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Chapter 1

Introduction

Throughout this dissertation we work in the following set-up: We denote by Σ an oriented,
compact and connected surface, possibly with boundary. A basepoint x0 P Σ is fixed, and
we let π1pΣq � π1pΣ, x0q denote the fundamental group. Furthermore, G is a linearly
reductive, affine algebraic group over the complex numbers (e.g. GLnpCq, SLnpCq, OnpCq
and Sp2npCqq. By a standard result (cf. [Hu]), G is a closed subgroup of GLnpCq so that,
in particular, G is a Lie group; we write g for its Lie algebra. The moduli space of flat G-
connections on Σ is denoted by MpΣ; Gq. It is well-known that there is a canonical bijection

Hol : MpΣ; Gq Ñ Hompπ1pΣq, GqLG (1.1)

where the G-action on Hompπ1pΣq, Gq is by conjugation and Hol is given by taking the
holonomy with respect to a flat connection along loops on Σ based at x0. Let Γ�pΣq denote
the group of orientation preserving diffeomorphisms of Σ. This group acts on MpΣ; Gq via
pullback of connections:

g � rAs � rpg�1q�As, rAs PMpΣ; Gq, g P Γ�pΣq
so that the induced action on FunpMpΣ; Gqq � MappMpΣ; Gq, Cq is given bypg � f qprAsq � f pg�1 � rAsq � f prg�Asq, f P FunpMpΣ; Gqq, g P Γ�pΣq.
For a synopsis of the dissertation, the reader may consult the table of contents and the
introductory paragraphs of the individual chapters.

It is presupposed that the reader is familiar with a few basic concepts and results from
algebraic geometry and invariant theory (cf. [Fog]). For his convenience we recall the
relevant material here. An affine algebraic set X � VpSq � CN is the solution of a set S of
polynomial equations in N variables; associated to it is the ideal IpXq � Crx1, . . . , xNs of
polynomials vanishing on X. The Hilbert Nullstellensatz states that

IVpaq � ?
a, a an ideal in Crx1, . . . , xNs.

Occasionally the radical ideal
?

a is denoted by Radpaq. The ring OpXq of regular func-
tions on X is isomorphic to Crx1, . . . , xNs{IpXq. Algebraic morphisms between affine sets
preserve regular functions; the action on OpXq induced by an algebraic G-action on X is ra-
tional. By the linear reductivity of G, rational actions have well-behaved invariants. To be
specific, if G acts rationally on a complex vector space V, then the subspace VG � V of fixed
points has a unique G-invariant complement VG. The linear projection ∇ � ∇V : V Ñ VG
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2 Chapter 1 � Introduction

with kernel VG is called the Reynolds operator on V. The uniqueness of VG implies that
Reynolds operators are natural with respect to G-equivariant, linear maps ϕ : V Ñ W, i.e.,
the diagram

V
ϕ

∇

W

∇

VG
ϕ|

WG

is commutative.

Remark 1.1. A simple, but important consequence of this is that ϕ| is surjective if ϕ is.

If V is an algebra (and G acts by algebra isomorphisms), then Reynolds’ identity

∇pxyq � ∇pxqy, x P V, y P VG (1.2)

holds.



Chapter 2

The Moduli Space and the Algebra of

Chord Diagrams

A Poisson structure on the algebra of functions on MpΣ; Gq has been studied by a number
of people, e.g., Atiyah and Bott [AB], Goldman [G1, G2], Biswas and Guruprasad [BG],
and Fock and Rosly [FR]. The authors approach the subject differently but common to all
is that the Poisson bracket t , uB is defined in terms of an orthogonal structure on G, that is, a
non-degenerate, symmetric, bilinear map B : g� g Ñ C invariant under the adjoint action.

In this chapter we first construct the algebra OpMpΣ; Gqq of regular functions on the
moduli space and then adapt the presentation in [FR] to define a Poisson bracket t , ut on
OpMpΣ; Gqq for any symmetric Ad-invariant tensor t P gb g; this generalizes the afore-
mentioned Poisson structure since t , uB � t , utB where tB P gb g is the symmetric Ad-
invariant tensor corresponding to B P pgb gq� under the isomorphism g� � g induced by
B itself. Afterwards we present the Poisson algebra of chord diagrams CpΣ; Gq introduced
by Andersen, Mattes and Reshetikhin [AMR1]. One of the main results of this paper is that
there exists a Poisson homomorphism ΨB : CpΣ; Gq Ñ pOpMpΣ; Gqq, t , uBq; we generalize
this to all Poisson brackets t , ut.

2.1 Lattice Gauge Field Theory

A graph K is a finite, 1-dimensional CW-complex with an orientation on each 1-cell. Its set
of vertices is denoted by VpKq and its set of edges by EpKq. We also consider the set EBpKq
of all endpoints of edges of K. It is important to notice the distinction between vertices and
endpoints; the two concepts are related by the obvious ‘incidence’ mapr s : EBpKq Ñ VpKq.
In the sequel we identify a vertex with its pre-image under this map. The endpoints of an
edge are given by the maps B�, B� : EpKq Ñ EBpKq.
An edge α P EpKq may be traversed according to or counter to its orientation, yielding two
curves, α and α�1, in K. A path in K is a curve in K which is a composition of edge traversals,
i.e., they have the form α

ǫ1
1 � � � αǫn

n with the compatibility condition that B�α
ǫi
i :� Bǫi αi andB�α

ǫi�1

i�1 :� B�ǫi�1
αi�1 for i � 1, . . . , n� 1 are incident to the same vertex. For loops (cyclic

paths) we always work with indices modn.

3



4 Chapter 2 � The Moduli Space and the Algebra of Chord Diagrams

A combinatorial complex K is a 2-dimensional CW-complex obtained from a graph by
attaching a finite number of 2-cells along loops in the graph. The set of graph connections on
K (more precisely, on its underlying graph) is simply the product GEpKq; for a connection

A � pAαq P GEpKq the element HolApαq � Aα P G is called the holonomy with respect to A
along α. We extend the concept of holonomy to paths in the obvious way:

HolApαǫ1
1 � � � αǫn

n q � Aǫ1
α1
� � � Aǫn

αn , A P GEpKq.
Notice that for a loop without a specified initial point the holonomy is still a well-defined
conjugacy class. Therefore the equations

HolApBFq � 1, A P GEpKq (2.1)

with F running over all faces in K make sense and define a subset ApKq � ApK; Gq � GEpKq
called the G-connections on K. The gauge group of K is by definition GpKq � GVpKq; it acts on
the graph connections:pgvqpAαq � pgrB�αsAαg�1rB�αsq, pAαq P GEpKq, pgvq P GpKq.
Since this action conjugates the holonomy along a loop, ApKq is an invariant subset; the
orbit space

MpK; Gq � ApKqLGpKq
of the restricted action is called the moduli space of G-connections on K. The natural projection
π : ApKq ÑMpK; Gq sets up a bijection

π� : FunpMpK; Gqq Ñ pFunpApKqqqGpKq.
As ApKq is cut out of GEpKq by the algebraic equations (2.1), it is an affine algebraic set. The
gauge group action on ApKq is clearly algebraic whence the induced action on functions
preserves the property of being regular. Set

OpMpK; Gqq � pπ�q�1
�
OpApKqqGpKq� � FunpMpK; Gqq. (2.2)

The notation OpMpK; Gqq is merely suggestive; we do not claim that MpK; Gq admits the
the structure of an algebraic variety.

Now suppose ι : K Ñ Σ is an embedding such that K � Σ is a deformation retract; we
call K � pK, ιq a model for Σ. There is a canonical bijection

Holι : MpΣ; Gq ÑMpK; Gq
with the following description (cf. (1.1)): Let A be a flat connection in a principal G-bundle
P Ñ Σ. Choose for each v P VpKq a basepoint in the fibre of P over v (a trivialization of
P|v). This allows the holonomy with respect to A along an edge α P EpKq to be expressed
as an element Aα P G, and we have

HolιprAsq � rpAαqs PMpK; Gq, rAs PMpΣ; Gq.
We define the algebra of regular functions on the moduli space by

OpMpΣ; Gqq � Hol�ι pOpMpK; Gqqq � FunpMpΣ; Gqq.
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Proposition 2.1. The subset OpMpΣ; Gqq � FunpMpΣ; Gqq is independent of the model used to
define it.

Proof. Suppose we have two models ιj : Kj Ñ Σ, j � 1, 2. Pick a map ρ : VpK2q Ñ VpK1q
and for each v P VpK2q a curve γv on Σ from ρpvq to v. Consider an edge α of K2. Since K1 is

a retract of Σ and by cellular approximation, the curve γrB�αspι2q|αγ�1rB�αs on Σ is homotopic

rel endpoints to a path Pα in K1. Define a map ϕ : GEpK1q Ñ GEpK2q by

ϕpAqα � HolApPαq, A P GEpK1q.
Assume that A P ApK1q and let P Ñ Σ be a principal G-bundle. Upon trivializing P|VpK1q,
A defines a flat connection Ã on Σ representing Hol�1

ι1
prAsq. Now trivialize the fibre over

v P VpK2q by parallel transporting the basepoint over ρpvq with respect to Ã along γv;
this choice implies that Holι2prÃsq is represented by the graph connection ϕpAq. In conse-
quence, not only does ϕ map ApK1q into ApK2q, it also fits into the commutative diagram

GEpK1q ϕ

GEpK2q
ApK1q ϕ|

π1

ApK2q
π2

MpK1; Gq T21
MpK2; Gq (2.3)

where the bottom map is the bijection Holι2 �Hol�1
ι1

: MpK1; Gq ÑMpK2; Gq.
It is immediate from the construction that ϕ is an algebraic morphism intertwining the

gauge group actions:

ϕppgvq � Aq � ρ�ppgvqq � ϕpAq, A P GEpK1q, pgvq P GpK1q.
Here ρ� : GpK1q Ñ GpK2q is the pullback via ρ. The induced map ϕ� : FunpGEpK2qq Ñ
FunpGEpK1qq therefore preserves regular functions and also intertwines the actions:pgvq � ϕ� f � ϕ�pρ�ppgvqq � f q, f P FunpGEpK2qq, pgvq P GpK1q.
The same statements hold true for the restriction ϕ| : ApK1q Ñ ApK2q. In particular, ϕ� andpϕ|q� preserve fixed points (invariant functions). It thus follows that

T�21 � pπ�
1 q�1 � pϕ|q� � π�

2 : FunpMpK2; Gqq Ñ FunpMpK1; Gqq
maps OpMpK2; Gqq to OpMpK1; Gqq; this proves the result since T�21 � pHol�ι1q�1 �Hol�ι2 .l
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Remark 2.2. During the course of the above proof we established the diagram

OpMpΣ; Gqq
OpMpK2; GqqHol�ι2

T�21

π�
2

OpMpK1; GqqHol�ι1
π�

1

OpApK2qqGpK2q pϕ|q�
OpApK1qqGpK1q

OpGEpK2qqGpK2q ϕ�
OpGEpK1qqGpK1q (2.4)

We infer, in particular, that although the construction of ϕ : GEpK1q Ñ GEpK2q depends on
various choices, the induced map pϕ|q� is entirely canonical; namely it is equal to the com-
position

τ12 :� π�
1 � T�21 � pπ�

2 q�1 : OpApK2qqGpK2q Ñ OpApK1qqGpK1q. (2.5)

This will be useful later.

Corollary 2.3. The map Holι : MpΣ; Gq Ñ MpK; Gq depends only on the homotopy class of
ι : K Ñ Σ.

Proof. Let ιt : K Ñ Σ be a homotopy. Consider the construction of the transfer ϕ : GEpKq Ñ
GEpKq from the model ι0 : K Ñ Σ to the model ι1 : K Ñ Σ. We may take ρ � IdVpKq and

γvptq � ιtpvq. Restricting the homotopy ιt to an edge α of K, we conclude that

γrB�αspι1q|αγ�1rB�αs � pι0q|α rel endpoints.

Therefore, by definition, ϕ � IdGEpKq, whence the result follows from diagram (2.3). l
We finish this section with an important class of models for Σ. Let xgλ, λ P Λ | rµ, µ P My
be a finite presentation P of π1pΣq. There is an associated complex KP; its 1-skeleton Kp1q

P
consists of a single 0-cell v and an edge (loop) for each generator gλ. The relations rµ

determine glueing maps used to attach the 2-cells of KP; it follows that ApKPq � GEpKPq �
GΛ is simply defined by the relations of P. Hence the map EvP : Hompπ1pΣq, Gq Ñ ApKPq
given by evaluating a G-representation of π1pΣq on the generators from P is a bijection. As
GpKPq � G acts by simultaneous conjugation on ApKPq, there is an induced bijection

EvP : Hompπ1pΣq, GqLG ÑMpKP; Gq.
Pre-composing this map with Hol : MpΣ; Gq Ñ Hompπ1pΣq, Gq{G, we obtain a bijection

EvP �Hol : MpΣ; Gq ÑMpKP; Gq.
A choice of representatives for the generators gλ P π1pΣq gives rise to a map ι : Kp1q

P Ñ Σ

(sending v to x0). The face boundaries of KP are mapped to trivial loops on Σ by construc-
tion, so ι extends to all of KP. It is now a triviality that Holι � EvP �Hol. Thus we have an
induced bijection

Hol� �Ev�P � Hol�ι : OpMpKP; Gqq Ñ OpMpΣ; Gqq (2.6)

depending solely on P.
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2.2 Poisson Structures for Fat Graphs

In this section K denotes a fat graph, i.e., a graph equipped with a cyclic order on each of
its vertices. In drawings of fat graphs the cyclic order will always agree with the coun-

terclockwise order. Our goal is to define a Poisson bracket t , ut on OpGEpKqqGpKq where
t P gb g is an Ad-invariant, symmetric element; we achieve this by giving a bivector field

on GEpKq. Writing down this tensor requires, however, a linearization ¤ of the cyclic order
at the vertices of K; such a choice is termed a ciliation since the linear order at a vertex is
indicated by a small cilium between the first and the last endpoint.

Let ΓpGEpKqq denote the set of smooth vector fields on GEpKq, and define linear operators

Xκ : g Ñ ΓpGEpKqq, κ P EBpKq
as follows: For α P EpKq and b P g, XB�αpbq is the left-invariant vector field correspond-

ing to b assigned to the factor Gα of GEpKq, and XB�αpbq is the right-invariant vector field

corresponding to �b assigned to the factor Gα of GEpKq. Define bivector fields on GEpKq by

Btpv,¤q � ¸
κ,λPv

ǫpκ, λqpXκ b Xλqptq, v P VpKq
where

ǫpκ, λq �$'&'%1 if κ   λ

0 if κ � λ�1 if κ ¡ λ

We set Btp¤q � °
vPVpKq Btpv,¤q, and definet f , gut � xBtp¤q; d f b dgy, f , g P OpGEpKqqGpKq. (2.7)

Remark 2.4. Unlike Fock and Rosly, we employ no classical r-matrix in the definition of
Btp¤q; this approach is feasible because the corresponding bracket is defined for invariant
functions only. In the case where t corresponds to an orthogonal structure on G, the next
two results are covered in [FR].

Proposition 2.5. The formula (2.7) defines a mapt , ut : OpGEpKqqGpKq �OpGEpKqqGpKq Ñ OpGEpKqqGpKq
which is independent of the ciliation on K.

Theorem 2.6. The bracket t , ut defines a poisson structure on OpGEpKqqGpKq.
We shall need various basic results concerning t and the maps Xκ for the proofs of these
statements. Often we work with a basis for t; this is a set te1, . . . , enu � g such that t �°

i ei b ei. Bases exist since t is symmetric but are by no means unique. In fact, by the Ad-
invariance of t the set tAdgpe1q, . . . , Adgpenqu is another basis for any g P G; we will use this
observation without further mention in the sequel. Applying the shorthand Xκ

i � Xκpeiq P
ΓpGEpKqq, we may writet f , gut � ¸

vPVpKq ¸
κ,λPv

ǫpκ, λq
i̧

Xκ
i f Xλ

i g, f , g P OpGEpKqqGpKq. (2.8)
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Consider the composite map

ϕ : g
adÝÑ Endpgq �bIdÝÝÝÑ Endpgb gq EvtÝÝÑ gb g

and define T � pϕb Idqptq P gb3. It is significant that T is invariantly defined; its expression
in a basis is

T �
i̧,j

rej, eis b ei b ej. (2.9)

Lemma 2.7. T is an anti-invariant tensor.

Proof. Transposing the second and third factors of gb3 obviously maps T to �T. For any
b P g we differentiate the curve

s ÞÝÑ pAdexppsbqbAdexppsbqqptq � t, s P R

at s � 0 to obtain pad bb Id� Idb ad bqptq � 0.

Letting the 3-cycle σ � p1, 2, 3q P S3 act on gb3 and applying this fact to b � ei, we get

σpTq �
i̧,j

ej b rej, eis b ei �
i̧

�
j̧

�ej b rei, ejs	b ei �
i̧

�
j̧

rei, ejs b ej

	b ei � T

as desired. l
Remark 2.8. If t comes from an orthogonal structure, then any orthogonal basis of g is a
basis for t, and T is the structure tensor of g.

Lemma 2.9. The linear maps Xκ : g Ñ ΓpGEpKqq are independent Lie algebra homomorphisms,
i.e., rXκpb1q, Xλpb2qs � #

Xκprb1, b2sq if κ � λ

0 otherwise

for b1, b2 P g.

Proof. When κ � λ this is simply by definition of the Lie bracket of a Lie group. If κ and
λ are endpoints of distinct edges, the claim is trivial. In case κ and λ are the two endpoints
of a single edge, the associativity of G (left and right multiplication commute) implies the
result. l
The next two lemmas are easy consequences of the compatibility of the exponential map
and the adjoint action:

g exppsbq � expps Adgpbqqg; b P g, g P G, s P R.

Lemma 2.10. Let α P E and b P g. ThenpXB�αpbqqA � �pXB�αpAdAα
pbqqqA

for A P GEpKq.
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Lemma 2.11. Let κ P EBpKq and b P g. Thenpgvq� � Xκpbq � XκpAdgrκspbqq
where pgvq P GpKq and pgvq� is the derivative of pgvq : GEpKq Ñ GEpKq.
Finally, introduce the diagonal operators

X∆pvq �
κ̧Pv

Xκ : g Ñ ΓpGEpKqq, v P V

whose importance is due to the next lemma.

Lemma 2.12. Let v P V and b P g. Then

X∆pvqpbq f � 0

for any f P OpGEpKqqGpKq.
Proof. Let γv

b be the curve s ÞÑ expp�sbq assigned to the factor Gv of GpKq. Then, trivially,

d
ds |s�0

�
γv

bpsq � A
� � X∆pvqpbqA , A P GEpKq.

Hence X∆pvqpbq is tangential to the GpKq-orbits of GEpKq along which f is constant. l
Proof (Proposition 2.5). Let f , g P OpGEpKqqGpKq. From Lemma 2.11 it is immediate that
Btpv,¤q, v P V and hence also Btp¤q are invariant under the gauge group action. Thust f , gut is an invariant function since both f and g enjoy this property. As OpGEpKqq is
closed under left-invariant and right-invariant derivations (cf. [Hu]), the first statement of
the proposition holds true.

For the second claim we must compare any two ciliations ¤ and ¤1 of K. It suffices to
consider the case in which ¤1 differs from ¤ only at a single vertex v where κ1   � � �   κn
and κ2  1 � � �  1 κn  1 κ1. Then

Btpv,¤q � Btpv,¤1vq � 2
¸

λPv�tκ1upXκ1 b Xλqptq � pXλ bXκ1qptq� 2
λ̧Pv

pXκ1 bXλqptq � pXλ b Xκ1qptq� 2rpXκ1 b X∆pvqqptq � pX∆pvq b Xκ1qptqs.
An application of Lemma 2.12 then yieldsxBtpv,¤q; d f b dgy � xBtpv,¤1q; d f b dgy
as desired. l
Of course, computations with the formula (2.8) still involves a ciliation, but we are free to
choose a preferred one.
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Proof (Theorem 2.6). The bracket t , ut is defined as contraction with a bivector field and is

therefore a derivation in each variable with respect to the multiplication of OpGEpKqqGpKq.
Its anti-symmetry follows from the same property of Btp¤q. All the difficulty lies in the
proof of the Jacobi identity. It is convenient to define the set of admissible pairs

A � tpκ, λq P EBpKq � EBpKq | κ �� λ, rκs � rλsu
to rewrite the bracket as t f , gut � ¸pκ,λqPA

ǫpκ, λq
i̧

Xκ
i f Xλ

i g

For f , g, h P OpGEpKqqGpKq we must show that the Jacobiator

Jp f , g, hq � tt f , gu, hu� cyclic perm. of f , g, h

vanishes. Sincett f , gu, hu � ¸pκ1 ,κ2qPA

¸pλ1,λ2qPA

ǫpκ1, κ2qǫpλ1, λ2q
i̧,j

Xλ1
j pXκ1

i f Xκ2
i gqXλ2

j h

we are lead to define the set of parameters:

P � Pp f , g, hq � A� A� tp f , g, hq; ph, f , gq; pg, h, f qu.
To a parameter we associate left and right terms:

Lppκ1 , κ2q, pλ1, λ2q, p f , g, hqq � ǫpκ1, κ2qǫpλ1, λ2q
i̧,j

Xλ1
j Xκ1

i f Xκ2
i gXλ2

j h,

Rppκ1, κ2q, pλ1, λ2q, p f , g, hqq � ǫpκ1, κ2qǫpλ1, λ2q
i̧,j

Xκ1
i f Xλ1

j Xκ2
i gXλ2

j h

By the Leibniz rule we have

Jp f , g, hq �
p̧PP

Lppq � Rppq
We reorganize this sum with the aid of the bijection ψ : P Ñ P given by

ψppκ1, κ2q, pλ1, λ2q, p f , g, hqq � ppλ2, λ1q, pκ1, κ2q, ph, f , gqq.
Since

Rppλ2, λ1q, pκ1, κ2q, ph, f , gqq � ǫpλ2, λ1qǫpκ1, κ2q
i̧,j

Xλ2
i hXκ1

j Xλ1
i f Xκ2

j g� �ǫpκ1, κ2qǫpλ1, λ2q
i̧,j

Xκ1
i Xλ1

j f Xκ2
i gXλ2

j h

we associate a third function to a parameter:rpκ1, κ2q, pλ1, λ2q, p f , g, hqs � ǫpκ1, κ2qǫpλ1, λ2q
i̧,j

rXλ1
j , Xκ1

i s f Xκ2
i gXλ2

j h (2.10)
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and arrive at the more manageable formula

Jp f , g, hq �
p̧PP

Lppq � Rpψppqq �
p̧PP

rps. (2.11)

According to Lemma 2.9, the expression (2.10) is zero unless κ1 � λ1. Therefore define

P1 � tppκ1, κ2q, pλ1, λ2q, p f , g, hqq P P | κ1 � λ1u Y cyclic perm. of f , g, h

and consider the map π : P1 Ñ 2EBpKq given by

πppκ, λq, pκ, µq, p f , g, hqq � tκ, λ, µu.
By the admissibility of the two pairs in a parameter, we have

Impπq � ts � EBpKq | 2 ¤ |s| ¤ 3^Dv P VpKq : s � vu.
Consequently, we may rewrite (2.11) as

Jp f , g, hq �
p̧PP1rps � ¸

vPVpKq ş�v,
|s|�2,3

¸
pPπ�1psqrps. (2.12)

Let us compute the generic term of this sum:rpκ, λq, pκ, µq, p f , g, hqs � ǫpκ, λqǫpκ, µq
i̧,j

rXκ
j , Xκ

i s f Xλ
i gXµ

j h� ǫpκ, λqǫpκ, µq
i̧,j

Xκprej, eisq f XλpeiqgXµpejqh� ǫpκ, λqǫpκ, µqxpXκ b Xλ b XµqT; d f b dgb dhy.
Define rpκ, λq, pκ, µqs � rpκ, λq, pκ, µq, p f , g, hqs � cyclic perm. of f , g, h

and apply the cyclic invariance of T (Lemma 2.7) to obtainrpκ, λq, pκ, µqs� ǫpκ, λqǫpκ, µq�xpXκ b Xλ b XµqT; d f b dgb dhy� cyclic perm. of κ, λ, µ
�
.

To compute (2.12) let v P VpKq and consider a subset s � v of cardinality 2 or 3. In the
former case write s � tκ, λu. Then

π�1psq � π�1ptκ, λuq� tppκ, λq, pκ, λq, p f , g, hqq; ppλ, κq, pλ, κq, p f , g, hqqu Y cyclic perm. of f , g, h

so that ¸
pPπ�1psqrps � rpκ, λq, pκ, λqs � rpλ, κq, pλ, κqs� ¸

σ : t1,2,3u։s

xpXσp1q bXσp2q bXσp3qqT; d f b dgb dhy.
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The other case is |s| � 3, in which we put s � tκ, λ, µu. Then

π�1psq � π�1ptκ, λ, µuq� tppκ, λq, pκ, µq, p f , g, hqq; ppκ, µq, pκ, λq, p f , g, hqqu¤
independent cyclic perm. of f , g, h and κ, λ, µ.

The computationrpκ, λq, pκ, µqs � rpκ, µq, pκ, λqs� ǫpκ, λqǫpκ, µq�xpXκ b Xλ b XµqT; d f b dgb dhy � perm. of κ, λ, µ
�� ǫpκ, λqǫpκ, µq ¸

σ : t1,2,3u։s

xpXσp1q b Xσp2q b Xσp3qqT; d f b dgb dhy
proves that this contribution is affected only in sign by the cyclic permutation of κ, λ, µ. But

ǫpκ, λqǫpκ, µq � ǫpλ, µqǫpλ, κq � ǫpµ, κqǫpµ, λq � 1

so we end up with the same formula as in the first case:¸
pPπ�1psqrps � rpκ, λq, pκ, µqs � rpκ, µq, pκ, λqs � cyclic perm. of κ, λ, µ� ¸

σ : t1,2,3u։s

xpXσp1q b Xσp2q b Xσp3qqT; d f b dgb dhy.
Therefore

Jp f , g, hq � ¸
vPVpKq ş�v,

|s|�2,3

¸
σ : t1,2,3u։s

�pXσp1q bXσp2q bXσp3qqT; d f b dgb dh
D� ¸

vPVpKq ¸
κ,λ,µPv

xpXκ bXλ b XµqT; d f b dgb dhy�
κ̧Pv
xpXκqb3pTq; d f b dgb dhy� ¸

vPVpKqxpX∆pvqqb3pTq; d f b dgb dhy � ¸
κPEBpKqxpXκqb3pTq; d f b dgb dhy

The first sum is zero because of Lemma 2.12. So is the second one since for any α P EpKq
and A P GEpKq, Lemma 2.10 impliesppXB�αqb3pTqqA � ppXB�αqb3

i̧,j

rej, eis b ei b ejqA�
i̧,j

XB�αprej, eisqA b XB�αpeiqA b XB�αpejqA�
i̧,j

�XB�αpAdAαprej, eisqqA b�XB�αpAdAαpeiqqA b�XB�αpAdAαpejqqA� ��pXB�αqb3

i̧,j

rAdAα
pejq, AdAα

peiqs bAdAα
peiq bAdAα

pejq	
A� �ppXB�αqb3pTqqA.

