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Variation
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Abstract

Processes of finite variation, which take values in the positive semidefinite
matrices and are representable as the sum of an integral with respect to time
and one with respect to an extended Poisson random measure, are considered.
For such processes we derive conditions for the square root (and the r-th power
with 0 < r < 1) to be of finite variation and obtain integral representations
of the square root. Our discussion is based on a variant of the Itô formula for
finite variation processes.

Moreover, Ornstein-Uhlenbeck type processes taking values in the positive
semidefinite matrices are introduced and their probabilistic properties are stud-
ied.
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Keywords: finite variation process, Itô formula, Lévy process, matrix subordinator,
Ornstein-Uhlenbeck type process, positive definite square root

1 Introduction

The theory of self-decomposability, as developed by Lévy, Urbanik, Sato, Jurek and
Mason, and others, has turned out to be of substantial interest for stochastic mod-
elling in finance, turbulence and other fields. See, for instance, Barndorff-Nielsen
(1998a), Barndorff-Nielsen & Shephard (2001) and Barndorff-Nielsen & Schmiegel
(2004), where (positive) Lévy driven processes of Ornstein – Uhlenbeck type have a
key role.

The focus of the present paper is on stochastic differential equation representations
of square roots of positive definite matrix processes of Lévy or Ornstein – Uhlenbeck
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type. Such representations are, in particular, of interest in connection with the general
theory of multipower variation, cf. Barndorff-Nielsen, Graversen, Jacod, Podolskij &
Shephard (2006) and Barndorff-Nielsen, Graversen, Jacod & Shephard (2006).

In the present literature matrix-valued stochastic processes are not commonly
used to model multivariate phenomena (see, for instance, the short discussion on
multivariate stochastic volatility models at the end of Section 4). Our introduction
of positive-definite Ornstein-Uhlenbeck processes and the discussion of the represen-
tations of square (and other) roots shows that matrix-valued models of considerable
generality can be defined in a natural way and univariate results can very often be
generalized by using notions and results from matrix analysis. Furthermore, several
results of general interest regarding matrix-valued processes (semimartingales) and
matrix analysis are obtained, as we proceed.

This paper is organized as follows. Section 2 establishes some notation, and in Sec-
tion 3 we present a convenient version of Itô’s formula for processes of finite variation.
In Section 4 we introduce positive definite processes of Ornstein – Uhlenbeck type (OU
processes), using the concept of matrix subordinators discussed by Barndorff-Nielsen
& Pérez-Abreu (2006). The question of establishing tractable stochastic differential
equations for roots of positive definite matrix processes is then addressed in Section
5, and in Section 6 the results are applied to the case of OU processes.

2 Notation

Throughout this paper we write R+ for the positive real numbers including zero and
we denote the set of real m × n matrices by Mm,n(R). If m = n we simply write
Mn(R) and denote the group of invertible n × n matrices by GLn(R), the linear
subspace of symmetric matrices by Sn(R), the (closed) positive semidefinite cone by
S+

n (R) and the open (in Sn) positive definite cone by S++
n (R). In stands for the n×n

identity matrix and σ(A) for the spectrum (the set of all eigenvalues) of a matrix
A ∈ Mn(R). The natural ordering on the symmetric n × n matrices will be denoted
by ≤, i.e. for A, B ∈ Sn(R) we have that A ≤ B, if and only if B − A ∈ S+

n . The
tensor (Kronecker) product of two matrices A, B is written as A⊗B. vec denotes the
well-known vectorisation operator that maps the n × n matrices to Rn2 by stacking
the columns of the matrices below one another. Finally, A∗ is the adjoint of a matrix
A ∈ Mn(R).

For a matrix A we denote by Aij the element in the i-th row and j-th column and
this notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined
on a given appropriate filtered probability space (Ω,F , P, (Ft)) satisfying the usual
hypotheses. With random functions we usually do not state the dependence on ω ∈ Ω
explicitly.

Furthermore, we employ an intuitive notation with respect to the integration with
matrix-valued integrators. Let At ∈ Mm,n, Lt ∈ Mn,r and Bt ∈ Mr,s be three processes
then we denote by

∫
AtdLtBt the matrix C in Mm,s(R) which has ij-th element Cij =∑n

k=1

∑r
l=1

∫
aikbljdLkl. Moreover, we always denote by

∫ b

a
with a ∈ R∪{−∞}, b ∈ R

the integral over the half-open interval (a, b] for notational convenience. If b = ∞ the
integral is understood to be over (a, b).
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3 Itô formulae for finite variation processes in
open sets

In this section we provide a univariate and a multivariate version of the Itô formula
from stochastic analysis, which is especially suitable for the purposes of this paper.
Actually, our version is a consequence of standard results, but not given in the usual
references.

As we are analysing stochastic processes in general open subsets C of Rd, Md(R)
or Sd(R), we need an appropriate assumption that the process stays within C and
does not hit the boundary, since this causes problems in general. To describe “good”
behaviour we thus introduce “local boundedness within C”. If C is the whole space it
is the same as “local boundedness”.

Definition 3.1. Let (V, ‖ ·‖V ) be either Rd, Md(R) or Sd(R) with d ∈ N and equipped
with the norm ‖ · ‖V , let a ∈ V and let (Xt)t∈R+ be a V -valued stochastic process.
We say that Xt is locally bounded away from a if there exists a sequence of stopping
times (Tn)n∈N increasing to infinity almost surely and a real sequence (dn)n∈N with
dn > 0 for all n ∈ N such that ‖Xt − a‖V ≥ dn for all 0 ≤ t < Tn.

Likewise, we say for some open set C ⊂ V that the process Xt is locally bounded
within C if there exists a sequence of stopping times (Tn)n∈N increasing to infinity
almost surely and a sequence of compact convex subsets Dn ⊂ C with Dn ⊂ Dn+1

∀n ∈ N such that Xt ∈ Dn for all 0 ≤ t < Tn.

Obviously, if a process is locally bounded away from some a or is locally bounded
within some C in one norm, then the same holds for all other norms. We will see in
the following that these definitions play a central role for our Itô formulae and that
they hold for many processes.

Proposition 3.2 (Univariate Itô formula for processes of finite variation). Let (Xt)t∈R+

be a cadlag process of finite variation (thus a semimartingale) with associated jump
measure µX on (R+ × R\{0},B (R+ × R\{0})) (see e.g. Jacod & Shiryaev (2003,
Proposition II.1.16)) and let f : C → R be continuously differentiable, where C is
some open interval C = (a, b) with a, b ∈ R ∪ {±∞}, a < b. Assume that (Xt)t∈R+ is
locally bounded within C. Then the process Xt as well as its left limit process Xt− take
values in C at all times t ∈ R+, the integral

∫ t

0

∫
R\{0}(f(Xs−+x)−f(Xs−))µX(ds, dx)

exists a.s. for all t ∈ R and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXc
s +

∫ t

0

∫
R\{0}

(f(Xs− + x)− f(Xs−))µX(ds, dx),

where Xc
t = Xt−

∫ t

0

∫
R\{0} xµX(ds, dx) is the continuous part of X. (Strictly speaking

f(Xs−+x) is not defined for all x ∈ R, as f is only defined on C. But our assumptions
assure that µX is concentrated on those x for which Xs− + x ∈ C. Therefore we can
simply continue f arbitrarily outside of C.)

Proof: As Xt is locally bounded within C, the process Xt cannot get arbitrarily
close to the boundary of C in finite time and hence Xt and Xt− are in C at all times
t ∈ R+.
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Obviously,
∫ t

0

∫
R\{0}(f(Xs− + x)− f(Xs−))µX(ds, dx) =

∑
0<s≤t ∆f(Xs). That Xt

is locally bounded within C implies the existence of compact intervals Dn ⊂ C such
that Xt ∈ Dn for all t ∈ [0, Tn) for some sequence (Tn)n∈N of stopping times increasing
to infinity a.s. However, f ′ is bounded on Dn, say by cn, and the mean value theorem
gives us that ∆f(Xs) = f(Xs) − f(Xs−) = f ′(ζs)(Xs − Xs−) = f ′(ζs)∆Xs with
ζs ∈ Dn. Therefore,

∫ t

0

∫
R\{0} |f(Xs− + x)− f(Xs−)|µX(ds, dx) =

∑
0<s≤t |∆f(Xs)| ≤

cn

∑
0<s≤t |∆Xs| for all t ∈ [0, Tn), which is finite due to the finite variation of Xt.

Thus the almost sure existence of the integral is shown.
The standard Itô formula (see Bichteler (2002, Theorem 3.9.1 together with Propo-

sition 3.10.10) for an appropriate version) gives

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXs

+

∫ t

0

∫
R\{0}

(f(Xs− + x)− f(Xs−)− f ′(Xs−)x)µX(ds, dx),

on observing that, since Xt is a finite variation process, we can move from a twice
continuously differentiable f to an only once continuously differentiable one, as in
Protter (2004, Theorem II.31). Noting further that

∫ t

0
f ′(Xs−)dXs =

∫ t

0
f ′(Xs−)dXc

s +∫ t

0

∫
R\{0} f ′(Xs−)xµX(ds, dx) and that the integral

∫ t

0

∫
R\{0}

(f(Xs− + x)− f(Xs−))µX(ds, dx)

exists, we obtain:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXc
s +

∫ t

0

∫
R\{0}

(f(Xs− + x)− f(Xs−))µX(ds, dx).

Remark 3.3. a) The assumption that Xt remains locally bounded within C ensures
that f ′(Xt) is locally bounded. This reflects the boundedness of the derivative needed
in the proof of Protter (2004, Theorem I.54), which is a special case of the above
result.

b) It is straightforward to see that Xt is locally bounded within C = (a, b) if and
only if Xt is in C at all times and locally bounded away from both a and b, where for
a = −∞ or b = ∞ this has to be understood as meaning locally bounded. Recall in
this context that any finite variation process is locally bounded.

In the multivariate version we use the notion of (total) differentials, sometimes
also called Fréchet differentials (see Rudin (1976, Chapter 9), or Bhatia (1997, Section
X.4) for an overview focusing on the matrix case), rather than partial derivatives for
notational convenience. Recall, however, that a function is continuously differentiable
if and only if all partial derivatives exist and are continuous, and that the derivative,
which is a linear operator, simply has the partial derivatives as entries. The derivative
of a function f at a point x is denoted by Df(x). In particular, we have the following
multivariate version of Proposition 3.2. We state it only for processes in Rd, but it
should be obvious that Rd can be replaced by Md(R) or Sd(R).
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Proposition 3.4 (Multivariate Itô formula for processes of finite variation). Let
(Xt)t∈R+ be a cadlag Rd-valued process of finite variation (thus a semimartingale) with
associated jump measure µX on

(
R+ × Rd\{0},B

(
R+ × Rd\{0}

))
and let f : C →

Rm be continuously differentiable, where C ⊆ Rd is an open set. Assume that the pro-
cess (Xt)t∈R+ is locally bounded within C. Then the process Xt as well as its left limit
process Xt− take values in C at all times t ∈ R+, the integral

∫ t

0

∫
Rd\{0}(f(Xs− + x)

− f(Xs−))µX(ds, dx) exists a.s. for all t ∈ R and

f(Xt) = f(X0) +

∫ t

0

Df(Xs−)dXc
s +

∫ t

0

∫
Rd\{0}

(f(Xs− + x)− f(Xs−))µX(ds, dx),

where Xc
t = Xt −

∫ t

0

∫
Rd\{0} xµX(ds, dx) is the continuous part of X.

