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Abstract

The single-sink fixed-charge transportation problem (SSFCTP) consists in finding
a minimum cost flow from a number of supplier nodes to a single demand node.
Shipping costs comprise costs proportional to the amount shipped as well as a
fixed charge. Although the SSFCTP is an important special case of the well known
fixed-charge transportation problem, only a few methods for solving this problem
have been proposed in the literature. This paper first summarizes applications of the
single-sink fixed charge transportation problem in the fields of purchasing, manufac-
turing, and transportation. Exact solution methods based on dynamic programming
and implicit enumeration are afterwards discussed and improved by means of prob-
lem reduction techniques and additional bounds. Finally, the performance of the
various solution methods is compared in a series of computational experiments.

Key words: fixed-charge transportation problem, dynamic programming, implicit
enumeration, branch-and-bound, penalties

1 Introduction

The single-sink fixed-charge transportation problem (SSFCTP) is a special case of
the well-known fixed-charge transportation problem (FCTP); it is a FCTP with just
one sink node or, alternatively, just one source node. The problem is to decide on the
amounts z; > 0 of shipments to be made from a given set of suppliers j =1,...,n
to a single sink in such a way that the suppliers’ capacities b; are respected and the
sink’s demand D is satisfied at minimum shipment cost. The cost of shipping z; > 0
units from a supplier j to the sink involves a fixed charge f; as well as costs c;z;
that are proportional to the quantity shipped. The mathematical formulation of the
problem is:

Z = min i(CjZL’j + ijj) (1)

=1



t: > x;=D, (2)
=1

OSmjgbjyj, jzl,...,n, (3)

y; € {0,1}, j=1,...,n. (4)
Without loss of generality, it can be assumed that ¢; > 0, f; > 0, and 0 < b; < D
for j = 1,...,n. Furthermore, it is assumed that the capacities b; and the demand

D are integer-valued, and that Z}Ll bj — by, > D holds for each k =1,...,n

The SSFCTP is closely related to the binary knapsack problem (BKP). It is easy to
see that the SSFCTP always has an optimal solution z* such that 0 < z7 < b; holds
for at most one supplier j. In case that z; € {0,b;} for j = 1,...,n, the problem can
be reduced to a minimization knapsack problem (min-KP) by substituting z; with
bjy;. Furthermore, in case of zero or constant unit transportation costs ¢; = 0 for
j=1,...,n, the SSFCTP also reduces to a min-KP. The SSFCTP is thus NP-hard,
and can be solved in pseudo-polynomial time by means of dynamic programming.

Despite its importance as a relaxation of the FCTP, the SSFCTP did not attract
much attention in the literature. Herer et al. [13] describe a number of applications
of the SSFCTP in manufacturing and transporation. For the purposes of computing
optimal solutions, they propose an implicit enumeration algorithm that improves an
older method of Haberl [12]. Recently, Alidaece and Kochenberger [1] introduced a
dynamic programming method capable to solve the problem in O(nD) time. These
two methods are revisited in Sect. 6.2 and Sect. 6.1. Furthermore, a new implicit
enumeration algorithm for the SSFCTP is introduced in Sect. 6.3. This method
relies on ideas developed by Martello and Toth [16] (see also Martello and Toth [17,
pp. 32ff]) for the binary knapsack problem (BKP). In addition, it is shown how
reduced cost information can be exploited for the purposes of reducing the problem
size (Sect. 5) as well as reducing the search space of the dynamic programming
method (Sect. 6.1). To this end, computationally inexpensive methods for computing
lower and upper bounds are required. These methods are briefly sketched in Sect. 3
and Sect. 4. A detailed computational comparison of the different solution methods
is then given in Sect. 7, and Sect. 8 summarizes the findings. Beforehand, however,
a number of applications of the SSFCTP are described in order to underpin its
importance.

2 Applications

Herer et al. [13] mention a number of applications of the SSFCTP in the area
of manufacturing and transportation. Especially, they describe applications of this
problem in the fields of

e supplier selection,
e product distribution/fleet selection,
e process selection.



Moreover, the SSCTP is a relaxation of the FCTP. The FCTP is in turn a special
case of the fixed-charge network flow problem, a class of optimisa- tion problems
that have a huge number of applications in the area of tele- communication and
supply chain planning.

2.1 Supplier selection

Consider a firm that has a periodic demand of D units for an item. The item can
be procured from different suppliers j = 1,...,n. A supplier j cannot deliver more
than b; units per period. The problem is to decide on the periodic quantity x; of
the item to be bought from each of the suppliers j = 1,...,n in such a way that
the total cost is minimised. The costs considered are the supplier management, total
periodic purchasing, ordering and inventory holding costs:

e The supplier management cost f; is independent of the amount purchased and
incurred whenever supplier j is used.

o If p; denotes the unit purchasing cost, p;z; gives the cost of purchasing x; units
per period from supplier j.

e The ordering and inventory carrying costs are derived using the economic order
quantity model. Let F}; be the fixed cost associated with each order from supplier
J, and let @); denote the size of an order placed at supplier j every T} units of
time. If x; > 0 units are bought every period, Tjz; = @; results and Fjz,;/Q);
gives the periodic fixed ordering cost.

e If the inventory is always depleted before the next order is placed, Q,;Q;/(2D) is
the inventory per cycle of items purchased from supplier j. Thus, if h; denotes
the cost per period of holding one unit purchased from supplier j, h;Q,x;/(2D)
gives the inventory cost per period for the units procured from supplier j.

Minimising the sum

(g +1izs )

of the ordering and purchasing cost then yields the optimal order quantity

g — {./QFJ-D/hj Jif x>0,

700, ifx; =0.

