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Abstract

The single-sink fixed-charge transportation problem (SSFCTP) consists in finding
a minimum cost flow from a number of nodes to a single sink. Beside a cost propor-
tional to the amount shipped, the flow cost encompass a fixed charge. The SSFCTP
is an important subproblem of the well-known fixed-charge transportation problem.
Nevertheless, just a few methods for solving this problem have been proposed in the
literature. In this paper, some greedy heuristic solutions methods for the SSFCTP
are investigated. It is shown that two greedy approaches for the SSFCTP known
from the literature can be arbitrarily bad, whereas an approximation algorithm pro-
posed in the literature for the binary min-knapsack problem has a guaranteed worst
case bound if adapted accordingly to the case of the SSFCTP.

Key words: fixed-charge transportation problem, min-knapsack problem, greedy
algorithms, worst-case analysis, approximation algorithms

1 Introduction

The single-sink fixed-charge transportation problem (SSFCTP) is to decide on the
amounts xj ≥ 0 of shipments to be made from a given set of suppliers j = 1, . . . , n
to a single sink in such a way that the suppliers’ capacities bj are respected and the
sink’s demand D is satisfied at minimum shipment cost. The cost of shipping xj > 0

Email addresses: simon.goertz@wiwi.uni-wuppertal.de (Simon Görtz),
aklose@imf.au.dk (Andreas Klose).
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units from a supplier j to the sink involves a fixed charge fj as well as costs cjxj

that are proportional to the quantity shipped. The mathematical formulation of the
problem is:

Z = min
n∑

j=1

(
cjxj + fjyj

)
(1)

s.t.:
n∑

j=1

xj = D , (2)

0 ≤ xj ≤ bjyj for j = 1, . . . , n , (3)

yj ∈ {0, 1} for j = 1, . . . , n , (4)

where cj ≥ 0, fj ≥ 0, and 0 < bj ≤ D for j = 1, . . . , n can be assumed without loss
of generality.

The SSFCTP is an important relaxation of the fixed-charge transportation problem,
which is in turn a special fixed-charge network flow problem, a class of optimization
problems that have a large number of applications in the area of supply chain plan-
ning as well as logistics and telecommunications network design. Herer et al. (1996)
mention a number of applications of the SSFCTP in the fields of supplier selection,
product distribution and fleet selection as well as process selection. Chauhan and
Proth (2003) introduce a heuristic procedure for solving the “concave cost supply
problem” that generalizes the SSFCTP by assuming concave transportation costs
and requiring a minimum quantity to be delivered by a selected supplier. Exact so-
lution methods for the SSFCTP based on implicit enumeration, branch-and-bound
and dynamic programming techniques were considered by Herer et al. (1996), Ali-
daee and Kochenberger (2005) and Klose (2006).

In this paper, heuristic solution methods for the SSFCTP are investigated. The
SSFCTP is closely related to the binary min-knapsack problem (min-KP). In case
of zero or constant unit transportation costs cj = 0 for j = 1, . . . , n, the SSFCTP
reduces to a min-KP. Firstly, this shows that the SSFCTP is NP-hard and can be
solved to optimality in pseudo-polynomial time by means of dynamic programming.
Secondly, this suggests that heuristic solution algorithms for the SSFCTP with a
guaranteed worst-case performance should be obtained by accordingly adjusting
corresponding methods introduced in the literature for the min-KP. This is done in
Sect. 4, where it is shown that an approximation method proposed by Csirik et al.
(1991) for the min-KP also gives a 2-approximation algorithm for the SSFCTP. In
a similar way as Csirik et al. (1991) did for the min-KP, the method can be further
improved in order to obtain a reduced worst-case ratio of 1.5. Beforehand, however,
we briefly analyze the LP relaxation of the SSFCTP in Sect. 2 and show in Sect. 3
that two simple greedy algorithms known from the literature on the SSFCTP might
produce arbitrarily bad solutions. Sect. 5 gives then a computational comparison of
the various heuristic methods, and Sect. 6 concludes the paper with a summary of
the findings.
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2 Linear programming relaxation

Since the fixed costs fj are non-negative, it is optimal to keep each of the variables
yj as small as possible if the integrality requirements are dropped. Hence, one may
set yj = xj/bj and reduce the LP relaxation of the SSFCTP to the linear program

ZLP = min
n∑

j=1

ejxj

s.t.:
n∑

j=1

xj = D ,

0 ≤ xj ≤ bj for j = 1, . . . , n ,

(5)

where ej := cj + fj/bj. Similar to the linear relaxation of the binary knapsack
problem, the above linear program can easily be solved as follows by sorting the
relative costs ej.