Proof: The proof is a mere multivariate rephrasing of the one for Proposition 3.2
using an appropriate general multidimensional version of Itô’s formula (e.g. Bichteler
(2002, Proposition 3.10.10), Métivier (1982, Theorem 27.2) or Protter (2004, Theorem
7.33)) and standard results from multivariate calculus.

4 Positive semidefinite matrix processes of OU
type

In this section we briefly review one-dimensional processes of Ornstein-Uhlenbeck
(OU) type (cf. Applebaum (2004), Cont & Tankov (2004) or Barndorff-Nielsen &
Shephard (2001, 2007) among many others) and then introduce Ornstein-Uhlenbeck
processes taking values in the positive semidefinite matrices. For the necessary back-
ground on Lévy processes see Protter (2004, Section I.4) or Sato (1999).

In univariate financial modelling, it has become popular in recent years to spec-
ify the variance σ2

t as an Ornstein-Uhlenbeck process (see in particular the works
of Barndorff-Nielsen and Shephard). We assume given a Lévy process (Lt)t∈R+ and
consider the SDE

dσ2
t = −λσ2

t dt + dLt (4.1)

with some λ ∈ R. The solution can be shown to be

σ2
t = e−λtσ2

0 +

∫ t

0

e−λ(t−s)dLs (4.2)

and is referred to as an OU process. Note that for univariate OU type processes one
often applies a time transformation on the Lévy process and then has dLλs instead
of dLs above, but this is not possible in the multivariate case below. Provided the
Lévy process Lt is a subordinator (a.s. non-decreasing Lévy process), the solution
σ2

t is positive and thus can be used as a variance process. After extending the Lévy
process to one, (Lt)t∈R, living on the whole real line in the usual way, one can show
that (4.1) has a unique stationary solution given by

σ2
t =

∫ t

−∞
e−λ(t−s)dLs
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provided λ > 0 and the Lévy process has a finite logarithmic moment, i.e. E(log+(Lt))
< ∞.

There is a vast literature concerning the extension of OU processes to Rd-valued
processes (for instance, Sato & Yamazato (1984), Chojnowska-Michalik (1987) or
Jurek & Mason (1993)). By identifying Md(R) with Rd2 one immediately obtains
matrix valued processes. So for a given Lévy process (Lt)t∈R with values in Md(R)
and a linear operator A : Md(R) → Md(R) we call some solution to the SDE

dXt = AXtdt + dLt (4.3)

a (matrix-valued) process of Ornstein-Uhlenbeck type.
As in the univariate case one can show that for some given initial value X0 the

solution is unique and given by

Xt = eAtX0 +

∫ t

0

eA(t−s)dLs. (4.4)

Provided E(log+ ‖Lt‖) < ∞ and σ(A) ∈ (−∞, 0)+ iR, there exists a unique station-
ary solution given by

Xt =

∫ t

−∞
eA(t−s)dLs.

In order to obtain positive semidefinite Ornstein-Uhlenbeck processes we need to con-
sider matrix subordinators as driving Lévy processes. An Md(R)-valued Lévy process
Lt is called “matrix subordinator”, if L(t)−L(s) ∈ S+

d a.s. for all t ≥ s, see Barndorff-
Nielsen & Pérez-Abreu (2002, 2006), Rocha-Arteaga (2006) and the references therein
for further details.

Proposition 4.1. Let Lt be a matrix subordinator, assume that the linear operator
A satisfies exp(At)(S+

d ) ⊆ S+
d for all t ∈ R+ and let X0 ∈ S+

d . Then the Ornstein-
Uhlenbeck process (Xt)t∈R+ with initial value X0 satisfying (4.3) takes only values
in S+

d .
If E(log+ ‖Lt‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, then the unique stationary solu-

tion (Xt)t∈R to (4.3) takes values in S+
d only.

Proof: The first term eAtX0 in (4.4) is obviously positive semidefinite for all t ∈ R+

due to the assumption on A. Approximating the integral
∫ t

0
eA(t−s)dLs by sums in

the usual way, shows that also the second term is positive semidefinite, since all
approximating sums are in S+

d due to the assumption on A and the S+
d -increasingness

of a Lévy subordinator.
The very same argument implies the positive semidefiniteness of the unique sta-

tionary solution.

An important question arises now, namely, which linear operators A can one ac-
tually take to obtain both a unique stationary solution and ensure positive semidefi-
niteness. The condition exp(At)(S+

d ) ⊆ S+
d means that for all t ∈ R+ the exponential

operator exp(At) has to preserve positive definiteness. So one seems to need to know
first which linear operators on Md(R) preserve positive definiteness. This problem
has been studied for a long time in linear algebra in connection with the general
topic “Linear Preserver Problems” (see, for instance, the overview articles Pierce,
Lim, Loewy, Li, Tsing, McDonald & Beasley (1992) and Li & Pierce (2001)). We
have the following:
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Proposition 4.2. Let A : Sd(R) → Sd(R) be a linear operator. Then A(S+
d ) = S+

d ,
if and only if there exists a matrix B ∈ GLd(R) such that A can be represented as
X 7→ BXB∗.

Proof: This was initially proved in Schneider (1965). A more general proof in a
Hilbert space context may be found in Li, Rodman & Semrl (2003).

Remark 4.3. No explicit characterization of the linear operators mapping S+
d into

S+
d , i.e. A(S+

d ) ⊆ S+
d , is known for general dimension d.

Naturally, all linear maps on Sd can be extended to mappings on Md. From this
linear algebraic result we obtain the following result, introducing the linear operators
preserving positive semidefiniteness which we shall employ.

Proposition 4.4. Assume the operator A : Md(R) → Md(R) is representable as
X 7→ AX + XA∗ for some A ∈ Md(R). Then eAt has the representation X 7→
eAtXeA∗t and eAt(S+

d ) = S+
d for all t ∈ R.

Proof: eAtX = eAtXeA∗t for all X ∈ Md(R) follows from Horn & Johnson (1991,
pp. 255 and 440) and eAt(S+

d ) = S+
d for all t ∈ R is then implied by Proposition 4.2,

since eB is invertible for any matrix B ∈ Md(R).

Note the close relation of this kind of operators to Kronecker sums and the so-
called “Lyapunov equation” (see Horn & Johnson (1991, Ch. 4)). For a linear operator
A of the type specified in Proposition 4.4 formula (4.3) becomes

dXt = (AXt + XtA
∗)dt + dLt (4.5)

and the solution is

Xt = eAtX0e
A∗t +

∫ t

0

eA(t−s)dLse
A∗(t−s). (4.6)

Confer also Horn & Johnson (1991, p. 440) for a related deterministic differential
equation.

Using the vec transformation and Horn & Johnson (1991, Theorem 4.4.5) we see
that σ(A) = σ(A) + σ(A), where the addition of two sets A, B ⊆ R is defined by
A + B = {a + b : a ∈ A, b ∈ B}. Thus

Theorem 4.5. Let (Lt)t∈R be a matrix subordinator with E(log+ ‖Lt‖) < ∞ and
A ∈ Md(R) such that σ(A) ⊂ (−∞, 0) + iR. Then the stochastic differential equation
of Ornstein-Uhlenbeck type

dXt = (AXt + XtA
∗)dt + dLt

has a unique stationary solution

Xt =

∫ t

−∞
eA(t−s)dLse

A∗(t−s)

or, in vectorial representation,

vec(Xt) =

∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Xt ∈ S+
d for all t ∈ R.
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Recall from Barndorff-Nielsen & Pérez-Abreu (2006) that any matrix subordinator
(Lt)t∈R has paths of finite variation and can be represented as

Lt = γt +

∫ t

0

∫
S+

d \{0}
xµ(ds, dx) (4.7)

where γ ∈ S+
d is a deterministic drift and µ(ds, dx) an extended Poisson random

measure on R+ × S+
d (regarding the definitions of random measures and the integra-

tion theory with respect to them we refer to Jacod & Shiryaev (2003, Section II.1)).
Observe in particular that the integral exists without compensating. Moreover, the ex-
pectation of µ factorises, i.e. E(µ(ds, dx)) = Leb(ds)ν(dx), Leb denoting the Lebesgue
measure and ν the Lévy measure of Lt. The above equation (4.7) can be restated in
a differential manner as

dLt = γdt +

∫
S+

d \{0}
xµ(dt, dx). (4.8)

The obvious extension of this to a Lévy process (Lt)t∈R having been started in the
infinite past gives another representation of the above stationary OU process.

Proposition 4.6. The positive semidefinite Ornstein-Uhlenbeck process Xt as given
in Theorem 4.5 can equivalently be represented as

Xt =

∫ t

−∞

∫
S+

d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx) +

∫ t

−∞
eA(t−s)γeA∗(t−s)ds

=

∫ t

−∞

∫
S+

d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx)−B−1γ

where B−1 is the inverse of the linear operator B : Md(R) → Md(R), X 7→ AX+XA∗

which can be represented as vec−1 ◦ ((Id ⊗ A) + (A⊗ Id))
−1 ◦ vec.

Proof: The invertibility of B and the positive semidefiniteness of −B−1γ follow
immediately from the standard theory on the Lyapunov equations (Horn & Johnson
(1991, Th. 2.2.3, 4.4.7). Now only the second equality remains to be shown, but this is
immediate as −B−1 d

ds
eA(t−s)γeA∗(t−s) = eA(t−s)γeA∗(t−s) and lims→−∞ eA(t−s) = 0.

The next proposition provides a characterization of the stationary distribution.
To this end observe that tr(XY ) (with X, Y ∈ Md(R) and tr denoting the usual
trace functional) defines a scalar product on Md(R). Moreover, the vec operator is
a Hilbert space isometry between Md(R) equipped with this scalar product and Rd2

with the usual Euclidean scalar product. This, in particular, implies that the driving
Lévy process Lt has characteristic function (cf. also Barndorff-Nielsen & Pérez-Abreu
(2006))

µLt(Z) = exp

(
ittr(γZ) + t

∫
S+

d \{0}
(eitr(XZ) − 1)ν(dX)

)
. (4.9)

Proposition 4.7. The stationary distribution of the matrix Ornstein-Uhlenbeck pro-
cess Xt is infinitely divisible with characteristic function

µ̂X(Z) = exp

(
itr(γXZ) +

∫
S+

d \{0}
(eitr(Y Z) − 1)νX(dY )

)
, (4.10)
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where
γX = −B−1γ

with B defined as in Proposition 4.6 and

νX(E) =

∫ ∞

0

∫
S+

d \{0}
IE(eAsxeA∗s)ν(dx)ds

for all Borel sets E in S+
d \{0}.

Assume that the driving Lévy process is square-integrable. Then the second order
moment structure is given by

E(Xt) = γX −B−1

∫
S+

d \{0}
yν(dy) = −B−1E(L1) (4.11)

V ar(vec(Xt)) =

∫ ∞

0

e(A⊗Id+Id⊗A)tV ar(vec(L1))e
(A∗⊗Id+Id⊗A∗)tdt

= −B−1V ar(vec(L1)) (4.12)

Cov(vec(Xt+h), vec(Xt)) = e(A⊗Id+Id⊗A)hV ar(vec(Xt)), (4.13)

where t ∈ R and h ∈ R+ and B : Md2(R) → Md2(R), X 7→ (A ⊗ Id + Id ⊗ A)X +
X(A∗ ⊗ Id + Id ⊗ A∗). The linear operator B can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗ A)) + ((A⊗ Id + Id ⊗ A)⊗ Id2)) ◦ vec.

