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Abstract

Functional magnetic resonance imaging (fMRI) is a principal method for mapping
the human brain. fMRI data consist of a sequence of MR scans of the brain acquired
during stimulation of speci�c cortical areas, and the purpose of analysing the data
is to detect activated areas, i.e. areas where the intensity changes according to the
stimulation paradigm. A common analysis procedure is to estimate the activity pat-
tern non-parametricly by smoothing the data spatially. The focus is then on assessing
signi�cance of peaks or clusters in the smoothed activation surface by means of multi-
ple hypothesis testing, rather than assessing the uncertainty of the estimated pattern
itself. In this paper we formulate a more structured model for the spatial activation
pattern. We achieve this by considering a stochastic geometry model where the acti-
vation surface is given by a sum of Gaussian functions, which to some extent can be
thought of as individual centres of activation in the brain. The model is formulated
in a Bayesian framework, where the prior distribution of the centres is given by a
marked point process density. An advantage of this approach is that inference can be
carried out by simulation techniques, and hence it is easy, though time consuming, to
evaluate the uncertainty of the estimate or to test hypotheses of interest regarding the
activation. Furthermore in this framework, we are able to model the temporal pattern
of the activation with fewer assumptions than usually imposed. This reveals signi�-
cant non-stationarities in the analysed data, which violate the common assumption of
stationarity of the haemodynamic response.

Keywords: Functional magnetic resonance imaging; Stochastic geometry model; Marked
point proces; Markov chain Monte Carlo; State space model; Correlogram

1 Introduction

Functional magnetic resonance imaging (fMRI) is a medical imaging technique where fast
MR scanners are used to measure changes in blood oxygenation in the brain. The latter is
known as the Blood Oxygen Level Dependent (BOLD) signal. These oxygenation changes

�Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, email:

vaever@imf.au.dk

1



correlate with neural activity in the surrounding tissue, and hence fMRI is an indirect
method for measuring activation in the brain. The technique is quite new, one of the �rst
experiments was reported by Kwong et al. (1992) and since then the number of publications
in the �eld has grown extremely fast. fMRI is a very attractive modality for imaging the
brain, since it is non-invasive and has a good temporal and spatial resolution.

In a typical fMRI experiment a subjects brain is scanned while speci�c centres are stim-
ulated, for instance the visual cortex can be activated by 
ashing a light in the eyes. The
acquired data consist of a sequence of scans and the aim of the statistical analysis is to iden-
tify regions in the images, where the intensity changes according to the stimulus rhythm. A
biostatistical introduction to the subject is given in Lange (1996), Lange and Zeger (1997)
also contains a good introduction.

The analysis of the data is impeded by the uncertainty of the haemodynamic response to
the stimulus. It is well known, that the response is delayed about 6 seconds and dispersed
in time compared to the stimulus paradigm, but otherwise there is no general accepted
biological model for the response, which can guide us when modelling the signal.

Another problem is the incorporation of spatial structure in the analysis. Of course the
spatial activation pattern depends on the type of stimulation, and it is di�cult to impose
structure on this in a general setting. Instead, a common approach is to marginalize the
analysis to a one dimensional time-series problem for each voxel in the scan, see for instance
Worsley and Friston (1995), Lange and Zeger (1997) or Bullmore et al. (1996). The spatial
structure of the data is included in a second step, when the image of activation estimates is
convolved with a smoothing kernel to obtain a non-parametric estimate of the activation. In
this approach there is no speci�c model for the spatial pattern of activation. Furthermore
the focus is on assessing signi�cance of peaks and clusters in the image by testing thousands
of voxel-wise hypotheses simultanously.

In this paper we will focus on the issue of estimating the activation pattern, rather than
testing multiple hypotheses. The model for the spatial pattern is based on two fundamental
assumptions in the fMRI literature: 1) The activated areas have a spatial extent of several
millimetres and 2) the activation pattern is \smooth". Both assumptions are based on the
haemodynamic origin of the signal: Even if neural activation is localized to a single voxel,
say, the haemodynamic e�ects will occur in the surrounding venes, and will cover a larger
area. We will incorporate these two assumptions in a stochastic geometry model based on
marked point processes, see for instance Baddeley and van Lieshout (1993). This is done by
modelling the spatial activation surface by a collection of Gaussian functions, which to some
extent can be thought of as individual centres in the brain. The model is formulated in a
Bayesian setting where the centres a priori are distributed as a marked point process; here
the points are the locations of the centres and the marks describe the shape and height of
the centres. The inference in the model is based on simulation techniques, by which we can
estimate the posterior mean of functions of interest, such as the mean activation pattern.

The advantages compared to the common analysis procedure outlined above are many.
1) We don't have to smooth the data spatially, but can retain the detailed resolution of the
MR scans. 2) We can assess the uncertainty of the estimated spatial pattern in a Bayesian
framework. 3) We can quantify our belief in more speci�c hypotheses about the activation by
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estimating posterior probabilities in the model. 4) Finally we can model the haemodynamic
response function, i.e. the temporal pattern of the activation, in a semi-parametricway, which
allows for non-stationarities and non-linearities. With the latter approach explicit knowledge
of the stimulation paradigm is not required, and we can hence estimate activation which is
not time-locked to the stimulation rhythm.

The paper is organized as follows: In Section 2 we formulate the Bayesian model for the
spatial activation pattern, and combine this with a simple initial model for the temporal
response to obtain a spatio-temporal model. The temporal pattern is assumed to be known
and described by a convolution model. This is somewhat restrictive, but it allows us to
focus on the spatial pattern for a start, and discuss how we can simulate the latter from the
posterior distribution. This is done by an MCMC algorithm, which is described in Section 3.
In Section 4 we apply the model to a simulated data set, which is used for estimating prior
parameters, and to visual stimulation data. In the next two sections we extend the model in
di�erent ways: In Section 5 we describe a state space model for the haemodynamic response
function, and demonstrate its ability to model non-stationarities which are indeed present in
the data. In Section 6 we extent the covariance structure to account for the spatio-temporal
correlation, which is present in the noise. Finally we have a discussion in Section 7 and an
appendix where theoretical properties of the MCMC algorithm are studied.

2 The model

2.1 Preprocessing of the data

Suppose the data consist of m scans, acquired with a stimulation paradigm �1; :::; �m, where
�t = 1 indicates stimulation and �t = 0 no stimulation at time t. Typically the paradigm
is arranged in blocks of, say, 10 scans with stimulation and 10 without. Let V be the
set of voxels covering brain tissue, V � S, where S represents a 2 dimensional slice or
a 3 dimensional volume of the brain. The dataset is hence given by a set of intensity
measurements Y = fYit; i 2 V; t = 1; : : : ;mg.

The units of the intensities recorded by the MR scanner are arbitrary, and it is common
in the literature to report variation of the signal in percent of baseline intensity. In order
to consider variation of the intensity in di�erent voxels on the same scale, we have log-
transformed the data. Suppose for instance, that the measurement in a given voxel at time
t is given by Yt = �(1 + "t), where "t is a deviation from the baseline intensity of the voxel.
For small deviations we then have

log Yt = log � + log(1 + "t) ' log � + "t;

and hence the magnitude of (structural and random) variations of the log data, can be
compared between di�erent timeseries. Furthermore, the unit of the deviations can be
thought of as percent of baseline intensity.

We will preprocess the data, such that the images are aligned to correct for subject
movement and has been corrected for trends. In our applications we have used a simple
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procedure, where each image is aligned to a reference image by minimizing the squared
di�erence between the two images over all translations and rotations. As for the trend
correction, we will consider the residuals after subtracting the mean and correcting for
a linear trend in each individual time series. The presence of trends and low-frequency

uctuations in fMRI time series is often reported in the literature, though the processes
which generate these are not well understood. Modelling these features as linear terms is
necessarily an approximation, and more general models such as proposed by Holmes et al.
(1997) and Petersen et al. (1998) may be applied. However, as will be described in Section
5, our aim is to model general temporal response patterns, and hence we are cautious not to
remove any 
uctuations caused by the haemodynamic response. A linear model is a good
compromise in this context.