This completes the proof. l
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2.3 Poisson Structures on the Moduli Space

In this section K denotes a regular, fat combinatorial complex, i.e., the 1-skeleton of K is a fat
graph and each face boundary α

ǫ1
1 � � � αǫn

n is a simple loop such that B�α
ǫi
i is the successor

of B�α
ǫi�1

i�1 , i � 1, . . . , n in the cyclic order at their common vertex. We shall prove that if

K models Σ then the Poisson structure on OpGEpKqqGpKq induces on OpMpΣ; Gqq a Poisson
structure which is independent of K; this is accomplished in two steps. Recall that the set of

G-connections on K is an invariant, algebraic subset ApKq � GEpKq; the induced restriction

map ρ : OpGEpKqqGpKq Ñ OpApKqqGpKq is surjective by Remark 1.1.

Theorem 2.13. The Poisson bracket t , ut on OpGEpKqqGpKq descends to OpApKqqGpKq via the
restriction map ρ : OpGEpKqqGpKq Ñ OpApKqqGpKq.
Proof. It suffices to prove that the kernel of ρ is a Poisson ideal. We begin the proof by
considering one face F of K. The algebraic equation

HolApBFq � 1, A P GEpKq
defines an affine subset ApK, Fq � GEpKq; associated to it is the ideal IpApK, Fqq � OpGEpKqq
of regular functions vanishing on ApK, Fq.
Claim. IpApK, Fqq XOpGEpKqqGpKq � OpGEpKqqGpKq is a Poisson ideal.

Let f P IpApK, Fqq XOpGEpKqqGpKq and g P OpGEpKqqGpKq. Given A P ApK, Fq, we must
show that t f , gutpAq � 0.

Write BF � α
ǫ1
1 � � � αǫn

n , and set

κj,1 � B�α
ǫj
j , κj,2 � B�α

ǫj�1

j�1 , vj � rκj,1s � rκj,2s; j � 1, . . . , n. (2.13)

By the assumptions on K the vertices v1, . . . , vn of F are distinct and κj,2 is the successor
of κj,1 in the cyclic order at vj. It is convenient to require that the ciliation of K is chosen
such that at vj the minimal elements are κj,1   κj,2. Since f is constant (in fact, zero) along
ApK, Fq, we have pXκ

i f qA � 0, κ P EBpKq � tκ1,1, κ1,2, . . . , κn,1, κn,2u.
This implies by Lemma 2.12 that

0 � pX∆pv jqpeiq f qA � pXκj,1
i f qA � pXκj,2

i f qA (2.14)

and also simplifies the computation of the bracket tot f , gutpAq �
j̧

¸
κPv j�tκj,1u ǫpκj,1, κq

i̧

pXκj,1
i f qApXκ

i gqA� ¸
κPv j�tκj,2u ǫpκj,2, κq

i̧

pXκj,2
i f qApXκ

i gqA�
j̧ i̧

pXκj,1
i f qApXκj,2

i gqA � pXκj,1
i f qApXκj,1

i gqA
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where the latter equality is due to (2.14). But since tκj,1, κj�1,2u � tB�αj, B�αju by (2.13),
Lemma 2.10 yields

i̧

X
κj,1
i f X

κj,1
i g � xpXκj,1qb2ptq; d f b dgy � xpXκj�1,2qb2ptq; d f b dgy �

i̧

X
κj�1,2

i f X
κj�1,2

i g

so that another application of (2.14):t f , gutpAq �
j̧ i̧

pXκj,1
i f qApXκj,2

i gqA � pXκj�1,2

i f qApXκj�1,2

i gqA�
i̧ j̧

pXκj,1
i f qApXκj,2

i gqA � pXκj�1,1

i f qApXκj�1,2

i gqA� 0

finishes the proof of the claim. To prove the theorem, put IK �°
F IpApK, Fqq and deduce

VpIKq � V
�

F̧

IpApK, Fqq	 �£
F

VpIpApK, Fqqq �£
F

ApK, Fq � ApKq,
the last equality being the definition of ApKq. By Hilbert’s Nullstellensatz

IpApKqq � IVpIKq �a
IK � RadOpGEpKqqpIKq.

Therefore

Ker ρ � IpApKqq XOpGEpKqqGpKq� RadOpGEpKqqpIKq XOpGEpKqqGpKq� RadOpGEpKqqGpKq�IK XOpGEpKqqGpKq�.

(2.15)

Claim. We have

IK XOpGEpKqqGpKq �
F̧

�
IpApK, Fqq XOpGEpKqqGpKq�. (2.16)

This is an identity of ideals in OpGEpKqqGpKq whence the inclusion � is automatic. For the

other one, let f P IK XOpGEpKqqGpKq and write f � °
F fF, fF P IpApK, Fqq. The diagram

OpGEpKqq ρF

∇

OpApK, Fqq
∇

OpGEpKqqGpKq OpApK, FqqGpKq
implies that Ker ρF � IpApK, Fqq is closed under the Reynolds operator. Hence,

f � ∇ f �
F̧

∇ fF P
F̧

�
IpApK, Fqq XOpGEpKqqGpKq�

proving the claim. The right hand side of (2.16) is by the first claim a sum of Poisson ideals
and thus a Poisson ideal. Recalling (2.15), we are done by the next lemma. l



2.3 Poisson Structures on the Moduli Space 15

Lemma 2.14. Let I � S be a Poisson ideal in a Poisson algebra. Then
?

I is also a Poisson ideal.

Proof. Let x P ?I and y P S. Pick N P N such that xN P I. Write ad y � t , yu : S Ñ S; this
map preserves I, so the Leibniz rule yields

I Q pad yqN�xN� � ¸
σ : t1,...,Nuýpad yq|σ�1p1q|pxq � � � pad yq|σ�1pNq|pxq� ¸
σPSN

tx, yuN� N!tx, yuN mod x

implying N!tx, yuN P xxy� I � ?
I so that tx, yu P ?I as desired. l

Definition 2.15. A model ι : K Ñ Σ for Σ is called a Poisson model if ι is a homeomorphism
and the cyclic order at each vertex of K agrees with the orientation of Σ. Such a model
induces a Poisson structure on OpMpΣ; Gqq by insisting that

Ψι : OpApKqqGpKq pπ�q�1ÝÝÝÝÝÑ OpMpK; Gqq Hol�ιÝÝÝÑ OpMpΣ; Gqq
is a Poisson isomorphism.

Theorem 2.16. The Poisson structure t , ut on MpΣ; Gq is independent of the Poisson model used
to define it.

Remark 2.17. In the case where Σ has non-empty boundary and t � tB for an orthogonal
structure B on G, this result was obtained in [FR].

Proof. Let ιj : Kj Ñ Σ, j � 1, 2 be two Poisson models. Recalling Remark 2.2, we see that
the task is to prove the

Claim. The map τ12 : OpApK2qqGpK2q Ñ OpApK1qqGpK1q is a Poisson isomorphism.

We verify the claim in three special cases and then reduce the general situation to these
cases.

Homotopy. If K1 � K2 and ι1 and ι2 are homotopic homeomorphisms, the claim is triv-
ially true by Corollary 2.3.

For the remaining two cases it is useful to let τ12 be induced by a map ϕ : GEpK1q Ñ
GEpK2q as in the proof of Proposition 2.1. We may assume that ϕ has been constructed
carefully, namely such that if K1 and K2 have a common edge α, it holds that

ϕpAqα � Aα, A P GEpK1q. (2.17)

As the vector fields XB�α
i and XB�α

i live on the factor Gα common to GEpK1q and GEpK2q, this
implies pXκ

i p f � ϕqqA � pXκ
i f qϕpAq, κ P tB�αu, A P GEpK1q (2.18)

for any f P OpGEpK2qqGpK2q. In this formula Xκ
i is interpreted as a vector field on GEpK1q

(respectively, GEpK2q) on the left (respectively, right) hand side. Since we already know that
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brackets. But as ρj : OpGEpKjqqGpKjq Ñ OpApKjqqGpKjq, j � 1, 2 are surjective Poisson homo-

morphisms by Theorem 2.13, it suffices to verify that ϕ� : OpGEpK2qqGpK2q Ñ OpGEpK1qqGpK1q
is a Poisson homomorphism. In other words, for f j P OpGEpK2qqGpK2q, j � 1, 2 and A P
GEpK1q, we must check thatt f1 � ϕ, f2 � ϕutpAq � t f1, f2utpϕpAqq
which expands to¸

vPVpK1q ¸
κ,λPv

ǫpκ, λq
i̧

pXκ
i p f1 � ϕqqApXλ

i p f2 � ϕqqA� ¸
vPVpK2q ¸

κ,λPv

ǫpκ, λq
i̧

pXκ
i f1qϕpAqpXλ

i f2qϕpAq. (2.19)

Edge division. Suppose that K1 is obtained from K2 by dividing an edge γ into two edges
α and β with a vertex v. Fix an arbitrary ciliation of K2. This induces a ciliation on K1

once we add one of the two possible cilia at v. Almost all edges are common to the two
complexes, so we focus attention on the bisected edge; using the trivial fact that γ � αβ rel
endpoints, we have the following local picture of ϕ

Aα

α

Aβ

βv
ϕÞÝÑ Aα Aβ

γ

Considering the curve s ÞÝÑ pAα exppseiqqAβ � AαpexppseiqAβq proves�
XB�α

i p f j � ϕq�A � ��XB�β
i p f j � ϕq�A.

Therefore the contribution from v to t f1 � ϕ, f2 � ϕutpAq is

i̧

�
XB�α

i p f1 � ϕq�A

�
XB�β

i p f2 � ϕq�A � �
XB�β

i p f1 � ϕq�A

�
XB�α

i p f2 � ϕq�A � 0.

Analogously, the curves

s ÞÝÑ pexppseiqAαqAβ � exppseiqpAα Aβq; s ÞÝÑ AαpAβ exppseiqq � pAα Aβq exppseiq
imply the formulas�

XB�α
i p f j � ϕq�A � pXB�γ

i f jqϕpAq, �
XB�β

i p f j � ϕq�A � pXB�γ
i f jqϕpAq.

Together with (2.18) this proves (2.19) and thereby the claim.

Face division. Assume that K1 is obtained from K2 by dividing a face F into two faces by
a diagonal edge α (oriented arbitrarily). All edges but α are common to the complexes, that

is, EpK1q � EpK2qY tαu, and in light of (2.17) we see that ϕ : GEpK1q � GEpK2q�Gα Ñ GEpK2q
is the projection on the first factor. It is then obvious thatpXκ

i p f j � ϕqqA � 0, κ P tB�αu
so the two endpoints in K1 not contained in K2 contribute nothing to t f1 � ϕ, f2 � ϕutpAq.
Choosing some ciliation of K1 and employing the induced ciliation on K2, it follows again
from (2.18) that (2.19) and hence the claim holds.
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General case. Given a third Poisson model ι3 : K3 Ñ Σ, it is evident from (2.5) that τ12 �
τ13 � τ32. Therefore it suffices to prove that K1 and K2 are related by a finite sequence of the
above three moves homotopy, edge division and face division. First of all, we can assume
by edge division that the two complexes contain an equal number of vertices. By homotopy
we can ensure that the vertices of K1 and K2 are identified and that all intersections in the
interiors of their edges are transverse double points. Add a vertex by edge division to both
complexes at each of these intersection points. Now edges intersect only at vertices whence
the union K1 YK2 is a Poisson model obtainable from either of K1 and K2 by successive face
divisions. l
2.3.1 Poisson Homomorphisms between Moduli Spaces

Suppose Σ has non-empty boundary and denote by B0Σ one of its boundary circles. Let Σ

be the surface obtained from Σ by attaching a disk along B0Σ. Restricting a flat connection
on Σ to Σ yields a map r : MpΣ; Gq Ñ MpΣ; Gq. Let ι : K Ñ Σ be a Poisson model for Σ;
attaching a disk along the face boundary of K corresponding to B0Σ results in a Poisson
model ι : K Ñ Σ for Σ. Obviously, EpKq � EpKq and VpKq � VpKq so that GpKq � GpKq. By
definition, ApKq is a subset of ApKq and the equivariant inclusion i : ApKq Ñ ApKq models
r; more precisely, the diagram

ApKq π

i

MpK; Gq Hol�1
ι

MpΣ; Gq
r

ApKq π
MpK; Gq Hol�1

ι
MpΣ; Gq

commutes. Thus r preserves regular functions, and we have an induced diagram

OpGEpKqqGpKq ρ
OpApKqqGpKq

i� Ψι
OpMpΣ; Gqq

r�
OpGEpKqqGpKq ρ

OpApKqqGpKq Ψι
OpMpΣ; Gqq

It now follows from Theorem 2.13 and Definition 2.15 that r� : OpMpΣ; Gqq Ñ OpMpΣ; Gqq
is a surjective Poisson homomorphism.

Remark 2.18. In anticipation of what follows we renormalize the Poisson bracket; from
now on t , ut equals half of the value it had prior to this remark.

2.4 The Poisson Algebra of Chord Diagrams

Following [AMR1], a chord diagram D is a finite collection of oriented circles with a finite
number of chords (undirected line segments connecting two distinct points of the circles)
marked upon them. Chords are assumed to be disjoint, in particular no two endpoints of
them coincide. The circles in D are called the core components, and regarded as a whole their
union is termed the skeleton. When drawing (parts of) chord diagrams in the plane, chords
are depicted as dashed lines.
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A geometric chord diagram on Σ is a smooth map from a chord diagram to Σ, mapping
the chords to points. Images of chords will be drawn as fat dots. A chord diagram on Σ is
an equivalence class of geometric chord diagrams modulo homotopy. Clearly, every chord
diagram on Σ contains a generic chord diagram, i.e., a geometric chord diagram such that its
skeleton is immersed in Σ and with all intersections being transverse double points.

Let DpΣq denote the complex vector space with basis the set of chord diagrams on Σ; it
is graded by the number of chords. Let 4TpΣq � DpΣq be the subspace defined by the local
relation � � � (2.20)

as well as all the relations obtained from this one by reversing orientations of strands (core
components) and changing the signs accordingly: For every chord intersecting a compo-
nent with reversed orientation, there is a factor of �1 for the diagram. These relations are
called 4T-relations. Of course, 4TpΣq is a homogeneous subspace so that the quotient

CpΣq � DpΣqL4TpΣq
is also a graded vector space.

There is an obvious graded algebra structure on DpΣq given by taking the union of
two chord diagrams. This multiplication is evidently commutative, and the empty chord
diagram is its unit. Moreover the subspace 4TpΣq is an ideal whence CpΣq is also a commu-
tative, graded algebra. The Poisson structure on CpΣq has the following description. Given
two chord diagrams on Σ, we can choose geometric chord diagrams ιj : Dj Ñ Σ, j � 1, 2
representing them such that their union (product) is a generic chord diagram. For p P
D1#D2 the oriented intersection index is given by

ǫpp; D1, D2q � $''&''%1 for
p

D2 D1�1 for
p

D1 D2

Define D1 Yp D2 to be the chord diagram on Σ obtained by joining ι�1
1 ppq and ι�1

2 ppq by a
chord mapped to p.

Proposition 2.19 (Andersen, Mattes & Reshetikhin). The brackettrD1s, rD2su � ¸
pPD1#D2

ǫpp; D1, D2qrD1 Yp D2s
is well-defined and determines a Poisson structure on CpΣq.
We call CpΣq the Poisson algebra of chord diagrams on Σ.

Remark 2.20. We can colour the core components of chord diagrams with finite dimen-
sional, rational representations of G. The above definitions make sense in this setting, too,
and yields a Poisson algebra CpΣ; Gq.
Remark 2.21. An orientation preserving diffeomorphism of Σ respects the 4T-relation, so
there are natural actions of Γ�pΣq on CpΣq and CpΣ; Gq. It is immediate from Proposition
2.19 that these actions are by Poisson isomorphisms.
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2.4.1 The Poisson Loop Algebras

Various quotients of CpΣq will occupy us in the sequel. It is therefore important to notice
that any subspace defined by local relations is a Poisson ideal and thus yields a quotient
Poisson algebra. A recurring example of this is the loop relation Ls, f :� s � f (2.21)

Here s (smooth) and f (forget) are complex parameters. For future reference we calculate

the quotient CpΣq{Ls, f . The sub-algebra ZpΣq � Dp0qpΣq � Cp0qpΣq � CpΣq is a vector space
with basis the set of diagrams on Σ (chord diagrams without chords). Let π̂1pΣq denote the
set of conjugacy classes in π1pΣq, i.e., the set of free homotopy classes of loops on Σ. A
diagram on Σ is simply a finite collection of elements from π̂1pΣq, implying that ZpΣq
is isomorphic to the polynomial algebra on π̂1pΣq; we therefore refer to ZpΣq as the loop
algebra of Σ.

Associated to Ls, f is the resolving map Rs, f : CpΣq Ñ ZpΣq given by replacing each
chord by the right hand side of (2.21); the loop relation implies the 4T-relation so Rs, f is
well-defined. It is also obvious that the induced map

Rs, f : CpΣqLLs, f Ñ ZpΣq (2.22)

is an algebra isomorphism, its inverse being the composite ZpΣq � CpΣq Ñ CpΣq{Ls, f .
To transfer the Poisson bracket to ZpΣq via this isomorphism is elementary. For generic
diagrams D1 and D2 on Σ we havetD1, D2us, f � ¸

pPD1#D2

ǫpp; D1, D2qpspD1D2qp � f D1D2q (2.23)

where pD1D2qp denotes the diagram obtained from D1D2 by the orientation preserving
smoothing of the crossing at p. The loop algebra endowed with this Poisson structure is
denoted by Zs, f pΣq; for some values of ps, f q these Poisson algebras were studied in [G2],
[T], [AMR1] and [AMR2].

2.5 Chord Diagrams as Functions on the Moduli Space

We provide in this section the generalization of the Poisson homomorphism ΨB : CpΣ; Gq ÑpOpMpΣ; Gqq, t , uBq where B is an orthogonal structure on G (cf. [AMR1]) to the case of
an arbitrary symmetric, Ad-invariant tensor t P gb g.

Let D be a generic chord diagram the ith core component of which is coloured by a
finite dimensional, rational representation ρi : G Ñ AutpViq. We associate a function on the
moduli space to D in the following fashion. Denote by A a flat G-connection in a principal
bundle P Ñ Σ. A set of cut points on D is by definition a finite set C of points on D
including all chords and at least one point on each core component of the diagram; such a
choice naturally induces a decomposition of D into its chords and a set EpD, Cq of arcs (we
ignore the non-chord intersections in D). Trivializing the fibre of P over each cut point, the
holonomy with respect to A along an arc α becomes an element TA

α P G. Decorate the arcs
and the chords with vector spaces and corresponding tensors as follows (we employ the
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derived representations of g):

Vj V∗
j

α
 ρjpTA

α q P AutpVjq � EndpVjq � Vj bV�
j , (2.24a)

Vj1

V∗
j1

Vj2

V∗
j2

 pρj1 b ρj2qptq P EndpVj1q b EndpVj2q � Vj1 bV�
j1 bVj2 bV�

j2 . (2.24b)

It is, of course, understood that the indices on representations are those of the correspond-
ing core components. We have drawn (infinitesimal) parts of the arcs incident to a chord
in order to indicate how the vector spaces are associated to these arcs. From the tensors
of the individual pieces we get a tensor TtpD, C; Aq in the tensor product of all the vector
spaces involved. Glue the pieces together to get the diagram D back. While doing this, we
produce a number TtpD; Aq P C from TtpD, C; Aq by performing the canonical contraction
of a vector space and its dual occurring where two arcs are glued together and where an
arc is glued to a chord. The number TtpD; Aq is independent of the trivialization of P|C;
this is immediate for the cut points that are not chords, and for the chords it is an easy
consequence of the compatibility of the derived representation with the adjoint actions:

ρ �Adg � Adρpgq � ρ : g Ñ EndpVq, g P G

and the Ad-invariance of t. It is also clear that TtpD; Aq is independent of how the non-
chord cut points are chosen; omitting C in the notation is hence justified. We set f t

DpAq �
TtpD; Aq.

A core component Sj intersecting no chord evidently contributes the factor TrpρjpTA
Sj
qq

to f t
DpAq. Having taken care of such components, we now present a formula for f t

DpAq in
the case where all core components intersect at least one chord. We choose the cut points
in the most economical way, namely we choose only the chords. In this way the circle Sj
is decomposed into arcs αj,1, . . . , αj,nj

where the indexing order agrees with the cyclic order

of the arcs induced by the orientation of Sj. Pick for each chord ck a basis teik
uik

for t, and
define indices kpj, lq by ckpj,lq � B�αj,l; this is possible since every arc of the decomposition
ends at a chord. Then

f t
DpAq � ¸

i1,...,im

n¹
j�1

Tr
� nj¹

l�1

ρjpTA
αj,l
qρjpeikpj,lqq	. (2.25)

To verify this formula one simply has to recall the commutative square

EndpVqbN Π� EndpVq
TrpV bV�qbN C

where Π is multiplication, i.e., composition of endomorphisms. The lower horizontal map
is given by performing the canonical contractions of the pairs of spaces indicated by the
numbers here: pV bV�qbN � 1

V b 2

V� b 2

V b 3

V� b � � � b N
V b 1

V�.
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If t � tB P gb g corresponds to an orthogonal structure B, the formula (2.25) agrees with the

definition in [AMR1] where it is also proved that f tB
D pAq depends only on the equivalence

class rAs PMpΣ; Gq and the homotopy class rDs P DpΣ; Gq. The proof rests on the fact that
tB is Ad-invariant, so it is valid in our setting, too. Therefore the formulapΨtprDsqqprAsq � f t

DpAq
determines a linear map Ψt : DpΣ; Gq Ñ FunpMpΣ; Gqq; it is clearly a homomorphism of
algebras.

A model pK, ιq for Σ is said to be compatible with a chord diagram D with cut points C if
C � VpKq and EpD, Cq � EpKq. In this situation we may use the bijection

π� � pHol�ι q�1 : FunpMpΣ; Gqq Ñ FunpApK; GqqGpKq
and (2.25) to express f t

D P FunpMpΣ; Gqq as

f t
DppAαqq � ¸

i1,...,im

n¹
j�1

Tr
� nj¹

l�1

ρjpAαj,lqρjpeikpj,lqq	, pAαq P ApK; Gq. (2.26)

It follows immediately from this formula that f t
D is a regular function on the moduli space.

The last step in the construction is to verify that Ψt : DpΣ; Gq Ñ OpMpΣ; Gqq respects
the 4T-relation (2.20). Denote by jl the index of the core component to which the lth strand
(counting from left to right at the bottom) in the local pictures belongs. By an appropriate
choice of cut points and trivializations of their fibres, we may assume that the parallel trans-
ports TA

α � 1 for all arcs α occuring in the relation. Associating the same basis te1, . . . , enu
for t to all chords, we compute the contribution from the left hand side of (2.20) to be the
following endomorphism of Vj1 bVj2 bVj3 (recall the formula (2.9)):

i̧1,i2

ρj1pei1qρj1pei2q b ρj2pei2q b ρj3pei1q �
i̧1,i2

ρj1pei2qρj1pei1q b ρj2pei2q b ρj3pei1q�
i̧1,i2

ρj1prei1, ei2sq b ρj2pei2q b ρj3pei1q� pρj1 b ρj2 b ρj3qpTq.
Analogously, the right hand side of (2.20) contributes the endomorphism

i̧1,i2

ρj1pei1q b ρj2pei2q b ρj3pei2qρj3pei1q �
i̧1,i2

ρj1pei1q b ρj2pei2q b ρj3pei1qρj3pei2q�
i̧1,i2

ρj1pei1q b ρj2pei2q b ρj3prei2 , ei1sq� pρj1 b ρj2 b ρj3qpTq
by the cylic invariance of T (Lemma 2.7).

Theorem 2.22. The map Ψt : CpΣ, Gq Ñ pOpMpΣ; Gqq, t , utq is a Γ�pΣq-equivariant Poisson
homomorphism.

Proof. Let D be a coloured chord diagram on Σ, and let g P Γ�pΣq. From the definition of
connection pullback followspg � f t

DqprAsq � f t
Dprg�Asq � TtpD; g�Aq � TtpgpDq; Aq � f t

gpDqprAsq, rAs PMpΣ; Gq
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as desired. It only remains to prove that Ψt preserves the Poisson brackets. Let D1 and
D2 be coloured chord diagrams with D1 Y D2 in general position. Choose cut points Cj for
Dj, j � 1, 2 such that every p P D1#D2 is a cut point for both D1 and D2 and such that the
arc sets EpDj, Cjq contain no loops. Let K be a Poisson model for Σ compatible with the
decompositions of both diagrams. Notice that formula (2.26) makes sense for any graph

connection pAαq P GEpKq. Therefore f t
Dj
P OpApK; GqqGpKq is naturally the restriction of a

function f j P OpGEpKqqGpKq, and by Theorem 2.13t f t
D1

, f t
D2
utppAαqq � t f1, f2utppAαqq, pAαq P ApK; Gq.

We apply formula (2.8) to compute the right hand side. Since f j depends only on the factor

GEpDj,Cjq of GEpKq, a pair pκ1, κ2q P EBpKq � EBpKq cannot contribute to the bracket unless κj
is an endpoint of an arc in the decomposition of Dj. Hence the vertex rκ1s � rκ2s P VpKq
must be an intersection point p P D1#D2. Here is a picture of the decomposition of D1YD2

near p:

α1 β1

β2 α2

p

Of course, other edges of K may be incident to p, but we have already justified that they
can be ignored in the computation. For definiteness we assume that the ciliation at p is
such that B�α1   B�β1   B�α2   B�β2. (2.27)

Since we allow no loops in the decompositions, the arcs α1, α2, β1, β2 are distinct. The inter-
section index ǫpp; D1, D2q distinguishes two cases; suppose p is a positive crossing, i.e., α1

and α2 belong to D1 (and β1, β2 to D2). Denote by ji, i � 1, 2 the index of the relevant core
component of Di. Let A0 P ApK; Gq be a connection on K and consider its corresponding
inclusions

ιαA0 : Gα1 �Gα2 Ñ GEpKq, ι
β

A0 : Gβ1 � Gβ2 Ñ GEpKq.
It is evident from (2.26) that there are naturally defined linear maps Li : EndpVjiq Ñ C, i �
1, 2 (depending on A0) such that

f1pιαA0pAα1 , Aα2qq � L1pρj1pAα1qρj1pAα2qq, pAα1 , Aα2q P Gα1 � Gα2 ,

f2pιβ

A0pAβ1
, Aβ2

qq � L2pρj2pAβ1
qρj2pAβ2

qq, pAβ1
, Aβ2

q P Gβ1 � Gβ2 .

