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Chapter 1

Introduction

Throughout this dissertation we work in the following set-up: We denote by X an oriented,
compact and connected surface, possibly with boundary. A basepoint xy € X is fixed, and
we let 11(X) = m (%, x0) denote the fundamental group. Furthermore, G is a linearly
reductive, affine algebraic group over the complex numbers (e.g. GL;(C), SL,(C), O,(C)
and Sp,, (C)). By a standard result (cf. [Hu]), G is a closed subgroup of GL,(C) so that,
in particular, G is a Lie group; we write g for its Lie algebra. The moduli space of flat G-
connections on X is denoted by M(Z; G). It is well-known that there is a canonical bijection

Hol: M(%;G) —» Hom(m(2),G) /g (1.1)

where the G-action on Hom(rr;(X), G) is by conjugation and Hol is given by taking the
holonomy with respect to a flat connection along loops on X based at xg. Let I' | (X) denote
the group of orientation preserving diffeomorphisms of £. This group acts on M(%; G) via
pullback of connections:

g-[Al=[(g H)*A], [Ale M(ZG), geT+(X)
so that the induced action on Fun(M(Z; G)) = Map(M(X; G), C) is given by

(g NUTAD = f(g~ " [AD = f(g*AD,  feFun(M(;G)), g€ T+(%).

For a synopsis of the dissertation, the reader may consult the table of contents and the
introductory paragraphs of the individual chapters.

It is presupposed that the reader is familiar with a few basic concepts and results from
algebraic geometry and invariant theory (cf. [Fog]). For his convenience we recall the
relevant material here. An affine algebraic set X = V(S) < CV is the solution of a set S of
polynomial equations in N variables; associated to it is the ideal I(X) € C[xq,...,xn] of
polynomials vanishing on X. The Hilbert Nullstellensatz states that

IV(a) = v/a, aanidealin C[xq,...,xn].

Occasionally the radical ideal v/a is denoted by Rad(a). The ring O(X) of regular func-
tions on X is isomorphic to C[xy,...,xn]/I(X). Algebraic morphisms between affine sets
preserve regular functions; the action on O(X) induced by an algebraic G-action on X is ra-
tional. By the linear reductivity of G, rational actions have well-behaved invariants. To be
specific, if G acts rationally on a complex vector space V, then the subspace V¢ € V of fixed
points has a unique G-invariant complement V. The linear projection V = Vy: V — V©
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2 Chapter 1 - Introduction

with kernel V;; is called the Reynolds operator on V. The uniqueness of V implies that
Reynolds operators are natural with respect to G-equivariant, linear maps ¢: V. — W, i.e,,
the diagram

P
VG%WG

is commutative.

Remark 1.1. A simple, but important consequence of this is that ¢ is surjective if ¢ is.

If V is an algebra (and G acts by algebra isomorphisms), then Reynolds’ identity
V(xy) =V(x)y, xeV,yeVC 1.2)

holds.



Chapter 2

The Moduli Space and the Algebra of
Chord Diagrams

A Poisson structure on the algebra of functions on M (X; G) has been studied by a number
of people, e.g., Atiyah and Bott [AB], Goldman [G1, G2], Biswas and Guruprasad [BG],
and Fock and Rosly [FR]. The authors approach the subject differently but common to all
is that the Poisson bracket { , } 5 is defined in terms of an orthogonal structure on G, that is, a
non-degenerate, symmetric, bilinear map B: g x g — C invariant under the adjoint action.

In this chapter we first construct the algebra O(M(Z; G)) of regular functions on the
moduli space and then adapt the presentation in [FR] to define a Poisson bracket { , }; on
O(M(X; G)) for any symmetric Ad-invariant tensor t € g ® g; this generalizes the afore-
mentioned Poisson structure since { , }p = { , }s; where tp € g® g is the symmetric Ad-
invariant tensor corresponding to B € (g ® g)* under the isomorphism g* = g induced by
B itself. Afterwards we present the Poisson algebra of chord diagrams C(X; G) introduced
by Andersen, Mattes and Reshetikhin [AMR1]. One of the main results of this paper is that
there exists a Poisson homomorphism ¥5: C(£;G) —» (O(M(Z;G)),{ , }p); we generalize
this to all Poisson brackets { , }:.

2.1 Lattice Gauge Field Theory

A graph K is a finite, 1-dimensional CW-complex with an orientation on each 1-cell. Its set
of vertices is denoted by V(K) and its set of edges by E(K). We also consider the set E;(K)
of all endpoints of edges of K. It is important to notice the distinction between vertices and
endpoints; the two concepts are related by the obvious ‘incidence” map

[ ]: Eg(K) — V(K)

In the sequel we identify a vertex with its pre-image under this map. The endpoints of an
edge are given by the maps

d.,0_: E(K) — Ea(K).

An edge « € E(K) may be traversed according to or counter to its orientation, yielding two

curves, w and a !, in K. A pathin K is a curve in K which is a composition of edge traversals,
i.e., they have the form aj' - -- a3 with the compatibility condition that 4 a;" := d¢,a; and
670¢i€:'11 = 0_¢, i+1 fori =1,...,n — 1 are incident to the same vertex. For loops (cyclic
paths) we always work with indices mod .
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A combinatorial complex K is a 2-dimensional CW-complex obtained from a graph by
attaching a finite number of 2-cells along loops in the graph. The set of graph connections on
K (more precisely, on its underlying graph) is simply the product GE(X); for a connection
A = (Ay) € GEX) the element Hol? (a) = A, € G is called the holonomy with respect to A
along «. We extend the concept of holonomy to paths in the obvious way:

HolA(aS!---a§) = AQ --- AS,  Ae GEK)

an’

Notice that for a loop without a specified initial point the holonomy is still a well-defined
conjugacy class. Therefore the equations

Hol*(oF) =1, Ae GEK) 2.1)

with F running over all faces in K make sense and define a subset A(K) = A(K; G) c GE (K)
called the G-connections on K. The gauge group of K is by definition G(K) = GV(K); it acts on
the graph connections:

(80)(An) = (815 g Aa8LL ) (Ax) € G, (g0) € G(K).

Since this action conjugates the holonomy along a loop, A(K) is an invariant subset; the
orbit space

M(K; G) = AK) /g (k)
of the restricted action is called the moduli space of G-connections on K. The natural projection
: A(K) - M(K; G) sets up a bijection
m*: Fun(M(K;G)) — (Fun(A(K)))9®),

As A(K) is cut out of GF(K) by the algebraic equations (2.1), it is an affine algebraic set. The
gauge group action on A(K) is clearly algebraic whence the induced action on functions
preserves the property of being regular. Set

O(M(K; G)) = (*) 1 (O(A(K))®)) € Fun(M(K; G)). (22)

The notation O(M (K; G)) is merely suggestive; we do not claim that M(K; G) admits the
the structure of an algebraic variety.

Now suppose 1: K — X is an embedding such that K € X is a deformation retract; we
call K = (K, 1) a model for ¥. There is a canonical bijection

Hol,: M(%;G) - M(K;G)

with the following description (cf. (1.1)): Let A be a flat connection in a principal G-bundle
P — 3. Choose for each v € V(K) a basepoint in the fibre of P over v (a trivialization of
Py,). This allows the holonomy with respect to A along an edge a € E(K) to be expressed
as an element A, € G, and we have

Hol,([A]) = [(Ax)] e M(K;G), [A]e M(%;G).
We define the algebra of regular functions on the moduli space by
O(M(Z; G)) = Hol} (O(M(K; G))) € Fun(M(Z; G)).
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Proposition 2.1. The subset O(M(Z; G)) € Fun(M(Z; G)) is independent of the model used to
define it.

Proof. Suppose we have two models /;: K; — %, j = 1,2. Pick amap p: V(Ky) — V(Kj)
and for each v € V(Kj) a curve 7, on X from p(v) to v. Consider an edge « of K. Since Kj is
a retract of ¥ and by cellular approximation, the curve Vo_a] (12), ,X’y[fai o o0 % is homotopic

rel endpoints to a path P, in K;. Define a map ¢: GEK1) — GE(K2) py
@(A)y = HolA(P,), Ae GEKD,
Assume that A € A(K7) and let P — X be a principal G-bundle. Upon trivializing Py (k,),

A defines a flat connection A on ¥ representing Hol;l ([A]). Now trivialize the fibre over
v € V(Ky) by parallel transporting the basepoint over p(v) with respect to A along 7o;

this choice implies that Hol,,([A]) is represented by the graph connection ¢(A). In conse-
quence, not only does ¢ map A(Kj) into A(K3), it also fits into the commutative diagram

GEK) — 7 CE(Ky)

T |

AKy) — s AKy) (2.3)

l"l lnz

M(Ky;G) —25 M(Ky; G)

where the bottom map is the bijection Hol,, o Holfl1 : M(Ky; G) - M(Ky; G).
It is immediate from the construction that ¢ is an algebraic morphism intertwining the
gauge group actions:

P((g0) - A) = p*((80)) - @(A), Ae GE®D, (g5) € G(Ky).

Here p*: G(K;) — G(K>) is the pullback via p. The induced map ¢*: Fun(GF(K)) —
Fun(GE(K1)) therefore preserves regular functions and also intertwines the actions:

(80) ¢*f = 9*(p*((g0)) - f), f € Fun(GEED), (o) € G(Ky).

The same statements hold true for the restriction ¢|: A(K;) — A(Ky). In particular, ¢* and
(¢|)* preserve fixed points (invariant functions). It thus follows that

T3 = () to (@) 073+ Fun(M(Kp; G)) — Fun(M(Ky; G))

maps O(M(Ky; G)) to O(M(Ky; G)); this proves the result since T, = (Holf‘l)*1 o Holy,. O
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Remark 2.2. During the course of the above proof we established the diagram

OM(Z;G))

H(V WL";
*

O(M(Ky; G)) —— 2 O(M(K;; G))

}rz* }rf‘ (2.4)
(¢p*

O(A(K))9K) —— O(A(K )9

L]

O(GEK))G(Ka) T o GE(KD))G(Ka)

We infer, in particular, that although the construction of ¢: GE(K1) — GE(K2) depends on
various choices, the induced map (¢|)* is entirely canonical; namely it is equal to the com-
position

Tip 1= 7} 0 T3y o (713) 1 O(A(KR)) 9K — O(A(Ky))9ED, (2.5)
This will be useful later.

Corollary 2.3. The map Hol,: M(X;G) — M(K;G) depends only on the homotopy class of
1t K- Z.

Proof. Let ;: K — X be a homotopy. Consider the construction of the transfer ¢: GF(K) —
GEX) from the model p: K — X to the model i1: K — X. We may take p = Idy ky and
Yo(t) = 1:(v). Restricting the homotopy + to an edge « of K, we conclude that

7[57“](11)‘0(7[}1%] ~ (ip) , rel endpoints.
Therefore, by definition, ¢ = Id -k(x), whence the result follows from diagram (2.3). O

We finish this section with an important class of models for X. Let {g\,A € A |, p € M)

be a finite presentation P of 711(X). There is an associated complex Kp; its 1-skeleton Kl(,l)
consists of a single 0-cell v and an edge (loop) for each generator g,. The relations ry

determine glueing maps used to attach the 2-cells of Kp; it follows that A(Kp) < GF(KP) —
G” is simply defined by the relations of P. Hence the map Evp: Hom(7m((Z), G) — A(Kp)
given by evaluating a G-representation of 711 (X) on the generators from P is a bijection. As
G(Kp) = G acts by simultaneous conjugation on .A(Kp), there is an induced bijection
Evp: Hom(m (Z), G)/G — M(Kp; G).
Pre-composing this map with Hol: M(X; G) — Hom(7m1(X), G)/G, we obtain a bijection
EvpoHol: M(%; G) - M(Kp;G).

A choice of representatives for the generators g, € 711(X) gives rise to a map ¢: Kl(,l) -z
(sending v to xg). The face boundaries of Kp are mapped to trivial loops on X by construc-

tion, so ¢ extends to all of Kp. It is now a triviality that Hol, = Evp o Hol. Thus we have an
induced bijection

Hol* o Evp = Hol}: O(M(Kp; G)) » O(M(Z;G)) (2.6)
depending solely on P.



2.2 Poisson Structures for Fat Graphs 7

2.2 Poisson Structures for Fat Graphs

In this section K denotes a fat graph, i.e., a graph equipped with a cyclic order on each of
its vertices. In drawings of fat graphs the cyclic order will always agree with the coun-
terclockwise order. Our goal is to define a Poisson bracket { , }; on O(GEEKNIK) where
t € g® g is an Ad-invariant, symmetric element; we achieve this by giving a bivector field
on GF(K). Writing down this tensor requires, however, a linearization < of the cyclic order
at the vertices of K; such a choice is termed a ciliation since the linear order at a vertex is
indicated by a small cilium between the first and the last endpoint.

Let I(GE(K) denote the set of smooth vector fields on GE(K), and define linear operators

X*: g - T(GEK)), ke Ey(K)

as follows: For a € E(K) and b € g, X?+%(b) is the left-invariant vector field correspond-
ing to b assigned to the factor G* of GEXK), and X%-%(b) is the right-invariant vector field
corresponding to —b assigned to the factor G* of GE(K), Define bivector fields on GE(K) by

Bi(v,<) = ) e(, A)(X*@XM)(t), veV(K)

K,AEV
where
1 ifx <A
ek, \) =<0 ifx=A
-1 ifx>A

We set B(<) = Xev (k) Bt(v, <), and define

{f, &} = Bu<);df @dg), f,ge O(GEE)IE), (2.7)

Remark 2.4. Unlike Fock and Rosly, we employ no classical r-matrix in the definition of
B:(x); this approach is feasible because the corresponding bracket is defined for invariant
functions only. In the case where t corresponds to an orthogonal structure on G, the next
two results are covered in [FR].

Proposition 2.5. The formula (2.7) defines a map
{, }: O(GEENGEK) » 0(GEKNIK) _, 0(GE(K)I(K)
which is independent of the ciliation on K.

Theorem 2.6. The bracket { , }; defines a poisson structure on O(GEENG(K),

We shall need various basic results concerning t and the maps X* for the proofs of these
statements. Often we work with a basis for ¢; this is a set {e1,...,e,} € g such thatt =
> ;ei ®e;. Bases exist since f is symmetric but are by no means unique. In fact, by the Ad-
invariance of t the set {Adg(e1), ..., Adg(e,)} is another basis for any ¢ € G; we will use this
observation without further mention in the sequel. Applying the shorthand X} = X*(e;) €

I'(GE(K)), we may write

frghi= 2 X M)} XifXlg, f,ge OGHD)I0, (28)

veV(K) k,A€v
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Consider the composite map

d —®Id Ev
¢: g% End(g) 2% End(g®@g) - g @4

and define T = (¢ ®1d)(t) € g®°. Itis significant that T is invariantly defined; its expression
in a basis is

T =) [ej 6] ®e; Rej. (2.9)
]

Lemma 2.7. T is an anti-invariant tensor.

Proof. Transposing the second and third factors of g®® obviously maps T to —T. For any
b € g we differentiate the curve

S (Adexp(sh) ®Adexp(sh))(t) =t seR
at s = 0 to obtain

(adb®1Id +Id ®ad b)(t) = 0.

Letting the 3-cycle o = (1,2,3) € Sz act on g&? and applying this fact to b = ¢;, we get

o(T) = Ze] ® [6]‘, el ®e; = Z(Z - ® [e;, e]]) ®e; = Z(Z[ei,ej] ®€]) ®e;=T
i,j i j i

] 1 ]
as desired. O

Remark 2.8. If t comes from an orthogonal structure, then any orthogonal basis of g is a
basis for t, and T is the structure tensor of g.

Lemma 2.9. The linear maps X*: g — T(GEX)) are independent Lie algebra homomorphisms,
ie.,

) N ) XE([by, b2]) ifxk=A
[X*(b1), X*(b2)] = {0 otherwise
for by, by € g.

Proof. When x = A this is simply by definition of the Lie bracket of a Lie group. If x and
A are endpoints of distinct edges, the claim is trivial. In case k¥ and A are the two endpoints
of a single edge, the associativity of G (left and right multiplication commute) implies the
result. tu

The next two lemmas are easy consequences of the compatibility of the exponential map
and the adjoint action:

gexp(sb) = exp(s Adg(b))g; beg geG,seR.
Lemma 2.10. Let « € Eand b € g. Then
(XH4(0))4 = —(X7“(Ada, (D))

for A e GEK),
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Lemma 2.11. Let x € E5(K) and b € g. Then

(80)x - X*(b) = X*(Adg,, (b))
where (gv) € G(K) and (o)« is the derivative of (gv): GE(K) - GE(K),
Finally, introduce the diagonal operators

XA =3 X% g 5 T(GHN), vev

KED
whose importance is due to the next lemma.

Lemma2.12. Letve Vand b e g. Then
XA(b)f =0

forany f € O(GE(K))9(K),

Proof. Let 7} be the curve s — exp(—sb) assigned to the factor G” of G(K). Then, trivially,

d
Ty () A) =X 0)s, A€ GHO
Hence X2(®)(b) is tangential to the G(K)-orbits of GE(K) along which f is constant. -

Proof (Proposition 2.5). Let f,g € O(GE(K)9(K) From Lemma 2.11 it is immediate that
Bi(v,<), v € V and hence also B;(x) are invariant under the gauge group action. Thus
{f,g}+ is an invariant function since both f and g enjoy this property. As O(GE®)) is
closed under left-invariant and right-invariant derivations (cf. [Hu]), the first statement of
the proposition holds true.

For the second claim we must compare any two ciliations < and <’ of K. It suffices to
consider the case in which <’ differs from < only at a single vertex v where «; < -+ < &y,
andxy <’ --- <"k, <" 1. Then

Bi(v,<) —Bi(v,<h) =2 Y, (X1 @XM(t) — (X @X")(t)
Aev—{xq}
=2 ) (X @XM)(H) — (X' @ X")(t)
A€V

= 2[(X" @ X2@)(1) — (X2 @ X)) (1)].
An application of Lemma 2.12 then yields
(Bi(v, <);df @dg) = (By(v, <');df ®dg)
as desired. 0

Of course, computations with the formula (2.8) still involves a ciliation, but we are free to
choose a preferred one.
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Proof (Theorem 2.6). The bracket {, }; is defined as contraction with a bivector field and is

therefore a derivation in each variable with respect to the multiplication of O(GE(®))9(K),
Its anti-symmetry follows from the same property of B;(<). All the difficulty lies in the

proof of the Jacobi identity. It is convenient to define the set of admissible pairs
A ={(k,A) € E5(K) x E5(K) | k + A, [x] = [Al}

to rewrite the bracket as

figh= 2 e} XifX]g

(k,A)EA
For f,g,h € O(GEK)I(K) we must show that the Jacobiator

J(f, 1) = {{f,g},h} + cyclic perm. of f, g,

vanishes. Since

{f.ghhp= > > €(K1,K2)€()\1,/\2)ZX]-Al(Xfle;Qg)XjAzh

(k1,42)EA (A1,A2)€A ij

we are lead to define the set of parameters:

P =P(f,8h) = Ax Ax{(f,8h);(h f,8):(Hh f)}

To a parameter we associate left and right terms:

L((x1,%2), (A1, A2), (f, &, 1)) = €1, 12)e(A1, Ay) ZX)‘leleKZgXAZh
ij

R((k1,K2), (M1, A2), (f, /) = e(m, ma)e(Ar, A2) 3 X[ FX 1 X2 X 2h
ij

By the Leibniz rule we have

J(f,gh) =Y L(p) +R

peP

We reorganize this sum with the aid of the bijection ip: P — P given by

¥((K1,%2), (A1, A2), (f, 8/ 1)) = (A2, A1), (K, 2), (B, £, 8))-
Since
R(()\z,)\l), (K],Kz) h f g)) /\2,)\1) K1,K2 ZXAZhXleAleKZ
2]
= —e(K1,K2)e(Aq, Ag) Z XXM XX h
L]
we associate a third function to a parameter:

[(c1,2), (A1, A2), (8, 1)] = e(ier, k2)e(Ar, Aa) DX, X FX 2 g X 2h
ij

(2.10)
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and arrive at the more manageable formula

J(f,g.h) = > Lip p) = >.Ipl (2.11)

peP peP
According to Lemma 2.9, the expression (2.10) is zero unless k1 = A1. Therefore define
P = {((r1,%2), (A, A2), (f, &, h)) € P | k1 = Ay} U cyclic perm. of f, g, h
and consider the map 7: P! — 2F¢(K) given by
(e, A), (e, 1), (f, 8, 1)) = {K, A, i}
By the admissibility of the two pairs in a parameter, we have
Im(rt) = {s € E3(K) |[2<|s| £3ATveV(K):s <o}

Consequently, we may rewrite (2.11) as

J(f.em=20pl= > > 2| (2.12)

peP! veV/( )‘S|C227 peET— (s)

Let us compute the generic term of this sum:
[(k, A), (K, 1), (f, &, 1)] = e(oe, e, ) Y [XF, XFIf X} g XI'h
ij
e(ic, Me(r, 1) Y X*([e, ei]) fX* (ei)g X (ej)h
ij
— e(x, Ve(x, {(X* @ X' @ XMT; df ® dg ® dh).

Define

[(K/ A), (x, “I/l)] = [(K/ A), (x, ,‘I/l), (f/ g/h)] + CyCliC perm. of f/ g/h
and apply the cyclic invariance of T (Lemma 2.7) to obtain
[(x, A), (x, )]
=e(i, Me(x, ) ((X* ® X* @ XMT; df ® dg ®dhy + cyclic perm. of x, A, ).

To compute (2.12) let v € V(K) and consider a subset s € v of cardinality 2 or 3. In the
former case write s = {x, A}. Then

ml(s) = ({x, /\})
= {((x, A), ), (f.8h ), (f,8 h))} ucyclic perm. of f, g, h
so that

ST Ipl = [0 A), (1, M)] + [(A,x), (A, )]

= > (xWex"@eXx CNT;df ®dg®dh).
o: {1,2,3}—»s
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The other case is |s| = 3, in which we puts = {«, A, u}. Then

o ls) =7 H{K A )
= {0, A), (1, 1), (f, 8, 1)); (%, ), (%, A), (f, 8, 1))}
U independent cyclic perm. of f, g, hand «, A, .

The computation

[(, A), (1, )] + [(x, ), (i, A)]
= e(x, Me(x, p) (((X* @ X' @ XM)T; df ® dg ® dh) + perm. of k, A, 1)
=e(Ne(k,p) Y (XWX XTNT;df @dg@dh)
c:{1,23}—»s

proves that this contribution is affected only in sign by the cyclic permutation of , A, pi. But

e(x, Ne(x, u) +e(A, we(A, k) +e(p, K)e(p, A) =1
so we end up with the same formula as in the first case:
Z [p] = [(x, A), (x, 1)) + [(x, u), (x, A)] + cyclic perm. of x, A,
pem—(s)
= > (xWex@ex NT;df @dg®dh).
o:{1,2,3}-»s
Therefore
Jf.em= > > 3 (xWex@exO)T;df ®dg®dh)

veV (K )\S|CU o:{1,23}-»s

DY AKX XM XN T;df @dg®dh)
veV (K) kA, u€v
= Y UXET); df @dg @ dh)
KEV
S ATy df @dg@dhy — Y. (XF)T);df ®dg @dh)
veV(K) k€E(K)

The first sum is zero because of Lemma 2.12. So is the second one since for any a € E(K)
and A € GEX), Lemma 2.10 implies

(XPOFD) 4 = (X Y ey ei] @i @ep)a
ij
= 2 X7 (e e]) a® X7 (e1) 4 ® X7 ) 4

= > —X7*(Ady,([ej €i]))a ® —X"-*(Ada, (1) a ® —X*~*(Ada,(e))) 4
i
(X7 YA, (), Ada, (e)] @ Ad, (e) @ Ada, (¢)))
i
~((X*(T)4.
This completes the proof. O
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2.3 Poisson Structures on the Moduli Space

In this section K denotes a reqular, fat combinatorial complex, i.e., the 1-skeleton of K is a fat

graph and each face boundary ! -+ -aj" is a simple loop such that (')Jra? is the successor
of ('),ai:f,i = 1,...,n in the cyclic order at their common vertex. We shall prove that if
K models ¥ then the Poisson structure on O(GE(X))9(K) induces on O(M (Z; G)) a Poisson
structure which is independent of K; this is accomplished in two steps. Recall that the set of

G-connections on K is an invariant, algebraic subset A(K) € GF (K); the induced restriction
map p: O(GEKNIEK) _ O(A(K))9K) is surjective by Remark 1.1.