The supplier selection problem that is to decide which suppliers should be used and
how many units should be bought per period from each supplier, reduces then to a
SSFCTP with the fixed-charges given by the supplier management costs f; and the
unit supply cost ¢; computed from

F, Q:
¢ = p; + (Q* +h32D> = p; +\/2Fh;/D .



2.2 Product distribution/fleet selection

The next application described by Herer et al. [13] is a typical fixed-charge trans-
portation problem. A firm may choose a set of trucks or carriers from a given set of
available trucks in order to meet a number of daily delivery needs at minimum cost.
Each truck may only be used once within the day and has a capacity of b; units. A
fixed-charge of f; units is expended for each truck used, and a variable cost of ¢; is
incurred for each unit assigned to a truck. The problem is then to select the trucks
to be used and to allocate the required daily transport capacity of D units among
the trucks such that the sum of the variable and fixed costs is minimised.

2.8 Process selection

As a third application of the SSFCTP, Herer et al. [13] mention the problem of
process selection. A predetermined amount of D units of a product can be produced
by means of different processes 7 = 1,...,n. Each process j has a given capacity of
b; units per period. The unit production cost of a process is denoted by ¢;, and the
fixed costs f; reflect the periodic discounted purchase and maintenance costs.

Chauhan and Proth [5] consider a related decision problem. A given set of providers
feed a single manufacturing unit. However, the quantity a provider can deliver must
lie between a minimum and a maximum value. The upper bound is a technical limit,
whereas the lower bound stems from economical considerations. Furthermore, the
costs incurred to feed the manufacturing unit are now assumed to be a concave
function of the quantity received from a provider.

2.4 Relaxation of the FCTP

The fixed-charge transportation problem (FCTP) extends the SSFCTP by consid-
ering m > 1 demand nodes. The problem can be formulated as the following linear
mixed-integer program:

7/ = min

J

s.t.:ijk:dk, kzl,...,m,
j=1

M=

i (Cjkl'jk + fjkyjk)
1k=1

3

m
ijk:sj, j=1...,n,
k=1

“?T‘ &
Il
-
3

0§$]k§b]ky]k7]:1’7nv
yjkE{O,l}, j=1...,n



where dj, is customer k’s demand, s; is the amount supplied by supplier j, cj; is the
cost of transporting one unit on arc (j, k), f;r denotes the fixed cost on arc (j, k), =,y
is the amount to be transported on arc (j, k) and y;; is a binary variable equalling
1if Tjk > 0.

Consider the following Lagrangean decomposition of the above program:

(1) Create copy variables 2 and yj;, for j=1,....,nand k=1,...,m.

(2) Write the demand constraints in the original variables z;;, and state the sup-
ply constraints in the copy variables z7;. All other constraints are restated in
dependency of the orginal as well as the copy variables.

(3) Dualize the identity constraints zj, — 2%, = 0 and y;;, —yj;, = 0 with Lagrangean
multipliers Aj, and pui, respectively.

It is then easy to see that the resulting Lagrangean subproblem decomposes into n
single-source fixed-charge transporation problems

m
min Y Ak + iKYk
k=1

m
s.t.: Zl’jk =35j,
k=1

ngjkgb]ky]kv k::la"'am?
yjkE{O,l}, ]{]:1,...,777,7

for each supplier j = 1,...,n, and into the m single-sink fixed-charge transportation
problems

min Z(Cjk — /\jk)l'jk + (f]k - Njk)yjk>
j=1

n
s.t.: Zl’jk = djk7
j=1

ngjkgb]ky]ka.]zlaana
y]ke{071}7 jzla"'vna

for each customer k = 1,...,m. Methods for (exactly) solving the SSFCTP are
therefore crucial within such a Lagrangean decomposition approach to the FCTP.

The FCTP is itself a special network flow problem with fixed charges. Fixed-charge
network flow problems have a large number of applications. They play, e.g., an im-
portant role in the field of logistics as well as telecommunications network design,
see, e.g., Gendron et al. [10] and Costa [6]. Such optimization problems are also
used to model different supply chain planning problems. Eksioglu [8] and Eksioglu
et al. [9], e.g., consider a problem of integrating production, inventory and trans-
portation decisions in a two-stage supply chain. The problem is reformulated as an
uncapacitated fixed-charge network design problem and solved heuristically.



3 Lower Bounds

A lower bound on the optimal objective function value of the SSFCTP can easily
be obtained by solving its linear relaxation. Since f; > 0, y; = x;/b; will hold in an
optimal solution to the LP relaxation, which thus reduces to the linear program

n
ZLP = min Z €j$j
Jj=1

s.t.: Zazj =D, (5)
j=1
ngjgbj,jzl,...,n,
where e; := ¢; + f;/b;. Assume that e; < ey <.-- <e,, and let s € {1,...,n} be
such that )
> bj<D and > b;>D.

j=1 =1
An optimal solution to (5) is then given by

b; yforj=1,...,s—1
=D ¥y forj=s (6)
0 yforg=s+1,...,n.

Optimality of the above LP solution is easily derived by considering the dual of the
linear program (5). Denoting the multipliers of the demand constraint (2) and the
variable upper bounds (3) by ¢ and n;, j = 1,...,n, respectively, the dual program
is given by

7P = max aD—anbj
j=1
stio—n;<e forj=1,...,n,
ccR, n>0forj=1,...,n.

The solution ¢ = es and n; = max{0, e; — e;} for j = 1,...,n is a feasible dual
solution and leads to the same objective function value as the primal solution (6).

The supplier s plays the same role as the so-called split item (or critical item or break
item) does for the BKP, and may therefore be called “split supplier”. If 2, = bs holds
in the LP solution, this solution is also optimal for the integer program. Sorting the
suppliers can be done in O(nlogn) time. Using similar procedures as those for
the knapsack problem (Balas and Zemel [2]), the split supplier may however also be
found without sorting in linear time. As in case of the binary min-knapsack problem,
the linear programming bound Z*¥ can however be arbitrarily bad.