We used the vec operator above, as this clarifies the order of the elements of the
(co)variance matrix.

Proof: The characteristic function is standard, cf. Barndorff-Nielsen, Pedersen &
Sato (2001, p. 178) for instance. Regarding (4.11) a general result for infinitely di-
visible distribution implies that E(Xt) = γX +

∫
S+

d
yνX(dy). Using the explicit rep-

resentation for νX and evaluating the integral as in the proof of the last proposition
immediately establishes (4.11). The proof of the first equality in (4.12) and of (4.13)
is standard, see e.g. Marquardt & Stelzer (2006, Proposition 3.13), and the second
equality in (4.12) follows by an explicit integration as before.

Remark 4.8. In the existing literature for Rd-valued processes only the analogue to
the first equality in (4.12) is stated and an identity is given that becomes

−V ar(vec(L1)) = (A⊗ Id + Id ⊗A)V ar(vec(Xt)) + V ar(vec(Xt))(A
∗ ⊗ Id + Id ⊗A∗)

in our case. That identity is, of course, equivalent to our second equality in (4.12),
but usually obtained by a very different approach (cf. Arató (1982), for instance).
Our version involving B−1 stresses that the variance can be calculated by solving a
standard linear equation and fits in nicely, as inverse operators of this type appear in
many of our results.

Moreover, conditions ensuring that the stationary OU type process Xt is almost
surely strictly positive definite can be obtained.

Theorem 4.9. If γ ∈ S++
d or ν(S++

d ) > 0, then the stationary distribution PX of Xt

is concentrated on S++
d , i.e. PX(S++

d ) = 1.

9



Proof: From Proposition 4.6 and its proof we have Xt ≥ −B−1γ. In the case γ ∈ S++
d

this proves the theorem immediately, as then −B−1γ is strictly positive definite due
to Horn & Johnson (1991, Theorem 2.2.3).

Assume now that ν(S++
d ) > 0. From Proposition 4.6 we know that

X0 ≥
∑

−∞<s≤0

e−As∆(Ls)e
−A∗s d

=
∑

0≤s<∞

eAs∆(Ls)e
A∗s.

Since Z 7→ eAsZeA∗s preserves positive definiteness for all s ∈ R, it is obviously
sufficient to show that (Ls)s∈R+ has at least one jump that is positive definite. Choose
now ε > 0 such that ν(S++

d ∩ {x ∈ S+
d : ‖x‖ ≥ ε}) > 0. Then the process Lε,s :=∑

0≤s≤t 1{x∈S+
d :‖x‖≥ε}(∆Ls)∆Ls is a Lévy process with Lévy measure νε(·) = ν(·∩{x ∈

S+
d : ‖x‖ ≥ ε}), where we denoted by 1M(·) the indicator function of a set M . Lε is

obviously a compound Poisson process and the probability that a jump of Lε is in
S+

d \S
++
d is given by q := νε(S+

d \S
++
d )/νε(S+

d ) < 1. As the individual jump sizes and
the jump times are independent and (Lε,s)s∈R+ has a.s. infinitely many jumps in R+,
this implies that with probability zero all jumps of (Lε,s)s∈R+ are in S+

d \S
++
d . In other

words, (Lε,s)s∈R+ and thus (Ls)s∈R+ has a.s. at least one jump in S++
d .

The positive-definite Ornstein-Uhlenbeck processes introduced above can be used
as a multivariate stochastic volatility model in finance, as an extension of the one-
dimensional approach proposed in Barndorff-Nielsen & Shephard (2001). A different
kind of generalization has been discussed by Hubalek & Nicolato (2005) and Lindberg
(2005), who have specified different multivariate stochastic volatility models using fac-
tor models, where the individual factors are univariate positive Ornstein-Uhlenbeck
type processes. The d-dimensional volatility model of Hubalek and Nicolato is of the
form Σ2

t = AStA
∗ where St is an Ornstein-Uhlenbeck process in S+

m (actually only
on the diagonal matrices) and A ∈ Md,m(R). The results for the roots of positive
definite processes which we obtain in Section 5 are with a minor obvious adapta-
tion immediately applicable to processes of this type. Another proposal put forth in
Gourieroux, Jasiak & Sufana (2004) specifies a d × d volatility process Vt as a sum
Vt =

∑K
i=1 xt,ix

∗
t,i with the processes xt,i being i.i.d. Gaussian Ornstein-Uhlenbeck

processes in Rd and K ∈ N. These processes are referred to as Wishart autoregressive
processes, as the distribution of Vt is the Wishart distribution (see also Bru (1991)).
This specification is not amenable to the type of SDE representations of the root
processes that we shall discuss in Section 5, under a general set-up, and in Section
6 for positive definite OU processes. Note also, in this connection, that the Wishart
law is not infinitely divisible, hence, in particular, not self-decomposable (see Lévy
(1948)).

In stochastic volatility models the integrated variance process is of particular inter-
est (see e.g. Barndorff-Nielsen & Shephard (2001) and Barndorff-Nielsen & Shephard
(2003)). The same reasoning as in the univariate case (Barndorff-Nielsen (1998b))
leads to the following explicit result for the integrated variance of a positive definite
Ornstein-Uhlenbeck stochastic volatility process:

10



Proposition 4.10. Let Xt be a positive semidefinite Ornstein-Uhlenbeck process with
initial value X0 ∈ S+

d and driven by the Lévy process Lt. Then the integrated Ornstein-
Uhlenbeck process X∗

t is given by

X∗
t :=

∫ t

0

Xtdt = B−1 (Xt −X0 − Lt)

for t ∈ R+, where B is the linear operator defined in Proposition 4.6.

5 Roots of positive semidefinite processes

In this section we obtain stochastic representations of general roots of processes in
R+ and later on of the square root of stochastic processes taking values in S+

d . Recall
that every positive semidefinite matrix A has a unique positive semidefinite square
root A1/2 defined by functional calculus (see, for instance, Horn & Johnson (1990)
and Horn & Johnson (1991) for a comprehensive introduction).

The interest in such representations comes, in particular, from the theoretical
works on the properties of multipower variation; see Barndorff-Nielsen, Graversen,
Jacod, Podolskij & Shephard (2006), for instance. In that paper the limit theorems are
obtained under an hypothesis that the square root of the covariance matrix process is
a semimartingale of a special type. Moreover, in many cases the additional assumption
is needed that it takes values in the strictly positive definite matrices, as this ensures
that the covariance matrix process is of the same type (and vice versa). However,
as there are no formulas given relating the characteristics of the covariance matrix
process with those of its square root, we shall derive the relations explicitly and
discuss whether the invertibility assumption is indeed always necessary. Under the
invertibility assumption Itô’s lemma is the key tool, but as we see later on we can
move away from this prerequisite. On the other hand we restrict ourselves to the
study of processes of finite variation. The reasons are that the processes we intend to
apply our results to are naturally of finite variation and that in the infinite variation
case it seems impossible to obtain results for processes that may reach the boundary
∂S+

d = S+
d \S

++
d . As a consequence all our “stochastic” integrals coming up can actually

be computed pathwise as Lebesgue-Stieltjes integrals.
In the following we start by analysing univariate processes, where we study general

r-th powers and then move on to multivariate processes.

5.1 The univariate case

Now we shall first present the univariate case, as it involves no advanced matrix anal-
ysis, but allows one to understand the behaviour of root processes. Due to the appli-
cations we have in mind, we state the following results for finite variation processes,
whose discontinuous part is of the special form

∫ t

0

∫
R+\{0} g(s−, x)µ(ds, dx) with some

extended Poisson random measure µ on R+\{0} (in the sense of Jacod & Shiryaev
(2003, Definition 1.20)). Moreover, g(s, x) = g(ω, s, x) : Ω×R+×R+\{0} → R+\{0}
is a (random) function that is Fs × B(R+) measurable in (ω, x) and cadlag in s.
For such a process the jump measure is µX(ds, dx) = µ(ds, g−1(s−, ·)(dx)), where
g−1(s−, ·) is to be understood as taking the preimage of the set dx with respect to
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the map R+\{0} → R+\{0}, x 7→ g(s−, x). We frequently refer to the dependence on
ω ∈ Ω in the following, but keep suppressing it in the notation.

Theorem 5.1. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in
R+\{0}, is locally bounded away from zero and can be represented as

dXt = ctdt +

∫
R+\{0}

g(t−, x)µ(dt, dx)

where ct is a predictable and locally bounded process, µ an extended Poisson random
measure on R+ × R+\{0} and g(s, x) is Fs ×B(R+\{0}) measurable in (ω, x) and
cadlag in s. Moreover, g(s, x) takes only non-negative values.

Then for any 0 < r < 1 the unique positive process Yt = Xr
t is representable as

Y0 = Xr
0 , dYt = atdt +

∫
R+\{0}

w(t−, x)µ(dt, dx),

where the drift
at := rXr−1

t− ct

is predictable and locally bounded and where

w(s, x) := (Xs + g(s, x))r − (Xs)
r

is Fs × B(R+) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only
non-negative values.

Proof: Remark 3.3 implies the local boundedness of Xt within R+ and restating
Proposition 3.2 in a differential manner gives

dXr
t = rXr−1

t− ctdt +

∫
R+\{0}

((Xt− + x)r −Xr
t−)µX(dt, dx).

Using the relation between µX and µ stated before the theorem, we obtain

dXr
t = rXr−1

t− ctdt +

∫
R+\{0}

((Xt− + g(t−, x))r −Xr
t−)µ(dt, dx).

The positivity of w(s, x) is a consequence of an elementary inequality recalled in
the following lemma and the additional properties stated are now straightforward.

For the sake of completeness and since it is essential to our results, we recall the
following elementary inequality and give a proof.

Lemma 5.2. For a, x ∈ R+ and 0 < r < 1 we have that (a+x)r−ar is monotonically
decreasing in a and

(a + x)r − ar ≥ xr.

In particular, for a, b ∈ R+ it holds that |ar − br| ≤ |a− b|r.

Proof: Define for fixed x the function f : R+ → R, a 7→ (a + x)r − ar. Then
f ′(a) = r ((a + x)r−1 − ar−1) ≤ 0 using that the r − 1-th power is monotonically
decreasing. Hence, f is monotonically decreasing and f(a) = (a+x)r−ar ≤ f(0) = xr.
For the second inequality we assume without loss of generality that a ≥ b. Then
|ar − br| = (b + (a− b))r − br ≥ (a− b)r = |a− b|r, due to the first inequality.
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Remark 5.3. Actually the representation stated in Theorem 5.1 holds for arbitrary
powers Xr

t with r ∈ R. If r ≥ 1, the assumption that Xt is locally bounded away from
zero is no longer necessary.

