0,∞), whichever is the supporting region for the underlying process

{Xt} . Therefore suppose that the real axis R or the half-axis [0,∞) are divided into

intervals, [xi, xi+1). The simulation of one realization of XT is then recognized to

be in one of the intervals [xi, xi+1). After N simulations one can count how many

realizations that actually ended up in the interval [xi, xi+1). Dividing each of these

numbers by N and we have the histogram that approximates the transition density.

Actually the simulation of densities can be viewed as a simulation of some special

digital options. If the real axis R or the half-axis [0,∞) are divided into intervals,

[xi, xi+1) we see that simulation of the density is equivalent to the simulation of a

basket of (non-discounted) binary options, Ci that pay off one dollar if XT ends up

in the interval [xi, xi+1) and nothing if XT ends up somewhere outside this interval.

Therefore the above described theory regarding option pricing using Monte Carlo

simulation can also be applied to simulation of densities. Figure 1 shows the above

described idea behind simulation of densities.
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Figure 1: Example of a density approximation obtained by simulating a histogram.

A final comment regarding simulation of densities by histograms is worth making.

One can consider the N draws of the random variable XT as a dataset that can

estimate the density using statistical devices other than the histogram. Especially,

one could use kernel-smoothing known from non-parametric statistical analysis. But a

histogram is actually kernel-smoothing, with the choice of kernel being the rectangular

one, i.e.:

K (t) =
1

2
for |t| < 1.

Other kernels could have been chosen, for instance the Gaussian density function.

For our purposes their is not much to gain using other kernels. This statement is
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documented in Silverman (1986), p.43:

...there is very little to choose between the various kernels on the basis

of mean integrated square error. It is perfectly legitimate, and indeed

desirable, to base the choice of kernel on other considerations, for ex-

ample the degree of differentiability required or the computational effort

involved...

Since differentiability of the density is not an issue in this paper and since the rectan-

gular kernel is the least computational time consuming kernel that exists, the choice

is obvious! A histogram perfectly satisfies the demands set to our numerical analysis

of transition densities.

3.3 Computationally Simple Binomial Models (CSBM)

This section largely follows Nelson & Ramaswamy (1989), which among other things

is a brilliant ’translation into English’ of general results from the probability literature

(as found in e.g. Ethier & Kurtz (1986) and Stroock & Varadhan (1979)).

Think of a binomial model as a tree. More specificly as a tree with an orientation

(given by ’time’) where exactly two arcs go out from each node. With each node we

associate a real number, an outcome of the binomial process at that point in time.

With each arc we associate a number between 0 and 1, the probability of transition

between the two nodes the arc connects. If the total number of nodes grows at most

quadratically in the number of time intervals we say that the model is computationally

simple. If the tree is recombining, it is a lattice.

In probabilistic terms: Suppose the time interval [0;4] has been divided into N

pieces of equal length k = 4/N . For each value of k we consider a stochastic process

(kxt)t∈[0;4] fulfilling

0yt = x0 ∀k

kxt = kxhk hk ≤ t < (h+ 1)k

Q(kx(h+1)k = c | kxhk) =

{
qk(kxhk) for c = X+

k (kxhk)

1− qk(hyhk) for c = X−k (kxhk)
,

for functions qk : R 7→ [0; 1], X+
k , X

−
k : R 7→ R such that X−k (x) ≤ X+

k (x) for all x.

Given a diffusion process, say by (1), we face three questions:
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i) In what sense can we talk about (or better: prove) ’convergence’ of a binomial

process to a diffusion?

ii) How can we construct a binomial model that ’converges’ to the diffusion?

iii) (How) Can we keep the binomial model computationally simple?

The type of converge most frequently considered in the literature is ’weak convergence

on the space of RCLL functions’. This is a rather technical concept, but for our

purposes it is important that it implies convergence in distribution of any vector,

(kxt1 , . . . ,k xtn)
∼→ (Xt1 , . . . , Xtn) for k → 0.

Weak convergence is just that; usually it is not enough to guarantee convergence of

the objects we are interested in. This has to be done on a case-by-case basis (of course,

some people can make a ’case’ fairly general, see He (1990)). The best example is

the convergence of the call-option price in the Cox-Ross-Rubinstein model (cf. Cox,

Ross & Rubinstein (1979)) to the Black-Scholes price. To ensure weak convergence

of a binomial model two conditions have to be fulfilled:

1) The local first and second moments of the binomial process converge to the drift

and volatility of the diffusion process (and do so uniformly on compact sets).

2) The jump sizes in the binomial model tend to 0 (also in an appropriately uniform

way).

This leaves us with considerable freedom in the choice of probabilities and up- and

down-moves. One way to construct a binomial model is first to try with

X+
k (x) = x+

√
kσ(x),

X−k (x) = x−
√
kσ(x),

qk(y) =
1

2
+

1

2

√
k
µ(x)

σ(x)
.

This usually takes care of conditions 1) and 2); minor (but tedious) adjustments may

be necessary to ensure uniformity (a problem that arises if σ 6> 0). This plan has

serious flaw; unless σ is constant, it will not lead to a computationally simple model.

But suppose we can find a function f such that

f ′(x) =
1

σ(x)

IV.18



on the set where σ(x) > 0. Then the Ito formula tells us that the process (f(Xt)) =

(Yt) has constant (unit) volatility. Our ’first try’-technique leads to a computation-

ally simple binomial model for Y . Since (forgetting for a moment about the 0’s of

σ) f is strictly increasing it has an inverse function. Using this function we can

transform the Y -lattice into an X-lattice. Convergence in distribution is preserved

under continuous transforms, and thus we are done. That was the basis idea; some

care need to be exercised to take care of the singularities of σ. This has been done

in Nelson & Ramaswamy (1989) which contains both a general treatment and ’pret-

a-porter’-versions for commonly used models. This idea of creating a diffusion with

unit volatility is also used in the Hermitian expansion (see Section 3.5)

For the purposes of this paper there is a ’bonus question’:

iv) How do we use the binomial model to get an estimate of the conditional density

of the diffusion model?

Suppose we want an estimate of φ(4, x0, y) for some y corresponding to a terminal

node. Keeping track of the qk’s through the lattice enables use to calculate

Q(kx4 = y) = Q(kx4 ∈ Ik)

where Ik = [(y +X−k (y − k))/2; (y +X+
k (y + k))/2[. We then use the approximation

φA(4, x0, y) =
Q(kx4 ∈ Ik)
|Ik|

.

From a finite difference point of view (see Section 3.4) a binomial model can be

seen as a so-called explicit method; this, however, is rarely fruitful and will not be

investigated further.

3.3.1 A CSBM for the Vasicek Model

Since σ is constant the first try works if k is small enough, i.e.

f : x 7→ x/σV , (5)

g : y 7→ σV y. (6)

3.3.2 A CSBM for the Cox-Ingersoll-Ross Model

The f transformation is given by

x 7→ 2
√
x/σCIR, (7)
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and the appropriate inverse transformation is given by

g : z 7→
{
σ2
CIRz

2/4 if z > 0

0 otherwise.
(8)

Following Nelson & Ramaswamy (1989) define

J+
k (x) =

{
The smallest, odd, positive integer j such that

4kκθ/σ2
CIR + x2(1− κk) < (x+ j

√
k)2

,

J−k (x) =

{
The smallest, odd, positive integer j such that

4kκθ/σ2
CIR + x2(1− κk) ≥ (x− j

√
k)2 or x− j

√
k ≤ 0

A computationally simple binomial model is then given by

X±k (x) = g(x± J±k
√
k),

qk(x) =


kκ(θ−g(x))+g(x)−X−k (x)

X+
k (x)−X−k (x)

if X+
k (x) > 0

0 otherwise
.

3.3.3 Two CSBMs for the Black-Scholes Model

The f and g transformations here are

f : x 7→ (lnx)/σBS, (9)

g : y 7→ exp(σBSy). (10)

We can (for sufficiently small k) write the binomial approximation as

X±k (y) = y exp(±σBS
√
k).

We could use the ’first approach’ probabilities,

q̃k(y) =
1

2
+

1

2

√
k
r

σBS
.

Financial aesthetics, however, force us to do things slightly differently: The q̃k’s do

not represent risk-neutral probabilities in the binomial model. To illustrate:

Eq̃k
[
e−r4(kx4 −K)+

]
would not be the (unique) arbitrage-free call-option price in the binomial model

(augmented with a savings account). It would, though, converge to the Black-Scholes

call-option price. The risk-neutral probabilities are

qk =
exp(rk)− exp(−σBS

√
k)

exp(σBS
√
k)− exp(−σBS

√
k)
.
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Fortunately, Taylor expansions show that the local moments also converge for this

choice of qk’s, so all’s well that ends well. We do not get problems of this kind for the

Vasicek- and CIR-binomial approximations because these (thought of as short rate

models) are not complete.

3.4 Partial Differential Equation Techniques

This section largely follows Poulsen (1999). Relying on diffusion theory (e.g. along the

lines of Karatzas & Shreve (1992)), we have that under certain regularity conditions φ

solves the parabolic PDE (called the forward equation or the Fokker-Planck equation)

∂

∂t
φ(t, x, y) = − ∂

∂y
(µ(y)φ(t, x, y)) +

1

2

∂2

∂y2

(
σ2(y)φ(t, x, y)

)
, (11)

with initial condition φ(0, x, y) = δ(y−x), where δ(·) is the Dirac-δ function. Strictly

speaking this is not a PDE in the usual sense because the Dirac-δ function is not

a function in the usual sense but a generalized function. It can be defined as a

continuous, linear, real-valued mapping on the infinite dimensional space C∞(R) such

that δ : f 7→ f(0) for all f ∈ C∞(R). Therefore we cannot use standard theory to

(define and) ensure existence and uniqueness of a solution. This has to be verified with

other methods. Two possible ways are ’inspired guesses’ and ’advanced probabilistic

methods (Malliavan calculus) on the corresponding SDE’. Rigorous treatment of this

is far beyond this (most) paper(s). Rather we will apply a numerical technique known

from ’usual PDEs’ and then see if it produces reasonable results.

3.4.1 The Crank-Nicolson Finite Difference Method

Let subscripts denote differentiation, suppress “x” and other arguments where it

causes no confusion, and rewrite (11) as

φt(t, y) = a(y)φ+ b(y)φy + c(y)φyy (12)

where

a(y) = (σy)
2 + σσyy − µy =

1

2
(σ2)yy − µy,

b(y) = 2σσy − µ = (σ2)y − µ,

c(y) =
1

2
σ2.
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Now consider a time/space grid with step sizes k and h. For any grid point (m,n)

away from the boundaries (say yL and yH) we consider the approximation vnm ≈
φ(nk, yL +mh) defined by the equation

vn+1
m − vnm

k
= aδ0(h) + bδ1(h) + cδ2(h), (13)

where the δ’s are difference operators and the arguments of a, b, and c have been

notationally suppressed; the functions should all be evaluated at the space point

corresponding to the LHS, i.e. at yL +mh.

It is the particular choice of δ’s that determine the accuracy and stability (and popular

name) of the finite difference method. For the Crank-Nicolson method the operators

act in the following way:

δ0(h) =
1

2
vn+1
m +

1

2
vnm, (14)

δ1(h) =
1

2

vn+1
m+1 − vn+1

m−1

2h
+

1

2

vnm+1 − vnm−1

2h
, (15)

δ2(h) =
1

2

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+

1

2

vnm+1 − 2vnm + vnm−1

h2
. (16)

Taylor expansions show that this method is locally second order accurate in both h

and k. Also, the Crank-Nicolson method is unconditionally stable for parabolic PDEs

(for a proof of this, or perhaps just to find out what it means, see Strikwerda (1989)).

Defining λ = kh−2 and inserting in (13) gives(
bhλ

4
− cλ

2

)
vn+1
m−1 +

(
1− ak

2
+ cλ

)
vn+1
m +

(
−bhλ

4
− cλ

2

)
vn+1
m+1 =(

−bhλ
4

+
cλ

2

)
vnm−1 +

(
1 +

ak

2
− cλ

)
vnm +

(
bhλ

4
+
cλ

2

)
vnm+1. (17)

Considering v as known on the boundaries and using the initial condition, (17) defines

a sequence of tridiagonal linear systems of equations. These systems can be solved

recursively and each system requires only a number of operations that is proportional

to the number of state space steps when the tridiagonal structure is exploited, e.g.

by the routine tridag from Numerical Recipes.

If we consider only diffusions with inaccessible boundaries (no reflection or absorption)

then it is reasonable to put v = 0 on the grid boundaries. The grid boundary levels

are chosen “sufficiently far apart” (the actual numbers are parameter dependent, but

choosing them is not a problem).
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The initial condition is treated like this:

v1
m = n(yl +mh; x+ µ(x)k, σ2(x)k), (18)

This is a first-order approximation to the density (in a certain sense). By definition

of the Dirac-δ function this converges to the true initial condition as k → 0. The

Crank-Nicolson method tends to behave badly for non-smooth initial data (as pointed

out in Strikwerda (1989)[p.121]), therefore the above choice is crucial.

A very important point to make here is the following: The usual Taylor expansion

analysis of finite difference schemes gives only local statements; when step sizes tend

to 0 local errors become smaller, but there are a lot more of them (at any point the

calculated solution depends on the calculated solution on earlier points in the grid

because of the recursive structure), so potentially anything might happen. Problems

of this nature can easily (and judging from part of the finance literature: undetect-

edly) occur when PDEs with non-smooth initial data or boundary conditions not of

Dirichlet-type are solved numerically using the Crank-Nicolson scheme. Using a sim-

ple and effective technique developed in Østerby (1998), Poulsen (1999) demonstrate

that second order accuracy holds globally in both the time- and space-dimension for

the problems considered in this paper.

Clearly, if the order in the time- and space-dimension are the same, it is (asymptot-

ically) computationally efficient the keep the step sizes proportional (i.e. let them

tend to 0 at the same rate), where the above mentioned error/order analysis can be

used to find the constant of proportionality.

3.5 Hermite Expansion

The idea of expanding an (unknown) density function by the use of Hermite polyno-

mials go back to Cramér (1925). Unfortunately he showed that the class of densities,

for which the Hermite expansion converges, is rather limited. The density has to be

“almost” normal to be in the class. Since most of the transition densities looked at

in finance do not belong to that class the idea of Hermite expansions has not been of

much use in finance, until recently.8 A novel paper by Ait-Sahalia (1998) has changed

this view completely. The main idea of his paper is to transform the diffusion (1)

into another diffusion with a density that belongs to the class of converging Hermite

8The, perhaps, most used density in finance, the log-normal density, does not belong to the class

of densities that allow a Hermite expansion. See Ait-Sahalia (1998).
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expansions. A brief overview of the transformations, assumptions, main results and

some ‘trick of the trade’ now follows. For a thorough understanding and in-depth

analysis of the idea of Hermite expansions of a financial transition density, the reader

is referred to Ait-Sahalia (1998).

As before it is assumed that the underlying process follows a diffusion given by:

dXt = µ (Xt) dt+ σ (Xt) dWt.

Recall that DX = (x, x) denotes the domain of X. Two assumption regarding the

behaviour of the diffusion X are needed. Here they come:

Assumption 3 Smoothness

The functions µ (x) and σ (x) are infinitely differentiable in x on DX .

Assumption 4 Non-Degeneracy of the Diffusion

1. If DX = (−∞,∞) , then there exists a constant c such that σ (x) > c > 0 for

all x ∈ DX .

2. If DX = (0,∞) and σ (0) = 0 then there exist constants ε0 > 0, a ≥ 0, b ≥ 0

such that σ (x) ≥ axb for all 0 < x ≤ ε0. Furthermore: for all ε > 0 there exists

a constant cε such that σ (x) ≥ cε > 0 for all x > ε.

The first transformation of the diffusion X is given by the following function:

Yt ≡ f (Xt) =

∫ Xt

x#

1

σ (u)
du,

where x# is an arbitrary point in DX . Since σ > 0 the function f is increasing and

invertible. The domain of Y denoted DY =
(
y, y
)

is defined by:

y ≡ lim
x→x

f (x) , and

y ≡ lim
x→x

f (x) .

Using Itô’s Lemma yields:

dYt = µY (Yt) dt+ dWt,

where

µY (y) =
µ (f−1 (y))

σ (f−1 (y))
− 1

2

∂σ

∂x

(
f−1 (y)

)
. (19)
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We see that the first transformation has produced a diffusion with unit volatility, i.e.

we are “getting nearer” the class of converging Hermite expansions. Before stating

the main result an assumption regarding the behaviour of Y is needed. A detailed

discussion of this assumption is given in Ait-Sahalia (1998).

Assumption 5 Boundary behaviour

µY (y) , ∂µY (y)
∂y

and ∂2µY (y)
∂y2 have at most exponential growth near the infinity bound-

aries. Furthermore:

lim
y→y
−1

2

(
µ2
Y (y) +

∂µY (y)

∂y

)
< +∞, and

lim
y→y
−1

2

(
µ2
Y (y) +

∂µY (y)

∂y

)
< +∞.

For the boundaries we have:

1. Left boundary:

• If y = 0+, there exists constants ε0 > 0, a and b such that µY (y) ≥ ay−b

for all 0 < y ≤ ε0, where either b > 1 and a > 0 or b = 1 and a ≥ 1
2
.

• If y = −∞, there exists constants E0 > 0 and K > 0 such that µY (y) ≥
Ky for all y ≤ −E0.

2. Right boundary:

• If y = +∞, there exists constants E0 > 0 and K > 0 such that µY (y) ≤
Ky for all y ≥ E0.

• If y = 0−, there exists constants ε0 > 0, a and b such that µY (y) ≤ −a|y|−b

for all −ε0 < y ≤ 0, where either b > 1 and a > 0 or b = 1 and a ≥ 1
2
.

A last transformation is needed to reach the class of converging Hermite expansions.

Define:

Zt = ∆−
1
2 (Yt − y0) ,

where y0 = f (x0) . Before stating the main result from the paper by Ait-Sahalia

(1998) here comes the relationships between the transition densities of the processes
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X, Y and Z:

φZ (∆, y0, z) = ∆
1
2φY

(
∆, y0,∆

1
2 z + y0

)
,

φY (∆, y0, y) = ∆−
1
2φZ

(
∆, y0,∆

− 1
2 (y − y0)

)
, (20)

φX (∆, x0, x) =
φY (∆, f (x0) , f (x))

σ (x)
, (21)

φY (∆, y0, y) = σ
(
f−1 (y)

)
· φX

(
∆, f−1 (y0) , f−1 (y)

)
,

where the two first relations are merely due to a definition and the last two follows

from the relationship between the processes X and Y . A few definitions are needed:

Definition 6

1. The classical Hermite polynomials are :

Hj (z) := e
z2

2
dj

dzj

[
e−

z2

2

]
, j ≥ 0.

For instance we have: H0 (z) ≡ 1, H1 (z) = −z, H2 (z) = z2−1, H3 (z) = −z3 +

3z, H4 (z) = z4−6z2+3, H5 (z) = −z5+10z3−15z, H6 (z) = z6−15z4+45z2−15.

2. The J’th truncated density of Z is defined to be:

φ
(J)
Z (∆, y0, z) ≡ n (z)

J∑
j=0

ηj (∆, y0)Hj (z) , (22)

where n (z) is the standard normal density and:

ηj (∆, y0) ≡ 1

j!

∫ +∞

−∞
Hj (z)φ

(J)
Z (∆, y0, z) dz.

As in (20) and (21) we define the J ’th truncated density of Y and X by:

φ
(J)
Y (∆, y0, y) = ∆−

1
2φ

(J)
Z

(
∆, y0,∆

− 1
2 (y − y0)

)
, (23)

φ
(J)
X (∆, x0, x) =

φ(J)
Y (∆, f (x0) , f (x))

σ (x)
. (24)

The main result now is:

Theorem 7 Under assumptions 1-3, there exists ∆ > 0 such that for every ∆ ∈(
0,∆

)
and (x0, x) ∈ D2

X we have:

φ
(J)
X (∆, x0, x) −→J→∞ φX (∆, x0, x) .
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Notice that the three diffusions considered in this paper all fulfill assumptions 1-3.

Having established the main theorem it is time to consider the practical implemen-

tation of it. First of all we fix a J . To compute φ
(J)
Z (∆, y0, z) we need the coefficients

ηj (∆, y0) , j = 0, . . . , J. Explicit calculations yield:

ηj (∆, y0) =
1

j!
E
[
Hj

(
∆−

1
2 (Yt+∆ − y0)

)
|Yt = y0

]
.

This expectation can be evaluated using a Taylor-approximation around ∆. To use

Taylor’s formula the following lemma is relevant:

Lemma 8 Under assumptions 1-3 let g be a function such that g and all its deriva-

tives have at most exponential growth. Then for ∆ ∈
(
0,∆

)
, y0 ∈ R there exists

δ ∈ [0,∆] such that

E [g (Yt+∆) |Yt = y0] =
J∑
j=0

(
AJ · g (y0)

) ∆j

j!
+ E

[
AJ+1 · g (Yt+δ) |Yt = y0

] ∆J+1

(J + 1)!
,

where A is the infinitesimal operator of the diffusion Y defined by:

A : g 7−→ µY (·) ∂g
∂y

(·) +
1

2

∂2g

∂y2
(·) ,

and Aj · g (y0) means A applied j times to the function y 7−→ g (y) and evaluated at

y = y0.
9

Practical considerations then are: How many terms should be included in this Taylor-

serie? As suggested in Ait-Sahalia (1998) one should first decide on the trunca-

tion point J and then Taylor-expand the mean such that the approximation of

φ
(J)
Z (∆, x0, x) has terms of at most order ∆

J
2 .