Therefore, in a basis te1, � � � , enu for t,pXB�α1
i f1qA0 � d

ds |s�0

f1ιαA0pA0
α1

exppseiq, A0
α2
q� d

ds |s�0

L1

�
ρj1pA0

α1
qρj1pexppseiqqρj1pA0

α2
q�� L1

�
ρj1pA0

α1
qρj1peiqρj1pA0

α2
q� (2.28)
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since differentiation commutes with linear maps. Analogously,pXB�α2

i f1qA0 � d
ds |s�0

f1ιαA0pA0
α1

, exppsp�eiqqA0
α2
q� d

ds |s�0

L1

�
ρj1pA0

α1
qρj1pexppsp�eiqqqρj1pA0

α2
q�� �L1

�
ρj1pA0

α1
qρj1peiqρj1pA0

α2
q�,

(2.29)

and in the same way pXB�β1

i f2qA0 � L2

�
ρj2pA0

β1
qρj2peiqρj2pA0

β2
q�, (2.30)pXB�β2

i f2qA0 � �L2

�
ρj2pA0

β1
qρj2peiqρj2pA0

β2
q�. (2.31)

Thus, up to a sign, the four relevant pairs of endpointspB�α1, B�β1q, pB�α1, B�β2q, pB�α2, B�β1q and pB�α2, B�β2q
yield the same contribution to t f1, f2utpA0q, namely

1

2
i̧

L1

�
ρj1pA0

α1
qρj1peiqρj1pA0

α2
q�L2

�
ρj2pA0

β1
qρj2peiqρj2pA0

β2
q�.

By definition of Ψt this expression is exactly 1
2 f t

D1YpD2
pA0q. Regarding the sign, the ciliation

(2.27) and the signs in formulas (2.28)–(2.31) imply that the pair pB�α1, B�β2q yields the total

sign �1 whereas the remaining three pairs yield total sign �1. Since p3� 1q 1
2 � 1, the total

contribution from p is f t
D1YpD2

pA0q. The case of a negative crossing is, of course, entirely

analogous; the contribution to t f1, f2utpA0q is then � f t
D1YpD2

pA0q. Hence,t f t
D1

, f t
D2
utpA0q � t f1, f2utpA0q � ¸

pPD1#D2

ǫpp; D1, D2q f t
D1YpD2

pA0q � f ttD1,D2upA0q.
The proof is complete. l
Theorem 2.23 (Andersen, Mattes & Reshetikhin). The map ΨB : CpΣ; Gq Ñ OpMpΣ; Gqq is
surjective if G is one of the groups GLnpCq, SLnpCq, OnpCq and Sp2npCq equipped with a suitable
orthogonal structure B.



Chapter 3

Quantization of Poisson Algebras

We present in this chapter the concept of deformation quantization of Poisson algebras (à
la Turaev [T]). The important special case of a �-product is considered, including a vital,
general example due to Andersen, Mattes and Reshetikhin [AMR2] and basic properties
of quotients and actions. Completion of general quantizations is also addressed. In the
course of this presentation we shall need various elementary results about filtered modules
and algebras, in particular, about their relation to graded modules, respectively graded
(Poisson) algebras; the first section is devoted to these results.

3.1 Filtered and Graded Objects

Throughout this section R is an arbitrary commutative ring; modules and algebras have R
as ground ring unless they do not.

3.1.1 Filtered Modules and Algebras

By a filtered module, we shall mean a module M with submodules Mn, n P N such that

M � M0 � M1 � � � �
As an example let h P R, and set for each n P N

hn M � thnv | v P Mu, ph0 � 1q.
Then hn M � M is a submodule, and putting Mn � hn M defines a filtration termed the
h-filtration on M.

A map of filtered modules is a module map respecting the filtrations. We define M8 ��8
n�0 Mn and say that M is Hausdorff if M8 � 0. A sequence pviq in M is called a null

sequence if �n P NDN P N : i ¥ N ùñ vi P Mn.

The sequence is said to converge to v P M if pvi � vq is a null sequence. Maps of filtered
modules preserve limits. If M is Hausdorff, then limits are unique. Every convergent
sequence is Cauchy; i.e., it satisfies�n P NDN P N : i, j ¥ N ùñ vi � vj P Mn.

24
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In case every Cauchy sequence is convergent, M is said to be complete. The completion of
M is a pair pM, ιq where M is a complete, Hausdorff filtered module and ι : M Ñ M is the
universal map from M to complete, Hausdorff filtered modules, i.e., if f : M Ñ N is a map

of filtered modules of which N is Hausdorff and complete, there is a unique map f : M Ñ N
such that f � ι � f . It is a consequence of this universal property that M ÞÑ M becomes a
functor on the category of filtered modules and that M is canonically isomorphic to M if M
is complete and Hausdorff. The completion of M may be constructed as the inverse limit
of

ML
M1 � ML

M2 � � � �
Concretely, this means that elements of M are sequences prvnsnq, rvnsn P M{Mn such that
vn�1 � vn P Mn; the submodule Mn consists of those sequences in which the first n terms
vanish, i.e., one may assume that vm P Mn, m P N. The universal map is given by ιpvq �prvsnq, and the formula for the completed map is f pprvnsnqq � limnÑ8 f pvnq.
Remark 3.1. If M is completed with respect to the h-filtration, then hnM � Mn, as is easily
verified.

A filtered algebra A is an algebra which as a module is filtered in a fashion compatible with
the multiplication: An An1 � An�n1 . Maps of filtered algebras are maps of algebras which
are maps of filtered modules, too. The above discussion of filtered modules carries over
to the setting of filtered algebras; in particular, notice that An � A is an ideal so that the
construction of the completion A makes sense in the category of algebras.

3.1.2 Modules over the Power Series Ring

Let V denote a complex vector space. The set Vrrhss of power series with coefficients in V
is naturally a module over Crrhss with scalar multiplication

i̧

λih
i

j̧

vjh
j �

i̧,j

λivjh
i�j, vj P V, λi P C.

Unless explicitly stated otherwise, we employ the h-filtration on Vrrhssmaking it both com-
plete and Hausdorff. Assume that M is a complete, Hausdorff filtered Crrhss-module such
that hnM � Mn. Then

HomCrrhsspVrrhss, Mq � HomCpV, Mq (3.1)

as complex vector spaces. Namely, if ϕ : Vrrhss Ñ M is Crrhss-linear, it is also filtered so
that

ϕ
�

i̧

vih
i� �

i̧

hi ϕpviq (3.2)

whence ϕ is determined by its restriction to V � Vrrhss. On the other hand, if ϕ : V Ñ M is
complex linear, formula (3.2) provides a well-defined extension of ϕ to a Crrhss-linear map
ϕ : Vrrhss Ñ M since the right hand side is a Cauchy sequence in M.

Consider the special case M � Wrrhss where W is a complex vector space. Clearly

HomCpV, Wrrhssq � HomCpV, Wqrrhss
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as complex vector spaces, and combining this with (3.1) we obtain

HomCrrhsspVrrhss, Wrrhssq � HomCpV, Wqrrhss
in fact, this is an isomorphism of Crrhss-modules (Crrhss-algebras if V � W). The formula
corresponding to this isomorphism is

j̧

ϕjh
j�

i̧

vih
i� �

i̧,j

ϕjpviqhi�j, ϕj P HomCpV, Wq (3.3)

cf. (3.2). In particular, ϕ P HomCpV, Wq � HomCpV, Wqrrhss induces a Crrhss-linear map
ϕ � ϕh : Vrrhss Ñ Wrrhss given by ϕp°i vihi

� � °
i ϕpviqhi.

3.1.3 Relations to Graded Objects

We have a functor Gr from filtered modules to graded modules defined by

MGr � 8à
m�0

Mpmq, Mpmq � Mm
L

Mm�1

on objects. A morphism f : M Ñ N is taken to fGr � À8
m�0 f pmqGr where f pmqGr is the unique

map making the diagram

Mm
f

Nm

Mpmq f pmq
Gr

Npmq
commutative. It is clear that the functors Gr � and Gr are naturally isomorphic. Notice
that Gr becomes a functor from filtered algebras to graded algebras if we define a multipli-
cation on AGr by rxsrys � rxys P Apm�m1q, rxs P Apmq, rys P Apm1q.
Observe that AGr is commutative if and only if

xy� yx P Am�m1�1, x P Am, y P Am1 .
In this case the equivalence class rxy� yxs P Apm�m1�1q depends only on rxs P Apmq andrys P Apm1q. In fact we have (cf. [AMR2])

Proposition 3.2. Let A be a filtered algebra. If AGr is commutative, then the brackettrxs, rysu � rxy� yxs P Apm�m1�1q, rxs P Apmq, rys P Apm1q
determines a Poisson structure on AGr.

Remark 3.3. The natural isomorphism Gr � � Gr preserves multiplication and, in case
this is commutative, also the Poisson structure.
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Also notice that a graded algebra A �À8
m�0 Apmq is in a natural way a (Hausdorff) filtered

algebra AF � A with AF
n � À8

m�n Apmq. Any map of graded algebras is clearly a map of
filtered algebras, so F is a functor. We have

A � AF � 8¹
m�0

Apmq
with the obvious filtration and multiplication. In the sequel, we sometimes use the notationpamq for elements of A; it is implicit that am P Apmq. Of course, the functor Gr �F is (naturally
isomorphic to) the identity functor on graded algebras.

3.1.4 Completions of Quotients

Let A be a filtered algebra, and let I � A be an ideal with corresponding projection π : A Ñ
A{I. The induced filtration on A{I is given bypA{Iqn � πpAnq � pAn � Iq{I. (3.4)

Remark 3.4. The h-filtration on A induces the h-filtration on A{I.

Put AI � A and define a (new) filtration on this algebra by AI
n � An � I.

Proposition 3.5. The projection π : AI Ñ A{I is filtered and induces an isomorphism

π : AI Ñ A{I

of filtered algebras.

Proof. By (3.4), π is filtered so it induces the commutative square

AIL
AI

n�1

π A{I
MpA{Iqn�1

AIL
AI

n
π A{I

MpA{Iqn
But the horizontal maps are simply the canonical isomorphisms

ALAn � I ÝÑ A{I
MpAn � Iq{I.

This completes the proof. l
3.2 Deformation Quantization and �-Products

In this section S denotes a complex Poisson algebra.

Definition 3.6. A deformation quantization of S is a Crrhss-algebra A together with a surjec-
tive algebra homomorphism p : A Ñ S such that

ab� ba � hp�1ptppaq, ppbquq mod h Ker p (3.5)

for any a, b P A.
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In this definition S is regarded as a Crrhss-algebra via the augmentation ǫ : Crrhss Ñ C.
Notice that (3.5) makes sense since the indeterminacy of the expression hp�1ptppaq, ppbquq
is exactly h Ker p. Also, the condition need only be verified on a set spanning A. We some-
times omit the word deformation and simply speak of quantizations. A morphism from
a quantization p : A Ñ S to another one q : B Ñ T is simply an algebra homomorphism
A Ñ B covering a Poisson homomorphism S Ñ T. In this way quantizations form a cate-
gory with the obvious definitions of identities and morphism composition. We agree that
an equivalence of quantizations of S is an isomorphism covering IdS. When looking for
quantizations of S, a natural Crrhss-module to consider is Srrhss. This leads us to a special
and very important class of quantizations.

Definition 3.7. A �-product on S is a deformation quantization of the form p � π0 : Srrhss Ñ
S. The set of �-products on S is denoted by �pSq.
Remark 3.8. This definition is equivalent to the traditional one (cf. [BFFLS]) as we shall
see shortly.

For a Crrhss-algebra product � on Srrhss, it is convenient to introduce its coefficients, namely
the C-bilinear maps cr : S� S Ñ S given by

x � y �
ŗ

crpx, yqhr, x, y P S.

The coefficients determine � completely since

i̧

xih
i �

j̧

yjh
j �

j̧

��
i̧

xih
i� � yj

�
hj �

i̧,j

xi � yjh
i�j �

i̧,j,r

crpxi, yjqhi�j�r (3.6)

by the Crrhss-bilinearity, cf. (3.2).

Proposition 3.9. A Crrhss-algebra product � on Srrhss is a �-product on S if and only if

x � y � xy mod h, (3.7a)

x � y� y � x � tx, yuh mod h2 (3.7b)

for all x, y P S � Srrhss.
Proof. If � defines a deformation quantization of S, (3.7) clearly hold. On the other hand
(3.7a) means that c0 : S� S Ñ S is the multiplication on S, so for x, y P Srrhss we have

x � y �
i̧,j,r

crpxi, yjqhi�j�r � x0y0 � �
x0y1 � x1y0 � c1px0, y0q�h mod h2.

This implies that π0 : Srrhss Ñ S is multiplicative. Furthermore, by (3.7b) we may continue
the computation to arrive at

x � y� y � x � pc1px0, y0q � c1py0, x0qqh � tx0, y0uh mod h2

as required in (3.5). l
Remark 3.10. All the �-products considered in the sequel satisfy that the unit 1 P S is also
the unit for �, as is easily verified in each case.
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3.2.1 A Key Example

The next theorem contains an important construction of �-products on Poisson algebras
that are graded. The statement of the result relies on Proposition 3.2.

Theorem 3.11 (Andersen, Mattes & Reshetikhin). Assume that S is a graded Poisson algebra,
and let F be a complete, Hausdorff filtered complex algebra such that FGr is commutative. Suppose
V : F Ñ S is a homomorphism of filtered vector spaces such that VGr : FGr Ñ S is an isomorphism
of Poisson algebras. Then V is an isomorphism of filtered vector spaces, and

x1 � x2 � 8̧
r�0

pVpV�1px1qV�1px2qqqpm1�m2�rqhr, xi P Spmiq (3.8)

defines a star product on S.

We also need the following complementary result.

Theorem 3.12. Let S and F be as in Theorem 3.11 and suppose Vi : F Ñ S, i � 1, 2 are two maps
satisfying the conditions of that theorem. Denote by �i the �-product on S defined by formula (3.8)
with V � Vi. If pV1qGr � pV2qGr, then the Crrhss-linear map τ � τ21 : Srrhss Ñ Srrhss determined
by

τpxq �
ŗ
pV2V�1

1 pxqqpm�rqhr, x P Spmq
is an equivalence from �1 to �2.

Proof. By definition of an equivalence we must check that τ0 � IdS; this follows from

τpxq � pV2V�1
1 pxqqpmq � pV2qGrrppV1qGrq�1pxqs � x, x P Spmq.

To prove that τ is multiplicative:

τpx �1 yq � τpxq �2 τpyq, x, y P Srrhss (3.9)

we take a closer look at the definition of �i. The product on F may be transferred to S via
the isomorphism Vi:

x �i y � VipV�1
i pxqV�1

i pyqq, x, y P S. (3.10)

It is then clear from (3.8) that the map η : S Ñ Srrhss, pxiq ÞÑ °
i xihi satisfies

ηpx �i yq � ηpxq �i ηpyq, x, y P S. (3.11)

Putting T � V2 �V�1
1 : S Ñ S, we see from (3.10) that T takes �1 to �2. Also, τ is constructed

such that

τ � η � η � T : S ÝÑ Srrhss. (3.12)

By Crrhss-bilinearity it suffices to verify (3.9) for x, y P S. We may assume that x and y are
homogeneous of degree m1 and m2, respectively. By applying η to the identity Tpx �1 yq �
Tpxq �2 Tpyq and using the properties (3.11) and (3.12), it is straightforward to establish

hm1�m2 τpx �1 yq � hm1�m2pτpxq �2 τpyqq
as desired. Reversing the roles of V1 and V2 yields the inverse τ12 of τ21. The proof is
complete. l
Remark 3.13. In the notation of the above theorem, if Vi : F Ñ S, i � 1, 2, 3 are such thatpViqGr are all equal, then the equivalences obviously satisfy τ31 � τ32 � τ21.
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3.2.2 Quotients

A situation we frequently encounter is the following. We have a �-product on S and a
Poisson ideal I � S. Then we want to induce a �-product on the quotient S{I and obtain a
morphism of quantizations:

Srrhss πh S{Irrhss
S

π S{I

The condition for doing so is, of course, that Ker πh � Irrhss � Srrhss is an ideal with
respect to �. By (3.6) this requirement translates into

crpI, Sq � I � crpS, Iq, r P N. (3.13)

Abusing terminology we shall often say that I is a �-ideal and thereby mean that Irrhss is a�-ideal. Write �pS, Iq � �pSq for the set of �-products descending to S{I, and let π : �pS, Iq Ñ�pS{Iq denote the natural map. A morphism

Srrhss�1

ϕ
Srrhss�2

S
ϕ0

S

(3.14)

where �i P �pS, Iq, i � 1, 2 will induce a morphism

S{Irrhssπp�1q ϕ
S{Irrhssπp�2q

S{I
ϕ0

S{I

(3.15)

precisely when ϕpIrrhssq � Irrhss. The formula (3.3) proves that this is equivalent to

ϕjpIq � I, j P N. (3.16)

3.2.3 Actions

Suppose that a group Γ acts on S by Poisson isomorphisms.

Proposition 3.14. There is an action of Γ on �pSq: For a Poisson isomorphism g : S Ñ S, g P Γ

and a �-product � on S we define �1 � g � � by

x �1 y � ghpg�1
h pxq � g�1

h pyqq (3.17)

for x, y P Srrhss.
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Proof. Trivially, �1 is a Crrhss-algebra product on Srrhss. For x, y P S we have

x �1 y � ghpg�1
h pxq � g�1

h pyqq� ghpg�1pxq � g�1pyqq� gh
�
g�1pxqg�1pyq � c1

�
g�1pxq, g�1pyq�h

�� xy� g
�
c1

�
g�1pxq, g�1pyq��h mod h2

so that x �1 y � xy mod h, and

x �1 y� y �1 x � �
g
�
c1

�
g�1pxq, g�1pyq��� g

�
c1

�
g�1pyq, g�1pxq���h� g

� 
g�1pxq, g�1pyq(�h� tx, yuh mod h2

as desired. It is obvious that g ÞÑ g� defines an action. l
It is, of course, contained in this proposition that we have an isomorphism

Srrhss� gh Srrhssg��
S

g
S

(3.18)

of quantizations. Actions and quotients commute when comparable. More precisely:

Proposition 3.15. Let I � S be a Γ-invariant Poisson ideal so that the action of Γ descends to the
quotient S{I. Then �pS, Iq � �pSq is a Γ-invariant subset and π : �pS, Iq Ñ �pS{Iq is equivariant.

Proof. Let � P �pS, Iq and g P Γ. Since g and g�1 leave I invariant, the induced maps gh and

g�1
h preserve Irrhss. Therefore it follows from (3.17) that Irrhss is an ideal for g � �, that is,

g � � P �pS, Iq. Moreover, by the criterion (3.16) the diagram (3.18) induces the isomorphism

S{Irrhssπp�q gh S{Irrhssπpg��q
S{I

g
S{I

cf. (3.15). But the action of g on �pS{Iq yields the isomorphism

S{Irrhssπp�q gh S{Irrhssg�πp�q
S{I

g
S{I

As gh � gh we derive πpg � �q � g � πp�q. l
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3.2.4 Completion

One advantage of a �-product over an ordinary deformation quantization is that Srrhss is a
complete, Hausdorff filtered algebra. Under certain circumstances it is possible to complete
a general quantization defined on a filtered algebra:

Theorem 3.16. Let p : A Ñ S be a deformation quantization. A filtration A � A0 � A1 � � � � is
said to be compatible with the deformation if

A1 � Ker p, (3.19a)

ab� ba P hAn, a P An, b P A. (3.19b)

In this situation the induced map p : A Ñ S given by

ppransnq � ppa1q, pransnq P A (3.20)

is a deformation quantization.

Proof. In the trivial filtration S � S � 0 � � � � , S becomes a complete, Hausdorff fil-
tered Crrhss-algebra receiving the filtered (by (3.19a)) map p. Therefore the induced alge-
bra homomorphism p : A Ñ S exists and is given by (3.20); it is obviously surjective. Let

a � pransnq, b � prbnsnq P A. Write

x � tppaq, ppbqu � tppa1q, ppb1qu (3.21)

and pick c P p�1pxq. We define inductively a sequence d1, d2, � � � P A subject to the condi-
tions piq d1 P Ker p,piiq anbn � bnan � hc� hdn,piiiq dn�1 � dn P An.

Since p : A Ñ S is a quantization, we get from (3.21) an element d1 P Ker P such that

a1b1 � b1a1 � hc� hd1.

Assume that d1, . . . , dn are defined. We set

an�1 � an � α, bn�1 � bn � β; α, β P An.

By hypothesis (ii), we derive

an�1bn�1 � bn�1an�1 � anbn � bnan � panβ� βanq � pαbn � bnαq � pαβ� βαq� hc� hdn � hkn

for a suitable kn P An the existence of which is guaranteed by (3.19b). Putting dn�1 �
dn � kn completes the induction step. By (iii) the element d � prdnsnq P A is well-defined.
Setting c � prcsnq P A, we conclude that

ab� ba � pranbn � bnansnq � prhc� hdnsnq � hc� hd.

Since d P Ker p by (i) and as

ppcq � ppcq � tppaq, ppbqu,
we have verified the defining equation (3.5) of a deformation quantization. l



3.2 Deformation Quantization and �-Products 33

One example of this construction is due to

Proposition 3.17. A quantization p : A Ñ S is compatible with the h-filtration on A.

Proof. We check the conditions (3.19). Let a P A. Recalling the augmentation ǫ : Crrhss Ñ
C,

pphaq � ǫphqppaq � 0

so that A1 � hA � Ker p. Let also b P A. Since ab � ba P hA by the definition of a
quantization, we derivephnaqb� bphnaq � hnpab� baq P hnhA � hAn

as desired. l



Chapter 4

Quantization of the Algebra of Chord

Diagrams

In the case where Σ has non-empty boundary, Andersen, Mattes and Reshetikhin have
constructed a �-product on the algebra of chord diagrams on Σ by using the machinery
of universal Vassiliev invariants of links in the cylinder over Σ [AMR2]. We present their
construction in this chapter with emphasis on the fact that the �-product obtained depends
on the so-called partition of Σ used in the process. This dependence is well-behaved as
we shall demonstrate; different partitions yield canonically equivalent �-products. When
working with the AMR �-products and their equivalences, some standard situations arise
frequently; we deal with those and a first application of them at the end of the chapter. The
first two sections set the scene and are based on Bar-Natan’s paper [B] as well as [AMR2].

4.1 Chord Tangles

We generalize the notion of chord diagrams; in a chord tangle the core components are
allowed to be oriented intervals as well as oriented circles. The boundary of a chord tangle
T is a set of oriented points partitioned into two ordered sets B�T and B�T termed the top
and bottom endpoints, respectively. In drawings of chord tangles their tops and bottoms are
consistent with the orientation of the page, and the order of endpoints is from left to right.
We may extend T by adding vertical, oriented intervals with no chords to the left and right
of T. Moreover, T can be cabled by substituting bundles of core components (of the same
kind, various orientations permitted) for single ones. The result of this operation is the
signed sum of all possible liftings of T to the skeleton of core components obtained from
the skeleton of T by the prescribed substitution. The sign of a lifting is �1 raised to the
number of chord endpoints located on a core component with reversed orientation. Here
is an example:pÒÓ b ÓÒq� � � � � � �
The symbol ÒÓb ÓÒ means: Replace the first (counting at the bottom) strand by the bundleÒÓ and the second one by ÓÒ. We remark that cabling preserves the 4T-relation and there-
fore makes sense for chord diagrams on Σ; restricted to subspaces of chord diagrams with
identical skeletons it results in graded linear maps.

34
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Remark 4.1. Given a core component C of a chord tangle T, one possible cabling opera-
tion, SC, is to substitute C with opposite orientation for C; clearly, SCpTq is the chord tangle
obtained from D by reversing the orientation of C and scaling with �1 for each chord end-
point on C. Replacing C by the empty bundle of core components yields another cabling
operation ǫC; if a chord intersects C then ǫCpTq � 0 since it is impossible to lift T to the
skeleton obtained from the skeleton of T by erasing C. On the other hand, if no chord in-
tersects C this lifting can be performed in a unique way so that ǫCpTq is the chord tangle
obtained from D by simply erasing C.

We now consider an oriented embedded square S � Σ with distinguished top and bottom
sides I� and I�. The square is equipped with a boundary marking, that is, two finite sets
of oriented points B� � B�S � I� and B� � B�S � I�. Define geometric chord tangles inpS; B�, B�q to be smooth maps pT; B�T, B�Tq Ñ pS; B�S, B�Sq subject to the condition thatB�T Ñ B�S and B�T Ñ B�S are isomorphisms (bijections preserving order and orien-
tation). Chord tangles in pS; B�, B�q are, of course, homotopy classes rel boundary of such
maps, and DpS; B�, B�q is the complex vector space freely generated by them. Since the
4T-relation still makes sense, we obtain in this way a vector space

CpS; B�, B�q � DpS; B�, B�qL4T

graded by the number of chords.
Similarly, we can consider chord tangles in Σ� S (more precisely, in Σ� intpSq, but for

clarity we use the simpler notation); we agree that the top of S is the bottom of Σ� S and
vice versa, so that the boundary marking on Σ� S induced from the one on S becomespB�pΣ� Sq, B�pΣ� Sqq � pB�S, B�Sq � pB�, B�q.
With this convention we obtain a graded vector space

CpΣ� S; B�, B�q � DpΣ� S; B�, B�qL4T.

Notice that S and Σ � S are surfaces in their own right and that CpS;H,Hq � CpSq and
CpΣ� S;H,Hq � CpΣ� Sq are the usual Poisson algebras of chord diagrams.

Extension and cabling clearly makes sense for chord tangles in S whereas only cabling
is possible for chord tangles in Σ� S. These operations yield graded linear maps. There is
an obvious composition of chord tangles

CpΣ� S; B�, B�q � CpS; B�, B�q �ÝÑ CpΣq
defined by glueing the appropriate pairs of boundary points. Note that the map CpΣ �
Sq Ñ CpΣq induced by the inclusion Σ � S � Σ can be regarded as composition withH P CpSq. Also, if S1 and S2 are two embedded squares with boundary markings such that
I�pS1q � I�pS2q and B�S1 � B�S2, there is another composition

CpS1; B�S1, B�S1q � CpS2; B�S2, B�S2q �ÝÑ CpS1 Y S2; B�S1, B�S2q
defined analogously. Both compositions are graded bilinear maps.

The union operation which turned CpΣq into an algebra can be defined for chord tangles
in S under certain circumstances. Specifically, if pBi�, Bi�q, i � 1, 2 are two disjoint boundary
markings on S there is an obvious graded bilinear map

CpS; B1�, B1�q � CpS; B2�, B2�q YÝÑ CpS; B1� Y B2�, B1�Y B2�q.
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Figure 4.1: Positive (left) and negative crossings.

As a special case we note that CpS; B�, B�q becomes a graded module over CpSq. For chord
tangles in Σ� S analogous considerations of the union operation apply.