For processes that start at zero or may become zero, we obviously cannot use
Itô’s formula in the above manner, since there is no way to extend the r-th power for
0 < r < 1 to an open set containing [0,∞) in a continuously differentiable manner.
Likewise, all advanced extensions of Itô’s formula we know of (e.g. Bardina & Jolis
(1997), Ghomrasni & Peskir (2003), Peskir (2005)), cannot be applied. For instance,
the Boleau-Yor formula (Protter (2004, Theorem IV.77)) allows for a non-continuous
derivative, but still demands it to be bounded, but for r-th roots it is unbounded at
zero. The Meyer-Itô formula (Protter (2004, Theorem IV.70)) needs a left derivative,
which again cannot be defined at zero. But by using the very standard Itô formula
and applying a tailor-made limiting procedure, we can indeed verify an extension to
processes that may become zero:

Theorem 5.4. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in
R+ and can be represented as

dXt = ctdt +

∫
R+\{0}

g(t−, x)µ(dt, dx)

where ct is a predictable and locally bounded process, µ an extended Poisson ran-
dom measure on R+ × R+\{0} and g(s, x) is Fs ×B(R+\{0}) measurable in (ω, x)
and cadlag in s. Moreover, g(s, x) takes only non-negative values. Assume that the
integrals

∫ t

0
rXr−1

s− csds (in the Lebesgue sense) and
∫ t

0

∫
R+\{0}(Xs− + g(s−, x))r −

(Xs−)rµ(ds, dx) exist a.s. for all t ∈ R+.
Then for any 0 < r < 1 the unique positive process Yt = Xt

r is representable as

Y0 = Xr
0 , dYt = atdt +

∫
R+\{0}

w(t−, x)µ(dt, dx), (5.1)

where the drift
at := rXr−1

t− ct

is predictable and where

w(s, x) = (Xs + g(s, x))r − (Xs)
r

is Fs × B(R+) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only
non-negative values and Yt is a.s. of finite variation.

Note that ct = 0 implies at = 0 above, even if Xt− = 0, using the conventions of
Lebesgue integration theory.

Proof: We first show that Yt = Xr
t is representable by (5.1). Recall below that all

integrals can be viewed as pathwise Lebesgue-Stieltjes ones.
For any ε > 0 the process Xε,t := Xt + ε is bounded away from zero and

Xε,t = X0 + ε +

∫ t

0

csds +

∫ t

0

∫
R+\{0}

g(s−, x)µ(ds, dx).
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From Theorem 5.1 we obtain that

(Xt + ε)r = Xr
ε,t = (X0 + ε)r +

∫ t

0

r (Xs− + ε)r−1 csds (5.2)

+

∫ t

0

∫
R+\{0}

((Xs− + ε + g(s−, x))r − (Xs− + ε)r) µ(ds, dx).

For s ∈ R+ we clearly have that (Xs− + ε)r → Xr
s− pointwise as ε → 0. More-

over, since r − 1 ∈ (−1, 0), one has that (Xs− + ε)r−1 is decreasing in ε. Thus,
|r (Xs− + ε)r−1 cs| ≤ |rXr−1

s− cs| for all ε > 0. By assumption |rXr−1
s− cs| is Lebesgue-

integrable over [0, t] and so majorized convergence gives that∫ t

0

r (Xs− + ε)r−1 csds →
∫ t

0

rXr−1
s− csds as ε → 0.

From Lemma 5.2 we see that (Xs− + ε + g(s−, x))r − (Xs− + ε)r is positive and also
decreasing in ε. So our assumptions and majorized convergence ensure that

lim
ε→0

∫ t

0

∫
R+\{0}

((Xs− + ε + g(s−, x))r − (Xs− + ε)r) µ(ds, dx)

=

∫ t

0

∫
R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx).

Combining these results we obtain, from (5.2) and by letting ε → 0,

Xr
t = Xr

0 +

∫ t

0

rXr−1
s− csds +

∫ t

0

∫
R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx),

which concludes the proof of the representation for Yt.
To establish the finite variation of the process Yt it suffices now to argue that both

integral processes
∫ t

0
rXr−1

s− csds and
∫ t

0

∫
R+\{0}(Xs−+g(s−, x))r−(Xs−)rµ(ds, dx) are

of finite variation. For the second this is immediately clear and for the first we only
need to observe that the existence in the Lebesgue sense implies the existence of∫ t

0
|rXr−1

s− cs|ds. The latter is strictly increasing (thus of finite variation) when viewed
as a process in t and its total variation is an upper bound for the total variation of
the first integral.

Remark 5.5. a) Inspecting the proof it is clear that Theorem 5.1 remains valid when
replacing the square root with any continuously differentiable function f : R+ → R. If
additionally |f ′(x+ε)| ≤ K|f ′(x)| and |f(x+ε+y)−f(x+ε)| ≤ K̃|f(x+y)−f(x)| for
all x, y, ε ∈ R+, where K and K̃ are some constants, the same is true for Theorem 5.4.

Then f(Xt) is representable by (5.1) with at = f ′(Xt−)ct and w(t, x) = f(Xt +
g(t, x))− f(Xt).

b) In general, r-th powers with 0 < r < 1 of finite variation processes do not have
to be of finite variation, as the following deterministic example exhibits. Let Xt be
given by:

Xt =
1

n2
−

(
1 +

1

n

) (
t− 1 +

1

n

)
for t ∈

[
1− 1

n
, 1− 1

n + 1

)
, n ∈ N,

Xt = 0 for t ∈ [1,∞).

14



Then we have that X1−(1/n) = 1/n2 and X(1− 1
n+1

)− = 0 for all n ∈ N and in each in-
terval

[
1− 1

n
, 1− 1

n+1

)
the process Xt is linearly decreasing. From this it is immediate

to see that the total variation of (Xt)t∈R+ is given by 2
∑∞

n=1
1
n2 − 1, which is finite.

Likewise, we see that for 0 < r < 1 the process Xr
t has jumps of size 1/n2r at the times

1−(1/n). As
∑∞

n=1
1

nα is infinite for all α ≤ 1, this shows that for r ≤ 1/2 the process
Xr

t is not of finite variation. Note, moreover, that Xt is of the form studied in Theo-
rem 5.4 where ct = −

(
1 + 1

n

)
for t ∈ [1−(1/n), 1−(1/(n+1))), which is trivially pre-

dictable and locally bounded, g(s, x) = x and µ(ds, dx) =
∑∞

n=1 δ(1−1/n)(ds)δ1/n2(dx)
with δv denoting the Dirac measure with respect to v.

Naturally, the next step is to give some readily checkable conditions for the exis-
tence of the integrals.

Lemma 5.6. The integral
∫ t

0

∫
R+\{0} w(s−, x)µ(ds, dx) exists a.s. in the usual sense,

if the integral
∫ t

0

∫
R+\{0}(g(s−, x))rµ(ds, dx) exists a.s. or there is some a.s. finite

random variable C > 0 such that Xt ≥ C for all t ∈ R+.

Proof: In the first case the existence follows by a standard majorization argument
from 0 ≤ w(s, x) = (Xs + g(s, x))r − (Xs)

r ≤ (g(s, x))r (Lemma 5.2). Likewise,
we observe in the second case that we can argue ω-wise and the function x 7→ xr

is Lipschitz on any interval of the form [a,∞) with a ∈ R+\{0}. Thus there is
a (possibly random) K ∈ R+ such that 0 ≤ (Xs + g(s, x))r − (Xs)

r ≤ Kg(s, x).
Hence, the claim follows by a dominated convergence argument, since the integral∫ t

0

∫
R+\{0} g(s−, x)µ(ds, dx) exists.

The condition Xt ≥ C actually means that the previous Theorem 5.1 applies.

Lemma 5.7. The integral
∫ t

0

∫
R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx) exists in

the usual sense, provided ct ≥ 0 for all t ∈ R+. In particular, the process Xt is
monotonically increasing then.

Proof: The monotonicity of Xt is obvious. We assume ct = 0 ∀ t ∈ R+ first. As
the mapping x 7→ xr is monotone, also the process Xr

t has cadlag monotonically
increasing paths. Thus Xr

t is necessarily of finite variation. Denoting the variation of
a function f over a time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2), one deducts
that var(Xr

t , t1, t2) = Xr
t2
−Xr

t1− =
∑

t1≤s≤t2
∆ (Xr

s ) =
∑

t1≤s≤t2
|∆ (Xr

s )|. But obvi-
ously,

∑
t1≤s≤t2

|∆ (Xr
s )| =

∫ t2
t1

∫
R+\{0}

∣∣(Xs− + g(s−, x))r −Xr
s−

∣∣ µ(ds, dx) and hence
the finite variation of Xr

t implies the existence of the integral.
If ct does not vanish, we obtain Xr

t2
− Xr

t1− ≥
∑

t1≤s≤t2
∆ (Xr

s ) and can then
basically argue as before.

Lemma 5.8. Suppose the function g(s, x) = g(x) is deterministic and independent
of s and the extended Poisson random measure µ is the jump measure of a Lévy
subordinator with Lévy measure ν.Then the integral∫ t

0

∫
R+\{0}

(
(Xs− + g(x))r −Xr

s−
)
µ(ds, dx)

is a.s. defined for all t ∈ R+ provided
∫

0≤x≤1
g(x)rν(dx) is finite.
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Proof: Recall that E(µ(ds, dx)) = ds × ν(dx) in the given set-up. The existence
of the integral follows immediately by combining Lemma 5.6 and the fact that∫

0≤x≤1
g(x)rν(dx) < ∞ implies the existence of

∫ t

0

∫
R+\{0} g(x)rµ(ds, dx) for all t ∈ R+

(cf. Marcus & Rosinski (2005, p. 113)).

Regarding the existence of the integral with respect to the Lebesgue measure, we
only present the following criterion (a standard consequence of dominated conver-
gence), which is applicable to many processes of interest.

Lemma 5.9. Assume that there exists a (possibly random) function f : R+ → R+

with
∫ t

0
f(t)dt < ∞ a.s. such that |rXr−1

t− ct| ≤ f(t) for all t ∈ R+. Then the integral∫ t

0
rXr−1

t− ctdt exists in the Lebesgue sense.The latter is in particular the case if there
are (possibly random) constants C ≥ 0 and α > −1 such that |rXr−1

t− ct| ≤ Ctα.

For positive Lévy processes, i.e. Lévy subordinators, one can immediately apply
the above results and obtain the following.

Corollary 5.10. Let (Lt)t∈R+ be a Lévy subordinator with initial value L0 ∈ R+,
associated drift γ and jump measure µ. Then for 0 < r < 1 we have that the unique
positive process Lr

t is of finite variation and

dLr
t = rγLr−1

t− dt +

∫
R+\{0}

(
(Lt− + x)r − Lr

t−
)
µ(dt, dx),

where the drift rγLr−1
t− is predictable. Moreover, the drift is locally bounded, if and

only if L0 > 0 or γ = 0.

Proof: If γ is zero, the integrability condition imposed on the drift in Theorem 5.4
is trivially satisfied and in the case of a non-vanishing γ we know that Lt ≥ γt for
all t ∈ R+. The latter gives rγLr−1

t ≤ rγrtr−1 and so an application of Lemma 5.9
establishes the existence of

∫ t

0
rγLr−1

t dt in the Lebesgue sense. Finally, noting that
Lévy subordinators are monotonically increasing and using Lemma 5.7, the corollary
follows immediately from Theorem 5.4. The result on the local boundedness of the
drift is immediate.