9For instance:

A0 · g = g,

A1 · g = µY g
′ +

1
2
g′′,

A2 · g = µY

(
µ′Y g

′ + µY g
′′ +

1
2
g′′′
)

+
1
2

(
µ′′Y g

′ + 2µ′Y g
′′ + µY g

′′′ +
1
2
g(4)

)
= µY µ

′
Y g
′ + µ2

Y g
′′ + µY g

′′′ +
1
2
µ′′Y g

′ + µ′Y g
′′ +

1
4
g(4),

where the functions µY (·) and g (·) are evaluated at y = y0.
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Following that suggestion, we fix J = 6, and therefore the approximations for ηj ,

j = 0, . . . , 6 are:

η0 =
1

0!

3∑
j=0

Aj ·H0

(
∆−

1
2 (· − y0)

) ∆j

j!
= 1,

η1 = −µY
√

∆−
(

1

2
µY µ

′
Y +

1

4
µ′′Y

)(√
∆
)3

−
(

1

6
µY (µ′Y )2 +

1

6
µ2
Y µ
′′
Y +

1

6
µY µ

′′′
Y +

1

4
µ′Y µ

′′
Y +

1

24
µ′′′′Y

)(√
∆
)5

,

η2 =
1

96
∆


48µ2

Y + 48µ′Y + 48∆µ2
Y µ
′
Y + 56∆µY µ

′′
Y + 32∆(µ′Y )2 + 16∆µ′′′Y

+16∆2µ3
Y µ
′′
Y + 3∆2µ′′′′′Y + 21∆2(µ′′Y )2 + 16∆2(µ′Y )3

+28∆2µ2
Y µ
′′′
Y + 16∆2µY µ

′′′′
Y

+32∆2µ′Y µ
′′′
Y + 88∆2µY µ

′′
Y µ
′
Y + 28∆2µ2

Y (µ′Y )2

 ,

η3 =
1

6


−3
(√

∆
)3

µY µ
′
Y −

(√
∆
)3

µ′′Y − 7
2

(√
∆
)5

µY (µ′Y )2

−11
4

(√
∆
)5

µ2
Y µ
′′
Y −

(√
∆
)3

µ3
Y − 7

4

(√
∆
)5

µY µ
′′′
Y

−3
(√

∆
)5

µ′Y µ
′′
Y − 3

8

(√
∆
)5

µ′′′′Y − 3
2

(√
∆
)5

µ3
Y µ
′
Y

 ,

η4 =
1

240
∆2


60µ2

Y µ
′
Y + 40µY µ

′′
Y + 30(µ′Y )2 + 10µ′′′Y + 50µ3

Y µ
′′
Y ∆ + 4µ′′′′′Y ∆

+34(µ′′Y )2∆ + 40(µ′Y )3∆ + 50µ2
Y µ
′′′
Y ∆ + 23µY µ

′′′′
Y ∆ + 52µ′Y µ

′′′
Y ∆

+180µY µ
′′
Y µ
′
Y ∆ + 10µ4

Y + 100µ2
Y (µ′Y )2∆ + 20∆µ4

Y µ
′
Y

 ,

η5 = − 1

120

(√
∆
)5 (

5µY µ
′′′
Y + 10µ3

Y µ
′
Y + 15µY (µ′Y )2 + 10µ′Y µ

′′
Y + 10µ2

Y µ
′′
Y + µ5

Y + µ
(4)
Y

)
,

η6 =
1

720
∆3

(
10(µ′′Y )2 + µ

(5)
Y + 15(µ′Y )3 + 45µ2

Y (µ′Y )2 + 6µY µ
(4)
Y + 15µ′Y µ

′′′
Y + 20µ3

Y µ
′′
Y

+15µ4
Y µ
′
Y + 15µ2

Y µ
′′′
Y + 60µY µ

′′
Y µ
′
Y + µ6

Y

)
.

Using (22) give us the approximations for φ(j)
Z (∆, x0, x) , j = 0, . . . , 6. Then using

(23) and (24) yields the required approximations for φ
(j)
X (∆, x0, x) , j = 0, . . . , 6.

To complete this section here comes the transformation from the process X to the

process Y for the three investigated diffusions:

• The Vasicek model: The appropriate transform and its inverse are given in (5)

and (6), so

µY (y) =
κ (θ − σV y)

σV
=
κθ

σV
− κy.

• The CIR model: The f transform and its inverse are given in (7) and (8) and
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therefore:

µY (y) =
κ
(
θ − 1

4
σ2
CIRy

2
)

σCIR

√
1
4
σ2
CIRy

2
− 1

2

1

2

σCIR√
1
4
σ2
CIRy

2


=

2κθ
σ2
CIR
− 1

2

y
− κy

2
.

• The Black-Scholes model: The f transform and its inverse are given in (9) and

(10), and from this we get

µY (y) =
r exp {σBSy}
σBS exp {σBSy}

− 1

2
σBS

=
r

σBS
− 1

2
σBS.

4 Implementation of Algorithms and Results

4.1 Tricks of the Trade

4.1.1 Computers & Random Numbers

The random numbers used in this study are either generated by a pseudo-generator

or a quasi-generator as described in the theoretical section about simulation.

The pseudo generator uses the following 48 bit integer arithmetic linear congruential

formula:

Un+1 = (aUn + c) MOD m, n ≥ 1,

where m = 248, c = 013 (base 8) and a = 0273673163155 (base 8). To initialize the

generator a commando using the first 32 bit of the current (physical) clock is used

thereby ensuring (almost) independent runs of the generator.

The quasi generator uses the described Faure sequences. The base of the Faure

sequences is the smallest prime number (p) equal to or bigger than the number of time-

approximations (in the above denoted M), i.e., M = 2 ⇒ p = 2, M = 4 ⇒ p = 5,

M = 8⇒ p = 11, M = 16⇒ p = 17, M = 32⇒ p = 37 and M = 64⇒ p = 67. The

algorithm is initialized as described in the theoretical section by starting at the value

p4.
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4.1.2 Variance Reduction

There are a number of different ways to decrease the standard error σ
[
f̃ (XT )

]
. Some

are generic, some depend (highly) on the random variable XT and the pay-off function

f̃ (·). For a survey see Boyle et al. (1997). Next, the two most common standard

error reduction methods will be described.

1. • The antithetic variates technique: This method of variance reduction is

generic. The basic idea behind it is simply that a realization of a symmetric

random variable Z is paired with the identical distributed random variable

−Z. For instance, the processes considered in this paper are all of the form:

dXt = µ (Xt) dt+ σ (Xt) dWt,

where W is a Brownian Motion. Simulating one realization of this process

(up to time T ) requires M simulations of standard normal variables. Since

the standard normal distribution is symmetric, the outcome of a simula-

tion is equally likely with the negated outcome. This is used to generate

two realizations of XT , the first using the realizations n1, n2, . . . , nM of

the standard normal distribution, the second using the negated realiza-

tions −n1,−n2, . . . ,−nM . Later on a brief discussion of how to generate

realizations of XT will be discussed.

Before moving on to the next standard error reduction technique it should

be noticed that the antithetic variates method is most efficiently used when

options with a monotone pay-off (like vanilla call’s and put’s) are simu-

lated.10 In section 3.2 it was argued that simulating densities can be viewed

as simulating some binary options, which are not monotone in their pay-

off. Therefore it might be questioned how efficient antithetic variates are

when used to simulate densities. Despite this question the method will be

used in this numerical examination mainly because of the ease of inclusion

in the computer-programming.

• The control variates technique: This method depends on the relationship

between a known (analytical) price for an option and the price of an option

found by simulation. For example; let cest0 , pest0 and pan0 denote the price

of an option, c, found by simulation; the price of an option, p, found by

10A detailed discussion about this result can (again) be found in Boyle et al. (1997).
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simulation and the price of the option, p, found analytically, respectively.

The control variate estimate for the option, c, is then given by:

ccv0 ≡ cest0 +
(
pan0 − pest0

)
.

It is seen that this estimate is unbiased. Furthermore calculations yield

the following estimate of the standard error of the estimated option price:

STD (ccv0 ) =
√

Var (cest0 ) + Var (pest0 )− 2Cov [cest0 , pest0 ].

Therefore, the standard error of the estimate ccv0 will be less than the

standard error of the estimate cest0 if the covariance between the options c

and p is positive and large enough. If this covariance instead is negative

and “large” one can take the control variate estimate to be:

ccv
′

0 ≡ cest0 +
(
pest0 − pan0

)
,

and the standard error of the estimate ccv0 will again be less than the

standard error of the estimate cest0 . In fact one can find the best possible

control variate by minimizing:

ccv
′′

0 ≡ cest0 + ω
(
pan0 − pest0

)
.

The optimal choice of ω is found to be:

ω∗ =
Cov [cest0 , pest0 ]

Var (pest0 )
.

This means that an efficient use of this method requires some knowledge

about the structure of the options c and p, i.e., this is a highly problem-

dependent method.

In this study we will always use the antithetic technique since it is totally independent

of the considered problem. On the other hand: Since the control variates method is

so problem-dependent it has been excluded from the numerical investigation done

in this paper. However one should notice that for small time-steps, ∆, the density-

function φ (∆, x, y) is approximately normal (see section 3.1). Therefore using a

normal density function as a control variate might decrease the standard error of the

estimated density function.

IV.31



4.1.3 Extrapolation

Extrapolation is a classical numerical discipline. This section describes the technique

commonly known as ’Richardson extrapolation’.

Suppose we know that vh is a first order approximation of u,

vh(y) = u(y)− hf(y)− h2g(y) + o(h2) (25)

Equation (25) should be understood in following way: We choose y and h and are

then able to compute the LHS, but we do not know the functions u, f and g. Let

eh(y) = u(y)− vh(y) denote the (unknown) error. Performing the calculation for step

sizes h and h/2 we get

vh(y) = u(y)− hf(y)− h2g(y) + o(h2),

vh/2(y) = u(y)− h

2
f(y)− h2

4
g(y) + o(h2).

Note that

eh/2 =
h

2
f +

h2

4
g + o(h2)

and that

vh/2 − vh =
h

2
f +

3h2

4
g + o(h2).

Therefore, if h is small, the error in the ’h/2’-computation is well approximated by

vh/2 − vh and we may use

vR = 2v2 − v1

as an approximation to u. The point here is that vR is likely to be a considerably

better approximation than vh/2 and is obtained cheaply.

If we are dealing with a second order approximation, i.e. f ≡ 0, then similar analysis

shows that

vR = vh/2 +
1

3
(vh/2 − vh)

is likely to be a better approximation to u than vh/2.

The argument can be extended to functions with multiple arguments in a straight-

forward manner.
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We have said nothing as to how vh is calculated or how we know that (25) is valid.

Of course these two problems are intimately related. Typically, a first attempt of

justification of (25) (or: an investigation of which terms are likely to be in there)

is based on Taylor-expansions. But, as discussed in Section 3.4.1 this not always

enough if vh is obtained through a series of calculations each involving an error.

Formal analysis of error propagandation or global error analysis is difficult. But as

pointed out in Østerby (1998) experimental verification can be done by considering

the (computable) ratio

vh − vh/2
vh/2 − vh/4

= 2
f + 6hg + . . .

f + 3hg + . . .
.

for a large number of x’s. If h is small and (25) is valid then we should observe many

numbers close to 2.0 for a first order method while a second order method is likely to

produce numbers in the vicinity of 4.0.

We shall be using Richardson extrapolation for the CSBMs and the finite difference

method. For CSBMs we only have one quantity to vary, N , and the extrapolation

is based on first order accuracy. (Technically, we are forced to use N and 4N to

ensure overlapping terminal nodes.) For the Crank-Nicolson method we can vary

time and space steps independently and the extrapolation based on second order

accuracy in both directions. (This after both order assumptions have been justified

by the ’ratio’-computation.)

Note that the extrapolated values are only available at points corresponding to the

coarsest discretization. We may then use some interpolation scheme or we may be so

fortunate that it is a specific y-value that is of interest to us, we then make sure that

this y-value belongs the the coarsest discretization.

4.2 Numerical Results

Since the object we are trying to approximate is a whole function,11 there are many

ways of measuring the quality of the approximation. We give two error measures, one

absolute, one relative. (The yi’s are the grid/lattice points.)

11Strictly speaking, we are trying to approximate a function of three variables, t ∼ time, x ∼
“current state”, and y ∼ “future state”. We give only error measurements related to one of these,

namely y, while keeping the others fixed, since the “error in y” is often the most relavant one.

Further our studies indicate that results are insensitive to the chosen values of t and x.
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• Maximal absolute error,

e1 = sup
i
{|φA(yi)− φ(yi)|}.

Evidently, this is a reasonable way to measure the error. We should be aware

that our convergence results are mostly of a pointwise nature, so since e1 is

a uniform measure, we could be in for a few surprises. Further note that,

generally, it does not make sense to compare e1’s for different models.

• Average relative error (quoted in parts per million in tables),

e2 =
∑
i

|φA(yi)− φ(yi)|4y

≈
∫

R

|φA(y)− φ(y)|dy =

∫
{y|φ(y)>0}

|φA(y)− φ(y)|
φ(y)

φ(y)dy.

The relative error tells us how many significant digits of the solution we can

trust. One could wonder why do not measure, say, the maximal relative error.

This would, however, not produce very informative numbers, since the functions

we are working with are very close to 0 in large areas. But fortunately we have

a reasonable “tool” for measuring the importance of the relative errors, namely

the function itself. Errors of this type are supposed to make sense across models.

We use the following, financially realistic parameters.

The Vasicek model:

θ = 0.08 κ = 0.24 σV = 0.025

x0 = 0.08 4 = 1/12

The Cox-Ingersoll-Ross model:

θ = 0.08 κ = 0.24 σCIR
√
θ = 0.025 ⇒ σCIR = 0.08838

x0 = 0.08 4 = 1/12

The Black-Scholes model:

r = 0.08 σBS = 0.25

x0 = 100 4 = 1
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Technique specific parameters are indicated in the table-captions.

’Time’ is the CPU-time (in seconds) on a HP-9000 Unix machine.

Tabular evidence, which allows for easy comparison with results obtained ”in the

comfort in privacy of your own home”, is given only for the CIR model. Similar

tables for the Vasicek-model and the BS-model are available from the authors upon

request.

As pointed out earlier skeptics would say that we are using too small a 4-value

to make interesting/reasonable comparisons; for such small time steps all densities

are quite close to normal. But Table 1 reveals that we have no problems detect-

ing non-normality. This does not mean that quantities, typically estimators or asset

prices, found using such approximations are unreasonable, but it is encouraging for

the suggestion, implementation , comparison and application of refined density ap-

proximation techniques.

From Table 2 we see that in reasonable time we get better approximations with the

binomial approximations than with the simulation approach (cf. Tables 5-13).

Table 3 concerns the Crank-Nicolson method. We see that when the number of time

and space steps is doubled, the errors are roughly reduced by a factor 4, as we would

expect them to be if we have a second order accurate approximation. Therefore the

extrapolation is fruitful. Note that there is nothing wrong with errors being increasing

in one discretization step size if the other is kept fixed; it just means that the ”time”

and ”space errors” have opposite sign (cf. Section 4.1.3). There are some difficulties

for very small step sizes; we attribute this to a ”computer number representation

effect”, we are performing large number of operations with small numbers.

From Table 4 we see that very low errors are produced for all of the Hermitian ap-

proximations. Furthermore none of the approximations are very time-consuming.

One might even be tempted to ask the question (for the fifth and the sixth approx-

imation): “Which approximation of the modified Bessel-function is best - The one

using a fifth or sixth Hermitian approximation or the one proposed in Press et al.

(1992)?”

In Tables 5-13 we see the results of different simulations. It is evident that for a

small number of time approximations (M) the Milstein-scheme is superior to the the

Euler-scheme. However when M is big we see almost no difference. Looking at the
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tables produced using pseudo-numbers we see - as expected - that for a large number

of simulations (N) the errors e1 and e2 decrease at the rate
√
N. Considering the

tables produced using quasi-numbers we again see that the errors e1 and e2 decrease

at the rate
√
N. From a theoretical point of view this is more surprising, at least if

we think that the the number of simulations are large enough to cover some of the

asymptotic properties of quasi-numbers. However, the same findings comparing quasi-

and pseudo-numbers are reported in Berman (1998). For all the tables we find that

the number of simulations is more important than the number of time approximations

which supports the theorem regarding trade-off between the number of simulations

and the number of time approximations found in Duffie & Glynn (1995). The last

thing to notice from the tables is that the production of quasi-numbers give smaller

errors e1 and e2 but the technique is significantly more time-consuming than the

similar production of pseudo-numbers.

Figures 2-4 depict

e(yi) = φA − φ

over (most of) the range of the space variable for different models and approximations.

For each model the approximation parameters have been chosen such that the e1’s are

roughly the same size. We note a strong similarity between the Crank-Nicolson and

the Hermitian approximation. And as a further regularity we see that arg max e ≈
arg maxφ.

The 6 (time, error) graphs (Figures 5-5) give a clear picture of the ranking of the meth-

ods considered in this paper. When the computational effort needed to produce the

quasi-numbers is taken into account then the error behave roughly as when pseudo-

random numbers are used - although the histograms analysed with quasi-numbers

have a smaller number of intervals than the histograms analysed with pseudo-numbers

(see also Tables 5-13). But these simulation methods are easily outperformed by the

binomial method. Binomial approximation is then outperformed by the technique

that uses the Crank-Nicolson method to solve the forward PDE, despite this method

having ”something of a reputation” for being ”over-sensitive”. But really neither of

those methods can compete with the Hermitian expansion. The Hermite approxima-

tion does require some rather tedious algebraic calculations, but they are well worth

the effort. Note also that the figures are very similar across error-types and model

specifications. This is also encouraging.
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5 Conclusion

A clear ranking of the different approximation techniques emerges from this study.

Figures 5-5 give the result when two different errors e1 (maximal absolute) and e2

(average relative) are compared with the time consumed on a computer.

Among the methods we have considered to approximate the transition density of

a diffusion process, the Hermite polynomial expansion described in Section 3.5 is

inarguable the best one when the speed/accuracy trade-off is considered. The second

best approximation-technique is to use the Crank-Nicolson method to solve the partial

differential equation for the transistion density as described in Section 3.4. The third

best approximation stems from the the binomial technique described in Section 3.3.

The significantly worst way to approximate the density by is the simulation approach

described in Section 3.2. However if one insists on simulating diffusions this study

finds that pseudo-random numbers should be used - at least from a time-consumption

point of view.

The issues flexibility (by which we for instance mean how easy it is to change the

code if the volatility function is changed) and algorithm-complexity are very much in

the mind of the beholder. Once the program has been made and is running correctly,

almost any programmer would say that it is really flexible and not very complex! By

giving very detailed descriptions we hope to help people make informed decisions for

themselves. Nonetheless a brief discussion is in order.

• Hermite Expansion: This method is relatively inflexible. If µ or σ is changed a

new calculation of (19) is needed. Furthermore derivatives of this function are

required - something that might be calculated automatically depending one the

program used. Regarding complexity of the algorithm we have just one thing to

say: Quite easy! Just program the formulae for ηj , µY and Hj and everything

is running!

• Crank-Nicolson: Once the code for has been written it is flexible. The program-

ming does require careful book-keeping and storage as well as an algorithm for

solving tridiagonal linear systems. This is not too hard when a “real program-

ming language” is used, but if you only have a spreadsheet is would be more

difficult. The method also requires some “fingerspitzgefühl”, for example when
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the ratio of time steps to space steps is chosen, but those that exercise this will

be duly rewarded.

• Binomial: As with the Hermitian Expansion this method is made somewhat

inflexible by the need for a transformation that can really only be done “by

hand”. But when this calculation has been performed the actual programming

is quite easy because of the explicit structure (we do not have to solve large

systems of equations).

• Simulation: This method is flexible. If µ or σ is changed the only line of

coding that has to be changed is the one containing the approximation scheme

((3) or (4)). It is a relatively complex thing to program when starting “from

scratch”. First one has to produce a uniform generator (pseudo or random).

Then a normal transform is needed (Box-Muller or Moro). Then the required

loops and the discretization scheme (3) or (4) are programmed. Finally a loop

determining the histogram is needed.

An obvious continuation of this study is to examine multi-dimensional diffusions.

While not impossible, neither in theory nor in practice, it would be a quite heavy task.