Theorem 2.13. The Poisson bracket { , }; on O(GEK)I(K) descends to O(A(K))9K) via the
restriction map p: O(GEK)IK) L O(A(K))9K),

Proof. It suffices to prove that the kernel of p is a Poisson ideal. We begin the proof by
considering one face F of K. The algebraic equation

Hol*(0F) =1, Ae GEK

defines an affine subset A(K, F) = GE(K); associated to it is the ideal I{A(K, F)) € O(GEKX))
of regular functions vanishing on A(K, F).

Claim. I(A(K,F)) n O(GEEKNIEK) ¢ O(GEKI(K) is a Poisson ideal.

Let f € I(A(K,F)) n O(GEKNYG(K) and g€ O(GEEKNYGK) " Given A € A(K, F), we must
show that

{f,81(A) = 0.

Write 0F = a{' - - a3, and set

€; € _ .
Kj1 = ('sz].’, Kjp = (')+0¢].’711, vj = [Kj1]l = [xj2l; j=1,...,n (2.13)

By the assumptions on K the vertices vy, ..., v, of F are distinct and «;; is the successor
of k1 in the cyclic order at v;. It is convenient to require that the ciliation of K is chosen
such that at v; the minimal elements are x;; < k;>. Since f is constant (in fact, zero) along
A(K, F), we have

(X:(f)A = 0/ Ke Ea(K) - {K1,1/K1,2/ e /Kn,HKn,Z}-

This implies by Lemma 2.12 that

0= (X2 () f)a = (X" Fla+ (X F)a (2.14)

and also simplifies the computation of the bracket to

FrahA)=>1 3 el (X" Fla(XFg)a

j KEU]*{K]'J} 1
+ Y el ) YXPF)a(XI)a

k€v;—{K;2} i

= SNUX HaXT ) A + (X FaXg)a
joi
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where the latter equality is due to (2.14). But since {x;1, %112} = {0+a;,d-«a;} by (2.13),
Lemma 2.10 yields

ZX”fX”g <(XK]1 ®2 df®dg> <(XK]+12 ®2 df®dg> ZX]+12 X]HZg

i

so that another application of (2.14):
{f,8h(A ZZ (X; D f AlX; 204+ (X;{m'zf)A(X;cHl'zg)A
— ZZ X ]1 X Kj2 ) _ (X;{j+l,1f)A(X;Cj+1,2g)A

=0

finishes the proof of the claim. To prove the theorem, put Ix = > ; I(A(K, F)) and deduce
= V(D ICAK F)) = VUAK F) = [AK F) = AK),
F F F
the last equality being the definition of .A(K). By Hilbert’s Nullstellensatz

ICA(K)) = V(1) = v/Tx = Radgrio (1)
Therefore
Kerp = I(A(K)) n O(GFK)H9(K)
= Rad gy (1) 0 O(GH) T (2.15)
= Rad gy gryaca (Ik n O(GHE)IH),
Claim. We have

Ix n O(GE(K =14 ) A O(GEKNIEK), (2.16)
F

This is an identity of ideals in O(GE(K))9(K) whence the inclusion D is automatic. For the
other one, let f € Ix n O(GEKNIK) and write f = 3¢ fr, fr € I(A(K, F)). The diagram

O(GE®) — X O(A(K, F))

I I

O(GEEKNGK) —— O(A(K, F))9K)
implies that Ker pr = I(A(K, F)) is closed under the Reynolds operator. Hence,

F=Vf=Vfre Y (I(AKF)) n O(GEK)GK))
F

F

proving the claim. The right hand side of (2.16) is by the first claim a sum of Poisson ideals
and thus a Poisson ideal. Recalling (2.15), we are done by the next lemma. O
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Lemma 2.14. Let [ C S be a Poisson ideal in a Poisson algebra. Then \/1 is also a Poisson ideal.

Proof. Let x € /I and y € S. Pick N € N such that xN € I. Writeady = { ,y}: S — S; this
map preserves I, so the Leibniz rule yields

Is@dy)N@EN)y = >] (ad )l ' Ol(x) - (ad )l Ml (x)
o:{1,..,N}¥D

PIREAI

0ESN

= N!{x,y}¥ mod x

implying N!{x,y}N € (x) + I € /I so that {x,y} € \/I as desired. O

Definition 2.15. A model :: K — X for ¥ is called a Poisson model if 1 is a homeomorphism
and the cyclic order at each vertex of K agrees with the orientation of >~. Such a model
induces a Poisson structure on O(M(Z; G)) by insisting that

77.'*)71

¥, O(AK)IR T ok 6)) O oMz 6))

is a Poisson isomorphism.

Theorem 2.16. The Poisson structure { , } on M(X; G) is independent of the Poisson model used
to define it.

Remark 2.17. In the case where X has non-empty boundary and t = tp for an orthogonal
structure B on G, this result was obtained in [FR].

Proof. Let L Kj — 2, j = 1,2 be two Poisson models. Recalling Remark 2.2, we see that
the task is to prove the

Claim. The map T12: O(A(K;))9%2) - O(A(K1))9(K1) is a Poisson isomorphism.

We verify the claim in three special cases and then reduce the general situation to these
cases.

Homotopy. If K; = K; and 11 and p are homotopic homeomorphisms, the claim is triv-
ially true by Corollary 2.3.

For the remaining two cases it is useful to let 7y, be induced by a map ¢: GE(K1) —
GE(2) as in the proof of Proposition 2.1. We may assume that ¢ has been constructed
carefully, namely such that if K; and K, have a common edge «, it holds that

P(A)y = Ay, Ac GEED, (2.17)

As the vector fields Xf“x and X?’“ live on the factor G common to GE(X1) and GE (KZ), this
implies

(XE(fo@)a = (XEf)pa)y K€ {ora}, Ae GEKD (2.18)

for any f e O(GE®K2)9(K2) | In this formula X¥ is interpreted as a vector field on GE(K)
(respectively, GE(KZ)) on the left (respectively, right) hand side. Since we already know that
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(¢*); = 712 is an isomorphism of algebras, it is enough to prove that it respects the Poisson
brackets. But as p;: O(GE(Kf))g(Kf) — O(A(Kj))g(Kf), j = 1,2 are surjective Poisson homo-
morphisms by Theorem 2.13, it suffices to verify that ¢* : O(GE(K2))9(K2) _, O(GE(K1))9(Ky)
is a Poisson homomorphism. In other words, for f] € O(GE(KZ))Q(KZ), j=12and A €
GE(Kl), we must check that

{109, f2093:(A) = {f1, f2}e(9(A))

which expands to

NS e, ) Y XE(firo @) a(XP(f20 9))a

V(Ky) x,A€
veV(Ky) k,A€0 i (2.19)

— Z Ze(K,)\)Z(X;'{fl)(p(A)(XiAﬁ)(p(A)'

veV (Ky) K,A€0 i

Edge division. Suppose that K; is obtained from K, by dividing an edge < into two edges
« and B with a vertex v. Fix an arbitrary ciliation of K;. This induces a ciliation on K;
once we add one of the two possible cilia at v. Almost all edges are common to the two
complexes, so we focus attention on the bisected edge; using the trivial fact that v ~ af rel
endpoints, we have the following local picture of ¢

A o Ag 0 AcAg
n v B Y

Considering the curve s — (Ay exp(se;))Ag = Aqx(exp(se;)Ag) proves

(X foe)a =~ (X Gro o)y
Therefore the contribution from v to {f1 o @, f» © @}+(A) is

Z(Xfw(fl ° (P))A(Xiaiﬁ(fZ 0P)) 4~ (Xffﬂ(fl o (P))A(XiaJrlX(fZ °@)), =0.

1
Analogously, the curves
s — (exp(se;)Ax)Ap = exp(se;)(AnApg); s+ Aa(Agexp(se;)) = (AxAp) exp(se;)

imply the formulas

0_ 0_ 0 0
(X7 Fro@) g = (O "oy (X090 4 = X7 gra)
Together with (2.18) this proves (2.19) and thereby the claim.

Face division. Assume that K; is obtained from Kj; by dividing a face F into two faces by
a diagonal edge « (oriented arbitrarily). All edges but a are common to the complexes, that
is, E(K1) = E(Kp) u {a}, and in light of (2.17) we see that ¢: GE(K) = GE(K2) G - GE(K2)
is the projection on the first factor. It is then obvious that

(X{(fie@)a=0, xe{dia}

so the two endpoints in Kj not contained in K, contribute nothing to {f1 © @, f o ¢}+(A).
Choosing some ciliation of K; and employing the induced ciliation on Kj, it follows again
from (2.18) that (2.19) and hence the claim holds.
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General case. Given a third Poisson model i3: K3 — %, it is evident from (2.5) that 7y, =
T13 © T3p. Therefore it suffices to prove that K; and Kj are related by a finite sequence of the
above three moves homotopy, edge division and face division. First of all, we can assume
by edge division that the two complexes contain an equal number of vertices. By homotopy
we can ensure that the vertices of K; and K are identified and that all intersections in the
interiors of their edges are transverse double points. Add a vertex by edge division to both
complexes at each of these intersection points. Now edges intersect only at vertices whence
the union Kj u Kj; is a Poisson model obtainable from either of K; and K, by successive face
divisions. O

2.3.1 Poisson Homomorphisms between Moduli Spaces

Suppose ¥ has non-empty boundary and denote by 6yX one of its boundary circles. Let &
be the surface obtained from X by attaching a disk along dyX. Restricting a flat connection
on X to ¥ yields a map r: M(%;G) — M(Z;G). Let 1: K — X be a Poisson model for ¥;
attaching a disk along the face boundary of K corresponding to dyX results in a Poisson
model i: K — X for X. Obviously, E(K) = E(K) and V(K) = V(K) so that G(K) = G(K). By
definition, .A(K) is a subset of .A(K) and the equivariant inclusion i: A(K) — A(K) models
r; more precisely, the diagram

— = N < _
A(K) — M(K; G) —— M(Z; G)

Holf1

AK) ——— M(K; G) —— M(Z;G)
commutes. Thus r preserves regular functions, and we have an induced diagram

¥,

O(GEK)G(K) _f, O(A(K))9K) O(M(%;G))
O(GE®NI® —F—5 0 4®))IE —— OM(E; G))

It now follows from Theorem 2.13 and Definition 2.15 that 7*: O(M(Z;G)) — O(M(Z; G))
is a surjective Poisson homomorphism.

Remark 2.18. In anticipation of what follows we renormalize the Poisson bracket; from
now on { , }; equals half of the value it had prior to this remark.

2.4 The Poisson Algebra of Chord Diagrams

Following [AMR1], a chord diagram D is a finite collection of oriented circles with a finite
number of chords (undirected line segments connecting two distinct points of the circles)
marked upon them. Chords are assumed to be disjoint, in particular no two endpoints of
them coincide. The circles in D are called the core components, and regarded as a whole their
union is termed the skeleton. When drawing (parts of) chord diagrams in the plane, chords
are depicted as dashed lines.
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A geometric chord diagram on X is a smooth map from a chord diagram to X, mapping
the chords to points. Images of chords will be drawn as fat dots. A chord diagram on X is
an equivalence class of geometric chord diagrams modulo homotopy. Clearly, every chord
diagram on X contains a generic chord diagram, i.e., a geometric chord diagram such that its
skeleton is immersed in ¥ and with all intersections being transverse double points.

Let D(X) denote the complex vector space with basis the set of chord diagrams on %; it
is graded by the number of chords. Let 4T(X) < D(X) be the subspace defined by the local

relation

as well as all the relations obtained from this one by reversing orientations of strands (core
components) and changing the signs accordingly: For every chord intersecting a compo-
nent with reversed orientation, there is a factor of —1 for the diagram. These relations are
called 4T-relations. Of course, 4T (%) is a homogeneous subspace so that the quotient

c(x) = PE) a1z

is also a graded vector space.

There is an obvious graded algebra structure on D(X) given by taking the union of
two chord diagrams. This multiplication is evidently commutative, and the empty chord
diagram is its unit. Moreover the subspace 4T(X) is an ideal whence C(X) is also a commu-
tative, graded algebra. The Poisson structure on C(X) has the following description. Given
two chord diagrams on %, we can choose geometric chord diagrams (;: D; — £, j = 1,2
representing them such that their union (product) is a generic chord diagram. For p €
D1#D; the oriented intersection index is given by

D D

1 for 2>< !

e(p; D1, Ds) = b D,
-1 for >P<

Define Dy U D, to be the chord diagram on X obtained by joining tfl(p) and 1, !(p) by a
chord mapped to p.

Proposition 2.19 (Andersen, Mattes & Reshetikhin). The bracket

{[D11,[D2]} = > €(p; D1, D2)[Dy up Dy
peD1#D,

is well-defined and determines a Poisson structure on C ().
We call C(X) the Poisson algebra of chord diagrams on X.

Remark 2.20. We can colour the core components of chord diagrams with finite dimen-
sional, rational representations of G. The above definitions make sense in this setting, too,
and yields a Poisson algebra C(%; G).

Remark 2.21. An orientation preserving diffeomorphism of X respects the 4T-relation, so
there are natural actions of I' () on C(X) and C(X; G). It is immediate from Proposition
2.19 that these actions are by Poisson isomorphisms.
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2.4.1 The Poisson Loop Algebras

Various quotients of C(XZ) will occupy us in the sequel. It is therefore important to notice
that any subspace defined by local relations is a Poisson ideal and thus yields a quotient
Poisson algebra. A recurring example of this is the loop relation Lg f:

-] L

Here s (smooth) and f (forget) are complex parameters. For future reference we calculate
the quotient C(X)/L; ;. The sub-algebra Z(X) = DO)(x) = ¢O(ZT) € C () is a vector space
with basis the set of diagrams on L (chord diagrams without chords). Let 71 (X) denote the
set of conjugacy classes in 711(X), i.e., the set of free homotopy classes of loops on . A
diagram on X is simply a finite collection of elements from 7t;(X), implying that Z(X)
is isomorphic to the polynomial algebra on 71 (X); we therefore refer to Z(X) as the loop
algebra of 2.

Associated to L is the resolving map R, f: C(X) — Z(X) given by replacing each
chord by the right hand side of (2.21); the loop relation implies the 4T-relation so R is
well-defined. It is also obvious that the induced map

Ry r: CE)/L ;= Z(®) (2.22)

is an algebra isomorphism, its inverse being the composite Z(X) € C(X) — C(X)/Ls .
To transfer the Poisson bracket to Z(X) via this isomorphism is elementary. For generic
diagrams D; and D, on X we have

{D1,Da}sr= Y. €(p;D1,D2)(s(D1Dy)p + fD1D2) (2.23)
pEDl#Dz

where (D1D;), denotes the diagram obtained from DD, by the orientation preserving
smoothing of the crossing at p. The loop algebra endowed with this Poisson structure is
denoted by Z, ¢(X); for some values of (s, f) these Poisson algebras were studied in [G2],
[T], [AMR1] and [AMR?2].

2.5 Chord Diagrams as Functions on the Moduli Space

We provide in this section the generalization of the Poisson homomorphism ¥5: C(X%; G) —
(O(M(Z;G)),{, }B) where B is an orthogonal structure on G (cf. [AMRI1]) to the case of
an arbitrary symmetric, Ad-invariant tensor t € g® g.

Let D be a generic chord diagram the ith core component of which is coloured by a
finite dimensional, rational representation p;: G — Aut(V;). We associate a function on the
moduli space to D in the following fashion. Denote by A a flat G-connection in a principal
bundle P — X. A set of cut points on D is by definition a finite set C of points on D
including all chords and at least one point on each core component of the diagram; such a
choice naturally induces a decomposition of D into its chords and a set E(D, C) of arcs (we
ignore the non-chord intersections in D). Trivializing the fibre of P over each cut point, the
holonomy with respect to A along an arc « becomes an element T2 € G. Decorate the arcs
and the chords with vector spaces and corresponding tensors as follows (we employ the
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derived representations of g):

44
ﬁ/* ~ (T, A e Aut(V, ) SEnd(V) =V; @V, (2.24a)
\ / i
/'\ ~ (0, ®pj,)(t) € End(V} ) ®End(V},) = V;, @ Vi ® V), @ Vj;.  (2.24b)

It is, of course, understood that the indices on representations are those of the correspond-
ing core components. We have drawn (infinitesimal) parts of the arcs incident to a chord
in order to indicate how the vector spaces are associated to these arcs. From the tensors
of the individual pieces we get a tensor 7;(D, C; A) in the tensor product of all the vector
spaces involved. Glue the pieces together to get the diagram D back. While doing this, we
produce a number 7;(D; A) € C from 7¢(D, C; A) by performing the canonical contraction
of a vector space and its dual occurring where two arcs are glued together and where an
arc is glued to a chord. The number 7;(D; A) is independent of the trivialization of P‘C;
this is immediate for the cut points that are not chords, and for the chords it is an easy
consequence of the compatibility of the derived representation with the adjoint actions:

poAdg = Ad,)op: g = End(V), geG

and the Ad-invariance of ¢. It is also clear that 7;(D; A) is independent of how the non-
chord cut points are chosen; omitting C in the notation is hence justified. We set f5(A) =
T:(D; A).

A core component S; intersecting no chord evidently contributes the factor Tr(pj(TSf}))
to f5(A). Having taken care of such components, we now present a formula for f5(A) in
the case where all core components intersect at least one chord. We choose the cut points
in the most economical way, namely we choose only the chords. In this way the circle S;
is decomposed into arcs aj g, .. ., &j,n; where the indexing order agrees with the cyclic order
of the arcs induced by the orientation of S;. Pick for each chord ¢ a basis {e;, };, for t, and
define indices k(j, I) by cy(j ) = 0+a;; this is possible since every arc of the decomposition
ends at a chord. Then

Z nTr(H (T, p] ezkw))) (2.25)

wdm j=1 I=1

To verify this formula one simply has to recall the commutative square

End(V)® —1 End(V)

E kr

(VeVH®N — - C

where IT is multiplication, i.e., composition of endomorphisms. The lower horizontal map
is given by performing the canonical contractions of the pairs of spaces indicated by the
numbers here:

1 2 2 3 N 1
(VRVHON — vV VeV ® -V V*
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Ift = tp € g® g corresponds to an orthogonal structure B, the formula (2.25) agrees with the

definition in [AMR1] where it is also proved that fItDB (A) depends only on the equivalence
class [A] € M(X; G) and the homotopy class [D] € D(X; G). The proof rests on the fact that
tp is Ad-invariant, so it is valid in our setting, too. Therefore the formula

(Y«([DD)([A]) = fp(A)

determines a linear map ¥;: D(X;G) — Fun(M(X; G)); it is clearly a homomorphism of
algebras.

A model (K, 1) for X is said to be compatible with a chord diagram D with cut points C if
C c V(K) and E(D, C) € E(K). In this situation we may use the bijection

o (Hol*)™': Fun(M(Z; G)) - Fun(A(K; G))9(K)
and (2.25) to express ff, € Fun(M(Z; G)) as

LA Z HTr(np] (Aa, )0} e,km))) (Aq) € A(K; G). (2.26)

cdm j=1 1=1

It follows immediately from this formula that f}, is a regular function on the moduli space.

The last step in the construction is to verify that ¥;: D(X;G) — O(M(Z; G)) respects
the 4T-relation (2.20). Denote by j; the index of the core component to which the /th strand
(counting from left to right at the bottom) in the local pictures belongs. By an appropriate
choice of cut points and trivializations of their fibres, we may assume that the parallel trans-
ports TA = 1 for all arcs occuring in the relation. Associating the same basis {ej,...,e;}
for t to all chords, we compute the contribution from the left hand side of (2.20) to be the
following endomorphism of V;; ® V}, ® V}, (recall the formula (2.9)):

Z p]l el1 ph (612) ®p]2(elz) ®P]3 ell Z ph elz p]l (ell) ®p]z(elz) ®p]3(e11)

iq,1p i1,ip
= 2. 05 (len €)@ (i) ®pj (ei)
i1,ip
= (0}, ®pj, ®pj)(T).
Analogously, the right hand side of (2.20) contributes the endomorphism
Z p]l ell ® p]z (612) ® P]3 (elz)p]s ell Z p]l ell ® p]z (612) & P]3 (611 )p]3 (elz)
z1 12 11 12
= 2.0 (€1) @pj(ei) ®p ([eir €1 ])
i1,z
= (p]1 ®P]2 ®P]3)(T)
by the cylic invariance of T (Lemma 2.7).

Theorem 2.22. The map ¥;: C(X,G) —» (O(M(Z;G)),{, }t) is a I' L (X)-equivariant Poisson
homomorphism.

Proof. Let D be a coloured chord diagram on ¥, and let ¢ € I'; (). From the definition of
connection pullback follows

(8 fD)([A]) = fp([g* Al) = Ti(D; g* A) = Te(8(D); A) = fyy([AD),  [Ale M(X;G)
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as desired. It only remains to prove that ¥; preserves the Poisson brackets. Let D; and
D, be coloured chord diagrams with Dy u D; in general position. Choose cut points C; for
Dj, j = 1,2 such that every p € D1#D, is a cut point for both D; and D; and such that the
arc sets E(D;, C;) contain no loops. Let K be a Poisson model for ¥ compatible with the
decompositions of both diagrams. Notice that formula (2.26) makes sense for any graph
connection (A,) € GEK), Therefore ff)j e O(A(K; G))9K) is naturally the restriction of a

function f; € O(GEEKNI(K) and by Theorem 2.13

(b fb, 1t (Ax)) = {f1, f2}1((Ax)),  (As) € AK;G).