A basic assumption of the model is that the spatial and temporal patterns of the ac-
tivation can be modelled separately. Considering an image or a volume of the activation
magnitudes A = fAi; i 2 V g and a timeseries ' = f't; t = 1; : : : ;mg of the common tem-
poral variation caused by the BOLD e�ect, we assume that the mean intensity measured in
voxel i at time t is given by EYit = Ai't. We will now describe in detail how the spatial and
temporal pattern are modelled.

2.2 A model for the spatial activation pattern

Consider �rst the case where data only represent a 2 dimensional slice of the brain, that is
V � S � R2. The spatial activation pattern will be modelled as a collection of n \activation
centres" X = fX1;X2; : : : ;Xng, each parametrized as Xj = (�j ; aj; dj ; rj; �j). The global
pattern A(X) = fAi(X) j i 2 V g is given by the superposition of n bells,

Ai(X) = h(i;X1) + � � � + h(i;Xn)

where

h(i;Xj) = aj exp

�
� � log 2

dj

� ~i21
rj=(1 � rj)

+
~i22

(1 � rj)=rj

��
(1)

and ~i = (~i1;~i2) = R(��j)(i � �j): Here R(�) is a rotation with angle �. Hence h(�;Xj) is
a Gaussian bell of height aj centred at �j 2 S. The parameter dj 2 R+ is the area of the
contourellipse at half height, rj 2 (0; 1) is a measure of the eccentricity of the ellipse, more
precisely the ratio of the �rst principal axis and the sum of the two axes, and �j 2 [��=4; �=4]
is the orientation of the ellipse. Notice that the angle is constrained to an interval of length
�=2 to ensure identi�ability of the parameters (r; �).

In order for this speci�cation to be meaningful, we need to restrict heights to be positive
and incorporate some regularity in the point pattern. We will achieve this by formulating a
prior model for X in the context of marked point processes, see for instance M�ller (1999).
Each centre Xj = (�j ; aj; dj; rj; �j) is a point in X = S �M , where

M = [0; Ca]� [0; Cd]� (0; 1) � [��=4; �=4]:
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Here Ca and Cd are natural bounds for the height and area respectively. Though time series
with negative activation amplitude is observed, we will initially assume that all bells have
positive height. We will discuss later, how negative activation can be accounted for in the
model.

Let X be equipped with the Borel �-�eld S �M and the Lebesque measure �2 � �4,
and let 
 denote the exponential space over X , that is the set of �nite sets fx1; : : : ; xng
where xi 2 X for all i. The activation pro�le X = fX1; : : : ;Xng can then be interpreted
as a point process in 
 or equivalently as a marked point process with point space S and
mark space M . A priori we will assume that X has density wrt. the unit rate homogenous
Poisson process on 
 of the form

f(x) / �n

 
nY
i=1

nY
j=i+1

�(xi; xj)

!
nY

j=1

fp(aj)p(dj)p(rj)g; x = fx1; : : : ; xng (2)

where n = n(x) is the number of points in x and � is an intensity parameter. The pairwise
interaction function � introduces a regularity in X, discouraging con�gurations with centres
placed \on top" of each other. A popular choice when modelling repulsive point patterns
is the Strauss model with interaction radius � > 0 with respect to a metric �(�; �) on X . In
this case � is given by

�(�; �) = 
1(�(�;�)<�); �; � 2 X ;
with 
 2 [0; 1] and with the convention that 00 = 1. In our setup, however, we wish to
impose a hard-core restriction, which prohibits pairs of centres with distances close to zero.
The hard-core model with 
 = 0 is not very suitable in this context, since the posterior
distribution will be very sensitive to the choice of �. An appropriate alternative is the
so-called very-soft-core model of Ogata and Tanemura (1984) with

�(�; �) = 1� exp f�(�(�; �)=�)pg ; �; � 2 X ; p � 2: (3)

The hard-core model is obtained by setting p =1, while �nite values of p yield a continous
interaction function which increases smoothly from 0 to 1 with the distance between two
points. A plot of the interaction functions for di�erent values of p can be seen in Figure 1.

The metric �(�; �) should be de�ned such that two centres x1 and x2 are close, if they are
close in space and have similar size and shape. One way of assessing this is by the J-divergence
(Kullback, 1959) of the corresponding Gaussian functions: By rewriting the expression in
(1), we �nd that the activation intensity h(�; xj) induced by xj = (�j; aj; dj; rj ; �j) is given
by h(i;xj) = ajdjfj(i)= log 2; where fj(�) = f(�;�j ;�j) is a multivariate normal density with
mean �j and covariance matrix

� =
dj

2� log 2
R(�)

�
r

1�r 0

0 1�r
r

�
R(��):

The J-divergence between the two densities is now given by

�(x1; x2) = J(f1; f2) =

Z
(f1(x)� f2(x)) log

f1(x)

f2(x)
�2(dx) (4)
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Figure 1: The soft-core interaction function �(�; �) in (3) as a function of the distance �(�; �),
�; � 2 X .

and by inserting the means and variances we get

�(x1; x2) = �2 + 1

2

�
(�1 � �2)

0(��1
1 + ��1

2 )(�1 � �2) + trace(��1
2 �1 + ��1

1 �2)
	
: (5)

Figure 2 is a plot illustrating distances between pairs of points with this metric. The ex-
pression can of course be rewritten in terms of the (d; r; �)-parametrization of the Gaussian
density. The parameter � equals 1.

The priors for a and d should be as uniform as possible, yet penalizing values close to
zero. The inverted Gamma distribution is a suitable choice in this context, with its light tail
near zero and its quite heavy tail for large values. Hence we will assume that a�1 � �(2; �a)
and d�1 � �(2; �d) with the restrictions that a 2 (0; Ca] and d 2 (0; Cd]. The density of d is

p(d) = exp(�d=Cd)(�d=Cd + 1)�1�2
dd

�3 exp(��d=d); d 2 (0; Cd]:

In our application we set �a = 0:05 and �d = 200 mm2, for comparison the voxels cover an
area of 3:61 mm2 in each slice in our data. As for the axis ratio r we wish to discourage very
eccentric ellipses. This can be obtained by a Beta-prior, r � Beta(5; 5): Finally the angle �
is uniformly distributed on [��=4; �=4].

With this choice of prior, we assume that the intensity � of the centres is constant over
V . An obvious re�nement is to include covariate information on the underlying tissue and
allow the intensity to depend on the location. Also the experimenter often has good prior
knowledge of where the activation is likely to occur, which could be used, when specifying
�.

This speci�cation can straightforwardly be generalized to a 3-dimensional setting where
S � R3. In this case a centre is given by x = (�; a; d; r1; r2; �1; �2); and the contribution to
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Figure 2: Examples of distances measured by the metric (5) on the product space of points
and marks. Illustrated are pairs of countour ellipses at half height of the respective bells,
together with their distance.
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the activation volume is

h(i;x) = a exp

�
� log 2

�
4�

3d

�2=3� ~i21
(r21=r2r3)

2=3
+

~i22
(r22=r1r3)

2=3
+

~i23
(r23=r1r2)

2=3

��
:

Here r3 = 1 � r1 � r2, ri > 0 for i = 1; 2; 3 and

~i = (~i1;~i2;~i3) =

0
@cos �1 cos �2 � sin �1 � cos �1 sin �2
sin �1 cos �2 cos �1 � sin �1 sin �2

sin �2 0 cos �2

1
A (i� �):

With this parametrization d is the volume of the contour ellipsoid at height a=2, and ri is
the ratio of the ith main axis and the sum of the three main axis. The angles �1 and �2 are
the rotations in the xy-plane and xz-plane respectively, which are restricted to the interval
[��=4; �=4]. The natural extension of the priors is to assume that (r1; r2) � D2(5; 5) where
D2 is the two-dimensional Dirichlet distribution.

2.3 A model for the temporal pattern

In order to obtain a reasonably simple spatio-temporal structure in the model, we will
assume that the temporal pattern ' = f't; t = 1; : : : ;mg is approximately the same for all
voxels. Hence we assume that any voxel-wise di�erences in the delay is negligible, and we
assume that the shape of the haemodynamic response is the same everywhere. This should
be contrasted to, for instance, the approach in Lange and Zeger (1997), where di�erences
from one voxel to another is explicitly accounted for. However, we will discuss later how the
model can be extended in order to relax this assumption.