For instance if we consider a two-dimensional diffusion different techniques using the

PDE-approach are needed. Furthermore, in principle one could use a two-dimensional

version of the Hermite expansions proposed above. Until now these two-dimensional

expansions have not been reported in the financial literature - perhaps because of the

dramatically increased complexity of the problem. On the other hand, simulations of

multi-dimensional diffusions will not be a problem. An almost identical problem as

the one in the one-dimensional diffusion case arise. Therefore simulations might be

the appropriate choice when multi-dimensional diffusions are considered.
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A Tables

Model Euler “Correct Moment”

e1 e2 e1 e2

Vasicek 0.5535 9643 0 0

CIR 2.001 35164 1.79 33996

BS 0.0027 188990 0.0031 191891

Table 1: Analytical normal approximations to densities.
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Errors Errors Time

M before ex’pol after ex’pol incl. ex’pol

e1 e2 e1 e2

40 0.34778 5999 0.27426 4916 0.02

80 0.17436 2914 0.19916 2013 0.05

160 0.08720 1455 0.03634 736 0.17

320 0.04673 728 0.02534 249 0.73

640 0.02327 369 0.00769 130 3.57

1280 0.01316 190 0.00750 57 21.6

Table 2: Finding the CIR-density by binomial approximation.
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Errors Errors Time

M N before ex’pol after ex’pol incl. ex’pol

e1 e2 e1 e2

50 2 1.7637 19500 N/A N/A 0.02

50 4 0.1884 3761 N/A N/A 0.02

50 8 0.3748 6580 N/A N/A 0.02

50 16 0.5087 8340 N/A N/A 0.04

100 4 0.3748 5797 0.2037 3678 0.05

100 8 0.0526 1010 0.0294 524 0.05

100 16 0.1084 1747 0.0336 617 0.05

100 32 0.1267 2129 0.0611 800 0.06

200 8 0.0983 1636 0.0271 470 0.09

200 16 0.0150 270 0.0036 98 0.09

200 32 0.0257 448 0.0099 152 0.11

200 64 0.0328 538 0.0123 179 0.14

400 16 0.0262 435 0.0067 99 0.17

400 32 0.0051 80 0.0023 35 0.20

400 64 0.0085 120 0.0024 39 0.22

400 128 0.0093 136 0.0036 43 0.40

800 32 0.0074 113 0.0030 32 0.38

800 64 0.0022 24 0.0016 14 0.55

800 128 0.0032 31 0.0013 19 1.11

800 256 0.0032 35 0.0016 20 2.12

Table 3: Finding the CIR-density by the Crank-Nicolson method.
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Approx. e1 e2 Time

One 0.514300 8936 0.04

Two 0.028410 525 0.05

Three 0.006744 98 0.06

Four 0.001785 16 0.07

Five 0.001208 12 0.09

Six 0.001259 12 0.09

Table 4: Finding the CIR-density by Hermite expansions.
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M N e1 std(e1) e2 std(e2) Time

2 20000 2.0988 0.7539 25884 3857 0.22

40000 1.8398 0.5389 24213 3884 0.44

80000 1.6914 0.4145 22471 2744 0.88

160000 1.3864 0.2212 20320 2218 1.75

320000 1.2909 0.1454 19592 1001 3.44

4 20000 2.3825 0.9842 23731 7010 0.32

40000 1.5030 0.4442 18739 2624 0.64

80000 1.1979 0.3150 14528 2102 1.25

160000 1.0855 0.1992 13933 2399 2.52

320000 0.9188 0.1495 11960 624 5.17

8 20000 1.6487 0.7120 24548 7176 0.51

40000 1.5849 0.4712 19506 4201 1.02

80000 1.1064 0.3109 14021 2520 2.13

160000 0.9160 0.2388 10859 1642 4.23

320000 0.6520 0.1231 8565 1173 8.20

16 20000 1.8769 0.5501 22065 3857 0.94

40000 1.3627 0.3471 17952 3664 1.82

80000 0.9359 0.2112 12541 2457 3.62

160000 0.6250 0.1303 9049 1666 7.49

320000 0.6398 0.1890 7902 1908 14.50

Table 5: Finding the CIR-density by pseudo-simulation. Time-discretization-scheme:

Euler. Number of intervals in histogram: 50.
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M N e1 std(e1) e2 std(e2) Time

4 40000 2.0325 0.3586 23785 3069 0.82

80000 1.8807 0.3460 20357 3456 1.64

160000 1.2601 0.2282 13950 998 3.28

320000 1.0711 0.2412 12338 682 6.54

640000 0.9111 0.1511 10212 648 13.08

8 40000 2.5740 0.4677 25885 4009 1.22

80000 1.5408 0.2717 17168 3124 2.43

160000 1.0906 0.2521 12582 1501 4.85

320000 0.8766 0.2500 8973 1259 9.72

640000 0.6028 0.1508 7227 624 19.46

16 40000 2.3595 0.5138 23585 4078 2.00

80000 1.8323 0.3207 17757 2110 4.01

160000 1.0275 0.2223 11550 1549 8.07

320000 0.8669 0.2610 9040 1925 16.14

640000 0.6294 0.1311 6538 1234 32.23

32 40000 2.1270 0.3913 22105 2652 3.67

80000 1.4633 0.2929 16618 2158 7.19

160000 1.0085 0.1999 11283 1853 14.41

320000 0.7801 0.2305 8533 1671 28.79

640000 0.5258 0.1434 5994 739 57.45

Table 6: Finding the CIR-density by pseudo-simulation. Time-discretization-scheme:

Euler. Number of intervals in histogram: 100.
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M N e1 std(e1) e2 std(e2) Time

8 80000 2.7755 0.6351 26301 2346 3.07

160000 1.5090 0.3063 17343 2411 6.16

320000 1.3833 0.3579 12078 1017 12.30

640000 0.9092 0.1915 9410 963 24.63

1280000 0.7761 0.1225 7026 575 49.04

16 80000 2.5304 0.3652 24513 2430 4.74

160000 1.7214 0.3731 17214 1384 9.41

320000 1.2577 0.1509 12807 1363 18.78

640000 0.8281 0.1912 8158 655 37.46

1280000 0.6985 0.1131 6371 890 74.84

32 80000 2.7103 0.8436 24980 3512 7.87

160000 1.7185 0.4061 16259 1296 15.72

320000 1.2523 0.2730 12266 952 31.50

640000 0.8915 0.1438 8519 652 6303

1280000 0.6339 0.1435 6014 1016 125.87

64 80000 2.5626 0.6120 24284 2090 14.26

160000 1.7733 0.4065 17217 2555 28.50

320000 1.1017 0.2386 11096 1265 56.87

640000 0.8503 0.0657 8507 535 113.65

1280000 0.6506 0.1319 6013 802 227.38

Table 7: Finding the CIR-density by pseudo-simulation. Time-discretization-scheme:

Euler. Number of intervals in histogram: 200.
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M N e1 std(e1) e2 std(e2) Time

2 20000 1.8889 0.3936 24531 3472 0.22

40000 1.1091 0.2204 16788 2458 0.45

80000 1.0052 0.3169 13316 3662 0.91

160000 1.0351 0.3607 11896 2971 1.73

320000 0.7129 0.1301 10527 1669 3.47

4 20000 1.6832 0.4606 22487 2756 0.33

40000 1.3011 0.4013 16499 2950 0.67

80000 0.8084 0.2395 11654 2690 1.27

160000 0.7437 0.1570 9950 1796 2.53

320000 0.5997 0.1870 7808 1395 5.27

8 20000 1.8496 0.3677 22648 6739 0.54

40000 1.1011 0.2551 15238 2073 1.02

80000 0.9281 0.3256 11428 1836 2.20

160000 0.8128 0.3216 9782 2651 4.37

320000 0.6686 0.2083 7455 1776 8.18

16 20000 1.5504 0.5748 20468 5865 0.95

40000 1.4159 0.5231 18517 6397 1.92

80000 0.8691 0.3174 11011 3615 3.66

160000 0.6324 0.1019 8618 1714 7.78

320000 0.4673 0.2386 5831 1931 14.68

Table 8: Finding the CIR-density by pseudo-simulation. Time-discretization-scheme:

Milstein. Number of intervals in histogram: 50.
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M N e1 std(e1) e2 std(e2) Time

4 40000 2.1934 0.4444 22682 2996 0.87

80000 1.5928 0.4594 17606 3870 1.65

160000 1.0336 0.1277 11958 1524 3.47

320000 0.7964 0.1503 8589 723 6.55

640000 0.6381 0.1415 6452 906 14.04

8 40000 1.9430 0.5227 22363 3602 1.23

80000 1.5470 0.2058 16669 2213 2.45

160000 1.1777 0.3553 12589 2296 5.10

320000 0.6667 0.1362 7943 922 9.90

640000 0.5941 0.0640 6490 933 19.52

16 40000 2.3730 0.9505 21624 3967 2.05

80000 1.5663 0.4590 17240 2895 4.05

160000 1.0773 0.3282 12160 2569 8.54

320000 0.8108 0.2235 8660 1561 16.37

640000 0.4955 0.0750 6219 1413 32.59

32 40000 2.1046 0.4760 22937 2601 3.72

80000 1.4085 0.4706 16569 3488 7.30

160000 0.9792 0.3697 10617 2844 14.60

320000 0.6995 0.1666 8472 2089 29.09

640000 0.5718 0.1828 6008 938 58.13

Table 9: Finding the CIR-density by pseudo-simulation. Time-discretization-scheme:

Milstein. Number of intervals in histogram: 100.
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M N e1 std(e1) e2 std(e2) Time

8 80000 2.5351 0.2743 24193 2157 3.10

160000 1.7121 0.5819 16559 1778 6.22

320000 1.2690 0.2288 12221 1372 12.37

640000 0.8922 0.1638 8803 900 24.76

1280000 0.6674 0.1435 5835 733 49.58

16 80000 2.6482 0.7353 23764 3482 4.68

160000 1.4988 0.2907 14969 1592 9.39

320000 1.2621 0.3085 11785 1642 18.60

640000 0.8049 0.1525 8354 1057 37.60

1280000 0.6287 0.1675 5702 560 75.06

32 80000 2.4608 0.4005 24432 2669 7.87

160000 1.8992 0.4566 16938 1749 15.73

320000 1.2440 0.2473 11424 1550 31.48

640000 0.8002 0.1322 7916 740 62.93

1280000 0.6573 0.1596 5953 856 127.12

64 80000 2.7533 0.5735 23944 2971 14.25

160000 1.9112 0.4446 17474 1751 28.45

320000 1.1826 0.2676 11882 1231 56.95

640000 0.9140 0.1970 8913 898 115.04

1280000 0.6264 0.1623 5907 662 226.67

Table 10: Finding the CIR-density by pseudo-simulation. Time-discretization-

scheme: Milstein. Number of intervals in histogram: 200.
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Euler Milstein

M N e1 e2 Time e1 e2 Time

2 20000 1.4283 19140 3.85 0.6537 10604 3.90

40000 1.0445 19095 9.02 0.8037 9632 10.38

80000 1.0390 18788 20.84 0.5921 9251 20.96

160000 1.0796 18407 47.93 0.5100 8858 48.38

320000 1.1437 18559 110.32 0.5171 8578 110.30

4 20000 1.5360 23529 2.53 1.2360 20405 2.61

40000 0.8765 12525 5.66 0.6733 9986 5.73

80000 1.1890 12605 12.77 0.6890 10924 12.92

160000 0.8921 11556 26.84 0.5608 8952 27.43

320000 0.7499 11559 62.66 0.5850 7016 63.92

8 20000 1.4890 17697 4.28 1.5390 17287 4.33

40000 1.2537 16434 8.56 1.1537 16986 8.54

80000 0.6320 11544 17.01 0.6453 9499 17.39

160000 0.6943 10133 33.96 0.4764 7331 34.67

320000 0.5945 9643 70.31 0.5827 7607 71.36

16 20000 1.1858 17144 8.71 1.2812 17322 8.73

40000 1.6162 14934 17.53 1.7287 15209 17.53

80000 1.2350 10267 35.39 1.2412 10069 35.11

160000 0.7881 8047 70.10 0.8225 7066 72.05

320000 0.3828 5685 140.92 0.3383 4704 142.01

Table 11: Finding the CIR-density by quasi-simulation. Number of intervals in his-

togram: 50.
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Euler Milstein

M N e1 e2 Time e1 e2 Time

4 40000 1.5456 20714 5.81 1.5713 18862 6.03

80000 1.1908 16829 12.96 1.0516 13072 13.39

160000 0.8831 14132 31.66 0.6984 11574 28.24

320000 0.7454 11507 63.27 0.5234 7542 65.82

6400000 0.7164 9991 135.83 0.3950 5931 141.20

8 40000 1.9033 22039 8.72 2.1065 23022 8.80

80000 1.3258 14644 17.23 0.9383 13017 18.16

160000 1.0149 11374 34.47 0.6649 10165 35.46

320000 1.0367 11467 71.18 0.7483 11189 73.47

640000 0.6430 8392 166.89 0.5421 7558 169.60

16 40000 2.7046 21397 17.78 2.6796 21154 20.97

80000 1.6921 17335 35.43 1.6671 16588 42.28

160000 1.1234 11503 70.69 1.2921 12241 72.71

320000 0.8110 7972 141.20 0.7794 8800 142.93

640000 0.5969 5005 282.49 0.3536 5233 286.03

32 40000 1.7741 20776 35.50 1.7991 20074 36.08

80000 1.6845 16249 71.29 1.6991 16321 72.15

160000 0.7783 8180 142.29 0.7616 9408 146.50

320000 0.7602 6533 285.50 0.7945 7256 287.60

640000 0.5781 6738 571.92 0.5774 6547 581.77

Table 12: Finding the CIR-density by quasi-simulation. Number of intervals in his-

togram: 100.
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Euler Milstein

M N e1 e2 Time e1 e2 Time

8 80000 2.2570 19810 17.79 1.9570 21344 18.04

160000 1.4706 14883 35.82 1.4013 14783 36.28

320000 1.2456 13238 73.67 1.2776 13586 73.99

640000 0.8689 10028 169.34 0.6745 9389 170.56

1280000 0.4938 6432 360.87 0.3921 4638 366.19

16 80000 2.4710 21716 35.66 2.4807 19496 36.96

160000 1.6507 18210 71.02 1.7182 16710 72.37

320000 1.3317 10174 142.62 1.1442 11564 147.78

640000 0.7297 7087 285.67 0.6752 7707 293.45

1280000 0.6750 6802 570.33 0.5265 6719 588.07

32 80000 2.7018 20034 71.64 2.3018 20690 74.23

160000 1.1388 13640 143.63 1.1491 14408 149.03

320000 1.1138 11362 287.59 1.0179 11717 295.77

640000 0.9820 8470 574.84 1.1570 8726 589.77

1280000 0.6945 6228 1148.19 0.7086 6103 1182.77

64 80000 2.8557 27458 143.01 3.0057 27181 149.19

160000 1.7642 15456 286.52 1.5017 16065 298.64

320000 1.1517 10522 574.45 1.1205 10933 600.07

640000 0.7866 7814 1149.16 0.7732 7689 1186.73

1280000 0.5914 5486 2293.88 0.6289 5104 2364.65

Table 13: Finding the CIR-density by quasi-simulation. Number of intervals in his-

togram: 200.
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Figure 2: “True- app.” density for the Vasicek model. —:Hermite (t < 0.01 s), - - -:

Fin. Diff. (t = 0.05 s), ......:Binom (t = 4.0s)
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Figure 3: “True- app.” density for the CIR model. —:Hermite (t < 0.01 s), - - -: Fin.

Diff. (t = 0.05 s), ......:Binom (t = 4.0s)
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Figure 5: Speed vs. accuracy (∼ e1) for different approximation techniques. Top:

Vasicek, middle: CIR, bottom: BS.
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Figure 6: Speed vs. accuracy (∼ e2) for different approximation techniques. Top:

Vasicek, middle: CIR, bottom: BS.
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Abstract

We introduce a new estimator using an approximation to the true, but

generally unknown, loglikelihood function based on discrete observations of a

diffusion process. The approximation is calculated using numerical solution

techniques for partial differential equations and its quality is controlled – both

theoretically and in numerical practice – by the statistician. The estimator is

shown to be asymptotically equivalent to the maximum likelihood estimator.

We also show how this equivalence can be achieved in a computationally optimal

way. The method is easy to implement for one-dimensional diffusions and we

demonstrate its computational feasibility for various diffusions. Finally, we

estimate the CKLS short rate model on 1982-95 U.S. data and find the elasticity

of variance parameter to be about 0.78.

∗Helpful comments from Bent Jesper Christensen and Peter Honoré are gratefully acknowledged.
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1 Introduction

Typically no closed-form solution is available for the transistion densities of a process

governed by a stochastic differential equation (SDE). Therefore it is hard to base

parametric inference from discrete observations on the likelihood function. Thus

deprived of our ideal plan we can do two things i) find a good approximation to the

likelihood, or ii) something else. A huge number of articles recently published in the

statistical, the econometric and the financial literatures fall in the latter category. An

incomplete list of keywords and key-references is:

• Generalized Method of Moments

Hansen (1982) is a standard ’theory’ reference, which has little to do with SDEs,

Chan, Karolyi, Longstaff & Sanders (1992) is a standard ’application’ reference,

the main objections to which have little to do with GMM.

• Martingale methods

Bibby & Sørensen (1995), Sørensen (1997)

• Indirect Inference

Gouriéroux, Monfort & Renault (1993), Broze, Scaillet & Zakoian (1995), Broze,

Scaillet & Zakoian (1998).

• Efficient Method of Moments

A particularly cunning form of indirect inference, see Gallant & Long (1997),

Gallant & Tauchen (1996b), and Gallant & Tauchen (1996a), Andersen & Lund

(1997) is a successful application.

In the former category we find for example Pedersen (1995b), Pedersen (1995a)

(with applications in Honoré (1998)), and Santa-Clara (1997). And now this paper.

Several questions should be asked about a likelihood approximation: Is it reasonable?

Is it accurate? How accurate? How can we tell? (Similar questions apply to the

resulting estimators.) In this paper we propose an approximation to the likelihood

and try to answer all those questions. The construction of the approximation is based

on the combination of two well-known concepts:

• The Fokker-Planck equation

This is a parabolic partial differential equation (PDE) for the transistion density

(it is also called the forward or the Kolmogorov equation). It is known from the
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probability literature; in textbooks (e.g. Karatzas & Shreve (1992), Øksendal

(1995)) it is usually found close to the pages containing the very construction of

diffusions. In the econometric literature this characterization (in a more general

jump-diffusion setting) is also noted by Lo (1988).

• The Crank-Nicolson method

This is a potentially second order accurate numerical solution technique of im-

plicit finite difference type for PDEs, see e.g. Strikwerda (1989), Mitchell &

Griffiths (1980). It is frequently used in the finance literature and industry see

e.g. Wilmott, Dewynne & Howison (1993), Duffie (1996).

The main advantages of the method are: The approximation can be made arbi-

trarily accurate (and we can get a good idea how accurate a given approximation

is), quite fast to calculate and easy to program. Further, the estimator can be made

asymptotically equivalent the maximum likelihood (ML) estimator, there are not

many ’loose ends’ convergence-order-wise (which we think is a requirement that some

of the methods relying heavily on simulation do not meet) and it is very flexible wrt.

the statistical parametrization.

The outline of the paper is as follows. The rest of this section describes the

basic set-up. Taking last things first, we show in Section 2 that the estimator we

are later going to construct is consistent, asymptotically normal (CAN), and can be

asymptotically equivalent to the ML estimator. Further we show how this desirable

feature can be achieved at (asymptotically) minimal computational cost. Section 3

deals with the actual calculation of the approximation. It has two parts, construction

and verification, of which the latter is often ignored, despite it being both important

and potentially fruitful. In Section 4 we conduct numerical experiments on short

rate models common in finance. Section 5 contains what has become a benchmark

for estimation techniques for discretely observed diffusions: Estimation of the CKLS-

short rate model. This necessitates consideration on optimization procedures. The

very short summary: ’We find γ = 0.78 ± 0.133 (95% confidence interval) for U.S.

1982-95 data’. In Section 6 we conclude and outline topics for future research.
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1.1 The Basic Set-up

We consider a set-up with a one-dimensional diffusion process X with dynamics gov-

erned by the SDE

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dW t , (1)

where W is a Brownian motion on some filtered probability space, ψ ∈ Ψ ⊆ R
d ,

and µ, σ : R × Ψ 7→ R are functions such that (1) (with some initial condition) is

well-defined and has a (weak) solution and (versions of) transition densities that are

absolutely continuous wrt. the Lebesque measure and sufficiently smooth. By

φ(t, x, y)

we denote the density of Xt given X0 = x, i.e. φ is a density ’in y for fixed t and x’

and we put l(xi−1, xi;ψ) = lnφ(4, xi−1, xi) .

The parameter ψ is unknown but we seek statistical inference about it from (dis-

cretely observed) data points x0, x1, . . . , xT . The time between observations xi−1 and

xi , say 4i, could vary with i, but we will make the following assumption.

Assumption 1 Assume that:

i) The true parameter is ψ0.

ii) The observations are equidistant.

iii) X is stationary and ergodic.

Often a particular theoretical model violates part iii) of this assumption. The trick

is then (with the Ito formula as a key tool) to find an appropriate transform of the

model that is stationary and ergodic (typical example: look at log-returns rather that

stock prices).

2 CAN of the AML Estimator

Typically, the transition densities are unknown, but our first assumption ensures that

we can approximate them to our hearts’ (if not our system administrator’s) content.
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Assumption 2 (Main) Assume that the approximate loglikelihood can be written as

lAT,h(ψ) =
T∑
i=1

lAh (xi−1, xi;ψ) (2)

=
T∑
i=1

(
l(xi−1, xi;ψ) + h2a(xi−1, xi;ψ) + o(h2)b(xi−1, xi;ψ)

)
(3)

= lT (ψ) + h2aT (ψ) + o(h2)bT (ψ), (4)

where lT is true true (but generally unknown) loglikelihood function and h is a param-

eter chosen by the statistician such that the time needed to compute the left hand side

of (2) does not grow faster than T/h2.

Assumption 2 gives a very specific structure on the approximation; (3) is the

fundamental equation stating that each term in the loglikelihood function is well-

approximated. (2) reflects that a diffusion is a Markov-process wrt. its own filtration

and (4) is merely compact notation.

What makes the proofs in the following fairly easy is the fact that the approx-

imation is ’strictly analytical’ – no extra stochastic terms are introduced, as would

be the case if quantities were to be determined by simulation. Another very crucial

fact is that we shall be able to check the assumption numerically (which includes

finding (numerical) estimates of a and b) when the Crank-Nicolson finite difference

method is used to find the approximate loglikelihood. The Crank-Nicolson method is

not the only approximation satisfying Assumption 2, but most of the approximations

suggested in the literature violate Assumption 2 because either i) h is not controlled

by the statistician, or ii) time-consumption is worse. Of course such approximations

may have other virtues.

In this paper we focus on one-dimensional diffusions but (2)-(4) would look ex-

actly the same in the case where data points are multi-dimensional. Likewise, the

assumptions, results, and proofs in the following would be similar. But it would be

harder to construct a finite difference second order approximation to the loglikeli-

hood and the time-consumption would (at least) be proportional to T/hdim(xi)+1.