Since all the aforementioned operations on chord tangles are graded (bi)linear, they ex-
tend to the completions of the chord tangle spaces. Moreover it is clear that the operations
commute whenever this makes sense.

4.2 Links and Non-Associative Tangles

Let LpΣq denote the complex vector space with basis the set of framed, oriented links in
(the interior of) the cylinder Σ� I. We often think of links as link diagrams on Σ modulo
the second and third Reidemeister moves; the usual sign conventions for over- and under-
crossings in link diagrams are used throughout, cf. Figure 4.1. (Therefore we sometimes
abuse terminology and speak of links on Σ). Introduce an operation ∇ on LpΣq in the
following fashion. For a link diagram L pick a subset v1, . . . , vk of its crossings and put

∇v1,...,vk L � ¸
ǫ1,...,ǫk��1

ǫ1 � � � ǫkLǫ1 ,...,ǫk

where Lǫ1 ,...,ǫk is the link obtained from L by adjusting the sign of vi to be ǫi. This allows us
to define subspaces

LmpΣq � spant∇v1,...,vm L | L is a link on Σu (4.1)

easily seen to constitute a filtration on LpΣq; it is called the Vassiliev filtration.
Evidently the projection Σ� I Ñ Σ induces a map

π : LpΣq Ñ Dp0qpΣq � Cp0qpΣq � CpΣq.
A more interesting coupling of links and chord diagrams on Σ is the graded linear sur-
jection λ : CpΣq Ñ LGrpΣq we now define. Let D be a generic chord diagram on Σ with
m chords denoted by v1, . . . , vm. Pick a link diagram LD projecting to D, i.e., resolve the
crossings (chords and ordinary intersections) of D in some way, and set

λpDq � r∇v1,...,vm LDs P LmpΣqLLm�1pΣq � L
pmq
Gr pΣq.

It is inessential how we resolve the crossings in D; this is by definition of ∇ for the chords,
and because we divide out Lm�1pΣq for the ordinary intersections. Therefore the map
λ : DpΣq Ñ LGrpΣq is well-defined; immediately from (4.1) it is surjective. That λ vanishes
on 4TpΣq and thus descends to CpΣq is an elementary calculation.

For links L1 and L2 in Σ� I we define their product by

L1L2 � tpx, tq P Σ� I | t ¡ 1{2^ px, 2t� 1q P L1, or t   1{2^ px, 2tq P L2u,
that is, L1L2 is L1 stacked on top of L2. It is evident that LpΣq endowed with this multi-
plication becomes a filtered, in general non-commutative, algebra with the empty link as
unit.
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Proposition 4.2 (Andersen, Mattes & Reshetikhin). The graded algebra LGrpΣq is commuta-
tive, and λ : CpΣq Ñ LGrpΣq is a surjective homomorphism of graded Poisson algebras.

We now define non-associative tangles, a concept corresponding to chord tangles as links cor-
respond to chord diagrams. More precisely, a non-associative tangle is a framed, oriented
tangle for which the ordered sets of top and bottom endpoints are (completely) paren-
thesized. When drawing non-associative tangles, we indicate the parenthesization of the
endpoints by the distance between them. Extension of non-associative tangles is defined
as for chord tangles with the additional requirement that the parenthesization of the ex-
tended tangle respects the parenthesization of the original one. Also cabling is possible by
using the framing to push off a bundle of components from a single component. When this
component is an interval a parenthesization on the substituted bundle of intervals must be
specified in order that a parenthesization is induced on the boundary of the cabled tangle.
As for chord diagrams on Σ cabling makes sense for links on Σ and results in filtered maps.

Again we consider an oriented square S embedded in Σ, the boundary marking now

consisting of parenthesized subsets Bpq� � I� and Bpq� � I� of oriented points. We may then
define the Vassiliev filtered vector space

LpS; Bpq�, Bpq�q
of non-associative tangles in pS� I; Bpq�, Bpq�q by using regular isotopy classes rel boundary

of appropriate non-associative tangles. When Bpq� � H we recover the algebra of links LpSq
defined previously. It is clear how to extend and cable tangles in S. A parallel definition
and analogous considerations are valid for non-associative tangles in pΣ � Sq � I except
that extension of such tangles is not defined.

We have filtered composition maps mirroring those for chord tangles

LpΣ� S; Bpq� , Bpq�q �LpS; Bpq�, Bpq�q �ÝÑ LpΣq,
LpS1; Bpq�S1, Bpq�S1q �LpS2; Bpq�S2, Bpq�S2q �ÝÑ LpS1 Y S2; Bpq�S1, Bpq�S2q

subject, of course, to the compatibility conditions I�pS1q � I�pS2q and Bpq�S1 � Bpq�S2.
The stacking operation defining the product on LpSq generalizes to filtered maps

LpSq �LpS; Bpq�, Bpq�q ÝÑ LpS; Bpq�, Bpq�q, LpS; Bpq� , Bpq�q �LpSq ÝÑ LpS; Bpq� , Bpq�q.
Since S is contractible these maps are equal when flipping the domain factors. Thus LpSq
is a commutative algebra, and LpS; Bpq�, Bpq�q is a filtered module over it. This kind of com-
mutativity fails in general for Σ� S, but it is still true that the stacking maps

LpΣ� Sq �LpΣ� S; Bpq�, Bpq�q ÝÑ LpΣ� S; Bpq�, Bpq�q,
LpΣ� S; Bpq� , Bpq�q �LpΣ� Sq ÝÑ LpΣ� S; Bpq�, Bpq�q

turn LpΣ� S; Bpq� , Bpq�q into a filtered bi-module over LpΣ� Sq.
The operations on non-associative tangles are all filtered so that they extend to the Vas-

siliev completions, and as for chord tangles they are compatible with each other. The pro-

jection π : LpS; Bpq�, Bpq�q Ñ CpS; B�, B�q and the surjective graded linear map λ : CpS; B�, B�qÑ LGrpS; Bpq� , Bpq�q defined as in the case of links and chord diagrams on Σ, achieve the cou-
pling between chord tangles and non-associative tangles on S, and similarly for Σ� S.
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4.3 Universal Vassiliev Invariants

A universal Vassiliev invariant of links on Σ is a map V : LpΣq Ñ CpΣq �±8
m�0 C

pmqpΣq of
filtered vector spaces such that

VGr � λ � IdCpΣq . (4.2)

We refer to (4.2) as the defining equation of a universal Vassiliev invariant; it implies the
following corollary to Proposition 4.2.

Proposition 4.3. If V is a universal Vassiliev invariant for Σ, then λ : CpΣq Ñ LGrpΣq is an
isomorphism of graded Poisson algebras with inverse λ�1 � VGr.

Assume for the remainder of this chapter that BΣ �� H. The construction in [AMR2] of a
universal Vassiliev invariant of links on Σ builds on the construction in [B] of a universal
Vassiliev invariant of non-associative tangles in the standard square S � I � I with top
I � t1u and bottom I � t0u; by this we mean a family of filtered, linear maps parametrized
by all boundary markings on S:

V : LpS; Bpq�, Bpq�q Ñ CpS; B�, B�q
and satisfying the obvious analogue of (4.2). It will be useful to have refined versions
of the chord tangle spaces. To be specific, let T � S be a tangle (chord tangle without
chords), and define CpS; Tq � CpS; B�T, B�Tq to be the (homogeneous) subspace generated

by chord tangles with skeleton T. A perturbation of the skeleton is any element pPmq P CpS; Tq
such that P0 � T. Also, we allow the second factor of S to shrink and stretch so that the
spaces of tangles in this square are closed under composition. In particular, this means
that CpS; Ò � � � Òq is an algebra with composition as multiplication, the unit being the trivial
tangle Ò � � � Ò. To define V we fix, once and for all, two parameters, the associator Φ P
CpS; ÒÒÒq and the R-matrix R P CpS; ÒÒq subject to various conditions (cf. [B]); we mention
a couple of them. Both Φ and R are perturbations of their skeletons; this implies that they
are invertible elements in the algebras they belong to. Also, R satisfies the identity� R� R�1 � � � higher degree terms. (4.3)

One constructs an element C P CpS; Òq in terms of Φ; it is a perturbation of its skeleton.

Bending C appropriately, it may be regarded as a member of either of the spaces CpS; xq
and CpS; xq; we put

V
� � � � R, V

� � � R�1 � , (4.4a)

V
� � � Φ, V

� � � Φ
�1, (4.4b)

V
� � � C, V

� � � C. (4.4c)

Any non-associative tangle in S may be obtained from the above six elementary ones by ca-
bling, extension and composition, so requiring that V is compatible with these operations
on non-associative tangles and chord tangles, of course, (over)determines V. Only the care-

ful choice of pΦ, Rq ensures that this procedure leads to well-defined maps V : LpS; Bpq�, Bpq�q
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Figure 4.2: A partition of Σ0,3.

· · · · · ·

Figure 4.3: The hexagon tangle.Ñ CpS; B�, B�q. That V is filtered and satisfies the defining equation of a universal Vas-
siliev invariant follows from (4.3) and the fact that Φ, R and C are perturbations of their
skeletons. Note that if T � S is a non-associative tangle, then

VpTq P CpS; πpTqq. (4.5)

The above construction yields, of course, a universal Vassiliev invariant of non-associative
tangles in any embedded square S � Σ; we use this below.

Now assume that Σ is not itself a square. The universal Vassiliev invariant of links on
Σ depends not only on pΦ, Rq but also on a partition of Σ. A partition P is determined by a
finite collection of embedded intervals pIk, BIkq � pΣ, BΣq chosen such that cutting Σ along
these intervals results in a decomposition

Σ � pYiSiq Y pYjHjq
consisting of squares Si and hexagons Hj. The sides of these polygons are alternately an
interval Ik and a piece of BΣ. A possible partition of the three-holed sphere Σ0,3 is illus-
trated in Figure 4.2. For technical reasons we assume that no two hexagons are adjacent;
in particular, the decomposition contains at least one square. (By the Euler characteristic
the number of hexagons is constant, but we will not use that). Also part of the structure
is a choice of top and bottom on all polygons; for a square this means that one of the two
embedded intervals bordering it is the top of that square and the other one is the bottom,
whereas for a hexagon either the top or the bottom consists of two of the Ik bordering it and
the opposite side is the remaining one of these intervals. The choice of tops and bottoms
must be consistent, i.e., result in an unambiguous direction ‘up’ on Σ.

Let L be a link on Σ. By isotopy we assume that L is in general position with respect to
the embedded intervals and that each intersection LX Hj looks like Figure 4.3. (possibly
turned upside down). Now choose parenthesizations of all the sets L X Ik subject to the
condition that the parenthesization of the top (bottom) endpoints of a hexagon is the union
of the parenthesizations of the bottom (top) endpoints. In this way all intersections LX Si
are non-associative tangles, and we can define

VPpLq �¹
i

VpLX Siq �¹
j

πpLX Hjq P CpΣq
where the product is composition of chord tangles.

Theorem 4.4 (Andersen, Mattes & Reshetikhin). The map VP : LpΣq Ñ CpΣq is a universal
Vassiliev invariant.

Notice that for any link L on Σ

VPpLq P CpΣ; πpLqq (4.6)
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Sl S Sr

Figure 4.4: A square S0 containing another square S.

because of (4.5). By definition of the universal Vassiliev invariant of non-associative tangles
in a square it is also clear that VP is compatible with cabling of links and chord diagrams.

It is natural to ask how VP depends on P. On one hand, we can refine P by bisecting one
of the squares Si with an extra embedded interval running parallel to the top and bottom
of Si. This modification leaves VP unchanged since the universal Vassiliev invariant for S is
compatible with composition. On the other hand, we can consider the action of Γ�pΣq on
the set PpΣq of all partitions of Σ; given a map g P Γ�pΣq, the image gpPq of the embedded
intervals constituting P is another partition. Evidently

VgpPqpgpLqq � gpVPpLqq, L P LpΣq. (4.7)

We now introduce a useful computational tool, namely universal Vassiliev invariants of
non-associative tangles in Σ� S. They also depend on a partition P of Σ, now required to
be compatible with S in the sense that there exists a square S0 in P containing S as depicted
in Figure 4.4. For technical reasons we also assume that S0 is not adjacent to a hexagon; this
is no restriction since we can refine P. We begin with the easy case when S � S0 (so that

Sl � Sr � Hq. For a tangle T P LpΣ� S0; Bpq�pΣ� S0q, Bpq�pΣ� S0qq we proceed as for links
and define

VPpTq �¹
i ��0

VpT X Siq �¹
j

πpT X Hjq P CpΣ� S0; B�pΣ� S0q, B�pΣ� S0qq
remembering, of course, that the parentheses on T X I�pΣ � S0q are already fixed to beBpq�pΣ� S0q. Adhering to the rule for parentheses in top and bottom intervals of hexagons
is no problem since these polygons do not neighbour S0.

The general case builds on the first one. Let T P LpΣ� S; Bpq�pΣ � Sq, Bpq�pΣ � Sqq. Put
Tl � T X Sl , and choose parentheses on Tl X I�pSlq and Tl X I�pSlq to obtain a boundary

marking pBpq�Sl , Bpq�Slq on Sl ; in this way Tl P LpSl ; Bpq�Sl , Bpq�Slq. Similarly for the right hand
square. Define boundary markings on S0 byBpq�S0 � ppBpq�SlBpq�SqBpq�Srq, Bpq�S0 � ppBpq�SlBpq�SqBpq�Srq
so that T X pΣ � S0q can be regarded as an element in LpΣ � S0; Bpq�pΣ � S0q, Bpq�pΣ � S0qq.
Put

VPpTq � VPpT X pΣ� S0qq �VpTlq �VpTrq P CpΣ� S; B�pΣ� Sq, B�pΣ� Sqq.
That these maps are well-defined universal Vassiliev invariants of tangles in Σ�S is proved
much like Theorem 4.4 (cf. [AMR2]). Compatibility with cabling is immediate from the
construction as in the case of links on Σ. For (compatible) non-associative tangles TS P
LpS; Bpq� , Bpq�q and TΣ�S P LpΣ� S; Bpq�, Bpq�q, the composition TΣ�S � TS is a link on Σ, and the
three kinds of universal Vassiliev invariants fit together in

VPpTΣ�S � TSq � VPpTΣ�Sq �VpTSq
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as one readily deduces from the definitions. This formula is ubiquitous in calculations in
the sequel.

4.4 �-Products and Standard Situations

For partitions P of Σ we consider the completed map

VP � VP : LpΣq Ñ CpΣq.
By Proposition 4.3 and Remark 3.3, Theorem 3.11 applies to S � CpΣq, F � LpΣq and
V � VP:

Theorem 4.5 (Andersen, Mattes & Reshetikhin). For any partition P of Σ there is a �-product�P with coefficients

crpD, Eq � pVPpV�1
P pDqV�1

P pEqqqpm1�m2�rq
for chord diagrams D and E with m1 and m2 chords, respectively.

Different partitions may yield different �-products as we shall see, but at least we have

Theorem 4.6. If P1 and P2 are two partitions of Σ, then the endomorphism τ of CpΣqrrhss deter-
mined by

τpDq �
ŗ
pVP2

V�1
P1
pDqqpm�rqhr, D P CpmqpΣq

is an equivalence from �P1
to �P2

.

Proof. Theorem 3.12 applies since pVP1
qGr � λ � pVP2

qGr. l
Remark 4.7. From formula (4.6) follows immediately that the AMR �-products and the
equivalences between them preserve the skeletons of the chord diagrams. Therefore the
above two theorems also hold for CpΣ; Gq if we simply carry along the representations
associated to core components in the definitions.

Remark 4.8. With a little more effort one can show that �P preserves more than skeletons;
if D and E are chord diagrams then crpD, Eq is a linear combination of chord diagrams each
of which is obtained from DE by adding r chords appropriately. Formally, this is proved by
generalizing the results about non-associative tangles in the complement of an embedded
square S � Σ to the case of two disjoint embedded squares assumed (by isotopy) to contain
the ‘non-trivial’ parts of D, respectively E.

Proposition 4.9. The map PpΣq Ñ �pCpΣqq given by P ÞÑ �P is Γ�pΣq-equivariant.

Proof. Let P be a partition of Σ, and let g P Γ�pΣq. For chord diagrams D and E we have

by (4.7) and the analogous identity for V�1
P

gVPpV�1
P pDqV�1

P pEqq � VgpPqpgpV�1
P pDqV�1

P pEqqq� VgpPqpgV�1
P pDqgV�1

P pEqq� VgpPqpV�1
gpPqpgpDqqV�1

gpPqpgpEqqq.
It follows from Theorem 4.5 that gpD �P Eq � gpDq �gpPq gpEq; this is exactly the statement
g � �P � �gpPq, cf. Proposition 3.14. l
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4.4.1 Standard Situations

We shall encounter a couple of standard situations in computations involving �P, P P PpΣq
and the equivalences between these �-products. The common set-up of the standard situ-
ations is as follows: There is an embedded square pS; I�, I�q � Σ with boundary mark-

ing pBpq� , Bpq�q, and we have compatible elements L P CpmqpS; B�, B�q and T P Cpm1qpΣ �
S; B�, B�q. We write D � T � L P Cpm1�mqpΣq.

In the first standard situation E is a chord diagram on Σ with m2 chords, and we want
to calculate D �P E where P is some partition of Σ. By a homotopy we may assume firstly
that S is contained in the interior of a square S0 from P and secondly that E is represented
by an element E P CpΣ � Sq so that E � E � H P CpΣq. We refine P with two embedded
intervals as illustrated in Figure 4.5 in order to make P compatible with S. Having settled
these technical issues, we derive

VP
�
V�1

P pDqV�1
P pEq� � VP

�
V�1

P pT � LqV�1
P pE � Hq�� VPprV�1

P pTq �V�1pLqsrV�1
P pEq � Hsq� VPrpV�1

P pTqV�1
P pEqq �V�1pLqs� VP

�
V�1

P pTqV�1
P pEq� � L

so that

crpD, Eq � �
VP

�
V�1

P pDqV�1
P pEq��pm1�m�m2�rq� �

VP
�
V�1

P pTqV�1
P pEq� � L

�pm1�m�m2�rq� �
VP

�
V�1

P pTqV�1
P pEq��pm1�m2�rq � L.

Of course, we can reverse the roles of D and E and get a parallel result. A first application
of this standard situation yields

Theorem 4.10 (Andersen, Mattes & Reshetikhin). A subspace I � CpΣq spanned by local
relations is a �-ideal with respect to �P for any partition P of Σ.

Proof. Previously (cf. 2.4.1) we noted that I is a Poisson ideal so the statement of the
theorem makes sense. To prove it we must verify condition (3.13). Consider a generator
D P I . There exists an embedded square pS; I�, I�q � Σ with boundary marking pB�, B�q
such that D � T �°i λiLi; here Li P CpS, B�, B�q and λi P C are the chord tangles and

the scalars defining the relevant local relation, and T P Cpm1qpΣ� S; B�, B�q is an arbitrary

S
I+(S)

I−(S)

I−(S0)

I+(S0)

Figure 4.5: Two intervals in S0 refining P.
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chord tangle. Letting E be a chord diagram with m2 chords and choosing an arbitrary
parenthesization on pB�, B�q, the standard situation yields

crpD, Eq �
i̧

λicrpT � Li, Eq�
i̧

λi
�
VP

�
V�1

P pTqV�1
P pEq��pm1�m2�rq � Li� �

VP
�
V�1

P pTqV�1
P pEq��pm1�m2�rq �

i̧

λiLi P I

as desired. In the same way, crpE, Dq P I . l
In the second standard situation we aim to compute τpDq P CpΣqrrhsswhere τ is the canon-
ical equivalence from �P1

to �P2
for partitions P1 and P2 of Σ, cf. Theorem 4.6. By homotopy

and the refinement procedure illustrated in Figure 4.5, we may assume that S is compatible
with both P1 and P2. We get

VP2
V�1

P1
pDq � VP2

V�1
P1
pT � Lq � VP2

pV�1
P1
pTq �V�1pLqq � pVP2

V�1
P1
pTqq � L

so that

τrpDq � pVP2
V�1

P1
pDqqpm1�m�rq � pVP2

V�1
P1
pTq � Lqpm1�m�rq � pVP2

V�1
P1
pTqqpm1�rq � L.

Not surprisingly the first application of the second standard situation is the following re-
sult.

Theorem 4.11. Let I � CpΣq be a subspace spanned by local relations, and let P1 and P2 be two
partitions of Σ. The canonical equivalence τ : CpΣqrrhss Ñ CpΣqrrhss from �P1

to �P2
descends to

CpΣq{I to yield an equivalence between the induced �-products.

Proof. This is analogous to the proof of Theorem 4.10; in the notation of that proof we
deduce

τrpDq �
i̧

λiτrpT � Liq �
i̧

λipVP2
V�1

P1
pTqqpm1�rq � Li � pVP2

V�1
P1
pTqqpm1�rq �

i̧

λiLi P I

as required, cf. (3.16). l
Applying the preceding two theorems to the loop relation (2.21), we obtain

Theorem 4.12. The AMR �-products on CpΣq and the canonical equivalences between them de-
scend to the Poisson loop algebra Zs, f pΣq via the resolving map Rs, f : CpΣq Ñ Zs, f pΣq.



Chapter 5

Quantization of the Moduli Space

In this chapter we prove, under the assumption BΣ �� H, that the �-products �P, P P PpΣq
on CpΣq and the canonical equivalences between them descend to OpMpΣ; Gqq if G is one
of the groups GLnpCq and SLnpCq. These results are achieved by presenting OpMpΣ; Gqq
as an explicit quotient of CpΣq; the description we give is also valid in the case where Σ

is closed. Obtaining it relies on Sikora’s work [S]; in the general linear case we adapt the
methods of his paper to derive a parallel version of its main result, and in the special linear
case we simply translate the main result into our context.

We round off the chapter with Andersen’s explicit formula for �P in the abelian case
G � GL1pCq [A]; it is a corollary that �P is independent of P and Γ�pΣq-invariant. We also
provide counterexamples illustrating that this corollary fails in general.

5.1 The General Linear Case

We consider the group G � GLnpCq equipped with the orthogonal structure

BpX, Yq � TrpXYq, X, Y P glnpCq.
That is, we fix t P glnpCq b glnpCq to be the Ad-invariant symmetric tensor corresponding
to the pairing B. Colouring all core components of chord diagrams with the defining rep-
resentation ι � IdGLnpCq of GLnpCq yields a Poisson homomorphism CpΣq Ñ CpΣ; GLnpCqq.
We write

Ψ : CpΣq Ñ CpΣ; GLnpCqq ΨtÝÑ OpMpΣ; GLnpCqqq
for the composite Poisson homomorphism, cf. Theorem 2.22.

Theorem 5.1. Assume that BΣ �� H. For any partition P of Σ the �-product �P on CpΣq descends
via Ψ to a �-product on OpMpΣ; GLnpCqqq.
Theorem 5.2. Assume that BΣ �� H, and let P1 and P2 be two partitions of Σ. The canonical
equivalence from �P1

to �P2
on CpΣq descends via Ψ to OpMpΣ; GLnpCqqq to yield an equivalence

between the induced �-products.

Remark 5.3. Theorem 5.1 was also stated in [AMR2]. The proof appearing below roughly
follows the outline of the justification supplied in that paper. The primary deviation is that
we shall not claim that the kernel of Ψ is generated by local relations.

44
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5.1.1 The Relevant Loop Relation

Let Ei,j P glnpCq be the matrix whose sole non-zero entry is a 1 in the pi, jqth entry, and
define

B�i,j � Ei,j � Ej,i, B�i,j � Ei,j � Ej,i; 1 ¤ i   j ¤ n.

These matrices along with Ei,i, i � 1, . . . , n are readily seen to constitute an orthogonal basis
for glnpCq. Recalling Remark 2.8, we normalize suitably and perform a simple calculation
to obtain pιb ιqptq � t �

i̧,j

Ei,j b Ej,i P EndpCnq b EndpCnq
which under the isomorphism EndpCnq b EndpCnq � EndpCn b Cnq corresponds to the
transposition of the factors. Hence Ψ satisfies the relation (cf. (2.24b))� (5.1)

that is, the loop relation (2.21) with parameters ps, f q � p1, 0q. Thus we derive a triangle of
Poisson homomorphisms

CpΣq
Ψ

R1,0

Z1,0pΣq Ψ
OpMpΣ; GLnpCqqq

The Poisson structure on the loop algebra will not occupy us in the study of Ker Ψ, so we
agree to write ZpΣq � Z1,0pΣq.
5.1.2 The Universal GLn-Representation

Our strategy is to introduce a commutative complex algebra RnpΣq � RpΣ; GLnpCqq en-
dowed with a GLnpCq-action such that Ψ factors through the algebra of fixed points:

RnpΣqGLnpCq
ZpΣq Ψ

OpMpΣ; GLnpCqqq
A universal property defines RnpΣq; it admits a representation ρΣ � ρΣ,GLnpCq : π1pΣq Ñ
GLnpRnpΣqq (the universal GLn-representation of π1pΣq) such that for any representation
ρ : π1pΣq Ñ GLnpAq, A being a commutative complex algebra, there exists a unique ho-
momorphism hρ : RnpΣq Ñ A fitting into the diagram

GLnpRnpΣqq
GLnphρq

π1pΣq ρΣ

ρ
GLnpAq (5.2)
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Here is an explicit construction of RnpΣq. Let xgλ, λ P Λ | rµ, µ P My be a presentation P
of π1pΣq satisfying that all relations rµ are written as products of generators gλ. Let QnpΛq
be the polynomial algebra Crxλ

i,j, dλs where λ P Λ and i, j � 1, . . . , n. Define matrices Aλ �pxλ
i,jq P MnpQnpΛqq, λ P Λ. Here Mn denotes the functor assigning the complex algebra

MnpRq of n� n matrices to a commutative complex algebra R; note that R is included in
MnpRq as the central subalgebra of scalar matrices. Let IpPq � QnpΛq be the ideal generated
by dλ det Aλ � 1 and all entries in Aλ1

� � � Aλk
� 1 for each relation rµ � gλ1

� � � gλk
. Set

RnpΣ; Pq � RpΣ; GLnpCq, Pq � QnpΛqLIpPq; q : QnpΛq Ñ RnpΣ; Pq.
We now prove that RnpΣ; Pq satisfies the universal property, implying in particular that dif-
ferent presentations of π1pΣq yield canonically isomorphic algebras (all denoted by RnpΣq).
The formulas

detpMnpqqpAλqq � qpdet Aλq, qpdλqqpdet Aλq � 1

prove that MnpqqpAλq P GLnpRnpΣ; Pqq, and it is clear that we have a representation

ρΣ � ρΣ,GLnpCq,P : π1pΣq Ñ GLnpRnpΣqq; ρΣpgλq � MnpqqpAλq. (5.3)

If A is a commutative complex algebra admitting a representation ρ : π1pΣq Ñ GLnpAq, we
define hρ : QnpΛq Ñ A by

hρpxλ
i,jq � ρpgλqi,j, hρpdλq � det ρpgλq�1. (5.4)

Since MnphρqpAλq � ρpgλq, it follows that IpPq � Ker hρ; the induced map hρ : RnpΣq Ñ A
is obviously the unique homomorphism making the triangle (5.2) commutative.