5.2 The multivariate case

The aim of this section is to generalise the above univariate results to processes taking
values in the cone of positive semidefinite d× d matrices. For reasons becoming clear
later we only take square roots, but generalizations to general roots are straight-
forward and we shall indicate them. Before giving rigorous results and proofs, we
want to give intuitive but non-rigorous arguments showing what the results should
be. The reason is that for the rigorous proof we will need the multidimensional Itô
formula and the derivative of the matrix square root, whereas the following two el-
ementary lemmata immediately allow for an intuitive argument implying what the
result should be. Though these lemmata are rather elementary, we decided to give
complete proofs, as they seem to be unavailable in the standard literature, but should
be useful in many situations.
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The first result generalizes the representation for the product of two one-dimen-
sional semimartingales (confer e.g. Protter (2004, p. 68)) to matrix products of semi-
martingales and is briefly stated, without proof, in Karandikar (1991) (for the con-
tinuous case already in Karandikar (1982a, 1982b)).

Lemma 5.11. Let m, n, d ∈ N and At ∈ Md,m(R), Bt ∈ Mm,n(R) be semimartingales.
Then the matrix product AtBt ∈ Md,n(R) is a semimartingale and

AtBt =

∫ t

0

At−dBt +

∫ t

0

dAtBt− + [A, B]Mt

where [A, B]Mt ∈ Md,n(R) is defined by

[A, B]Mt,ij =
m∑

k=1

[Aik, Bkj]t.

If the continuous part of the quadratic covariation of A and B is zero, we have

[A, B]Mt = A0B0 +
∑

0<s≤t

∆As∆Bs.

Proof: Applying the univariate result componentwise to AtBt we obtain for 1 ≤ i ≤
d, 1 ≤ j ≤ n:

(AtBt)ij =
m∑

k=1

At,ikBt,kj =
m∑

k=1

(∫ t

0

At−,ikdBkj +

∫ t

0

Bt−,kjdAik + [Aik, Bkj]t

)
=

(∫ t

0

At−dBt +

∫ t

0

dAtBt− + [A, B]Mt

)
ij

.

In particular, we see immediately that all components of AtBt are semimartingales
being sums of products of semimartingales. Thus AtBt is a matrix-valued semimartin-
gale.

If the continuous quadratic covariation is zero, we have that

[A, B]Mt =
m∑

k=1

[Aik, Bkj]t =
m∑

k=1

(
A0,ikB0,kj +

∑
0<s≤t

∆As,ik∆Bs,kj

)
=

(
A0B0 +

∑
0<s≤t

∆As∆Bs

)
ij

,

since ∆As = (∆As,kl)1≤k≤d, 1≤l≤m and likewise for B.

Remark 5.12. Obviously the operator [·, ·]M plays the same role for the matrix mul-
tiplication of matrix-valued semimartingales, as the quadratic variation does for or-
dinary multiplication of one-dimensional semimartingales. Therefore we call the op-
erator [·, ·]M the matrix covariation. Note that in general it can be decomposed into

[A, B]Mt = A0B0 + [A, B]M,c
t +

∑
0<s≤t

∆As∆Bs

where [A, B]M,c
t,ij =

∑m
k=1[Aik, Bkj]

c
t , i.e. into a continuous part and a pure jump part.
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Our next result concerns quadratic equations of positive semidefinite matrices.

Lemma 5.13. Let A, B ∈ S+
d (R). The equation

X2 + AX + XA−B = 0

has a unique positive semidefinite solution given by

X =
√

A2 + B − A.

Proof: We start by establishing the positive semidefiniteness of
√

A2 + B −A. It is
clear that A2 +B ≥ A2. Observing that the matrix square root is a matrix monotone
function (i.e. preserves the ordering on S+

d , see e.g. Bhatia (1997, Proposition V.1.8)),
we have

√
A2 + B ≥ A, which is equivalent to the claim.

Solving the equation can actually be done using the standard trick for complex
quadratic equations:

X2 + AX + XA−B = (X + A)2 − A2 −B = 0 ⇔ (X + A)2 = A2 + B.

Taking any “square root” in the right hand equation would now lead to a solution
X. However, we consider only positive semidefinite solutions and thus X + A has to
be in S+

d , which is the case, if and only if we take the unique positive semidefinite
square root. Therefore there is one and only one solution in S+

d which is given by
X =

√
A2 + B − A.

Let now a positive semidefinite process Xt be given by

dXt = ctdt +

∫
S+

d \{0}
g(t−, x)µ(dt, dx)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended
Poisson random measure on R+×S+

d \{0} and g(s, x) is Fs×B(S+
d \{0}) measurable

in (ω, x) and cadlag in s. Moreover, g(s, x) assumes only values in S+
d . Suppose Yt :=√

Xt is representable as dYt = atdt +
∫

S+
d \{0}

w(t−, x)µ(dt, dx) for some appropriate
at and w(t, x) being of the same type as ct and g(t, x). Using a differential version of
Lemma 5.11 we obtain

dY 2
t = Yt−dYt + dYtYt− + d[Y, Y ]Mt = Yt−dYt + dYtYt− + (∆Yt)

2

= Yt−

(
atdt +

∫
S+

d \{0}
w(t−, x)µ(dt, dx)

)
+

(
atdt +

∫
S+

d \{0}
w(t−, x)µ(dt, dx)

)
Yt− +

∫
S+

d \{0}
w2(t−, x)µ(dt, dx)

=
(√

Xt−at + at

√
Xt−

)
dt

+

∫
S+

d \{0}

(√
Xt−w(t−, x) + w(t−, x)

√
Xt− + w2(t−, x)

)
µ(dt, dx).

As one clearly needs to have dY 2
t = dXt, the equations ct =

√
Xt−at + at

√
Xt− and√

Xt−w(t−, x) + w(t−, x)
√

Xt− + w2(t−, x) = g(t−, x) have to hold. Assuming the
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necessary invertibility this gives at = X−1
t− ct, where Xt− : Md(R) → Md(R) is the

linear operator Z 7→
√

Xt−Z + Z
√

Xt−, and w(s−, x) =
√

Xs− + g(s−, x) −
√

Xs−
using Lemma 5.13. In the following we show that this representation for

√
Xt is

indeed true. It will also turn out that we implicitly obtained the derivative of the
positive definite matrix square root, which is given in the next Lemma. Here and in
the following we regard S++

d as a subset of the vector space Sd, which we identify
with R

d(d+1)
2 .

Lemma 5.14. The positive definite square root
√
· : S++

d → S++
d is continuously

differentiable and the derivative D
√

X is given by the inverse of the linear operator
Z 7→

√
XZ + Z

√
X.

Proof: The square root is the inverse of the bijective function f : S++
d → S++

d , X 7→
X2. It is easy to see that Df(X) is the linear operator Z 7→ XZ + ZX (see also
Bhatia (1997, Example X.4.2)). Using that σ(Df(X)) = σ(X) + σ(X) ⊂ R+\{0},
we see that Df(X) is invertible for all X ∈ S++

d . Thus, Rudin (1976, Theorem 9.24)
shows that the square root is continuously differentiable and the derivative is given
by the claimed linear operator.

With the above results, we can now generalize our results on the behaviour of
univariate square roots in a straightforward manner to the multivariate case.

Theorem 5.15. Let (Xt)t∈R+ be a given adapted cadlag process which takes values
in S++

d , is locally bounded within S++
d and can be represented as

dXt = ctdt +

∫
S+

d \{0}
g(t−, x)µ(dt, dx) (5.3)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended Pois-
son random measure on R+ × S+

d \{0}, and g(s, x) is Fs ×B(S+
d \{0}) measurable in

(ω, x) and cadlag in s. Moreover, g(s, x) takes only values in S+
d .

Then the integral
∫ t

0

∫
S+

d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx) exists a.s. for all

t ∈ R+ and the unique positive definite square root process Yt =
√

Xt is given by

Y0 =
√

X0, dYt = atdt +

∫
S+

d \{0}
w(t−, x)µ(dt, dx),

with
at = X−1

t− ct,

where Xt− is the linear operator Z 7→
√

Xt−Z +Z
√

Xt− on Md(R). The drift process
at is predictable and locally bounded and

w(s, x) :=
√

Xs + g(s, x)−
√

Xs

is Fs×B(S+
d \{0}) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only

positive semidefinite values.
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Proof: The representation of Yt follows from Proposition 3.4 and Lemma 5.14 by
the same arguments as used for Theorem 5.1.

Using the vec-transformation and the Kronecker product, the linear operator Xt−
is easily seen to be symmetric (self-adjoint) and to possess a spectrum that is pos-
itive and locally bounded away from 0, since σ(Xt−) = σ(

√
Xt−) + σ(

√
Xt−), the

function f : S++
d → S++

d , Z 7→ min(σ(Z)) is continuous and
√

Xt− is locally bounded
within S++

d . The variational characterizations of the eigenvalues of a self-adjoint
operator (cf. Horn & Johnson (1990, Section 4.2) for a matrix formulation) imply
that min (σ(Xt−)) = min‖x‖2̃ 6=0

(‖Xt−x‖2̃
‖x‖2̃

)
. Hence, ‖X−1

t−‖2̃ ≤ (min (σ(Xt−)))−1 is lo-
cally bounded. Here ‖ · ‖2̃ denotes the norm on Md(R) given by ‖x‖2̃ = ‖vec(x)‖2 =√

tr(xxT ), with ‖ · ‖2 being the Euclidean norm on Rd2 , and the associated operator
norm on the linear operators over Md(R). This establishes the local boundedness of
at.

That w(s, x) takes only positive semidefinite values follows from Lemma 5.13 and
the additional properties stated are straightforward.

Remark 5.16. In principle we could immediately extend the above result to arbitrary
r-th powers with 0 < r < 1 again. Yet, this would mean that we need to calculate
Dfr where fr denotes the unique positive definite r-th power and at would become
Dfr(Xt−)ct. In general there seems to be no useful formula for Dfr. Arguing as
in Lemma 5.14 was possible for r = 1/n with n ∈ N, but then Dfr(X) would be
characterized as the inverse of the linear operator Z 7→

∑
j+k=n−1;j,k∈N0

XjrZXkr.
Although in principle this can be applied, it appears to be infeasible for general n.

Assuming the existence of the relevant integrals, the strict positivity condition
can again be relaxed. To be able to argue as in the univariate case we need two new
technical results, the first one involving the so-called trace norm ‖ · ‖tr of matrices.
For A ∈ Md(R) it is defined as ‖A‖tr = tr

(
(AA∗)1/2

)
and it is easy to see that

‖A‖tr = tr(A) for A ∈ S+
d .

Lemma 5.17. Let A, B ∈ S+
d and 0 < r < 1. Then the function R+ → R+, ε 7→

‖(A + εId + B)r − (A + εId)
r‖tr is monotonically decreasing. In particular,

‖(A + εId + B)r − (A + εId)
r‖tr ≤ ‖(A + B)r − Ar‖tr

for all ε ∈ R+.

Proof: Denote for some matrix Z ∈ S+
d by λ1(Z), λ2(Z), . . . , λd(Z) the eigenvalues

of Z sorted in ascending order.
Choose now some arbitrary ε, ε̃ ∈ R+ with ε ≥ ε̃. From Horn & Johnson (1990,

Corollary 4.3.3) we obtain λi(A + B) ≥ λi(A) for i = 1, 2, . . . , d. This implies using
Lemma 5.2 that

d∑
i=1

((λi(A + B) + ε)r − (λi(A) + ε)r)

=
d∑

i=1

((λi(A) + ε + λi(A + B)− λi(A))r − (λi(A) + ε)r)
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≤
d∑

i=1

((λi(A) + ε̃ + λi(A + B)− λi(A))r − (λi(A) + ε̃)r)

=
d∑

i=1

((λi(A + B) + ε̃)r − (λi(A) + ε̃)r) .