Also, for the multi-dimensional case it is a far more delicate matter whether a so-

lution the SDE (looking like) (1) exists, and even more so whether it has a density.

(In fact, the Malliavan calculus which has recently received considerable interest in

the finance community was originally developed to shed light on this problem; see

Pedersen (1995a).)
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The order of time-consumption does not play any role in the proofs, but we have

chosen to specify it for clarification.

Assumption 3 (Technical) Assume that:

i) ψ 7→ lT (ψ) is twice continuously differentiable and has a unique maximum point

ψML
T ∈ Ψ.

ii) ψ 7→ lAT,h(ψ) is twice continuously differentiable.

iii) There exists finite constants Ka and Kb (independent of x and y) such that

supψ∈Ψ |a(x, y;ψ)| ≤ Ka and supψ∈Ψ |b(x, y;ψ)| ≤ Kb.

The ’least harmless’ part of Assumption 3 is the ’boundedness in ψ’-part because

it hard to verify, especially when the a and b functions are determined numerically.

The assumption ensures that

sup
ψ∈Ψ
|lAT,h(ψ)− lT (ψ)| → 0 for h→ 0. (5)

and that the following estimators (the latter referred to as ’the AML estimator’ for

obvious reasons) are well-defined:

ψML
T = arg sup

ψ∈Ψ

1

T
lT (ψ) ,

ψAML
T,h = arg sup

ψ∈Ψ

1

T
lAT,h(ψ) .

It is only the AML estimator we are able to compute since the true loglikelihood will

typically be unknown. As it is common in this part of the literature we shall (except

for a brief discussion on Section 5.1) neglect all problems (convergence, stability,

time-consumption) associated with the optimization involved in finding ψAML
T,h . We

do this despite these problems being very ’real’, in particular for high-dimensional

parameters.

It follows from Corollary 2 in Pedersen (1995b) (this requires only Assumption 3

provided we substitute iii) by (5)) that if the ML estimator is CAN then there exists

a sequence h(T ) (tending to 0 as T tends to infinity) such that the AML estimator has

the same asymptotic properties. We shall use Assumption 2 to obtain more precise

information on the h-sequence. In particular: How slowly can we allow it to tend to

0? But first we need two well-known results.
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Theorem 1 (ML Has Usual Good Properties) Under weak regularity conditions

(see e.g. Barndorff-Nielsen & Sørensen (1994)), which we assume hold, the ML esti-

mator is CAN with usual limits,

ψML
T

Pr→ ψ0
√
T (ψML

T − ψ0)
∼→ N(0, i−1(ψ0)),

where i(ψ) is the Fisher information matrix,

i = lim
T→∞

−E

(
1

T

∂2lT (ψ)

∂ψ∂ψ>

)
.

Also, any other CAN estimator has an asymptotic covariance matrix no less (in the

partial order of positive semi-definite matrices) than that of the ML estimator.

Consistency of the ML estimator, ergodicity and the assumption that the errors

(by which we mean the a and b functions in (3)) are uniformly bounded in ψ ensures

that the AML estimator has a limit as the number of observations tends to infinity.

This is a result from the realm of ’theory of misspecified models’.

Theorem 2 (AML Has a Limit) Under weak regularity conditions (see e.g. White

(1994)), which we assume hold, we have that

∃h0 > 0 ∀h ∈]− h0;h0[ ∃ψh ∈ R : ψAML
T,h

Pr→ ψh for T →∞.

The following lemma shows that the AML estimator inherits the second order

h-accuracy property of the approximate loglikelihood.

Lemma 1 (Inheritance) There exists ψ̃T , ψ̃,
˜̃
ψT and

˜̃
ψ such that:

i) ψAML
T,h = ψML

T + h2ψ̃T + o(h2)
˜̃
ψT .

ii) ψ̃T
Pr→ ψ̃ for T →∞ and

˜̃
ψT

Pr→ ˜̃
ψ for T →∞.

iii) 2ψ̃ = ∂2ψh/∂h
2|h=0 .

Proof. Since ψAML
T,h is an interior maximum point it satisfies usual first order condi-

tions, which by Assumption 2 read:

∂ψl
A
T,h(ψ

AML
T,h ) = lT (ψAML

T,h ) + h2∂ψaT (ψAML
T,h ) + o(h2)∂ψbT (ψAML

T,h ) = 0.
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Because ∂ψl
A
T,h is a C1-function of h2, the Implicit Function Theorem (see Rudin

(1982), the technical ’non-degenerate Jacobian’ condition is part of the implicit as-

sumptions in Theorem 1) allows us to conclude that ψAML
T,h is a C1-function of h2.

Since ’h = 0’ corresponds to the ML estimator, i) is established. To prove ii) choose

a sufficiently small h̃ and apply i) for values h̃ and h̃/2:

h̃2ψ̃T + o(h̃2)
˜̃
ψT = ψAML

T,h − ψML
T ,

h̃2ψ̃T /4 + o(h̃2)
˜̃
ψT = ψAML

T,h − ψML
T .

Subtracting four times the latter equation from the former makes the ψ̃T terms dis-

appear and we may assume that the term in front of
˜̃
ψT is non-zero,

o(h̃2)
˜̃
ψT = 3(ψML

T − ψAML
T,h ).

Letting T →∞, the RHS of this equation converges in probability (by Assumption 1

and Theorem 1), hence
˜̃
ψT and (from i)) ψ̃T converge in probability and ii) is proved.

Note that we must have ψh = ψ−h. Rearranging and letting T →∞, we get from i)

ψ̃ =
ψh − ψ0 + o(h2)

˜̃
ψT

h2
=

1

2

(
ψh − 2ψ0 + ψ−h

h2

)
+ o(1)

˜̃
ψT .

Statement iii) follows as we let h→ 0 �

We can now finally prove the main result about CAN of the AML estimator.

Theorem 3 (’How Slow Can You Go?’) Suppose h(T ) = T−δ. Then:

i) ψAML
T,h is consistent if (and only if) δ > 0.

ii) If δ = 1/4, then
√
T (ψAML

T,h −ψ0) converges in distribution to a normal variable

or more precisely,

√
T
(
ψAML
T,h − ψ0

) ∼→ N

(
1

2

∂2ψh
∂h2
|h=0, i

−1(ψ0)

)
.

iii) If δ > 1/4 then

√
T (ψAML

T,h − ψ0)
∼→ N(0, i−1(ψ0)),

i.e. the AML estimator is asymptotically equivalent to the ML estimator.
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Proof. The consistency part (i)) is a consequence of continuity, Lemma 1 and CAN

of the ML estimator and statements ii) and iii) follow if we write

√
T (ψAML

T,h − ψ0) =
√
T (ψML

T − ψ0) + T 1/2−2δψ̃T + o(T 1/2−2δ)
˜̃
ψT .

The former term converges in distribution by Theorem 1 and the latter vanishes if

we keep 1/2− 2δ ≤ 0. If 1/2− 2δ < 0 the middle term also vanishes, and if we have

’=’ it converges in probability to ψ̃ �

In the light of Lemma 1 – or even Assumption 2 – this result should not be very

surprising; for example in Cox & Hinkley (1974) it is noted that ’estimates that

differ from the ML estimate by o(1/
√
T ) [which holds if δ > 1/4] are also efficient’.

But note that the error term is controlled by us, the statisticians. In that respect the

estimation technique is related to the quasi-indirect inference suggested in Broze et al.

(1998); their problem is choosing the step size in a discretization used for simulation

of observations from a SDE. Theorem 3 is of the same type as the results on page

170 in that paper. But note that the asymptotic covariance matrix in our case is the

inverse Fisher information.

Numerically it may be hard to obtain a reliable estimate of this correction term

(’estimation’ perceived as both a statistical and a numerical problem) but that is not

a problem great of practical importance.

3 Construction of the AML estimator

In this section we show how to find an approximate loglikelihood function satisfying

Assumption 2 using numerical methods. It consists of two independent parts; first

an approximation is constructed from local considerations, then a simple but very

effective technique is used to check the global behaviour of the approximation. The

latter step can also be used to achieve considerably higher accuracy at little extra

computational cost. In this section dependence on ψ will be notationally suppressed,

while – for reasons that will soon become clear – time dependency is made explicit.

Relying on diffusion theory (e.g. along the lines of Karatzas & Shreve (1992)), we

have that under certain regularity conditions φ solves the parabolic PDE (called the
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forward or the Fokker-Planck or the Kolmogorov equation)

∂

∂t
φ(t, x, y) = − ∂

∂y
(µ(y)φ(t, x, y)) +

1

2

∂2

∂y2

(
σ2(y)φ(t, x, y)

)
, (6)

with initial condition φ(0, x, y) = δ(y−x), where δ(·) is the Dirac-δ function. Strictly

speaking this is not a PDE in the usual sense (it is often called a functional PDE)

because the Dirac-δ function is not a function in the usual sense but a generalized

function. It can be defined as a continuous, linear, real-valued mapping on the infinite

dimensional space C∞(R) such that δ : f 7→ f(0) for all f ∈ C∞(R). Therefore

we cannot use standard theory to (define and) ensure existence and uniqueness of

a solution. This has to be verified with other methods. Two possible ways are

’inspired guesses’ and ’advanced probabilistic methods (Malliavan calculus) on the

corresponding SDE’. Rigorous treatment of this is far beyond this (most) paper(s),

we refer to Pedersen (1995a).

The PDE characterization of the likelihood is also noted in Lo (1988) where it is

said that: ’when the existence of a density representation for a specific process has

been assured by other means, (6) may often be solved by standard methods (Fourier

transforms etc.) to yield the likelihood’, but the issue is not further elaborated on.

This is what we will do and to us ’standard methods’ means ’numerical methods’.

So, we will apply a numerical technique known from ’usual PDEs’ and then see if it

produces reasonable results.

3.1 The Crank-Nicolson Finite Difference Method

Let subscripts denote differentiation, suppress ’x’ and other arguments where it causes

no confusion, and rewrite (6) as

φt(t, y) = a(y)φ+ b(y)φy + c(y)φyy (7)

where

a(y) = (σy)
2 + σσyy − µy =

1

2
(σ2)yy − µy,

b(y) = 2σσy − µ = (σ2)y − µ,

c(y) =
1

2
σ2.

Now consider a time/space grid, see Figure 1,

INSERT FIGURE 1 ABOUT HERE
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with step sizes k and h. For any grid point away from the boundaries (say y0 and

yM) we consider the approximation vnm ≈ φ(nk, y0 +mh) defined by the equation

vn+1
m − vnm

k
= aδ0(h) + bδ1(h) + aδ2(h), (8)

where the δ’s are difference operators. It is the particular choice of δ’s that determine

the accuracy and stability (and popular name) of the finite difference method. For

the Crank-Nicolson method the operators act in the following way:

δ0(h) =
1

2
vn+1
m +

1

2
vnm, (9)

δ1(h) =
1

2

vn+1
m+1 − vn+1

m−1

2h
+

1

2

vnm+1 − vnm−1

2h
, (10)

δ2(h) =
1

2

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+

1

2

vnm+1 − 2vnm + vnm−1

h2
. (11)

Taylor expansions show that this method is locally second order accurate in both h

and k. Also, the Crank-Nicolson method is unconditionally stable for parabolic PDEs

(see Strikwerda (1989)).

Defining λ = kh−2 and inserting in (8) gives(
bhλ

4
− cλ

2

)
vn+1
m−1 +

(
1− ak

2
+ cλ

)
vn+1
m +

(
−bhλ

4
− cλ

2

)
vn+1
m+1 =(

−bhλ
4

+
cλ

2

)
vnm−1 +

(
1 +

ak

2
− cλ

)
vnm +

(
bhλ

4
+
cλ

2

)
vnm+1. (12)

Considering v as known on the boundaries and using the initial condition, (12) defines

a sequence of tridiagonal linear systems of equations. These systems can be solved

recursively and each system requires only a number of operations that is proportional

to the number of state space steps (when the tridiagonal structure is exploited, e.g. by

the routine tridag from Numerical Recipes (Press, Teukolsky, Vetterling & Flannery

(1992)).)

If we consider only diffusions with inaccessible boundaries (no reflection or absorp-

tion) then it is reasonable to put v = 0 on the grid boundaries. The grid boundary

levels are chosen ’sufficiently far apart’ (the actual numbers are parameter dependent,

but choosing them is not a problem).

The initial condition is treated like this:

v1
m = φN(y0 +mh; x+ µ(x)k, σ2(x)k), (13)
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where φN(y;m, v) is the density function for a normally distributed variable with mean

m and variance v evaluated at y. This is a first-order approximation to the density (in

a certain sense). By (another) definition of the Dirac-δ function this converges to the

true initial condition as k → 0. The Crank-Nicolson method tends to behave badly

for non-smooth initial data (as pointed out in Strikwerda (1989)[p.121]), therefore the

above choice is crucial. In spirit this is similar to the first step in the approximation

technique suggested in Pedersen (1995a).

Other choices would be possible, but for example

v0
m =

1

h
1[y0+mh;y0+(m+1)h[(x) (14)

works very poorly in conjunction with the Crank-Nicolson method.

It may be argued that the Crank-Nicolson finite difference method is not best way

of solving the Fokker-Planck equation numerically. Finite element methods or special

polynomial approximations have been suggested, see Harrison (1988). In particular,

these techniques perform better when the problem is ‘convection dominated’, i.e.

when the drift is large compared to the volatility. For the interest rates models we

shall be working with this turns out not to be a major problem, but it does indicate

that it is very important to have methods that can provide numerical verification of

the validity of the method.

3.2 Experimental Verification of Assumption 2

It is important to be able to provide error estimates for the numerical method when

the analytical solution to the PDE is not known. This section describes a method

(developed in Østerby (1998)) that does just that. We consider first the case where

we have a function u of one variable and a numerical approximation v. We say that

v is a globally first order accurate approximation if

v(x) = u(x)− hc(x)− h2d(x)− h3f(x)− . . . ,

where c, d and f are smooth functions. If c = 0 then we say that the approximation

is (at least) globally second order accurate. Notice that the usual Taylor expansion

analysis of finite difference schemes gives only local statements; when step sizes tend

to 0 local errors become smaller, but there are a lot more of them (at any point the

calculated solution depends on the calculated solution in earlier points in the grid

because of the recursive structure), so potentially anything might happen. Problems
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of this nature can easily (and judging from part of the finance literature: undetect-

edly) occur when PDEs with non-smooth initial data or boundary conditions not of

Dirichlet-type are solved numerically using the Crank-Nicolson scheme.

Now calculate the numerical solution with step sizes h, 2h and 4h thus obtaining

v1 = u− hc− h2d− h3f,

v2 = u− 2hc− 4h2d− 8h3f,

v3 = u− 4hc− 16h2d− 64h3f.

By subtracting and dividing we can calculate the following coefficient in all points

corresponding to the ’4h’-calculation

v3 − v2

v2 − v1
= 2

c+ 6hd+ 28h2f + . . .

c+ 3hd+ 7h2f + . . .
. (15)

If c 6= 0 and h is small then the ratio in (15) should be close to 2. This means that

is we observe a lot of numbers close to 2.0 then we conclude that the approximation

is globally first order accurate. Likewise, 4.0’s all over the place indicate that the

method is globally second order accurate. It is possible for c to have several roots

so we should always calculate the ratio in (15) for a large number of points. The

quantification of terms like ’a lot of’ and ’all over the place’ is in the mind of the

beholder; but most times you are not in doubt.

If there is a nice pattern of 2.0’s or 4.0’s we can also obtain an estimate of the

error on the ’h’-calculation,

ε1 = u− v1 = hc+ h2d+ h3f + . . . .

If we have a first order method then |c| is larger than h|d| and we see that the error

is fairly well represented be v1 − v2 = hc + 3hd2 + . . . . For a second order method

|c| is 0, while |d| is larger than h|f | and ε1 = h2d + h3f + . . . is well approximated

by (v1 − v2)/3 = h2d+ 7h3f/3 + . . . . By adding the approximated error term (a.k.a.

Richardson extrapolating) we hope to obtain a more accurate estimate. Note also

that the extrapolation schemes depend on the order of the approximation, therefore

they should only be applied after justifying the order.

When u depends on several variables (time and space for our PDE-solution) we

perform the order determination separately in each direction, 2’s and 4’s are still

what makes us happy. Assuming that we have a second order method we may want

to make an approximation that removes possible h2k2-terms. With v4, v5 and v6
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denoting ’2k’-, ’4k’- and ’(2h, 2k)’-calculations respectively, a bit of algebra shows

that

v1 +
4

9
(v1 − v2) +

4

9
(v1 − v4)− 1

9
(v1 − v6) = u+O(h3 + k3). (16)

When we have a method that is globally second order accurate it is clear that the

computationally feasible thing is to keep the time step size proportional to the space

step size with a proportionality factor chosen such that the leading error terms are

roughly the same size. This means that effectively we only have to chose one step size

and we get an approximation fulfilling Assumption 2. Except: Assumption 2 is con-

cerned with the logarithm of the density, we are solving for the actual density. This,

however, is not a problem. Simple manipulations and appropriate Taylor expansions

on the (absolutely convergent) series

lnx =
∞∑
i=1

1

2i− 1

(
1− x
1 + x

)i
shows that we also have a second order approximation to the loglikelihood. Further-

more, in the regions where we need function values, the absolute error is often much

smaller after taking logarithms.

In the numerical results and empirical applications that are to follow we shall be

using the extrapolation given in (16). Note that extrapolated function values are only

available for the points on the coarsest grid, but fortunately this turns out not to be

a problem for the empirical applications. Despite using (16) we maintain Assumption

2 as stating second order accuracy in order not to be over-optimistic. (And time-

consumption-wise we should be more than adequately compensated for the need to

increase yM − y0 as h and k tend to 0.)

4 Numerical Experiments with Short Rate Models

We quote two error measures in the cases where the transition densities are known.

i) Maximal absolute error,

e1 = sup
m
{|φA(ym)− φ(ym)|}.
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4 x θ κ σθγ

1/12 0.08 0.08 0.24 0.025

Table 1: Common parameters for the numerical experiments.

ii) Average relative error (quoted in part per million in tables),

e2 =
∑
m

|φA(ym)− φ(ym)|h

≈
∫
R

|φA(y)− φ(y)|dy =

∫
{y|φ(y)>0}

|φA(y)− φ(y)|
φ(y)

φ(y)dy.

We do not report errors regarding lnφ. Time is the CPU-time (in seconds) on a

HP-9000 Unix machine.

We consider the parametric specification suggested in Chan et al. (1992),

dXt = κ(θ −Xt)dt+ σXγ
t dW t . (17)

We use the financially realistic parameters given in Table 1.

4.1 The Vasicek Model

This is the ’γ = 0’-case, i.e. we consider an Ornstein-Uhlenbeck process (the financial

terminology is after (a section in) Vasicek (1977)),

dXt = κ(θ −Xt)dt+ σdW t .

The transition density is

φV (4, x, y) = φN(y;m(4, x), v(4, x)),

where

m(t, x) = E(Xt|X0 = x) = e−κtx+ θ(1− e−κt)

v(t, x) = V(Xt|X0 = x) =
σ2(1− e−2κt)

2κ
.

We use y0 = 0.03 and yM = 0.13 as upper and lower boundaries in the grid.

Figure 2 gives an indication of
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INSERT FIGURE 2 ABOUT HERE

what the functions we will be working with look like. One could object to the relatively

low 4-value, saying that ’for small time steps diffusions are close to Gaussian’, so

we are not investigating the numerical method for the whole range of densities that

can occur for diffusions. However, we have several counter-objections: i) ’close to

Gaussian’ is a qualitative and parameter-dependent statement, ii) small time steps

is an appropriate way of ’stress-testing’ the method, iii) for the model and ψ in

question it corresponds to monthly observations which is a common, perhaps even

low, sampling frequency for financial data, and iv) numerical experiments indicate

that error results are qualitatively similar for larger (and smaller) 4-values.

Detailed results for the Vasicek model are shown in Tables 2 and 3.

INSERT TABLE 2 ABOUT HERE

We see that it is easy to obtain (average) accuracy to 4-5 significant digits (which

will give even more accurate values for the loglikelihood).

If we use a simple Euler approximation to the density, which corresponds to setting

N = 1, the errors are 0.55 and 9640, respectively.

The Richardson extrapolations are (as all those that follow) based on the method

being second order accurate in both time and space. If we insist, as we should,

on performing the order determination then the extrapolation is virtually ’free of

computational charge’. Even if we do not, then it only roughly doubles the number

of calculations and we see that it is worth the effort, especially for large step sizes.

Table 3

INSERT TABLE 3 ABOUT HERE

contains the h- and k-ratios for the experimental order determination. Overall, it

is a pretty picture. In the time direction the numbers may fall a little short of the

desired 4’s, but much worse results have been encountered. For both directions the

problems seem to arise at the ’y = 0.075’- and ‘y = 0.085’-lines. These are the y-

values closest to the inflexion points for the true solutions (at m(4, x) ± v(4, x)1/2

= 0.0800± 0.0071) – more an observation than an explanation.

Figure 3

INSERT FIGURE 3 AND TABLE 4 ABOUT HERE
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illustrates what happens if (14) is used as initial condition. For x = 0.08 things

look nice, but looks can be deceiving. When is x changed slightly the errors can

change dramatically; the average relative error can become more than 100 times

larger. A calculation of h- and k-ratios (see Table 4, the numbers are equally wayward

irrespective of what x is) also tells us that something is wrong and indicate that it

is the space dimension that needs more careful treatment (with h-ratios like those

in Table 4 one should check the estimated errors to see if it is due to a ’division by

0’-problem – it is not in this case).

4.2 The Cox-Ingersoll-Ross Model

This is the ’γ = 1/2’-case of (17),

dXt = κ(θ −Xt)dt+ σ
√
XtdW t .