The action of GLnpCq on RnpΣq is the prime application of the universal property. Ele-
ments A P GLnpCq give rise to representations

A�1ρΣA : π1pΣq Ñ GLnpRnpΣqq
and the corresponding endomorphisms A� : RnpΣq Ñ RnpΣq define a GLnpCq-action; this
is a direct consequence of the uniqueness of (5.2). By (5.4) and (5.3) we have

A � qpxλ
i,jq � pA�1 MnpqqpAλqAqi,j, A � qpdλq � detpMnpqqpAλqq�1 � qpdλq. (5.5)

We extend the action of GLnpCq to MnpRnpΣqq by

A � M � ApA � Mi,jqA�1, M P MnpRnpΣqq, A P GLnpCq. (5.6)

Consequently,

Lemma 5.4. The inclusion RnpΣq � MnpRnpΣqq is equivariant.

We lift the GLnpCq-actions to QnpΛq and MnpQnpΛqq. By definition we can regard QnpΛq
as the algebra of polynomial functions from pMnpCq �CqΛ to C, and hence MnpQnpΛqq as
the algebra of polynomial functions from pMnpCq � CqΛ to MnpCq. Since GLnpCq acts on
MnpCq by conjugation and trivially on C, it acts on the product pMnpCq�CqΛ. The induced
actions on the function sets MapppMnpCq � CqΛ, Cq and MapppMnpCq � CqΛ, MnpCqq pre-
serve the property of being polynomial, thereby defining the desired actions denoted also
by �.
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Lemma 5.5. We have dλ, det Aλ P QnpΛqGLnpCq and Aλ P MnpQnpΛqqGLnpCq.
Proof. This is immediate when regarding dλ, det Aλ and Aλ as functions on pMnpCq �
CqΛ. l
The analogues of (5.6) and Lemma 5.4 hold:

Lemma 5.6. For any F P MnpQnpΛqq and A P GLnpCq we have

A � F � ApA � Fi,jqA�1

Proof. Thinking of F and Fi,j as functions we derivepA � FqppMλ, sλqλq � AFpA�1 � pMλ, sλqλqA�1� ApFi,jpA�1 � pMλ, sλqλqqA�1� AppA � Fi,jqppMλ, sλqλqqA�1

where pMλ, sλqλ P pMnpCq �CqΛ. l
Corollary 5.7. The inclusion QnpΛq � MnpQnpΛqq is equivariant.

All four GLnpCq-actions are related by

Proposition 5.8. The maps in the commutative square

MnpQnpΛqq Mnpqq
Tr

MnpRnpΣqq
Tr

QnpΛq q
RnpΣq

are equivariant.

Proof. The traces are invariant under conjugation with complex matrices and hence equiv-
ariant by (5.6) and Lemma 5.6, respectively. The equivariance of q need only be verified on
the generators xλ

i,j, dλ. Fix A P GLnpCq. For any pMλ, sλqλ P pMnpCq �CqΛ we havepA � xλ0
i,j qppMλ, sλqλq � xλ0

i,j pA�1 � pMλ, sλqλq� xλ0
i,j ppA�1 Mλ A, sλqλq� pA�1 Mλ0

Aqi,j� pA�1 Aλ0
ppMλ, sλqλqAqi,j� ppA�1 Aλ0
AqppMλ, sλqλqqi,j

so that

qpA � xλ0
i,j q � qppA�1 Aλ0

Aqi,jq � pA�1 MnpqqpAλ0
qAqi,j � A � qpxλ0

i,j q
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by (5.5). The elements dλ are invariant by Lemma 5.5, so (5.5) also takes care of those.
Regarding Mnpqq, we derive for M P MnpQnpΛqq

MnpqqpA � Mq � MnpqqpApA � Mi,jqA�1q� ApqpA � Mi,jqqA�1� ApA � pqpMi,jqqqA�1� A � MnpqqpMq
by Lemma 5.6, the equivariance of q and formula (5.6). l
Proposition 5.9. The image of the universal GLn-representation ρΣ : π1pΣq Ñ MnpRnpΣqq is
invariant under the action of GLnpCq.
Proof. It suffices to consider a generator gλ. The matrix Aλ P MnpQnpΛqq is invariant
by Lemma 5.5; the result now follows from the previous proposition since MnpqqpAλq �
ρΣpgλq is then invariant, too. l
Remark 5.10. Before continuing the investigation of RnpΣq, we explore its relationship

with MpΣ; GLnpCqq. We think of GLnpCq as an affine subset of MnpCq�C � Cn2�1, namely

GLnpCq � tpA, dq P MnpCq �C | d det A � 1u.
Recalling the construction of the combinatorial complex KP (cf. 2.1), we infer (at least in
the case |Λ|   8) that the vanishing set of the ideal IpPq � QnpΛq � OppMnpCq � CqΛq
is exactly ApKP; GLnpCqq � GLnpCqEpKPq � GLnpCqΛ � pMnpCq �CqΛ. By Hilbert’s Null-
stellensatz, restriction of functions provides an isomorphism

QnpΛqLaIpPq Ñ OpApKP; GLnpCqqq.
The former space is, of course, nothing but RnpΣ; Pq{?0, so we have a commutative trian-
gle

QnpΛq q
RnpΣ; Pq

p

OpApKP; GLnpCqqq
where Ker p � ?

0. It also follows that p is a GLnpCq-equivariant surjection since the other
two maps in the diagram enjoy this property.

5.1.3 Diagrams and Relative Diagrams

Recall that a diagram on Σ is simply the homotopy class of a map from a finite collection
of oriented circles to Σ, or, in other words, a set of conjugacy classes in π1pΣq. We need
a relative version of this concept; a relative diagram D is the unit interval I union a finite
collection of oriented circles, and a relative diagram on Σ is a map f : D Ñ Σ� I such that
f piq � px0, iq, i � 0, 1, regarded up to homotopy rel BI. Post-composing with the projection
p : Σ � I Ñ Σ (a homotopy equivalence), one sees that such an object is nothing but an
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γ1 γ2

γ3

Figure 5.1: A decorated diagram.

γ1

γ2

Figure 5.2: A decorated relative diagram.

element of π1pΣq together with a finite set of conjugacy classes in this group. Let ZpΣ, x0q
denote the complex vector space freely generated by relative diagrams on Σ; it is equipped
with a natural algebra structure: For relative diagrams fi : Di Ñ Σ� I, i � 1, 2 we define

D � D1 Y D2
LtB� I1 � B� I2u (5.7)

and f � f1 f2 : D Ñ Σ� I by

f pdq � #px, 1{2tq, d P D1 ^ f1pdq � px, tqpx, 1{2t� 1{2q, d P D2 ^ f2pdq � px, tq
The unit for the multiplication is

e : I Ñ Σ� I, eptq � px0, tq.
It is convenient to represent (relative) diagrams on Σ by decorated (relative) diagrams. By
this we mean (relative) diagrams along each component of which one or more elements
of π1pΣq are written. We give a couple of examples of how decorated (relative) diagrams
represent (relative) diagrams on Σ. The decorated diagram in Figure 5.1 determines the
diagram on Σ given by a map S1 Ñ Σ representing the conjugacy class of γ1γ2γ3 P π1pΣq.
Similarly, the relative diagram on Σ represented by the decorated relative diagram in Figure
5.2 is defined by a map f : I Ñ Σ � I such that the loop p � f is in the homotopy class
γ1γ2 P π1pΣq. How to interpret general decorated (relative) diagrams is obvious from
these examples. Decoration of a component with 1 P π1pΣq is sometimes suppressed in
the notation. If the component in question is the interval of a relative diagram, it may be
omitted entirely; the potential confusion with a (non-relative) decorated diagram is non-
serious as we shall later.

Remark 5.11. It is obvious that two decorated (relative) diagrams represent the same (rel-
ative) diagram on Σ if and only if there exists a bijection between the circles of the two dia-
grams such that the products along corresponding circles are conjugate elements of π1pΣq,
and, in the relative case, the products along the two intervals are equal.

Multiplication of (relative) diagrams on Σ lifts to the setting of decorated (relative) dia-
grams in the obvious way; take the union of all components carrying along the decoration,
and glue the intervals in the relative case (cf. (5.7)).

Parts (local and non-local on Σ) of decorated (relative) diagrams play an important
role in the sequel. The ubiquitous example is the braid (over- and undercrossings being
ignored) Bσ corresponding to a permutation σ P Sm; we depict it as (notice the notation for
bundles of strands):

Bσ � σ

· · ·

· · ·

� σ
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For example, if σ � p1, 2, 3q P S3 we have

Bσ �
We define ideals InpΣq � IpΣ; GLnpCqq � ZpΣq and InpΣ; x0q � ZpΣ, x0q to be generated
by the following three kinds of expressions:

1 � n (5.8a)¸
σPSn�1

ǫpσq σ (5.8b)

σ̧PSn

ǫpσq σγ

τ̧PSn

ǫpτq τγ−1 � pn!q2 (5.8c)

The first two relations are local on Σ, whereas the third one is not. We write

DnpΣq � ZpΣqLInpΣq, DnpΣ, x0q � ZpΣ, x0qLInpΣ; x0q
for the quotient algebras. Certain elementary decorated (relative) diagrams deserve special
attention:

Lγ � γ , ELγ � γ 1 , Eγ � γ

For easy reference we record the following simple fact about them.

Proposition 5.12. DnpΣq is generated by Lγ, γ P π1pΣq, and DnpΣ, x0q is generated by Eg�1
λ

,

λ P Λ and ELγ, γ P π1pΣq.
The algebras DnpΣq and DnpΣ, x0q are related by a pair of maps. In one direction ι : ZpΣq Ñ
ZpΣ, x0q is given on decorated diagrams by simply adding an interval decorated by 1 P
π1pΣq. This is well-defined on the level of diagrams on Σ and clearly induces an algebra
homomorphism ι : DnpΣq Ñ DnpΣ, x0q; its image is central, so we may view DnpΣ, x0q as
an algebra over DnpΣq. On the other hand, closing up the interval of a decorated relative
diagram to a circle and thereby obtaining a decorated diagram results in a map ZpΣ, x0q Ñ
ZpΣq; it descends to a linear map Tr: DnpΣ, x0q Ñ DnpΣq. By relation (5.8a) we have

Tr � ι � n Id : DnpΣq Ñ DnpΣq.
In particular, ι embeds DnpΣq as a subalgebra of DnpΣ, x0q; this justifies the aforementioned
convention of occasionally omitting a trivially decorated interval of a decorated relative
diagram, and we often suppress ι in the notation.
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5.1.4 Diagrams and Invariant Functions

Theorem 5.13. There exist homomorphisms of complex algebras θ : DnpΣq Ñ RnpΣqGLnpCq and
Θ : DnpΣ, x0q Ñ MnpRnpΣqqGLnpCq uniquely determined by

θpLγq � TrpρΣpγqq, γ P π1pΣq; (5.9a)

ΘpEγq � ρΣpγq, ΘpELγq � TrpρΣpγqq, γ P π1pΣq. (5.9b)

Furthermore the diagrams

DnpΣ, x0q Θ
MnpRnpΣqqGLnpCq

DnpΣqι

θ
RnpΣqGLnpCqι

DnpΣ, x0q Θ

Tr

MnpRnpΣqqGLnpCq
Tr

DnpΣq θ
RnpΣqGLnpCq (5.10)

commute.

Proof. The uniqueness is immediate from Proposition 5.12. We construct algebra homo-
morphisms θ : ZpΣq Ñ RnpΣq and Θ : ZpΣ, x0q Ñ MnpRnpΣqq by paralleling the construc-
tion of Ψt : CpΣ; Gq Ñ OpMpΣ; Gqq, cf. (2.24). Let V � RnpΣqn be the free RnpΣq-module
of rank n with its standard basis te1, . . . , enu; the standard dual basis of V� is denoted byte1, . . . , enu. Represent a (relative) diagram D on Σ by a decorated (relative) diagram. Cut
D into arcs, one for each element γ P π1pΣq of the decoration, and assign tensors to the arcs
as follows

T p γ q �
V V∗

ρΣ(γ)

By definition, θpDq (respectively, ΘpDq) is the contracted tensor T pDq; this element belongs
to the right codomain (we use, of course, the canonical identification MnpRnpΣqq � V bV�
throughout). It follows from Remark 5.11 that θ and Θ are well-defined, and it is evident

that the conditions (5.9) hold. These identities prove that θ factors through RnpΣqGLnpCq
and Θ through MnpRnpΣqqGLnpCq by Propositions 5.12, 5.9, 5.8 and Lemma 5.4.

Thus it only remains to prove that θ and Θ descend to the quotients, since the commu-
tativity of the diagrams (5.10) is then obvious. This verification can be performed simulta-
neously for θ and Θ as the relations (5.8) to be checked are the same in the two cases. The
first relation is easy:

T pL1q � TrpρΣp1qq � n.

For relation (5.8b) number the sources and sinks of Bσ from left to right, and index the
copies of V and V� assigned to them accordingly. The strand connecting the kth source to
the σpkqth sink is implicitly decorated with 1 and hence contributes

ρΣp1q � IdV � ¸
1¤ik¤n

eik
b eik P Vk bV�

σpkq.
Therefore

T pBσq � ¸
1¤i1,...,in�1¤n

ei1 b � � � b ein�1
b e

i
σ�1p1q b � � � b e

i
σ�1pn�1q
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so that

T
� ¸

σPSn�1

ǫpσqBσ

	 � ¸
1¤i1,...,in�1¤n

¸
σPSn�1

ǫpσqei1 b � � � b ein�1
b ei

σ�1p1q b � � � b ei
σ�1pn�1q� 0.

This is because among any 1 ¤ i1, . . . , in�1 ¤ n exist ij � ik with j �� k. Pre-composition
with the transposition pj, kq yields a fixed point free involution on Sn�1, and the permu-
tations matched by this map contribute terms differing only in sign. Regarding relation
(5.8c), recall that any permutation σ P Sn can be decomposed essentially uniquely into a
product of disjoint cycles (including those of length 1). Denoting the lengths of all cycles in
σ by c1, . . . , ck, we obtain

T
�

σγ
	 � TrpρΣpγqc1q � � �TrpρΣpγqckq.

The result thus follows by applying the lemma below to ρΣpγq, ρΣpγ�1q P MnpRnpΣqq. l
Lemma 5.14 (Formanek [For]). Let R be a commutative ring. For any matrix M P MnpRq,

det M � 1

n!
σ̧PSn

ǫpσqTrpMc1q � � �TrpMckq
where c1, . . . , ck are the lengths of all cycles in σ.

Theorem 5.15. The maps θ : DnpΣq Ñ RnpΣqGLnpCq and Θ : DnpΣ, x0q Ñ MnpRnpΣqqGLnpCq
are algebra isomorphisms.

This theorem will be proved in the course of the next two subsections. To this end we fix a
presentation xgλ, λ P Λ | rµ, µ P My of π1pΣq such that

• Λ is an infinite set.

• The inverse of every generator is a generator.

Note that the latter condition implies that all relations are products of generators so that
the presentation yields a model for RnpΣq.
5.1.5 Fundamental Theorems of Invariant Theory

Let Ty be the complex polynomial algebra in variables TrpXλ1
� � �Xλk

q, λ1, . . . , λk P Λ and
yλ, λ P Λ. Here it is understood that TrpMq � TrpNq if and only if the monomials M
and N are related by a cyclic permutation. Denote by TytXλu the free Ty-algebra gener-
ated by Xλ, λ P Λ. As usual Ty is naturally a central subalgebra of TytXλu. Moreover,
the assignment Xλ1

� � �Xλk
ÞÑ TrpXλ1

� � �Xλk
q (for k � 0 this should be interpreted as

1 ÞÑ n) determines a Ty-linear map Tr : TytXλu Ñ Ty. Define a C-algebra homomorphism
π : TytXλu Ñ MnpQnpΛqq by

πpXλq � Aλ, (5.11a)

πpTrpXλ1
� � �Xλk

qq � TrpAλ1
� � � Aλk

q, (5.11b)

πpyλq � dλ. (5.11c)
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We remark that the images of TrpXλ1
� � �Xλk

q, λ1, . . . , λk P Λ and dλ, λ P Λ belong to the
central subalgebra QnpΛq � MnpQnpΛqq so that π is well-defined. It follows from Lemma

5.5, Proposition 5.8 and Corollary 5.7 that π factors through MnpQnpΛqqGLnpCq and that

π|Ty
factors through QnpΛqGLnpCq. Moreover these maps commute with the trace, that is,

we have the square

TytXλu π

Tr

MnpQnpΛqqGLnpCq
Tr

Ty
π

QnpΛqGLnpCq (5.12)

The following version of the First Fundamental Theorem of invariant theory of n� n ma-
trices is due to Procesi [P1].

Theorem 5.16 (Procesi). The map π : TytXλu Ñ MnpQnpΛqqGLnpCq is surjective.

Corollary 5.17 (Procesi). The map π : Ty Ñ QnpΛqGLnpCq is surjective.

Proof. Diagram (5.12) and Remark 1.1. l
Procesi also accomplished a description of the kernel of π : TytXλu Ñ MnpQnpΛqqGLnpCq in
[P1]. Formulating the result requires a little preparation. To simplify notation we assume
that N � Λ. Decomposing a permutation σ P Sm into disjoint cycles

σ � pi1, . . . , isqpj1, . . . , jtq � � � pk1, . . . , kvq,
we may define

ΦσpX1, . . . , Xmq � TrpXi1 � � �XisqTrpXj1 � � �Xjtq � � �TrpXk1
� � �Xkvq P Ty

unambiguously. Put

FpX1, . . . , Xmq �
σ̧PSm

ǫpσqΦσpX1, . . . , Xmq.
If σ P Sm�1, we may arrange the cycle decomposition in such a way that m � 1 is the last
element of the first cycle:

σ � pi1, . . . , is, m� 1qpj1, . . . , jtq � � � pk1, . . . , kvq
allowing us to set

ΨσpX1, . . . , Xmq � Xi1 � � �Xis TrpXj1 � � �Xjtq � � �TrpXk1
� � �Xkvq P TytXλu. (5.13)

According to Procesi there is a unique element GpX1, . . . , Xnq P TytXλu involving only the
variables X1, . . . , Xn and traces of monomials in these variables such that

FpX1, . . . , Xn�1q � TrrGpX1, . . . , XnqXn�1s. (5.14)

We shall need an explicit formula for G.

Lemma 5.18. GpX1, . . . , Xnq � °
σPSn�1

ǫpσqΨσpX1, . . . , Xnq.
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Proof. Since

Tr
� ¸

σPSn�1

ǫpσqΨσpX1, . . . , XnqXn�1

	 � ¸
σPSn�1

ǫpσqTrpΨσpX1, . . . , XnqXn�1q� ¸
σPSn�1

ǫpσqΦσpX1, . . . , Xn�1q� FpX1, . . . , Xn�1q,
the result follows from the uniqueness. l
It is clear that the formulas for Φσ, Ψσ, F and G make sense for monomials in the variables
Xλ, λ P Λ. The Second Fundamental Theorem of invariant theory of n� n matrices now
takes the form of

Theorem 5.19 (Procesi). The kernel of π : TytXλu Ñ MnpQnpΛqqGLnpCq is generated by the
expressions FpM1, . . . , Mn�1q and GpN1, . . . , Nnq where Mi and Nj are monomials in Xλ, λ P Λ.

5.1.6 Proof of Theorem 5.15

We initiate the construction of the inverse to Θ : DnpΣ, x0q Ñ MnpRnpΣqqGLnpCq; define a
C-algebra homomorphism ψ : TytXλu Ñ DnpΣ, x0q by

ψpXλq � Egλ
, (5.15a)

ψpTrpXλ1
� � �Xλk

qq � ELgλ1
���gλk

, (5.15b)

ψpyλq � 1

n!
σ̧PSn

ǫpσq σg−1
λ (5.15c)

We note that the images of TrpXλ1
� � �Xλk

q and yλ belong to DnpΣq � DnpΣ, x0q and are thus
central. This implies that ψ is well-defined and that ψ|Ty

factors through DnpΣq. Another

property of ψ is its compatibility with the trace:

TytXλu ψ

Tr

DnpΣ, x0q
Tr

Ty
ψ

DnpΣq (5.16)

Proposition 5.20. The kernel of ψ : TytXλu Ñ DnpΣ, x0q contains the kernel of π : TytXλu Ñ
MnpQnpΛqqGLnpCq.
Proof. Owing to Theorem 5.19, this is not difficult. Let N1, . . . , Nn be monomials, and pick
γ1, . . . , γn P π1pΣq such that ψpNiq � Eγi . For σ P Sn�1 we apply formula (5.13) to obtain

ψpΨσpN1, . . . , Nnqq � σγ1γn

. . .
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Therefore Lemma 5.18 and relation (5.8b) yield

ψpGpN1, . . . , Nnqq � ¸
σPSn�1

ǫpσqψpΨσpN1, . . . , Nnqq� ¸
σPSn�1

ǫpσq σγ1γn

. . .� 0

as desired. Let M1, . . . , Mn�1 be monomials. Using the defining property (5.14) of G and
the diagram (5.16), we derive

ψpFpM1, . . . , Mn�1qq � ψpTrrGpM1, . . . , MnqMn�1sq� TrpψpGpM1, . . . , MnqqψpMn�1qq� 0

according to the first part of the proof. l
Corollary 5.21. There exists a C-algebra homomorphism ψ1 : MnpQnpΛqqGLnpCq Ñ DnpΣ, x0q
satisfying

ψ1pAλq � Egλ
, (5.17a)

ψ1pTrpAλ1
� � � Aλk

qq � ELgλ1
���gλk

, (5.17b)

ψ1pdλq � 1

n!
σ̧PSn

ǫpσq σg−1
λ (5.17c)

Proof. This follows from Theorems 5.16 and 5.19 along with the definitions of π (5.11) and
ψ (5.15). l
Due to Corollary 5.17, the subalgebra QnpΛqGLnpCq � MnpQnpΛqqGLnpCq is generated by
TrpAλ1

� � � Aλk
q and dλ. We deduce that ψ1|QnpΛqGLnpCq factors through DnpΣq; the diagram

(5.16) induces

MnpQnpΛqqGLnpCq ψ1
Tr

DnpΣ, x0q
Tr

QnpΛqGLnpCq ψ1
DnpΣq (5.18)

It requires more effort to factor ψ1 through the surjection Mnpqq| : MnpQnpΛqqGLnpCq Ñ
MnpRnpΣqqGLnpCq (cf. Proposition 5.8 and Remark 1.1). For each relation rµ � gλ1

� � � gλk
in

the presentation P of π1pΣq, we let Mµ � Aλ1
� � � Aλk

P MnpQnpΛqq denote the correspond-
ing matrix. Consider the ideal

I1pPq � xdλ det Aλ � 1, Mµ � 1 | λ P Λ, µ P My � MnpQnpΛqq.
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Recall that the ideal IpPq � QnpΛq determining RnpΣq is, by definition, generated by the
entries of the generators of I1pPq. It is then an elementary result about matrix rings that

I1pPq � MnpIpPqq. (5.19)

Proposition 5.22. dλ det Aλ � 1, Mµ � 1 P Ker ψ1, λ P Λ, µ P M

Proof. By Lemma 5.5, Mµ � Aλ1
� � � Aλk

P MnpQnpΛqqGLnpCq, and by (5.17a),

ψ1pMµq � Egλ1
� � � Egλk

� Egλ1
���gλk

� E1 � 1

as desired. Also, det Aλ P QnpΛqGLnpCq � MnpQnpΛqqGLnpCq by Lemma 5.5, and applying
Lemma 5.14 to Aλ, we obtain

det Aλ � 1

n!
σ̧PSn

ǫpσqTrpAc1
λ q � � �TrpAck

λ q.
Since (5.17b) implies

ψ1pTrpAc1
λ q � � �TrpAck

λ qq � σgλ

we have

ψ1pdet Aλq � 1

n!
σ̧PSn

ǫpσq σgλ

It now follows from (5.17c) and relation (5.8c) that ψ1pdλ det Aλq � 1. l
The following result can be extracted from the proof of Theorem 2.6 of [P2].

Proposition 5.23 (Procesi). Let J � MnpQnpΛqqGLnpCq be an ideal closed under Tr. Then

J � MnpQnpΛqqJMnpQnpΛqq X MnpQnpΛqqGLnpCq.
Proof. The inclusion � is trivial. To prove the other one we shall need gradings, depend-

ing on an index λ0 P Λ, on QnpΛq and MnpQnpΛqq. We define Qpdq
n pΛq � QnpΛq to be the

subspace of polynomials homogeneous of degree d in the variables xλ0
i,j , i, j � 1, . . . , n. Par-

allelling this, we denote by Mpdq
n pQnpΛqq � MnpQnpΛqq the subspace of matrices all entries

of which have degree d. In this way

QnpΛq � 8à
d�0

Qpdq
n pΛq; MnpQnpΛqq � 8à

d�0

Mpdq
n pQnpΛqq

are graded algebreas, and Tr : MnpQnpΛqq Ñ QnpΛq is graded linear. The GLnpCq-actions
on QnpΛq and MnpQnpΛqq respect the gradings: For QnpΛq we need only verify this for the
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generators xλ
i,j, dλ. Letting A P GLnpCq and recalling the notation Aλ � pxλ

i,jq, Lemmas 5.6

and 5.5 imply pA � xλ
i,jq � A�1pxλ

i,jqA, A � dλ � dλ

thereby establishing the claim for QnpΛq. Using this and Lemma 5.6 again, we deduce

M P Mpdq
n pQnpΛqq ùñ A � M � ApA � Mi,jqA�1 P Mpdq

n pQnpΛqq
as desired. The vital consequence is: The inclusions Qpdq

n pΛq � QnpΛq and Mpdq
n pQnpΛqq �

MnpQnpΛqq are GLnpCq-equivariant and therefore commute with the Reynolds operators,
that is, the Reynolds operators on QnpΛq and MnpQnpΛqq preserve degrees. To prove the
proposition let

c �
ķ

akckbk P MnpQnpΛqqGLnpCq
where ak, bk P MnpQnpΛqq and ck P J. Since ak, bk, ck involve only finitely many variables

and |Λ| � 8, there exists λ0 P Λ such that xλ0
i,j , i, j � 1, . . . , n do not occur. We employ the

gradings with respect to λ0; obviously

deg ak � deg bk � deg ck � 0 � deg c.

As TrpcAλ0
q P QnpΛqGLnpCq by Lemma 5.5 and Proposition 5.8, we have

TrpcAλ0
q � ∇TrpcAλ0

q � ∇Tr
�

ķ

akckbk Aλ0

	� ∇Tr
�

ķ

bk Aλ0
akck

	 � Tr
ķ

∇pbk Aλ0
akqck

by Reynolds’ identity (1.2). Notice that

deg∇pbk Aλ0
akq � degpbk Aλ0

akq � 0� 1� 0 � 1.