We apply formula (2.8) to compute the right hand side. Since f; depends only on the factor

GEDiC) of GEXK) 4 pair (x1,k2) € E5(K) x E5(K) cannot contribute to the bracket unless x;
is an endpoint of an arc in the decomposition of D;. Hence the vertex [x1] = [ra2] € V(K)
must be an intersection point p € D1#D,. Here is a picture of the decomposition of D; U D,

near p:
p
a

Of course, other edges of K may be incident to p, but we have already justified that they
can be ignored in the computation. For definiteness we assume that the ciliation at p is
such that

oay < 041 < Bt < 0P (2.27)

Since we allow no loops in the decompositions, the arcs a1, a3, B1, B2 are distinct. The inter-
section index €(p; D, Dy) distinguishes two cases; suppose p is a positive crossing, i.e., a1
and «y belong to Dy (and 1, B2 to D5). Denote by j;, i = 1,2 the index of the relevant core
component of D;. Let A? € A(K; G) be a connection on K and consider its corresponding
inclusions

fo: G x G2 — GER),f . GPLx P2 GE(R),

It is evident from (2.26) that there are naturally defined linear maps L;: End(V},) — C, i =
1,2 (depending on A°) such that

fl(lio(Aaertxz)) = Ll(Ph (Aal)le(Atxz))r (Ag, Agy) € GM X G™2,
fZ(lio(AﬁlfAﬁz)) = La(pj,(Ap, )0j(Ap,)),  (Ap,, Ag,) € GF1 x GP2.,

Therefore, in a basis {eq,--- , ey} fort,

-, d
(X7 ) g0 = ds| firfho( A, exp(ser), Ag,)
s=0

d
- 5b (0, (A9 )pj, (exp(se;))pj, (AY,)) (2.28)

= Lu(pj, (A2 )pj, (e)pjy (Ady))
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since differentiation commutes with linear maps. Analogously,

o d
(X7 f1) o = E‘S:Ofllﬁo(z‘lgl,eXp(S(—ez’))Agz)

= o5 Loy (A% oy (exp(s(- ey (A%) 22
= —L1(pj, (A, )pj (e1)pj, (AD,)),
and in the same way
(X7*P1 f2) 40 = Lo (1, (A3 oy, (€101, (A3,)), (2:30)
(X[ f) a0 = ~La(pjo (A Jpp (€0 (AR,)). @31)

Thus, up to a sign, the four relevant pairs of endpoints
(0+a1,0+P1), (041, 0-P2), (0—a2,04.B1) and (0—az, 0 o)

yield the same contribution to {fi, f2}+(A?), namely
1
5 2 L1 (03, (AR i (e0)pj, (AG)) La (0 (4G Do (e (AR,)).
1

By definition of ¥} this expression is exactly % fl’fj1 UpDs (AY). Regarding the sign, the ciliation
(2.27) and the signs in formulas (2.28)—(2.31) imply that the pair (04«1, 0 B2) yields the total
sign —1 whereas the remaining three pairs yield total sign +1. Since (3 — 1)1 = 1, the total
contribution from p is flglup DZ(AO). The case of a negative crossing is, of course, entirely

analogous; the contribution to {f1, f2}+(A?) is then — f]f-)lup D, (A9). Hence,
{fb, fb,}e(A%) = {f1, f2}e(A%) = > e(p; Dl/DZ)ftDlupDz(AO) = fip,pyy (A")-
peD#D,
The proof is complete. o

Theorem 2.23 (Andersen, Mattes & Reshetikhin). The map ¥Yg: C(%; G) » O(M(Z; G)) is
surjective if G is one of the groups GL,,(C), SL,(C), On(C) and Sp,,,(C) equipped with a suitable
orthogonal structure B.



Chapter 3

Quantization of Poisson Algebras

We present in this chapter the concept of deformation quantization of Poisson algebras (a
la Turaev [T]). The important special case of a #-product is considered, including a vital,
general example due to Andersen, Mattes and Reshetikhin [AMR2] and basic properties
of quotients and actions. Completion of general quantizations is also addressed. In the
course of this presentation we shall need various elementary results about filtered modules
and algebras, in particular, about their relation to graded modules, respectively graded
(Poisson) algebras; the first section is devoted to these results.

3.1 Filtered and Graded Objects

Throughout this section R is an arbitrary commutative ring; modules and algebras have R
as ground ring unless they do not.

3.1.1 Filtered Modules and Algebras
By a filtered module, we shall mean a module M with submodules M,,, n € N such that
M=My2M;2---
As an example let h € R, and set for eachn € N
WM = {h"v |ve M}, (K =1).

Then h"M € M is a submodule, and putting M,, = h"M defines a filtration termed the
h-filtration on M.

A map of filtered modules is a module map respecting the filtrations. We define My, =
Mo My and say that M is Hausdorff if Mo = 0. A sequence (v;) in M is called a null
sequence if

VneNiANeN:i = N = v; € M,,.

The sequence is said to converge to v € M if (v; — v) is a null sequence. Maps of filtered
modules preserve limits. If M is Hausdorff, then limits are unique. Every convergent
sequence is Cauchy; i.e., it satisfies

\1neN3NeN:i,j>N=>vifvjeMn.

24
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In case every Cauchy sequence is convergent, M is said to be complete. The completion of
M is a pair (M, 1) where M is a complete, Hausdorff filtered module and :: M — M is the
universal map from M to complete, Hausdorff filtered modules, i.e., if f: M — N is a map
of filtered modules of which N is Hausdorff and complete, there is a unique map f: M — N
such that f o1 = f. It is a consequence of this universal property that M ~— M becomes a
functor on the category of filtered modules and that M is canonically isomorphic to M if M

is complete and Hausdorff. The completion of M may be constructed as the inverse limit
of

M/Ml ‘_M/M2‘_

Concretely, this means that elements of M are sequences ([vx]n), [vn]n € M/M, such that
Up41— Un € My; the submodule M, consists of those sequences in which the first n terms
vanish, i.e., one may assume that v;;, € M;;, m € N. The universal map is given by i(v) =
([0]x), and the formula for the completed map is f(([vn]n)) = limy oo f(04).

Remark 3.1. If M is completed with respect to the h-filtration, then WM < M, as is easily
verified.

A filtered algebra A is an algebra which as a module is filtered in a fashion compatible with
the multiplication: A, A,y € A, ,». Maps of filtered algebras are maps of algebras which
are maps of filtered modules, too. The above discussion of filtered modules carries over
to the setting of filtered algebras; in particular, notice that A, € A is an ideal so that the
construction of the completion A makes sense in the category of algebras.

3.1.2 Modules over the Power Series Ring

Let V denote a complex vector space. The set V[[h]] of power series with coefficients in V
is naturally a module over C[[h]] with scalar multiplication

Z}\lhlzvjh] = Z)\iv]-h”j, U]' eV, A,‘ e C.
i j i,j

Unless explicitly stated otherwise, we employ the h-filtration on V[[]] making it both com-
plete and Hausdorff. Assume that M is a complete, Hausdorff filtered C[[}]]-module such
that i"M < M,,. Then

HomC[[h]](V[[h]],M) = HOl’nc(V, M) (3.1)

as complex vector spaces. Namely, if ¢: V[[h]] — M is C[[h]]-linear, it is also filtered so
that

(D oil') = Y p(v) (3.2)

whence ¢ is determined by its restriction to V < V[[h]]. On the other hand, if ¢: V — M s
complex linear, formula (3.2) provides a well-defined extension of ¢ to a C[[h]]-linear map
@: V[[h]] = M since the right hand side is a Cauchy sequence in M.

Consider the special case M = W|[[h]] where W is a complex vector space. Clearly

Hom (V, W[[h]]) = Home(V, W)[[]]
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as complex vector spaces, and combining this with (3.1) we obtain
Homcypy (V{[1]], WI[K]]) = Homc(V, W)[[A]]

in fact, this is an isomorphism of C[[h]]-modules (C[[/]]-algebras if V = W). The formula
corresponding to this isomorphism is

Z q)jhj (Z o) = Z q)j(vi)hi*j, ¢;j € Homg(V, W) (3.3)
j i i

cf. (3.2). In particular, ¢ € Home(V, W) € Homc(V, W)[[h]] induces a C[[h]]-linear map
¢ = ¢ VI[h]] - WI[h]] given by o(3; v;h') = 3 g(v;)H'.

3.1.3 Relations to Graded Objects

We have a functor Gr from filtered modules to graded modules defined by

o
MGr = @ M(m)’ M(m) = Mm/M1n+1

m=0

on objects. A morphism f: M — N is taken to fo; = @y fc(;':l) where fgf) is the unique
map making the diagram

M, % N

| o |

M) = (m)

commutative. It is clear that the functors Gro and Gr are naturally isomorphic. Notice
that Gr becomes a functor from filtered algebras to graded algebras if we define a multipli-
cation on Ag; by

[¥]ly] = [xy] € AT, [x] e AT, [y] € AU,
Observe that A, is commutative if and only if
XY —yYx € Apymre1, XE€Am ye Ay

In this case the equivalence class [xy — yx] € Alm+m'+1) depends only on [x] € A" and
[y] € AC™). In fact we have (cf. [AMR2])

Proposition 3.2. Let A be a filtered algebra. If Ag, is commutative, then the bracket
(], ) = [y —yal e AT, o] e A, [y e A0
determines a Poisson structure on Agy.

Remark 3.3. The natural isomorphism Gro = Gr preserves multiplication and, in case
this is commutative, also the Poisson structure.
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Also notice that a graded algebra A = @_, A" is in a natural way a (Hausdorff) filtered
algebra AF = A with AL = @X_ A", Any map of graded algebras is clearly a map of
filtered algebras, so F is a functor. We have

_ o8]
A=AF=TT]am
m=0

with the obvious filtration and multiplication. In the sequel, we sometimes use the notation
(am) for elements of A; itis implicit that a,, € A Of course, the functor Gr oF is (naturally
isomorphic to) the identity functor on graded algebras.

3.1.4 Completions of Quotients

Let A be a filtered algebra, and let I € A be an ideal with corresponding projection 77: A —
A/I. The induced filtration on A/I is given by

(A/D) = 7(An) = (Ay + D/I. (3.4)
Remark 3.4. The h-filtration on A induces the h-filtration on A/I.
Put AT = A and define a (new) filtration on this algebra by A}, = A, + I.

Proposition 3.5. The projection rt: Al — A/l is filtered and induces an isomorphism
7T Al > A—/I
of filtered algebras.

Proof. By (3.4), 7t is filtered so it induces the commutative square
I 7
A /A£1+1 A/I/(A/I)nJrl
I 7
Aljat —T— A/,
But the horizontal maps are simply the canonical isomorphisms
Afan+1— A1/ (4, + D)1

This completes the proof. O

3.2 Deformation Quantization and =-Products

In this section S denotes a complex Poisson algebra.

Definition 3.6. A deformation quantization of S is a C[[h]]-algebra A together with a surjec-
tive algebra homomorphism p: A — S such that

ab —ba = hp~*({p(a), p(b)}) mod hKerp (3.5)
foranya,b e A.
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In this definition S is regarded as a C[[h]]-algebra via the augmentation e: C[[h]] — C.
Notice that (3.5) makes sense since the indeterminacy of the expression hp—({p(a), p(b)})
is exactly h Ker p. Also, the condition need only be verified on a set spanning A. We some-
times omit the word deformation and simply speak of quantizations. A morphism from
a quantization p: A — S to another one q: B — T is simply an algebra homomorphism
A — B covering a Poisson homomorphism S — T. In this way quantizations form a cate-
gory with the obvious definitions of identities and morphism composition. We agree that
an equivalence of quantizations of S is an isomorphism covering Idg. When looking for
quantizations of S, a natural C[[/]]-module to consider is S[[h]]. This leads us to a special
and very important class of quantizations.

Definition 3.7. A =-product on S is a deformation quantization of the form p = my: S[[h]] —
S. The set of #-products on S is denoted by (S).

Remark 3.8. This definition is equivalent to the traditional one (cf. [BFFLS]) as we shall
see shortly.

For a C[[h]]-algebra product = on S[[h]], it is convenient to introduce its coefficients, namely
the C-bilinear maps c,: S x S — S given by

X#y = ch(x,y)hr, X,y €S.
r

The coefficients determine * completely since

Z xih' Z yil = Z((Z xih') sy, W/ = Z Xyt = Z cr(x;, yj)h I FT (3.6)
i j i

j ij L
by the C[[h]]-bilinearity, cf. (3.2).
Proposition 3.9. A C[[h]]-algebra product = on S[[h]] is a «-product on S if and only if
x+y =xy modh, (3.7a)
x#y—yxx = {x,y}h mod h? (3.7b)
forall x,y e S < S[[h]].

Proof. If « defines a deformation quantization of S, (3.7) clearly hold. On the other hand
(8.7a) means that ¢p: S x S — S is the multiplication on S, so for x, y € S[[h]] we have

x#y = Z cr (i, Y)W = xoy0 + (xoy1 + x1y0 + c1(x0,Y0))h  mod K.

i,jr

This implies that 7ry: S[[h]] — S is multiplicative. Furthermore, by (3.7b) we may continue
the computation to arrive at

x#y —y*x = (c1(x0,Y0) — c1(Yo, X0))h = {xo, Yo}k mod h?
as required in (3.5). O

Remark 3.10. All the #-products considered in the sequel satisfy that the unit 1 € S is also
the unit for #, as is easily verified in each case.
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3.2.1 A Key Example
The next theorem contains an important construction of #-products on Poisson algebras

that are graded. The statement of the result relies on Proposition 3.2.

Theorem 3.11 (Andersen, Mattes & Reshetikhin). Assume that S is a graded Poisson algebra,
and let F be a complete, Hausdorff filtered complex algebra such that Fg, is commutative. Suppose
V: F — S is a homomorphism of filtered vector spaces such that V. Fo, — S is an isomorphism
of Poisson algebras. Then V is an isomorphism of filtered vector spaces, and

oC
Xpaxg = 3 (VIV 1)V () Imtmet Dy e g0m) (3.8)
r=0

defines a star product on S.
We also need the following complementary result.

Theorem 3.12. Let S and F be as in Theorem 3.11 and suppose V;: F — S, i = 1,2 are two maps
satisfying the conditions of that theorem. Denote by *; the «-product on S defined by formula (3.8)
withV = V. If (V1)gr = (Va)gr, then the C[[h]]-linear map T = To1: S[[h]] — S[[h]] determined
by

T(x) = Y (VT )R, xe 50

r
is an equivalence from =1 to #.
Proof. By definition of an equivalence we must check that 7y = Ids; this follows from
() = (V)™ = M)al (Ve ()] =2, xest™.
To prove that T is multiplicative:
T(xs1y) =t(x) x27(y), xye€S[h]] (3.9)

we take a closer look at the definition of #;. The product on F may be transferred to S via
the isomorphism V;:

xoiy = V(V, L)V, 1(y), xyeS. (3.10)

1

It is then clear from (3.8) that the map 17: S — S[[h]], (x;) — Y_; x;h' satisfies
n(xoiy) =n(x) #xn(y), xyes. (3.11)

Putting T = V, 0 V; ' § — 5, we see from (3.10) that T takes o; to o5. Also, T is constructed
such that

Tony=1noT: S — S[[h]]. (3.12)

By C[[h]]-bilinearity it suffices to verify (3.9) for x,y € S. We may assume that x and y are
homogeneous of degree 17 and my, respectively. By applying # to the identity T(x o y) =
T(x) op T(y) and using the properties (3.11) and (3.12), it is straightforward to establish

WMFMRT(x wq y) = BT (T(x) %2 T(Y))

as desired. Reversing the roles of V; and V; yields the inverse 7i5 of 7p;. The proof is
complete. 0

Remark 3.13. In the notation of the above theorem, if V;: F — S, i = 1,2,3 are such that
(Vi)ar are all equal, then the equivalences obviously satisfy 131 = 137 © T1.
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3.2.2 Quotients

A situation we frequently encounter is the following. We have a #-product on S and a
Poisson ideal I < S. Then we want to induce a =-product on the quotient S/I and obtain a
morphism of quantizations:

S[[h]] *>S/I
£%S/I

The condition for doing so is, of course, that Ker;, = I[[h]] € S[[k]] is an ideal with
respect to #. By (3.6) this requirement translates into

c(I,S)c 1> (S, I), reN. (3.13)
Abusing terminology we shall often say that I is a #-ideal and thereby mean that I[[/]] is a
#-ideal. Write (S, I) € #(S) for the set of #-products descending to S/I, and let 7t: =(S,I) —
#(S/I) denote the natural map. A morphism

SI[A) 4y —— SI[A]]x,

l (3.14)
£ A

—_—

where #; € #(S,I), i = 1,2 will induce a morphism

S/ () —— S/ ()

T,

S/—— gyl

precisely when ¢(I[[h]]) € I[[h]]. The formula (3.3) proves that this is equivalent to

g1, jeN. (3.16)

3.2.3 Actions

Suppose that a group I' acts on S by Poisson isomorphisms.

Proposition 3.14. There is an action of I on «(S): For a Poisson isomorphism g: S — S, g€ T’
and a =-product = on S we define ' = ¢ - = by

xxy = g,(g, (%) + g, () (3.17)

for x,y € S[[h]].
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Proof. Trivially, " is a C[[h]]-algebra product on S[[k]]. For x,y € S we have

1 —1

x#'y = g8, () =g, (¥))
=gn(g () =g 1(y))
=gn(g ' (x)g™ l(y) +e1(g H(x), 8 1 ()h)

=xy+g(ci(g ' (x),g '(y)))h mod h?

so that x +' y = xy mod h, and

x#'y—y'x=[gla(g' (%), 87 W) —g(ca(g W), g ' (x))]h
=g({g '), g T wh
= {x,y}h mod h?

as desired. It is obvious that g +— g- defines an action.

It is, of course, contained in this proposition that we have an isomorphism

of quantizations. Actions and quotients commute when comparable. More precisely:
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(3.18)

Proposition 3.15. Let I € S be a I'-invariant Poisson ideal so that the action of I' descends to the
quotient S/1. Then «(S,I) € %(S) is a T-invariant subset and 7t =(S,I) — =(S/I) is equivariant.

Proof. Let+ € (S, I)and g € T. Since g and ¢~ ! leave I invariant, the induced maps g, and

< ! preserve I[[h]]. Therefore it follows from (3.17) that I[[/]] is an ideal for g - #, that is,
g-+ € #(S,I). Moreover, by the criterion (3.16) the diagram (3.18) induces the isomorphism

S/ ey —— S/ (g

J_J

S/I—— 51

cf. (3.15). But the action of g on *(S/I) yields the isomorphism

S/IIM gy —Ss S/ Tg o

L,

S/l ————S/I

As g, = g, wederive rt(g - #) = g~ 7(%).
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3.2.4 Completion

One advantage of a #-product over an ordinary deformation quantization is that S[[h]] is a
complete, Hausdorff filtered algebra. Under certain circumstances it is possible to complete
a general quantization defined on a filtered algebra:

Theorem 3.16. Let p: A — S be a deformation quantization. A filtration A = Ag 2 A1 2 --- is
said to be compatible with the deformation if

Aj S Kerp, (3.19a)
ab—baehA,, aecA,beA. (3.19b)

In this situation the induced map p: A — S given by

p(lanln) = pla1), ([an]n) € A (3.20)
is a deformation quantization.

Proof. In the trivial filtration S = S 2 0 2 ---, S becomes a complete, Hausdorff fil-
tered C[[h]]-algebra receiving the filtered (by (3.19a)) map p. Therefore the induced alge-
bra homomorphism 7: A — S exists and is given by (3.20); it is obviously surjective. Let
a = ([an]n), b = ([bu]n) € A. Write

x = {p(@), p(b)} = {p(a1), p(b1)} (3.21)

and pick ¢ € p~!(x). We define inductively a sequence dq,dy, - -- € A subject to the condi-
tions

(i) d1 € Kerp,
(ii) anbn - bnan = hc + hdn,
(ifi) dpi1—dp € An.

Since p: A — S is a quantization, we get from (3.21) an element d; € Ker P such that
a1b; — biay = he + hd;.
Assume that dy, ..., d, are defined. We set
Ayl =an+&, by =by+ B, ape Ay
By hypothesis (ii), we derive

Ayi1bpe1 — bpe1ay41 = anby — buan + (anf — Pan) + (aby — bpa) + (f — Pa)
= hc + hd, + hk,

for a suitable k, € A, the existence of which is guaranteed by (3.19b). Putting d,,11 =
dn + ky completes the induction step. By (iii) the element d = ([dn]n) € A is well-defined.
Setting ¢ = ([c]u) € A, we conclude that

ab — ba = ([anby — bpan]n) = ([he + hd,],) = hc + hd.
Since d € Ker p by (i) and as
p(@) = p(c) = {p@), p(b)},

we have verified the defining equation (3.5) of a deformation quantization. O
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One example of this construction is due to
Proposition 3.17. A quantization p: A — S is compatible with the h-filtration on A.

Proof. We check the conditions (3.19). Let a € A. Recalling the augmentation e: C[[h]] —
C

p(ha) = e(h)p(a) = 0

so that Ay = hA < Kerp. Letalsob € A. Since ab — ba € hA by the definition of a
quantization, we derive

(W"a)b — b(h"a) = h"(ab — ba) € h"hA = hA,

as desired. 0O



Chapter 4

Quantization of the Algebra of Chord
Diagrams

In the case where X has non-empty boundary, Andersen, Mattes and Reshetikhin have
constructed a #-product on the algebra of chord diagrams on X by using the machinery
of universal Vassiliev invariants of links in the cylinder over ¥ [AMR2]. We present their
construction in this chapter with emphasis on the fact that the *-product obtained depends
on the so-called partition of £ used in the process. This dependence is well-behaved as
we shall demonstrate; different partitions yield canonically equivalent #-products. When
working with the AMR #-products and their equivalences, some standard situations arise
frequently; we deal with those and a first application of them at the end of the chapter. The
first two sections set the scene and are based on Bar-Natan's paper [B] as well as [AMR2].

4.1 Chord Tangles

We generalize the notion of chord diagrams; in a chord tangle the core components are
allowed to be oriented intervals as well as oriented circles. The boundary of a chord tangle
T is a set of oriented points partitioned into two ordered sets 0, T and 0T termed the fop
and bottom endpoints, respectively. In drawings of chord tangles their tops and bottoms are
consistent with the orientation of the page, and the order of endpoints is from left to right.
We may extend T by adding vertical, oriented intervals with no chords to the left and right
of T. Moreover, T can be cabled by substituting bundles of core components (of the same
kind, various orientations permitted) for single ones. The result of this operation is the
signed sum of all possible liftings of T to the skeleton of core components obtained from
the skeleton of T by the prescribed substitution. The sign of a lifting is —1 raised to the
number of chord endpoints located on a core component with reversed orientation. Here
is an example:

The symbol 1] ® |1 means: Replace the first (counting at the bottom) strand by the bundle
1] and the second one by |1. We remark that cabling preserves the 4T-relation and there-
fore makes sense for chord diagrams on X; restricted to subspaces of chord diagrams with
identical skeletons it results in graded linear maps.

34
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Remark 4.1. Given a core component C of a chord tangle T, one possible cabling opera-
tion, Sc, is to substitute C with opposite orientation for C; clearly, S¢(T) is the chord tangle
obtained from D by reversing the orientation of C and scaling with —1 for each chord end-
point on C. Replacing C by the empty bundle of core components yields another cabling
operation ec; if a chord intersects C then ec(T) = 0 since it is impossible to lift T to the
skeleton obtained from the skeleton of T by erasing C. On the other hand, if no chord in-
tersects C this lifting can be performed in a unique way so that ec(T) is the chord tangle
obtained from D by simply erasing C.

We now consider an oriented embedded square S < X with distinguished top and bottom
sides I, and I_. The square is equipped with a boundary marking, that is, two finite sets
of oriented points 6 = 04S € Iy and ¢ = ¢S < I . Define geometric chord tangles in
(S; 0+,0-) to be smooth maps (T; 0. T,0-T) — (S;0+S,0-S) subject to the condition that
0+T — 04Sand 0T — J_S are isomorphisms (bijections preserving order and orien-
tation). Chord tangles in (S; 04, 0_) are, of course, homotopy classes rel boundary of such
maps, and D(S;d4,0_) is the complex vector space freely generated by them. Since the
4T-relation still makes sense, we obtain in this way a vector space

C(S;04,0_) = D(S;0+,6-) a1

graded by the number of chords.

Similarly, we can consider chord tangles in X — S (more precisely, in X — int(S), but for
clarity we use the simpler notation); we agree that the top of S is the bottom of >~ — S and
vice versa, so that the boundary marking on £ — S induced from the one on S becomes

(a+ (Z o S)/ 67(2 - S)) = (afs/ 6+S) = (a*/ a+)
With this convention we obtain a graded vector space
C(X—S;0-,04) =DE=50-,0+) /4.