The transition density (cf. Cox, Ingersoll & Ross (1985)) is

φCIR(4, x, y) = c exp(−u− v)
(v
u

)q/2
Iq(2
√
uv) for y ∈ R+ ,

where

c =
2κ

σ2(1− exp(−κ4))
, q =

2κθ

σ2
− 1,

u = cx exp(−κ4), v = cy,

and Iq is the modified Bessel function of order q. Again, we use y0 = 0.03 and

yM = 0.13.

Results are shown in Tables 5 and 6.

INSERT TABLES 5 AND 6 ABOUT HERE

We draw the same conclusions as for the Vasicek model: 4-5 significant digits are

easy to get, the method appears to be globally second order accurate in both time

space, and extrapolation is fruitful. The Euler approximation has e1 = 2.0 and

10000000e2 = 35200. Another fully analytical approximation, namely using a normal

density with correct mean and variance (expressions for these can be found in Cox

et al. (1985)) has e1 = 1.8 and 10000000e2 = 34000.
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4.3 The CKLS Model

For general γ-value the transition density to (17) is unknown but for γ ∈ [1/2; 1] it

is known to exist. (If no solution exists the numerical procedure is likely to indicate

this.)

Results for different values of γ are shown in Table 7.

INSERT TABLE 7 ABOUT HERE

We use y0 = 0.03 and yM = 0.17. The method still works nicely, if anything it appears

to work better.

5 Estimation of the CKLS Model

5.1 A Brief History of Optimization

In theory we could just apply the Crank-Nicolson method to the forward equations,

calculate the approximate loglikelihood, feed this to some ’black-box’ optimization

routine and wait for the estimate to be delivered. In practice, however, several matters

need to be considered:

i) A lot of time is spend determining the density in areas where it is flat and close

to 0.

ii) To calculate the approximate loglikelihood value we have to run through T

different finite difference grids since each ’xi−1’ gives a different initial condition.

iii) We only need the value of the density function in a single point, namely for

‘y = xi’.

iv) Where do we start the optimization procedure?

v) Which optimization procedure should we use?

Using an unevenly spaced grid or transforming the SDE are the obvious ways

of improving on i). But this is not without cost; unevenly spaced grid may make

extrapolation difficult and a transform of the SDE could mean that we loose the

’natural’ (Dirichlet-type) boundary conditions. Ergo, we stick with even spacing on

the original SDE.
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Basically, there is nothing we can do about ii). Solving only for relatively few

initial conditions and then applying some interpolation technique can bring down

computation time (a lot), but it induces a very large risk of ’throwing the baby out

with the bath water’.

Since we are going to run through a grid for each pair of consecutive observations

we may as well make the best of iii). We do this by constructing the ′4h′-grid such that

xi lies exactly on a grid point. In this way we do not have to do interpolations and we

get the full effect of the Richardson extrapolation. We use y0/M = xi∓6σ(xi;ψ
AML,0
T,h )

(ψAML,0
T,h will be defined in the next paragraph.)

As starting point, ψAML,0
T,h , we use the estimates we get from ’N = 1’, that is by

using the Euler discretization (’Euler’ will be used to indicate estimators of this type).

Finally, we determine ψAML
T,h by a quasi-Newton optimization (more precisely the

Brent, Hall, Hall, Hausman technique). This means that we ’update until conver-

gence’ according to the rule

ψAML,j
T,h = ψAML,j−1

T,h − λj−1M
−1g,

where g is the gradient of the approximate likelihood function (at ψAML,j−1
T,h ), M is

a matrix that ’looks like the matrix of second derivatives’ (ditto), λ0 = 1 and the

following λj’s are chosen such that the objective function never decreases. The quan-

tities g and M have to determined numerically. For g we use symmetric perturbations

(in ψ) while M is determined from an outer product of first derivatives by invoking

the information equality,

E

(
∂2l(xi−1, xi;ψ)

∂ψ∂ψ>

)
= −E

(
∂l(xi−1, xi;ψ)

∂ψ

∂l(xi−1, xi;ψ)>

∂ψ

)
(which is of course only really relevant for large samples and does not strictly apply

when h > 0). Our numerical analyses indicate that M is accurately determined

even for fairly coarse grids provided we are careful about the parameter perturbation

involved in the numerical ψ-differentiation.

5.2 Data and Estimation Results

We use (weekly observed) data on the U.S. three-month T-bill rates covering the pe-

riod 1982-95. We use only ’post-October 1982’-data to avoid problems stemming from

the well-known fact that the Federal Reserve Board used a different targeting policy

between October 1979 and October 1982. We use weekly sampling frequency as a
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’compromise’; on one hand we do not like to throw away information (=observations),

on the other hand, say, daily observations would make us much more prone to market

micro-structure effects. Results are fairly robust to using monthly data, the major

difference is higher standard errors of the σ and γ estimates. The data are, after

appropriate conversion, obtained from the Federal Reserve Board statistical release

H.15 (see http://www.bog.frb.fed.us/releases/). This is (a subset of) the data

set used in Andersen & Lund (1997). Summary statistics are given in Table 8.

INSERT TABLES 8 AND 9 ABOUT HERE

Table 9 reports estimation results. We give three sets of estimates:

i) AML estimates.

ii) Euler estimates, i.e. the starting point of the AML search. Since this corre-

sponds to a fixed h > 0 these estimates are inconsistent.

iii) GMM estimates obtained using the technique described in Chan et al. (1992).

This GMM implementation is based on an Euler-type approximation to the

conditional moments and thus also yields inconsistent estimates (but estimates

that are easy to calculate).

The methods agree on θ, but then one would not expect the unconditional mean

to be that hard to estimate. There is bit more variation regarding κ, the speed of

mean reversion, but none of the methods produce an estimate significantly different

from 0.1 From a financial point of view this is uncomfortable, and things might be

even worse than they seem since it can be shown that the κ-estimates are positively

biased for low values of κ. However, it is not all bad news. The γ-estimates, which

have been a focal point in the literature, all lie between 1/2 and 1, which is where

we (for many reasons) want them to lie. More often than not papers have reported

estimates in excess of 1 (in this case a weak solution to the SDE does exist, but it

is not a particularly nice one). The GMM estimates have higher standard deviations

than the other estimates, which might not be so surprising because no attempt is

made to mimic the likelihood function. AML and Euler estimates are quite similar

which supports the conjecture that ’4 = 1 week is small’. There is no definitive

evidence of lower standard errors for the AML estimates. There may be a number of

1It should be noted that for κ ≤ 0 (while 1/2 ≤ γ ≤ 1) no invariant measure (limiting distribution)

exists so we cannot test this using standard asymptotic results.
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reasons for this: i) T is finite, anything may happen in small samples (the statistical

equivalent of ’crying wolf’), ii) estimated standard errors are obtained with numerical

differentiation, and iii) the Euler estimates can ’buy’ lower standard deviations with

their inconsistency.

6 Conclusion

In this paper we introduced an estimator based on a second order approximation

to the true but unknown loglikelihood function for a discretely observed diffusion

process. The quality of the approximation could be controlled – both in theory and

numerical practice – by the statistician. We proved that for appropriate choice of

the discretization step size h the estimator was asymptotically equivalent to the ML

estimator; we even found the (computationally) optimal rate at which h should tend

to 0. We demonstrated how (and how not) to calculate the approximation using the

Crank-Nicolson method for PDEs, how to verify global properties, and how improve

accuracy at low computational cost. The strength of the numerical technique was

illustrated by numerical experiments on members of the CKLS-family. Finally, the

CKLS-model was estimated using weekly observations on U.S. short rate data covering

the period 1982 to 1995. We found the mean-reversion parameter insignificant, while

γ was estimated around 0.78 with a standard deviation of 0.068. Standard deviations

were markedly lower than those obtained when the GMM estimates suggested in

Chan et al. (1992) was calculated, but on weekly data there appeared to be little

difference between the AML estimates and the simple estimates based on an Euler

approximation to transition density.

Topics of ongoing research include:

i) Simulation studies to investigate the small sample behaviour of the AML esti-

mator.

ii) Detailed comparison of the AML estimator to other estimators proposed in the

literature.

iii) Application of the AML estimator to short rate models with non-linear drift

specification (as proposed for example in Ait-Sahalia (1996) and Conley, Hansen,

Luttmer & Scheinkmann (1997)). This will remove a shortcoming of the meth-

ods frequently used to estimate these non-linear models: In some respects ob-
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servations are treated as being iid, which they are clearly not (cf. Table 8). See

Pritsker (1998) for further discussion.

Preliminary results can be found in Christensen, Poulsen & Sørensen (1999).

Also, a natural next task is to implement the numerical PDE solution technique

for multi-dimensional diffusions. This is certainly not impossible, but numerically it

is fairly difficult.
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Figure 1: A finite difference grid for numerical solution of the forward PDE (6) for

the transition density. How to specify the initial condition and making sure that xi

lies on a grid point are numerically important “tricks of the trade”.
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Figure 2: Densities for the CKLS-diffusion for different values of γ. The higher γ

is, the further to the left the maximum of the density. The plots are for γ = 0.0

(Vasicek), γ = 0.5 (CIR), γ = 0.75, and γ = 1.0 and σθγ is kept fixed. Other

parameters: x = θ = 0.08, κ = 0.24, and 4 = 1/12.
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Errors Errors Time

M N before ex’pol after ex’pol incl. ex’pol

e1 e2 e1 e2

50 2 1.3926 18636 N/A N/A 0.03

50 4 0.1545 3094 N/A N/A 0.04

50 8 0.3762 6139 N/A N/A 0.04

50 16 0.5096 7871 N/A N/A 0.04

100 4 0.1619 5482 0.1797 3973 0.05

100 8 0.0352 913 0.0221 471 0.05

100 16 0.0980 1724 0.0322 615 0.05

100 32 0.1277 2111 0.0587 785 0.06

200 8 0.0970 1595 0.0234 414 0.09

200 16 0.0096 248 0.0037 78 0.09

200 32 0.0233 417 0.0077 140 0.11

200 64 0.0252 444 0.0087 148 0.14

400 16 0.0237 426 0.0081 96 0.17

400 32 0.0041 93 0.0034 69 0.20

400 64 0.0084 121 0.0027 61 0.22

400 128 0.0103 142 0.0031 64 0.40

800 32 0.0075 125 0.0081 113 0.38

800 64 0.0055 92 0.0072 115 0.55

800 128 0.0049 63 0.0025 62 1.11

800 256 0.0084 108 0.0097 173 2.12

Table 2: Finding the Vasicek-density by the Crank-Nicolson method applied to (7).
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y / t 1 2 3 4 5 6 7 8 y / t 1 2 3 4 5 6 7 8

6.0 5.6 4.0 4.0 4.0 4.2 3.0 4.0 3.8 6.0 4.1 3.7 3.5 3.8 3.8 3.8 4.0 2.6

6.5 4.1 3.9 4.5 3.9 3.8 3.9 4.0 3.8 6.5 4.1 3.7 3.8 3.9 5.2 4.2 3.8 4.5

7.0 3.9 3.8 3.9 4.0 3.8 3.8 4.1 3.5 7.0 2.9 3.8 3.8 3.8 4.0 4.1 3.8 5.0

7.5 4.1 4.1 3.5 3.8 5.4 4.7 4.0 5.2 7.5 3.2 3.7 3.5 3.6 -0.6 1.7 3.7 1.9

8.0 4.2 4.2 4.2 4.1 4.4 4.4 4.1 4.7 8.0 3.7 3.7 3.7 3.8 3.4 3.1 3.6 2.6

8.5 4.1 4.0 3.4 4.1 5.9 5.1 4.2 5.7 8.5 3.8 3.7 3.9 4.0 -0.3 1.4 2.7 1.6

9.0 3.9 3.8 3.9 4.0 3.8 3.8 3.9 3.3 9.0 3.2 3.7 3.8 3.9 4.1 4.4 4.5 6.0

9.5 4.1 3.9 4.5 3.9 3.8 3.8 3.9 3.7 9.5 2.9 3.7 3.8 3.8 5.8 4.4 4.5 4.9

10.0 5.6 4.0 4.0 4.0 4.3 2.9 3.8 3.7 10.0 4.1 3.7 3.4 3.8 3.9 3.8 3.6 2.8

h-ratio k-ratio

Table 3: Experimental order determination for the Crank-Nicolson method applied

to (6) in the Vasicek model. Starting set-up has h = 2.5 · 10−4 and k = 1/768, y

measured in %, t in 48’ths. If the method is globally O(h2+k2), then the two columns

to the right should contain a large amount of numbers fairly close to 4.

x (starting point)

ln
(a

v.
re

l e
rr

or
) 

 

0.0796 0.0798 0.0800 0.0802 0.0804

4
6

8
10

Figure 3: Sensitivity to the initial condition in the Vasicek model. The x-axis repre-

sents the initial value (x) and the y-axis is the logarithm of the average relative error

(e2). Jagged curve: Using (14). Straight line: Using (13). Step sizes: h = 2.5 · 10−4

and k = 1/768.
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t / y 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.6 10.0

0.0833 277.9 -1309.5 -1158.4 17500.3 -4911.2 20605.5 -1702.5 -2316.2 588.2

h-ratio

t / y 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.6 10.0

0.0833 4.0 4.0 4.0 5.3 9.1 4.9 3.9 4.1 4.0

k-ratio

Table 4: Experimental order determination for the Crank-Nicolson method applied

to (6) with (14) as initial condition in the Vasicek model. Starting set-up has h =

2.5 · 10−4 and k = 1/768 and x = 0.080.
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Errors Errors Time

M N before ex’pol after ex’pol incl. ex’pol

e1 e2 e1 e2

50 2 1.3637 19500 N/A N/A 0.03

50 4 0.1884 3761 N/A N/A 0.04

50 8 0.3748 6580 N/A N/A 0.04

50 16 0.5087 8340 N/A N/A 0.04

100 4 0.3748 5797 0.2037 3678 0.05

100 8 0.0526 1010 0.0294 524 0.05

100 16 0.1084 1747 0.0336 617 0.05

100 32 0.1267 2129 0.0611 800 0.06

200 8 0.0983 1636 0.0271 470 0.09

200 16 0.0150 270 0.0036 98 0.09

200 32 0.0257 448 0.0099 152 0.11

200 64 0.0328 538 0.0123 179 0.14

400 16 0.0262 435 0.0067 99 0.17

400 32 0.0051 80 0.0023 35 0.20

400 64 0.0085 120 0.0024 39 0.22

400 128 0.0093 136 0.0036 43 0.40

800 32 0.0074 113 0.0030 32 0.38

800 64 0.0022 24 0.0016 14 0.55

800 128 0.0032 31 0.0013 19 1.11

800 256 0.0032 35 0.0016 20 2.12

Table 5: Finding the CIR-density by the Crank-Nicolson method applied to (7)
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y / t 1 2 3 4 5 6 7 8 y / t 1 2 3 4 5 6 7 8

6.0 7.7 4.0 3.9 4.0 4.1 5.0 3.8 3.6 6.0 4.2 3.9 4.2 3.6 3.7 3.8 3.6 3.8

6.5 4.3 3.9 4.2 3.7 3.9 3.8 3.8 3.9 6.5 5.7 3.5 3.8 3.8 4.6 3.8 3.8 3.8

7.0 5.7 3.6 3.9 3.9 3.9 3.7 3.6 3.7 7.0 3.6 4.8 3.9 3.8 3.8 3.6 3.7 3.7

7.5 -6.7 3.1 3.7 6.0 4.9 3.8 4.9 4.9 7.5 3.6 3.4 3.8 10.8 3.6 3.8 4.0 4.0

8.0 25.5 4.9 4.2 4.2 4.4 4.4 4.5 4.5 8.0 3.7 4.0 3.7 3.8 3.7 3.8 3.9 3.9

8.5 -8.1 2.9 3.2 5.6 5.6 5.2 5.2 5.4 8.5 3.8 3.7 4.0 3.9 5.5 5.4 5.1 5.1

9.0 7.7 3.6 3.9 3.9 3.7 3.6 3.3 3.3 9.0 3.8 16.7 3.8 3.8 4.0 3.9 3.8 3.8

9.5 4.2 4.0 3.3 3.9 3.8 3.8 3.7 3.7 9.5 4.0 3.8 3.9 4.2 4.1 3.9 3.9 3.9

10.0 5.2 3.9 4.1 4.1 2.3 3.7 3.6 3.7 10.0 3.9 4.0 3.9 3.9 3.9 4.0 3.8 3.9

h-ratio k-ratio

Table 6: Experimental order determination for the Crank-Nicolson method applied to

(6) in the CIR model. Starting set-up has h = 2.5 · 10−4 and k = 1/768, y measured

in %, t in 48’ths.

h- and k-ratios

y γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1.0

0.060 4.0 3.3 4.0 2.5 4.0 10.4 3.9 4.9 3.9 4.5

0.065 3.8 3.8 3.8 3.7 3.8 3.7 3.7 3.7 3.7 3.6

0.070 4.0 3.7 4.0 3.8 4.1 3.8 4.0 3.7 4.0 3.8

0.075 3.6 5.7 3.5 4.0 3.8 4.5 3.6 5.0 3.5 4.0

0.080 4.0 3.8 4.0 3.8 4.1 3.8 4.0 4.0 4.0 3.8

0.085 3.7 3.8 3.9 4.1 4.0 4.1 3.7 3.7 4.2 4.1

0.090 4.0 3.8 4.0 4.0 4.0 3.9 4.0 3.8 3.9 3.9

0.095 4.0 4.2 3.9 3.7 3.9 4.2 4.0 4.3 3.8 4.4

0.100 4.0 3.9 4.0 3.9 4.1 3.9 4.1 3.9 4.7 3.9

Table 7: Experimental order determination (at time 1/12) for the Crank-Nicolson

method in the CKLS model. Starting set-up has h = 2.5 · 10−4 and k = 1/768.
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Weekly U.S. three-month T-bill rates, 1982-95. (FED)

Standard

Variables T Mean Deviation ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

rt 655 0.006379 0.02044 0.99 0.99 0.99 0.99 0.99 0.98

rt − rt−1 654 -0.00004 0.00166 -0.06 -0.05 0.07 0.06 0.10 -0.02

Table 8: Summary statistics. The ρ’s are autocorrelation coefficients.

Estimation

Technique θ κ σ γ

CKLS-GMM 0.0524 0.1724 0.0698 0.6729

(0.0165) (0.1465) (0.0235) (0.1217)

Euler 0.0510 0.1506 0.0953 0.7873

(0.0184) (0.1477) (0.0186) (0.0678)

AML 0.0511 0.1322 0.0931 0.7794

(0.0173) (0.1489) (0.0182) (0.0682)

Table 9: Estimates of the CKLS-model drt = κ(θ − rt)dt + σrγt dW t on weekly FED

data covering 1982 to 1995. The AML estimates are based on 8 time steps and space

step sizes of 1 basis point (0.0001, that is). Parentheses indicate estimated standard

errors. The run-time for the optimization is around 4 minutes.
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Abstract

Improved estimation methods for discretely observed diffusion models for

the short rate of interest are introduced. We consider both optimal martingale

estimating equations and approximate maximum likelihood methods based on

second order convergent numerical solution of the forward partial differential

equation for the transition density. The methods are compared to well-known

methods, namely the Generalized Method of Moments, Indirect Inference and

Gaussian Quasi Maximum Likelihood, both theoretically, in an application to

U.S. data, and in Monte Carlo experiments. The benchmark model used for

illustration and comparison is the Chan, Karolyi, Longstaff & Sanders (1992,

henceforth CKLS) short rate model. The new martingale and likelihood meth-

ods reduce bias, true standard errors, and bias in estimated standard errors,

relative to the established methods, in particular for the key parameter of in-

terest, the elasticity of variance. In weekly data from 1982 to 1995, the new

methods estimate this parameter to about 0.78. Finally, we use the approximate

maximum likelihood method to estimate non-linear drift short rate models. We

find the terms commonly suggested as drift augmentations insignificant.
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1 Introduction

Recently, a large number of articles in both the statistical, financial and econometric

literatures have developed and applied techniques related to estimation of discretely

observed diffusion processes. The bulk of the empirical applications concern interest

rate data. There are good reasons for this. Firstly, diffusions (solutions of stochastic

differential equations) are a key tool for modern financial model building. Secondly,

as opposed to equity markets, where the Black & Scholes (1973) Model is typically

employed as a benchmark (although numerous studies document its empirical inad-

equacies), a benchmark model is yet to emerge in fixed income markets. Thus our

application focuses on models for the short rate of interest, which is only one aspect

of term structure modelling, but a very important and relevant one that receives

much attention. Though comparative studies had been performed earlier (e.g. Marsh

& Rosenfeld (1983)), the popular breakthrough in this literature was Chan et al.

(1992), who introduced a simple framework for comparison of many models from the

literature. Numerous articles have followed up on this seminal work and suggested

improvements in three conceptually separate directions:

1) Improvements of the estimation technique.

2) Reinvestigation of the empirical results.

3) Improvements of the model.

In our application we address all of these issues, albeit in the realm of one-factor

models.

We consider five different estimation techniques. We first present the more familiar

methods and then proceed to introduce martingale methods and maximum likelihood

in the context of short rate models. Section 2 presents the different approaches: In

Section 2.1 we look at the Generalized Method of Moments (GMM) used in Chan et al.

(1992) and we include an improvement by calculating the moments more precisely.