The LP bound can be improved by pegging the variable ys to 0 and 1, respectively,
recomputing the resulting linear programming bound and taking the minimum of



both values. At the expense of a deteriotation in the bound’s quality, the compu-
tational effort can substantially be reduced by relaxing the constraints xgy; < bgyq
and zs_1 > 0 when the variable y, is temporarily fixed at 0 and 1, respectively. This
way, Martello and Toth [16] improved the LP bound for the BKP. In case of the
SSFCTP, setting y, = 0 gives

s—1 s—1 s—1
Lo=3 eb;+eonr (D -y bj> = 2" 4 (e — ) (D -y bj>
= = =1

as a lower bound on the objective function value on this branch. A lower bound
for the branch y, = 1 is obtained as follows. If e,_; < ¢, the LP bound under the
additional constraint y, = 1 is given by

S

s—1 s—1
Li=Yeb + f, +cs(D— ij) = 7P 4 (e —e)(D — 3.
= =

J=1

In the case of e,_1 > ¢, dualizing the constraint > jzs Tj = D — by with a multiplier
of e;_1 gives the lower bound

Ll = Csbs + fs + es—l(D - bs)

+min{2(ej —es_1)r;j:0<ux; <bjforj=1,....,n,j# s}
j#
s—1 s

= esbs + 63,1(D — bs) + Z(ej — 6571>bj = Z ejbj + €s5-1 (D — Z bj>

=z 4 (es—1 —€s)(D — ibj)

Jj=1

on the branch y; = 1. Summarizing, one thus obtains
L, = 7P ¢ (max{cs, es—1}) — es) (D — Z bj>
j=1

and
Ly = min{Ly, L,} > Z*F (7)

as an improved lower bound on the objective function value Z of the SSFCTP.

Herer et al. [13] propose other lower bounds. Their lower bound Lbs is also based on
the linear relaxation; they do, however, independently minimize the sum of the fixed
costs and the sum of the transportation costs. This bound is thus dominated by the
LP bound. Their second lower bound Lbs is based on minimizing the transportation
cost in the LP relaxation and adding the sum of the m* smallest fixed costs, where m*
is the minimum number of suppliers required to meet the sink’s demand. Although
this bound is not generally dominated by the LP bound, it should normally be much
weaker.



4 Upper Bounds

A first feasible solution is directly available from the solution, say z%*, of the LP
relaxation (5) by setting x = x¥" and y; = 1 if xfp > 1 and y; = 0 otherwise. The
cost of this solution is
s—1
79 = Zejbj + fo +csxtt = 75 4 fo 4 (e — eg)xtt = Z5P 1 fs(l — xSLP/bS> .
j=1

This heuristic solution approach closely resembles the greedy algorithm for the
knapsack problem. As in the case of the minimization knapsack problem (see, e.g.,
Kellerer et al. [14, p. 413]) the upper bound Z% may, however, be arbitrarily bad.

After the first s — 1 flow variables x; were set to the upper bound b;, the remaining
demand D = D — Zj;% b; is usually smaller than the split supplier’s capacity b, (oth-
erwise the LP solution is also optimal for the integer program). In order to complete
the solution, it is therefore reasonable to use the “effective capacity” min{D, b;} for
the purposes of linearizing the fixed costs and selecting further suppliers that supply
the remaining demand. This gives the following “adaptive” greedy algorithm that
was already considered by Herer et al. [13]:

Step 1: For j=1,...,s —1set 2; = b; and y; = 1. Set D =D — >*_{ b;.
Step 2: Find ¢ with ¢; + f;/ min{D,b;} = min {cj + f;/ min{D, b} : z; = 0}.
j=8,...,n

Step 3: Set x; = min{D, b;} and D := D — z;. If D > 0 go back to Step 2.

Although the above procedure usually gives upper bounds of reasonable good quality,
the procedure’s solution can also be arbitrarily bad. Polynomial-time approximation
algorithms with a guaranteed worst-case performance can however be obtained by
adjusting approximation algorithms for the min-knapsack problem as those propsed
by Csirik et al. [7] and Giintzer and Jungnickel [11] to the case of the SSFCTP. A
deeper analysis of greedy-type heuristics for the SSFCTP and some approximation
results for the SSFCTP will be the subject of an accompanying working paper.

The feasible solutions computed as above can be improved slightly by means of
recomputing the flows on the selected arcs j € J; :=={j =1,...,n:y; = 1}. This
is easily accomplished by sorting the arcs j € J; in non-decreasing order of the unit
costs ¢;.

5 Problem Reduction

Branch-and-bound methods for the fixed-charge transportation problem usually em-
ploy penalties for the purposes of pegging binary variables and improving the linear



programming bound (Kennington and Unger [15], Cabot and Erenguc [4], Palekar
et al. [19], Bell et al. [3]). Penalties are lower bounds on the change in the objective
function value caused by setting a variable to its lower and upper bound, respec-
tively. In the following such penalties are derived for the SSFCTP and used to peg
binary variables to zero and one, respectively, as well as to reduce the arc capacities
and to improve the lower bound on the flow x; in the case that y; is set to one.

5.1 Pegging binary variables to zero

Consider the Lagrangean relaxation of the SSFCTP that is obtained from dualizing
the demand constraint (2) with a multiplier value of e = ¢s + fs/bs, where s is
again the index of the split supplier. Because the arc capacities b; are assumed to be
integer, the constraints x; > y; are additionally included. This yields the Lagrangean
subproblem

ZME = ¢,D + min zn:((cj —es)r; + ijj)

=1

s.t.: ;j <z; <bjy; forj=1,...,n,
y; €{0,1} forj=1,...,n

or, equivalently,
ZM — ¢, D + min zn:(max{O, ¢; —es} +min{0,¢; —es}b; + fj)yj
=1
s.t.: ;j € {0,1} for j=1,...,n.