Notice that S and X — S are surfaces in their own right and that C(S; &, &) = C(S) and
C(X -5, ) = C(X — S) are the usual Poisson algebras of chord diagrams.

Extension and cabling clearly makes sense for chord tangles in S whereas only cabling
is possible for chord tangles in X — S. These operations yield graded linear maps. There is
an obvious composition of chord tangles

C(Z—S;0_,04) x C(S; 01, 0_) > C(X)

defined by glueing the appropriate pairs of boundary points. Note that the map C(X —
S) — C(X) induced by the inclusion £ — S < X can be regarded as composition with
€ C(S). Also, if 51 and S; are two embedded squares with boundary markings such that
I_(S1) = I1(Sp) and @_S1 = 045y, there is another composition

C(S1;0+451,0-51) x C(S2;0452,0-S2) —> C(S1 L S2;0151,0-57)

defined analogously. Both compositions are graded bilinear maps.

The union operation which turned C(X) into an algebra can be defined for chord tangles
in S under certain circumstances. Specifically, if (¢, , 8 ), i = 1,2 are two disjoint boundary
markings on S there is an obvious graded bilinear map

C(S;0t,0L ) x C(S;03,0%) ~5 C(S; 0L v, ol L a2).
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Figure 4.1: Positive ( left) and negatwe crossings.

As a special case we note that C(S; ¢+, ¢ ) becomes a graded module over C(S). For chord
tangles in ¥ — S analogous considerations of the union operation apply.

Since all the aforementioned operations on chord tangles are graded (bi)linear, they ex-
tend to the completions of the chord tangle spaces. Moreover it is clear that the operations
commute whenever this makes sense.

4.2 Links and Non-Associative Tangles

Let £(X) denote the complex vector space with basis the set of framed, oriented links in
(the interior of) the cylinder X x I. We often think of links as link diagrams on £ modulo
the second and third Reidemeister moves; the usual sign conventions for over- and under-
crossings in link diagrams are used throughout, cf. Figure 4.1. (Therefore we sometimes
abuse terminology and speak of links on ¥). Introduce an operation V on £(X) in the
following fashion. For a link diagram L pick a subset v, .. ., v of its crossings and put

S S
61,...,€k:i1

where L€1++¢k is the link obtained from L by adjusting the sign of v; to be ;. This allows us
to define subspaces

Ln(X) =span{Vy,, 0,L | Lisalink on X} 4.1)

easily seen to constitute a filtration on £(X); it is called the Vassiliev filtration.
Evidently the projection 2 x I — ¥ induces a map

n: L(2) - DOx) =cOx) cem).

A more interesting coupling of links and chord diagrams on X is the graded linear sur-
jection A: C(X) — L (X) we now define. Let D be a generic chord diagram on X with
m chords denoted by vy, ...,v,. Pick a link diagram Lp projecting to D, i.e., resolve the
crossings (chords and ordinary intersections) of D in some way, and set

MD) = [Voy,...onLp] € £nE) /2, 1 (2 E(G"ﬁ)( 2).

It is inessential how we resolve the crossings in D; this is by definition of V for the chords,
and because we divide out £,,41(X) for the ordinary intersections. Therefore the map
A: D(E) —» L (X) is well-defined; immediately from (4.1) it is surjective. That A vanishes
on 4T(X) and thus descends to C(X) is an elementary calculation.

For links L and L, in X x I we define their product by

Lily ={(x,t)eXxI|t>1/2A(x,2t—=1)€e Ly, ort <1/2 A (x,2t) € Ly},

that is, L1L, is Ly stacked on top of L,. It is evident that £(X) endowed with this multi-
plication becomes a filtered, in general non-commutative, algebra with the empty link as
unit.



4.2 Links and Non-Associative Tangles 37

Proposition 4.2 (Andersen, Mattes & Reshetikhin). The graded algebra L, (X) is commuta-
tive, and A: C(X) — LG (X) is a surjective homomorphism of graded Poisson algebras.

We now define non-associative tangles, a concept corresponding to chord tangles as links cor-
respond to chord diagrams. More precisely, a non-associative tangle is a framed, oriented
tangle for which the ordered sets of top and bottom endpoints are (completely) paren-
thesized. When drawing non-associative tangles, we indicate the parenthesization of the
endpoints by the distance between them. Extension of non-associative tangles is defined
as for chord tangles with the additional requirement that the parenthesization of the ex-
tended tangle respects the parenthesization of the original one. Also cabling is possible by
using the framing to push off a bundle of components from a single component. When this
component is an interval a parenthesization on the substituted bundle of intervals must be
specified in order that a parenthesization is induced on the boundary of the cabled tangle.
As for chord diagrams on X cabling makes sense for links on ¥ and results in filtered maps.

Again we consider an oriented square S embedded in X, the boundary marking now
consisting of parenthesized subsets (39 c Iy and Py
define the Vassiliev filtered vector space

C I of oriented points. We may then

(589,30

rYarsY

0 50

of non-associative tangles in (S x I; 0}, 0’) by using regular isotopy classes rel boundary

0 _

of appropriate non-associative tangles. When ¢/ = J we recover the algebra of links £(S)
defined previously. It is clear how to extend and cable tangles in S. A parallel definition
and analogous considerations are valid for non-associative tangles in (X — S) x I except
that extension of such tangles is not defined.

We have filtered composition maps mirroring those for chord tangles

cx-s5,00) x £(s;0Y, ) - L),
£(51;0981,981) x £(52;8085,8V8,) — £(S1 U Sy V81, 8Ys,)

subject, of course, to the compatibility conditions I (S1) = I(S;) and (')951 = 6952.
The stacking operation defining the product on £(S) generalizes to filtered maps

£(s)x £(s;a9, %) — £(s;09,0Y), £es;6Y, V) x £(s) — £(s;6Y,8Y).

Since S is contractible these maps are equal when flipping the domain factors. Thus £(S)
0 50

is a commutative algebra, and £(S; 0, 0") is a filtered module over it. This kind of com-
mutativity fails in general for £ — S, but it is still true that the stacking maps

LE-5) x LE-5Y,0Y) — cEm-s;a9, ),

-5 ) x -9 — £E-s;a9,80)
turn L(X - S; 69, 69) into a filtered bi-module over L(X — S).

The operations on non-associative tangles are all filtered so that they extend to the Vas-
siliev completions, and as for chord tangles they are compatible with each other. The pro-
jection 7t: L(S; 69, 69) — C(S; 0+, 0—) and the surjective graded linear map A: C(S; 04, 0—)
— Lar(S; i 60) defined as in the case of links and chord diagrams on X, achieve the cou-

+7 9=
pling between chord tangles and non-associative tangles on S, and similarly for ¥ — S.
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4.3 Universal Vassiliev Invariants

A universal Vassiliev invariant of links on Lisamap V: L(Z) —» C(Z) = [[1r_C (m) (%) of
filtered vector spaces such that

VoroA =Tdgg) - (4.2)

We refer to (4.2) as the defining equation of a universal Vassiliev invariant; it implies the
following corollary to Proposition 4.2.

Proposition 4.3. If V is a universal Vassiliev invariant for ¥, then A: C(Z£) — Lg(X) is an
isomorphism of graded Poisson algebras with inverse A~ = Vg;.

Assume for the remainder of this chapter that 0% + 5. The construction in [AMR?2] of a
universal Vassiliev invariant of links on % builds on the construction in [B] of a universal
Vassiliev invariant of non-associative tangles in the standard square S = I x I with top
I x {1} and bottom I x {0}; by this we mean a family of filtered, linear maps parametrized
by all boundary markings on S:

v:£(s;00,0%) 5 CSay,00)

and satisfying the obvious analogue of (4.2). It will be useful to have refined versions
of the chord tangle spaces. To be specific, let T < S be a tangle (chord tangle without
chords), and define C(S; T) < C(S; 6+ T,0_T) to be the (homogeneous) subspace generated
by chord tangles with skeleton T. A perturbation of the skeleton is any element (Py,) € C(S; T)
such that Py = T. Also, we allow the second factor of S to shrink and stretch so that the
spaces of tangles in this square are closed under composition. In particular, this means
that C(S; 1 -- - 1) is an algebra with composition as multiplication, the unit being the trivial
tangle 1 --- 1. To define V we fix, once and for all, two parameters, the associator ® €
C(S;111) and the R-matrix R € C(S;11) subject to various conditions (cf. [B]); we mention
a couple of them. Both ® and R are perturbations of their skeletons; this implies that they
are invertible elements in the algebras they belong to. Also, R satisfies the identity

>< ‘R-R'. >< = >< + higher degree terms. (4.3)

One constructs an element C € C(S; 1) in terms of ®; it is a perturbation of its skeleton.
Bending C appropriately, it may be regarded as a member of either of the spaces C(S;\»)

and C(S; ~); we put
V[%} _ >< ‘R, V[‘/\/‘} _ R >< (4.4a)
VH/H _ o, VH\H ol (4.4b)

V[\_A] vy ] =C. (4.4c)

Any non-associative tangle in S may be obtained from the above six elementary ones by ca-
bling, extension and composition, so requiring that V is compatible with these operations
on non-associative tangles and chord tangles, of course, (over)determines V. Only the care-

ful choice of (P, R) ensures that this procedure leads to well-defined maps V: L(S; (39, (')Q)
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N\

Figure 4.2: A partition of X 3. Figure 4.3: The hexagon tangle.

— C(S;04,0-). That V is filtered and satisfies the defining equation of a universal Vas-
siliev invariant follows from (4.3) and the fact that ®, R and C are perturbations of their
skeletons. Note that if T < S is a non-associative tangle, then

V(T) € C(S; (T)). (4.5)

The above construction yields, of course, a universal Vassiliev invariant of non-associative
tangles in any embedded square S < X; we use this below.

Now assume that X is not itself a square. The universal Vassiliev invariant of links on
¥ depends not only on (®, R) but also on a partition of . A partition P is determined by a
finite collection of embedded intervals (I, dIx) € (X, d%) chosen such that cutting > along
these intervals results in a decomposition

= (v;5) v (vjH))

consisting of squares S; and hexagons H;. The sides of these polygons are alternately an
interval Iy and a piece of dX. A possible partition of the three-holed sphere X is illus-
trated in Figure 4.2. For technical reasons we assume that no two hexagons are adjacent;
in particular, the decomposition contains at least one square. (By the Euler characteristic
the number of hexagons is constant, but we will not use that). Also part of the structure
is a choice of top and bottom on all polygons; for a square this means that one of the two
embedded intervals bordering it is the top of that square and the other one is the bottom,
whereas for a hexagon either the top or the bottom consists of two of the I} bordering it and
the opposite side is the remaining one of these intervals. The choice of tops and bottoms
must be consistent, i.e., result in an unambiguous direction ‘up” on X.

Let L be a link on X. By isotopy we assume that L is in general position with respect to
the embedded intervals and that each intersection L n H; looks like Figure 4.3. (possibly
turned upside down). Now choose parenthesizations of all the sets L n Iy subject to the
condition that the parenthesization of the top (bottom) endpoints of a hexagon is the union
of the parenthesizations of the bottom (top) endpoints. In this way all intersections L n S;
are non-associative tangles, and we can define

Vp(L) = [[V(LAS)-[]n(L~Hj)eCE)
i j

where the product is composition of chord tangles.

Theorem 4.4 (Andersen, Mattes & Reshetikhin). The map Vp: L(X) — C(X) is a universal
Vassiliev invariant.

Notice that for any link L on &
Vp(L) € C(Z; (L)) (4.6)
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S, S S,

Figure 4.4: A square Sy containing another square S.

because of (4.5). By definition of the universal Vassiliev invariant of non-associative tangles
in a square it is also clear that Vp is compatible with cabling of links and chord diagrams.

It is natural to ask how Vp depends on P. On one hand, we can refine P by bisecting one
of the squares S; with an extra embedded interval running parallel to the top and bottom
of S;. This modification leaves Vp unchanged since the universal Vassiliev invariant for S is
compatible with composition. On the other hand, we can consider the action of I (X) on
the set P(X) of all partitions of 2; given a map g € I'{ (X), the image g(P) of the embedded
intervals constituting P is another partition. Evidently

Vepy(g(L)) = g(Vp(L)), LeL(X). (4.7)

We now introduce a useful computational tool, namely universal Vassiliev invariants of
non-associative tangles in > — S. They also depend on a partition P of ¥, now required to
be compatible with S in the sense that there exists a square Sy in P containing S as depicted
in Figure 4.4. For technical reasons we also assume that Sy is not adjacent to a hexagon; this
is no restriction since we can refine P. We begin with the easy case when S = Sy (so that

S; =S, = ). Foratangle T € L(X — Sy; “()(Z —So), (')Q (X —Sp)) we proceed as for links
and define

=[Jv(Tnsy) nnTmH)eC(Z S0; 0+ (£ —S0), 0 (= S0))
i+0

remembering, of course, that the parentheses on T n I+ (X — Sy) are already fixed to be

f)g (X — So). Adhering to the rule for parentheses in top and bottom intervals of hexagons
is no problem since these polygons do not neighbour Sy.

The general case builds on the first one. Let T € L(X —S; 7 )(Z S), 60 (X —S)). Put
T; = T n S}, and choose parentheses on T; n [ (S;) and T; n [_(S;) to obtain a boundary
marking (69 S, 6951) on S;; in this way T; € L(S;; 0981, JSZ) Similarly for the right hand
square. Define boundary markings on Sy by

2050 = ((@2)s,:0)00s,), a0y = ((2V5,0V5)20s,)

so that T n (X — Sp) can be regarded as an element in £(X — Sy; (')9 (X —Sp), 69(2 —Sp))-
Put

Vp(T) = Vp(T n (£ —=59)) - V(T1) - V(T;) e C(X = 5,04 (£=5),0- (X = 5)).

That these maps are well-defined universal Vassiliev invariants of tangles in X — S is proved
much like Theorem 4.4 (cf. [AMR2]). Compatibility with cabling is immediate from the
construction as in the case of links on £. For (compatible) non-associative tangles Ts €

L(S; (39, “()) and Ty g€ L(Z-S; (')O “()) the composition Ty s - Ts is a link on X, and the
three kinds of universal Vassiliev invariants fit together in

Vp(Te—s - Ts) = Vp(Tx—s) - V(Ts)
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as one readily deduces from the definitions. This formula is ubiquitous in calculations in
the sequel.

4.4 +-Products and Standard Situations

For partitions P of ¥ we consider the completed map

Vp=Vp: L(T) - C(T).

By Proposition 4.3 and Remark 3.3, Theorem 3.11 applies to S = C(X),F = L(X) and
V= Vp:

Theorem 4.5 (Andersen, Mattes & Reshetikhin). For any partition P of ¥ there is a »-product
#p with coefficients
¢r(D,E) = (Vp(Vp D)V, (E)) ™t )
for chord diagrams D and E with my and my chords, respectively.
Different partitions may yield different -products as we shall see, but at least we have
Theorem 4.6. If Py and P, are two partitions of X, then the endomorphism T of C(X)[[h]] deter-
mined by
(D) = Y )(Vp, Vp, (D)™ h, D ect™(x)
r
is an equivalence from «p, to #p,.

Proof. Theorem 3.12 applies since (Vp,)gr = A = (Vp,)Gr- ]

Remark 4.7. From formula (4.6) follows immediately that the AMR #-products and the
equivalences between them preserve the skeletons of the chord diagrams. Therefore the
above two theorems also hold for C(X; G) if we simply carry along the representations
associated to core components in the definitions.

Remark 4.8. With a little more effort one can show that #p preserves more than skeletons;
if D and E are chord diagrams then c,(D, E) is a linear combination of chord diagrams each
of which is obtained from DE by adding r chords appropriately. Formally, this is proved by
generalizing the results about non-associative tangles in the complement of an embedded
square S C X to the case of two disjoint embedded squares assumed (by isotopy) to contain
the ‘non-trivial” parts of D, respectively E.

Proposition 4.9. The map P(X) — *(C(X)) given by P — «p is ' (X)-equivariant.

Proof. Let P be a partition of 2, and let g € '} (X). For chord diagrams D and E we have
by (4.7) and the analogous identity for V- !

gVp(Vp {(D)V, H(E)) = Vg (8(Vp D)V, H(E)))
= Ve(py(8Vp ' (D)gVp ' (E))
= Vo(p) (V) (§(D) Vi 1y (S(E)))-
8

(
It follows from Theorem 4.5 that g(D #p E) = g(D) « 2(P) (E); this is exactly the statement
g #p = #4(py, cf. Proposition 3.14. O
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4.4.1 Standard Situations

We shall encounter a couple of standard situations in computations involving #p, P € P(X)
and the equivalences between these #-products. The common set-up of the standard situ-
ations is as follows: There is an embedded square (S;I;,I_) € X with boundary mark-
ing (69,69), and we have compatible elements L € cm(s;6,,6 )and T € Clm)(x —
S;0_,0.). Wewrite D = T-L e Clmtm(x),

In the first standard situation E is a chord diagram on X with m; chords, and we want
to calculate D #p E where P is some partition of £. By a homotopy we may assume firstly
that S is contained in the interior of a square Sy from P and secondly that E is represented
by an element E € C(X — S) sothat E = E- & € C(X). We refine P with two embedded
intervals as illustrated in Figure 4.5 in order to make P compatible with S. Having settled
these technical issues, we derive

T-L)Vy ' (E-2))
T)-V D[V, YE) - @])

ae] |
—_
—_ —_—

so that

¢(D,E) = (VP (ijl(D)Vl;l(E)))(m1+m+mz+r)
= (Vp (Vljl(T)Vl;l (E)) . L) (my+m+my+r)
= (Vp (Vl;l(T)Vl;l (E)))(7711+m2+r) L

Of course, we can reverse the roles of D and E and get a parallel result. A first application
of this standard situation yields

Theorem 4.10 (Andersen, Mattes & Reshetikhin). A subspace T < C(X) spanned by local
relations is a «-ideal with respect to «p for any partition P of Z.

Proof. Previously (cf. 2.4.1) we noted that Z is a Poisson ideal so the statement of the
theorem makes sense. To prove it we must verify condition (3.13). Consider a generator
D € I. There exists an embedded square (S; I, [_) € X with boundary marking (4, d—)
such that D = T- Y, A;L;; here L; € C(S,04,0-) and A; € C are the chord tangles and

the scalars defining the relevant local relation, and T € C(m) (X —S;0-,0+)is an arbitrary

L+(So)

1-(So)

Figure 4.5: Two intervals in S refining P.
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chord tangle. Letting E be a chord diagram with m; chords and choosing an arbitrary
parenthesization on (04, 7—), the standard situation yields

cr(D,E) = Z/\er(T -L;, E)
= S A (Ve (v (T L(E))) e
= (Vo (Vv (T HE)) M N AL e T

as desired. In the same way, c¢,(E, D) € Z. O

In the second standard situation we aim to compute (D) € C(X)[[}]] where T is the canon-
ical equivalence from #p, to #p, for partitions P; and P, of %, cf. Theorem 4.6. By homotopy
and the refinement procedure illustrated in Figure 4.5, we may assume that S is compatible
with both P; and P,. We get

Vp, Vp (D) =V, Vp (T - L) =V, (V, 1(T) - V(L)) = (Vi V, 1(T)) - L
so that
Tr(D) = (VPZVlgl(D))(im—&-m—H’) — (szvlil(T) .L)(m1+m+r) — (VPZVil(T))(ml_H) L.

Not surprisingly the first application of the second standard situation is the following re-
sult.

Theorem 4.11. Let T < C(X) be a subspace spanned by local relations, and let Py and P, be two
partitions of X.. The canonical equivalence T: C(X)[[h]] — C(X)[[I]] from %p, to «p, descends to
C(X)/Z to yield an equivalence between the induced =-products.

Proof. This is analogous to the proof of Theorem 4.10; in the notation of that proof we
deduce

7(D) = R MT(T - Li) = P A(Vp,Vp, (T Ly = (V, Vi, {(T)™M*7 3N € T

1
as required, cf. (3.16). O
Applying the preceding two theorems to the loop relation (2.21), we obtain

Theorem 4.12. The AMR =-products on C(X) and the canonical equivalences between them de-
scend to the Poisson loop algebra Z ¢(X) via the resolving map R ¢: C(X) — Z ¢(X).
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Quantization of the Moduli Space

In this chapter we prove, under the assumption 0% + ¢, that the #-products #p, P € P(X)
on C(X) and the canonical equivalences between them descend to O(M(Z; G)) if G is one
of the groups GL,(C) and SL,(C). These results are achieved by presenting O(M(Z; G))
as an explicit quotient of C(X); the description we give is also valid in the case where &
is closed. Obtaining it relies on Sikora’s work [S]; in the general linear case we adapt the
methods of his paper to derive a parallel version of its main result, and in the special linear
case we simply translate the main result into our context.

We round off the chapter with Andersen’s explicit formula for #p in the abelian case
G = GL1(C) [A]; itis a corollary that =p is independent of P and I' (£)-invariant. We also
provide counterexamples illustrating that this corollary fails in general.

5.1 The General Linear Case
We consider the group G = GL;(C) equipped with the orthogonal structure
B(X,Y) =Tr(XY), X Yegl,(C).

That is, we fix t € g[,,(C) ® gl,,(C) to be the Ad-invariant symmetric tensor corresponding
to the pairing B. Colouring all core components of chord diagrams with the defining rep-
resentation ¢ = Idgy, () of GLx(C) yields a Poisson homomorphism C(X) — C(%; GL4(C)).
We write

¥: C(E) — C(Z;GL(C)) ~> O(M(E; GLu(C)))
for the composite Poisson homomorphism, cf. Theorem 2.22.

Theorem 5.1. Assume that 6% & . For any partition P of X the =-product «p on C(X) descends
via ¥ to a =-product on O(M(Z; GL,(C))).

Theorem 5.2. Assume that 0¥ + &, and let Py and P, be two partitions of X.. The canonical
equivalence from +p, to #p, on C(X) descends via ¥ to O(M(Z; GL,(C))) to yield an equivalence
between the induced =-products.

Remark 5.3. Theorem 5.1 was also stated in [AMR2]. The proof appearing below roughly
follows the outline of the justification supplied in that paper. The primary deviation is that
we shall not claim that the kernel of ¥ is generated by local relations.

44
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5.1.1 The Relevant Loop Relation

Let E;; € gl,(C) be the matrix whose sole non-zero entry is a 1 in the (i, j)th entry, and
define

B<+< = Ei,]' + Ej,ir B

i E

;],: i,jij,i; 1Sl<]$1’l.

These matrices along with E; ;, i = 1,...,n arereadily seen to constitute an orthogonal basis
for gl,,(C). Recalling Remark 2.8, we normalize suitably and perform a simple calculation
to obtain

(t®0)(t) =t =) E;;®E,; € End(C") @ End(C")
ij

which under the isomorphism End(C") ® End(C") =~ End(C" ® C") corresponds to the
transposition of the factors. Hence Y satisfies the relation (cf. (2.24b))

e

that is, the loop relation (2.21) with parameters (s, f) = (1,0). Thus we derive a triangle of
Poisson homomorphisms

C(X)
Rip

21,0(%) —— O(M(Z;GL,(C)))

The Poisson structure on the loop algebra will not occupy us in the study of Ker ¥, so we
agree to write Z(X) = Z1o(X).