Initially we will follow the approach in Friston et al. (1995) and consider ' to be known
and given by a convolution between the paradigm � and a Gaussian density of mean 6
seconds and variance 9 seconds, modelling the delay and dispersion of the signal. Hence

't =
X
i

�t�i
Tp
2�3

exp(�(iT � 6)2

18
); (6)

where T is the repetition time, i.e. the time between two consecutive images. This is a rather
simple model, and there is no particular reason for choosing a Gaussian density as the model
for the impulse response function, neither is it obvious that the response is stationary. In
Section 5 we will describe a more 
exible semi-parametric model for the temporal pattern
which does not require these assumptions. However the simulation procedure to be presented
in the following section simpli�es a great deal if we assume a known and �xed response, and
we will thus start with this model.

2.4 Combining the spatial and temporal models

Given the centres X and the haemodynamic response function ', the model for the intensity
Y is,

Yit = (Ai(x) + �i)'t + "it; �i � N(0; � 2); "it � N(0; �2); i 2 V; t = 1; : : : ;m (7)
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where f"itg and f�ig are independent white noise sequences. We assume a simple noise model,
with the "it's being independent, but more general covariance structures can be incorporated
in a theoretically simple way, see Section 6. Also more complicated noise sources may be
removed before the analysis, for instance by procedures in Le and Hu (1996) or Petersen
et al. (1998).

The likelihood function in the model (7) is given by

p(Y jx) = (2��2)�
(m�1)jV j

2 exp

(
� 1

2�2

X
i2V

mX
t=1

�
Yit � ~Yi't

�2)
�

(2�(�2 + � 2ss'))
�V

2 exp

(
� 1

2(�2=ss' + � 2)

X
i2V

�
~Yi �Ai(x)

�2)
: (8)

Here

~Yi =
mX
t=1

Yit't=ss'; ss' =
mX
t=1

'2
t ; (9)

is the coe�cient of the projection of fYit; t = 1; : : : ;mg on the vectorspace L = spanf'g.
Notice that the likelihood function factorizes into two terms, involving only the projection
of Y onto L and onto the orthogonal complement to L, respectively, with X only entering
in the latter. Hence we �nd that f~Yi; i 2 V g is su�cient for X. The former is a regression
image with the voxel-wise estimated activation amplitudes, this is also known as a Statistical
Parametric Map (SPM) in the fMRI literature (Friston et al., 1994). The estimation of
the spatial pattern Ai(x) can hence be viewed as a model based way of smoothing the
SPM. This provides a link to more traditional methods, where the SPM is smoothed with
a Gaussian �lter, and afterwards regarded as a di�erentiable Gaussian random �eld for
inference purposes. The model in this simplest setting hence provides an alternative estimate
for the activation based on the raw SPM and a way of assessing the uncertainty of the
estimate. In the more general setting described in Section 5, we can estimate ' semi-
parametricly rather than assuming it is known, which is in general not possible in the
traditional SPM approach.

The purpose of the random e�ect term �i is to regularize the estimate of X. To see
why this is necessary, consider the log posterior distribution of X, which up to an additive
constant is given by

log p(xjY ) = � 1

2(�2=ss' + � 2)

X
i2V

�
~Yi �Ai(x)

�2
+ log p(x):

Suppose for a moment that � = 0, corresponding to omitting the random e�ect �i above.
By inserting su�ciently many small bells, we can obtain a con�guration where Ai(x) = ~Yi
when the latter is positive, and Ai(x) = 0 elsewhere. This con�guration will minimize the
sum of squares above. Even if the prior density of such a pathological point con�guration
is very small, it will be the maximum aposteriori estimate in the limit as m, and hence
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ss', tends to in�nity, since the sum of squares will dominate in the limit. By assuming a
�xed positive value for � 2 this undesirable property of the posterior distribution is removed.
Intuitively � 2 is a measure of how well we expect the actual activation surface to be described
by a reasonable collection of Gaussian functions, while the purpose of the prior for X is to
quantify what we mean by a reasonable collection.

When applying the model, we will insert ad hoc estimates of �2 and � 2. An unbiased
and consistent estimator for �2 is given by

�̂2 =
1

(m� 1)jV j
X
i2V

mX
t=1

�
Yit � ~Yi't

�2
� �2�2(f)=f; f = (m� 1)jV j: (10)

As for � 2, we will estimate �2=ss' + � 2 by considering the regression coe�cients ~Yi. These
are distributed as

~Yi � N(Ai(x); �
2=ss' + � 2); i 2 V;

with all ~Yi's independent. Letting @i denote the 9-voxel neighbourhood of i, we will let

�Yi =
1

9

X
j2@i

~Yj � N( �Ai(x);
1

9
(�2=ss' + � 2))

for i 2 V �, where V � = fi 2 V j @i � V g. By assuming that the activation surface Ai(x) can
be approximated by a plane locally around i, we have that Ai(x) = �Ai(x) and hence that

9

8jV �j
X
i2V �

�
~Yi � �Yi

�2
(11)

is an unbiased and consistent estimator for �2=ss' + � 2. When the approximation is not
exact, we will get a slight positive bias in the estimate for � 2.

2.5 Modelling negative activation

So far we have only considered areas with increased intensity during stimulation, but in fact
in some areas of the brain a parallel decrease in the intensity is observed. This is typically
attributed to large veins or other types of non-neural tissue, and as such is not of primary
interest in the analysis. However, in order to obtain a realistic model for the data, we need
to consider this e�ect.

A natural way to proceed is to model the activation as A+ � A�, where A+ and A�

are positive surfaces describing positive and negative activation respectively, and each has a
prior similarly to the surface A described earlier. When doing this, we have to incorporate
restrictions in the prior that separates the two surfaces for identi�ability reasons. If not,
the two surfaces may overlap to an extent where they cannot be individually identi�ed as
positive and negative activated areas, but rather positive and negative terms in a general
surface, which is not necessarily given by sums of Gaussian functions. As a result of this the
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positive and negative centres will become highly correlated, and the interpretation of the
activation surface becomes very di�cult.

Suppose we let X+ and X� be two point processes modelled as described in Section
2.2, determining the postive and negative surfaces respectively. One way of separating the
surfaces would be to model the prior as

p(X+;X�) / f(X+)f(X�) exp(��
X
i2V

Ai(X
+)Ai(X

�));

where f(�) is the density in (2) and � > 0. This prior allows some overlap between A(X+)
and A(X�), but the last term penalizes con�guration where Ai(X+) and Ai(X�) are both
large for some i 2 V . The parameter � determines the weight of the separation term in the
prior. Suppose we let ��1 = �2=ss'+� 2, the variance of ~Yi, such that

p
�Ai is given as units

of standard deviation of ~Yi. The posterior obtained with this prior is then

p(X+;X�jY ) / exp

(
� 1

2(�2=ss' + � 2)

X
i2V

�
~Yi � [Ai(X

+)�Ai(X
�)]
�2)

� f(X+)f(X�) exp

(
� 1

�2=ss' + � 2

X
i2V

Ai(X
+)Ai(X

�)

)

/ exp

(
� 1

2(�2=ss' + � 2)

X
i2V

�
~Yi �Ai(X

+)
�2)

f(X+)

� exp

(
� 1

2(�2=ss' + � 2)

X
i2V

�
~Yi +Ai(X

�)
�2)

f(X�):

This shows thatX+ andX� are independent given the data Y , and the marginal distribution
of X+ is the same as that obtained when ignoring X� as described in the previous sections.
Hence if we choose to separate the surfaces by this choice of prior, we can make inference
about X+ and X� in their respective marginal distributions, and afterwards combine esti-
mates using the independence of the two point processes. Naturally this prior is only one
suitable way of restricting the two activation patterns out of many. As an alternative one
might model repulsion between points in the two point processes, or one could consider a
hard-core restriction prohibiting the surfaces from overlapping more than a certain amount.
In these cases the two point processes would not be independent in the posterior distribution.
However, the independence argument above makes it plausible to make separate inference
about positive and negative activation, or to only consider positive activation, which is the
main parameter of interest. As there are considerable advantages of considering only one
type of activation at a time, namely a reduction of the dimensionality of the point processes
and improved properties of the simulation algorithm, we will henceforth marginalize the
inference in this way.
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3 Simulating from the posterior distribution

In order to explore the posterior distribution of the activation centres given the data, we have
designed a Metropolis-Hastings algorithm based on the Geyer and M�ller (1994) algorithm
for general �nite point processes. Let x be the current point con�guration. We will then
propose to 1) insert a new point, 2) remove an existing point or 3) change an existing point,
with probabilities p1, p2 and p3 respectively, where p1+ p2+ p3 = 1. By \change an existing
point" we mean that one of the coordinates of the point is changed, either the position or
one of the mark-coordinates.