Because b; > 1,

max{0, ¢; — es} +min{0, ¢; — es}b; + f; = f; + min{c; — e, (¢; — €,)b;} =: f;
results. Moreover, since e; := ¢; + f;/b; < e, and thus
?j = fj + Cjbj — esbj = <€j — es>bj S 0

holds for j € {1,..., s}, one obtains
LR _ e, D + Z(ej - Gs)bj
j=1

—I—min{ > fui:y;€{0,1} forj:3+1,...,n}
Jj=s+1

:ZLP+miH{ > fiviy {01} fij:3+17-'-’”}'
Jj=s+1

Setting y; = 1 for j € {s+ 1,...,n} yields therefore an increase in the objective
function value of at least f; and the variable can be pegged to zeroif f; > ZVP —Z*",
where ZUB is the objective function value of the incumbent solution.



5.2 Pegging binary variables to one

Let the flow z, of a supplier k € {1,...,s — 1} with e; < e4 be limited by &} < by.
A lower bound on the objective function value that results if the constraint x; < I
is included, can be obtained from the linear program

L(#y) :=e,D +min » (&5 — e,)z;
~ . (9)
st:0<z; <bjforj=1,...,n,
TE < Ty,

that results from the LP relaxation (5) if the demand constraint (2) is dualized
with a multiplier value of e;. An optimal solution to this linear program is given by
zj=>bjforj=1,...,sand j #k, v, = T3, and ; = 0 for j = s+ 1,...,n. Hence

L(iy) = Z" — (by — @) (ex — €5)

and any feasible solution that improves an incumbent solution of objective function
value ZY8 must obey the constraint

ZUB _ gLP
B

ZLP — (bk — l‘k)(ek — 65) S ZUB = Tk Z [bk +
€ — €Cg

where [a] is the smallest integer larger than a or equal to a. Each binary variable y;
with j € J;:={j=1,...,s—1:1; > 1} can then be pegged to one. The SSFCTP
has however at least one optimal solution such that at most one of the flow variables
x; > 0 is not at its upper bound b;. Thus if |J;| > 1, the flow on each arc j € J;

except on the arc j' = argmax{c; : j € J;} can therefore be fixed to its upper bound
b;.

5.8 Improving the bounds on the flow variables

Consider the linear program (9) with the constraint x; < & replaced by z, > & > 0
for a supplier k € {s+1,...,n} with e; > e,. It is then apparent that imposing the

constraint z, > 7} increases the LP bound at least to the amount Z%* + (er —es) T
Hence
ZUB _ ZLP
e 222,
€ — €
must hold in any feasible solution that improves the incument solution of value ZV2
and the arc capacity by can be reduced to uy if u, < bg.

Bounds on the flow z; of an arc k € {s+ 1,...,n} may also be obtained from the
Lagrangean relaxation (8). If for £ € {s + 1,...,n} the flow x; is set to a value
of &, > 0, &) < by, the objective function value of the Lagrangean subproblem (8)
increases to

Z" + o+ (o — es) T,

10



and a solution that improves the incument ZY2 must satisfy the constraint
fk + (Ck — es):ck < ZUB — ZLP .

Thus, in case of ¢, > e, one obtains

ZUB _ ZLP _ ka

T S ﬂk, where dk = {
Cr — €5

while

ZUB _ yLP _
Ty > { fk-‘ =l
C — €5

results in the case that ¢, < ez. If £, > 1, this bound can be used as a lower bound
on the minimum amount of flow on arc k£ provided that y, = 1. The upper bound
g, can be used instead of uy to reduce the arc capacity by if 4 < up and g < by.

6 Algorithms

In the sequel, three algorithms for solving the SSFCTP are described. The next
section summarizes the dynamic programming method of Alidaee and Kochenberger
[1] and shows how the search space might be reduced. Section 6.2 briefly recapitulates

the enumeration algorithm of Herer et al. [13], and Section 6.3 adapts an algorithm
of Martello and Toth [16] for the BKP to the SSFCTP.

6.1 An Improved Dynamic Programming Algorithm

Let G;(S) be the minimum cost required for shipping D — S units from suppliers
j = 1,...,n to the sink node given that suppliers j = 1,...,2 — 1 supply S €
{Smin_gmin 47 SmaY ynits, where SM = max{O,D — i bj} and S =

min{D, Z;;l bj}. That means

G;(S) = min zn:(cj:cj + f5y;)

j=i

s.t.: Z:cj =D-5,
j=i

ngjgbjij J =1y .51,
y; €4{0,1}, j=1,...,Mm

for Smin < § < Smax G(S) = oo for S ¢ [SMin, SMax] G(D) = 0, and G1(0) = Z.
The function G;(S) can be computed recursively by means of the recursion

GZ(S) = min{GiH(S), mln{fl + ¢z + Gi+1<S + 1'1) cx;=1,... ’x;{nax}} ,

11



max

where x"** = min{b;, D—S}. The complexity of the resulting dynamic programming
algorithm is then O(nD max; b;).

Alidaee and Kochenberger [1] now make use of the variable transformation r := x;+S5
yielding

Gi(S) = min{G’iH(S), min{fi —S+Hi(r):r=5+1,...,min{S + b, D}}} :

where H;(r) = ¢;r + Gi11(r). If the function values H;(r) and their arguments r are
stored in a list Hlist := {(ry, H;(11)), ..., (rq, Hi(rq))} such that r;_; is the largest
r < r with H;(r) < H;(r;), one obtains

GZ(S) = min{GiH(S), fz — CiS + Hz(rl)} .

The list Hlist is computed once for S = S™" and updated accordingly when moving
from S to S + 1. The complexity of the resulting dynamic programming method is
then reduced to O(nD).