5.1.2 The Universal GL,-Representation

Our strategy is to introduce a commutative complex algebra R,(X) = R(Z;GL,(C)) en-
dowed with a GL,(C)-action such that ¥ factors through the algebra of fixed points:

Rn(Z)GLn(C)

]

Z(2) — 5 O(M(E; GL4(C)))

A universal property defines R,(X); it admits a representation px = p5 cr,(c): M (%) —
GL,(Rn (X)) (the universal GL,-representation of 1t1(X)) such that for any representation

p: m(X) — GLy(A), A being a commutative complex algebra, there exists a unique ho-
momorphism hp: Ru(X) — A fitting into the diagram

GL1(Ra(%))

% lGLn(hp) (5.2)

m(Z) — 5 GLu(A)
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Here is an explicit construction of R, (X). Let {(gy,A € A | ry, u € M) be a presentation P
of 711 (X) satisfying that all relations r,, are written as products of generators g,. Let Q,,(A)
be the polynomial algebra C[xéj, dy]where A e Aand i, j=1,...,n. Define matrices A) =

(x,{}]’

M, (R) of n x n matrices to a commutative complex algebra R; note that R is included in
M, (R) as the central subalgebra of scalar matrices. Let I(P) € Q,(A) be the ideal generated
by djy det Ay —1and all entries in A, --- A, — 1 for each relationr, = g), --- g, Set

) € Mu(Qun(A)), A € A. Here M,, denotes the functor assigning the complex algebra

Ru(Z; P) = R(Z;GL4(C), P) = Qu(N)/1(P);  q: Qu(A) — Ru(Z; P).

We now prove that R, (X; P) satisfies the universal property, implying in particular that dif-
ferent presentations of 711 (X) yield canonically isomorphic algebras (all denoted by R, (X)).
The formulas

det(My(q)(Ax)) = q(det A)), q(dy)q(detA,) =1

prove that M, (7)(A)) € GLy (R, (X; P)), and it is clear that we have a representation

Pz = Px,GL,(C),p: T(E) = GLy(Ru(X));  px(gr) = Mn(g)(Ar). (5.3)

If A is a commutative complex algebra admitting a representation p: 71(X) — GL,(A), we
define h1p: Qu(A) — Aby

ho(x})) = p(8A)ij,  holdy) = detp(gr) . (5.4)

Since My, (hp)(Ax) = p(gr), it follows that I(P) < Ker hp; the induced map hy: Ry (X) — A
is obviously the unique homomorphism making the triangle (5.2) commutative.

The action of GL,(C) on R, (Z) is the prime application of the universal property. Ele-
ments A € GL,(C) give rise to representations

A71P2A3 m(Z) = GLy(Rn (X))

and the corresponding endomorphisms A#: R, (%) — Ry(XZ) define a GL,(C)-action; this
is a direct consequence of the uniqueness of (5.2). By (5.4) and (5.3) we have

Awq(xl) = (A TMa(q)(AN)A)ij,  Axq(dy) = det(Ma(q)(A)) " = q(dr).  (5.5)
We extend the action of GL,,(C) to M, (R, (X)) by
AxM=A(AxM;j)A™!, Me My(Ru(L)), AeGLy(C). (5.6)
Consequently,

Lemma 5.4. The inclusion R, (X) € M, (R, (X)) is equivariant.

We lift the GL,(C)-actions to Q,(A) and M, (Q,(A)). By definition we can regard Q,(A)
as the algebra of polynomial functions from (M,(C) x C)* to C, and hence M, (Qn(A)) as
the algebra of polynomial functions from (M,(C) x C)* to M,,(C). Since GL,(C) acts on
M,,(C) by conjugation and trivially on C, it acts on the product (M, (C) x C)*. The induced
actions on the function sets Map((M,(C) x C)*,C) and Map((M,(C) x C)*, M,,(C)) pre-
serve the property of being polynomial, thereby defining the desired actions denoted also
by .
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Lemma 5.5. We have d,, det Ay € Qu(A)S™(©) and Ay € M, (Qn(A))CE(©),

Proof. This is immediate when regarding d,,det Ay and A, as functions on (M, (C) x
o)A O

The analogues of (5.6) and Lemma 5.4 hold:
Lemma 5.6. Forany F € M;,(Qn(A)) and A € GL,(C) we have
AxF=A(AsFjA™?
Proof. Thinking of F and F;; as functions we derive
(A= F)((Mp,s2)0) = AF(A™ % (M), 50)0) A

= A(Fi (A~ s (My, 1)) A"
= A((A % Fj)((Mp,sp)0)A !

where (M),s,) € (M,,(C) x C)A. O
Corollary 5.7. The inclusion Q,(A) € My, (Qn(A)) is equivariant.

All four GL,(C)-actions are related by

Proposition 5.8. The maps in the commutative square

Ma(Qu(A) % M (R (2)

Jn ln
Qu(A) —— = Ru()

are equivariant.

Proof. The traces are invariant under conjugation with complex matrices and hence equiv-
ariant by (5.6) and Lemma 5.6, respectively. The equivariance of 4 need only be verified on
the generators xf‘j, d). Fix A € GL,(C). For any (M,,s)), € (M,(C) x C)* we have

(A» ) ((Ma,52)2) = X0 (A1 = (M, 50)1)
xgy((AflMAA, sA)A)

(A7'M) A);

= (A1 A (M, 50)2)A)i

= (A1 A0 A) (M, 52)0))i

so that

g(A = x0) = g((A 1 Ap,A)ig) = (A Mu(q)(Ax,)A)ij = A xq(x)?)
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by (5.5). The elements d, are invariant by Lemma 5.5, so (5.5) also takes care of those.
Regarding M;,(q), we derive for M € M;;(Qx(A))

My (q)(A * M) = My(q)(A(A = M; )A™)
= A(q(A=M;;))A™?
= A(A* (q(M;)) A"
= A= My(q)(M)

by Lemma 5.6, the equivariance of 4 and formula (5.6). O

Proposition 5.9. The image of the universal GLy-representation ps,: m1(X) — Mu(R, (X)) is
invariant under the action of GL, (C).

Proof. It suffices to consider a generator g,. The matrix Ay € M;(Q,(A)) is invariant
by Lemma 5.5; the result now follows from the previous proposition since M, (q)(A,) =
px(g)) is then invariant, too. O

Remark 5.10. Before continuing the investigation of R, (%), we explore its relationship
with M(Z; GL,(C)). We think of GL,(C) as an affine subset of M,,(C) x C = crH, namely

GL,(C) = {(A,d) € My(C) x C | ddet A = 1).

Recalling the construction of the combinatorial complex Kp (cf. 2.1), we infer (at least in
the case |A| < o) that the vanishing set of the ideal I(P) € Qu(A) = O((M,(C) x C)*)
is exactly A(Kp; GL,(C)) < GL,(C)E(KP) = GL,(C)A < (M,(C) x C)A. By Hilbert’s Null-
stellensatz, restriction of functions provides an isomorphism

Qn(A) /4 /1(P) — O(A(Kp; GL4(C))).

The former space is, of course, nothing but R, (%; P)/ \/0, so we have a commutative trian-
gle

Qu(A) — 1 R, (% P)

T~

O(A(Kp; GL(C)))

where Ker p = /0. It also follows that p is a GL,(C)-equivariant surjection since the other
two maps in the diagram enjoy this property.

5.1.3 Diagrams and Relative Diagrams

Recall that a diagram on X is simply the homotopy class of a map from a finite collection
of oriented circles to X, or, in other words, a set of conjugacy classes in 711 (X). We need
a relative version of this concept; a relative diagram D is the unit interval I union a finite
collection of oriented circles, and a relative diagram on ¥ is a map f: D — X x [ such that
f@i) = (xp,1), i = 0,1, regarded up to homotopy rel d1. Post-composing with the projection
p: X x I — X (a homotopy equivalence), one sees that such an object is nothing but an
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T2
T

Figure 5.1: A decorated diagram. Figure 5.2: A decorated relative diagram.

element of 711 (X) together with a finite set of conjugacy classes in this group. Let Z(Z, xp)
denote the complex vector space freely generated by relative diagrams on X; it is equipped
with a natural algebra structure: For relative diagrams f;: D; —» £ x I, i = 1,2 we define

D=DrvDafto 1 =0 D} (5.7)

and f = fifo: D - £ x I by

fd) = (x,1/28), de Dy A fi(d) = (x,t)
(12t +1/2), deDana fo(d) = (x,1)

The unit for the multiplication is
e: I ->XxI, e(t)=(xg,1).

It is convenient to represent (relative) diagrams on X by decorated (relative) diagrams. By
this we mean (relative) diagrams along each component of which one or more elements
of 711(X) are written. We give a couple of examples of how decorated (relative) diagrams
represent (relative) diagrams on X.. The decorated diagram in Figure 5.1 determines the
diagram on . given by a map S' — X representing the conjugacy class of y17273 € 71 (Z).
Similarly, the relative diagram on X represented by the decorated relative diagram in Figure
5.2 is defined by a map f: I — X x I such that the loop p o f is in the homotopy class
Y172 € m(X). How to interpret general decorated (relative) diagrams is obvious from
these examples. Decoration of a component with 1 € 711(X) is sometimes suppressed in
the notation. If the component in question is the interval of a relative diagram, it may be
omitted entirely; the potential confusion with a (non-relative) decorated diagram is non-
serious as we shall later.

Remark 5.11. It is obvious that two decorated (relative) diagrams represent the same (rel-
ative) diagram on X if and only if there exists a bijection between the circles of the two dia-
grams such that the products along corresponding circles are conjugate elements of 71 (%),
and, in the relative case, the products along the two intervals are equal.

Multiplication of (relative) diagrams on X lifts to the setting of decorated (relative) dia-
grams in the obvious way; take the union of all components carrying along the decoration,
and glue the intervals in the relative case (cf. (5.7)).

Parts (local and non-local on X) of decorated (relative) diagrams play an important
role in the sequel. The ubiquitous example is the braid (over- and undercrossings being
ignored) B, corresponding to a permutation o € S;,;; we depict it as (notice the notation for
bundles of strands):

By = o =|0
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For example, if o = (1,2,3) € S3 we have

We define ideals Z,,(X) = Z(%;GL,(C)) € Z(X) and Z,,(X; x9) € Z(%, xg) to be generated
by the following three kinds of expressions:

@ —-n (5.8a)

> e) (5.8b)

O'ES,1+1

D e((f) D e(T) — (n!)? (5.8¢)
0ESy, TES,

The first two relations are local on X, whereas the third one is not. We write
Du(®) = Z(8)/7,(2),  Du(®x0) = Z(E%0) /T,,(%; xq)

for the quotient algebras. Certain elementary decorated (relative) diagrams deserve special

attention:
va@, EL7=@ 1{, Eﬁ,:v]

For easy reference we record the following simple fact about them.

Proposition 5.12. D, (X) is generated by L., v € m(X), and Dy (X, xo) is generated by Egil,
A
A€ Aand ELy, v € m(X).

The algebras D, (X) and D, (%, x¢) are related by a pair of maps. In one direction:: Z(X) —
Z(Z,xg) is given on decorated diagrams by simply adding an interval decorated by 1 €
m1(2). This is well-defined on the level of diagrams on ¥ and clearly induces an algebra
homomorphism ¢: D,(X) — Dyu(%, xp); its image is central, so we may view D, (X, xo) as
an algebra over D, (X). On the other hand, closing up the interval of a decorated relative
diagram to a circle and thereby obtaining a decorated diagram results in a map Z(%, xg) —
Z(X); it descends to a linear map Tr: Dy (%, xg) — Dy, (X). By relation (5.8a) we have

Troir=nld: Dy(Z) - Du(X).
In particular, : embeds D, (X) as a subalgebra of D, (%, xp); this justifies the aforementioned

convention of occasionally omitting a trivially decorated interval of a decorated relative
diagram, and we often suppress ¢ in the notation.
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5.1.4 Diagrams and Invariant Functions

Theorem 5.13. There exist homomorphisms of complex algebras 6: D, (%) — Rn(Z)GL"(C) and
O: Du(Z, x9) = Mu(Ru(2))C(C) uniquely determined by

0(Ly) = Tr(ps(7)), 7€ m(T); (5.9a)
O(Ey) = px(7), O(ELy) =Tr(oz(7)), 7vem(X). (5.9b)

Furthermore the diagrams

) =2 My(Rn(£))CLH(©) Dy(E, x0) — 2 My(Ron(£))CLn(©)

Dy (Z X
ﬂ J ln ln (5.10)
Dy(L) —

—— R, Z)GLn 'Dn(z) % R, (Z)GL,,(C)
commuite.

Proof. The uniqueness is immediate from Proposition 5.12. We construct algebra homo-
morphisms 6: Z(X) — R, (X) and O: Z(%, x9) — My (R, (X)) by paralleling the construc-
tion of ¥;: C(X; G) — O(M(L;G)), cf. (2.24). Let V = R, (X)" be the free R, (X)-module
of rank n with its standard basis {ey, ..., e;}; the standard dual basis of V* is denoted by
{e!,...,e"}. Represent a (relative) diagram D on X by a decorated (relative) diagram. Cut
D into arcs, one for each element 7y € 711 (X) of the decoration, and assign tensors to the arcs
as follows

By definition, 8(D) (respectively, @(D)) is the contracted tensor 7 (D); this element belongs
to the right codomain (we use, of course, the canonical identification M;,(R,(X)) = V@ V*
throughout). It follows from Remark 5.11 that # and © are well-defined, and it is evident
that the conditions (5.9) hold. These identities prove that 6 factors through R, (X)Gt(C)
and © through M,,(R, (2))CLn(C) by Propositions 5.12, 5.9, 5.8 and Lemma 5.4.

Thus it only remains to prove that 8 and ® descend to the quotients, since the commu-
tativity of the diagrams (5.10) is then obvious. This verification can be performed simulta-
neously for 6 and © as the relations (5.8) to be checked are the same in the two cases. The
first relation is easy:

T(L1) = Tr(pz(1)) = n.

For relation (5.8b) number the sources and sinks of B, from left to right, and index the
copies of V and V* assigned to them accordingly. The strand connecting the kth source to
the o (k)th sink is implicitly decorated with 1 and hence contributes

px(1) =Idy = Z e, ®€ik € Vk®V;(k)~

1<isn
Therefore

T(Bs) = Z e, ®---®e, ®ei<7*1(1> ®--- ®ei¢771(n+1)

1<y, g1 S0



52 Chapter 5 - Quantization of the Moduli Space

so that
T( ) 6(0)30): ) Y el @ @6, @D @ @clr 0

€S, 41 1<iy, e 41SN 0ES 19

=0.

This is because among any 1 < iy,...,i,41 < n existi; = i, with j % k. Pre-composition
with the transposition (j, k) yields a fixed point free involution on S, 1, and the permu-
tations matched by this map contribute terms differing only in sign. Regarding relation
(5.8¢), recall that any permutation ¢ € S;; can be decomposed essentially uniquely into a
product of disjoint cycles (including those of length 1). Denoting the lengths of all cycles in
obycy,...,cx we obtain

T(rr [0 ]) = Teloxn™) - Trlox(n)).

The result thus follows by applying the lemma below to px(7), p=(7™ 1) € Mu(Rx(X)). O

Lemma 5.14 (Formanek [For]). Lef R be a commutative ring. For any matrix M € My (R),

detM = % Z (o) Te(ME1) - - - Te( M)

" 0€es,

where ¢, . .., ¢k are the lengths of all cycles in o.

Theorem 5.15. The maps 0: D, (L) — R (2) () and @: D,(Z, x0) — My(Ry(X))CE(©)
are algebra isomorphisms.

This theorem will be proved in the course of the next two subsections. To this end we fix a
presentation (g, A € A | 7, u € M) of 711(X) such that

e Ais an infinite set.
o The inverse of every generator is a generator.

Note that the latter condition implies that all relations are products of generators so that
the presentation yields a model for R, (X).

5.1.5 Fundamental Theorems of Invariant Theory

Let Ty be the complex polynomial algebra in variables Tr(Xy, - -- Xy, ), A1,..., A € A and
Yya, A € A. Here it is understood that Tr(M) = Tr(N) if and only if the monomials M
and N are related by a cyclic permutation. Denote by T, {X,} the free T,-algebra gener-
ated by X,, A € A. As usual T, is naturally a central subalgebra of T;,{X,}. Moreover,
the assignment X, ---X, + Tr(X), ---X,,) (for k = 0 this should be interpreted as
1 + n) determines a Ty-linear map Tr: Ty {X,} — T,. Define a C-algebra homomorphism
7 Ty{Xp} — My (Qu(A)) by

T(Xa) = Ay, (5.11a)
7T(TI‘(XA1 ”'X)\k)) :TI‘(A/\l---A/\k), (5.11b)
7T(ya) =dj. (5.11¢)
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We remark that the images of Tr(X), --- Xj,), A1,...,Ax € Aand d)j, A € A belong to the
central subalgebra Q,(A) € M, (Qx(A)) so that 7r is well-defined. It follows from Lemma
5.5, Proposition 5.8 and Corollary 5.7 that 7t factors through M, (Qn(A)CL(C) and that
i, factors through Qn(A)GL"(C). Moreover these maps commute with the trace, that is,
we have the square

Ty{X2} —"— My (Qu(A))SLA(C)

JTr lTr (5 1 2)

T]/ % Qn (A)GLH(C)

The following version of the First Fundamental Theorem of invariant theory of n x n ma-
trices is due to Procesi [P1].

Theorem 5.16 (Procesi). The map : T{X,} — M, (Qn(A))CEn(C) s sutjective.
Corollary 5.17 (Procesi). The map t: T, — Qu(A)CLC) s surjective.

Proof. Diagram (5.12) and Remark 1.1. OJ

Procesi also accomplished a description of the kernel of 7r: T, {X)} — My (Qu(A))SH(©) in

[P1]. Formulating the result requires a little preparation. To simplify notation we assume
that N € A. Decomposing a permutation ¢ € Sy, into disjoint cycles

o = (il/-- -/is)(jl/-- -/jt) s (klr- ..,kv),
we may define

q)g(Xl, .. .,Xm) = TI‘(X . 'Xis) TI‘(X]‘ .. X]t) e TI‘(Xkl e ka) € Ty

ip "
unambiguously. Put

F(X1,..., Xm) = >, €(@)®o(X1, ..., Xm).

TES

If o € S;,41, we may arrange the cycle decomposition in such a way that m + 1 is the last
element of the first cycle:

o= (il,...,is,m+1)(j1,...,jt)---(kl,...,kv)
allowing us to set

\IJU'(X]/- . ’Xm) — Xil P Xis Tr(X]l X

]t) c Te(Xg, - Xg,) € Ty{X/\}, (5.13)

According to Procesi there is a unique element G(Xj, ..., Xy) € Ty{X,} involving only the
variables X3, ..., X, and traces of monomials in these variables such that

F(le---/Xn+1) = Tr[G(le---/Xn)Xn+1]- (5.14)
We shall need an explicit formula for G.

Lemma 5.18. G(Xq,...,X,) = Zaean e()¥,(Xq,..., Xn).
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Proof. Since

Tr( 3 e(a)‘fg(xl,...,xn)xnﬂ): S (o) Te(¥o(X1, ) X)X 1)

€Sy O€Sy 41

= > e(@)P(Xy, ..., Xup1)

‘TESn+1

=F(X1,..., Xu+1),
the result follows from the uniqueness. O

It is clear that the formulas for ®,, ¥, F and G make sense for monomials in the variables
Xy, A € A. The Second Fundamental Theorem of invariant theory of n x n matrices now
takes the form of

Theorem 5.19 (Procesi). The kernel of t: Ty{X,} — M, (Qu(A))CL(C) s generated by the
expressions F(My, ..., My 1) and G(Ny, ..., Ny) where M; and N; are monomials in X, A € A.

5.1.6 Proof of Theorem 5.15

We initiate the construction of the inverse to ©: D, (X, xo) — My (R ())CEn(C); define a
C-algebra homomorphism ¢: Ty {Xy} — Dn(Z, xo) by

P(X)) = Eg,, (5.15a)

P(Te(Xy, -+ Xn)) = ELg, g,/ (5.15b)
P(ya) = % ES] e@)1gt | o (5.15¢)

We note that the images of Tr(X, - - - X, ) and y, belong to D, (X) € Dy(Z, x9) and are thus
central. This implies that ¢ is well-defined and that ?, factors through D, (X). Another

property of ¢ is its compatibility with the trace:

¥
Ty{Xa} —— Dn(%, x0)

J/Tr J/Tr (5 1 6)
¥

Ty ———Du(¥)

Proposition 5.20. The kernel of ¢: T{X)} — Du(Z, xo) contains the kernel of 7t: Ty{X)} —
Miy(Qu(A)) ().

Proof. Owing to Theorem 5.19, this is not difficult. Let Ny, ..., N, be monomials, and pick
Y1, ---,Yn € m(XZ) such that ¥(N;) = E,,. For o € S, ;1 we apply formula (5.13) to obtain

IP(T(T(Nl/---/NTl)) = aﬂ
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Therefore Lemma 5.18 and relation (5.8b) yield

P(G(Ny,...,N)) = D e(@)p(¥o(Ny,...,Ny))

Uesn+1

S ) n

Uesn+1

=0

as desired. Let My, ..., M,;;1 be monomials. Using the defining property (5.14) of G and
the diagram (5.16), we derive

BL’(P(ML v, Myg1)) = IP(TT[G(ML ooy M) My 41])
= Tr(Pp(G(My, . .. /MVI))IP(MH+1))
=0
according to the first part of the proof. O

Corollary 5.21. There exists a C-algebra homomorphism ' : My(Qu(A))CH(C) = D, (T, xo)
satisfying

¥'(A)) = Eg,, (5.17a)
l[Jl(TI‘(AAl - -AAk)) = ELgAl“‘gAk’ (5.17b)
Y'(dr) = % Del@g' | o (5.17¢)

" oesS,

Proof. This follows from Theorems 5.16 and 5.19 along with the definitions of 7z (5.11) and
¥ (5.15). O

Due to Corollary 5.17, the subalgebra Qn(A)GL"(C) c Mn(Qn(A))GL"(C) is generated by
Tr(Ay, -+~ Ay,) and d,. We deduce that 1/)" Qn(AYELH(©) factors through D, (X); the diagram

(5.16) induces

Ma(Qu(A)CLHO — Dy (5, x9)

lTr JTr (518)

Qn(A)GLn(C) Y’ DH(Z)

GL.(C) _,

It requires more effort to factor ¢’ through the surjection Mu(q);: Mu(Qn(A))

My (R (2))G(C) (cf. Proposition 5.8 and Remark 1.1). For each relation ru=gr 8, in
the presentation P of 711 (%), we let M, = A), --- Ay, € Mu(Qn(A)) denote the correspond-
ing matrix. Consider the ideal

I'(P) = (dydet Ay — 1, M, —1|Ae A, pe My My(Qu(A)).
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Recall that the ideal I(P) € Q;(A) determining R,(X) is, by definition, generated by the
entries of the generators of I'(P). It is then an elementary result about matrix rings that

I'(P) = My(I(P)). (5.19)
Proposition 5.22. d, det Ay —1, M, —1 € Ker Y, AeANpueM

Proof. By Lemma 5.5, M, = A, --- A), € M (Qn(A))CL(©), and by (5.17a),
¥'(My) = Eg, ~Eg, =Eg) g, =E1=1

as desired. Also, det A, € Q,(A)CL(C©) © M, (Qu(A))CLn(©) by Lemma 5.5, and applying
Lemma 5.14 to A), we obtain

detA) = % D7 e(0) Te(AS) - - Tr(AT).

" oeS,

Since (5.17b) implies

l[Jl(Tr(Af\l) . -Tr(ACAk)) = Y81 o
we have
, 1
P'(detAy) = — dle@8 | o
0ES,
It now follows from (5.17c) and relation (5.8¢c) that ¢’(d) det A,) = 1. O

The following result can be extracted from the proof of Theorem 2.6 of [P2].