For the generators of MnpQnpΛqqGLnpCq (cf. Theorem 5.16), we have

deg Aλ � δλ,λ0
,

deg TrpAλ1
� � � Aλk

q � δλ1,λ0
� � � � � δλk ,λ0

,

deg dλ � 0.

Thus ∇pbk Aλ0
akq P MnpQnpΛqqGLnpCq may be written

∇pbk Aλ0
akq �

ļ

pk,l Aλ0
qk,l �

m̧
Trpsk,m Aλ0

qtk,m

for suitable pk,l, qk,l , sk,l , tk,l P MnpQnpΛqqGLnpCq all of degree 0. This leads to

TrpcAλ0
q � Tr

�
ķ,l

pk,l Aλ0
qk,lck �

ķ,m

Trpsk,m Aλ0
qtk,mck

	� Tr
��

ķ,l

qk,lck pk,l �
ķ,m

Trptk,mckqsk,m

�
Aλ0

	
.
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Hence x � c�°
k,l qk,lck pk,l �°

k,m Trptk,mckqsk,m is a matrix of degree 0 satisfying TrpxAλ0
q� 0. This can only be true if x � 0. Finally,

c �
ķ,l

qk,lck pk,l �
ķ,m

Trptk,mckqsk,m P J

since J is closed under Tr. l
Proposition 5.24. There exists a C-algebra homomorphism ψ2 : MnpRnpΣqqGLnpCq Ñ DnpΣ, x0q
satisfying

ψ2pρΣpgλqq � Egλ
,

ψ2pTrpρΣpgλ1
� � � gλk

qqq � ELgλ1
���gλk

.

Proof. Using (5.19) and Proposition 5.22 and applying the preceding proposition to J �
Ker ψ1 which is closed under Tr by diagram (5.18), we obtain

Ker Mnpqq| � Ker Mnpqq X MnpQnpΛqqGLnpCq� MnpKer qq X MnpQnpΛqqGLnpCq� MnpIpPqq X MnpQnpΛqqGLnpCq� xdλ det Aλ � 1, Mµ � 1 | λ P Λ, µ P My X MnpQnpΛqqGLnpCq� MnpQnpΛqqKer ψ1MnpQnpΛqq X MnpQnpΛqqGLnpCq� Ker ψ1.
Consequently, ψ1 : MnpQnpΛqqGLnpCq Ñ DnpΣ, x0q descends to MnpRnpΣqqGLnpCq via the
map Mnpqq|. The result now follows from Corollary 5.21 and the definition (5.3) of ρΣ. l
At last,

Proof (Theorem 5.15). According to Theorem 5.16, MnpQnpΛqqGLnpCq is generated by the
elements

Aλ, TrpAλ1
� � � Aλk

q, dλ, λ, λ1, . . . , λk P Λ.

Using the surjection Mnpqq| : MnpQnpΛqqGLnpCq Ñ MnpRnpΣqqGLnpCq, we conclude that

MnpRnpΣqqGLnpCq is generated by

ρΣpgλq, TrpρΣpgλ1
� � � gλk

qq, qpdλq, λ, λ1, . . . , λk P Λ.

By assumption the inverse of any generator gλ in the presentation of π1pΣq is also a gener-

ator. On one hand, this fact allows us to pick λ̄ P Λ such that gλ̄ � g�1
λ and deduce

qpdλq � detpMnpqqpAλqq�1 � det ρΣpgλq�1 � det ρΣpgλ̄q� 1

n!
σ̧PSn

ǫpσqTrpρΣpgλ̄qc1q � � �TrpρΣpgλ̄qckq� 1

n!
σ̧PSn

ǫpσqTrpρΣpgc1

λ̄
qq � � �TrpρΣpgck

λ̄
qq



5.1 The General Linear Case 59

so that qpdλq may be omitted from the list of generators of MnpRnpΣqqGLnpCq. On the other
hand, it implies that Proposition 5.12 can be strengthened to say that DnpΣ, x0q is generated
by Egλ

, λ P Λ and ELgλ1
���gλk

, λ1, . . . , λk P Λ. Therefore Theorem 5.13 and Proposition 5.24

imply that Θ and ψ2 are inverse maps since this need only be verified on generators. As Θ

is an isomorphism, the left (right) hand diagram of (5.10) implies that θ is a monomorphism
(epimorphism) thereby completing the proof. l
5.1.7 Returning to the Moduli Space

Theorem 5.25. The map Ψ : ZpΣq Ñ OpMpΣ; GLnpCqqq induces a Poisson isomorphism

Ψ : Z1,0pΣqMaInpΣq Ñ OpMpΣ; GLnpCqqq.
Proof. It is a simple matter to verify that the composite bijection (cf. (2.2) and (2.6))

OpApKP ; GLnpCqqqGLnpCq pπ�q�1ÝÝÝÝÝÑ OpMpKP; GLnpCqqq Hol� �Ev�PÝÝÝÝÝÝÝÑ OpMpΣ; GLnpCqqq
fits into a commutative diagram

RnpΣ; PqGLnpCq
p|

ZpΣq θ

Ψ

OpApKP ; GLnpCqqqGLnpCq�
OpMpΣ; GLnpCqqq

Since Ker p| � ?
0 by Remark 5.10, it follows from Theorem 5.15 that Ψ is a surjective map

with kernel
a
InpΣq. l

Corollary 5.26. If BΣ �� H, then

Ψ : Z1,0pΣqLInpΣq Ñ OpMpΣ; GLnpCqqq
is a Poisson isomorphism.

Proof. The group π1pΣq is free so we may take its presentation P to be xg1, . . . , gNy. Then

IpPq � xdλ det Aλ � 1 | λ � 1, . . . , Ny � QnpΛq.
It is a standard fact that IpPq is its own radical ideal so that RnpΣ; Pq � QnpΛq{IpPq contains
no nilpotents. l
This corollary enables us to prove the main theorems of this section:

Proof (Theorem 5.1). By Corollary 5.26 the Poisson algebra OpMpΣ; GLnpCqqq can be re-
garded as the quotient of CpΣq by the loop relation (5.1) and the relations (5.8). Thus we
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must verify that �P preserves these relations. Due to Theorem 4.10 we can concentrate on
the only non-local relation, namely (5.8c). It will be convenient to write this relation as¸

σ,τPSn

ǫpσqǫpτq σγ τγ−1 � pn!q2
where we use the convention

τ � pBτ rotated 180�q.
Now consider an instance of the relation; we have an embedded square S � Σ, a curve

γ P Cp0qpΣ � S; Ò, Òq (The Ò’s should be thought of as having infinitesimal length; they
denote oriented points on the boundary of Σ� S) and the tangle

L � ¸
σ,τPSn

ǫpσqǫpτq σ τ P Cp0qpS; Ò � � � ÒÓ � � � Ó, Ò � � � ÒÓ � � � Óq.
The instance then has the form

Dp∆γ � Lq � pn!q2D

where D is some chord diagram on Σ with m1 chords and ∆ is the cabling operation
∆Ò���ÒÓ���Ó acting on both chord tangles and non-associative tangles in Σ � S (we use an
arbitrary, but fixed parenthesization on Ò � � � ÒÓ � � � Ó). Now let E be a chord diagram on Σ

with m2 chords. We may push D away from S so that D P Cpm1qpΣ� Sq and then apply the
standard situation with

T � D∆γ P Cpm1qpΣ� S; Ò � � � ÒÓ � � � Ó, Ò � � � ÒÓ � � � Óq
to derive

crpDp∆γ � Lq, Eq � crppD∆γq � L, Eq� �
VP

�
V�1

P pD∆γqV�1
P pEq��pm1�m2�rq � L� ∆

��
VP

�
V�1

P pDγqV�1
P pEq��pm1�m2�rq� � L.

Recall that (cf. Remark 4.8)

X � �
VP

�
V�1

P pDγqV�1
P pEq��pm1�m2�rq P CpΣ� S; Ò, Òq

is a linear combination of chord tangles obtained from pDγqE by suitably adding r chords.
We distinguish two kinds of terms in X. A term for which at least one chord interescts γ
contributes to ∆pXq � L an element of the following form (the notation ↑ is a shorthand
for the cabling summation; the orientation of the original strand (needed to determine the
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signs) is indicated by Ò)¸
σ,τPSn

ǫpσqǫpτq ↑

σ τ� ¸
σ,τPSn

ǫpσqǫpτq ↑

σ τ
� ¸

σ,τPSn

ǫpσqǫpτq ↓

σ τ�
τ̧PSn

ǫpτq
σ̧PSn

ǫpσq ↑

σ τ
�

σ̧PSn

ǫpσq
τ̧PSn

ǫpτq ↓

σ τ�
τ̧PSn

ǫpτq
σ̧PSn

ǫpσq
σ τ

�
σ̧PSn

ǫpσq
τ̧PSn

ǫpτq
σ τ� 0.

The penultimate equality is justified by relations (5.1) and (5.8b):

σ̧PSn

ǫpσq
σ

↑ �
σ̧PSn

ǫpσq ņ

i�1 σ

1 i n

· · · �
σ̧PSn

ǫpσq
σ

The cases with other orientations are analogous. In conclusion, terms of the first kind may
be ignored. For a term t in X with no chord intersecting γ we may apply the relation (5.8c)
to ∆ptq � L to remove L and the copies of γ and γ�1 at the cost of a factor pn!q2. Recalling
Remark 4.1 about the cabling operation ǫγ, we can continue our computation:

crpDp∆γ � Lq, Eq � ∆
��

VP
�
V�1

P pDγqV�1
P pEq��pm1�m2�rq� � L� pn!q2ǫγ

��
VP

�
V�1

P pDγqV�1
P pEq��pm1�m2�rq�� pn!q2�VP

�
V�1

P ǫγpDγqV�1
P pEq��pm1�m2�rq� pn!q2�VP

�
V�1

P pDqV�1
P pEq��pm1�m2�rq� crppn!q2D, Eq

as desired. Analogously crpE, Dp∆γ � Lqq � crpE, pn!q2Dq completing the proof by the crite-
rion (3.13). l
Proof (Theorem 5.2). This is analogous to the proof of Theorem 5.1. By Theorem 4.11 we
need only consider the relation (5.8c). With set-up and notation as above we may apply the
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standard situation for equivalences to get

τrppD∆γq � Lq � pVP2
V�1

P1
pD∆γqqpm1�rq � L� ∆ppVP2

V�1
P1
pDγqqpm1�rqq � L� pn!q2ǫγppVP2

V�1
P1
pDγqqpm1�rqq� pn!q2pVP2

V�1
P1
pDqqpm1�rq� τrppn!q2Dq

as required in (3.16). l
5.2 The Special Linear Case

We consider the group G � SLnpCq with Lie algebra g � slnpCq � MnpCq consisting of the
traceless matrices. As in the general linear case, we let t P gb g be given by the orthogonal
structure

BpX, Yq � TrpXYq, X, Y P slnpCq.
Colouring all core components of chord diagrams on Σ with the standard representation
ι : SLnpCq Ñ GLnpCq, we have a Poisson homomorphism

Ψ � Ψt : CpΣq Ñ OpMpΣ; SLnpCqqq.
As announced the main results are:

Theorem 5.27. Assume that BΣ �� H. For any partition P of Σ the �-product �P on CpΣq descends
via Ψ to a �-product on OpMpΣ; SLnpCqqq.
Theorem 5.28. Assume that BΣ �� H. Let P1 and P2 be two partitions of Σ. The canonical
equivalence from �P1

to �P2
on CpΣq descends via Ψ to OpMpΣ; SLnpCqqq to yield an equivalence

between the induced �-products.

Remark 5.29. Theorem 5.27 was stated in [AMR2] with justification analogous to the one
supplied in the general linear case, cf. Theorem 5.1 and Remark 5.3.

From the general linear case we recall that the matrices B�i,j, B�i,j P slnpCq, 1 ¤ i   j ¤ n are

orthogonal to each other. Adding the diagonal matrices

Ei,i � 1

n� i

ņ

j�i�1

Ej,j, i � 1, . . . , n� 1,

we obtain an orthogonal basis for slnpCq. An elementary computation yieldspιb ιqptq �
i̧,j

Ei,j b Ej,i � 1

n
i̧,j

Ei,i b Ej,j P EndpCnq b EndpCnq.
Of course,

°
i,j Ei,i b Ej,j � Idb Id so that Ψ satisfies the relation� � 1

n
(5.20)
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that is, the loop relation (2.21) with parameters ps, f q � p1,� 1
n q. Thus we derive a commu-

tative triangle of Poisson homomorphisms

CpΣq
ΨR

1,� 1
n

Z1,� 1
n
pΣq Ψ

OpMpΣ; SLnpCqqq
5.2.1 Translating Sikora’s Result

Following [S], there is a commutative complex algebra RpΣ; SLnpCqq admitting the univer-
sal SLn-representation of π1pΣq:

ρΣ,SLn : π1pΣq Ñ SLnpRpΣ; SLnpCqqq.
The GLnpCq-action on RpΣ; SLnpCqq (analogous to the general linear case) is defined essen-
tially by conjugation and therefore restricts to an SLnpCq-action with the same orbits. In
particular, the algebras of fixed points are equal:

RpΣ; SLnpCqqSLnpCq � RpΣ; SLnpCqqGLnpCq.
Recall that in our terminology a graph is a finite, 1-dimensional CW-complex with an ori-
entation on each 1-cell. An n-graph D is a finite collection of oriented circles together with
a graph each vertex of which is either an n-valent source or an n-valent sink, endowed
with a numbering from 1 to n of its incident edges. An n-graph on Σ is a homotopy class of
continuous maps D Ñ Σ. Let GnpΣq be the complex vector space freely generated by the
set of n-graphs on Σ. Two n-graphs (on Σ) can be multiplied by taking their union; in this
way GnpΣq becomes a commutative C-algebra with the empty n-graph as unit. A diagram
on Σ can be considered as an n-graph on Σ; this induces an injective homomorphism of
algebras:

ι : ZpΣq Ñ GnpΣq.
Let JnpΣq � GnpΣq be the subspace generated by the local relations� n (5.21a)

1 n

1 n

· · ·

· · · �
σ̧PSn

ǫpσq σ (5.21b)

Clearly, JnpΣq is an ideal.

Theorem 5.30 (Sikora). There exists an isomorphism of complex algebras

θ : GnpΣqLJnpΣq Ñ RpΣ; SLnpCqqSLnpCq
uniquely determined by

θpLγq � TrpρΣ,SLnpγqq, γ P π1pΣq.
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Let InpΣq � IpΣ; SLnpCqq � ZpΣq be the ideal generated by the relations� n (5.22a)¸
σ,τPSn

ǫpσqǫpτq σ τ � ¸
σ,τPSn

ǫpσqǫpτq σ τ (5.22b)

σ̧PSn

ǫpσq σ

γ �
σ̧PSn

ǫpσq σ (5.22c)

Notice that the third relation is non-local. Using a homotopy, it implies

σ̧PSn

ǫpσq σ

γ

�
σ̧PSn

ǫpσq σ

γ �
σ̧PSn

ǫpσq σ (5.23)

Proposition 5.31. The inclusion ι : ZpΣq Ñ GnpΣq induces an isomorphism

ι : ZpΣqLInpΣq Ñ GnpΣqLJnpΣq
of complex algebras.

Proof. Since an n-graph must contain an equal number of sources and sinks, it follows
from relation (5.21b) that the map

ZpΣq ιÝÑ GnpΣq Ñ GnpΣqLJnpΣq
is surjective; it is immediate that its kernel contains InpΣq. We now describe the inverse, ϕ,
to the induced map ι : ZpΣq{InpΣq Ñ GnpΣq{JnpΣq. Given an n-graph D we choose

• a curve from each vertex of D to the basepoint x0;

• a bijection σ between the sources and sinks of D.

Then ϕpDq is constructed by homotoping the vertices of D to x0 along the chosen curves
and using relation (5.21b) on each pair pi, σpiqq of a source and a sink to obtain a linear
combination of diagrams on Σ. We check that ϕpDq is well-defined. Independence of σ
follows from relation (5.22b). Two different curves α1 and α2 from a vertex to x0 combine
to give a loop γ � α�1

2 α1 at x0; working with a fixed bijection it is immaterial whether we
choose α1 or α2 by relation (5.22c) or (5.23).

Next we verify that ϕpJnpΣqq � 0. Relation (5.21a) is also a generator of InpΣq and
poses therefore no problem. The other relation (5.21b) is also easy since in the computation
of ϕ we can move the source and the sink involved along the same curve to x0 and then
choose σ to match these two vertices. Therefore ϕ descends to

ϕ : GnpΣqLJnpΣq Ñ ZpΣqLInpΣq
Trivially, ϕ � ι is the identity on ZpΣq{InpΣq so that ι is also injective. l
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Corollary 5.32. There exists an isomorphism of complex algebras

θ : ZpΣqLInpΣq Ñ RpΣ; SLnpCqqSLnpCq
uniquely determined by

θpLγq � TrpρΣ,SLnpγqq, γ P π1pΣq. (5.24)

Remark 5.33. As is clear from (5.24), the homomorphism θ : ZpΣq Ñ RpΣ; SLnpCqqSLnpCq
can be constructed by the procedure, mutatis mutandis, used to define the map ZpΣq Ñ
RpΣ; GLnpCqqGLnpCq, cf. the proof of Theorem 5.13. It therefore also follows from this proof
that elements of the form (5.8b) are contained in Ker θ which by the above corollary equals
InpΣq.
5.2.2 Proofs of the Main Results

Letting xgλ, λ P Λ | rµ, µ P My be a presentation P of π1pΣq in which each relation is written
as a product of generators results in an explicit model for RpΣ; SLnpCqq. Namely, consider
the polynomial algebra Crxλ

i,js � Crxλ
i,j | λ P Λ, i, j � 1, . . . , ns and its ideal IpP; SLnpCqq

generated by det Aλ � 1 and all entries in Aλ1
� � � Aλk

� 1 for each relation rµ � gλ1
� � � gλk

.
Then

RpΣ; SLnpCqq � RpΣ; SLnpCq, Pq � Crxλ
i,jsLIpP; SLnpCqq.

It is also readily observed that ApKP; SLnpCqq � SLnpCq|Λ| � MnpCq|Λ| is the vanishing set

of IpP; SLnpCqq � Crxλ
i,js � OpMnpCq|Λ|q so that the natural map

p : RpΣ; SLnpCq, Pq Ñ OpApKP; SLnpCqqq
is an SLnpCq-equivariant surjection with kernel

?
0. As in the general linear case we obtain

a commutative diagram

RpΣ; SLnpCq, PqSLnpCq
p|

ZpΣq θ

Ψ

OpApKP; SLnpCqqqSLnpCq�
OpMpΣ; SLnpCqqq

proving

Theorem 5.34. The map Ψ : ZpΣq Ñ OpMpΣ; SLnpCqqq induces a Poisson isomorphism

Ψ : Z1,� 1
n
pΣqMaIpΣ; SLnpCqq Ñ OpMpΣ; SLnpCqqq

The vital corollary is also analogous.
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Corollary 5.35. If BΣ �� H, then

Ψ : Z1,� 1
n
pΣqMIpΣ; SLnpCqq Ñ OpMpΣ; SLnpCqqq

is a Poisson isomorphism

Proof. The group π1pΣq is free so we may take its presentation P to be xg1, . . . , gNy. Then

IpP; SLnpCqq � xdet Aλ � 1 | λ � 1, . . . , Ny � Crxλ
i,js.

It is a standard fact that IpP; SLnpCqq is its own radical ideal so that p : RpΣ; SLnpCq, Pq Ñ
OpApKP ; SLnpCqqq is an isomorphism. l
Proof (Theorems 5.27 and 5.28). By Corollary 5.35 the Poisson algebra OpMpΣ; SLnpCqqq
can be regarded as the quotient of CpΣq by relation (5.20) and relations (5.22). We may focus
attention on (5.22c) entirely by Theorems 4.10 and 4.11. This is analogous to the general
linear case; one applies the standard situations in the natural way, the crucial observation
being that chords intersecting the curve γ on the left hand side of (5.22c) may be ignored:

σ̧PSn

ǫpσq
σ

↑ �
σ̧PSn

ǫpσq ņ

i�1

�
σ

1 i n

· · · � 1

n
σ

�
�

σ̧PSn

ǫpσq ņ

i�1 σ

1 i n

· · · �
σ̧PSn

ǫpσq
σ� 0

because of relations (5.20) and (5.8b), cf. Remark 5.33. l
5.3 Miscellaneous Results

In this section Σ is required to have non-empty boundary; we shall employ the description
of OpMpΣ; GLnpCqqq given in Corollary 5.26. To be able to do some calculations with the
AMR �-products, we assume, now and for the remainder of this thesis, that the R-matrix
used to define universal Vassiliev invariants of links on Σ is given by

R � exp
�1

2

� � � 1

2
� 1

8

� �2 � � � � (5.25)

Consider the case G � GL1pCq. The relation (5.8b) reduces to� � 0
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αβ

Figure 5.3: Two loops on
the punctured torus.

P1 : P2 :

Figure 5.4: Two partitions of the punctured torus.

and combining this with the loop relation (5.1) we obtain� �
Call an associator Φ regular if

Φ �ÒÒÒ mod �
For example, the associator given in [LM] is easily seen to be regular. The following theo-
rem can be found in [A].

Theorem 5.36 (Andersen). Let P be a partition of Σ. If the �-product �P on OpMpΣ; GL1pCqqq
is defined in terms of a regular associator, then

fD �P fE � exp
�1

2

¸
pPD#E

ǫpp; D, Eqh	 fD fE

for diagrams D and E on Σ.

Corollary 5.37. The �-product �P on OpMpΣ; GL1pCqqq is independent of P, and it is invariant
under orientation preserving diffeomorphisms of Σ.

Proof. For the second assertion, recall the equivariance statement of Theorem 2.22. l
This corollary does not generalize to the case n ¡ 1 as we now demonstrate. Fix Σ to be
the punctured torus; think of Σ as a disk D with two handles appropriately attached. Let
α and β be loops running along these handles. Figure 5.3 is an illustration of the D part of
Σ and the loops. Consider the two partitions of Σ depicted in Figure 5.4; for the present
purpose it is insignificant how bottoms and tops of the polygons are chosen. Denote by ci

r
the coefficients of �Pi on OpMpΣ; GLnpCqqq.
Claim. If n ¡ 1, then c1

2p fα, fβq �� c2
2p fα, fβq.

Proof. We first notice that α and β are nicely compatible with the partitions in the sense
that

V�1
Pi
pαq � α, V�1

Pi
pβq � β, i � 1, 2

where we regard the loops as link diagrams on the right hand sides of these equations.
Thus, to compute fα �Pi fβ � fα�Pi

β, we should apply the universal Vassiliev invariant VPi

to the link L obtained by stacking α on top of β, cf. Theorem 4.5. This is simple since we
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only need to apply (4.4a) to the crossing in L, remembering, of course, that this must be
done in accordance with the partition Pi. Depicting only the disk D, we get

c1
2pα, βq � 1

8
� � �2 � 1

8
� � �2 � 1

8

whereas

c2
2pα, βq � 1

8
� 1

8
� n

8

We used relations (5.1) and (5.8a). Since in general Tr A Tr B �� n TrpABq, A, B P GLnpCq,
the claim is proved. l
It follows, of course, that �P1

�� �P2
for n ¡ 1. There is an obvious orientation preserving

diffeomorphism g of Σ such that gpP1q � P2. By Propositions 4.9 and, tacitly, 3.15, we have

g � �P1
� �gpP1q � �P2

�� �P1

so that �P1
is not diffeomorphism invariant.

Remark 5.38. The same example leads to the same conclusions in the special linear case.



Chapter 6

Quantization of the Loop Algebras

By the results in the previous chapter, the �-products �P, P P PpΣq (BΣ �� H) on the loop
algebras Z1,0pΣq and Z1,� 1

n
pΣq are not independent of P (they induce different �-products

on OpMpΣ; GLnpCqqq, respectively OpMpΣ; SLnpCqqq). Motivated by this fact we define
in this chapter a canonical deformation quantization of the loop algebra Zs, f pΣq using an
approach due to Turaev [T]; we emphasize that the construction works also when Σ is a
closed surface. In the case BΣ �� H we demonstrate, under mild restrictions on the param-
eters ps, f q, that the quantization obtained is equivalent to each of the AMR �-products on
Zs, f pΣq.
6.1 The Turaev-Vassiliev Quantization

Let LhpΣq be the free Crrhss-module with basis the set of framed, oriented links in Σ� I,
that is LhpΣq � LpΣq bCrrhss. Of course, the Vassiliev filtration

LhpΣq � LV
h pΣq0 � LV

h pΣq1 � � � �
and the compatible stack multiplication turn LhpΣq into a filtered Crrhss-algebra. The pro-
jection Σ� I Ñ Σ induces a homomorphism of Crrhss-modules p : LhpΣq Ñ Zs, f pΣq; recall
that Zs, f pΣq is a Crrhss-algebra via the augmentation ǫ : Crrhss Ñ C. Clearly p preserves
multiplication and is therefore a Crrhss-algebra homomorphism. Let Is, f pΣq � LhpΣq be
the subspace generated by the skein relation

exp
�� f

2
h
� � exp

� f
2

h
� � 2 sinh

� s
2

h
�

(6.1)

As usual Is, f pΣq is an ideal, and the quotient

As, f pΣq � LhpΣqLIs, f pΣq
is called the Turaev-Vassiliev skein algebra of Zs, f pΣq. Modulo h2 the relation (6.1) takes the
form �

1� f
2

h
� � �

1� f
2

h
� � sh (6.2)

Recalling the definition of the Vassiliev filtration (4.1), this implies the important inequality

LV
h pΣqn � Is, f pΣq � hnLhpΣq. (6.3)

69
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It also follows from (6.2) that Is, f pΣq � Ker p, and we write

ps, f : As, f pΣq Ñ Zs, f pΣq
for the induced map. The next result is essentially due to Turaev [T].

Theorem 6.1. The pair pAs, f pΣq, ps, f q is a deformation quantization of Zs, f pΣq.
Proof. Obviously, ps, f is surjective. To prove the defining equation (3.5) of a quantization,

let L and L1 be two links on Σ in general position. Put D � ppLq and D1 � ppL1q. Since L1L
can be obtained from LL1 by moving L ‘down through’ L1, we derive the telescoping sum

LL1 � L1L � ¸
qPD#D1 Lq

1 � Lq
2

where Lq
1 and Lq

2 are links differing only by a crossing change at q and satisfying ppLq
i q �

DD1, i � 1, 2. Focusing attention on the point q, we get

Lq
1 � Lq

2 � ǫpq; D, D1q� � �� ǫpq; D, D1qh�s � f
2

� � �	� ǫpq; D, D1qh�sLq � f
2
pLq

1 � Lq
2q� mod h2As, f pΣq.