The computational effort required by this dynamic programming approach might
be reduced if the range [S™", S™**] on which the function G;(.5) must be evaluated
for each t = n,n — 1,...,1 could be made smaller. For this purpose, consider the
function

Zi(S) = Zn(S) + Zin(9),

where

1—1

le(S) = min Zejxj
j=1
1—1
s.t.: ij =95,

j=1

ngj Sb] forjzl,...,i—l
and

ZZQ(S) = min Zejxj
j=t

s.t.: ij = D—S,
J=1

0<z; <bjforj=14,...,n.

It is again assumed that e; < ey < --- < e, and that s is the index of the split
supplier. The function Z;(.S) is difficult to evaluate. The duals of the linear programs

12



above are given by

i—1
Z;1(S) = max 015 — anj

. . (10)
s.t..al—nljgej forj=1,...,i—1,

or€R, m; >0 forj=1,...,i—1

and
ZZQ(S) max 0'2 D S 2772]
(11)

s.t.iop — 1 < e forj=14,...,n,
o €ER, my; >0 forj=i,...,n.
First assume that ¢ > s+ 1 and e; > e,. A feasible solution to the dual program
(10) is then given by o1 = e, m; = es —e¢; for j = 1,...,s, and nm; = 0 for
j=s4+1,...,72— 1. Hence

S) > esS — Z )by =esD — Z —es(D—9)
_ZLP—eS(D—S).

A feasible solution to (11) is given by 09 = e; and 1y; = 0 for j =i, ..., n. Therefore,
ZZQ(S) Z GZ(D - S) and in total

Zi(8) > Z* 4 (e; — e ) (D - 9).

Thus, if ZY2 denotes again the objective function value of an incumbent solution,
the following lower bound is obtained on the amount S that has to be supplied by

nodes j =1,...,7— 1 in an improved solution:
ZUB _ 7LP
P 4 (e;—e)(D—-S) <78 = §> [D - ] . (12)
€; — €
In the case of ¢ < s, the solution 0y = ¢,y and n1; =e;_1 —¢jfor j=1,...,i—11s
feasible for (10), while a feasible solution to (11) is given by oo = €5, 1m2; = €5 — €,
for j =1,...,s,and ny; = 0 for j = s+ 1,...,n. Evaluating the objective functions
of the dual programs (10) and (11) at these solutions gives
i—1 s
ZZ(S) Z 62'_15 — Z(@i_l — ej)bj -+ €5<D — S) — Z(Gs — Gj)bj
j=1 j=i
i—1 s
= (61',1 — GS)S — Z(bj(€7;71 — 6]‘) — bj(es — ej)) + Des — Z(es — ej)bj
j=1 j=1
= (eim1 =€) = > _(eim1 —eg)by + 27
j=1

ZLP+ s — €i—1 (Z@—S)

13



Thus if e, > ¢;_1, the condition Z;(S) < ZUP implies

i—1 UB LP
VAR A
- | (13)
€s — €i—1
When the lower bound S™" at stage ¢ is sharpened using expressions (12) and (13),
respectively, one has to additionally take into account that suppliers j =1,...,1—1

min

must at least supply S;iT — b; units.
6.2 The Implicit Enumeration Algorithm of Herer et al.

Herer et al. [13] propose an implicit enumeration algorithm for solving the SSFCTP.
The suppliers are reordered such that ¢; < ¢g < --- < ¢,. The method then enu-
merates all feasible solutions y € {0, 1}" in lexicographically descending order. Due
to the ordering of the suppliers, the corresponding solution to the flow variables is
easily determined by setting x; = b; if y; = 1 as long as 37, z; < D, and to set the
last z; with y; = 1 equal to the remaining demand. In order to avoid that all feasible
solutions have to be enumerated explicitly, Herer et al. [13] use lower bounds as well
as domination rules. A backtracking step consists in setting the rightmost y; = 1 to
zero; the bounds Lby and Lbs mentioned in Section 3 are then computed in order to
check if this branch with y; = 0 can be pruned. The domination rules proposed by
Herer et al. [13] can be stated as follows.

Definition 1. A supplier 7 is said to strictly dominate a supplier j # i if

bjgb, and fi+cixjSfj+cjxjforxj:1,...,bj.

Furthermore, a supplier i is said to weakly dominate a supplier j # i if

(bz > bj and fz + bjci < fj + bjCj) or (bz < bj and fz + bici < biCj) .

If i weakly dominates j # i, then there is an optimal solution to the SSFCTP such
that x; = 0 implies x; < b; (see [13, Property 3| for a proof). If supplier ¢ strictly
dominates j # 4, then obviously z; = 0 implies ; = 0 in an optimal solution to
the SSFCTP (see also Property 4 in [13]). Furthermore, if ¢; < ¢;, then i strictly
dominates j if and only if f; — f; < ¢;j —¢;. In the case of ¢; > ¢;, ¢ strictly dominates
g if and only if f; > fi + (¢; — ¢;)b;.

Herer et al. [13] use the above notion of dominance in the following way.

(1) Let k be the index of the last y-variable explicitly set to one. If £ dominates a
supplier 7 < k such that x; > 0, then x; must not be set to zero.

(2) If on backtracking xj is set to zero, then x; = 0 follows for all j > k that
are strictly dominated by k and x; < b; follows for all j > k that are weakly
dominated by k.
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(3) Let F' be the set of all free variables j > k that strictly dominate a fixed
variable ¢ < k with ; > 0. Then z; > 0V j € F follows, and one may thus set:
r;=0b;Vje F\{j} where j/ = argmax{c; : j € F'}.