Proposition 5.23 (Procesi). Let | © M, (Q,(A))S(©) be an ideal closed under Tr. Then

J = Mn(Qn(A))]Mn(Qn(A)) N Mn(Qn(A))GL”(C).

Proof. The inclusion C is trivial. To prove the other one we shall need gradings, depend-
ing on an index Ag € A, on Q,(A) and M;,(Q,(A)). We define Qg,d)(A) C Qu(A) to be the
subspace of polynomials homogeneous of degree d in the variables xﬁ}o, i,j=1,...,n Par-

allelling this, we denote by Mg,d) (Qu(A)) € M, (Qn(A)) the subspace of matrices all entries
of which have degree d. In this way

oC

Qu(A) = D QY(A); Ma(Qu(A)) = D M (Qu(A))
d=0

d=0

are graded algebreas, and Tr: M, (Qn(A)) — Qu(A) is graded linear. The GL,(C)-actions
on Q;(A) and M;,(Qn(A)) respect the gradings: For Q,,(A) we need only verify this for the
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generators xff]-, d). Letting A € GL,,(C) and recalling the notation A, = (x{}j), Lemmas 5.6
and 5.5 imply

(Asxl) =AY x})A, Asxdy=d,
thereby establishing the claim for Q,(A). Using this and Lemma 5.6 again, we deduce
Me Mi(Qu(A) = As M = A(A* M)A " € M (Qu(A))

as desired. The vital consequence is: The inclusions Q,gd)(A) € Qu(A) and M,(fl) (Qu(A))
M, (Qu(A)) are GL;(C)-equivariant and therefore commute with the Reynolds operators,
that is, the Reynolds operators on Q,(A) and M, (Q,(A)) preserve degrees. To prove the
proposition let

c = axcrby € My(Qn(A))SHr(©)
k

where ag, by € Mu(Qu(A)) and ¢ € . Since ay, by, ¢ involve only finitely many variables
and |A| = oo, there exists Ag € A such that x?;?, i,j =1,...,ndonot occur. We employ the
gradings with respect to Ag; obviously

degay = degby = degcy = 0 = degc.
AsTr(cAy,) € Qn(A)CLn(C) by Lemma 5.5 and Proposition 5.8, we have

Tr(cAy,) = VTr(cAy,) = VTr(Z akckbkA,\o)
k
=VTr (Z bkAAoaka) = TrZ V(bkA)\Oak)Ck
k k

by Reynolds’ identity (1.2). Notice that
deg V(bkA/\oak) = deg(bkA,\Oak) =0+14+0=1
For the generators of M, (Qn(A))CE(©) (cf. Theorem 5.16), we have

degA,\ = 5/\,/\0/
degTr(Ay, -+ Ax) = p00 + - +0a 00
degd, = 0.

Thus V(b Ay ax) € Mn(Qn(A))GL”(C) may be written

V(beAra) = Y. PriArgdil + Y Tr(SkmAng ) eom
1 m

for suitable py 1, qi1, k1, tk1 € M (Qn(A))CL(©) all of degree 0. This leads to

Tr(cAp,) =Tr (Z P AN kick + Y Tr (Sk,mAAo)tk,ka)
K1 kom

= Tr([z QeiCkPl + Y. Tr(tk,mck)sk,m} AAO) -
k1 k,m



58 Chapter 5 - Quantization of the Moduli Space

Hence x = ¢ — > 1 gk ik Pkt + 2ok m Tr(Ek,mCr)Sk,m is @ matrix of degree 0 satisfying Tr(xA,)
= 0. This can only be true if x = 0. Finally,

¢ = qrickPri + Y Tr(temCi)Skm € ]
k1 k,m

since | is closed under Tr. O

Proposition 5.24. There exists a C-algebra homomorphism " : My, (R, (Z))CE(C) = Dy (L, xo)
satisfying

" (0s(g7)) = Eg,,
Y"(Tr(ps (82, - 84,))) = ELg, g, -

Proof. Using (5.19) and Proposition 5.22 and applying the preceding proposition to | =
Ker ¢’ which is closed under Tr by diagram (5.18), we obtain

Ker My (q)| = Ker My(q) n My (Qn(A))CE(©)
= My (Ker q) n My (Qu(A))SH(©)
= Myy(I(P)) N My(Qu (7)) ()
={dydetAy —1, My, —1|Ae A e M)yn My(Qu(A))S(©)
S My (Qu(A)) Ker ¢ My(Qu(A)) m My (Qn(A))SH(©)
= Ker ¢’.

Consequently, ¢': M (Qn(A)CL(C) - D, (E, x0) descends to M, (R, (X))CL(C) via the
map My (q)|. The result now follows from Corollary 5.21 and the definition (5.3) of px.. [

At last,

Proof (Theorem 5.15). According to Theorem 5.16, M (Qn(A))CL(©) is generated by the
elements

A)\/ Tr(A/\ll..A/\k)’ d/\, )\,Al,...,)\kEA.

Using the surjection My (q);: M (Qn(A)CE(O) 5 M, (R, (£)C(©), we conclude that
My (R (2))CLn(C) ig generated by

pZ(g)\)/ Tr(PZ(gAl o 'g)\k))/ q(d)\)/ AAL A E A

By assumption the inverse of any generator g, in the presentation of 771 (X) is also a gener-
ator. On one hand, this fact allows us to pick A € A such that g3 = gxl and deduce

q(dy) = det(Mn(q)(AA))’1 = detps(gy) ! = detpx(gy)
=— Z o) Tr(ox(gx)) -+ Tr(ox(g3)™)

! €S,

,2 ) Tr(pz(85)) -+~ Tr(pz(85))

" 0€es,
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so that q(d,) may be omitted from the list of generators of M (R (£))CE(S). On the other
hand, it implies that Proposition 5.12 can be strengthened to say that D, (X, x) is generated
by Eg,, A € A and ELg)L1 g A, ..., Ak € A. Therefore Theorem 5.13 and Proposition 5.24

imply that © and ¢” are inverse maps since this need only be verified on generators. As ©
is an isomorphism, the left (right) hand diagram of (5.10) implies that 6 is a monomorphism
(epimorphism) thereby completing the proof. O

5.1.7 Returning to the Moduli Space
Theorem 5.25. The map ¥: Z(X) — O(M(XZ; GL,(C))) induces a Poisson isomorphism

¥ 31,0(2)/ T (Z) = O(M(Z;GLy(C))).

Proof. It is a simple matter to verify that the composite bijection (cf. (2.2) and (2.6))

Hol* o Ev}

O(A(Kp; GLy(C))) () )7 o M(Kp; GL, (C)))

O(M(Z;GLA(C)))

fits into a commutative diagram

Rn(X; P)CL(C)

/ l”

Z(x) O(A(Kp; GLy(C)))CLn(C)

v |

O(M(Z; GLA(C)))

Since Ker p| = \/0 by Remark 5.10, it follows from Theorem 5.15 that V¥ is a surjective map
with kernel 1/Z,(%). O

Corollary 5.26. If 0% 4 &, then
¥: 210(2) /7,(2) = O(M(Z;GL,(C)))
is a Poisson isomorphism.
Proof. The group m1(X) is free so we may take its presentation P to be {g1, ..., gn). Then
I(P) ={dydetA)y —1|A=1,...,N)< Qu(A).

Itis a standard fact that I(P) is its own radical ideal so that R, (X; P) = Q,(A)/I(P) contains
no nilpotents. O

This corollary enables us to prove the main theorems of this section:

Proof (Theorem 5.1). By Corollary 5.26 the Poisson algebra O(M(X; GL,(C))) can be re-
garded as the quotient of C(X) by the loop relation (5.1) and the relations (5.8). Thus we
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must verify that #p preserves these relations. Due to Theorem 4.10 we can concentrate on
the only non-local relation, namely (5.8c). It will be convenient to write this relation as

> e(@e(t) 1 o

o,TES),

where we use the convention
T | = (Br rotated 180°).
%

Now consider an instance of the relation; we have an embedded square S < X, a curve
v € CO(Z ~S5;1,1) (The 1’s should be thought of as having infinitesimal length; they
denote oriented points on the boundary of X — S) and the tangle

r
L= Y e@e®| o |[ «
o,TES), + %

The instance then has the form

eCOS; oL L1l L)

D(Ay-L) — (n)*D

where D is some chord diagram on ¥ with m; chords and A is the cabling operation
AT=T! acting on both chord tangles and non-associative tangles in = — S (we use an
arbitrary, but fixed parenthesizationon 1 --- 1| --- |). Now let E be a chord diagram on X
with m; chords. We may push D away from S so that D € C(™1)(Z — S) and then apply the
standard situation with

T=DAyeC™)(Z 81 L |, 11l 1)
to derive
¢(D(Ay-1),E) = ¢,((DAY) - L, E)
— (Vp(Vy (DAY H(E))) Mt
= A((Ve (v (D) Vy 1 (B)) ) - L
Recall that (cf. Remark 4.8)
X = (Vp(Vp {(D)V, ()" e ez - 5;1,1)

is a linear combination of chord tangles obtained from (D-y)E by suitably adding r chords.
We distinguish two kinds of terms in X. A term for which at least one chord interescts y
contributes to A(X) - L an element of the following form (the notation ---{T] is a shorthand
for the cabling summation; the orientation of the original strand (needed to determine the



5.1 The General Linear Case 61

signs) is indicated by 1)

Il
g
o
S)
hod
o
\
o
S)
hod
a

= e(7) e(o) — e(o) e(1)

The cases with other orientations are analogous. In conclusion, terms of the first kind may
be ignored. For a term ¢ in X with no chord intersecting o we may apply the relation (5.8c)
to A(t) - L to remove L and the copies of v and ¢! at the cost of a factor (n!)?. Recalling
Remark 4.1 about the cabling operation €., we can continue our computation:

as desired. Analogously ¢,(E, D(Ay - L)) = ¢»(E, (n!)?D) completing the proof by the crite-
rion (3.13). ]

Proof (Theorem 5.2). This is analogous to the proof of Theorem 5.1. By Theorem 4.11 we
need only consider the relation (5.8c). With set-up and notation as above we may apply the
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standard situation for equivalences to get
T((DAY) - L) = (Vp, Vp, ' (DAD) "7 L
= A(Vp,Vp, (D)™ *) - L
= (n)%ey (Vp, Vi, (D)™ H7)
(n'>2<vp2 (D))
%((n!)*D)
as required in (3.16). O

5.2 The Special Linear Case

We consider the group G = SL,(C) with Lie algebra g = s[,,(C) € M, (C) consisting of the
traceless matrices. As in the general linear case, we let t € g @ g be given by the orthogonal
structure

B(X,Y) = Tr(XY), X,Y € sl,(C).

Colouring all core components of chord diagrams on ¥ with the standard representation
t: SL,(C) — GL;(C), we have a Poisson homomorphism

Y =Y%::CEX) > OM(Z;SL,(C))).
As announced the main results are:

Theorem 5.27. Assume that 0X. & . For any partition P of 2. the =-product =p on C(X) descends
via ¥ to a =-product on O(M(Z;SL,(C))).

Theorem 5.28. Assume that 0¥ + (5. Let Py and P, be two partitions of £. The canonical
equivalence from «p, to +p, on C(X) descends via ¥ to O(M(Z;SL,(C))) to yield an equivalence
between the induced =-products.

Remark 5.29. Theorem 5.27 was stated in [AMR2] with justification analogous to the one
supplied in the general linear case, cf. Theorem 5.1 and Remark 5.3.

From the general linear case we recall that the matrices B /B j € sl(C), 1 <i<j< nare
orthogonal to each other. Adding the diagonal matrices

2 Ejj, i=1...,n-1,
] i+1
we obtain an orthogonal basis for sl,,(C). An elementary computation yields
t®u)(t) = Y Eij®E; - ZEI«/Z«@EM € End(C") @ End(C").
i if

Of course, ;i E; i ® Ej; = Id®1d so that ¥ satisfies the relation

) (B
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that is, the loop relation (2.21) with parameters (s, f) = (1, — %) Thus we derive a commu-
tative triangle of Poisson homomorphisms

11 () —— O(M(Z;SLa(C)))

5.2.1 Translating Sikora’'s Result

Following [S], there is a commutative complex algebra R(X;SL,(C)) admitting the univer-
sal SL,-representation of 71q (X):

P51, 1 (E) = SLu(R(Z;SLy(C))).

The GL;(C)-action on R(%; SL,,(C)) (analogous to the general linear case) is defined essen-
tially by conjugation and therefore restricts to an SL,(C)-action with the same orbits. In
particular, the algebras of fixed points are equal:

R(Z;SLn (€))% = R(L;SL,(C))SH1(©).

Recall that in our terminology a graph is a finite, 1-dimensional CW-complex with an ori-
entation on each 1-cell. An n-graph D is a finite collection of oriented circles together with
a graph each vertex of which is either an n-valent source or an n-valent sink, endowed
with a numbering from 1 to n of its incident edges. An n-graph on ¥ is a homotopy class of
continuous maps D — X. Let G,(X) be the complex vector space freely generated by the
set of n-graphs on 2. Two n-graphs (on X) can be multiplied by taking their union; in this
way G, (X) becomes a commutative C-algebra with the empty n-graph as unit. A diagram
on X can be considered as an n-graph on X; this induces an injective homomorphism of
algebras:

1 Z(2) - Gu(D).

Let Ju(X) € Gu(X) be the subspace generated by the local relations

@ —n (5.21a)
m = Uezsjne(a) (5.21b)

Clearly, J,(X) is an ideal.

Theorem 5.30 (Sikora). There exists an isomorphism of complex algebras
0: 9n(X)/ 7,(2) = R(Z;SLu(C))%n(©)
uniquely determined by

0(Ly) = Tr(pxst, (7)), 7€ m(X).
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Let Z,(X) = Z(%;SL,(C)) € Z(X) be the ideal generated by the relations

=n (5.22a)

. 0)e(T) ﬂ (5.22b)

1o TESn 1o TESn

(5.22¢)

0€ESy, 0ESy,

Notice that the third relation is non-local. Using a homotopy, it implies

(5.23)
UESn aeSn aeSn

Proposition 5.31. The inclusion 1: Z (% Y) induces an isomorphism

Z)/In(Z) - Gn(2)/7,(x)
of complex algebras.

Proof. Since an n-graph must contain an equal number of sources and sinks, it follows
from relation (5.21b) that the map

Z(2) 5 Gu(Z) » 90(B)/ 7,(2)

is surjective; it is immediate that its kernel contains Z,,(X). We now describe the inverse, ¢,
to the induced map 1: Z(X)/Z,(X) = Gu(X)/Tn(X). Given an n-graph D we choose

e acurve from each vertex of D to the basepoint x;
e a bijection ¢ between the sources and sinks of D.

Then ¢(D) is constructed by homotoping the vertices of D to x along the chosen curves
and using relation (5.21b) on each pair (i, 0 (i)) of a source and a sink to obtain a linear
combination of diagrams on £. We check that ¢(D) is well-defined. Independence of o
follows from relation (5.22b). Two different curves a7 and &, from a vertex to xo combine
to give a loop v = &, a; at xo; working with a fixed bijection it is immaterial whether we
choose & or ay by relation (5.22c) or (5.23).

Next we verify that ¢(J,(X)) = 0. Relation (5.21a) is also a generator of Z,(X) and
poses therefore no problem. The other relation (5.21b) is also easy since in the computation
of ¢ we can move the source and the sink involved along the same curve to xy and then
choose o to match these two vertices. Therefore ¢ descends to

¢: 9n(2)/7,(2) - 2E)/1,(3)

Trivially, ¢ o is the identity on Z(X)/Z,(X) so that ¢ is also injective. O
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Corollary 5.32. There exists an isomorphism of complex algebras
0: Z2(X)/7,(2) - R(Z;SLu(C))5 ()
uniquely determined by

0(Ly) = Tr(pgs, (7)), 7€ m(X). (5.24)

Remark 5.33. As is clear from (5.24), the homomorphism 6: Z(X) — R(X;SL,(C))5(©)
can be constructed by the procedure, mutatis mutandis, used to define the map Z(X) —
R(%;GL, (C))GL"(C), cf. the proof of Theorem 5.13. It therefore also follows from this proof

that elements of the form (5.8b) are contained in Ker # which by the above corollary equals
Zn(Z).

5.2.2 Proofs of the Main Results

Letting (g1, A € A | ry, 1 € M) be a presentation P of 711 (X) in which each relation is written
as a product of generators results in an explicit model for R(X; SL,(C)). Namely, consider
the polynomial algebra C[x{}j] = C[xéj | Ae A, ij=1,...,n] and its ideal I(P;SL,(C))
generated by det Ay —1 and all entries in A, --- Ay —1 for each relation 7y, = gx, -~ g
Then

£

R(Z;SLa(C)) = R(Z;SLa(C), P) = CIx}1/1(P;SL,(C))-

It is also readily observed that A(Kp;SL,(C)) < SL,(C)Al ¢ M,,(C)I*l is the vanishing set
of I(P;SL,(C)) € C[xff]-] ~ O(M,(C)IA so that the natural map

p: R(X;SLy(C), P) = O(A(Kp;SLn(C)))

is an SL,,(C)-equivariant surjection with kernel 1/0. As in the general linear case we obtain
a commutative diagram

R(X;SLy(C), P)Stn(C)

/ lp

Z(%) O(A(Kp;SLy(C)))St(©)

e |

O(M(Z;SLA(C)))
proving

Theorem 5.34. The map ¥: Z(X) — O(M(X;SL,(C))) induces a Poisson isomorphism

¥: 21,4 (5) [ I(E5L,(0)) — O(M(E;SLu(C))

The vital corollary is also analogous.
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Corollary 5.35. If 0% & (¥, then

¥: 21,1 (5) /7(5;5L,(C)) — O(M(Z;SLa(C)))

7
is a Poisson isomorphism

Proof. The group r1(X) is free so we may take its presentation P to be (g1, ..., gn). Then
I(P;SLy(C)) = (det Ay —1|A=1,...,N)c C[x}].

It is a standard fact that I(P;SL,(C)) is its own radical ideal so that p: R(%;SL,(C), P) —
O(A(Kp;SL,(C))) is an isomorphism. O

Proof (Theorems 5.27 and 5.28). By Corollary 5.35 the Poisson algebra O(M (%;SL,(C)))
can be regarded as the quotient of C(X) by relation (5.20) and relations (5.22). We may focus
attention on (5.22c) entirely by Theorems 4.10 and 4.11. This is analogous to the general
linear case; one applies the standard situations in the natural way, the crucial observation
being that chords intersecting the curve 7 on the left hand side of (5.22c) may be ignored:

1 i n
,,,,, T . 1
Z e(o) il = Z e(U)Z -
0ES, E €S, i=1
1 i n
n
= Y e0)] )
0€Sy, i=1 0€ESy,
=0
because of relations (5.20) and (5.8b), cf. Remark 5.33. O

5.3 Miscellaneous Results

In this section X. is required to have non-empty boundary; we shall employ the description
of O(M(Z; GL,(C))) given in Corollary 5.26. To be able to do some calculations with the
AMR #-products, we assume, now and for the remainder of this thesis, that the R-matrix
used to define universal Vassiliev invariants of links on X is given by

R:exp[%iz}:> <+%;?i+é[izr+ (5.25)

Consider the case G = GL1(C). The relation (5.8b) reduces to

) (-3
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SRRl

Figure 5.3: Two loops on Figure 5.4: Two partitions of the punctured torus.
the punctured torus.

and combining this with the loop relation (5.1) we obtain

Call an associator & regular if
o =111 mod >¢< = ><

For example, the associator given in [LM] is easily seen to be regular. The following theo-
rem can be found in [A].

Theorem 5.36 (Andersen). Let P be a partition of L. If the =-product =p on O(M(E; GL1(C)))
is defined in terms of a reqular associator, then

foerfe=exp(3 O e(piD,EM)fofe

peDHE

for diagrams D and E on X.

Corollary 5.37. The #-product «p on O(M(%; GL1(C))) is independent of P, and it is invariant
under orientation preserving diffeomorphisms of X.

Proof. For the second assertion, recall the equivariance statement of Theorem 2.22. O

This corollary does not generalize to the case n > 1 as we now demonstrate. Fix X to be
the punctured torus; think of X as a disk D with two handles appropriately attached. Let
« and B be loops running along these handles. Figure 5.3 is an illustration of the D part of
L and the loops. Consider the two partitions of ¥ depicted in Figure 5.4; for the present
purpose it is insignificant how bottoms and tops of the polygons are chosen. Denote by c.
the coefficients of +p, on O(M(Z; GL,(C))).

Claim. If n > 1, then c%(f,x,fﬁ) =+ c%(f,x,fﬁ).

Proof. We first notice that « and B are nicely compatible with the partitions in the sense
that

where we regard the loops as link diagrams on the right hand sides of these equations.
Thus, to compute fq *p, fg = faxpp, We should apply the universal Vassiliev invariant Vp,

to the link L obtained by stacking « on top of j, cf. Theorem 4.5. This is simple since we
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only need to apply (4.4a) to the crossing in L, remembering, of course, that this must be
done in accordance with the partition P;. Depicting only the disk D, we get

T N A
po o eO Lo et

We used relations (5.1) and (5.8a). Since in general Tr ATrB = nTr(AB), A, B € GL,(C),
the claim is proved. O

whereas

(e, B) =

Q. |-

It follows, of course, that #p, + #p, for n > 1. There is an obvious orientation preserving
diffeomorphism g of X such that g(P;) = P,. By Propositions 4.9 and, tacitly, 3.15, we have

80 = 2gn) = nF o
so that #p, is not diffeomorphism invariant.

Remark 5.38. The same example leads to the same conclusions in the special linear case.



Chapter 6

Quantization of the Loop Algebras

By the results in the previous chapter, the #-products #p, P € P(X) (/X + &) on the loop
algebras Z;9(X) and Z;,_1(X) are not independent of P (they induce different #-products
on O(M(E;GL,(C))), respectively O(M (X;SL,(C)))). Motivated by this fact we define
in this chapter a canonical deformation quantization of the loop algebra Z; ¢(X) using an
approach due to Turaev [T]; we emphasize that the construction works also when X is a
closed surface. In the case 0~ + J we demonstrate, under mild restrictions on the param-
eters (s, f), that the quantization obtained is equivalent to each of the AMR =-products on

Zslf(Z).
6.1 The Turaev-Vassiliev Quantization

Let £, (X) be the free C[[/]]-module with basis the set of framed, oriented links in £ x I,
thatis £,(X) = L(X) ® C[[h]]. Of course, the Vassiliev filtration

Ly(E) =LY (E)2L)(Z)1 2

and the compatible stack multiplication turn £;,(X) into a filtered C[[h]]-algebra. The pro-
jection £ x I — ¥ induces a homomorphism of C[[h]]-modules p: L,(£) — Z; ¢(X); recall
that Z, ((X) is a C[[h]]-algebra via the augmentation €: C[[h]] — C. Clearly p preserves
multiplication and is therefore a C[[h]]-algebra homomorphism. Let Z, ((X) = L,(X) be
the subspace generated by the skein relation

exp(fj;h)% fexp(gh)x = 25inh(%h)> < (6.1)

Asusual [ ¢(¥) is an ideal, and the quotient
A p () = LnB)/T, (%)

is called the Turaev-Vassiliev skein algebra of Z; r(¥). Modulo }? the relation (6.1) takes the

form
(1f§h)%7(1+fz—ch)X=sh> < (6.2)

Recalling the definition of the Vassiliev filtration (4.1), this implies the important inequality

LY (S)n € Ty f(Z) + W' Ly (). (6.3)

69
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It also follows from (6.2) that Z, ((X) < Ker p, and we write

Ps,f: As,f(z') - Zs,f(z')
for the induced map. The next result is essentially due to Turaev [T].
Theorem 6.1. The pair (A f(X), ps,f) is a deformation quantization of Z, ¢(¥).