In Section 2.2 an Indirect Inference-type estimator is described and its relation to

the so-called Efficient Method of Moments (EMM) is discussed. In Section 2.3, we

investigate Gaussian Quasi Maximum Likelihood. Section 2.4 introduces martingale

estimation equations and develops optimal martingale estimators. In Section 2.5

we propose a new approach to estimation of discretely observed diffusion processes,

based on second order convergent numerical solution techniques for partial differential
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equations. In Section 3 we compare the estimators when applied to i) a U.S. data

set with monthly sampling frequency used in Chan et al. (1992)), and ii) U.S. data

with weekly sampling frequency covering the period from 1982 to 1995 (a subsample

of the data set used in Andersen & Lund (1997).) Section 4 is a comprehensive

simulation study. The proposed approximate maximum likelihood estimator is quite

flexible w.r.t. the statistical parametrization of drift and volatility functions. We

therefore conclude the paper by estimating a non-linear drift model (formally it is

an intersection of the models proposed in Ait-Sahalia (1996) and Conley, Hansen,

Luttmer & Scheinkmann (1997).)

2 Alternative Estimation Methods

In general an estimation method should work for d-dimensional diffusions

dX = µ(X;ψ)dt+ σ(X;ψ)dW t , (1)

where W is a Brownian motion on a filtered probability space equipped with the usual

filtration {Ft} and ψ is the parameter we seek statistical inference on.

Our recurrent example is the CKLS-equation (such acronym’ed after Chan et al.

(1992)) describing the short term interest rate,

drt = (α+ βrt)dt+ σrγt dW t , (2)

This family parametrized by ψ> = (α, β, σ, γ) nests many popular - and some rather

esoteric - one-factor models, see Table 1.

We do not observe r continuously, rather we have T + 1 observations

{rt0 , rt1 , . . . , rtT }.

“The rules of the game” in economics/finance is that we cannot control the time

between observations, at least we cannot let it tend to 0.

We shall let

y 7→ p(4, x, y;ψ)

denote the Lebesque density of r4|r0 = x and refer to p as the transition density. For

application of standard distributional results it is also necessary that the invariant

measure,

p∞(y;ψ) = lim
4→∞

p(4, x, y;ψ),
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Model α β σ2 γ

Merton drt = αdt+ σdW t 0 0

Vasicek drt = (α+ βrt)dt+ σdW t 0

Cox-Ingersoll-Ross drt = (α+ βrt)dt+ σrt
1/2dW t 1/2

Dothan drt = σrtdW t 0 0 1

Geometric Brownian motion drt = βrtdt+ σrtdW t 0 1

Brennan-Schwartz drt = (α+ βrt)dt+ σrtdW t 1

Constantinedes-Ingersoll drt = σrt
3/2dW t 3/2

Constant Elasticity of Variance drt = βrtdt+ σrt
γdW t 0

Table 1: Alternative short rate models. The names on the left are common, but some

debatable.

exists. For one-dimensional diffusions it is often easy to determine if p∞ exists (by

speed and scale measure calculations, see Karlin & Taylor (1981, Section 15.6)) and

characterize it explicitly. This measure can then be used to base statistical inference

on, this is the idea in for instance Kessler (1996) and Conley et al. (1997). There are,

however, several problems with this, i) if observations are highly correlated (which

depends on the time between them and the functional form of drift and volatility)

there may be loss of efficiency and, ii) often (as it is the case for the CKLS-model) ψ

is not identified in p∞.

If we knew p then we could use the Markov property of diffusions w.r.t. their own

filtrations (see for instance Øksendal (1995, Theorem 7.2)) to write the likelihood

function as the product of the p(4, rti−1, rti ;ψ)’s. (For multi-dimensional diffusions

it is important that all the coordinates are observed, otherwise we would have to

“condition & integrate out” (or do something else.)) The ML estimator would have

the usual good properties (cf. Cambell, Lo & MacKinlay (1997, Appendix A) or for

more technical aspects Barndorff-Nielsen & Sørensen (1994))

Result 1 Under weak conditions, the ML estimator is consistent and asymptotically

normal. Supposing observations are equidistant we have the usual limits:

ψML
T

Pr→ ψ for T →∞,
√
T (ψML

T − ψ)
∼→ N(0, i−1(ψ)) for T →∞.
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where i(ψ) is the Fisher information matrix,

i = lim
T→∞

−E

(
1

T

∂2lT (ψ)

∂ψ∂ψ>

)
.

Further the ML estimator is (statistically) efficient, i.e., for any other consistent and

asymptotically normal estimator, say with asymptotic covariance matrix V , we have

that

V − i is positive semi-definite.

But, alas, generally we do not have an analytical expression for p. So we have to

something else.

2.1 Generalized Method of Moments

The standard reference for the Generalized Method of Moments is Hansen (1982), but

the subject is treated in most econometric textbooks. The discrete time econometric

specification of the model (2) that immediately springs to mind is

rti+4i − rti = (α+ βrti)4i + εti+4i , (3)

with 4i = ti+1 − ti and the following conditional moment restrictions on the error

terms:

E(εti+4i|Fti) = 0 (4)

E(ε2ti+4i|Fti) = 4iσ
2r2γ
ti . (5)

E(εti+4iεtj+4j |Fti) = 0 for i < j (6)

This is not an exact discrete-time representation of the model, rather it is a first order

approximation1 (w.r.t. time) a.k.a. an Euler-approximation. Later we will discuss

how to make better approximations. For notational simplicity assume that 4i ≡ 1,

write the data as {r0, r1, . . . , rT} and let ρ> = (α, β, σ, γ). We use this notation to

distinguish in some way between the parameters in Equations (2) and (3) which are

the same by name but not by nature. It will be the general notational philosophy

in this paper to use ρ to denote a parameter in a more or less misspecified model

1There are different ways of considering the quality of such approximations. The Euler-

approximation is of first order in the weak sense, viewed as a strong approximation its order is

1/2, see Kloeden, Platen & Schurz (1991). For statistical purposes the weak sense is often the

relevant one.
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whereas ψ’s will indicate parameters that (can be made by us to) converge to the

true parameter of the diffusion model.

The difference between (2) and (3) also means that the models are well-behaved/defined

on different parameter sets and is probably one of the reasons there seems to be some

confusion about stationarity properties. The following resolve some of these prob-

lems; the most striking thing about it models with γ-values larger than 1 can have

stationary densities.

Result 2 i) A model defined by

rti+4i − rti = (α+ βrti)4i + εti+4i ,

and

εti+4i|Fti ∼ N(0,4iσ
2|rti |2γ)

E(εti+4iεtj+4j |Fti) = 0 for i < j

is stationary and ergodic if and only if

α > 0, β ∈]− 1; 0[, σ > 0, γ ∈ [0; 1].

ii) Weak solutions to (2) with an invariant measure exist if σ > 0, α satisfies one the

following 3 conditions

α > 0 if γ = 0,

α > σ2/2 if γ = 1/2 (a.k.a. the Feller condition)

α > 0 if γ > 1/2

and β satisfies one the following 3 conditions (of which the third is mainly stated for

clarity)

β < 0 if γ < 1,

β < σ2/2 if γ = 1,

β free if γ > 1.

Proof. The first part follows from Broze, Scaillet & Zakoian (1995). The second part

follows from Conley et al. (1997) and can be checked using speed and scale measure

calculations.
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Now consider

ft+1 = f(rt+1, rt; ρ) =

(
εt+1

ε2t+1 − σ2r2γ
t

)
=

(
rt+1 − rt − α− βrt

(rt+1 − rt − α− βrt)2 − σ2r2γ
t

)
.

Under the econometric null hypothesis (Equations (3)-(6)) we have that E(ft+1|Ft) =

0. Introduce the instruments

It = I(rt; ρ) =

(
1

rt

)
,

and put ht+1 = ft+1 ⊗ It. We then have that

E(ht+1|Ft) = 0, (7)

in fact we could have used any function of past values and parameters and still have

this orthogonality condition. Define

gT (ρ) =
1

T

T∑
t=1

ht.

The Generalized Method of Moments estimates ρ as

ρGMM = arg min g>T (ρ)WT (ρ)gT (ρ)︸ ︷︷ ︸
:=JT (ρ)

,

where WT (ρ) is a positive-definite weighting matrix. It is this weighting matrix - pos-

sibly data- and parameter dependent - that constitutes the generalization in Hansen’s

approach. The GMM applies not only under the conditional orthogonality condition

(7), which ensures that gT is a martingale, but also under the much weaker uncondi-

tional version E(ht+1) = 0.

If the model is stationary then under the null hypothesis this estimator is consis-

tent, i. e.,

ρGMM Pr→ ρ for T →∞.

This is “fixed-4” asymptotics, some sources in the literature consider asymptotics as

4→ 0. This might be reasonable if we were modeling the outcome of some controlled

(say physical) experiment, but in economics it is characteristic that we as modelers

do not control the experiments.

Let us also stress that the consistency is under the assumption that (3)-(6) (and

not (2)) defines the true model. If (2) is the true model then the convergence of ρGMM
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to something can often be justified using results form what is known in econometrics

as “theory of misspecified models”, but we would hesitate to call it consistency.

For the drift parameters the CKLS-discretization is a reparametrization of the

conditional mean of the process in (2) (cf. Equation (17)), for the volatility this is

not the case.

Note that in the case of a just identified system (dim(ht+1) = dim(ρ)) we attain

0 as the minimum by solving gT = 0 (unless we are very silly or extremely unlucky),

irrespective of the choice of weighting. In the over identified case this is not true.

But note also that different instruments will give rise to different estimators even in

the just identified case. One can show that the optimal choice of weighting matrix

(i.e., the one that has the smallest asymptotic covariance matrix in the partial order

positive definite symmetric matrices) is WT (ρ) = S−1(ρ) where

S(ρ) = E(gT (ρ)g>T (ρ)).

In this case the estimator is asymptotically normal,

√
T
(
ρGMM − ρ

) ∼→ N(0,Ω) for T →∞,

where

Ω = (D>(ρ)S−1(ρ)D(ρ))−1 (8)

and D(ρ) = T−1
∑

(∂hi/∂ρj) is the Jacobian of gT (asymptotic normality also holds

with non-optimal weighting matrices, but the covariance matrix becomes more com-

plicated, see Hansen (1982).) This can be used to create confidence intervals and

perform t-tests on individual parameters in standard fashion. Composite hypotheses

can by tested by evaluating the test statistic

T (JT (ρGMM,R)− JT (ρGMM)),

where ρGMM,R is the restricted estimate, in a χ2(k)-distribution, where k is the number

of restrictions. For this asymptotic distribution result to apply we have to use the

efficient weighting matrix from in unrestricted model in the optimizations.

Another important question is whether we can produce a better discrete time

approximation than the one given by (3)-(6). The first conditional moment of (2) is

well-known, but higher order moments are not. Only if we use exact/true moments

(but they could be unconditional) of the diffusion model will we have ρGMM → ψ.

We could try to determine the moments by intensive simulation or by numerical
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integration of solutions to partial differential equations. But, rather we develop (in

Appendix A) what we consider a very accurate analytical approximation that has

the virtue of being exact for the Vasicek, Cox-Ingersoll-Ross and Brennan-Schwartz

models. In Tables GMM estimates with these moment approximations will be called

ρGMM(2) and we shall in the following refer to GMM estimates based on Euler moment

approximation as ρGMM(1) – this “(1)/(2)”-notational philosophy will be maintained

throughout the paper.

We can perform the exact same estimation procedure with the new approximation

substituted in appropriate places - the main difference being that the last two rows

of the Jacobian D are more complicated.

2.2 Indirect Inference

The basic idea behind indirect inference (see Gouriéroux, Monfort & Renault (1993))

is to invert the relation – often called the binding function – between parameters

in a misspecified model (such as in the previous subsection) and parameters in data

generating process (the diffusion); in the case where the misspecified model has more

parameters than the diffusion the inversion is more of a projection.

We consider an auxiliary model where an estimator, ρAUX , is found by solving

1

T

T∑
t=1

sg(rt−1, rt; ρ) = 0.

The function sg (mapping into R
dAUX , where dAUX = dim(ρ)) is called the score

generator and should be a known function. It could be the logarithmic derivative of

certain a class of densities or it could be a moment-inspired estimation function. The

dimension of ρ could be (much) larger the dimension of the unknown parameter in

the data generating process (the underlying diffusion.)

Define

m(ψ, ρ) =

∫ ∫
sg(x, y; ρ)p(4, x, y;ψ)p∞(x;ψ)dydx.

The Indirect Inference estimator is then defined as

ψII = arg min
ψ
m>(ψ, ρAUX)W m(ψ, ρAUX), (9)

where W is a positive define weighting matrix (like the one in the GMM estimation.)

Note that ψII depends on the data only through ρAUX . Thus we can argue qualita-

tively that if some “effect in the data” is not captured by the auxiliary estimation
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procedure, then it will not be captured by the II-estimator, even if the diffusion has

“the effect”.

There are then 3 increasingly realistic cases to consider (where

TURC means “Then/That/True under regularity conditions”.)

Case 0 is where m is known exactly or “with neglible error”. TURC as T tends

to infinity we have

ψII
Pr→ ψ

and √
T (ψII − ψ)

∼→ N(0, (D>ψWDψ)−1),

where Dψ = ∂m/∂ψ>. This case is not very realistic in practice. It is, however,

useful to neglect any error/uncertainty related to m at first when we want to prove

consistency and asymptotic normality. Also, it allows easier analysis of the depen-

dency of the asymptotic covariance matrix on sg. For example the idea behind the

efficient method of moments is to show that if the sg-functions (indexed by ρ with

dim(ρ)→∞) are logarithmic derivatives of densities in a “dense subset” of “all densi-

ties” then the asymptotic covariance matrix becomes the same as if we had performed

ordinary maximum likelihood in the diffusion model.

In Case 0 the time-consumption needed to compute the criterion function grows

linearly in T . (The time needed to solve the optimization part is usually ignored in

the part of the literature.)

Case 1 is where m is determined by exact simulation. Typically this would be as

m̃ = m̃N(T )(ψ, ρ
AUX) =

1

N(T )

N(T )∑
n=1

sg(r̃n−1(ψ), r̃n(ψ); ρAUX), (10)

where N(T ) is a large integer chosen by the statistician and r̃ = {r̃n(ψ)}N(T )
n=0 is

a simulated sequence of observations (4 apart) from the diffusion (ideally started

with a draw from the invariant distribution, in practice this is often achieved by

using a “burn-in” period.) The indirect inference estimator is now computed with m

substituted by m̃. TURC ψII is consistent provided N(T )→∞. Suppose further

that
T

N(T )
→ τ for T →∞ (11)
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for some τ ∈ [0;∞]. Then (Gouriéroux et al. (1993) or Duffie & Singleton (1993))

√
T (ψII − ψ)

∼→ N(0, (1 + τ)(D>ψWDψ)−1),

i.e., N(T ) must grow at least as fast as T for a “standard” asymptotic normality

result to hold. We also get a “natural scale” for large (but finite) T ’s; for example

if we use 100 times as many simulated observations as “real” observations we would

(asymptotically) get standard errors 0.5% higher than in Case 0; an increase that

is likely to be neglible when considering that m (meaning m̃ in practice) has to dif-

ferentiated numerically to determine the standard errors, anyway. In this case the

time-consumption needed to compute the criterion function grows at least quadrati-

cally in T .

Case 2 is the most realistic one, namely where the diffusion process cannot be

simulated exactly, but we have to use some discretization scheme (cf. Kloeden et al.

(1991)), say characterized by step size δS(T ). This case is investigated in Broze,

Scaillet & Zakoian (1998). For any δS(T ) > 0 an approximation to m is defined

analogously to Equation (10). Suppose that the discretization scheme has weak order

ν > 0, i.e., in obvious notation

|E(r
(δS)
1 )−E(r1)| ≤ CδνS,

where C is a constant that does not depend on δS. Typically ν is 1 or 2, but “pret-

a-porter” higher order schemes can be found in Kloeden et al. (1991).2 TURC ψII

is consistent provided N(T ) → ∞ and δS(T ) → 0. Suppose that δS(T ) ∝ T c. To

ensure asymptotic behaviour as in Case 1 we must require that
√
TδS(T )ν → 0 or in

other words that c > 1/(2ν). At the expense of including “non-standard correction

terms” on the LHS of the “asymptotic normality relation”, it may be possible to use

lower c-values, see Broze et al. (1998).

In this case the time-consumption needed to compute the criterion function grows

must grow at least as fast as T 2+1/(2ν).

We shall be using a very simple type of indirect inference, namely the one where

the score generator is given by the h function of the previous subsection, so ρAUX =

ρGMM(1), the W matrix is also chosen similarly. Adhering to the rules in Case 2 we

2On a practical note: High order schemes often dramatically increase the number of flops per

step in the iteration.
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should expect this give to us an estimator, ψII , that behaves asymptotically as what

might be termed ψGMM , the GMM-estimator of Section 2.1 if correct conditional

moments were used.

In practice we use N/T > 30 and a weak second order Taylor scheme in the

simulations. The Jacobian Dψ is calculated using symmetric perturbation of the

parameter. The starting point in the optimization is naturally chosen as ρGMM(1)

and we search by a Quasi-Newton method, i.e., by repeatedly updating our estimate

by the gradient pre-multiplied by “something that looks like” the inverse of the matrix

of second partial derivatives of the object function. Specifically we are inspired by

the form of the (Case 0) asymptotic covariance and use (since Dψ is quadratic in

this simple case)

ψIIj = ψIIj−1 − λj−1D
−1
ψ m,

where λ0 = 1 and the following λj’s are chosen such that the objective function never

increases. This is done until some convergence criteria are met. (In short: We are a

BHHH optimization technique.) Since numerical differentiation is involved and the

second derivative is only “asymptotically correct” it is somewhat optimistic to hope

for second order convergence, but the method works fairly well (and fairly quickly.)

2.2.1 EMM as (or rather: is) Indirect Inference

In this subsection a very brief description of the ideas in the Efficient Method of

Moments (EMM) is given, see for instance Gallant & Long (1997), Gallant & Tauchen

(1996b), Gallant & Tauchen (1996a), or Andersen & Lund (1996) for more details.

In the EMM, which has received considerable interest recently, the idea is to be

able to pick the sg’s used when finding an II estimator from a very flexible class.

It is first shown (cf. references just given) that if the sg’s can approximate the

unknown loglikelihood arbitrarily well, then an estimator that is as efficient as the

ML estimator can be constructed despite the need for dim(ρ) to tend to infinity. The

next step (which was chronologically the first) is then to actually write down such a

class of sg’s. The catch-22 for practical applications is that this has been done and

implemented; the Semi-Non-Parametric class of densities introduced by Gallant and

Nychka is dense in a Sobolev sense (see Gallant & Nychka (1987)). The corresponding

SNP estimation program developed by Gallant and Tauchen is free available by ftp

(direct your browser to http://www.econ.duke.edu/∼get/snp.html.) It should be

noted that many of the regularity conditions have still not formally been verified (or
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are not strictly true, cf. Andersen & Lund (1996))

A strong side of the EMM is its usefulness in multi-dimensional models with

unobserved components (such as stochastic volatility models.) Also long as i) we can

make an econometrically satisfactory model of the observed components and, ii) we

are able to simulate from the data generating process, then we can apply the EMM.

2.3 Gaussian Quasi Maximum Likelihood

Letting F (x;ψ) = E(r4|r0 = x) and φ(x;ψ) = V(r4|r0 = x), we may be inspired to

consider (minus twice) the Gaussian quasi loglikelihood function (quasi because it is

not the exact likelihood “but close”, no other meaning in the word than that)

lGT (ψ) =
T∑
t=1

lt =
T∑
t=1

[
lnφ(rt−1;ψ) +

(rt − F (rt−1;ψ))2

φ(rt−1;ψ)

]
We find estimators by minimizing the Gaussian quasi loglikelihood, which can be seen

as solving ∂ψl
G
T = 0, or as minimizing (∂ψl

G
T )>∂ψl

G
T . In the literature the variance

matrix is usually estimated as 2(
∑

t ltl
∗
t )
−1. This estimator relies on the information

equality from likelihood theory

−E

(
∂2 lnL

∂ψ∂ψ>

)
= E

(
∂ψ lnL∂>ψ lnL

)
,

i.e., that the expected information equals the expected outer product of the score

vector. This easy to calculate but not entirely correct since we are not using the

true likelihood. We could use (8), but that’s like rearranging the deck chairs on the

Titanic.

Note that

E(∂ψl
G
T |FT−1) = ∂ψl

G
T−1 −

2∂ψF

φ
E((rt − F )|FT−1)−

∂ψφ

φ2
(E((rt − F )2|FT−1)− φ)

= ∂ψl
G
T−1,

so looking backwards we could say that it is a GMM technique and looking forward

we could say that we use an unbiased martingale estimating function.

Of course we still do not know the conditional second moments so in the imple-

mentation we can use i) the Euler approximation used in the first part of the section

on GMM (thus obtaining ρGQML(1)) or, ii) the improved approximations from Ap-

pendix A (giving ρGQML(2).) Following the Case 2 rules of the Indirect Inference
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section we could determine the conditional moments by simulation and get an es-

timator, ψGQML, that would behave asymptotically as if the moments were known

analytically.

2.4 Martingale Estimating Equations

The GMM and II/EMM described in the two previous subsections stem from the

econometrics literature. Estimation techniques for discretely observed diffusions have

also been treated in the statistics literature (the intersection between statistics and

econometrics is smaller than one would think.) An estimating function, GT (ψ), is a

function of ψ (and the observations, notationally suppressed) that we use for finding

an estimator as a solution to the estimating equations

GT (ψ) = 0.

It turns out to be more convenient/general to work with the estimating functions

rather than the estimators themselves.

The unbiased martingale estimating functions constitute a particularly convenient

class. An estimation function is in this class if GT is a (0-mean)-martingale, by which

we mean that

E(Gi(ψ)|Fi−1) = Gi−1(ψ) for all 1 ≤ i ≤ T.