6.3 An Alternative Implicit Enumeration Algorithm

This method uses the lower bound (7) within an enumeration algorithm for the
SSFCTP similar as Martello and Toth [16] did for the BKP. To this end, the sup-
pliers are first sorted according to non-decreasing linearized costs per unit, that is
e; < ey < --- < e,. Based on this ordering of the suppliers, feasible solutions are
then enumerated in lexicograhically decreasing order. A backtracking step sets the
last variable y; that was explicitly set to one in a previous forward move to zero.
The bound (7) is then computed in order to check if this branch can be pruned.
Furthermore, to facilitate the computation of the flows x;, a second ordering of the
suppliers according to non-decreasing unit costs c¢; is kept. The overall algorithm
can be described as follows:

Step 0: Sort the suppliers such that e; < --- <e,.

Step 1: Solve the LP relaxation (5). Let 2% be the resulting solution and ZL¥
denote the LP bound. If 25 € {0,0;} for j = 1,...,n, then z"" is optimal for the
SSFCTP. Otherwise compute the bound Ly > Z%F in (7). Set L* = L.

Step 2: Apply the “adaptive” greedy algorithm of Sect. 4 in order to obtain a second
feasible solution to the SSFCTP. Let ZUP denote the objective function value of the
best feasible solution z* found this way. If Ly, > ZYP then terminate.

Step 3: Optionally try to reduce the problem as shown in Sect. 5. Determine a second
ordering of the n’ remaining free variables according to non-decreasing unit costs c;.

Set S=D.

Step 4: If 2P = 0 then terminate, 2* with objective function value Z is an optimal
solution. Otherwise, set k = max{j =1,...,n": 2" >0}, §:= S —af", 2P = 0.

Step 5: Let FY and F}= be the set of all suppliers j > k that are strictly and weakly

dominated by supplier k, respectively. Set s = k and S’ = S. As long as S < D do

the following:

oeLet s:=s+1landset b, =0if s € FQ, b, =b,—1if s € F;7, and V], = b,
otherwise.

e Set xL¥ = min{¥,, D — S}, ZL¥ := ZLP + e,alt and S := S + 2.

Step 6: Let jo = min{j > s : j ¢ F{} and j; = max{j < s :al" > 0}. Set Ly = o0
if jo > n' and Ly = Z*F + (ej, — es)xl? otherwise. Set L; = Z*F if j; = 0 and

Ly = Z"P + (es —max{cs, ), }) (bs — 2EF) otherwise. If Ly := min{Lg, L1} > ZU7, set
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S = 5" as well as xJLP =0for j=k+1,...,n" and goto Step 4. Otherwise continue
with Step 7.

Step 7: Use the ordering of the suppliers according to non-decreasing unit costs c;
to determine the best feasible solution z" with x5 = 0 if 27" = 0. Let Z°" be
the objective function value of this solution. If Z¢" < ZUB then set ZUB := Zcwr
and z* =z, If L* > ZUP terminate, 2* with objective function value ZY7 is an
optimal solution. If Ly > ZYB then set S = S’ and a:JLP =0forj=k+1,...,n
Return to Step 4.

The above algorithm does not make use of the third dominance test mentioned
in Sect. 6.2. If supplier j strictly dominates a supplier ¢ < j then, by definition,
b; > b; and f; + ¢;b; < fi + ¢;b;. Due to the ordering of the suppliers according to
non-decreasing values of the e;, we have e; < e;. Hence

fi fi fi

4 < -+ =e<¢ =""+¢.

bi 7 T b T
The above inequality in turn implies that b, > b;, and thus b; = b;. With b; = b;
one further obtains that f;/b; + ¢; = f;/b; + ¢; = e¢; < e; and thereby e; = €;. A
supplier j can thus only strictly dominate a supplier ¢ < j, if ¢; = ¢; and b; = b;.
Since this barely occurs, the third dominance rule will usually not be applicable.

7 Computational Results

The algorithms presented in the preceding section were coded in C, compiled with
the Gnu C compiler (version 2.95.2) using the compiler option —03, and run on
a 750 MHz Pentium III PC equipped with 512 MB RAM and operated with a
Linux system, kernel version 2.2.16. Sect. 7.1 describes how the test problems were
generated, and Sect. 7.2 reports on the computional results.

7.1 Test Problems

Two different groups of test problem instances were generated.

The first group of test problems consists of 60 problem instances for each problem
size of n = 500, 1000, 5000, and 10000 suppliers. According to the problem genera-
tion method proposed by Herer et al. [13], the problem structure is determined by
two parameters.

e The b-ratio B, = 100- D/ Y, b; estimates the percentage number of suppliers that
supply a positive amount in an optimal solution. The computational experiments
are based on the four b-ratio values B, = 5%, 10 %, 25 %, and 50 %. Herer et al.
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[13] use in fact the absolute number B]. = B, - n/100; utilizing the same expected
number of employed suppliers for problems that largely differ in size is however
not meaningful.

e The F-ratio F, = f/(cb) is the ratio between the average fixed cost f = 13, f;
and the average transportation cost ¢ = (£ ¢;)(% X;b;) per supplier. Three
different F-ratio values were used, 0.3, 0.6 and 1.

The sink’s demand was set to D = 100000 and the other problem data were
generated randomly such that f; € U[75000, 125000], ¢; € U][8,12], and b; €
U[7500, 12500}, where Ulay, as] denotes a uniformly distributed random number be-
tween a; and ap. The fixed costs f; and the suppliers’ capacities b; were then scaled
to meet the desired b-ratio and F-ratio. Furthermore, the capacities as well as the
fixed costs were rounded to the nearest integer. 5 problem instances were then gen-
erated for each problem size and combination of b-ratio and F-ratio.