Proof. Obviously, p; f is surjective. To prove the defining equation (3.5) of a quantization,
let L and L' be two links on X in general position. Put D = p(L) and D" = p(L’). Since L'L
can be obtained from LL’ by moving L ‘down through’ L', we derive the telescoping sum

L' -L'L= > L1
qeD#D’

where L;] and Lg are links differing only by a crossing change at q and satisfying p(L?) =
DD’, i =1,2. Focusing attention on the point g, we get

L} = e(g: D, D) \/\‘—‘/\/
= e(g; D, D')h( > < ‘V\‘ ‘X‘

= e(q; D, D"Yh(sLT + = f (L" +L1)) mod KA f(Z).

Here L1 is the link obtained from either of L by smoothing the crossing at g so that p(L1) =
(DD')4. Collecting the terms,

~L'L=h ) e(g;D,D')(sL?+ Jz—c(L‘l7 +L1)) mod hKerp,
qeD#D’

since h A ¢(X) < Ker p; . But by (2.23),

p( 3 e(q;D,D')(sL"—i—f(Lq—i—Lq))) 3 e(g; D, D')(s(DD')4 + fDD)

qeD#D! qeD#D’
= {D, D'},
= {p(L), p(L)}s -
This completes the proof. O

Remark 6.2. We have used only the property (6.2) of the skein relation (6.1) in the construc-
tion of the quantization. Thus, varying the skein relation subject to (6.2) and/or working
with unframed links leads to other quantizations of Z; ¢(X), cf. [T].

By Theorem 3.16 and Proposition 3.17 we may complete A () with respect to the h-

filtration to obtain another deformation quantization (A (%), Ps r) of Z5 ¢(X). Applying
Proposition 3.5 to the case A = L,(X) with the h-filtration and the ideal I = Z ((X) and

recalling Remark 3.4, we infer that A (X) can be viewed as the completion of £(X) with
respect to the filtration

Ly(E)n = Ly p(X) + 1" Ly(Z).
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For future reference we notice that the Vassiliev completion and the skein algebra comple-
tion of L, (X) are related by the map

Id: £,(Z) — A, f(2) (6.4)

induced by the identity on £ (%), cf. (6.3).

6.2 The AMR +-Products and the Turaev-Vassiliev Quantization

In this section we assume that 0%~ + ¥ and that s + +f. We shall prove that the de-
formation quantization (A ¢(X), Ps ) is equivalent to the »-product #p on Z, ((X) for any
partition P of ¥. Let C;(X) denote the algebra of chord diagrams on X with ground ring
C[[h]]in place of C. Of course, C,(X) is graded by the number of chords so that the comple-

tion Cy(Z) = [Trzo C,Sm) (X) is at our disposal. The construction of the universal Vassiliev
invariant of links on X carries over verbatim to yield a filtered, C[[h]]-linear map

Vp: Ly(Z) — Cp(Z).

The h-version of the loop relation (2.21) is the C[[}]]-submodule L’;, s C,(Z) generated by

the local relation
) (o

Define a homomorphism of C[[/]]-modules #: C;,(X) — C(X)[[h]] by
(D) = Dh™, D achord diagram with m chords.

By construction # is filtered with respect to the chord filtration on Cj,(X) so it extends to a

C[[h]]-linear map #: Cy(X) — C(Z)[[H]]. Let

qs,f = Ry po1: Cu(E) = CE)[]] — Z, p(Z)[[H]] (6.5)

be the composite C[[h]]-module homomorphism, cf. (2.22).

Remark 6.3. By construction, L? = Kergs .

Put

Tp =qs50 Vp: Ly(X) = Cu(2) = Z, f(Z)[[h]]. (6.6)

Theorem 6.4. The map Tp: Ly(X) — Z; ¢(X)[[h]] induces an equivalence of deformation quan-
tizations

As f(B) —— Zs s (E)[[H]]sp

WX%

Zs,f(z‘)

for any partition P of 2.
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Theorem 6.5. For two partitions P; and P, of ¥, the composite equivalence
Tpy o Tp's Zo f(E)[Mllag, — Z (O[],
is equal to the canonical equivalence from #p, to #p,, cf. Theorem 4.12.

We prove part of Theorem 6.4 in

Lemma 6.6. The map Tp: Ly(X) — Z; ((X)[[h]]«, is a C[[h]]-algebra homomorphism and in-
duces a morphism of deformation quantizations

N / ©7)
ps,f 7o

for any partition P of 2.

Proof. By construction, Tp is C[[h]]-linear. To verify that the stack multiplication is taken
to #p, let L1, L, be links on . Recalling Theorem 4.12, the definition of the product o on

C(Z) (3.10), and the identity (3.11), we obtain

Tp(L1) #p Tp(L2) = R s Vp(L1) #p Ry s Vp(L2)
= R, (1Vp(L1) #p nVp(L2))
= Rs,/m(Vp(L1) o Vp(L2))
= R, sVp(L1L2)
= Tp(L1L2).

The next step is to prove that Tp descends to the skein algebra, i.e., that Z ((X) < Ker Tp.
By the first part of the proof, Ker Tp is an ideal so it suffices to consider a generator of
Z; f(X). As Tp can be computed locally, we simply consider the skein relation (6.1); we
have (cf. (5.25))

and analogously
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so that
Tp exp(— \/‘ —exp( fh ‘\/‘ >< exp §>< —exp ——><h))
>< 251nh( ><

= 2sinh(§h) > <
='n{2ynh(%h)> <]

as desired. The induced map Tp: Asf(X) — Z;¢(X)[[h]] is C[[h]]-linear and thereby
h-filtered whence it can be completed to a homomorphism of (filtered) C[[h]]-algebras
Tp: Asf(X) — Zf(Z)[[h]]. It is immediate from the definitions that the triangle (6.7)
commutes. O

The proof of Theorem 6.4 is complete once we establish that Tp: A, ((X) — Z; ¢((Z)[[h]]
is an isomorphism of C[[h]]-algebras. The strategy is to show that the C[[h]]-linear homo-
morphism (recall (6.4))

Fp=TdoV, ': Cy(X) = Ly(T) - A 4(T)

descends via g r: Ci(X) — Z; ¢(Z)[[h]] to yield the inverse of Tp. To this end it will be
useful to introduce the large filtration (larger than the chord filtration) on Cj,(X); it is given

by
Ch(X), =7 H(H"C(D)[[M]]) € Cu(Z), neN.

Remark 6.7. By definition, 17 and hence g, s = R; ¢ o 77 are filtered with respect to the large
filtration.

Intuitively, the large filtration measures a ‘degree’ defined in terms of both chords and
powers of /i; to make this idea precise we introduce C-linear maps py: Cy(X) — Cp(X) <
Ci(Z), n € N determined by the formula (D is a chord diagram with m chords)

Z/\h m>n
A ™D, m<n

Clearly, these maps are independent projections in the sense that
Pnopw = Onwbn, N, n' e N. (6.8)

Elements in the subset Imp, < Cj,(X) are said to have chord-h degree n. Of course, p;
extends to p,,: Cy(2) — C(X) € Cp,(X), and it is a consequence of the definitions that

n—1
() Kerp; = Cy(X),, neN. (6.9)
i=0

Remark 6.8. Evidently, the concepts of the large filtration and the chord-h degree make
sense locally, that is, they can be defined for chord tangles in an embedded square S < X.
Composition of chord tangles is chord-# graded.
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Lemma 6.9. The map g r: Cp(X) — Z, ((X)[[h]] is surjective, and the induced ma
P 4s.f f ] p

4s,r: Cn(E) [Ker g, p — Z5 4 () [1]

is an isomorphism of filtered C[[h]]-modules when the domain is equipped with the filtration induced
from the large filtration.

Proof. Let Z = Zifihi € Z;p(Z)[[h]]. Write Z; = A + z; where z; is a complex linear
combination of non-empty diagrams on X, and put z = 3, z;#'. As

%,f((Z ANl ) @) = DM@ =2z,

1

it suffices to show z € Im g, . By repeated application of the relation
qs,f- Dy rep pPp

I = ﬁ[s@ —fc<] mod L ¢,

we may find D; € C)(%) such that R ¢(Dj) = zj, ie.,
RS,f (Z Dihi) = Z Zihi = Z.
i i

But D = (D;) € C(X) € Cy(T) satisfies (D) = ¥, D;h' so that qs,f(D) = z as desired. The
induced isomorphism of C[[h]]-modules

95,5 Cn(2) Ker qs,f = Zs,f(B)[[N]]

is a filtered map. The argument for surjectivity reveals that if z € h" Z, ((X)[[h]], then the

inverse image q;}(z) contains an element in Cj,(X), so that the inverse map q;fl is also
filtered. O

Lemma 6.10. Kerg, ;= {c € C;(X) [ ce L ; + Cy(X),, n e N},

f

Proof. Let ¢ € C;(X). For the inclusion € suppose that c € Ker g ¢. Letting 77;: Z, ¢(X)[[h]]
— Z, r(¥) denote the projection on the ith coefficient, we derive

0 = 7;gs,7(c) = 7iRs n(c) = R pin(c), ieN

implying that 71;77(c) € L ¢; this means that p;(c) € Lé’,f. Given n € N, (6.8) and (6.9) yield

n—1
c— > pi(c) e Cy(D),
i=0

so thatc € L’; £t Cn(%),,. For the other inclusion we assume that c is in the right hand set.
Since

Go,f (LL s +Cy(X),) S H"C(D)[[M]], neN

by Remarks 6.3 and 6.7, it follows that g, ¢(c) = 0 as desired. O
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Lemma 6.11. The map Fp: Cy(E) — A (X) is filtered with respect to the large filtration.

Proof. Suppose that ¢ = (c;) € C;,(X) belongs to Cj,(X),. Since Fp is filtered with respect to
the chord filtration on Cp,(X), it is enough to show that

j ) e A,,(D) (6.:10)

By the characterization of the large filtration (6.9), each c¢; may be written as a C[[]]-linear
combination of elements of the form h"~'D where D is a chord diagram with i chords.

Choose L; € L} (X); such that ([L;];) = V, 1(D) € L,(X);. Since
Fp(h"~'D) = h"([L;]}) = ([""'Lj])) € As s(Z)
with (cf. (6.3))
WL e KLY (R); € W' (T p(S) + W Ly(R)) S T f(Z) + W' Ly(2) = Liy(S)n,
we infer that Fp(h" D) € A ¢(X), . This implies (6.10) and thereby the lemma. O

Lemma 6.12. Lh c Ker Fp.

sf S

Proof. Any generator of L? fis the composition of the element

g= oo o) [ =i e ot

located in some square S € ¥, with a suitable chord tangle in 2. — S. By the compatibility
of the universal Vassiliev invariant with this decomposition, we need only consider the
square S and show that Fp(g) = 0. Define

X = Vexp hy—expfh% 251nh > Uem

By definition of Z; ¢(%),
Fp(X) = 0. (6.11)

Refining the computation in the proof of Lemma 6.6 a little, one establishes

71 s . /S
X:ZSmh[Eg—l— §h> <]—251nh(§h)> <
Since g is homogeneous of chord-h degree 1, it follows that

0, n=20
pn(X) =1g, n=1 (6.12)
g Xn, Xn € Cy(S;11,11) has chord-h degreen —1;, n =2
Applying induction we construct a sequence Y; € Cy(S; 11,11),i = 1,2, ... of the form

Y;i=X-y;, yi€Cy(S;11,11) has chord-h degree i — 1
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and satisfying

> Yi—geCu(SiT ), (6.13)

i=1

To initiate the process we set y; =11 so that Y7 = X; by (6.12) and (6.9) this is sound.
Assume that Yj, ..., Y, have already been defined. Then

n

n n n
Pn+1(2 Y;) = Z Pui1(X-yi) = Z Prnt2—i(X) - yi = Z S Xpy2i"Yi-
i—1

i=1 i=1 i=1

Thus we are lead to put y,+1 = — >.r_1 Xn 42 - i, which by induction has chord-h degree
n, and thereby obtain

n+1

Pn+1(2 Y) = pn+l(

i=1

M:

Y;) 4+ p1(X) - Yny1 = 0.
1

Taken together with the hypothesis (6.13), this implies

n+1
pi(>Yi-g) =0, j=0,...,n+1

completing the induction step by (6.9). Now, (6.13) means by definition that >,/ ;Y; —
g, n — oo in the large filtration so by (6.11) and Lemma 6.11

n
O—ZFP Z '—)Fp n — oo.

Since A ¢(S; 11, 11) is Hausdorff, this implies Fp(g) = 0 as desired. O

Lemma 6.13. The map Tp: A; () — Z; ¢(X)[[h]] is a C[[h]]-algebra isomorphism.

Proof. From Lemmas 6.10, 6.11 and 6.12 follow that Kerg; s < KerFp. Consequently,
Lemma 6.9 yields an induced homomorphism

~

Fp: Z, (D[] = Cn(E) /Ker g, f — A f(T)

of filtered C[[h]]-modules. We verify that Fp is the inverse of Tp. From the diagram

follows that Fpo Tp ot = 12 Ly(X) — A ¢(X). Since Fp o Tp is a filtered endomorphism of
A r(¥), this means that Fp o Tp = Id. That Tp o Fp is the identity on Z, ((X)[[h]] need only
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be verified on Z, ((X) € Z ¢(X)[[h]] by the C[[h]]-linearity, cf. (3.1). Let D be a diagram
on ¥. We may consider D as an element of C;(X), and clearly g, (D) = D. Therefore

Fp(D) = 1d(V, (D)) (6.14)
so that
Tp(Fp(D)) = TpldV; (D) = g5,/ VpVp ' (D) = D
as desired. ]
Proof (Theorem 6.4). Lemmas 6.6 and 6.13. O

Proof (Theorem 6.5). For a diagram D on X the canonical equivalence from #p, to #p, on
Z, ¢(X) is given by

D — Ry T(D) = Ry Y. (Vp,Vp (D)) R = Ry Vi,V (D),
r

cf. Theorems 4.6 and 4.12. But (cf. (6.14))
TPZTI;ll(D) = szﬁvlgl(D) = qs,fvpzvlgl(D) = RS,fUVPZVIil(D).

This completes the proof since by (3.1) it suffices to consider the restrictions of the two
maps to Z; ¢(X). ]



Chapter 7

The Case SL;(C) Revisited

We present in this chapter a canonical I'  (X)-invariant #-product on O(M(Z; SL,(C))) due
to Bullock, Frohman and Kania-Bartoszyriska [BFK]. This #-product is defined on a model
for O(M(Z;SL,(C))) especially suited for the purpose; we develop the model in the first
section. Subsequently we prove, in the case /X 4 ¥, that the BFK #-product is canonically
equivalent to each of the AMR #-products on O(M(%;SL,(C))). We end the dissertation
with an investigation of the differentiability of the BFK #-product.

7.1 A Good Model for the Moduli Space

Using the abbreviations Z(X) = Z,; 1 (X)and Z(X) = Z(%;SLy(C)), Theorem 5.34 implies
that we have an algebra homomorphism

¥: Z2(X)/7,() - O(M(Z;SLy(C))).

Remark 7.1. We also learn from Theorem 5.34 that ¥ is a surjection with Ker'¥ = +/0.
Shortly we shall see that +/0 = 0 so that, by the same theorem, ¥ is actually a Poisson
isomorphism (we know this already in the case 6% 4 ¢ by Corollary 5.35).

Ignoring the orientation of the loops in diagrams on X induces an equivalence relation;
the equivalence classes are called unoriented diagrams on ¥ and we denote by Z°(X) the
free complex vector space generated by them. Of course, Z°(X) is a commutative algebra
under union of unoriented diagrams, and the orientation-forgetting map

u: Z(%) — 2°(%), u(D) = D°

is an algebra homomorphism. Define [Cp(X) € Z°(X) to be the subspace generated by the

local relations
<)
Q =-2 (7.1b)

As usual, Ky(X) is an ideal. Consider the linear map u: Z(X) — Z°(X) given by
u(D) = (—-1)"D° = (-=1)"u(D), D a diagram with n loops. (7.2)

It is a homomorphism of complex algebras.

78
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Remark 7.2. Unlike many other maps defined on (chord) diagrams, i cannot be computed
locally because of the sign. In expressions below where i is seemingly evaluated on a
tangle, it is understood that this tangle is part of a particular diagram on X.

Proposition 7.3. The map ii: Z(X) — Z°(X) induces an isomorphism

2)/1,(z) - 2" /Ko=) (7.3)
of complex algebras.

Proof. The first step of the proof is to show that Z, (%) maps to 0 under the composition

2(x) 5 zo5) — 2°(0) /g, (x)

It is sufficient to consider the generators (cf. (5.22)) of the ideal Z,(X). We have

J[Q—z] =—sz=o

taking care of (5.22a). For the other two relations we need the following intermediate result
~—

”[Z e(a)}jﬁ}:u[> <—><}:e[> <+><}:—e (7.4)
0€Sy N

where € is equal to —1 raised to the number of loops in the diagram corresponding to 1.
This formula implies (5.22b) since

]

; _ER%_GRU g
|3 comfgiel] =R =em 1

with appropriate signs €], and e easily seen to be equal. Applying (7.4) to the left hand
side of (5.22c) yields

b N N
17[2 e(a)jZi]——ely i = —€
€S, TN TN

Here the decoration of the middle diagram means that traversing the upper strand from
right to left amounts to first traversing ! and then y. Comparing this formula with (7.4)
verifies relation (5.22c). Consequently i descends to an algebra homomorphism

and

2)/1(5) = 2°E)/Ky(2)

In order to invert i1, we record a simple observation.
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Claim. For any v € r1(2) we have

Z e(o) @’)’ = @’y = Z €(0) UD’Y 1 mod Z,(X).
0€S, U€Sy

The two identities are analogous; we prove the former one:
el o :} 1717 = - 0 0
0€S)y

Now letv: Z°(X) — Z(X)/Z,(X) be the C-algebra homomorphism determined by

o(y) = =7 (7.5)

where 7 denotes some unoriented loop on X and ¥ is one of the two possible oriented
versions of it. That v is well-defined follows from the claim and an application of relation
(5.22¢):

The next step is to verify that y(X) < Ker v. Relation (7.1b) is trivial:

U[Q +2] :—Q +2=0.

Given an instance of relation (7.1a) we assume without loss of generality that the two ver-
tical strands belong to separate loops. Letting « and  denote oriented versions of them we
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deduce

) (<]

I
QR
L
e
I
QR
L
=

as desired. It is obvious from (7.2) and (7.5) that the induced map
v: Z°B)/K(z) » Z®)/1y(x)
is the inverse of u. O

The usefulness of this proposition stems from the fact that the relations (7.1) are similar to
the skein relations defining the Kauffman bracket; recall that this is a polynomial invariant
(Ly € Z[A*!] of the framed, unoriented link L € R3, satisfying (and determined by) the

conditions
~—
J_a +A*1> < (7.6a)
/ 7N
Q A _A? (7.6b)
Substituting A = —1, over- and undercrossings cannot be distinguished, and the skein

relations reduce to (7.1).

Remark 7.4. In light of what we have just said, it is easy to see that Z°(X)/Ky(X) is iso-
morphic to the complex algebra S (X x I; C, —1) studied in [PS]. The latter algebra has
no zero-divisors, in particular no nilpotent elements, by Theorem 4.7 of that paper. It thus
follows from Proposition 7.3 (cf. Remark 7.1) that ¥: Z(X)/Z5(£) - O(M(L;SLy(C))) is
a Poisson isomorphism. We transfer the Poisson structure on Z(X)/Z,(X) to Z°(X)/Ko(Z)
by requiring that the algebra isomorphism i is a Poisson isomorphism.

Pursuing the similarity of (7.1) and (7.6), we define a BFK-diagram on X to be the isotopy
class of a finite collection of unoriented circles embedded into X such that no loop bounds
a disk in ¥; informally speaking, a BFK-diagram is an unoriented diagram on X with no
crossings and no homotopically trivial components. Let B(X) be the complex vector space
freely generated by all BFK-diagrams on X. Define a linear map x: Z°(X) — B(X) by
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the Kauffman bracket procedure, i.e., given a generic unoriented diagram D replace all
crossings by the right hand side of (7.1a) and remove all arising trivial loops at the cost of
a factor —2 to obtain a linear combination k(D) € B(%).

Proposition 7.5. The map x: Z°(X) — B(ZX) is well-defined and descends to an isomorphism
xk: Z2°(2) /Ko (z) — B(Z) (7.7)
of complex vector spaces.

Proof. Two generic unoriented diagrams on X are homotopic if and only if they are related
by isotopy and the three Reidemeister moves. Of course, x(D) is invariant under isotopies
of D. Regarding the first Reidemeister move, we follow the steps in the computation of x

0-0-po- -

as required. For the second and third Reidemeister moves one can simply substitute A =
—1 (and ignore over-/undercrossing information) in Kauffman’s proof of the invariance
of his bracket under these moves, cf. [K]. Hence « is well-defined, and by construction it
descends to a quotient map as in (7.7).

Any BFK-diagram on X can be considered as an unoriented diagram on %; this defines
a linear map ¢: B(X) — Z°(X). Evidently, the composition

+2

B(E) -5 2°(2) — 2°(E) /Iy (x)
is the inverse of «. O

We equip B(X) with the Poisson algebra structure induced by x and have thus constructed
the diagram

R, 1
1-3

C(E) —2 2(2) —— Z(8)/1,(x) —— Z°(D) /iy (2) —— B(E)

k4 (7.8)

O(M(Z;SL2(C)))

of Poisson homomorphisms. Here v: B(X) — O(M(ZL;SL,(C))) is the unique map (iso-
morphism) making the diagram commutative. From (7.5) follows that

v(y) = -¥(®7)

where 1 is a non-trivial loop on X. Therefore v is equivariant with respect to the natural
action of '+ (X) on B(X), cf. Theorem 2.22.
It will facilitate computations later on to adapt diagram (7.8) slightly. Consider the map

¥: C(Z) » O(M(X;SLy(C))) given by

¥(D) = (-1)"¥(D), D achord diagram with n core components
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Since ¥: C(X) —» O(M(ZL;SL,(C))) is a Poisson homomorphism and the Poisson structure
on C(X) preserves the skeletons of chord diagrams, ¥ is also a Poisson homomorphism.
We know that ¥ maps the loop relation

-) (-3

to 0. Since smoothing a chord in-/decreases the number of core components by 1, it follows
that ¥ satisfies a different loop relation:

<-0) (-4

Thus we obtain a triangle of Poisson homomorphisms

O(M(Z;SL2(C)))
For a diagram D with n loops we have by (7.2)
vku(D) = (—1)"vkii(D) = (—1)"¥(D) = ¥(D)

so that (7.8) transforms into the commutative diagram

CE)———2 4 1E) 5 2°(F) /y(z) —— B(X)

_ (7.9)

O(M(Z;SL2(C)))

As a composition of Poisson homomorphisms u = kv 1¥ is a Poisson homomorphism.