Noting that the trace of a matrix is the sum of its eigenvalues and that λi(Z +
εId) = λi(Z) + ε and λi(Z)r = λi(Z

r) for all Z ∈ S+
d and ε > 0, we conclude

tr((A + εId + B)r) − tr((A + εId)
r) ≤ tr((A + ε̃Id + B)r) − tr((A + ε̃Id)

r). This
immediately implies

‖(A + εId + B)r − (A + εId)
r‖tr ≤ ‖(A + ε̃Id + B)r − (A + ε̃Id)

r‖tr.

This shows the claimed monotonicity and inequality, choosing ε̃ = 0.

Lemma 5.18. Let A ∈ S+
d , ε ∈ R+ and denote by Aε the linear operator Md(R) →

Md(R) : X 7→
√

A + εIdX + X
√

A + εId. Then we have for every x ∈ Md(R) that
‖A−1

ε x‖2̃ is decreasing in ε.
Here ‖ · ‖2̃ denotes again the norm on Md(R) given by ‖x‖2̃ = ‖vec(x)‖2 =√

tr(xxT ), with ‖ · ‖2 being the Euclidean norm on Rd2, and the associated operator
norm on the linear operators over Md(R).

We understand ‖A−1
0 x‖2̃ = ∞ in the case A ∈ S+

d \S
++
d above.

Proof: Note first that ‖A−1
ε x‖2̃ = ‖

(√
A + εId ⊗ Id2 + Id2 ⊗

√
A + εId

)−1
vec(x)‖2

and that
√

A + εId ⊗ Id2 + Id2 ⊗
√

A + εId ∈ S+
d2 and in particular self-adjoint. Thus

we have ‖A−1
ε x‖2̃ =

〈
vec(x),

(√
A + εId ⊗ Id2 + Id2 ⊗

√
A + εId

)−2
vec(x)

〉1/2. Using
that taking the inverse reverses the ordering on S+

d2 , this implies that it is sufficient
to show that (

√
A + εId ⊗ Id2 + Id2 ⊗

√
A + εId)

2 is increasing in ε in the ordering
on Sd. But let now U ∈ Md(R) be a unitary matrix such that U∗AU is diagonal,
then (U∗ ⊗U∗)(

√
A + εId ⊗ Id2 + Id2 ⊗

√
A + εId)

2(U ⊗U) is diagonal and obviously
increasing in ε. Observing that U ⊗U is again unitary and that such transformations
preserve the ordering on S+

d concludes the proof.

Proposition 5.19. Let (Xt)t∈R+ be a given adapted cadlag process which takes values
in S+

d and can be represented as

dXt = ctdt +

∫
S+

d \{0}
g(t−, x)µ(dt, dx)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended Pois-
son random measure on R+ × S+

d \{0} and g(s, x) is Fs ×B(S+
d \{0}) measurable in

(ω, x) and cadlag in s. Moreover, g(s, x) takes values in S+
d . Let Xt− be the linear

operator Md(R) → Md(R), Z 7→
√

Xt−Z + Z
√

Xt− and assume that the integrals∫ t

0
X−1

s−csds (in the Lebesgue sense) and∫ t

0

∫
S+

d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R+.
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Then the unique positive semidefinite square root process Yt =
√

Xt is repre-
sentable as

Y0 =
√

X0, dYt = atdt +

∫
S+

d \{0}
w(t−, x)µ(dt, dx), (5.4)

where the drift
at = X−1

t− ct

is predictable and where

w(s, x) :=
√

Xs + g(s, x)−
√

Xs

is Fs×B(S+
d \{0}) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only

positive semidefinite values and Yt is a.s. of finite variation.

Due to the conventions of Lebesgue integration theory we always have at = 0 if
ct = 0 above.

Proof: We first show that Yt =
√

Xt is representable by (5.4). Recall below that
the integral of a Md(R)-valued function exists if and only if the integral of the norm
exists for one and hence all norms on Md(R).

For any ε > 0 we define the process Xε,t := Xt + εId. Obviously Xε,t ≥ εId for all
t ∈ R+ and the process Xε,t is of finite variation and hence locally bounded. Observing
that for all δ,K > 0 the set {x ∈ S++

d : x ≥ δId, ‖x‖ ≤ K} is convex and compact,
this implies that Xε,t is locally bounded within S++

d and

Xε,t = X0 + εId +

∫ t

0

csds +

∫ t

0

∫
S+

d \{0}
g(s−, x)µ(ds, dx).

From Theorem 5.15 we obtain that√
Xt + εId =

√
Xε,t

=
√

X0 + εId +

∫ t

0

X−1
ε,s−csds (5.5)

+

∫ t

0

∫
S+

d \{0}

(√
Xs− + εId + g(s−, x)−

√
Xs− + εId

)
µ(ds, dx),

where Xε,s− denotes the linear operator Md(R) → Md(R) : Z 7→
√

Xs− + εIdZ +
Z
√

Xs− + εId. For s ∈ R+ we clearly have that
√

Xs− + ε →
√

Xs− and Xε,s− → Xs−
pointwise as ε → 0. Moreover, Lemma 5.18 ensures ‖X−1

ε,s−cs‖2̃ ≤ ‖X−1
s−cs‖2̃ for all

ε > 0. By assumption ‖X−1
ε,s−cs‖2̃ is Lebesgue-integrable over [0, t] and so majorized

convergence gives that ∫ t

0

X−1
ε,s−csds →

∫ t

0

X−1
s−csds as ε → 0.

From Lemma 5.17 we see that ‖
√

Xs− + εId + g(s−, x)−
√

Xs− + εId‖tr is decreasing
in ε. So our assumptions and majorized convergence ensure that

lim
ε→0

∫ t

0

∫
S+

d \{0}

(√
Xs− + εId + g(s−, x)−

√
Xs− + εId

)
µ(ds, dx)

=

∫ t

0

∫
S+

d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx).
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Combining these results we obtain, from (5.5) and by letting ε → 0,

√
Xt =

√
X0 +

∫ t

0

X−1
s−csds +

∫ t

0

∫
S+

d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx),

which concludes the proof of the representation for Yt.
To establish the finite variation of the process Yt it suffices now to argue that

both integral processes
∫ t

0
X−1

s−csds and
∫ t

0

∫
S+

d \{0}

√
Xs− + g(s−, x)−

√
Xs−µ(ds, dx)

are of finite variation. For the second this is immediately clear and for the first we
only need to observe that the existence in the Lebesgue sense implies the existence
of

∫ t

0
‖X−1

s−cs‖ds for any norm ‖ · ‖. The latter is strictly increasing (thus of finite
variation) when viewed as a process in t and its total variation is an upper bound for
the total variation of the first integral calculated using the same norm ‖ · ‖.

Remark 5.20. When replacing the square root with an arbitrary continuously differ-
entiable function f : S+

d → S, the above proposition remains valid if ‖Df(x+εId)z‖ ≤
K‖Df(x)z‖ and

‖f(x + εId + y)− f(x + εId)‖ ≤ K̃‖f(x + y)− f(x)‖ (5.6)

for all x, y ∈ S+
d , z ∈ Sd and ε ∈ R+, where K and K̃ are some constants. Then f(Xt)

is representable by (5.4) with at = Df(Xt−)ct and w(t, x) = f(Xt + g(t, x))− f(Xt).
For general r-th powers with 0 < r < 1 condition (5.6) holds due to Lemma

5.17. In particular, this implies that the above theorem applies immediately to the
r-th power if ct = 0 for all t ∈ R+. Furthermore, the square root can be replaced by
the r-th power in all the following Lemmata 5.23, 5.24, 5.25, 5.26 and 5.27.

Before giving criteria for the existence of the integrals assumed in the above theo-
rem, we establish some auxiliary results. The first one establishes that S+

d -increasing
functions are always of finite variation.

Lemma 5.21. Let f : R+ → S+
d be an S+

d -increasing function, i.e. f(a) ≤ f(b) for
all a, b ∈ R+ with a ≤ b. Then f is of finite variation on compacts.

Proof: Obviously we are free to choose any norm on Md(R). Let thus ‖ · ‖tr again
denote the trace norm and recall that ‖A‖tr = tr(A) for all A ∈ S+

d . For s, t ∈ R+, t ≥
s we obtain

‖f(t)− f(s)‖tr = tr(f(t)− f(s)) = tr(f(t))− tr(f(s)),

due to the linearity of the trace. From this we can immediately conclude that the
total variation of f over any interval [a, b] with a, b ∈ R+, a ≤ b calculated in the trace
norm is given by tr(f(b))− tr(f(a)), which is finite. Hence, f is of finite variation on
compacts.

The trace norm has also been used in Pérez-Abreu & Rocha-Arteaga (2005) and
Barndorff-Nielsen & Pérez-Abreu (2006) and thus seems to be very well adapted
to the structure of matrix subordinators. The lemma could alternatively be easily
established using the theory for general cones developed in Duda (2005) and the
properties of the trace functional/norm.
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Moreover, we need to consider an appropriate matrix extension of the inequality√
a + b−

√
a ≤

√
b for all a, b ∈ R+. Actually, the question whether

√
A + B−

√
A ≤√

B for A, B ∈ S+
d seems not to have been discussed in the literature yet. However,

the following norm version suffices for our purposes.

Definition 5.22. Let A, B ∈ Md(R) then |A| = (A∗A)1/2 is called the modulus
(absolute value) of A.

A norm ‖ · ‖ on Md(R) is said to be unitarily invariant, if ‖UAV ‖ = ‖A‖ for all
unitary matrices U, V ∈ Md(R).

For more information see e.g. Bhatia (1997) and for unitarily invariant norms also
Horn & Johnson (1990).

Lemma 5.23 (Ando (1988, Corollary 2)). Let A, B ∈ S+
d and ‖ · ‖ be any unitarily

invariant norm. Then
‖
√

A−
√

B‖ ≤ ‖
√
|A−B|‖.

This result has originally been obtained in Birman, Koplienko & Solomjak (1975).
We can simplify the result somewhat by using the operator norm associated to the
usual Euclidean norm on Rd.

Corollary 5.24 (cf. Bhatia (1997, Section X.1)). Let A, B ∈ S+
d and let ‖ · ‖2 denote

the operator norm associated with the Euclidean norm. Then

‖
√

A−
√

B‖2 ≤
√
‖ (|A−B|) ‖2.

In particular, ‖
√

A + B −
√

A‖2 ≤
√
‖B‖2.

Armed with these prerequisites we can now state criteria for the existence of the
integrals in Theorem 5.19.

Lemma 5.25. The integral
∫ t

0

∫
S+

d \{0}
w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R+ in

the usual sense if the integrals∫ t

0

∫
S+

d \{0}

√
‖g(s−, x)‖2µ(ds, dx) or

∫ t

0

∫
S+

d \{0}

√
g(s−, x)µ(ds, dx)

exist a.s. for all t ∈ R+ or there is some S++
d -valued random variable C such that

Xt ≥ C for all t ∈ R+.

Due to the equivalence of all norms one can actually use any other norm instead
of ‖ · ‖2. Moreover, the second case corresponds to Theorem 5.15.