In the second set of 20 test problems, 5 instances were generated for each of the
problem sizes of n = 500, 1000, 5000 and 10000 suppliers. In this case, the suppliers’
capacities b; are integer random numbers from U[10, 100]. The sink’s demand was
set to D = 0.53;b; and rounded to the nearest integer. The cost data are then
generated such that a positive correlation between the capacity b; and a supplier j’s
total cost C; := f; 4 ¢;b; is achieved. To this end, C; is computed as C; = b; 4 3;,
where ; € [0,b;] is a random integer. The cost C; is then distributed between
fixed and unit cost by setting f; = ¢C; and ¢; = (1 — ¢)C;/b; with ¢ € U[0.75,1).
The linearized costs e; are in this case given by e; = 1 + (;/b; and lie between 1
and 2 with an expected value of 1.5. These instances can be expected to be more
difficult due to the correlation between capacities and costs and the similarities in
the linearized costs.

7.2 Computational Comparison of the Proposed Methods

For reasons of comparison, CPLEX’s MIP solver (version 7.1) was additionally em-
ployed to solve the test problems. To this end, the LP relaxation (5) was first solved,
and then the upper bounds of Sect. 4 were computed in order to reduce the prob-
lem by means of the reduction tests of Sect 5. The reduced problem and the upper
bound was then passed to CPLEX’s routine CPXmipopt() using default values for
the MIP solver’s optional parameters, except of the relative optimality tolerance
that was set to 107%. The same optimality tolerance was also used in case of the
other two enumerative algorithms. Furthermore, the computation time was limited
to 2100 seconds per problem instance.

Table 1 compares the computation times in seconds obtained with the dynamic pro-
gramming algorithm, the implicit enumeration approach of Sect. 6.3 and CPLEX
on the first group of test problems. Before one of the algorithms was invoked, the
test problem instance was first reduced by means of the described reduction tests.
In case of the dynamic programming method, the bounds on the amount S™* that
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Table 1
CPU times of DP, enumeration algorithm and CPLEX for group 1 test problems
dyn. prog. alternative EA CPLEX
n B, | 030 0.60 1.00| 0.30  0.60 1.00 0.30 0.60 1.00
500 5] 394 731 747 001 0.15 0.32 0.39 3.73 276.18
10 | 1.98 4.21 453 | 0.08  0.03 0.14 1.36 2.11 5.81
25| 0.79 1.05 1.93| 0.05 0.07 0.14 2.53 1.60 6.58
50 | 0.28 1.08 1.01| 0.01  0.20 0.13 1.06 11.85  13.85
1000 5] 380 7.85 6.41| 0.12  0.04 0.54 8.80 438  32.09
10 | 0.65 2.06 1.99| 001 0.14 0.04 1.43 4.80 1.19
25| 0.28 1.64 1.45| 0.08  0.44 0.17 819 19.14  23.86
50 | 0.44 0.93 0.88| 0.11  0.10 0.25 8.31 8.72  92.74
5000 5 1.20 292 621 018 0.75  40.17 | 21.78 21571 577.29
10| 1.27 146 299 | 054 1.07 20.25 | 84.01 20451 29.10
25| 0.31 0.83 0.93] 0.19  0.39 0.24 | 41.72 212.66 188.93
50| 0.39 0.32 0.81| 012  0.12 0.49 9.15 53.61  51.97
10000 5| 1.92 1.82 449| 0.73 6.70 133.25 | 13257 633.52(1) 499.27®)
10 | 1.41 2.07 269 | 570 12.21  16.42 | 132.22 834.66 153.621)
25| 0.81 1.46 1.22| 2.05 0.79 0.88 | 282.31  36.72 10.85()
50 | 0.36 0.93 0.55| 013  1.31 0.61 | 1224 5336  21.87()

has at least to be supplied by the first ¢« — 1 suppliers were also determined in order
to reduce the search space. The table shows the CPU times in dependence of the
problem size n, the b-ratio B, and the F-ratio F,.. The computation times are aver-
aged over the 5 instances per problem size and combination of b-ratio and F-ratio
that could be solved within the time limit of 2100 seconds. The small superscripted
number in brackets shows how many of the 5 instances were not terminated within
the time limit. The dynamic programming algorithm required 517 seconds in to-
tal to solve all the 240 test problem instances, while the enumerative algorithm of
Sect. 6.3 required 1243 seconds. The CPLEX routine was not able to solve every
single instance within the time limit of 2100 seconds; in case of 9 instances the pro-
cedure stopped early due to the time limit; the total CPU time required for solving
all other 231 instances amounted to 22796 seconds. The first two solution methods
thus significantly outperform the CPLEX procedure. As already observed by Herer
et al. [13], the test problems tend to get more difficult when the F-ratio approaches
1. In case, e.g., of the dynamic programming method, the computation time doubled
on average when the F-ratio raises from 0.3 to 0.6; and an additional increase of F..
from 0.6 to 1 further raised the running time by 20% on average. An even larger
average increase in computation time could be observed in case of the enumeration
algorithm. The impact of the b-ratio on the running time is different. As could be
expected, the enumeration algorithm tend to consume more running time if about
50% of all suppliers need to supply a positive amount. The running time of the dy-
namic programming algorithm however decreases if B, increases. The computational
effort required by this method strongly depends on the average supplier capacity,
and this figure declines with increasing B,. Because the sink’s demand is the same
for all problem instances, this is also true if the number n of suppliers gets larger.
Thus, the DP method required in tendency less time to solve the larger instances of
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Table 2
CPU times of the algorithm of Herer et al. and CPLEX (without reduction)

EA of Herer et al. CPLEX without reduction
F. F,

n B, 0.30 0.60 1.00 0.30 0.60 1.00
500 5 0.22 8.59 4.97 3.53 268.02 420.33
10 4.40 11.81 61.15 6.79 5.15 5.88

25 19.70 134.67  226.17 20.42 4.37 21.05

50 20.43 521.95 558.54 7.04 10.74 18.23

1000 5 17.32 395.62  472.75 31.20 47.19 134.10
10 6.62 82.35 360.39 31.58 58.44 19.27

25 59.67 1291472 82472 (D) 102.97 49.93 47.62

50 | 386.67(Y  796.473)  9.83() 48.58 23.99 126.49

Table 1 than to solve the smaller ones.