In Bibby & Sørensen (1995) it is shown (in a diffusion setting) TURC estimators

found by using unbiased martingale estimating functions i) exist (eventually), ii)

are consistent (but not unbiased), and iii) are asymptotically normal. Largely, this

should be no surprise, since the martingale property induces a (strong) orthogonality

condition and qualitatively we would think of using the arguments from the GMM

technique. An advantage, however, of the work of Bibby & Sørensen (1995) is that the

technical conditions needed are easier to verify and that the proofs are more direct.

Another advantage is that we are able to give stronger quantitative statements

because of our knowledge of the structure of the space of estimating functions. To

illustrate this, we will focus on the class of quadratic martingale estimating functions.

We see that the function

GQM
T =

T∑
t=1

(g1(rt−1;ψ)[rt − F (rt−1;ψ)]

+g2(rt−1;ψ)[(rt − F (rt−1;ψ))2 − φ(rt−1;ψ)]
)

(12)
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is a martingale for any choice of deterministic functions g1, g2. These functions (sim-

ilar to the instruments in the GMM estimation) can depend on ψ in essentially any

way we like. The asymptotic covariance matrix of the estimator will depend on the

choice of g-functions. Note that the Gaussian loglikelihood derivative in the previous

subsection, ∂ψl
G
T , is an example of a member of this class. From Sørensen (1997) we

have the following result.

Result 3 The optimal estimators in the class of quadratic martingale estimating

functions corresponds to the following choice of weight functions

g?1(x;ψ) =
ν(4, x;ψ)∂ψφ(4, x;ψ)−Ψ(4, x;ψ)∂ψF (4, x;ψ)

φ(4, x;ψ)Ψ(4, x;ψ)− ν(4, x;ψ)2
(13)

g?2(x;ψ) =
ν(4, x;ψ)∂ψF (4, x;ψ)− φ(4, x;ψ)∂ψφ(4, x;ψ)

φ(4, x;ψ)Ψ(4, x;ψ)− ν(4, x;ψ)2
(14)

with the notation

ν(4, x;ψ) = E((r4 − F (4, x;ψ))3|r0 = x)

Ψ(4, x;ψ) = E((r4 − F (4, x;ψ))4|r0 = x)− φ(4, x;ψ)2 .

Notice that if observations are truly Gaussian then ν = 0 and Ψ = 2φ2 and we

get the same weights as for Gaussian quasi likelihood analysis. The optimality is

both asymptotically and in finite samples (in the sense defined in Godambe & Heyde

(1987)).

Because the derivatives of the 1st and 2nd centered conditional moments enter

into expressions (13) and (14), it is all the more important from a time consumption

point of view to have analytical expressions for (approximations to) the moments.

We could calculate the estimators by finding moments using simulation (in Pedersen

(1994a) it is even shown how to simulate differentiated moments directly); but the fun

of simulation is starting to flatten so we calculate i) ρOQM(1) based on Euler moment

approximations (so in fact we do not calculate it because it is identically equal to

ρGQML(1) by the remark above) and, ii) ρOQM(2) based on the improved moment

approximations of Appendix A. The quality of the approximations in the appendix

decreases with order, but using only approximations in the weight functions does

not “add to the misery of misspecification”, it only effects the asymptotic covariance

matrix. And our experience tells us that in practice it does not matter much. To

calculate an estimate of the asymptotic covariance matrix of ρGQML(2) we think of

the problem in GMM terms, i.e., as solving minG>TGT rather than GT = 0 and then

use (8) (this ensures that we get the scaling right.)
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Note by the way that if we put GT (ψ) =
∑T

i=1 ∂ψ ln p(4, Xi−1, Xi), and assume

regularity conditions that allow us to interchange integration and differentiation, we

get

E (Gi(ψ)|Fi−1) = Gi−1(ψ) + E (∂ψ ln p(4, Xi−1, Xi)|Fi−1)

= Gi−1(ψ) +

∫
R

∂ψp(4, Xi−1, y)

p(4, Xi−1, y)
p(4, Xi−1, y)dy

= Gi−1(ψ) + ∂ψ

∫
R

p(4, Xi−1, y)dy = Gi−1(ψ) + ∂ψ1

= Gi−1(ψ),

so maximization of the loglikelihood function results in an unbiased martingale esti-

mation function.

2.5 Approximate Maximum Likelihood

In general we do not know an analytical expression for the transition density p. But

we do know something. Relying on diffusion theory (e.g. along the lines of Karatzas

& Shreve (1992)), we have TURC the transition density p of the solution to a one-

dimension version of the SDE (1) solves the parabolic partial differential equation

(PDE) (called the forward or the Fokker-Planck or the Kolmogorov equation)

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1

2

∂2

∂y2

(
σ2(y)p(t, x, y)

)
, (15)

with initial condition p(0, x, y) = δ(y− x), where δ(·) is the Dirac-δ function. (In the

multi-dimensional case the transition density solves a similar PDE but it would be

much harder (though not impossible) to solve it numerically since the space variable

would be multi-dimensional and the “cross-derivatives” do not vanish.)

Strictly speaking this is not a PDE in the usual sense (it is often called a func-

tional PDE) because the Dirac-δ function is not a function in the usual sense but a

generalized function. It can be defined as a continuous, linear, real-valued mapping

on the infinite dimensional space C∞(R) such that δ : f 7→ f(0) for all f ∈ C∞(R).

Therefore we cannot use standard theory to (define and) ensure existence and unique-

ness of a solution. This has to be verified with other methods. Two possible ways are

“inspired guesses” and “advanced probabilistic methods (Malliavan calculus) on the

corresponding SDE”. Rigorous treatment of this is far beyond this (most) paper(s),

we refer to Pedersen (1995). But after (or before, for that matter) well-definedness
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Figure 1: A finite difference grid for numerical solution of the forward PDE (15) for

the transition density. How to specify the initial condition and making sure that xi

lies on a grid point are numerically important “tricks of the trade”.

has been established we can apply numerical techniques known from “usual PDEs”

to our hearts’ content.

This is investigated in Poulsen (1999), where it is shown that a careful implemen-

tation of the Crank-Nicolson finite difference method does lead to a globally second

order accurate approximation, pA, to the true density and in turn to the true loglike-

lihood (and it also demonstrated that a careless does not.) The solution technique is

illustrated in Figure 1. The idea basic to use a number of intermediate points (a grid)

and then approximate the differential operators in (15) by difference operators, i.e.,

by linear combinations of the v’s in Figure 1 (these then constitute the approximate

solution.) For the Crank-Nicolson method the approximation involves six v’s (the o’s

in the figure.) Since (or rather: if) the v’s are known on the boundaries (the thick

lines in the figure) this leads to a sequence of tridiagonal linear equations which can be

solved with time-consumption O(MN). Because the approximation is second order

accurate in both time and space, it is always computationally optimal to have h ∝ k,

so we can pool them in the following and are able to construct (in a “numerically
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self-checking” manner) an approximate loglikelihood function that satisfies

lAT,h(ψ) = lT (ψ) + h2aT (ψ) + o(h2)bT (ψ), (16)

where aT and bT are smooth (and deterministic) functions and h is a parameter

chosen by the statistician such that the time needed to compute the left hand side of

Equation (16) does not grow faster than T/h2 (the “h2” here is only place we can see

the “h,k”-pooling.)

Let ψAML
T,h denote the estimator obtained by maximizing lAT,h (the maximization is

performed using the same technique as in the Indirect Inference section.) The theory

of misspecified models (cf. White (1994)) can be used to establish the convergence

ψAML
T,h

Pr→ ρh for any fixed h

for some function (which turns out to be smooth) ρ of h. Since h = 0 corresponds to

the ML estimator we have ρ0 = ψ. The question is then: How slowly can we allow h

to tend to 0 as T tends to infinity? (And precisely what happens then?) The answer

is given in Poulsen (1999):

Result 4 Suppose h(T ) = T−c. TURC :

i) ψAML
T,h is consistent if (and only if) c > 0.

ii) If c = 1/4, then
√
T (ψAML

T,h − ψ) converges in distribution to a normal variable

or more precisely,

√
T
(
ψAML
T,h − ψ

) ∼→ N

(
1

2

∂2ρh
∂h2
|h=0, i

−1(ψ)

)
.

iii) If c > 1/4 then √
T (ψAML

T,h − ψ)
∼→ N(0, i−1(ψ)),

i.e., the AML estimator is asymptotically equivalent to the ML estimator.

This means that for the AML method consistency, asymptotic normality and

statistical efficiency can be achieved at a time-consumption that does not grow faster

than T 3/2 (T (no. obs.) × T 1/4 (time) × T 1/4 (space).) This should be compared

to T 2+1/(2ν) (where ν is the weak order of the discretization scheme) for indirect

inference, and there we did not achieve statistical efficiency.
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2.5.1 Model Control Using AML

By applying the ideas in Pedersen (1994b) it is easy to do model control with the AML

method. Let Φ(·, x) denote the distribution function of r4|r0 = x and introduce the

uniform residuals through

Ui = Φ(ri, ri−1) for i = 1, . . . , T.

Then (no matter how dependent the ri’s are)

{Ui} is a series of independent U(0, 1)-distributed random variables.

So we have to calculate

ui =

∫ xi

−∞
p(4, xi−1, y)dy.

Now drop 4 and xi−1 from the notation and recall that for a “nice” function f we

have ∫ b

a

f(y)dy =
N−1∑
i=1

(
1

2
f(a+ ih) +

1

2
f(a+ (i+ 1)h)

)
h+O(h2),

where h = (b − a)/N . Since (16) stems from a second order, appropriately uniform

approximation to p, we get by not worrying too much about having “a = −∞” that∑
m:ym≤xi

(
pA(ym−1) + pA(ym)

) h
2

= ui +O(h2),

so we retain second order accuracy in the calculation of the uniform residuals using

only the points (the ym’s) where we already have an approximation to p.

We can then apply a batch of graphical and formal tests to the calculated uniform

residuals to see if they “look like iid U(0, 1)-variables.” One of the most popular

such is the Kolmogorov-Smirnov test statistic (cf. Press, Teukolsky, Vetterling &

Flannery (1992) or any semi-advanced statistics book.) We should, however, be a

bit careful with this (and other formal tests) because its distributional characteristics

are developed under under the assumption that we use the true parameter in the

residual calculation. But of course we cannot do that, we have to use an estimate

(and what is more natural than the AML estimate we have at hand.) This changes

the small sample and probably also the asymptotic distribution of the statistic. We

do not know how, but conjecture that when the AML estimate is used it increases

the variability of the statistic, so if the K-S value is not extreme in the “standard”

asymptotic distribution, it certainly is not extreme in the “estimator dependent”.
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3 Data and Estimation Results

In theory the short rate is unambiguous - in practice it is not. Many rates may serve

as proxy of the yield on an instantly maturing zero coupon bond. A full discussion

of this matter is beyond the scope of this paper, but we refer to Duffee (1996) and

Honoré (1998, Essay 2).

Estimation results in the literature depend on - besides the estimation technique

which is the focus of this paper - the type of rate, sampling frequency, time period,

and country considered. To separate effects we consider two data sets.

A) Monthly observations of U.S. one-month T-bill yields from June 1964 to De-

cember 1989 obtained from the CRSP bond data file. This is the exact the data

set used in Chan et al. (1992). These data can be found on the CRSP bond

data file.

B) Weekly observations of U.S. three-month T-bill yields from October 1982 to

December 1995 obtained from H.15 release of the Federal Reserve System.

Both sets of rates have to be converted into continuously compounded yields. Sum-

mary statistics are given in Table 9.

All empirical results are given after the reparametrization

θ = −α/β, κ = −β.

Both for numerical optimization and for interpretation of parameters this is conve-

nient (is does rule out the Merton model from Table 1, but that is a minor problem.)

3.1 The CKLS data (CRSP, monthly, 1964-89)

Results for the monthly data are given in Tables 3 and 4. We make to following

observations:

• The GMM-estimates agree with those reported in Chan et al. (1992) - as of

course they should when the same moment approximations are employed (but

it is a good way of eliminating blatant errors.). When the new moment approx-

imation is used the estimates change, but by no means “significantly” when the

magnitude of the standard errors is considered. We note a fairly large reduc-

tion in the (estimated) standard error of the σ-parameter. But we should be
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very careful with the estimates since all methods estimate γ to be larger that

1, meaning that the econometric model is non-stationary (cf. Result 2.)

• In our implementation the II-estimates highly resemble the GMM-estimates.

• The moment approximations the GQML(2)-method differ only slightly from

those used in Nowman (1997), and the estimates are also very similar, except

for a change of the time-scale. (Nowman defines the time between observations

is to be 1, so for weekly data his κ estimate must be multiplied by 12 and

his σ estimate multiplied by
√

12 to yield our results. We think one should

always measure time in years in interest rate models (and then make the r-units

time−1).) The γ-estimate (1.384, unaffected by using a different time-scale)

is somewhat smaller than for the GMM-estimation, but the most noteworthy

change is in the standard errors; these are reduced by a factor 2-3.

• The OQM method gives estimates that are very close to the GQML(2)-estimates

indicating that the GQML(2)-estimates are “close to optimal”. One might

wonder why the estimated standard errors of the OQM estimates are in fact

slightly larger than the GQML(2) estimated standard errors. We attribute this

to small sample and numerical effects.

• The AML estimates are fairly close to the GQML(2) estimates but there appears

to be a slight movement towards the GMM-estimates.

Between October 1979 and October 1982 the U.S. Federal Bank employed a monetary

rather than an interest rate targeting policy (see Sanders & Unal (1988) and the

references therein; we regard the change points as known dates rather than parts of

the estimation problem). Often, this has lead people to allow different parameters in

the pre-, during-, and post-monetary targeting periods. Table 4 reports the results of

applying the AML technique to the three sub-periods (similar conclusions are reached

with the other estimation procedures.) We make these observations:

• We strongly reject that parameters are equal in sub-periods. Twice the dif-

ference in optimal loglikelihood values equals 29.44, which when evaluated in a

χ2(8)-distribution gives a test probability less than 0.01%. The same conclusion

is reached in several places in the literature, but not in Chan et al. (1992). This

is because they only allow one structural change (occurring in October 1979.)
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• The speed of mean-reversion, κ, a very important parameter for term structure

considerations differs a great deal between periods. Note that

κwhole period < inf{κsub-period}.

• The “long term levels” or unconditional means, θ, appear to be equal before

and after the monetary targeting policy period and markedly higher during the

period. Indeed, a(n approximate) likelihood-ratio test confirms this.

• The “average” short rate standard deviation per time unit, σθγ , is not signif-

icantly (again, by an approximate likelihood-ratio test) different “before” and

“after”, but is 3 times higher “during”.

• The γ-parameter changes over time and much to our delight it is going down – a

bit too much, perhaps, for those of us who like to think of the short rate as a dif-

fusion (recall that Equation (2) is not well-defined for γ ∈]0; 1/2[.) Analogously

to the κ-estimates we have that

γwhole period > sup{γsub-period}.

This indicates that one reason for “unsatisfactory” (i.e., very high) γ-estimates

is failure to incorporate structural changes. In general it is our experience that

the γ-estimates are not very robust and misspecifications or outliers tend to

raise γ-estimates.

3.2 The Andersen-Lund data (FED, weekly, 1982-95)

The conclusions for the CKLS data set make it worthwhile to take a closer look at

the period after 1982; this is where we use data set B. This data set has a weekly

sampling frequency. Estimation results are shown in Table 5.3 We remark that:

• Again, the GMM and II estimators are similar to each other, while the GQML,

OQM and AML are quite alike and the three latter “claim” to have lower

standard errors.

• All estimates indicate that γ ∈ [1/2; 1], the OQM, GQML and AML give esti-

mates around 0.78.

3This is after removal of the observation from Oct. 14 1987, the week of the stock market crash.
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• The γ and σ estimates have much lower standard errors than for the whole

CKLS-period.

• The evidence of mean reversion is still weak, none of the methods give a κ

estimate significantly different from 0. But it should be noted that no invariant

measure exists for κ = 0, so we cannot apply standard results to test this

hypothesis.

• Graphical analysis of the uniform residuals (see Figure 8) gives no indication

of a misspecified model. The sample mean is 0.5088 (1/2 for U(0, 1)) and the

sample variance is 0.07834 (1/12 = 0.08333 for U(0, 1).) There is no significant

autocorrelation. A standard Kolmogorov-Smirnov test (which should be taken

with the reservation outlined in Section 2.5.1) gives a test probability of 12.9 %

of accepting the model.

4 A Sampling Experiment

We perform a Monte Carlo study of the behaviour of the various estimators. We

consider the parameter settings given in Table 2.

Tables 6 and 7 report these results (where in fact some the ψ’s should be ρ’s, and

probably vice versa):

Estimates

sample mean of {ψ̂ji − ψi}Mj=1

(sample standard deviation of {ψ̂ji − ψi}Mj=1 ) =: ( ŝei )

Bias in standard errors

For each ψ̂ji the algorithm provides an estimate of the standard error of this

parameter estimate, say ŝeji .

bias(sei) = sample mean of {ŝeji − ŝei}Mj=1

(sample standard deviation of {ŝeji − ŝei}Mj=1)

We note the following:

• We know that GMM(1) and GQML(1) are both biased and inconsistent, but

for κ the effects are opposite. These estimates tend to “trade standard error for
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Description Symbol Value

True parameter ψ (0.1, 2, 0.2, 0.8)>

Time between observations 4 1/12 = 0.08333

No. observations in “real” data set T 300

No. repetitions M 500

No. observations in “sim.” data set N 10000

Max. no. searches in optimizations 10

Seed in gasdev 541

Perturbation for num. ψ-diff. 0.1%

FD grid width 6 app. std. dev.

FD space step size 10 basis points

FD no. time steps 16

Table 2: Parameter settings for the Monte Carlo experiments in Tables 6 and 7.

inconsistency”. Once we use correct mean and a better variance approximation

the standard errors increase.

• The κ estimates are in general quite poor (this is also the conclusion in, for

instance, Jiang & Knight (1999).)

• Among the consistent or “almost” consistent estimates AML performs best.

• The estimated standard errors can be trusted.

The methods agree (unsurprisingly) almost perfectly on θ and unless we want

(which we do not) to consider estimators (e.g. based on some kind of order statistics)

of more robust but less efficient types, there is not much we can do about the small

sample bias of κ-estimates. This means that the interesting thing is to take a closer

look at the γ-estimates produced by the various methods (because γ- and σ-estimates

are very highly correlated, much the same story would result from looking at the

latter.) This is done in Figures 5 and 6, in particular we are interested in performance

of AML estimates. We note the following:
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• From Figure 5 we see that there is “some movement” of AML away from other

estimates. And it is not just “very advanced numerical white noise” because

then the sample std.dev. of estimates in Table 6 would increase for AML and

the est.std.dev. in Table 7 would exhibit negative bias.

• Figure 6 shows the densities of the γ-estimates produced by the different tech-

niques.

5 Estimating Non-Linear Drift Models Using AML

Models with non-linear drift effects have recently been suggested in the finance lit-

erature. One reason for this is the unsatisfactory κ-estimates, i.e., the very weak

evidence of mean reversion. Specifications have been suggested in for example Ait-

Sahalia (1996), Conley et al. (1997) and Stanton (1997). We look at the “parametric

intersection” of the models suggested in two former articles,

drt =

(
a−1

rt
+ κ(θ − rt) + a2r

2
t

)
dt+ σrγt dW t .

The AML estimation method can readily be applied to this specification, even though

the numerical optimization becomes somewhat more delicate. (Almost similar results

can be obtained using a Gaussian approximation of Euler type to the likelihood

function.) We focus on the FED data set, i.e., on the weekly data from the period

1982 to 1995. Estimation results are given in Table 8. We note the following:

• There appears to be no extra explanatory power in the non-linear drift terms.

The uncertainty on the drift estimate, see Figure 9, is very high and the param-

eters are highly correlated. This agrees with the results in Chapman & Pearson

(1999) where (towards to end) a non-linear least squares estimator based on an

Euler approximation is used. (That paper also suggests a “parameter orthogo-

nalization” that is easy to do in a regression framework.)

• Ait-Sahalia (1996) reports the non-linearity parameters in the drift to be sig-

nificant. However, his way of estimating the standard errors of estimates may

be somewhat optimistic in finite samples of highly persistent data; for a further

discussion of this see Pritsker (1998). From the previous section we know that

the finite sample behaviour of AML and other “almost likelihood” estimates of
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drift parameters may leave a lot to be desired, but still it is hard to see how

one can do better.

• We think that the very motivation for these non-linear drift models makes it

hard to verify them with conventional statistical methods. The non-linearities

are “supposed” to have an effect for very large and very small values of the

short rate. By definition such incidents will be rare, so it will be hard to obtain

reliable inference. And a higher sampling frequency (= more observations) will

not help when it comes to drift estimation.

• One approach (taken in Honoré (1998, Essay 3)) to obtaining significant and

financially useful drift estimates is to use information from the whole term

structure, not just from the short rate.

6 Conclusion

In this paper we investigated estimation methods for discretely observed diffusion

models for the short rate of interest. In particular, we considered novel methods

such as optimal martingale estimating equation methods and approximate maximum

likelihood (AML) methods based on second order convergent numerical solution of

the forward partial differential equation for the transition density. Using the CKLS

short rate model as benchmark these methods were compared to well-known methods,

namely GMM, II and GQML, both theoretically, in an application to U.S. data, and

in Monte Carlo experiments. We find that the new martingale and likelihood methods

reduce bias, true standard errors, and bias in estimated standard errors, relative to the

established methods, in particular for the key parameter of interest, the elasticity of

variance. In weekly data from 1982 to 1995, the new methods estimate this parameter

to about 0.78. The quality of this result is strongly enhanced by the fact that an

analysis of the uniform residuals from the AML estimation gave no indication of

model misspecification. A related, but also interesting, result was that there is no

(significant) extra explanatory power in the inclusion of non-linear terms in the drift

function. This is in stark contrast to the conclusions reached in Ait-Sahalia (1996),

but in agreement with the analyses and results in Pritsker (1998) and Chapman &

Pearson (1999).
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A Approximate Moments for the CKLS Model

The following approximate moments are used for the CKLS model for calculation

of the GMM(2), GQML(2) and OQM(2) estimators. Applying the Ito formula to

(exp(κt)Xt) and using the martingale property of stochastic integrals w.r.t. Brownian

motion we get the well-known result

F (t, x;ψ) = E(Xt|X0 = x) = x exp(−κt) + θ(1− exp(−κt)). (17)

This means that we can find consistent estimators of κ and θ without any knowledge

of the volatility parameters. To obtain inference about σ and γ (and to find more

efficient estimates of κ and θ) we need higher order moments. The following lemma

is easy to verify.