Let qm(x0 jx) denote the proposal density of a new con�guration x0 based on the current
con�guration x with move type m = 1; 2; 3. The probability of accepting the move is then
respectively

�1(x; x
0) = min

�
p(x0 jY )q2(xjx0)p2
p(xjY )q1(x0jx)p1 ; 1

�
;

�2(x; x
0) = min

�
p(x0 jY )q1(xjx0)p1
p(xjY )q2(x0jx)p2 ; 1

�
;

�3(x; x
0) = min

�
p(x0 jY )q3(xjx0)
p(xjY )q3(x0jx) ; 1

�
:

If the move is rejected, the Markov chain stays in x. The proposal distributions are described
in detail in the following.

3.1 Insertion of a point

With probability p1 we propose to add a new point � = (�; a; d; r; �) to the existing point
con�guration x = fx1; : : : ; xng. In order to obtain a reasonable acceptance rate for this
move, we wish to perform a Gibbs-like update and sample the parameters from a density
proportional to the Papangelou conditional intensity p(x [ �jY )=p(xjY ). However this is a
distribution on the 6 dimensional space of points and marks and it is not possible to simulate
directly from it. Instead, we will propose the parameters (�; a; d; r; �) sequentially, hence the
proposal q1(x [ �jx) is a combination of the terms,

q1(x [ �jx) = q(�jx)q(aj�; x)q(dj�; a;x)q(rj�; a; d; x)q(�j�; a; d; r; x); (12)

where we use the generic symbol q(�j�) for a proposal density. We will choose the proposal
of a single parameter, a say, such that it resembles the conditional intensity of a point
(�; a; d0; r0; �0) given the current con�guration x, where (d0; r0; �0) are �xed typical values for
the remaining parameters and � is the proposed position of the point. In our applications we
have chosen a0 = 0:01, d0 = 50 mm2 (corresponding to about 14 voxels in our data), r0 = 0:5
and �0 = 0. Generally we simulate from discretized approximations to the conditional
intensities, the details are given below.
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Using (8) we �nd that when ignoring the priors, the Papangelou intensity of a new point
� given x is

p(Y jx [ �)

p(Y jx) = exp

(
� 1

2(�2=ss' + � 2)

 X
i2V

h(i; �)2 � 2
X
i2V

h(i; �)( ~Yi �Ai(x))

!)
: (13)

By approximating the discrete sum by an integral, we �nd,

X
i2V

h(i; �)2 '
ZZ

a2 exp

�
�2� log 2

d

�
x2�

r=(1 � r)
+

y2�
(1 � r)=r

��
dxdy=(vxvy)

=

ZZ
a2 exp

�
�2� log 2

d
(x2 + y2)

�
dxdy=(vxvy)

= a2d=(2 log 2vxvy) = a2 ~d=(2 log 2); (14)

where vx and vy are the length of the voxelsides in mm's and ~d = d=(vxvy) is the area
measured in voxels. Above (x�; y�) represents a translation and rotation of (x; y), and the
second equality follows since this transformation together with the coordinate scaling has
Jacobian one.

When proposing the position � we will �x the remaining parameters at (a0; d0; r0; �0) and
approximate the Papangelou intensity in (13) with a voxel-wise constant density;

q(�jx) / exp

(
1

(�2=ss' + � 2)

X
i2V

h(i;�; a0; d0; r0; �0)( ~Yi �Ai(x))

)
for � 2 V:

We will need to calculate a sum over V for all possible values of � 2 V in order to simulate
from this density. Hence an order of jV j2 iterations are required, which can be quite large; in
most applications jV j is around 5000. The computational burden can however be reduced,
either by only performing the sum over a part of V , where h(�;�; a0; d0; r0; �0) is greater
than a certain threshold, in which case the number of iterations is O(jV j). Alternatively the
convolution can be calculated in the Fourier domain, which requiresO(jV j log2 jV j) iterations
when a Fast Fourier Transform algorithm is used, see Press et al. (1992).

Considering (13) as a function of the height a, the proposal density is then

q(aj�; x)

/ exp

(
� 1

2(�2=ss' + � 2)

 
a2d0

2 log 2vxvy
� 2a

X
i2V

h(i;�; 1; d0; r0; �0)( ~Yi �Ai(x))

!)
; (15)

which is a Gaussian distribution,

aj�; x � N

 P
i2V h(i;�; 1; d0; r0; �0)(

~Yi �Ai(x))

~d0=(2 log 2)
;
�2=ss' + � 2

~d0=(2 log 2)

!
;
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restricted to the compact interval (0; Ca]. As for the three remaining parameters (d; r; �) we
will approximate the conditional intensity with a piecewise log-linear intensity, and sample
from the corresponding distribution. When proposing d we will select a grid (�0; : : : ; �m)
such that �0 = 0, �m = Cd and let

q(dj�; a; x) / exp

�
pi�1 +

pi � pi�1
�i � �i�1

(d� �i�1)

�
for d 2 (�i�1; �i];

where

pi = � 1

2(�2=ss' + � 2)

 
�i

a2

2 log 2vxvy
� 2

X
i2V

h(i;�; a; �i; r0; �0)( ~Yi �Ai(x))

!

� 3 log �i � �d=�i; (16)

for i = 1; : : : ;m� 1, p0 = p1 and pm = pm�1. Above the last two terms stem from the prior
for d.

The expressions for q(rj�; a; d; x) and q(�j�; a; d; r; x) are derived similarly.

3.2 Removal of a point

With probability p2 we propose to remove a point. If the current con�guration x is empty we
do nothing, otherwise we select the candidate between the points in x with equal probability
1=n(x).

3.3 Moving a point

With probability p3 we propose to change a parameter of a randomly selected point. We
choose one of the parameters �, a, d, r or � with equal probability and a new value is proposed
by considering the conditional distribution of the parameter given the other parameters.

Suppose for instance that a point � = (�; a; d; r; �) 2 x has been selected and we wish to
propose a new position �0 for �. Corresponding to the insertion of a new point above, we will
then propose the position by simulating from a distribution which has voxel-wise constant
density

q(�0jx) / exp

(
1

(�2=ss' + � 2)

X
i2V

h(i;�0; a; d; r; �)( ~Yi �Ai(xn�))
)
; �0 2 V:

For the parameters r, d and � we consider a neighbourhood of the current value, and
approximate the conditional density as in (16) above. In our application, we have chosen a
neighbourhood of 100 mm2 for d, 0.3 for r and 0.35 for �.

Finally, the height a is simulated from a normal distribution as when proposing a new
point,

ajx � N

 P
i2V h(i;�; 1; d; r; �)(

~Yi �Ai(xn�))
~d=(2 log 2)

;
�2=ss' + � 2

~d=(2 log 2)

!
:
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4 Simulation study

Estimation of an activation surface can be carried out by simulating from the posterior dis-
tribution of the surface given the data. However, we are left with the problem of determining
sensible values for the parameters of the prior for X, sensible in the sense that the estimated
activation surface corresponds well with the underlying true surface. To this end we have
generated a training data set by simulating from the model (7), with a known underlying
activation pattern A. An image of the latter can be seen in Figure 3. The image was gener-
ated to mimic a \true" activation image, with coherent regions of activation of both small
and moderate sizes. In each region the activation level in individual voxels were simulated
from a normal distribution with a common mean. Finally the image was smoothed with a
Gaussian kernel to obtain a smooth activation image. Naturally an image obtained in this
way cannot be reproduced exactly by a single realization of the activation pattern of model,
in this sense the training data is not di�erent from real fMRI data sets. However by using
the posterior mean of the activation pattern as an estimate of the latter, we can reproduce
more general patterns than those represented by the prior model.