The enumeration algorithm of Herer et al. [13] preceded by the problem reduction
method as well as CPLEX’s MIP solver without the use of such a reduction test were
also applied to solve the test problems. Table 2 shows the results. Due to the large
running times, these two procedures were however not applied to test problems of
size larger than n = 1000. The enumeration algorithm of Herer et al. did not succeed
to solve 10 of the instances of size n = 1000 within the time limit of 2100 seconds; the
time required to solve all other 110 instances of size n < 1000 amounted to 25169
seconds in total, which is about 20 times as much as the enumeration procedure
of Sect. 6.3 required to solve all 240 instances to optimality. Without a preceding
application of the reduction tests, it took 7565 seconds in total to solve the instances
of size n < 1000 to optimality by means of CPLEX’s MIP solver, in contrast to 2703
seconds if the problem reduction tests were applied.

Table 3 compares the running times of the dynamic programming algorithm, the
alternative enumeration method and CPLEX (with application of the reduction
tests) on the 20 single instances of the second group of test problems. Also, on these
test problem instances, the dynamic programming method as well as the enumerative
algorithm both significantly outperformed CPLEX; and dynamic programming did
also better than the implicit enumeration approach, though the latter was faster
than dynamic programming on the smallest test problems of size n = 500.

In order to assess the value of the reduction tests of Sect. 5 and the bounds discussed
in Sect. 6.1, the enumerative algorithm of Sect. 6.3 and the dynamic programming
algorithm were applied with and without the use of these measures to solve the test
problems of the first group. Table 4 compares the running times (summed over the 60
problem instances for each problem size) of the branch-and-bound method depend-
ing on whether the problem reduction tests were applied or not. The table shows
that a preceding application of the reduction tests saved on average between 46% to
70% of the method’s computation time for problems of size n = 500 and n = 10000,
respectively. If the dynamic programming algorithm was applied to the group 1 test
problems in a pure form, that is without a preceding problem reduction and compu-
tation of the bounds discussed in Sect. 6.1, the computation time did only depend on
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Table 3
CPU times of DP, enumeration algorithm and CPLEX for group 2 test problems

n instance dyn. prog. alternative EA CPLEX
500 1 0.04 0.01 6.06
2 0.23 0.07 4.84
3 0.20 0.11 9.84
4 0.08 0.01 0.08
5 0.17 0.04 8.96
1000 1 0.05 0.10 30.20
2 0.04 0.50 34.42
3 0.47 0.24 87.18
4 0.05 0.06 6.91
) 0.04 0.11 4.35
5000 1 0.70 1.64 *
2 0.40 98.66 *
3 4.95 * *
4 0.29 0.02 1060.74
5 0.18 11.44 *
10000 1 2.62 9.03 *
2 1.14 * *
3 2.86 3.71 299.58
4 3.53 3.95 665.81
5 3.67 0.68 *

* Indicates that the time limit of 2100 seconds was exceeded.

Table 4

CPU time of the enumerative method of Sect. 6.3 with and without reduction test
problem size n 500 1000 5000 10000 sum
CPU time with reduction test 6.59 10.18 322.55 903.99 1243.31

CPU time without reduction test 12.10 22.12 768.15 3030.02 3832.39

the b-ratio and the problem size n. The method required then 3355 seconds to solve
all 60 problem instances of size n = 500 and 5832 seconds to solve the 60 instances
of size n = 1000. If the reduction test and additional bounds were exploited, it took
just 320 seconds to solve all these 120 test problems. Larger test problems could not
be solved by means of the pure method, since the memory requirements exceeded
then the available memory. Even if the reduction tests were carried out and just
the computation of the bounds on the amounts S™" were skipped, a number of the
larger problem instances could not be solved due to memory limitations. Table 5
shows the average running time per problem instance of the dynamic programming
algorithm depending on whether the bounds on S™® were computed or not. This
time the numbers in brackets give the number of problem instances that could not be
solved due to insufficient memory. The table shows that the bounds on the amounts
Smin were very effective and helped to considerably reduce the running time as well
as the memory requirements of the dynamic programming algorithm.
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Table 5
Average running times of DP with and without use of the bounds on S™i»

problem size n 500 1000 5000 10000
with bounds on ;™" 2.97 2.36 1.64 1.64
without bounds on S™" 20.22 32.81 63.70 (17) 89.01 37

8 Conclusions

In this paper, a number of applications of the SSFCTP were described and differ-
ent algorithms for solving the problem were compared. A dynamic programming
approach from the literature was considerably improved by means of a preceding
problem reduction test and the incorporation of lower bounds on the quantities to
be supplied by the first ¢ — 1 suppliers. Furthermore, an enumerative algorithm was
introduced that is based on similar well-known approaches for the binary knapsack
problem. Both methods were found to be quite effective in solving medium-sized
and larger instances and outperformed other algorithms for the SSFCTP. Especially
the dynamic programming method peformed well as long as the average supplier
capacity is not too large. The enumerative algorithm was competetive on smaller
instances and in the case of larger supplier capacities. Both solution methods might
be suitable for repeatedly solving smaller and medium-sized instances of the SS-
FCTP, e.g., within Lagrangean relaxation and column generation procedures for
fixed-charge transportation and network flow problems. In order to effectively solve
very large-scale instances of the SSFCTP, advanced dynamic programming concepts
similar to those proposed by Pisinger [20] and Martello et al. [18] for the BKP should
be adapted to the case of the SSFCTP.
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