We are now set to derive formulas for the product and the Poisson bracket on B(X). Let
D and E be BFK-diagrams in general position. Regarding D and E as unoriented diagrams
on %, their product is simply the union D u E. Hence relation (7.1a) leads us to define a
state for (D, E) to be any map S: D#E — {0, oo} and its corresponding diagram D(S) to be
the one obtained from D u E by resolving all crossings D#E as follows

ifS(p) =0
7N

D>p<E - (7.10)
> < ifS(p) =

Notice that D(S) is not necessarily a BFK-diagram since it may contain trivial loops. Obvi-
ously we have

DE = (—1)IP*EIY" D(S) e 2°(X) /Kco(2)- (7.11)
S



84 Chapter 7 - The Case SL,(C) Revisited

To calculate {D, E}, lift D and E to diagrams D and E on X so that u(D) = D and u(E) = E.
Since

{D,E} = > e(p;D,E)Du,EeC(%),
peﬁ#ﬁ
diagram (7.9) implies

{D,E} = {uRilﬁ%(ﬁ),uRilﬁ%(E)}

= X epiDB(R,_y(Duy E)) e 27Ky (x).
peED#E

Focusing on the chord in D u p E, we get

(7.12)

so that

- 2y 1

(D vy E)) 5

where D U s E, s = 0, o0 is obtained from D u E by resolving only the crossing at p accord-
ing to the rule (7.10). Hence we have

e(p; D, Eju(R_; _; [D Up,w E—D uUpoE]

(D,E} = % ' [D Upoo E—DupoEle 2°(E) /Ky ().
peDHE

The diagram D U, E contains the crossings D#E — {p} which may also be resolved via
(7.1a); doing so leads to the various state diagrams for (D, E). Putting 0(S) = |S~1(0)| and
©(S) = |S~1(o)| for a state S, we therefore derive

{D,E} = (—1)\9#’5'%2(0(5) —0(8))D(S) € Z°(Z) /K (%) (7.13)
S

This formula (up to a sign) was obtained in [BFK].

Remark 7.6. In the case 0~ + ¢J we have the #-product #p, P € P(X) on O(M(Z;SL,(C)))
induced via the #-equivalence ¥: Z(X)/Z,(X) —» O(M(Z;SLy(C))), cf. Theorem 5.27 and
Corollary 5.35. We may transfer #p to Z°(X)/Ko(X) and B(X) by requiring i, x and, thus,
v to be #-equivalences. The adapted map ¥: C(Z) > O(M(E;SLy(C))) is a morphism of
#p since this =-product preserves skeletons of chord diagrams. From diagram (7.9) follows
that u: Z,l,,% (Z) = Z2°(2)/Kp(X) is also a morphism of #p.
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7.2 The BFK #Product

Let £7(X) denote the free C[[h]]-module generated by the set of framed, unoriented links
in X x I; endowed with stack multiplication it is a C[[k]]-algebra. Let (X) < £} (X) be the
submodule generated by the skein relations

X = - exp(jih) : — exp(—}Ih) > < (7.14a)

Q =2 cosh(%h) (7.14b)

As usual K(X) is an ideal; the quotient
A°(Z) = LB fK(z)

is called the Kauffman bracket skein algebra of >.. In the sequel we shall mainly be interested

in the completion A°(X) with respect to the h-filtration on .4°(X). Notice that (7.14) are the
Kauffman bracket skein relations (7.6) with parameter A = — exp(%h) € C[[h]]- Hence we
can define a C[[h]]-linear map

K: L5(2) = BZ)[[A]]
by the Kauffman bracket procedure (cf. the construction of x: Z°(Z) — B(X)).

Theorem 7.7. The map K: L;(X) — B(Z)[[h]] induces an isomorphism

K: A°(X) - B(E)[[H]] (7.15)
of C[[h]]-modules.

Proof. Itis immediate from the definition that IC(X) € Ker K. The induced map K: A°(Z)
— B(X)[[h]] is filtered with respect to the h-filtrations since it is C[[}]]-linear. Therefore we
obtain a homomorphism of C[[h]]-modules as in (7.15).

Inverting K is simple. A BFK-diagram may be considered as a diagram of a framed,
unoriented link; the complex linear map

BX) = LX) > A°(Z) - A°(X)

induced hereby determines (cf. (3.1) and Remark 3.1) a C[[h]]-linear map B(Z)[[h]] —
A°(X) easily seen to be the inverse of K. O

Remark 7.8. Thinking of B(X) as the quotient Z°(X)/KCy(X), we may treat trivial loops a
little differently in the computation of K. Namely

K[(::)]:zcosh(%h)<::>

Theorem 7.9 (Bullock, Frohman & Kania-Bartoszyniska). The multiplication on A°(X) in-

duces a =-product xx, on B(X)[[h]] via the isomorphism K: A°(X) — B(Z)[[H]].

by (7.14b) and (7.1b).
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Proof. Let D and E be BFK-diagrams in general position. To compute D #y E one must
stack D on top of E, resolve all crossings using (7.14a) and collect the factor COSh(%h) for
each trivial loop (keeping this loop). Given a state S for (D, E) we denote by 7(S) the
number of trivial loops in its diagram D(S). Putting a = exp(}th), we get

D s E = (—a)2) () cosh(%h)T(S)D(S). (7.16)
S
Since cosh(%h) =1 mod h?, this simplifies to
D#x E =) (-a)"8)*)D(s)
S
_ (71)\D#E| Z aO(S)*@(S)D(S)
S
_ (_1)ID#E] _ 1
= (-1) 2(1 +(0(S) oo(S))4h)D(S)

1 1
- <—1)‘D#E'§D<S> + 5h(=1)PFEIZ 33(0(S) — 0(8)) D(S)

— DE + %{D,E}h mod 7>
by formulas (7.11) and (7.13). This proves the theorem, cf. Proposition 3.9. OJ

The BFK #-product is I'; (X)-invariant by (7.16); so is the induced #-product on the moduli
space by the equivariance of v: B(X) - O(M(Z;SL,(C))).

7.2.1 Relating BFK *-Products for Different Surfaces

Suppose ¥ has non-empty boundary and denote by 6yX one of its boundary circles. Let &
be the surface obtained from X by attaching a disk along dyX. In this subsection we define
a morphism from #y to #5 covering the Poisson homomorphism r*: O(M(X;SL,(C))) —
O(M(Z;SLy(C))) given by restricting regular functions, cf. 2.3.1.

Let D be a BFK-diagram on X. Some, 7 say, of the loops of D are isotopic to dyZ, so we
may write D = D’ L (9X)" where D’ is the remaining part of D. Notice that D’ can be
regarded as a BFK-diagram on . Letting x = —2 cosh(%h), we set

¢(D) =x"D" e B(Z)[[h]].

This formula determines a C[[h]]-linear map ¢: B(X)[[k]] — B(X)[[H]], cf. (3.1). In the
notation ¢ = Zj @;h/ the map ¢o: B(X) — B(X) is the BFK-version of r* in the sense that
the diagram

o
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is commutative. Let E be another BFK-diagram on X with decomposition E = E’ L1 (3yX)™.
When stacking D on top of E to compute D #y E, we may assume that all crossings are
between D’ and E’. Then

@(D x5 E) = x"""D" s E' = x" D" s x™E' = (D) #5 ¢(E)

so that ¢ is the desired #-morphism. Note that we had to twist the restriction map to obtain

a #-homomorphism. In other words, if #y induces a #-product on O(M (X)) via r*, this
#-product is not equal to #5.

7.3 The AMR #-Products and the BFK :-Product

In this section we assume that 6 + (J; we prove that the AMR =-product #p, P € P(X)
on O(M(X;SL,(C))) is equivalent to the BFK #-product. The strategy is to show that the
equivalence

Tp: A 1 1(Z) — 271,71(2)[[;1]]*13 (7.17)

L= 2
of quantizations (cf. Theorem 6.4) descends to an isomorphism

Kp: A°(%) — B[]+, (7.18)

of C[[h]]-algebras. The co-domains of (7.17) and (7.18) are related by the *-homomorphism
Kou: Zflﬁ% O)[[h]]4p = BE)[[H]]+p (cf. Remark 7.6), so let us establish the connection

between the domain spaces. Recall (6.1) that the Turaev-Vassiliev skein algebra A_; _1(X)
is the quotient of £;,(X) by theideal Z_; _1(X) generated by

2

exp(ih)\/\‘ —eXP(—%h)‘/\/‘ - ZSinh(_%h)> <

Putting a = exp( % ), this may be written

a% faflx = (a2 fa2)> < (7.19)

On the other hand, the Kauffman bracket skein algebra .A°(X) is the quotient of L7 (X) by

the ideal /C(X) generated by
/ 7N

Q _ o, (7.20b)

where r = cosh(%), cf. (7.14). Forgetting the orientation of a link induces a homomorphism
of C[[h]]-algebras

U: L(Z) = L3(D).

It is easy to see that U maps 7_,_1(X) into K(X). Namely, rotate (7.20a) 90 degrees to see

that the skein relation
PL=) (et
= —a —a
\ N
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holds in A°(X). A suitable linear combination of this identity and (7.20a) proves

a% foflx =2 fa2)> < mod (X).

Comparing this formula with (7.19) yields the claim. The induced map U: A_;_1(X) —
A°(X) on the quotients is h-filtered (it is C[[k]]-linear) and therefore extends to the h-
completions

u: Ailﬁ%(Z) - A°(%2).
Consider the homomorphism of C[[h]]-algebras
T o
Kp: Ly(Z) =5 Z_; 1 (D)[[H]]ep = Z2°(Z)/Ko(@)[[1]]xp = BE)([]]p-
First we prove that Kp factors through U: £,(X) — £;(X), i.e., that Kp cannot detect the
orientation of its input link. Let L be a link on %, and let C be some component of it. Denote
by Sc the cabling operation reversing the orientation of C. By the definition of Tp (cf. (6.6)

and (6.5)) and the fact that the universal Vassiliev invariant is compatible with cabling, we
derive

Kp(Sc(L)) = xkuR _y _1nVpSc(L) =xuR_y 1ScnVp(L) =xuR_; 11Vp(L) = Kp(L)

as desired. To justify the third equality, we recall Remark 4.1 about S¢ and apply (7.12) to

KR 5y [—:><] — —%D < _ :} —KuR [><] (7.21)

Remark 7.10. Strictly speaking (7.21) should be performed as a calculation in Z°(X)/Ko(X)
since « is not locally computable.

Theorem 7.11. The map Kp: L} (X) — B(X)[[h]] extends to an isomorphism

Kp: A°(Z) = BE)[[M]]+p
of C[[h]]-algebras fitting into the diagram

A

S, 1(®) o 24,1
\ /
Ly(Z)

u J/U Kou (722)

LX)
\
ke B(E

(Z)[[A]]

Ao (D) )7
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Corollary 7.12. The composition

Kp oK~ BE)[H] - B[]
is an equivalence from the BFK s-product =y, to #p.
Proof. By Theorem 7.9, one need only verify that the triangle

B[] X B[]

B(¥)
commutes; this is immediate from the definitions. O

We shall need a couple of lemmas for the proof of Theorem 7.11.

Lemma 7.13.
<=

<))

Proof. We prove the former identity; the proof of the latter one is analogous. Applications
of (7.12) and (7.1a) yield

Kp[%} — xuR

I
by
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e e
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o \
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so we may continue and obtain

=
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as desired. 0

Lemma 7.14. There exists A € C[[h]] such that A*> = r and
Kp[—~]=A; Kp[~~—]=A~ (7.23)

Proof. Recall the definition (4.4c) of the universal Vassiliev invariants of cups and caps.
No matter what particular value C has (this depends on the associator ®), it is clear from
(7.12) and (7.1a) that there is a A € C[[/]] such that (7.23) holds. Determining A by a direct
computation is not possible since we allow different associators, and even for a particular
associator such as the one given in [LM], the computation is not feasible. We circumvent
these difficulties by exploiting the isotopy invariance of Vp to calculate A. The skein relation
(7.19) defining 7| ! (X) may be depicted as

ax —ail'/\ — (a2 —a2): (7.24)

Since Tp respects this identity, Kp satisfies the unoriented version of it:

ax _a71K _ (a*Z—a2):

in the cases where the orientations in (7.24) are consistent. But according to the preceding
lemma

Kp[ax —ailx} = —azri — > < —1—{1727: + > < —(a? —az)ri

and by (7.23),

Equating the above two formulas yields the result since the scalar multiplication
Cl[R]] > BE)[[1]] — BE)[[H]]

is faithful. O
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Proof (Theorem 7.11). By Lemmas 7.14 and 7.13, we have

o) (|- ) (<)

Another application of Lemma 7.14 provides

KP[Q] - rQ _—

Recalling (7.20) this means that Kp(C(X)) = 0; the induced map Kp: A°(X) — B(X)[[h]] i
h-filtered and therefore extends to a homomorphism Kp: A°(X) — B(X)[[h]]«, of C[[h]
algebras. The diagram (7.22) is obviously commutative.

Define a C[[h]]-algebra homomorphism by

S

I-

Fp=UoTy!: 2 O — ALy 1 (B) — A(E).

We shall prove that F factors through the surjection k o u: Z(X)[[h]] — B(Z)[[}]] to a map
F5: B(Z)[[h]] — A°(Z) being the inverse of Kp, cf. diagram (7.22). Since

Ker (Z(Z)[[H]] 5 B()[[K]]) = Ker[Z(Z) = B(Z))[[A]]

and because the formula (3.2) applies to Fp, it suffices to prove that the restriction of Fp to
Z(X) descends to B(X) viax ou: Z(X) — B(X). For a diagram D on X we have by (6.14)

Fp(D) = UIdV, }(D). (7.25)

As the universal Vassiliev invariant is compatible with orientation changes in D, it follows
from (7.25) that Fp factors through u: Z(X) — Z°(X). By a method similar to the one used
in the proof of Lemma 6.12, we now demonstrate that y(X) = Kerx is contained in the
kernel of F3: 2°(£) — A°(X). Consider an embedded square S € X, and let 2°(S;d)
denote the complex vector space of unoriented tangles in S with two top and two bottom
boundary points. Notice that Z°(S; 0) is a commutative algebra under composition of tan-
gles. Recalling (7.1) it is enough to prove that the two elements

wes< ) meYo()
of Z°(S; 0) are mapped to 0 by F3. Define power series X1, X, € Z°(S; 6)[[h]] by
Xq = qu[‘/\/‘} +aqu[i} +a*1quD G
X, = quDoﬂ +2mTpD <]
By definition of F§ we have (cf. (7.20))
Fo(X1) = ‘\/‘ +a a*1> <
F3(Xp) = u[>o< +2r> G — 0.

} —0, (7.26a)

(7.26b)
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Let 7t;: Z°(S;9)[[h]] — Z°(S; @) denote the projection on the ith coefficient. We notice that
mo(X1) =81, 7m(X2) = g2 (7.27)

More generally, the identities

K(Xl):Kp[//+av+a*1> G —0; K(X2):Kp[>o<+27> G ~0

7N
imply that there exist elements x;c,i € 2°(5;0),j,k=1,2,i=1,2,... such that

2 2
mi(X1) =11+ 8 xp, Ti(Xp) =15+ 82 X3,

We use this observation to inductively construct a sequence Y; € Z°(S;d)[[h]],i = 0,1,...
of the form

Yi= X1 -y1i+ X2 Y20 Y1, Y2i € Z2°(S;0) (7.28)
and satisfying
n .
DIRY; - g1 € W"TLZC(S; 0)[[h]). (7.29)
i=0
The process is initiated by setting y19 = | | and y2,0 = 0 so that Yy = Xj; by (7.27) this is

sound. Assume that Yy, ..., Y, have already been defined. The computation

n

n
T (D HY) = ) 1Y)
i=0

i=0

n
= 3 g1 -i(X0) - Yri + g1 i(X2) - Yo
i=0
n
1 1 2 2
= 2[81 X1t 82 Xp il VL F 81 X i H 82 X0 1] Yo
i—0

n
=91 [ D)X 1 i Vi X i Y2
i=0

n
1 2
+82- [Z Xo 1 YLit X1 yz,i]
i=0

leads us to set

n

n
_ 1 ) 2 ) - 1 Y 2 Cn
Yin+1 = — Z nt1—i YL,it X1 Y2,ir Yone1 = — Z X ni1—i Y,i X2 01 Y2,
i=0 i=0

and thereby obtain (cf. (7.28) and (7.27))

n+1 n

g1 () HYs = g1) = a1 (O HY;) + mo(Yug1) = 0.
i=0 i=0
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This formula and the induction hypothesis

n+1 no
7'[1(2 lei—gl):T[j(Zlei—g]):O, j:O,...,TZ
i=0 i=0

complete the induction step. By definition, (7.29) means that

n .
Zlei_’gl’ n— o
i=0

in the h-filtration. Therefore, using (7.26), we derive

n

n
0= > H[Fp(X1) - Fp(y1i) + Fp(X2) - Fp(y2,)] = Fp (), 'Yi) — Fp(g1), n— oo.
i=0 i=0

By the Hausdorff property, this means that F5(g;) = 0. Analogously, one constructs an-
other sequence Y/ € Z°(S; d)[[h]] to prove that F3(g») = 0. It follows from diagram (7.22)

that the induced map Fp: B(Z)[[l]] — A°(X) is the inverse of Kp. O

Remark 7.15. Assume we have two partitions P; and P, of X.. By Corollary 7.12,
Kp, 0Kyl = (Kp, oK™Yo (Kpy oK™~ BE)[[)] = B)[[h]

is an equivalence from #p, to #p,. But from Theorem 6.5 and the commutative diagrams
(7.9) and (7.22) follows that this map corresponds under the isomorphism v: B(X) —
O(M(Z;SL,(C))) to the canonical equivalence between these #-products given in Theo-
rem 5.28.

Remark 7.16. Recall the set-up in 7.2.1 where we constructed a #-morphism
¢: BE)[[H]] — BE)[[A]]

from =y to »z. Suppose D and E are BFK-diagrams on . We may represent them by
BFK-diagrams on X. denoted by D, respectively E so that ¢(D) = D and ¢(E) = E. Then

@((KpK~ Y"1 (KpK~Y(D) #p KpKY(E))) = ¢(D #x E) = (D) #5 @(E) = D #5 E

Thus, the leftmost expression can be interpreted as a recipe for constructing a #-product on
O(M(Z;SLy(C))) out of *p on O(M(X;SL,(C))), i.e., we have one possible answer to the
question of how one defines a #-product on the moduli space of a closed surface in terms
of the AMR #-products for punctured surfaces.

7.4 Differentiability of the BFK :-Product

A #-product on the algebra of smooth functions on a Poisson manifold M is often required
to be differential, that is, in the notation

frg= > culf,@h", f,geC?(M)
n=0
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the maps ¢,: C*¥(M) x C*(M) — C*(M) must be given by bi-differential operators. In
order to investigate the question of differentiability for the BFK #-product, we shall derive
expressions for its coefficients ¢, = c;(X). Recalling formula (7.16), we define complex
numbers a?, a®,b;, i e N by

o ‘ 1 e ' 1 @ ‘ 1
Z an' = — exp(Zh), Z a’ht = — exp(—Zh), Z bh' = cosh(ih)
i=0 i=0 i=0

and notice that
=al=-1, by=1 (7.30)

Let D and E be BFK-diagrams. Given a state S for (D, E) we denote by T(S) the set of trivial
loops in the corresponding diagram D(S). We define a graded state for (D, E) to be a pair
(S,d) of a state S for (D, E) and a map d: D#E 11 T(S) — N. Its coefficient is

cs,d) = T agh < TT baey (7.31)
)

peDHE teT(S

and its total degree is 3 cpyr, 7(s)4(x). A graded state of total degree 7 is called an n-state.
Writing fp = v(D) for the isomorphism v: B(X) - O(M(L;SL,(C))), we infer from (7.16)
that

Cn(fD/fE) = Z C(S, d)fD(S) (7.32)

n-states (S, d)

A graded state is said to be degenerate if d|1(5) = 0. For such states we identify d with d|py,
and (7.31) simplifies to

cs,d) = [ a3 (7.33)
pEDHE

because of (7.30). Consider the special case in which D = | |; D; is a (disjoint) union of
m > n BFK-diagrams so that fp = [ [; fp,. Define BFK-diagrams

Di=||Di k=1,...,m
ik
As Di#E < DH#E, a state S for (D, E) induces a state S; for (Dy, E) by restriction. If (S,d)
is a degenerate state for (D, E), then (S,d); = (S;,d;), where d; = d\D,»{#E/ determines a
degenerate state for (D, E). The pigeon hole principle allows us to define the index of
a (degenerate) n-state for (D, E) to be the minimal k € {1,...,m} such that d|p 4 = 0.
Two degenerate n-states of the same index k are said to be equivalent if their restrictions to
degenerate states for (D;, E) are equal. For an equivalence class S = [S, d] we may set

D(S) = D([S,d]) = D(S;), C(S) = C([S,d]) = C((S,d)p)- (7.34)

We note moreover that S determines all of (S, d) except S|p, 4z which in turn is unrestricted.

Hence S consists of 2/P#E| elements, and | Di#E| applications of relation (7.1a) restores the
crossings Di#E and thereby proves

> forsy = (“DIPFE 6 -

(S,d)eS
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By the definition of index and formulas (7.30), (7.33) and (7.34), we derive
C(S,d) = (-1)IPHEIC(S), (S,d) e S.

Combining the above two formulas:

> C(S,d)fps) = C(S)fos)foy-
(S, d)eS

Consequently,

>, CSdfps) €Dy s fp,) € O(M(E;SLy(C))). (7.35)
deg. n-states (S, d)

Reversing the roles of D and E yields an analogous result. Comparing formulas (7.32)
and (7.35), we see that only the non-degenerate n-states can prevent c, from being a bi-
differential operator of order at most m — 1. We now give an example demonstrating that
this obstruction is non-trivial in general. Let ¥ = X, 3 be the genus 2 surface with 3 bound-
ary components. In Figure 7.1 is an illustration of a BFK-diagram D = D; LDy LiDzon 2
stacked on top of another BFK-diagram E(= E; L E; 1 E3) on X. It is immediate that all but
one of the states for (D, E) permit no trivial loops in their diagrams; the single exception is
called Sy (see Figure 7.2). Of course, any non-degenerate graded state for (D, E) must have
Sp as its underlying state. Since b; = 0, the only non-degenerate 2-state for (D, E) with
non-zero coefficient is (Sp, dg) where dy: D#E L T(Sp) — N is the function vanishing on
D#E and taking the value 2 on the singleton T(Sp). By (7.31) we have C(Sy,dp) = (71)6%
so that (7.32) yields

1
c2(fp. fe) = gfo(sy) + D C(S,d)fps)-
deg. 2-states (S, d)

But we may find a connection [A] € M(ZX;SL,(C)) such that
fo[AD =0, i=1,23 fpus, (Al +0. (7.36)

Cu5
@

(

Figure 7.1: Two BFK-diagrams on X 3. Figure 7.2: The diagram D(Sy).
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It thus follows from (7.35) that

ca(fo, fe)[AD) = &fo(sy ([A]) =0

despite the fact that fp = [ fp, has a third order zero at [A]. Hence c3(X53) is not a
bi-differential operator of order at most 2 (at [A]).

This example can readily be generalized to prove for any m € N that c;(X) is not a
bi-differential operator of order at most m if ¥ has sufficiently large genus. In the same
vein one can obtain analogous results for coefficients c, (%), n > 2. Refining the examples
a little, it is also possible to derive a more generic condition than (7.36) for a connection
to provide a counterexample. In fact, endowing M(Z;SL,(C)) with the topology induced
from the Zariski topology on the space A(K;SL,(C)) of SL,(C)-connections on a complex
K modelling ¥ (this is independent of K, cf. 2.1), we may summarize our considerations in

Theorem 7.17. Let n = 2 be an even integer, and let m = n be another integer. If ¥ has suffi-
ciently large genus (the lower bound is linear in m), then there exists a non-empty, open subset of
M(%;SLy(C)) at which ¢, (X) fails to be a bi-differential operator of bi-degree at most m.
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