We will �x the parameters of the priors for d, a and r at the values given earlier. Hence
we are left with the intensity �, the scaling parameter � and the order of the soft-core prior
p. Since we need to perform an entire run of the MCMC algorithm for each combination
of parameter values, it is only possible to perform a crude estimation where a few di�erent
values of each parameter are tried. For each set of parameters we produced 400000 samples
from the MCMC algorithm and stored every 100'th sample. After an initial burn-in of
500 subsamples, the chain was judged to be stationary from plots of diagnostics of the
simulated point patterns (not shown). We will measure the goodness-of-�t of the model by
the posterior mean of the L2 distance between the activation surface and the true surface.
We will estimate this quantity by

[GOF =
1

N

NX
j=1

(X
i2V

(Ai(x
(j))�Ai)

2

)1=2

;

where x(1); : : : ; x(N) is a sequence of simulations from the MCMC algorithm. The variance
of this estimate was estimated by the method of batch means with batch sizes of 25. The
variance estimate gives an idea of the level of uncertainty, but as it depends on the chosen
batch size, it should be interpreted with care.

The true values for the standard deviations were respectively � = 0:03 and � = 0:005.
The estimates obtained by (10) and (11) were �̂ = 0:02996 and �̂ = 0:005074. Table 4 shows
the goodness-of-�t of the model with di�erent parameters values. The model which yields
the best �t is the one with � = 0:01, � = 5 and p = 10. Though the largest changes in
the GOF measure occur when varying �, the four rows of � = 10�4 indicates that some
degree of regularity (� > 0) improves the goodness-of-�t. In the last column of the table is
an estimate of the mean integrated activation, that is the integral of the activation surface.
This can be considered as a summary statistic of the total level of activation.
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Evidently the choice of prior parameters a�ects the �nal result to some extent. Usually,
we would prefer to estimate the parameters in an empirical Bayes fashion, however as the
maximum likelihood estimates can in general correspond to a prior that favours meaningless
point con�gurations, cf. the discussion in Section 2.4, this is not an advisable strategy. The
fully Bayesian approach, with hyperpriors on the parameters, is an alternative. However, it
is not obvious how one should simulate the posterior distribution of the parameters, since the
unknown normalization constant of the point process density would enter in the Metropolis-
Hastings ratio. Instead we will �x the prior parameters at the values which yield the best
�t in the simulation study. Though the result will to some extent depend on this choice, we
note from the table that statistics of interst, such as the mean integrated activation, varies
only litte, and in no systematic way, with the parameters.

� � p [GOF (s.e.�104) Int. act. (s.e.)
10�4 5 2 0.1342 (2.22) 4.89 (0.029)
10�4 20 2 0.1345 (2.59) 4.43 (0.019)
10�4 5 10 0.1357 (2.16) 4.63 (0.022)
10�4 20 10 0.1328 (1.97) 4.57 (0.018)
10�4 0 - 0.1355 (3.01) 4.68 (0.022)
10�2 5 10 0.1305 (2.87) 4.86 (0.026)
10�6 5 10 0.1428 (2.00) 4.83 (0.025)

Table 1: Estimates of the goodness-of-�t of the model with di�erent parameter values.
Standard errors due to the simulation are given in parentheses. In the row with � = 0 no
interaction between the points was included in the model. In the last column is an estimate
of the mean integrated activation.

In Figure 3 is the estimate of the posterior mean activation image under the best model
above. For comparison, the smoothed SPM estimate of the activation is also displayed in
the �gure. This is obtained by smoothing the regression image f~Yig with a Gaussian kernel
of FWHM 3 voxels. The latter denotes the full width of half maximum of the smoothing
kernel, this is the typical measure for the width of a smoothing kernel in the medical imag-
ing literature. Both estimates tend to oversmooth the true image, due to the smoothness
assumptions underlying them both, but the bias is largest for the SPM. This is more clearly
seen in the plot in Figure 4 which shows the number of voxels with an activation level higher
than a given threshold for the true image, the posterior mean activation image and the
smoothed SPM. One cannot reduce the oversmoothing of the SPM by reducing the width of
the smoothing kernel, since the theory of Gaussian random �elds, used for making inference
in the SPM, requires the discrete image to be a reasonable approximation to a di�erentiable
spatial process.
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Figure 3: Top Left: The arti�cial activation image used for generating training data. In-
tensity values range from 0.0 to 0.04, but the image is clipped at 0.03 for display purposes.
Top Right: The regression image f~Yig obtained from the training data. Bottom left: The
estimate of the mean posterior activation with � = 0:01, � = 5, and p = 10. Bottom right:
The regression image smoothed by a kernel of FWHM 3 voxels. Note that the color scale
di�ers in the upper right image compared to the three others.
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Figure 4: The number of voxels with activation level exceeding a given threshold. Shown is
respectively the true image, the posterior mean activation image and the smoothed SPM.

4.1 An analysis of a visual stimulation dataset

We will apply the method to an fMRI dataset consisting of 90 scans, acquired while a light
was periodicly 
ashed in the eye of the subject. The scans, which was obtained by a method
denoted Echo-Planar Imaging (EPI), was recorded every 2 seconds during a 3 minute period.
The stimulation was arranged in blocks of 20 seconds o�, 20 second on, 20 seconds o� etc.,
with 4 complete on-o� cycles during the session. Each scans consists of 128 by 128 voxels
each covering an area of 1:875 � 1:875 mm in a slice of thickness 5 mm.

In general the magnetization of the tissue will be highest in the initial scans, causing an
increased intensity in the beginning of the time series. After a couple of scans an equilibrium
is obtained, and the intensity stabilizes at a steady level, and we will hence discard the �rst
5 scans and only consider the remaining 85 in the analysis.

The variance estimates were �̂ = 0:0294 and �̂ = 0:00421. We generated 1 million
simulations from the MCMC algorithm and subsampled every 100'th sample. In Figure 5
is a plot of two diagnostics of the simulated point process, namely the number of points
and the L2 norm of the residual image, f~Yi � Ai(x)g. As can be seen from the plots there
is an initial burn-in period of about 2000 subsamples, after which the chain stabilizes to
a stationary level. However, as the auto-correlation plot for the number of points shows,
the samples are somewhat correlated, and it would be worthwhile to improve the mixing
properties of the algorithm to speed up convergence. The acceptance probabilities for the
di�erent movetypes are listed in Table 2.

In Figure 6 is a plot of the posterior mean activation image and the posterior standard
deviation of the activation, calculated voxelwise. The back of the head is in the top of the
images. It is evident from the images, that there are large areas of activation in the back
of the brain, which corresponds to the location of the visual cortex, that processes visual
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Figure 5: Diagnostics plots of the simulations obtained by subsampling every 100'th iteration
of the MCMC algorithm. Shown is to the left the number of points in X and to the right
the L2 norm of the residual image, fYi � Ai(X)g. Below are auto-correlation plots of the
two timeseries.

Move type Acceptance (%) Acceptance (%)
Independent noise Correlated noise

Insert point 5.51 4.72
Delete point 5.53 4.75
Update position 15.78 11.35
Update height 43.92 25.98
Update area 35.63 23.76
Update angle 66.86 52.10
Update ratio 59.84 45.43

Table 2: Acceptance probabilities for the di�erent move types in the MCMC algorithm. The
correlated noise model will be described in Section 6.
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impressions. For comparison is also the smoothed SPM, which appears to oversmooth the
image, also in this example.

The posterior variance image gives some idea of the uncertainty of the activation estimate.
The area which has large posterior variance turned out to posses some time series which were
more noisy than the remaining ones, this lack of �t of the model is hence re
ected in a larger
uncertainty of the estimate in this area. Alternatively the uncertainty can be quanti�ed
by the posterior probabilities of individual voxels having activation level greater than a
certain threshold, 0.009 say. The latter corresponds to the standard error of usual voxel-
wise regression estimates for the activation level. The posterior probabilities are displayed
as an image in the �gure.

Often the interest is on a particular summary statistic, such as the activation area,
measured in terms of number of activated voxels. For the current data set the estimate of the
mean activation area is 491.0 voxels, and the standard deviation of the area is estimated to
26.0. More speci�c hypotheses about the activation pattern may be evaluated by estimating
posterior probabilities of events of interest.