Proof: First of all we note that
∫ t

0

∫
S+

d \{0}

√
‖g(s−, x)‖2µ(ds, dx) exists if and only

if the integral
∫ t

0

∫
S+

d \{0}

√
g(s−, x)µ(ds, dx) exists. This follows immediately, since

according to the definition of integration with respect to Poisson random measures
the integral

∫ t

0

∫
S+

d \{0}

√
g(s−, x)µ(ds, dx) exists if and only if∫ t

0

∫
S+

d \{0}
‖
√

g(s−, x)‖µ(ds, dx)
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exists for one and hence all norms ‖ · ‖, and ‖
√

x‖2 =
√
‖x‖2 for all x ∈ S+

d .
Noting that Corollary 5.24 gives ‖w(s−, x)‖2 ≤

√
‖g(s−, x)‖2, a simple majoriza-

tion argument establishes the existence of
∫ t

0

∫
S+

d \{0}
w(s−, x)µ(ds, dx) in the first case.

Assume now that Xt ≥ C for all t ∈ R+ holds with some C ∈ S+
d . Then we once

again argue ω-wise. The square root function is Lipschitz on any set A ⊂ S++
d for

which there is some C0 ∈ S++
d such that C ≥ C0 for all C ∈ A (see, for instance,

Bhatia (1997, p. 305)). Thus there exists a constant K (possibly depending on C)
such that

∥∥√
Xs− + g(s−, x) −

√
Xs−

∥∥ ≤ K
∥∥g(s−, x)

∥∥. This implies the existence
of the integral, as

∫ t

0

∫
S+

d \{0}
g(s−, x)µ(ds, dx) exists due to our assumptions on the

process Xt.

Lemma 5.26. The integral
∫ t

0

∫
S+

d \{0}
w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R+ in

the usual sense provided ct ∈ S+
d for all t ∈ R+, i.e. the process Xt is S+

d -increasing.

Proof: The S+
d -increasingness of Xt is clear. Since the square root preserves the

ordering on S+
d , the process

√
Xt is S+

d -increasing, as well. Thus, Lemma 5.21 ensures
that

√
Xt is of finite variation.

Now, we first assume ct = 0 for all t ∈ R+. Denoting the variation (in the trace
norm) of a function f over a time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2),
one deducts that var(

√
X, t1, t2) = tr(

√
Xt2)− tr(

√
Xt1−) =

∑
t1≤s≤t2

‖∆
(√

Xs

)
‖tr.

But obviously,∑
t1≤s≤t2

∥∥∆
(√

Xs

)∥∥
tr

=

∫ t2

t1

∫
S+

d \{0}

∥∥√
Xs− + g(s−, x)−

√
Xs−

∥∥
tr
µ(ds, dx)

and hence the finite variation of
√

Xt implies the existence of the integral.
If ct does not vanish, we obtain tr(

√
Xt2)− tr(

√
Xt1−) ≥

∑
t1≤s≤t2

‖∆
(√

Xs

)
‖tr

and can argue as before.

For the following recall that we refer to S+
d -increasing Lévy processes as matrix

subordinators.

Lemma 5.27. Suppose the function g(s, x) = g(x) is deterministic and independent
of s and the extended Poisson random measure µ is the jump measure of a matrix
subordinator with Lévy measure ν. Then the integral∫ t

0

∫
S+

d \{0}

(√
Xs− + g(x)−

√
Xs−

)
µ(ds, dx)

is indeed a.s. defined for all t ∈ R+ provided
∫

0≤‖x‖2≤1, x∈S+
d \{0}

√
‖g(x)‖2ν(dx) is

finite.

Again we can use any other norm instead of ‖ · ‖2.

Proof: Recall that E(µ(ds, dx)) = ds × ν(dx) in the given set-up. The existence
of the integral follows immediately by combining Lemma 5.25 and the fact that∫
‖x‖2≤1

√
‖g(x)‖2ν(dx) =

∫
‖x‖2≤1

‖
√

g(x)‖2ν(dx) < ∞ implies the existence of∫ t

0

∫
S+

d \{0}

√
g(x)µ(ds, dx)
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for all t ∈ R+ (cf. Marcus & Rosinski (2005, p. 113)). Here we note that∫ t

0

∫
S+

d \{0}

min (‖g(x)‖2, 1) ν(dx)ds

≤ t

(
ν

(
{x ∈ S+

d : ‖x‖2 > 1}
)

+

∫
‖x‖2≤1

√
‖g(x)‖2ν(dx)

)
.

is finite.

Regarding the existence of the integral with respect to the Lesbesgue measure, we
only restate the criterion of Lemma 5.9 for the multivariate case.

Lemma 5.28. Assume that there exists a (possibly random) function f : R+ → R+

with
∫ t

0
f(t)dt < ∞ a.s. such that ‖X−1

t− ct‖ ≤ f(t) for all t ∈ R+. Then the integral∫ t

0
X−1

t− ctdt exists in the Lebesgue sense. The latter is in particular the case, if there
are (possibly random) constants C ≥ 0 and α > −1 such that ‖X−1

t− ct‖ ≤ Ctα.

After these general considerations we shall now turn to studying the roots of
matrix subordinators.

Corollary 5.29. Let (Lt)t∈R+ be a matrix subordinator with initial value L0 ∈ S+
d ,

associated drift γ and jump measure µ. Then the unique positive semidefinite process√
Lt is of finite variation and, provided that either L0 ∈ S++

d or γ ∈ S++
d ∪ {0},

d
√

Lt = L−1
t−γdt +

∫
S+

d \{0}

(√
Lt− + x−

√
Lt−

)
µ(dt, dx),

where Lt− is the linear operator on Md(R) with Z 7→
√

Lt−Z + Z
√

Lt−. The drift
L−1

t−γ is predictable, and additionally locally bounded provided L0 ∈ S++
d or γ = 0.

Proof: As the square root preserves the ordering on S+
d ,
√

Lt is S+
d -increasing and

thus of finite variation by Lemma 5.21.
In the case L0 ∈ S++

d the Corollary follows from Theorem 5.15.
Else we know from Lemma 5.26 that the integral

∫ t

0

∫
S+

d \{0}

(√
Ls− + x −

√
Ls−

)
µ(ds, dx) exists a.s. for all t ∈ R+. Next we show that the integral

∫ t

0
L−1

s−γds ex-
ists for all t ∈ R+. For γ = 0 this is trivial. For γ ∈ S++

d , we have that Ls ≥ γs ∈ S++
d .

Using the variational characteristics of the eigenvalues as in the proof of Theorem
5.15 we get

min
‖x‖2̃ 6=0

(
‖Ls−x‖2̃

‖x‖2̃

)
= min (σ(Ls−)) = 2 min

(
σ(

√
Ls−)

)
≥ 2

√
s
√

min (σ(γ)).

Therefore ‖L−1
s−‖2̃ ≤

(
min

(
σ(Ls−)

))−1 ≤
(
2
√

min
(
σ(γ)

))−1
s−1/2. Hence, ‖L−1

s−γ‖ ≤
Cs−1/2 for all s ∈ R+ with some constant C ∈ R+ and so Lemma 5.28 establishes the
existence of

∫ t

0
Ls−csds for all t ∈ R+ in the Lebesgue sense. Therefore Proposition

5.19 concludes the proof.

Remark 5.30. If the Lévy process is supposed to have initial value in ∂S+
d (e.g. zero,

as is usual) and non-zero drift γ ∈ ∂S+
d , then there appears to be basically no hope to

obtain a representation of the above type.
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6 Roots of Ornstein-Uhlenbeck processes

Now we turn to studying the behaviour of the roots of positive Ornstein-Uhlenbeck
processes as defined in Section 4. Recall in particular that the driving Lévy process
Lt is assumed to be a (matrix) subordinator.

Straightforward calculations based on Theorems 5.1 and 5.4 establish the following
result for a univariate OU process dXt = −λXt + dLt.

Proposition 6.1. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlen-
beck type driven by a Lévy subordinator Lt with drift γ and associated Poisson random
measure µ. Then for 0 < r < 1 the unique positive r-th power Yt = Xr

t is of finite
variation and has the following representation:

dYt =
(
−λrXr

t− + γrXr−1
t−

)
dt +

∫
R+\{0}

((Xt− + x)r − (Xt−)r) µ(dt, dx)

=
(
−λrYt− + γrY

1−1/r
t−

)
dt +

∫
R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx),

provided that the process Xt is locally bounded away from zero or the integrals∫ t

0
γrXr−1

s− ds and
∫ t

0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exist a.s. for all t ∈ R.

Before showing that the conditions are actually satisfied for all positive OU pro-
cesses, we show this for stationary ones, as this case is of particular interest and
the proof is very straightforward. Recall in particular that a stationary OU process
can be represented as

∫ t

−∞ e−λ(t−s)dLs, where the driving Lévy process has a finite
logarithmic moment.

Proposition 6.2. Let Xt be a stationary positive process of OU type with driving
Lévy process Lt (having drift γ and non-zero Lévy measure ν). Then it is locally
bounded away from zero.

The same holds for any positive Ornstein-Uhlenbeck process Xt with X0 > 0 a.s.

Proof: Let us first consider the stationary case. If γ > 0, we see from Proposition 4.6
that Xt ≥ γ/λ > 0 for all t, which implies that Xt is locally bounded away from 0.
Otherwise note first that Xt ≥ e−λtX0 for all t ≥ 0 and that the stationary dis-
tribution is self-decomposable (cf. Sato (1999, Theorem 17.5)). As the driving Lévy
process has a non-zero Lévy measure the stationary distribution must be non-trivial
and thus by Sato (1999, Example 27.8) absolutely continuous with respect to the
Lebesgue measure. Therefore we have X0 > 0 a.s. Hence, there is a.s. a sequence of
stopping times (Tn)n∈N increasing to infinity such that Xt ≥ 1/n for all t ∈ [0, Tn)

(actually we can set Tn = ln(X0n)
λ

), which gives that Xt is locally bounded away from
the origin.

Obviously, the same arguments apply in the non-stationary case.

Proposition 6.3. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlen-
beck type driven by a Lévy subordinator Lt with drift γ and associated Poisson random
measure µ. Then the integrals

∫ t

0
γrXr−1

s− ds and
∫ t

0

∫
R+\{0}

(
(Xs−+x)r−Xr

s−
)
µ(ds, dx)

exist for all t ∈ R.
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Proof: To show this we introduce the auxiliary process Zt = X0 +
∫ t

0
eλsdLs for

t ∈ R+. It holds that Zt = eλtXt for all t ∈ R+, the process is monotonically increasing
and dZt = eλtγdt +

∫
R\{0} eλtxµ(dt, dx).

The increasingness implies the existence of the integral∫ t

0

∫
R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)
µ(ds, dx)

=

∫ t

0

∫
R+\{0}

eλrs
(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Since 0 < min{1, eλrt} ≤ eλrs ≤ max{1, eλrt} for all s ∈ [0, t], this shows that the
integral

∫ t

0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exists for all t ∈ R.

Obviously, Zt ≥
∫ t

0
eλsγds = γ

λ

(
eλt − 1

)
. Assuming first λ ≥ 0, this gives∫ t

0

γrXr−1
s− ds =

∫ t

0

rγe−λ(r−1)sZr−1
s− ds ≤

∫ t

0

rγrλ1−re−λ(r−1)s
(
eλs − 1

)r−1
ds

= rγrλ1−re−λ(r−1)t

∫ t

0

(
eλs − 1

)r−1
ds.