Here Lq is the link obtained from either of Lq
i by smoothing the crossing at q so that ppLqq �pDD1qq. Collecting the terms,

LL1 � L1L � h
¸

qPD#D1 ǫpq; D, D1q�sLq � f
2
pLq

1 � Lq
2q� mod h Ker ps, f

since hAs, f pΣq � Ker ps, f . But by (2.23),

p
� ¸

qPD#D1 ǫpq; D, D1q�sLq � f
2
pLq

1 � Lq
2q�	 � ¸

qPD#D1 ǫpq; D, D1qpspDD1qq � f DD1q� tD, D1us, f� tppLq, ppL1qus, f .

This completes the proof. l
Remark 6.2. We have used only the property (6.2) of the skein relation (6.1) in the construc-
tion of the quantization. Thus, varying the skein relation subject to (6.2) and/or working
with unframed links leads to other quantizations of Zs, f pΣq, cf. [T].

By Theorem 3.16 and Proposition 3.17 we may complete As, f pΣq with respect to the h-

filtration to obtain another deformation quantization pAs, f pΣq, ps, f q of Zs, f pΣq. Applying
Proposition 3.5 to the case A � LhpΣq with the h-filtration and the ideal I � Is, f pΣq and

recalling Remark 3.4, we infer that As, f pΣq can be viewed as the completion of LhpΣq with
respect to the filtration

LhpΣqn � Is, f pΣq � hnLhpΣq.
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For future reference we notice that the Vassiliev completion and the skein algebra comple-
tion of LhpΣq are related by the map

Id : LhpΣq Ñ As, f pΣq (6.4)

induced by the identity on LhpΣq, cf. (6.3).

6.2 The AMR �-Products and the Turaev-Vassiliev Quantization

In this section we assume that BΣ �� H and that s �� � f . We shall prove that the de-

formation quantization pAs, f pΣq, ps, f q is equivalent to the �-product �P on Zs, f pΣq for any
partition P of Σ. Let ChpΣq denote the algebra of chord diagrams on Σ with ground ring
Crrhss in place of C. Of course, ChpΣq is graded by the number of chords so that the comple-

tion ChpΣq � ±8
m�0 C

pmq
h pΣq is at our disposal. The construction of the universal Vassiliev

invariant of links on Σ carries over verbatim to yield a filtered, Crrhss-linear map

VP : LhpΣq Ñ ChpΣq.
The h-version of the loop relation (2.21) is the Crrhss-submodule Lh

s, f � ChpΣq generated by

the local relation � sh � f h

Define a homomorphism of Crrhss-modules η : ChpΣq Ñ CpΣqrrhss by

ηpDq � Dhm, D a chord diagram with m chords.

By construction η is filtered with respect to the chord filtration on ChpΣq so it extends to a

Crrhss-linear map η : ChpΣq Ñ CpΣqrrhss. Let

qs, f � Rs, f � η : ChpΣq Ñ CpΣqrrhss Ñ Zs, f pΣqrrhss (6.5)

be the composite Crrhss-module homomorphism, cf. (2.22).

Remark 6.3. By construction, Lh
s, f � Ker qs, f .

Put

TP � qs, f �VP : LhpΣq Ñ ChpΣq Ñ Zs, f pΣqrrhss. (6.6)

Theorem 6.4. The map TP : LhpΣq Ñ Zs, f pΣqrrhss induces an equivalence of deformation quan-
tizations

As, f pΣq TP

ps, f

Zs, f pΣqrrhss�P

π0

Zs, f pΣq
for any partition P of Σ.
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Theorem 6.5. For two partitions P1 and P2 of Σ, the composite equivalence

TP2
� T�1

P1
: Zs, f pΣqrrhss�P1

Ñ Zs, f pΣqrrhss�P2

is equal to the canonical equivalence from �P1
to �P2

, cf. Theorem 4.12.

We prove part of Theorem 6.4 in

Lemma 6.6. The map TP : LhpΣq Ñ Zs, f pΣqrrhss�P is a Crrhss-algebra homomorphism and in-
duces a morphism of deformation quantizations

As, f pΣq TP

ps, f

Zs, f pΣqrrhss�P

π0

Zs, f pΣq (6.7)

for any partition P of Σ.

Proof. By construction, TP is Crrhss-linear. To verify that the stack multiplication is taken
to �P, let L1, L2 be links on Σ. Recalling Theorem 4.12, the definition of the product � on

CpΣq (3.10), and the identity (3.11), we obtain

TPpL1q �P TPpL2q � Rs, f ηVPpL1q �P Rs, f ηVPpL2q� Rs, f pηVPpL1q �P ηVPpL2qq� Rs, f ηpVPpL1q �VPpL2qq� Rs, f ηVPpL1L2q� TPpL1L2q.
The next step is to prove that TP descends to the skein algebra, i.e., that Is, f pΣq � Ker TP.
By the first part of the proof, Ker TP is an ideal so it suffices to consider a generator of
Is, f pΣq. As TP can be computed locally, we simply consider the skein relation (6.1); we
have (cf. (5.25))

TP

�
exp

�� f
2

h
� � � exp

�� f
2

h
�
Rs, f ηV

� �� exp
�� f

2
h
�
Rs, f

� � exp
�1

2
h
	�� exp

�� f
2

h
� � exp

�1

2

�
s � f

�
h
	� � exp

�� f
2

h
	 � exp

� f
2

h� s
2

h
	� � exp

� s
2

h
	

and analogously

TP

�
exp

� f
2

h
	 � � � exp

�� s
2

h
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so that

TP

�
exp

�� f
2

h
� � exp

� f
2

h
� � � � �exp

� s
2

h
	� exp

�� s
2

h
		� � 2 sinh

� s
2

h
	� 2 sinh

� s
2

h
�� TP

�
2 sinh

� s
2

h
� �

as desired. The induced map TP : As, f pΣq Ñ Zs, f pΣqrrhss is Crrhss-linear and thereby
h-filtered whence it can be completed to a homomorphism of (filtered) Crrhss-algebras

TP : As, f pΣq Ñ Zs, f pΣqrrhss. It is immediate from the definitions that the triangle (6.7)
commutes. l
The proof of Theorem 6.4 is complete once we establish that TP : As, f pΣq Ñ Zs, f pΣqrrhss
is an isomorphism of Crrhss-algebras. The strategy is to show that the Crrhss-linear homo-
morphism (recall (6.4))

FP � Id �V�1
P : ChpΣq Ñ LhpΣq Ñ As, f pΣq

descends via qs, f : ChpΣq Ñ Zs, f pΣqrrhss to yield the inverse of TP. To this end it will be

useful to introduce the large filtration (larger than the chord filtration) on ChpΣq; it is given
by

ChpΣqn � η�1
�
hnCpΣqrrhss� � ChpΣq, n P N.

Remark 6.7. By definition, η and hence qs, f � Rs, f � η are filtered with respect to the large
filtration.

Intuitively, the large filtration measures a ‘degree’ defined in terms of both chords and
powers of h; to make this idea precise we introduce C-linear maps pn : ChpΣq Ñ ChpΣq �
ChpΣq, n P N determined by the formula (D is a chord diagram with m chords)

pn
��

i̧

λih
i�D

� � #
0, m ¡ n
λn�mhn�mD, m ¤ n

Clearly, these maps are independent projections in the sense that

pn � pn1 � δn,n1 pn, n, n1 P N. (6.8)

Elements in the subset Im pn � ChpΣq are said to have chord-h degree n. Of course, pn

extends to pn : ChpΣq Ñ ChpΣq � ChpΣq, and it is a consequence of the definitions that

n�1£
i�0

Ker pi � ChpΣqn, n P N. (6.9)

Remark 6.8. Evidently, the concepts of the large filtration and the chord-h degree make
sense locally, that is, they can be defined for chord tangles in an embedded square S � Σ.
Composition of chord tangles is chord-h graded.



74 Chapter 6 � Quantization of the Loop Algebras

Lemma 6.9. The map qs, f : ChpΣq Ñ Zs, f pΣqrrhss is surjective, and the induced map

qs, f : ChpΣqLKer qs, f Ñ Zs, f pΣqrrhss
is an isomorphism of filtered Crrhss-modules when the domain is equipped with the filtration induced
from the large filtration.

Proof. Let z̃ � °
i z̃ihi P Zs, f pΣqrrhss. Write z̃i � λiH� zi where zi is a complex linear

combination of non-empty diagrams on Σ, and put z � °
i zihi. As

qs, f
��

i̧

λih
i�H� �

i̧

pλiHqhi � z̃� z,

it suffices to show z P Im qs, f . By repeated application of the relation� 1

s2 � f 2

�
s � f

�
mod Ls, f ,

we may find Di P CpiqpΣq such that Rs, f pDiq � zi, i.e.,

Rs, f
�

i̧

Dih
i� �

i̧

zih
i � z.

But D � pDiq P CpΣq � ChpΣq satisfies ηpDq � °
i Dihi so that qs, f pDq � z as desired. The

induced isomorphism of Crrhss-modules

qs, f : ChpΣqLKer qs, f Ñ Zs, f pΣqrrhss
is a filtered map. The argument for surjectivity reveals that if z P hnZs, f pΣqrrhss, then the

inverse image q�1
s, f pzq contains an element in ChpΣqn so that the inverse map q�1

s, f is also

filtered. l
Lemma 6.10. Ker qs, f � tc P ChpΣq | c P Lh

s, f � ChpΣqn, n P Nu.
Proof. Let c P ChpΣq. For the inclusion � suppose that c P Ker qs, f . Letting πi : Zs, f pΣqrrhssÑ Zs, f pΣq denote the projection on the ith coefficient, we derive

0 � πiqs, f pcq � πiRs, f ηpcq � Rs, f πiηpcq, i P N

implying that πiηpcq P Ls, f ; this means that pipcq P Lh
s, f . Given n P N, (6.8) and (6.9) yield

c� n�1̧

i�0

pipcq P ChpΣqn

so that c P Lh
s, f � ChpΣqn. For the other inclusion we assume that c is in the right hand set.

Since

qs, f
�
Lh

s, f � ChpΣqn
� � hnCpΣqrrhss, n P N

by Remarks 6.3 and 6.7, it follows that qs, f pcq � 0 as desired. l
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Lemma 6.11. The map FP : ChpΣq Ñ As, f pΣq is filtered with respect to the large filtration.

Proof. Suppose that c � pciq P ChpΣq belongs to ChpΣqn. Since FP is filtered with respect to

the chord filtration on ChpΣq, it is enough to show that

FP
�n�1̧

i�0

ci
� P As, f pΣqn

. (6.10)

By the characterization of the large filtration (6.9), each ci may be written as a Crrhss-linear
combination of elements of the form hn�iD where D is a chord diagram with i chords.

Choose Lj P LV
h pΣqi such that prLjsjq � V�1

P pDq P LhpΣqi. Since

FPphn�iDq � hn�iprLjsjq � prhn�iLjsjq P As, f pΣq
with (cf. (6.3))

hn�iLj P hn�iLV
h pΣqi � hn�ipIs, f pΣq � hiLhpΣqq � Is, f pΣq � hnLhpΣq � LhpΣqn,

we infer that FPphn�iDq P As, f pΣqn
. This implies (6.10) and thereby the lemma. l

Lemma 6.12. Lh
s, f � Ker FP.

Proof. Any generator of Lh
s, f is the composition of the element

g � � sh � f h P ChpS; ÒÒ, ÒÒq
located in some square S � Σ, with a suitable chord tangle in Σ� S. By the compatibility
of the universal Vassiliev invariant with this decomposition, we need only consider the
square S and show that FPpgq � 0. Define

X � V
�
exp

�� f
2

h
� � exp

� f
2

h
� � 2 sinh

� s
2

h
� � P ChpS; ÒÒ, ÒÒq.

By definition of Is, f pΣq,
FPpXq � 0. (6.11)

Refining the computation in the proof of Lemma 6.6 a little, one establishes

X � 2 sinh
�1

2
g� s

2
h

�� 2 sinh
� s

2
h
�

Since g is homogeneous of chord-h degree 1, it follows that

pnpXq � $'&'%0, n � 0

g, n � 1

g � xn, xn P ChpS; ÒÒ, ÒÒq has chord-h degree n� 1; n ¥ 2

(6.12)

Applying induction we construct a sequence Yi P ChpS; ÒÒ, ÒÒq, i � 1, 2, . . . of the form

Yi � X � yi, yi P ChpS; ÒÒ, ÒÒq has chord-h degree i� 1
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and satisfying

ņ

i�1

Yi � g P ChpS; ÒÒ, ÒÒqn�1. (6.13)

To initiate the process we set y1 �ÒÒ so that Y1 � X; by (6.12) and (6.9) this is sound.
Assume that Y1, . . . , Yn have already been defined. Then

pn�1

� ņ

i�1

Yi
� � ņ

i�1

pn�1pX � yiq � ņ

i�1

pn�2�ipXq � yi � ņ

i�1

g � xn�2�i � yi.

Thus we are lead to put yn�1 � �°n
i�1 xn�2�i � yi, which by induction has chord-h degree

n, and thereby obtain

pn�1

�n�1̧

i�1

Yi
� � pn�1

� ņ

i�1

Yi
�� p1pXq � yn�1 � 0.

Taken together with the hypothesis (6.13), this implies

pj
�n�1̧

i�1

Yi � g
� � 0, j � 0, . . . , n� 1

completing the induction step by (6.9). Now, (6.13) means by definition that
°n

i�1 Yi Ñ
g, n Ñ8 in the large filtration so by (6.11) and Lemma 6.11

0 � ņ

i�1

FPpXq � yi � FP
� ņ

i�1

Yi
�Ñ FPpgq, n Ñ8.

Since As, f pS; ÒÒ, ÒÒq is Hausdorff, this implies FPpgq � 0 as desired. l
Lemma 6.13. The map TP : As, f pΣq Ñ Zs, f pΣqrrhss is a Crrhss-algebra isomorphism.

Proof. From Lemmas 6.10, 6.11 and 6.12 follow that Ker qs, f � Ker FP. Consequently,
Lemma 6.9 yields an induced homomorphism

FP : Zs, f pΣqrrhss �ÝÑ ChpΣqLKer qs, f ÝÑ As, f pΣq
of filtered Crrhss-modules. We verify that FP is the inverse of TP. From the diagram

LhpΣq VP

ι

ChpΣq
qs, f

ChpΣq V�1
P

LhpΣq
Id

As, f pΣq TP Zs, f pΣqrrhss � ChpΣqLKer qs, f
FP

As, f pΣq
follows that FP � TP � ι � ι : LhpΣq Ñ As, f pΣq. Since FP � TP is a filtered endomorphism of

As, f pΣq, this means that FP � TP � Id. That TP � FP is the identity on Zs, f pΣqrrhss need only
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be verified on Zs, f pΣq � Zs, f pΣqrrhss by the Crrhss-linearity, cf. (3.1). Let D be a diagram

on Σ. We may consider D as an element of ChpΣq, and clearly qs, f pDq � D. Therefore

FPpDq � IdpV�1
P pDqq (6.14)

so that

TPpFPpDqq � TPIdV�1
P pDq � qs, f VPV�1

P pDq � D

as desired. l
Proof (Theorem 6.4). Lemmas 6.6 and 6.13. l
Proof (Theorem 6.5). For a diagram D on Σ the canonical equivalence from �P1

to �P2
on

Zs, f pΣq is given by

D ÞÑ Rs, f τpDq � Rs, f
ŗ
pVP2

V�1
P1
pDqqprqhr � Rs, f ηVP2

V�1
P1
pDq,

cf. Theorems 4.6 and 4.12. But (cf. (6.14))

TP2
T�1

P1
pDq � TP2

IdV�1
P1
pDq � qs, f VP2

V�1
P1
pDq � Rs, f ηVP2

V�1
P1
pDq.

This completes the proof since by (3.1) it suffices to consider the restrictions of the two
maps to Zs, f pΣq. l



Chapter 7

The Case SL2pCq Revisited

We present in this chapter a canonical Γ�pΣq-invariant �-product on OpMpΣ; SL2pCqqq due
to Bullock, Frohman and Kania-Bartoszyńska [BFK]. This �-product is defined on a model
for OpMpΣ; SL2pCqqq especially suited for the purpose; we develop the model in the first
section. Subsequently we prove, in the case BΣ �� H, that the BFK �-product is canonically
equivalent to each of the AMR �-products on OpMpΣ; SL2pCqqq. We end the dissertation
with an investigation of the differentiability of the BFK �-product.

7.1 A Good Model for the Moduli Space

Using the abbreviations ZpΣq � Z1,� 1
2
pΣq and I2pΣq � IpΣ; SL2pCqq, Theorem 5.34 implies

that we have an algebra homomorphism

Ψ : ZpΣqLI2pΣq Ñ OpMpΣ; SL2pCqqq.
Remark 7.1. We also learn from Theorem 5.34 that Ψ is a surjection with Ker Ψ � ?

0.
Shortly we shall see that

?
0 � 0 so that, by the same theorem, Ψ is actually a Poisson

isomorphism (we know this already in the case BΣ �� H by Corollary 5.35).

Ignoring the orientation of the loops in diagrams on Σ induces an equivalence relation;
the equivalence classes are called unoriented diagrams on Σ and we denote by Z�pΣq the
free complex vector space generated by them. Of course, Z�pΣq is a commutative algebra
under union of unoriented diagrams, and the orientation-forgetting map

u : ZpΣq Ñ Z�pΣq, upDq � D�
is an algebra homomorphism. Define K0pΣq � Z�pΣq to be the subspace generated by the
local relations � � � (7.1a)� �2 (7.1b)

As usual, K0pΣq is an ideal. Consider the linear map ru : ZpΣq Ñ Z�pΣq given byrupDq � p�1qnD� � p�1qnupDq, D a diagram with n loops. (7.2)

It is a homomorphism of complex algebras.

78
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Remark 7.2. Unlike many other maps defined on (chord) diagrams, ru cannot be computed
locally because of the sign. In expressions below where ru is seemingly evaluated on a
tangle, it is understood that this tangle is part of a particular diagram on Σ.

Proposition 7.3. The map ru : ZpΣq Ñ Z�pΣq induces an isomorphismru : ZpΣqLI2pΣq Ñ Z�pΣqLK0pΣq (7.3)

of complex algebras.

Proof. The first step of the proof is to show that I2pΣq maps to 0 under the composition

ZpΣq ruÝÑ Z�pΣq ÝÑ Z�pΣqLK0pΣq.
It is sufficient to consider the generators (cf. (5.22)) of the ideal I2pΣq. We haveru� � 2

� � � � 2 � 0

taking care of (5.22a). For the other two relations we need the following intermediate resultru�
σ̧PS2

ǫpσq σ
� � ru� � � � ǫ

� � � � �ǫ (7.4)

where ǫ is equal to �1 raised to the number of loops in the diagram corresponding to ÒÒ.
This formula implies (5.22b) sinceru� ¸

σ,τPS2

ǫpσqǫpτq σ τ

� � ǫL

and ru� ¸
σ,τPS2

ǫpσqǫpτq σ τ

� � ǫR � ǫR

with appropriate signs ǫL and ǫR easily seen to be equal. Applying (7.4) to the left hand
side of (5.22c) yieldsru�

σ̧PS2

ǫpσq σ

γ γ � � �ǫ
γ γ−1 � �ǫ

Here the decoration of the middle diagram means that traversing the upper strand from
right to left amounts to first traversing γ�1 and then γ. Comparing this formula with (7.4)
verifies relation (5.22c). Consequently ru descends to an algebra homomorphismru : ZpΣqLI2pΣq Ñ Z�pΣqLK0pΣq
In order to invert ru, we record a simple observation.
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Claim. For any γ P π1pΣq we have

σ̧PS2

ǫpσq σ 1 γ � γ �
σ̧PS2

ǫpσq σ γ 1 mod I2pΣq.
The two identities are analogous; we prove the former one:

σ̧PS2

ǫpσq σ 1 γ � 1 γ � 1 γ � γ

Now let v : Z�pΣq Ñ ZpΣq{I2pΣq be the C-algebra homomorphism determined by

vpγq � �~γ (7.5)

where γ denotes some unoriented loop on Σ and ~γ is one of the two possible oriented
versions of it. That v is well-defined follows from the claim and an application of relation
(5.22c):

γ−1 �
σ̧PS2

ǫpσq σ 1 γ−1 �
σ̧PS2

ǫpσq σ

γ
γ

1 γ−1

�
σ̧PS2

ǫpσq σ γ 1 � γ

The next step is to verify that K0pΣq � Ker v. Relation (7.1b) is trivial:

v
� � 2

� � � � 2 � 0.

Given an instance of relation (7.1a) we assume without loss of generality that the two ver-
tical strands belong to separate loops. Letting α and β denote oriented versions of them we
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deduce

v
� � � � α β � α β �

σ̧PS2

ǫpσq σ α β

�
σ̧PS2

ǫpσq σ

α−1

α−1

α β �
σ̧PS2

ǫpσq σ 1 α−1β

� α−1β � α−1 β� v
�� �

as desired. It is obvious from (7.2) and (7.5) that the induced map

v : Z
�pΣqLK0pΣq Ñ ZpΣqLI2pΣq

is the inverse of u. l
The usefulness of this proposition stems from the fact that the relations (7.1) are similar to
the skein relations defining the Kauffman bracket; recall that this is a polynomial invariantxLy P ZrA�1s of the framed, unoriented link L � R3, satisfying (and determined by) the
conditions � A � A�1 (7.6a)� �A2 � A�2 (7.6b)

Substituting A � �1, over- and undercrossings cannot be distinguished, and the skein
relations reduce to (7.1).

Remark 7.4. In light of what we have just said, it is easy to see that Z�pΣq{K0pΣq is iso-
morphic to the complex algebra S2,8pΣ� I; C,�1q studied in [PS]. The latter algebra has
no zero-divisors, in particular no nilpotent elements, by Theorem 4.7 of that paper. It thus
follows from Proposition 7.3 (cf. Remark 7.1) that Ψ : ZpΣq{I2pΣq Ñ OpMpΣ; SL2pCqqq is
a Poisson isomorphism. We transfer the Poisson structure on ZpΣq{I2pΣq to Z�pΣq{K0pΣq
by requiring that the algebra isomorphism ru is a Poisson isomorphism.

Pursuing the similarity of (7.1) and (7.6), we define a BFK-diagram on Σ to be the isotopy
class of a finite collection of unoriented circles embedded into Σ such that no loop bounds
a disk in Σ; informally speaking, a BFK-diagram is an unoriented diagram on Σ with no
crossings and no homotopically trivial components. Let BpΣq be the complex vector space
freely generated by all BFK-diagrams on Σ. Define a linear map κ : Z�pΣq Ñ BpΣq by
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the Kauffman bracket procedure, i.e., given a generic unoriented diagram D replace all
crossings by the right hand side of (7.1a) and remove all arising trivial loops at the cost of
a factor �2 to obtain a linear combination κpDq P BpΣq.
Proposition 7.5. The map κ : Z�pΣq Ñ BpΣq is well-defined and descends to an isomorphism

κ : Z
�pΣqLK0pΣq Ñ BpΣq (7.7)

of complex vector spaces.

Proof. Two generic unoriented diagrams on Σ are homotopic if and only if they are related
by isotopy and the three Reidemeister moves. Of course, κpDq is invariant under isotopies
of D. Regarding the first Reidemeister move, we follow the steps in the computation of κ
to obtain:

 � �  � � 2 �
as required. For the second and third Reidemeister moves one can simply substitute A ��1 (and ignore over-/undercrossing information) in Kauffman’s proof of the invariance
of his bracket under these moves, cf. [K]. Hence κ is well-defined, and by construction it
descends to a quotient map as in (7.7).

Any BFK-diagram on Σ can be considered as an unoriented diagram on Σ; this defines
a linear map ι : BpΣq Ñ Z�pΣq. Evidently, the composition

BpΣq ιÝÑ Z�pΣq ÝÑ Z�pΣqLK0pΣq
is the inverse of κ. l
We equip BpΣq with the Poisson algebra structure induced by κ and have thus constructed
the diagram

CpΣq R
1,� 1

2

Ψ

ZpΣq ZpΣqLI2pΣq ru
Ψ

Z�pΣqLK0pΣq κ
BpΣq

ν

OpMpΣ; SL2pCqqq (7.8)

of Poisson homomorphisms. Here ν : BpΣq Ñ OpMpΣ; SL2pCqqq is the unique map (iso-
morphism) making the diagram commutative. From (7.5) follows that

νpγq � �Ψp~γq
where γ is a non-trivial loop on Σ. Therefore ν is equivariant with respect to the natural
action of Γ�pΣq on BpΣq, cf. Theorem 2.22.

It will facilitate computations later on to adapt diagram (7.8) slightly. Consider the maprΨ : CpΣq Ñ OpMpΣ; SL2pCqqq given byrΨpDq � p�1qnΨpDq, D a chord diagram with n core components
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Since Ψ : CpΣq Ñ OpMpΣ; SL2pCqqq is a Poisson homomorphism and the Poisson structure

on CpΣq preserves the skeletons of chord diagrams, rΨ is also a Poisson homomorphism.
We know that Ψ maps the loop relation� � 1

2

to 0. Since smoothing a chord in-/decreases the number of core components by 1, it follows

that rΨ satisfies a different loop relation:� � � 1

2

Thus we obtain a triangle of Poisson homomorphisms

CpΣq R�1,� 1
2rΨ Z�1,� 1

2
pΣqrΨ

OpMpΣ; SL2pCqqq
For a diagram D with n loops we have by (7.2)

νκupDq � p�1qnνκrupDq � p�1qnΨpDq � rΨpDq
so that (7.8) transforms into the commutative diagram

CpΣq R�1,� 1
2rΨ Z�1,� 1

2
pΣq urΨ Z�pΣqLK0pΣq κ

BpΣq
ν

OpMpΣ; SL2pCqqq (7.9)

As a composition of Poisson homomorphisms u � κ�1ν�1rΨ is a Poisson homomorphism.
We are now set to derive formulas for the product and the Poisson bracket on BpΣq. Let

D and E be BFK-diagrams in general position. Regarding D and E as unoriented diagrams
on Σ, their product is simply the union D Y E. Hence relation (7.1a) leads us to define a
state for pD, Eq to be any map S : D#E Ñ t0,8u and its corresponding diagram DpSq to be
the one obtained from DY E by resolving all crossings D#E as follows

p

D E
 

$'''''&'''''% if Sppq � 0

if Sppq � 8 (7.10)

Notice that DpSq is not necessarily a BFK-diagram since it may contain trivial loops. Obvi-
ously we have

DE � p�1q|D#E|

Ş

DpSq P Z�pΣqLK0pΣq. (7.11)



84 Chapter 7 � The Case SL2pCq Revisited

To calculate tD, Eu, lift D and E to diagrams ~D and ~E on Σ so that up~Dq � D and up~Eq � E.
Since t~D, ~Eu � ¸

pP~D#~E

ǫpp; ~D, ~Eq~DYp ~E P CpΣq,
diagram (7.9) impliestD, Eu � tuR�1,� 1

2
p~Dq, uR�1,� 1

2
p~Equ� u

�
R�1,� 1

2
pt~D, ~Euq�� ¸

pPD#E

ǫpp; ~D,~Equ�R�1,� 1
2
p~DYp ~Eq� P Z�pΣqLK0pΣq.