Finally we will estimate the shape of the response function, given the estimated activation
surface. Recall that Yit = Ai't + "it, hence for known A the m.l.e. of 't is given by '̂t =P

iAiYit=
P

iA
2
i for t = 1; : : : ;m. By inserting the estimate of the posterior mean activation

surface displayed in Figure 6, we get the estimate of ' plotted in Figure 7. Overlaid on the
plot is the model response function given in (6). As can be seen from this plot, there
are substantial di�erences between the model, and the observered response. The observed
response does not appear to be stationary, for instance the last peak is higher than the 3 �rst,
and the dip below baseline is more prominent after the �rst and third cycle than after the
second. In the next section we will describe a method for modelling such non-stationarities
in a semi-parametric setting.

5 A semi-parametric model for the haemodynamic re-

sponse

Though the model for the haemodynamic response (6) is veri�ed empirically to give a reason-
able �t to the observed response, its limitations were demonstrated in the previous section.
Several hypothesis have been proposed to explain the complex interplay between the local
blood 
ow and oxygenation changes and the BOLD signal, yet there is still not concensus
of the quantitative relationship between these. Clearly the choice of a convolution model
with a Gaussian impulse response function is somewhat ad hoc in this context. Alternative
models for the impulse response has been proposed, such as Gamma densities by Lange and
Zeger (1997), Friston et al. (1998) and FIR �lters by Nielsen et al. (1997). The question
of whether a convolution model is appropriate is however not clear; in some circumstances
the response is approximately linear (Dale and Buckner, 1997) while in others it is highly
non-linear (Vazquez and Noll, 1998). Also a relevant question is whether the response is sta-
tionary over time, or if the response changes with general alertness and learning as suggested
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Figure 6: Top left: Monte Carlo estimate of posterior mean activation surface. Top right:
Smoothed SPM estimate of activation surface. Bottom left: Estimate of voxelwise posterior
standard deviation. Bottom right: Voxelwise posterior probability of activation level greater
than 0.009. The images represent a slice of the brain, the upper part of the images correspond
to the back. The grey line represents the surface of the cortex.
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Figure 7: Thick line: Maximum likelihood estimate of the haemodynamic response function
under the assumption that the spatial activation pattern is known and given by the estimate
in Figure 6. Thin line: The model for the haemodynamic response in (6).

by Gaschler-Markefski et al. (1997).
Considering the complexity of temporal response, it seems very appealing to model the

latter in a semi-parametric setting. In this framework we do not have to assume stationarity
over time or additivity of the response. Instead we will assume a prior of the form

't = �t + �t; �t � �t�1 � N(0; �2); t = 1; 2; : : : ;m: (17)

where f�t � �t�1g are independent and �0 = 0. Here the mean �t is a simple model, such
as that in (6) used in the previous section, re
ecting the overall structure of the response.
However ' is allowed to deviate a lot from the mean, via the random walk structure of the
noise terms �t. The variance �2 governs the smoothness of 't � �t.

Combining this prior for ' with the prior for spatial activation pattern (2) we can
make inference about (X;') through the simultaneous posterior distribution P (X;'jY ).
For computational reasons we will in fact consider the posterior distribution of (X;Y; �)
where � = f�i; i 2 V g are the random intercepts in the model (7). This posterior is given by

p(X;'; �jY ) / P (Y jX;'; �)P (X)P (')P (�);

where the likelihood term is obtained by conditioning on � in (7). The variable � can be
considered as an auxiliary variable in the simulation algorithm, since it is not of interest in
itself, but simulation of the two other variables X and ' becomes much easier, when we
condition on �.
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We can generate a Markov chain which has the posterior as invariant distribution by a
variable-at-a-timeMetropolis-Hastings algorithm, where we iteratively update one parameter
given the two others. When updating X, the proposals are as described earlier, though with
the modi�cation that we replace Ai(x) with Ai(x) + �i and set � 2 = 0 in the formulas in
Section 3, in order to account for the fact that we condition on �. A similar modi�cation
applies to the likelihood function in (8), when calculating the acceptance ratio.

When updating �, we will simulate directly from the conditional distribution given
(Y;X;'). This is hence a Gibbs update, which will always yield acceptance rates of 1.
It can easily be veri�ed that

�ijY;X;' � N

�
� 2

� 2 + �2=ss'
( ~Yi �Ai(X)); � 2(1 � � 2

� 2 + �2=ss'
)

�
; (18)

with all �i's conditionally independent.
We will simulate directly from the conditional distribution of ' given (Y;X; �), as well,

since this is also normal, where mean and variance can be calculated as follows. Let Y?t =
(Yit)i2V denote the image recorded at time t, regarded as a jV j-dimensional vector, and
let "?t be de�ned correspondingly. In the following, all distributions are conditionally on
A = A(X) and �. Then the model (7) states that

Y?t = (A+ �)'t + "?t; "?t � N(0; �2IjV j); t = 1; : : : ;m;

which combined with the prior (17) is a linear Gaussian state space model. Hence it is not
di�cult to see that if we condition on Y , ' has a Gaussian distribution. The literature on
state space models is extensive, hence we will just give the formulas for the conditional mean
and variance of ' as given by the Kalman smoother, and refer to West and Harrison (1989),
for instance, for the proofs.

LetDt = �fY?1; : : : ; Y?tg denote the information up to time t and suppose that 't�1jDt�1 �
N(�t�1; Ct�1). This is true for t = 1 when we consider the initial distribution of '0 as a
degenerate normal distribution concentrated at 0. The Kalman �lter then gives that 't

given Dt is also normal, 'tjDt � N(�t; Ct); where

C�1
t = kA+ �k2=�2 + (Ct�1 + �2)�1;

�t = �t�1 + �t � �t�1 +
Ct

�2
(A+ �)0(Y?t � (A+ �)(�t�1 + �t � �t�1)):

Here prime denotes the transpose matrix.
In order to simulate from the distribution of 't given Y = Dm, we will also consider

the Kalman smoother. Suppose that 't+1j't+2;Dm � N(��t+1; �Ct+1). By the recursion
above, this is true for t + 1 = m with ��m = �m and �Cm = Cm. Then we have that
'tj't+1;Dm � N(��t; �Ct), where

�Ct = Ct � C2
t

Ct + �2
; ��t = �t +

Ct

Ct + �2
('t+1 � �t � �t+1 + �t): (19)
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In fact this is the conditional distribution of 't given 't+1; : : : ; 'm;Dm, by conditional
independence of 't and 't+2; : : : ; 'm, and hence we can use this recursion to simulate 'jDm:
We simply simulate the 't's one at a time, starting from the back with 'm.

We note here, that a collection of response functions could be modelled by allowing a
multidimensional '. We could assign di�erent functions to di�erent groups of centres, and
in this way account for regional di�erences in the response. The formulas above would be
slightly more complicated, but at least for moderate dimensions of ' the recursive simulation
routine would still be very e�cient.

In Figure 8 is a plot based 1000000 simulations of this Markov chain. We considered the
visual stimulation data of the previous section, though preprocessed in a slightly di�erent
way, as we removed some low-frequency trends with very large magnitude from the data, in
order to stabilize the algorithm. The plot illustrates the estimated posterior mean E('jY )
with con�dence limits for ' based on the posterior variance. For comparison is an overlay of
the initial model (6). The plot shows the same deviations from stationarity as was indicated
by Figure 7.

Figure 8: Monte Carlo estimate of the posterior mean of the haemodynamic response
function based on 10000 subsamples of 1000000 simulations. Overlaid is pointwise 95%-
con�dence regions based on the estimated posterior variance. The thin line is the prior
mean of the response given by the convolution model in (6).

One consequence of modelling ' in this way, is that the paradigm is only vaguely included
in the model, in the sense that the response function is not time-locked to the paradigm,
but is allowed to drift by the random walk structure. It might seem unwise to ignore a
relevant covariate like this, however, in some experiments the actual paradigm is not directly
controllable by the experimenter and hence precise information of this is not available. For
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instance in memory processing or other mental stimulation experiments, it is not possible
to end the stimulation at an exact time point. Furthermore with this formulation, we may
detect subtle activation patterns, which depends on the paradigm in more complex ways.
An example of the latter is the XOR signal of Lange et al. (1999).