Noting that eλs − 1 ≥ s for all s ∈ R+, this implies the existence of
∫ t

0
γrXr−1

s− ds for
all t ∈ R+ immediately. In the case λ < 0 one calculates∫ t

0

γrXr−1
s− ds ≤ rγr|λ|1−r

∫ t

0

(e−λs − 1)r−1ds,

which likewise implies the existence of the integral for all t ∈ R+.

Remark 6.4. For a driftless driving Lévy process we see from

dYt = −λrYt−dt +

∫
R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx) (6.1)

that the drift part is again that of an Ornstein-Uhlenbeck process.
Moreover, observe that (6.1) gives a stochastic differential equation (cf. Applebaum

(2004) for information on this type of SDEs) for the r-th power of the OU process.
Since the derivative of y 7→ (y1/r + x)r is given by y 7→

(
y1/r/(y1/r + x)

)1−r and
is thus obviously bounded by one for all x ∈ R+, the function y 7→ (y1/r + x)r is
(globally) Lipschitz. This implies that for any initial value Y0 the SDE (6.1) has a
unique solution.

If γ > 0 one likewise has the SDE

dYt =
(
−λrYt− + γrY

1−1/r
t−

)
dt +

∫
R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx)

for the r-th power of the OU process. In this case one has only local Lipschitz con-
tinuity in R+ for y 7→ γry1−1/r. In such a set-up results on the existence of unique
solutions are still obtainable, but as these would require a rather lengthy discussion,
we refrain from giving any details.
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From the following proposition we see that the r-th power of a positive OU process
Xt with γ = 0 has a representation quite similar to the one for the OU process given
by Xt = e−λtX0 +

∫ t

0

∫
R+\{0} e−λ(t−s)xµ(ds, dx):

Proposition 6.5. Assume that γ = 0 and X0 ≥ 0 a.s. Then the process Yt = Xr
t can

be represented as

Yt = e−λrtXr
0 +

∫ t

0

∫
R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

= e−λrtXr
0 +

∫ t

0

∫
R+\{0}

e−λr(t−s)
(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Proof: As in the proof of Proposition 6.3 we use the auxiliary process Zt = X0 +∫ t

0

∫
R+ eλsxµ(ds, dx). For the process Zr

t we obtain from Proposition 5.4

dZr
t =

∫
R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)
µ(ds, dx)

=

∫
R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

Thus,

Zr
t = Xr

0 +

∫ t

0

∫
R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

This implies the assertion via Yt = Xr
t = e−λrtZr

t .

Finally let us improve the representation of Proposition 6.5 for a stationary
Ornstein-Uhlenbeck process.

Proposition 6.6. Let Xt be a stationary process of OU type with driving Lévy sub-
ordinator Lt (having non-zero Lévy measure) with a vanishing drift γ. Then for
0 < r < 1 the stationary process Yt = Xr

t can be represented as

Yt =

∫ t

−∞

∫
R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

=

∫ t

−∞

∫
R+\{0}

e−λr(t−s)
(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Proof: Note that as in Proposition 6.5 we have that

Yt = e−λr(t−τ)
√

Xτ +

∫ t

τ

∫
R+\{0}

e−λr(t−s)
(
(Xs− + x)r −Xr

s−
)
µ(ds, dx)

holds for all τ ∈ (−∞, 0]. Letting τ go to −∞ we see that e−λr(t−τ)Xr
τ goes to zero,

since for any stationary OU process e−λ(t−τ)Xτ converges to zero. As, moreover, the
left hand side is independent of τ , the integral∫ t

τ

∫
R+\{0}

e−λr(t−s)
(
(Xs− + x)r −Xr

s−
)
µ(ds, dx)

exists for all τ ∈ (−∞, 0] and is increasing for decreasing τ , the limit of the integrals
for τ → −∞ exists. This implies the result immediately.
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Having analysed the univariate positive Ornstein-Uhlenbeck processes in depth,
let us now turn to multivariate positive definite ones and see which results can be
extended. Here we state all results again only for the square root, but extensions to
more general powers are immediate. The general result on the representation of the
square root follows immediately from the results of Section 5.2.

Proposition 6.7. Let (Xt)t∈R+ be an S+
d -valued process of Ornstein-Uhlenbeck type

driven by a matrix subordinator Lt with drift γ ∈ S+
d and associated Poisson random

measure µ. Then the unique positive square root Yt =
√

Xt is of finite variation and
has the following representation:

dYt = X−1
t− (AXt− + Xt−A∗ + γ) dt +

∫
S+

d \{0}

(√
Xt− + x−

√
Xt−

)
µ(dt, dx)

= Y−1
t−

(
AY 2

t− + Y 2
t−A∗ + γ

)
dt +

∫
S+

d \{0}

(√
Y 2

t− + x− Yt−

)
µ(dt, dx),

provided that the process Xt is locally bounded within S++
d or the integrals∫ t

0

X−1
s− (AXs− + Xs−A∗ + γ) ds and

∫ t

0

∫
S+

d \{0}

(√
Xs− + x−

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R. Here, Xt− is the linear operator Z 7→
√

Xt−Z + Z
√

Xt− and
Yt− the map Z 7→ Yt−Z + ZYt−

For stationary OU processes one can again establish local boundedness, provided
the driving Lévy process is non-degenerate.

Proposition 6.8. Let Xt be a stationary positive semidefinite OU process and assume
that the driving Lévy process Lt has drift γ ∈ S++

d or Lévy measure ν such that
ν(S++

d ) > 0. Then the process Xt is locally bounded within S++
d .

The same holds for any positive definite OU process with initial value X0 ∈ S++
d a.s.

Proof: In the stationary case Theorem 4.9 implies X0 ∈ S++
d a.s. From (4.6) we

thus always obtain that Xt ≥ eAtX0e
A∗t ∈ S++

d for all t ∈ R. As min
(
σ

(
eAtX0e

A∗t
))

is continuous in t and strictly positive, min σ
(
eAtX0e

A∗t
)

is locally bounded away
from 0; in particular, Tn := inf{t ∈ R+ : eAtX0e

A∗t < 1
n
Id} defines a sequence

of stopping times that a.s. increases to infinity. But this implies Xt ≥ 1
n
Id for all

t ∈ [0, Tn). Together with the local boundedness of Xt and the fact that sets of the
form {x ∈ S+

d : x ≥ εId, ‖x‖ ≤ K} with ε, K > 0 are convex and compact, this
establishes the local boundedness of Xt within S++

d .

In general we cannot obtain the existence of the relevant integrals for all positive
definite OU processes, but the following proposition covers many cases of interest.

Proposition 6.9. Let Xt be a positive definite OU process driven by a matrix sub-
ordinator Lt with drift γ and Lévy measure ν.Then the integral∫ t

0

X−1
s− (AXs− + Xs−A∗ + γ) ds
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exists a.s. for all t ∈ R provided γ ∈ S++
d or γ = 0, X0 = 0 and Lt is a compound

Poisson process with ν(S+
d \S

++
d ) = 0. Furthermore, the integral

∫ t

0

∫
S+

d \{0}

(√
Xs− + x

−
√

Xs−
)
µ(ds, dx) exist a.s. for all t ∈ R, provided Lt is compound Poisson (with

drift) or
∫

0≤‖x‖2≤1

√
‖x‖2ν(dx) is finite.

Proof: Let us first consider the second integral. Then
∫

0≤‖x‖2≤1

√
‖x‖2ν(dx) < ∞

is trivially satisfied for any compound Poisson process and so Lemma 5.27 gives the
result.

If γ = 0, X0 = 0 and Lt is a compound Poisson process, Xt = 0 for all t ∈ [0, T )
where T denotes the first jump time of Lt. So the integral∫ t

0

X−1
s− (AXs− + Xs−A∗ + γ) ds

exists a.s. for all t ∈ [0, T ). The condition ν(S+
d \S

++
d ) = 0 ensures that the first jump

∆LT is a.s. strictly positive definite and hence XT ∈ S++
d a.s. Using basically the

same arguments as in Proposition 6.8 this shows that the integral
∫ t

0
X−1

s−
(
AXs− +

Xs−A∗ + γ
)
ds exists also a.s. for all t ∈ [T,∞), which concludes the proof of this

case.
Assume now that γ ∈ S++

d . We have

Xt ≥
∫ t

0

eA(t−s)γeA∗(t−s)ds ≥
∫ t

0

min
(
σ

(
eA(t−s)γeA∗(t−s)

))
Idds.

But eA(t−s)γeA∗(t−s) ∈ S++
d for all t, s ∈ R+ and so for any M ∈ R+ continuity and

compactness ensures the existence of a constant kM > 0 such that

min
(
σ

(
eA(t−s)γeA∗(t−s)

))
≥ kM

for all t, s ∈ [0, M ]. Hence, Xt ≥ kM t for all t ∈ [0, M ]. Using the same matrix ana-
lytical arguments as in the proof of Corollary 5.29, this implies ‖X−1

t−‖2̃ ≤ 1
2
√

kM
t−1/2

for all t ∈ [0, M ]. Moreover, as Xt− is locally bounded there is a.s. a constant KM

such that ‖Xt‖2̃ ≤ KM for all t ∈ [0, M ]. (Here we have fixed ω ∈ Ω, but recall that
we can argue pathwise.) Since

∫ t

0

‖A‖2̃KM+‖γ‖2̃
2
√

kM
s−1/2ds is finite for all t ∈ [0, M ], where

A is the linear operator Md(R) → Md(R), Z 7→ AZ + ZA∗, majorized convergence
gives that

∫ t

0
X−1

s− (AXs− + Xs−A∗ + γ) ds exists a.s. for all t ∈ [0, M ]. As M ∈ R+

was arbitrary, this concludes the proof.

However, one can again show that the square root of a positive definite OU process
Xt with γ = 0 has a representation similar to the one for the OU process given by
Xt = eAtX0e

A∗t +
∫ t

0

∫
S+

d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx):

Proposition 6.10. Assume that γ = 0 and X0 ≥ 0 a.s. Then the process Yt =
√

Xt

can be represented as

Yt =
√

eAtX0eA∗t

+

∫ t

0

∫
S+

d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA∗(t−s)

)
µ(ds, dx).
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Proof: Let (Zu)u∈R+ be the auxiliary process given by Zu = eA(t−u)Xue
A∗(t−u) where

t ∈ R+ is fixed. Then Zu = eAtX0e
A∗t +

∫ u

0

∫
S+

d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx) is S+

d -
increasing. Using Theorem 5.19 and Lemma 5.26 this implies that√

Zu =
√

eAtX0eA∗t +

∫ u

0

∫
S+

d \{0}

(√
Zs− + eA(t−s)xeA∗(t−s) −

√
Zs−

)
µ(ds, dx).

Since Xt = Zt and Zs− = eA(t−s)Xs−eA∗(t−s), this immediately concludes the proof.

Finally let us improve the above representation for a stationary positive definite
Ornstein-Uhlenbeck process.

Proposition 6.11. Let Xt be a stationary process of OU type with driving matrix
subordinator Lt with a vanishing drift γ. Then the stationary process Yt =

√
Xt can

be represented as

Yt =

∫ t

−∞

∫
S+

d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA∗(t−s)

)
µ(dx, ds).

Proof: Follows from Proposition 6.10 using the same arguments as in the proof of
Proposition 6.6.
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