Focusing on the chord in ~DYp ~E, we get

u
�

R�1,� 1
2

� �	 � u
�� � 1

2

�� � � 1

2� � � 1

2

� � �� 1

2

� � �
mod K0pΣq (7.12)

so that

ǫpp; ~D,~Equ�R�1,� 1
2
p~DYp ~Eq� � 1

2
rDYp,8 E� DYp,0 Es

where DYp,s E, s � 0,8 is obtained from DY E by resolving only the crossing at p accord-
ing to the rule (7.10). Hence we havetD, Eu � 1

2

¸
pPD#E

rDYp,8 E�DYp,0 Es P Z�pΣqLK0pΣq.
The diagram D Yp,s E contains the crossings D#E � tpu which may also be resolved via

(7.1a); doing so leads to the various state diagrams for pD, Eq. Putting 0pSq � |S�1p0q| and8pSq � |S�1p8q| for a state S, we therefore derivetD, Eu � p�1q|D#E| 1

2
Ş

p0pSq �8pSqqDpSq P Z�pΣqLK0pΣq. (7.13)

This formula (up to a sign) was obtained in [BFK].

Remark 7.6. In the case BΣ �� H we have the �-product �P, P P PpΣq on OpMpΣ; SL2pCqqq
induced via the �-equivalence Ψ : ZpΣq{I2pΣq Ñ OpMpΣ; SL2pCqqq, cf. Theorem 5.27 and
Corollary 5.35. We may transfer �P to Z�pΣq{K0pΣq and BpΣq by requiring ru, κ and, thus,

ν to be �-equivalences. The adapted map rΨ : CpΣq Ñ OpMpΣ; SL2pCqqq is a morphism of�P since this �-product preserves skeletons of chord diagrams. From diagram (7.9) follows
that u : Z�1,� 1

2
pΣq Ñ Z�pΣq{K0pΣq is also a morphism of �P.
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7.2 The BFK �-Product

Let L�hpΣq denote the free Crrhss-module generated by the set of framed, unoriented links
in Σ� I; endowed with stack multiplication it is a Crrhss-algebra. Let KpΣq � L�hpΣq be the
submodule generated by the skein relations� � exp

�1

4
h
� � exp

��1

4
h
�

(7.14a)� �2 cosh
�1

2
h
�

(7.14b)

As usual KpΣq is an ideal; the quotient

A�pΣq � L�hpΣqLKpΣq
is called the Kauffman bracket skein algebra of Σ. In the sequel we shall mainly be interested

in the completion A�pΣq with respect to the h-filtration on A�pΣq. Notice that (7.14) are the

Kauffman bracket skein relations (7.6) with parameter A � � expp 1
4 hq P Crrhss. Hence we

can define a Crrhss-linear map

K : L�hpΣq Ñ BpΣqrrhss
by the Kauffman bracket procedure (cf. the construction of κ : Z�pΣq Ñ BpΣq).
Theorem 7.7. The map K : L�hpΣq Ñ BpΣqrrhss induces an isomorphism

K : A�pΣq Ñ BpΣqrrhss (7.15)

of Crrhss-modules.

Proof. It is immediate from the definition that KpΣq � Ker K. The induced map K : A�pΣqÑ BpΣqrrhss is filtered with respect to the h-filtrations since it is Crrhss-linear. Therefore we
obtain a homomorphism of Crrhss-modules as in (7.15).

Inverting K is simple. A BFK-diagram may be considered as a diagram of a framed,
unoriented link; the complex linear map

BpΣq Ñ L�hpΣq Ñ A�pΣq Ñ A�pΣq
induced hereby determines (cf. (3.1) and Remark 3.1) a Crrhss-linear map BpΣqrrhss Ñ
A�pΣq easily seen to be the inverse of K. l
Remark 7.8. Thinking of BpΣq as the quotient Z�pΣq{K0pΣq, we may treat trivial loops a
little differently in the computation of K. Namely

K
� � � cosh

�1

2
h
�

by (7.14b) and (7.1b).

Theorem 7.9 (Bullock, Frohman & Kania-Bartoszyńska). The multiplication on A�pΣq in-
duces a �-product �Σ on BpΣqrrhss via the isomorphism K : A�pΣq Ñ BpΣqrrhss.
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Proof. Let D and E be BFK-diagrams in general position. To compute D �Σ E one must

stack D on top of E, resolve all crossings using (7.14a) and collect the factor coshp 1
2 hq for

each trivial loop (keeping this loop). Given a state S for pD, Eq we denote by τpSq the

number of trivial loops in its diagram DpSq. Putting a � expp 1
4 hq, we get

D �Σ E �
Ş

p�aq0pSq�8pSq cosh
�1

2
h
�τpSqDpSq. (7.16)

Since coshp 1
2 hq � 1 mod h2, this simplifies to

D �Σ E �
Ş

p�aq0pSq�8pSqDpSq� p�1q|D#E|

Ş

a0pSq�8pSqDpSq� p�1q|D#E|

Ş

�
1� p0pSq �8pSqq1

4
h
�
DpSq� p�1q|D#E|

Ş

DpSq � 1

2
hp�1q|D#E|1

2
Ş

p0pSq �8pSqqDpSq� DE� 1

2
tD, Euh mod h2

by formulas (7.11) and (7.13). This proves the theorem, cf. Proposition 3.9. l
The BFK �-product is Γ�pΣq-invariant by (7.16); so is the induced �-product on the moduli
space by the equivariance of ν : BpΣq Ñ OpMpΣ; SL2pCqqq.
7.2.1 Relating BFK �-Products for Different Surfaces

Suppose Σ has non-empty boundary and denote by B0Σ one of its boundary circles. Let Σ

be the surface obtained from Σ by attaching a disk along B0Σ. In this subsection we define
a morphism from �Σ to �

Σ
covering the Poisson homomorphism r� : OpMpΣ; SL2pCqqq Ñ

OpMpΣ; SL2pCqqq given by restricting regular functions, cf. 2.3.1.
Let D be a BFK-diagram on Σ. Some, n say, of the loops of D are isotopic to B0Σ, so we

may write D � D1 \ pB0Σqn where D1 is the remaining part of D. Notice that D1 can be

regarded as a BFK-diagram on Σ. Letting x � �2 coshp 1
2 hq, we set

ϕpDq � xnD1 P BpΣqrrhss.
This formula determines a Crrhss-linear map ϕ : BpΣqrrhss Ñ BpΣqrrhss, cf. (3.1). In the
notation ϕ � °

j ϕjhj the map ϕ0 : BpΣq Ñ BpΣq is the BFK-version of r� in the sense that

the diagram

BpΣq ϕ0

ν

BpΣq
ν

OpMpΣ; SL2pCqqq r�
OpMpΣ; SL2pCqqq
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is commutative. Let E be another BFK-diagram on Σ with decomposition E � E1 \ pB0Σqm.
When stacking D on top of E to compute D �Σ E, we may assume that all crossings are
between D1 and E1. Then

ϕpD �Σ Eq � xn�mD1 �
Σ

E1 � xnD1 �
Σ

xmE1 � ϕpDq �
Σ

ϕpEq
so that ϕ is the desired �-morphism. Note that we had to twist the restriction map to obtain
a �-homomorphism. In other words, if �Σ induces a �-product on OpMpΣqq via r�, this�-product is not equal to �

Σ
.

7.3 The AMR �-Products and the BFK �-Product

In this section we assume that BΣ �� H; we prove that the AMR �-product �P, P P PpΣq
on OpMpΣ; SL2pCqqq is equivalent to the BFK �-product. The strategy is to show that the
equivalence

TP : A�1,� 1
2
pΣq Ñ Z�1,� 1

2
pΣqrrhss�P (7.17)

of quantizations (cf. Theorem 6.4) descends to an isomorphism

KP : A�pΣq Ñ BpΣqrrhss�P (7.18)

of Crrhss-algebras. The co-domains of (7.17) and (7.18) are related by the �-homomorphism
κ � u : Z�1,� 1

2
pΣqrrhss�P Ñ BpΣqrrhss�P (cf. Remark 7.6), so let us establish the connection

between the domain spaces. Recall (6.1) that the Turaev-Vassiliev skein algebra A�1,� 1
2
pΣq

is the quotient of LhpΣq by the ideal I�1,� 1
2
pΣq generated by

exp
�1

4
h
� � exp

��1

4
h
� � 2 sinh

��1

2
h
�

Putting a � expp h
4 q, this may be written

a � a�1 � pa�2 � a2q (7.19)

On the other hand, the Kauffman bracket skein algebra A�pΣq is the quotient of L�hpΣq by
the ideal KpΣq generated by � �a � a�1 (7.20a)� �2r (7.20b)

where r � coshp h
2 q, cf. (7.14). Forgetting the orientation of a link induces a homomorphism

of Crrhss-algebras

U : LhpΣq Ñ L�hpΣq.
It is easy to see that U maps I�1,� 1

2
pΣq into KpΣq. Namely, rotate (7.20a) 90 degrees to see

that the skein relation � �a � a�1
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holds in A�pΣq. A suitable linear combination of this identity and (7.20a) proves

a � a�1 � pa�2 � a2q mod KpΣq.
Comparing this formula with (7.19) yields the claim. The induced map U : A�1,� 1

2
pΣq Ñ

A�pΣq on the quotients is h-filtered (it is Crrhss-linear) and therefore extends to the h-
completions

U : A�1,� 1
2
pΣq Ñ A�pΣq.

Consider the homomorphism of Crrhss-algebras

KP : LhpΣq TPÝÑ Z�1,� 1
2
pΣqrrhss�P

uÝÑ Z�pΣq{K0pΣqrrhss�P
κÝÑ BpΣqrrhss�P .

First we prove that KP factors through U : LhpΣq Ñ L�hpΣq, i.e., that KP cannot detect the
orientation of its input link. Let L be a link on Σ, and let C be some component of it. Denote
by SC the cabling operation reversing the orientation of C. By the definition of TP (cf. (6.6)
and (6.5)) and the fact that the universal Vassiliev invariant is compatible with cabling, we
derive

KPpSCpLqq � κuR�1,� 1
2
ηVPSCpLq � κuR�1,� 1

2
SCηVPpLq � κuR�1,� 1

2
ηVPpLq � KPpLq

as desired. To justify the third equality, we recall Remark 4.1 about SC and apply (7.12) to
get

κuR�1,� 1
2

�� � � �1

2

� � � � κuR�1,� 1
2

� �
. (7.21)

Remark 7.10. Strictly speaking (7.21) should be performed as a calculation in Z�pΣq{K0pΣq
since κ is not locally computable.

Theorem 7.11. The map KP : L�hpΣq Ñ BpΣqrrhss extends to an isomorphism

KP : A�pΣq Ñ BpΣqrrhss�P

of Crrhss-algebras fitting into the diagram

A�1,� 1
2
pΣq TP

U

Z�1,� 1
2
pΣqrrhss
κ�u

LhpΣq TP

U

L�hpΣq
KP

A�pΣq KP
BpΣqrrhss

(7.22)



7.3 The AMR �-Products and the BFK �-Product 89

Corollary 7.12. The composition

KP �K�1 : BpΣqrrhss Ñ BpΣqrrhss
is an equivalence from the BFK �-product �Σ to �P.

Proof. By Theorem 7.9, one need only verify that the triangle

BpΣqrrhss KP�K�1

BpΣqrrhss
BpΣq

commutes; this is immediate from the definitions. l
We shall need a couple of lemmas for the proof of Theorem 7.11.

Lemma 7.13.

KP

� � � �a�1r � a

KP

� � � �ar � a�1

Proof. We prove the former identity; the proof of the latter one is analogous. Applications
of (7.12) and (7.1a) yield

KP

� � � κuR�1,� 1
2
ηV

� �� κuR�1,� 1
2

� � exp
�h

2

��� � exp
�h

2
� 1

2

� � �	� � exp
�h

4

� � �	� � exp
�h

4

�
2 � �	� � 8̧

n�0

1

n!

�h
4

�n
�
2 � �n

But by (7.1b), �
2 � �n � � ņ

k�1

�
n
k



2k
� �k� � ņ

k�1

�
n
k



2kp�2qk�1� � 1

2

ņ

k�1

�
n
k


p�4qk� � 1

2
rp�4� 1qn � 1s
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so we may continue and obtain

KP

� � � 8̧
n�0

1

n!

�h
4

�n � ��1

2
rp�3qn � 1s � �� 8̧

n�0

1

n!

�h
4

�n
��1

2
rp�3qn � 1s � �� �1

2

�
exp

��3h
4

�� exp
�h

4

�� � exp
�h

4

�� � exp
��h

4

�1

2

�
exp

��h
2

�� exp
�h

2

�� � exp
�h

4

�
as desired. l
Lemma 7.14. There exists λ P Crrhss such that λ2 � r and

KPr s � λ ; KPr s � λ (7.23)

Proof. Recall the definition (4.4c) of the universal Vassiliev invariants of cups and caps.
No matter what particular value C has (this depends on the associator Φ), it is clear from
(7.12) and (7.1a) that there is a λ P Crrhss such that (7.23) holds. Determining λ by a direct
computation is not possible since we allow different associators, and even for a particular
associator such as the one given in [LM], the computation is not feasible. We circumvent
these difficulties by exploiting the isotopy invariance of VP to calculate λ. The skein relation
(7.19) defining I�1,� 1

2
pΣq may be depicted as

a � a�1 � pa�2 � a2q (7.24)

Since TP respects this identity, KP satisfies the unoriented version of it:

a � a�1 � pa�2 � a2q
in the cases where the orientations in (7.24) are consistent. But according to the preceding
lemma

KP

�
a � a�1

� � �a2r � � a�2r � � pa�2 � a2qr
and by (7.23),

KP

�pa�2 � a2q � � pa�2 � a2qλ2

Equating the above two formulas yields the result since the scalar multiplication

Crrhss �BpΣqrrhss ÝÑ BpΣqrrhss
is faithful. l
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Proof (Theorem 7.11). By Lemmas 7.14 and 7.13, we have

KP

��a � a�1
� � �ar � a�1 � KP

� �
.

Another application of Lemma 7.14 provides

KP

� � � r � �2r.

Recalling (7.20) this means that KPpKpΣqq � 0; the induced map KP : A�pΣq Ñ BpΣqrrhss is

h-filtered and therefore extends to a homomorphism KP : A�pΣq Ñ BpΣqrrhss�P of Crrhss-
algebras. The diagram (7.22) is obviously commutative.

Define a Crrhss-algebra homomorphism by

F�P � U � T�1
P : Z�1,� 1

2
pΣqrrhss�P ÝÑ A�1,� 1

2
pΣq ÝÑ A�pΣq.

We shall prove that F�P factors through the surjection κ � u : ZpΣqrrhss Ñ BpΣqrrhss to a map

F�P : BpΣqrrhss Ñ A�pΣq being the inverse of KP, cf. diagram (7.22). Since

Ker
�
ZpΣqrrhss κ�uÝÝÑ BpΣqrrhss� � KerrZpΣq κ�uÝÝÑ BpΣqsrrhss

and because the formula (3.2) applies to F�P , it suffices to prove that the restriction of F�P to
ZpΣq descends to BpΣq via κ � u : ZpΣq Ñ BpΣq. For a diagram D on Σ we have by (6.14)

F�PpDq � UIdV�1
P pDq. (7.25)

As the universal Vassiliev invariant is compatible with orientation changes in D, it follows
from (7.25) that F�P factors through u : ZpΣq Ñ Z�pΣq. By a method similar to the one used
in the proof of Lemma 6.12, we now demonstrate that K0pΣq � Ker κ is contained in the

kernel of F�P : Z�pΣq Ñ A�pΣq. Consider an embedded square S � Σ, and let Z�pS; Bq
denote the complex vector space of unoriented tangles in S with two top and two bottom
boundary points. Notice that Z�pS; Bq is a commutative algebra under composition of tan-
gles. Recalling (7.1) it is enough to prove that the two elements

g1 � � � , g2 � � 2

of Z�pS; Bq are mapped to 0 by F�P . Define power series X1, X2 P Z�pS; Bqrrhss by

X1 � uTP

� �� auTP

� �� a�1uTP

� �
,

X2 � uTP

� �� 2ruTP

� �
.

By definition of F�P we have (cf. (7.20))

F�PpX1q � U
� � a � a�1

� � 0, (7.26a)

F�PpX2q � U
� � 2r

� � 0. (7.26b)
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Let πi : Z�pS; Bqrrhss Ñ Z�pS; Bq denote the projection on the ith coefficient. We notice that

π0pX1q � g1, π0pX2q � g2. (7.27)

More generally, the identities

κpX1q � KP

� � a � a�1
� � 0; κpX2q � KP

� � 2r
� � 0

imply that there exist elements x j
k,i P Z�pS; Bq, j, k � 1, 2, i � 1, 2, . . . such that

πipX1q � g1 � x1
1,i � g2 � x1

2,i, πipX2q � g1 � x2
1,i � g2 � x2

2,i.

We use this observation to inductively construct a sequence Yi P Z�pS; Bqrrhss, i � 0, 1, . . .
of the form

Yi � X1 � y1,i �X2 � y2,i, y1,i, y2,i P Z�pS; Bq (7.28)

and satisfying

ņ

i�0

hiYi � g1 P hn�1Z�pS; Bqrrhss. (7.29)

The process is initiated by setting y1,0 � | | and y2,0 � 0 so that Y0 � X1; by (7.27) this is
sound. Assume that Y0, . . . , Yn have already been defined. The computation

πn�1

� ņ

i�0

hiYi
� � ņ

i�0

πn�1�ipYiq� ņ

i�0

πn�1�ipX1q � y1,i � πn�1�ipX2q � y2,i� ņ

i�0

rg1 � x1
1,n�1�i � g2 � x1

2,n�1�is � y1,i � rg1 � x2
1,n�1�i � g2 � x2

2,n�1�is � y2,i� g1 � � ņ

i�0

x1
1,n�1�i � y1,i � x2

1,n�1�i � y2,i
�� g2 � � ņ

i�0

x1
2,n�1�i � y1,i � x2

2,n�1�i � y2,i
�

leads us to set

y1,n�1 � � ņ

i�0

x1
1,n�1�i � y1,i � x2

1,n�1�i � y2,i, y2,n�1 � � ņ

i�0

x1
2,n�1�i � y1,i � x2

2,n�1�i � y2,i

and thereby obtain (cf. (7.28) and (7.27))

πn�1

�n�1̧

i�0

hiYi � g1

� � πn�1

� ņ

i�0

hiYi
�� π0pYn�1q � 0.
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This formula and the induction hypothesis

πj
�n�1̧

i�0

hiYi � g1

� � πj
� ņ

i�0

hiYi � g1

� � 0, j � 0, . . . , n

complete the induction step. By definition, (7.29) means that

ņ

i�0

hiYi Ñ g1, n Ñ8
in the h-filtration. Therefore, using (7.26), we derive

0 � ņ

i�0

hirF�PpX1q � F�Ppy1,iq � F�PpX2q � F�Ppy2,iqs � F�P� ņ

i�0

hiYi
�Ñ F�Ppg1q, n Ñ8.

By the Hausdorff property, this means that F�Ppg1q � 0. Analogously, one constructs an-
other sequence Y1

i P Z�pS; Bqrrhss to prove that F�Ppg2q � 0. It follows from diagram (7.22)

that the induced map F�P : BpΣqrrhss Ñ A�pΣq is the inverse of KP. l
Remark 7.15. Assume we have two partitions P1 and P2 of Σ. By Corollary 7.12,

KP2
� K�1

P1
� pKP2

� K�1q � pKP1
� K�1q�1 : BpΣqrrhss Ñ BpΣqrrhss

is an equivalence from �P1
to �P2

. But from Theorem 6.5 and the commutative diagrams
(7.9) and (7.22) follows that this map corresponds under the isomorphism ν : BpΣq Ñ
OpMpΣ; SL2pCqqq to the canonical equivalence between these �-products given in Theo-
rem 5.28.

Remark 7.16. Recall the set-up in 7.2.1 where we constructed a �-morphism

ϕ : BpΣqrrhss Ñ BpΣqrrhss
from �Σ to �

Σ
. Suppose D and E are BFK-diagrams on Σ. We may represent them by

BFK-diagrams on Σ denoted by D, respectively E so that ϕpDq � D and ϕpEq � E. Then

ϕ
�pKPK�1q�1

�
KPK�1pDq �P KPK�1pEq�� � ϕpD �Σ Eq � ϕpDq �

Σ
ϕpEq � D �

Σ
E.

Thus, the leftmost expression can be interpreted as a recipe for constructing a �-product on
OpMpΣ; SL2pCqqq out of �P on OpMpΣ; SL2pCqqq, i.e., we have one possible answer to the
question of how one defines a �-product on the moduli space of a closed surface in terms
of the AMR �-products for punctured surfaces.

7.4 Differentiability of the BFK �-Product

A �-product on the algebra of smooth functions on a Poisson manifold M is often required
to be differential, that is, in the notation

f � g � 8̧
n�0

cnp f , gqhn, f , g P C8pMq
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the maps cn : C8pMq � C8pMq Ñ C8pMq must be given by bi-differential operators. In
order to investigate the question of differentiability for the BFK �-product, we shall derive
expressions for its coefficients cn � cnpΣq. Recalling formula (7.16), we define complex
numbers a0

i , a8i , bi, i P N by8̧
i�0

a0
i hi � � exp

�1

4
h
�
,

8̧
i�0

a8i hi � � exp
��1

4
h
�
,

8̧
i�0

bih
i � cosh

�1

2
h
�

and notice that

a0
0 � a80 � �1, b0 � 1. (7.30)

Let D and E be BFK-diagrams. Given a state S for pD, Eqwe denote by TpSq the set of trivial
loops in the corresponding diagram DpSq. We define a graded state for pD, Eq to be a pairpS, dq of a state S for pD, Eq and a map d : D#E\ TpSq Ñ N. Its coefficient is

CpS, dq � ¹
pPD#E

aSppq
dppq � ¹

tPTpSq bdptq, (7.31)

and its total degree is
°

xPD#E\TpSq dpxq. A graded state of total degree n is called an n-state.

Writing fD � νpDq for the isomorphism ν : BpΣq Ñ OpMpΣ; SL2pCqqq, we infer from (7.16)
that

cnp fD, fEq � ¸
n-states pS, dqCpS, dq fDpSq. (7.32)

A graded state is said to be degenerate if d|TpSq � 0. For such states we identify d with d|D#E,
and (7.31) simplifies to

CpS, dq � ¹
pPD#E

aSppq
dppq (7.33)

because of (7.30). Consider the special case in which D � �
i Di is a (disjoint) union of

m ¡ n BFK-diagrams so that fD �±
i fDi . Define BFK-diagrams

Dk̂ � §
i ��k

Di, k � 1, . . . , m.

As Dk̂#E � D#E, a state S for pD, Eq induces a state Sk̂ for pDk̂, Eq by restriction. If pS, dq
is a degenerate state for pD, Eq, then pS, dqk̂ � pSk̂, dk̂q, where dk̂ � d|Dk̂#E, determines a

degenerate state for pDk̂, Eq. The pigeon hole principle allows us to define the index of
a (degenerate) n-state for pD, Eq to be the minimal k P t1, . . . , mu such that d|Dk#E � 0.
Two degenerate n-states of the same index k are said to be equivalent if their restrictions to
degenerate states for pDk̂, Eq are equal. For an equivalence class S � rS, ds we may set

DpSq � DprS, dsq � DpSk̂q, CpSq � CprS, dsq � CppS, dqk̂q. (7.34)

We note moreover that S determines all of pS, dq except S|Dk#E which in turn is unrestricted.

Hence S consists of 2|Dk#E| elements, and |Dk#E| applications of relation (7.1a) restores the
crossings Dk#E and thereby proves¸pS,dqPS fDpSq � p�1q|Dk#E| fDpSq fDk

.
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By the definition of index and formulas (7.30), (7.33) and (7.34), we derive

CpS, dq � p�1q|Dk#E|CpSq, pS, dq P S .

Combining the above two formulas:¸pS,dqPS CpS, dq fDpSq � CpSq fDpSq fDk
.

Consequently, ¸
deg. n-states pS, dqCpS, dq fDpSq P x fD1

, . . . , fDmy � OpMpΣ; SL2pCqqq. (7.35)

Reversing the roles of D and E yields an analogous result. Comparing formulas (7.32)
and (7.35), we see that only the non-degenerate n-states can prevent cn from being a bi-
differential operator of order at most m� 1. We now give an example demonstrating that
this obstruction is non-trivial in general. Let Σ � Σ2,3 be the genus 2 surface with 3 bound-
ary components. In Figure 7.1 is an illustration of a BFK-diagram D � D1 \ D2 \ D3 on Σ

stacked on top of another BFK-diagram Ep� E1 \ E2 \ E3q on Σ. It is immediate that all but
one of the states for pD, Eq permit no trivial loops in their diagrams; the single exception is
called S0 (see Figure 7.2). Of course, any non-degenerate graded state for pD, Eq must have
S0 as its underlying state. Since b1 � 0, the only non-degenerate 2-state for pD, Eq with
non-zero coefficient is pS0, d0q where d0 : D#E\ TpS0q Ñ N is the function vanishing on

D#E and taking the value 2 on the singleton TpS0q. By (7.31) we have CpS0, d0q � p�1q6 1
8

so that (7.32) yields

c2p fD, fEq � 1

8
fDpS0q � ¸

deg. 2-states pS, dqCpS, dq fDpSq.
But we may find a connection rAs PMpΣ; SL2pCqq such that

fDiprAsq � 0, i � 1, 2, 3; fDpS0qprAsq �� 0. (7.36)

Figure 7.1: Two BFK-diagrams on Σ2,3. Figure 7.2: The diagram DpS0q.
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It thus follows from (7.35) that

c2p fD, fEqprAsq � 1

8
fDpS0qprAsq �� 0

despite the fact that fD � ±
fDi has a third order zero at rAs. Hence c2pΣ2,3q is not a

bi-differential operator of order at most 2 (at rAs).
This example can readily be generalized to prove for any m P N that c2pΣq is not a

bi-differential operator of order at most m if Σ has sufficiently large genus. In the same
vein one can obtain analogous results for coefficients cnpΣq, n ¡ 2. Refining the examples
a little, it is also possible to derive a more generic condition than (7.36) for a connection
to provide a counterexample. In fact, endowing MpΣ; SL2pCqq with the topology induced
from the Zariski topology on the space ApK; SL2pCqq of SL2pCq-connections on a complex
K modelling Σ (this is independent of K, cf. 2.1), we may summarize our considerations in

Theorem 7.17. Let n ¥ 2 be an even integer, and let m ¥ n be another integer. If Σ has suffi-
ciently large genus (the lower bound is linear in m), then there exists a non-empty, open subset of
MpΣ; SL2pCqq at which cnpΣq fails to be a bi-differential operator of bi-degree at most m.
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