6 Accounting for correlated noise

The initial model in (7) assumed that the noise was uncorrelated both temporally and
spatially. This is necessarily a somewhat optimistic assumption. The noise sources in fMRI
data are both of physiological and physical origin. The pixel values are constructed by inverse
Fourier transforms of a sequence of mesurements of currents in a coil over a short time period.
Hence there is no physical separation of the pixels, which could justify independence. The
temporal correlation is likely to arise from physiological sources, but also intrinsicly in the
MR scanner.

In order to investigate the correlation of the noise, we will consider the residuals in the
model (7), rit = Yit� ~Yi't, where we assume the response function ' is known. The empirical
temporal and spatial correlograms are respectively,


̂i(l) =

Pm�l
t=1 ri;tri;t+lPm

t=1 r
2
i;t

l = 1; 2; : : : ;m� 1; i 2 V;

�̂t(k) =

P
i2Vk

ri;tri+k;tP
i2V r

2
i;t

; k 2Z2; t = 1; : : : ;m;

where Vk = fi 2 V ji + k 2 V g. We estimate the correlograms voxel-by-voxel respectively
scan-by-scan in order to assess whether the correlation is stationary over voxels and scans.
In Figure 9 is a plot of 
̂i(1) as a function of i 2 V with estimated 95%-con�dence bounds
based on a global AR(1) model 
i(1) = 
(1) and 
i(l) = 0 for l > 1 for all i. Displayed
is also a plot of �t((1; 0)) as a function of t with estimated 95%-con�dence bounds based
on the spatial model described below. About 10% of the points fall outside the con�dence
bounds in each plot, which indicates that the temporal (spatial) correlation structure is
not the same in all voxels (scans). This is not really surprising, as it merely re
ects the
inhomogeneity of the underlying tissue. The observation suggests that a non-separable
covariance model, which allows for the di�erent temporal structures, should be �tted to the
data. One such model is that proposed by Lange and Zeger (1997), where the voxel time
series are considered in the frequency domain, and di�erent spatial covariance models are
�tted to di�erent frequencies. However, since we need to invert (or Cholesky decompose)
the large spatio-temporal covariance matrix in order to calculate the likelihood function, we
will have to restrict ourselves to reasonably simple covariance structures. For this reason we
will only consider a separable model in the following sense. Let " = f"it; i 2 V; t = 1; : : : ;mg
be the noise terms in (7) regarded as a jV j �m matrix, then

" � NjV j�m(0; �
2 � 
�):
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Figure 9: Left: The empirical temporal correlations at lag 1, 
̂i(1), as a function of voxel
number. The 95%-con�dence bounds are based on a common AR(1) model for all voxels.
Right: The empirical spatial correlation at lag (1,0), �̂t((1; 0)), as a function of scan number.
The 95%-con�dence bounds are based on a common spatial model for all scans (see text.)

where 
 denotes the Kronecker product and where � and � are jV j � jV j and m � m
correlation matrices.

Global correlation estimates are obtained by the averages 
̂(l) = jV j�1Pi2V 
̂i(l) and

�̂(k) = m�1
Pm

t=1 �̂t(k). A plot of the empirical temporal correlations can be seen in Figure
10. The �tted AR(1) model with 
̂(1) = 0:0367 gives a reasonable �t to the observed
correlations.

Figure 10: The empirical temporal correlogram for all voxels with the �tted AR(1) correlo-
gram.

A plot of the empirical spatial correlation can be seen in Figure 11. The correlation
is clearly non-isotropic and furthermore there is evidence of negative correlation at lag 2
voxels. The plot indicates that observations further than a distance of 2 voxels apart are
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almost uncorrelated, which suggests a moving average type model,

"i =
X
j2D

gjUi+j ; i 2 V;

where fUj; j 2 Z2g is white noise and D is some neighbourhood of the origin. Here and in
the following we will only consider the spatial covariance structure of a single scan and hence
ignore the temporal index t in the notation. The parameters gj; j 2 D can be estimated
by �tting the model to the empirical covariances and an estimate of the spatial correlation
matrix � may be calculated. The problem with this approach, however, is that one needs
to invert �, or at least compute the Cholesky decomposition � = LL0 where L is lower
triangular, in order to calculate the likelihood function. In our data set there are more than
4000 voxels constituting V which makes it very demanding to decompose the correlation
matrix. As a practical alternative to the above model, we propose to parametrize the
Cholesky square root L rather than � itself, and hence consider the model " � NjV j(0; �

2LL0)

where L is parametrized as follows. Let ~L = f~lijg be a lower triangular matrix, such that

~lij =

8><
>:
~li�j if i > j; i� j 2 D;

1 if i = j;

0 else,

where D is a neighbourhood of the origin, not necessarily equal to the neighbourhood in the
moving average model above. Then we let L = flijg be given by

lij =
~lij�P

j�i
~l2ij

�1=2 i; j 2 V

The normalization above ensures that LL0 is correlation matrix. Notice that when ignoring
edge-e�ects, the model will be stationary since Lij = Li�j .

In this formulation � can be calculated by a matrix product, and expressions such as
z0��1z for z 2 RjV j, which enters in the likelihood function, can be calculated by

z0��1z = kL�1zk2 = kvk2; (20)

where v is the solution to Lv = z which can be obtained easily due to the lower-triangularity
of L. Notice that we have to order the indices in jV j when expressing the spatial correlation
as the matrix �. The correlation between "i and "j is given by

corr("i; "j) =
X

k�min(i;j)

li�klj�k: (21)

Hence the model has the peculiar property, that the covariance structure depends on the
ordering of the indices. From a theoretical point of view this is di�cult to accept, since the
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ordering is arbitrarily chosen. From a practical point of view, however, the ordering is chosen
in any natural way, and the model is judged by how well it �ts data. We will demonstrate in
a moment that the model �ts data well, and since the computational advantages by working
with L rather than � or ��1 are considerable, we favour this method.

The parameters may be estimated by �tting the implied correlation (21) to the empirical
covariance,

l̂ = argmin
X

fj2Z2:D\(D�j) 6=;g

0
@ X

k�min(0;j)

l�klj�k � 
̂(j)

1
A

2

:

We have chosen the natural lexicographic ordering of the voxel indices (x; y) and have
parametrized the model by letting D include 3. order neighbours, which gives 6 free param-
eters. In Figure 11 is a plot of the empirical correlation along the 4 equiangular directions
(0; �=4; �=2; �), together with the �tted correlation. Clearly the model �ts the data quite
well.

Figure 11: Empirical and �tted spatial correlations along the four equiangular directions
(0; �=4; �=2; 3�=4)

Incorporating estimates of � and � in the model (7) is quite straightforward if we assume
that these are reasonable precise estimates, and hence can be regarded as �xed. Consider
the data Y as a jV j �m matrix, and let Y � = Y (M�1)0, and '� = M�1', where M is the
lower triangular Cholesky square root of �. Then the conditional likelihood function, where
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we condition on the values of �, is given by

p(Y jx; '; �) = (2��2)�
mjV j

2 j�j�m

2 exp

(
� 1

2�2

mX
t=1

kL�1(Y �
?t � ~Y �'�t )k2

)

� exp

�
� 1

2�2=ss�'
kL�1( ~Y � �A� �)k2

�
; (22)

where

~Y �
i =

mX
t=1

Y �
it'

�
t=ss

�
'; ss�' =

mX
t=1

'�t
2;

is de�ned equivalently to ~Y in (9). Recall from Section 3 and 5 that the proposal distributions
for updating X and ' in the MCMC algorithm were based on the model with independent
noise. A big advantage from an application point of view is that these need not be changed
when we incorporate correlated noise terms, if we are willing to accept slightly worse mixing
properties. By simply substituting the expressions for the likelihood ratio in the Metropolis-
Hastings ratio, we ensure that the chain converges to the correct posterior distribution.
Inference on X can hence be made by simulating (X; �) iteratively, where the distribution
of �jX;Y; ' is as in (18).