Lemma 1 The solution to the ODE

g′ = a0 + a1t+ a2e
a3t + a4g

with initial condition g(0) = 0 is given by

g(t) =
(
a0a3a4 + a1a3 − a0a

2
4 − a1a4

+(a1a3a4 − a1a
2
4)t

+(−a0a3a4 − a1a3 + a4a1 + a2
4a0 + a2a

2
4) exp(a4t)

+ a2a
2
4 exp(a3t)

)
/a2

4(a4 − a3).

For n ≥ 2 the Ito formula gives us that

Xn
t − xn0 =

∫ t

0

(
nκ(θ −Xs)X

n−1
s +

σ2n(n− 1)

2
Xn−2(1−γ)
s

)
ds+

∫ t

0

nσXn−1+γ
s dWs.

Taking conditional mean, using the Fubini theorem and the martingale property leads

to

E(Xn
t |X0 = x)− xn0 = nκθ

∫ t

0

E(Xn−1
s |X0 = x)ds

−nκ
∫ t

0

E(Xn
s |X0 = x)ds

+
σ2n(n− 1)

2

∫ t

0

E(Xn−2(1−γ)
s |X0 = x)ds.

Define gn(t) =
∫ t

0
E(Xn

s |X0 = x)ds. For γ ∈ {0, 1/2, 1} the above expression reduces

to a recursive system of ODEs for {gn|n ≥ 2} - where in fact g′n is our object of interest.
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Note that all gn’s are linear combinations of affine and exponential functions. Thus

we can find gn for n = 2, 3, . . . by (first using Equation (17) and then) repeatedly

applying Lemma 1. By the binomial formula there is no problem as to whether we

consider centered or raw moments.

For γ 6∈ {0, 1/2, 1} we cannot determine moments by the above ODE method.

However, we suggest using the log-quadratic approximation

ln φ̃ = (2 lnφ0 − 4 lnφ1/2 + 2 lnφ0)γ2

+(−3 lnφ0 + 4 lnφ1/2 − lnφ0)γ

+ lnφ0,

where φj = φ(. . . ; (. . . , j)) for j = 0, 1/2, 1. This approximation is exact for the

Vasicek, the Cox-Ingersoll-Ross and the Brennan-Schwarz models. Also, it can be

seen as a generalization of the approximation used in Nowman (1997). In Figure 7

the difference between this log-quadratic approximation, the CKLS-approximation

and the mean determined by simulation is shown. It takes many simulations to

determine errors in the log-quadratic approximation.

We use similar approximations for 3rd and 4th moments (these are needed for

calculation of the optimal quadratic martingale estimators.)
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B Tables of Results

Estimator

θ κ σ γ

ρGMM(1) 0.0687 0.5971 1.2800 1.4940

(0.010) (0.381) (0.817) (0.248)

ρGMM(2) 0.0686 0.6124 1.2768 1.523

(0.011) (0.401) (0.656) (0.255)

ψII 0.0656 0.5988 1.2795 1.4935

(0.012) (0.394) (0.642) (0.252)

ρGQML(1) 0.0734 0.3264 0.9191 1.3658

(0.019) (0.204) (0.204) (0.078)

ρGQML(2) 0.0734 0.3307 0.9341 1.384

(0.017) (0.210) (0.205) (0.082)

ρOQM(2) 0.0734 0.3370 0.9531 1.388

(0.017) (0.220) (0.207) (0.086)

ψAML 0.0734 0.3265 1.023 1.396

(0.020) (0.228) (0.238) (0.083)

Table 3: Estimates of the unrestricted model drt = κ(θ− rt)dt+ σrγt dW t on data set

A (“the CKLS U.S. data set”). The II estimation uses 50000 simulated observations.

The AML uses 16 time steps and space steps of 1 basispoint.
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Approximate

Period κ θ σ γ Loglikelihood

Jan. ’64 - Dec. ’89 0.0734 0.3265 1.023 1.396 1408.75

(0.020) (0.228) (0.238) (0.083)

Jan. ’64 - Sep. ’79 0.0675 0.3368 0.6367 1.270 897.31

(0.024) (0.318) (0.266) (0.140)

Oct. ’79 - Sep. ’82 0.1126 2.378 0.1361 0.3733 127.24

(0.014) (1.668) (0.258) (0.889)

Oct. ’82 - Dec. ’89 0.07696 1.014 0.0393 0.2283 398.92

(0.007) (0.861) (0.020) (0.339)

2 × diff. in loglikelihood values = 29.44

Test probability of restricted model = 0.0265 % (in χ2(8)-dist.)

Table 4: What is the effect of monetary targeting policy in the CKLS data set? The

estimates are based on AML with the same settings as in Table 3.
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Estimator

θ κ σ γ

ρGMM(1) 0.0524 0.1724 0.0698 0.6729

(0.017) (0.147) (0.024) (0.122)

ρGMM(2) 0.0522 0.1720 0.0714 0.6740

(0.015) (0.140) (0.024) (0.122)

ψII 0.0522 0.1720 0.0702 0.6736

(0.015) (0.140) (0.024) (0.122)

ρGQML(1) 0.0510 0.1506 0.0953 0.7873

(0.0184) (0.1477) (0.0186) (0.0678)

ρGQML(2) 0.0512 0.1420 0.0892 0.7853

(0.019) (0.125) (0.018) (0.070)

ρOQM(2) 0.0522 0.1413 0.0897 0.7770

(0.019) (0.130) (0.018) (0.072)

ψAML 0.0511 0.1322 0.0931 0.7794

(0.0173) (0.1489) (0.0182) (0.0682)

Table 5: Estimates of the unrestricted model drt = κ(θ− rt)dt+ σrγt dW t on data set

B. The II estimation uses 50000 simulated observations. The AML uses 8 time steps

and space steps of 1 basispoint.
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Estimator Estimates

θ κ σ γ

ρGMM(1) 0.1000477 1.992767 0.1778859 0.683943

(0.0031666) (0.393090) (0.1387007) (0.294565)

GMM2B

ρGMM(2) 0.1000475 2.188506 0.2331604 0.7498757

(0.0031663) 0.474942 (0.1903302) (0.321452)

GMM2B

ψII 0.1000042 2.190512 0.2433365 0.7953451

(0.0031852) (0.480614) (0.1665152) (0.2733099)

EMM6

ρGQML(1) = ρOQM(1) 0.100054 1.969823 0.1858347 0.7124268

(0.003162) (0.383635) (0.1286432) (0.2866288)

GQML1

ρGQML(2) 0.1000481 2.15927 0.246081 0.7822098

(0.0031630) (0.46402) (0.185447) (0.3157391)

GQML2

ρOQM(2) 0.100053 2.155632 0.242798 0.7761021

(0.003184) (0.46303) (0.181953) (0.314758)

OQM

ψAML 0.100031 2.158259 0.2448245 0.7998988

(0.003156) (0.462048) (0.165242) (0.2774589)

AML

Table 6: Simulation based comparison of estimators, I: Estimates. All files in

optimize/filename.C
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Estimator Bias in standard errors

θ κ σ γ

ρGMM(1) -9.4997e-05 0.0059732 -0.022599 -0.022594

(0.000686) (0.044136) (0.1062) (0.047050)

GMM2B

ρGMM(2) -9.5022e-05 0.0056671 -0.03007 -0.025396

(0.000686) (0.067228) (0.13590) (0.055944)

GMM2B

ψII -9.4123e-05 -0.0066188 -0.014507 0.019707

(0.000754) (0.082539) (0.077618) (0.056468)

EMM6

ρGQML(1) = ρOQM(1) 4.9383e-06 0.019623 -0.003732 0.0039019

(0.000685) (0.041800) (0.090359) (0.046275)

GQML1

ρGQML(2) 2.1283e-06 0.020465 -0.0043287 0.0064468

(0.000686) (0.066817) (0.13330) (0.055439)

GQML2

ρOQM(2) -5.669672e-05 -0.005071177 -0.01772764 -0.01068873

(0.0006612096) (0.06743576) (0.124072) (0.059056)

OQM

ψAML -4.6828e-05 0.012461 -0.0060109 0.00080375

(0.000691) (0.062307) (0.12219) (0.044669)

AML

Table 7: Simulation based comparison of estimators, II: Bias in standard errors.

VI.39



Estimator Parameter estimate

a−1 θ κ a2 σ γ

ψAML 0.0021 0.0530 2.315 -14.37 0.0955 0.7880

(0.003) (0.010) (3.983) (23.32) (0.019) (0.068)

Std. dev./correlation matrix of est. param.

0.003 0.200 -0.977 -0.950 -0.061 -0.067

0.200 0.010 0.010 0.115 -0.088 -0.097

-0.977 0.010 3.983 0.994 0.030 0.033

-0.950 0.115 0.994 23.322 0.032 0.034

-0.061 -0.088 0.030 0.032 0.019 0.994

-0.067 -0.097 0.033 0.034 0.994 0.068

Loglikelihood at non-linear ψAML 3347.8352 (mag. of num. err.: 0.1)

Loglikelihood at CKLS ψAML 3346.9673 (mag. of num. err.: 0.05)

Test probability of restricted model 42.0 % (in χ2(2)-dist.)

Table 8: Estimation of the non-linear drift model on FED data. AML uses 0.5 basis

point as state space step size, grid width of 6 app.std.dev. and 16 steps in the time

dimension.
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Figure 2: The CRSP data.
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Figure 3: The FED data.

Data set A: Monthly yields of U.S. one-month Treasury Bills, 1964-89. (CRSP)

Standard

Variables T Mean Deviation ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

rt 307 0.06716 0.02671 0.95 0.91 0.86 0.82 0.80 0.78

rt − rt−1 306 0.00007 0.00824 -0.09 0.07 -0.12 -0.13 -0.03 -0.02

Data set B: Weekly U.S. three-month T-bill rates, 1982-95. (FED)

Standard

Variables T Mean Deviation ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

rt 655 0.006379 0.02044 0.99 0.99 0.99 0.99 0.99 0.98

rt − rt−1 654 -0.00004 0.00166 -0.06 -0.05 0.07 0.06 0.10 -0.02

Table 9: Summary statistics. The ρ’s are autocorrelation coefficients.
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Figure 4: Normal quantile plots of AML-estimators. To the naked eye QQ-plots for

the other proposed estimators are the same.
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Figure 5: Scatter plots of γ estimates from the of GMM(1), II, GQML(2), and AML

estimators.
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Figure 6: Empirical density functions of γ estimates (after appropriate smoothing for

graphical purposes) for GMM(1), II, GQML(2), and AML estimators.
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Figure 8: Graphical analysis of the uniform residuals from AML estimation of the

CKLS-model on U.S. rates 1982-95 (FED data.)
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Figure 9: Estimated drift function and 95% confidence intervals for the non-linear

drift model.
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1 Introduction

Professional football(=soccer) clubs often sack their managers. But does it help?

Let’s find out.

We use data from the top two English divisions. From memory, the English league

is not the “most dangerous” for managers, there are other leagues where sackings are

more frequent. It is, however, the only league where the amount of data accessible to

us makes it possible to do “statistical analysis” rather than “case studies”.

2 Collecting Data

We need two sets of data.

Results of football matches. These are easy to quantify. We need the results (and

dates) of all matches from the season(s). These can be obtained either from Roth-

mans Football Yearbook (RFY), bought in computer readable form, or found (for

recent seasons) on the Internet. Directing your browser to the home page of The
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Association of Football Statisticians (http://www.innotts.co.uk/~soccerstats/)

is a good way to start. We only consider league games.

Sacking of managers. This is somewhat more tangible information and - what

is worse - not registered in structured form. This matter can be solved by cross-

referencing the “Milestones diary” and the “English League Managers” sections in a

volume of RFY (yielding information for one season). In this way we get exact dates

and are sure that we have not missed any sackings. (The data used in the analysis can

be found on the web-page http://www.imf.au.dk/∼rolf/) The board of directors

or the chairman of the club decides if the manager is sacked. The source may say that

the manager “has been sacked”, “has resigned”, “leaves after mutual consent”, or use

some more poetic term. It is all the same to us and we will refer to it as a “sacking”.

In our analysis we use the time of sacking, not the time at which a new manager is

appointed. We could make up a story that justified this, but the primary reason is

that it is the easiest thing to observe. Many changes on the managerial front take

place during the summer break (mid-May to mid-August). Several of these are in

effect sackings but we are only able to analyse regular season sackings. The number

of regular season manager sackings in the top two English divisions for the 1993-94

to 1997-98 seasons are given in Table 1. Judging from this Premier League managers

have 25% risk of being sacked, while Division One managers have a sacking risk of

over 40%. But as one would probably expect, this risk is not “evenly spread”, clubs

from top halves of tables rarely sack their managers.

Of course we would like more observations of sackings, but for now we will have to

make do with the data in Table 1.

3 Estimating the “Sacking Effect”

Sackings rarely come as bolt from the blue; typically managers are sacked after a

spell of poor results. In other words the “mechanism” that produces our observations

(the sackings) is not independent of “the underlying stochastic process” (the results).

This means that we have to be careful when we want to draw inference otherwise we

might get out spurious results due to selection anomalies (“self-selection”).

Interesting examples of this are given in Wainer, Palmer & Bristow (1998). To

illustrate in this context, suppose a team has, purely by chance, performed very poorly

and that its manager is sacked. Then we are likely to see an increase in performance
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Season(s) PL D1

1993-94 6 (22) 9(24)

1994-95 8 (22) 13 (24)

1995-96 3∗(20) 8∗(24)

1996-97 7 (20) 9 (24)

1997-98 4 (20) 13 (24)

1993-98 28 52

Table 1: Number of regular season sackings in the Premier League and Division One.

(∗: Crude estimates, exact dates not available) Numbers parentheses indicate the

total number of teams in the division. Note that it is possible for a club to sack more

than one manager in a season.

after the sacking when compared to the “before” results. An obvious way to remedy

this is to compare the results following the sacking to the “average” or “expected

performance”. This may remove spurious effects to some degree but not completely.

To tell what “expected performance” is, we need an estimate. This estimate could be

negatively affected by the string of poor, but unlucky, results that lead to the sacking

in the first place.

We try to circumvent the problems by comparing the “after sacking” performance

(the “treatment group”) to that of teams which had an equally poor run of form/luck

but did not sack the manager (the “control group”), see Figure 1.

We use two estimation methods:

i) A fully robust and very simple method that requires little more than counting

and adding. However, this method is not very efficient. The strength of the

opposition is not taken into account. In the long run this “noise” will “average

out”, but try telling that to a newly appointed manager whose first fixture is

“Manchester United, away” rather than “Barnsley, home”.

ii) The generalized linear (independent Poisson) model suggested in Lee (1997) that

can be used to estimate home-advantage and relative strength of teams. This

can be used to make a new measure of team performance. We then compare the

“before”and “after” performance of “sacking”and “non-sacking” teams based on

this measure. There is a slight possibility that this is a “Trojan Horse”, i.e. it
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Figure 1: The sampling design.

brings back in the spurious effects, but since we still do the “treatment/control”

comparison, this effect should be small compared to the “noise” that is removed.

3.1 Robust Estimation

The “treatment”and “control” samples are:

{pS,Ai,j }j observed # points obtained in nA matches after sacking

following i points in the nB-run prior to the sacking.

{pNS,Ai,j }j observed # points obtained in nA matches following a nB-run

that yielded i points with no sacking in the nA + nB-run.

We require that the “after”-observations in the “control” sample are from non-

overlapping intervals for the individuals teams.

We choose nB = 6 and nA = 3 in the reported analysis, but, within reason,

the results are insensitive to this choice. It is common to look at a period of 6

matches when discussing the “form” of team (as people reading the gambling sections

of newspapers will know.) The length of the “after” period is a compromise; on one

hand we want a short period so that “all other things are equal”, but on the other

hand we want a longer period because that gives us more data. It would be possible
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# points No sacking Sacking Same mean?

“before” #obs. mean std. dev. #obs. mean std. dev. test pr.

≤ 3 243 3.653 2.09 11 4.091 2.09 0.494

4 208 3.735 2.14 11 4.818 2.40 0.109

5 257 3.836 2.03 7 4.000 2.82 0.834

6 298 3.721 2.13 9 4.333 2.00 0.394

7 335 4.065 2.17 7 4.142 3.71 0.927

8 357 3.767 2.25 6 3.833 2.99 0.897

≥ 9 722 4.297 2.23 8 2.875 2.30 0.073

Table 2: “High resolution” robust analysis with nB = 6 and nA = 3. The test

probability is calculated using a likelihood ratio test with a independence, normality,

and “row-wise equal variances” assumptions. The normality assumption is crude but

not terribly important and the variances do in fact not differ significantly.

to use a more “continuous” weighting scheme, but we will not do that.

Table 2 gives descriptive statistics for the five seasons. The observed number of

sackings in this table is smaller than the number of sackings in Table 1 since we

have had to discard observations when sackings took place less than 6 games into the

season or less than 3 before the end of the season.

We see that for all “# points before”-classes (the rows in Table 2) except the

one corresponding to the best performing sacking teams, the teams that sack their

manager have higher estimated expected points gain than teams that have an equally

poor run of form but do not sack their manager. But, alas, none of these differences

are (even vaguely) significant. (A pooled test over all rows accepts equal row-means

with a probability of 44%.)

3.2 Refined Estimation

Suppose that the score X of a particular team in a particular match is Poisson(λ)-

distributed,

P (X = x) =
e−λλx

x!
for x = 0, 1, 2 . . . .

Suppose further that i) matches are independent (at least with “sufficiently little

information”), ii) the number of home and away goals are independent (this may

be questionable, Dixon & Coles (1997) suggest an improvement, but it is not totally
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Excess points No Sacking Sacking Same mean?

“before” #obs. mean std. dev. #obs. mean std. dev. test pr.

]− 6;−4] 85 0.1909 2.26 9 0.7981 2.32 0.441

]− 4;−3] 69 0.0508 2.39 10 1.8281 2.61 0.030

]− 3;−2] 107 0.1913 2.30 10 0.2648 1.60 0.921

]− 2;−1] 128 0.0292 2.35 10 -0.9798 1.90 0.184

]− 1; 0] 132 -0.1981 2.52 7 0.6007 2.51 0.410

]0; 1] 178 0.0191 2.42 7 0.0759 2.21 0.950

]1; 6] 376 -0.1787 2.39 6 -1.5978 1.18 0.147

Table 3: “High resolution” refined analysis with nB = 6 and nA = 3. Again, test prob-

abilities calculated from the likelihood ratio under the assumptions of independence,

normality and row-wise equal variances.

Excess points No Sacking Sacking Same mean?

“before” #obs. mean std. dev. #obs. mean std. dev. test pr.

]− 6;−3] 154 0.1281 2.32 19 1.3402 2.48 0.033

]− 3;−1] 235 0.1030 2.33 20 -0.3575 1.76 0.386

]− 1; 6] 686 -0.1311 2.42 20 -0.2425 2.08 0.838

Table 4: “Low resolution” refined analysis with nB = 6 and nA = 3. Test probabilities

calculated as in Tables 2 and 3.

unreasonable), and iii) home and away scoring intensities in a particular match satisfy

lnλHOME = β + βHOME + βOFF (HOME TEAM) + βDEF (AWAY TEAM),

lnλAWAY = β + βOFF (AWAY TEAM) + βDEF (HOME TEAM).

To identify and interpret parameters we impose the restrictions∑
βOFF = 0,

∑
βDEF = 0.

Strictly speaking this specification is inconsistent with any “sacking effects”, but

we use it as a reasonable overall approximation to the season that can be used to

account for some information that is definitely relevant.

This generalized linear model can easily be estimated using maximum likelihood,

for example by the procedure glim in Splus. Once this has been done the entire
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probability distribution of the outcome of any match can be determined. In particular

we can find the number of points a team can expect from a match. Now imagine that

all points are substituted by “excess points”, that is by “actual points” - “expected

points”. We can then perform largely the same analysis as before – except now the

“before” points are real numbers so we have to group based on intervals. In Tables 3

and Tables 4 this has been done for a “high”and a “low resolution” case.

We see that for the sacking teams with the worst runs of form there is in fact a

significant increase in performance compared to teams that do not sack their manager.

But if teams are doing well, or just “not too bad” then there is no significant gain

from sacking the manger, if anything there are some indications of a negative effect.

But we have to do the individual row-wise analysis to find the effects, a pooled tests

of equal row-means are accepted with test probabilities between 15% and 20%.

4 Conclusion

Overall, we can give no definitive answer to the question posed in the title of the

paper. If we could, we would have used a different title. But if you are the chairman

of a club that is performing really poorly, then sacking the manager is probably not

a bad idea.

We find it quite encouraging for further research that we obtain markedly higher

levels of significance with the refined analysis. Further research primarily means

gathering more data. With more data we could also try to make a “real dynamic

model”, that is a model where among other things the cause of the sacking is included

(as more or less stochastic effect dependent on performance) as well as a measure of

“after performance”.
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