We considered the visual stimulation data again, and simulated 1000000 samples of X
using the same MCMC algorithm as described in Section 3, but with the modi�ed likelihood
function. As expected, the acceptance rates decreased a bit, see Table 2. The e�ect of
accounting for correlation in the noise shows both in the activity estimate itself and in an
increased uncertainty of the latter. The mean activation image is illustrated in Figure 12.
The largest di�erence, compared to the activation image obtained with the uncorrelated
noise model in Figure 6, is the circular region in the back of the brain, which is much larger
in the current image. As an example of how the variance of the estimate increases, we
may consider the number of activated voxels. The mean and standard deviation of this are
estimated to 543.1 respectively 31.4, the corresponding �gures from the uncorrelated model
in Section 4.1 were 491.0 and 26.0.

7 Discussion

We have proposed a spatio-temporal model for fMRI data which explicitly accounts for the
fact that the signal changes are locally coherent in both space and time. This assumption is
often implicitly included in the analysis of fMRI data, when spatial and temporal �ltering
are applied prior to the analysis, but rarely included explicitly in a model. The relation (8)
shows that in the simplest setting the procedure is e�ectively �tting ellipsoids of di�erent
sizes and orientations to a regression image, and assessing the signi�cance of these. The
random �eld theory has counterparts to this procedure, namely the search for local maxima
in both scale and space, Siegmund and Worsley (1995), and in the space of ellipses with
di�erent orientation and shape, Sha�e et al. (1998). The method is, however, fundamentally
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Figure 12: The estimate of the posterior mean activation image in the correlated noise model.

di�erent from the random �eld approach. The latter provides a framework for testing the
null-hypothesis of no activation in each individual voxel with correction for the large number
of tests performed. As was pointed out by Keith Worsley in the discussion of Lange and
Zeger (1997), what is really an estimation problem is hence answered by a large number
of statistical tests, with corresponding conceptual and mathematical problems. With the
proposed method the focus is shifted towards estimating the activation pattern by use of
standard Bayesian methods, rather than testing for activation in individual voxels.

Assessing the uncertaincy of the estimated activated pattern is theoretically easy by
considering posterior variances. This allows us to evaluate the signi�cance of hypothesis of
interest within single subjects. Alternatively we may record estimates and standard errors
of relevant features of the activation in di�erent experiments, and use this when comparing
di�erent groups of subjects. This might for instance be the mean activity level in a certain
region of the brain, where the latter could be identi�ed individually in each subject from
high-resolution anatomical scans acquired simultaneously with the fMRI scans.

The approach of modelling the temporal response in a non-parametric setting with few
assumptions seems appealing to us, given the uncertainty about the nature of the haemo-
dynamic e�ects in di�erent stimulation types. Also the fact that the modelled response
depends only vaquely on the speci�ed paradigm is an advantage when analysing data where
the actual paradigm is di�cult to determine. Naturally the method has it's limitations.
Firstly the prior we have formulated, restricts the response to be su�ciently smooth, and
one could imagine that this is not the case in the recent event-related pardigms Buckner
(1998), where several stimulation types are rapidly interchanged. To analyse these data
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with our method, an alternative prior should be formulated, possibly by incorporating the
paradigm and assuming some sort of stationarity.

Another limitation is the assumption, that the response is the same everywhere in the
brain. Authors such as Lee et al. (1995) and Kornak et al. (1999) have found, by �tting
simple parametric response functions to fMRI time series, that the delay can vary with a
few seconds over the activated regions. Though the semi-parametric model is limited by
the assumption of constant delays, it is advantageous in the sense that it can capture more
general response patterns than those proposed by these authors. An obvious way of relaxing
the assumption of constant delay and shape is by working with a collection of response
functions, and assigning di�erent functions to di�erent centres, hence we would only assume
that the response is locally similar. In this formulation we would in fact search for any
spatial regions of similar temporal pattern, and not only paradigm related patterns.

Acknowledgements

The author is grateful for inspiring and constructive discussions with Jens Ledet Jensen
and Rasmus Waagepetersen. Thanks also to Hans St�dkilde-J�rgensen from the MR-
ResearchCentre at Skejby Sygehus for kindly providing the data.

A Ergodicity properties of the Markov chain

Theoretical results for the algorithm described in section 3 are studied in Geyer and M�ller
(1994), M�ller (1999) and Geyer (1999). Geyer has a stability condition, namely that the
point process has bounded conditional intensities, which implies Harris recurrence and ge-
ometric ergodicity of the algorithm, that he studies. This situation is, however, slightly
di�erent, since our proposal density for inserting a new point q2(� [ xjx) is not constant, as
in Geyer's algorithm, but has a rather complicated structure. However, when restricting the
support of the prior in a natural way q2(� [ xjx) is bounded below, which turns out to be
su�cient to apply Geyer's method.

Proposition 1 There exists a constant M such that

p(x [ �jY ) �Mp(xjY ) 8x 2 
; � 2 X :
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Proof Recall that �(xi; xj) given by (3) is less than 1, hence we have,

p(x [ �jY )
p(xjY ) =

p(x [ �)

p(x)

p(Y jx [ �)

p(Y jx) = �
Y
�2x

�(�; �)p(a; d; r)

� exp

(
� 1

2(�2=ss' + � 2)

 X
i2V

h(i; �)2 � 2
X
i2V

h(i; �)( ~Yi �Ai(x))

!)

� c exp

(
1

(�2=ss' + � 2)

X
i2V

h(i; �) ~Yi

)

� c exp

8<
: 1

(�2=ss' + � 2)

 
CdC

2
a=(2 log 2 vxvy)

X
i2V

~Y 2
i

!1=2
9=
; :

Here the last inequality follows from (14). Let M denote the expression in the last line, this
does not depend on x og � and the proof is complete. �

In the rest of this section we will restrict the support of the prior to the region D given
by

D = fx 2 
j
n(x)X
j=1

h(i;xj) < Ca 8i 2 V g:

This assumption says that not only is Ca a natural upper bound for the height of individual
activation bells, but also for the image obtained by combining all bells. As Ca was chosen
arbitrarily large, this is not a restriction in practice.

Proposition 2 There exists a � > 0 such that

q1(� [ xjx) � � 8 � 2 X ; x 2 
 such that x [ � 2 D:

Proof We will show that each of the factors in (12) is bounded below. Considering q(�jx)
we have

q(�jx) = Z�1 exp

(
1

�2=ss' + � 2

X
i2V

h(i;�; a0; d0; r0; �0)( ~Yi �Ai(x))

)
;

where Z is the normalizing constant, that is the sum over � 2 V of the last term. By an
evaluation such as that in the proof of Proposition 1 we have that this term is bounded
above by a �nite constant c1, hence Z�1 � (jV jc1)�1. By the assumption that x [ � 2 D we
have that Ai(x) < Ca for all i 2 V such that the last term is bounded below by a positive
constant c2. Hence we have q(�jx) � c2=(jV jc1). A similar evaluation of q(aj�; x), combined
with the fact that the proposal is restricted to a bounded interval, shows that q(aj�; x) � c3
for a positive constant c3 and all x; � and a. Likewise pi de�ned in (16) is bounded below
and above for all i, and hence so is q(dja; �; x). The proposals for r and � are equivalent to
the one for d. �
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Proposition 3 The algorithm simulates a Markov chain that is Harris recurrent and geo-

metrically ergodic.

These properties are desirable, since they ensure that the chain will converge to the
correct stationary distribution geometrically fast, such that a central limit theorem holds.

Proof By Propositions 1 and 2 the probability of accepting an upstep can be dominated
as follows,

min

�
1;
p(x [ �jY )
p(xjY )

1

(n+ 1)q1(x [ �jx)
�
� M

�(n+ 1)
:

As the number of points n tends to in�nity, the expression on the right hand side tends to
zero. The probability of accepting a downstep is

min

�
1;

p(xjY )
p(x [ �jY )(n+ 1)q1(x [ �jx)

�
� 1;

for n large enough. Hence if the number of points gets very large, the propability of accepting
a further upsted is almost zero while we will allways accept a downstep. This guarantees a
drift towards a smaller number of points which again implies geometrically ergodicity. We
refer to the arguments in the proofs of Propositions 2 and 3 in Geyer (1999) for details. �
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