Proposition 1. Assume that e1 ≤ e2 ≤ · · · ≤ en and let s ∈ {1, . . . , n} be such that

s−1∑
j=1

bj < D and
s∑

j=1

bj ≥ D . (6)

An optimal solution to the linear program (5) is then given by

xj =


bj, for j = 1, . . . , s− 1

D −∑s−1
j=1 bj, for j = s

0, for j = s + 1, . . . , n .

(7)

Proof. Let σ and ηj (j = 1, . . . , n) be dual multipliers of the demand and upper
bound constraints, respectively. The dual

ZLP = max σD −
n∑

j=1

ηjbj

s.t.: σ − ηj ≤ ej for j = 1, . . . , n ,

ηj ≥ 0 for j = 1, . . . , n

of the linear program (5) has the feasible solution ηj = max{0, es − ej} for j =
1, . . . , n and σ = es, whose objective function value

esD −
n∑

j=1

max{0, es − ej}bj = esD −
s−1∑
j=1

(es − ej)bj

=
s−1∑
j=1

ejbj + es

(
D −

s−1∑
j=1

bj

)

equals that of the primal solution (7).
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Solving the LP relaxation by means of sorting the suppliers can be done in O(n log n)
time. Using similar procedures as those known for the knapsack problem (Balas and
Zemel, 1980), it is possible to determine the “split supplier” s in linear time O(n).

As in the case of the min-KP, the LP bound ZLP can be arbitrarily bad. The
following proposition further exemplifies this property.

Proposition 2. There exist instances of the SSFCTP such that ZLP /Z is arbitrarily
close to zero.

Proof. Consider the following series of problem instances with n = 2, 0 ≤ c1 ≤ c2,
b1 = b2 = b > 0, D = b+ε2, 0 ≤ f1 ≤ 1, f2 = 1/ε, and 0 < ε < 1. If ε > 0 approaches
zero, the LP bound

ZLP = f1 + c1b + c2ε
2 + ε/b

converges to the finite value f1 + c1b, whereas the optimal cost

Z = f1 + c1b + c2ε
2 + 1/ε

diverges to infinity.

For the maximization version of the knapsack problem it is known that the upper
bound provided by the LP relaxation is no greater than two times the optimal
solution value (see, e.g, Kellerer et al. (2004), p. 19). It is easy to see that the same
worst-case performance also holds for the LP bound of the following maximization
version of the SSFCTP.

z∗ = max
n∑

j=1

(
cjxj − fjyj

)
(8)

s.t.:
n∑

j=1

xj ≤ D , (9)

0 ≤ xj ≤ bjyj for j = 1, . . . , n , (10)

yj ∈ {0, 1} for j = 1, . . . , n , (11)

where cj ≥ 0, fj ≥ 0, and 0 < bj ≤ D for j = 1, . . . , n.

Proposition 3. Let zLP denote the solution value to the LP relaxation of the pro-
gram (8)–(11). Then zLP ≤ 2z∗ and there exist instances of the problem such that
zLP ≥ 2z∗ − ε for every arbitrarily small ε > 0.

Proof. The proof is analogous to the one showing the corresponding property in
case of the binary knapsack problem (see, e.g., Kellerer et al. (2004), p. 19). Define
pj = cj − fj/bj and assume that p1 ≥ p2 ≥ · · · ≥ pn. If some of the pj are negative,
let k be the smallest index with pk < 0. If no such k exists, set k = n + 1. If∑k−1

j=1 bj ≤ D, then z∗ = zLP results. Otherwise let s ∈ {1, . . . , k − 1} be such that
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(6) holds. The solution value of the LP relaxation is then given by

zLP = Ps−1 + psx
LP
s , where Ps−1 =

s−1∑
j=1

pjbj and xLP
s = D −

s−1∑
j=1

bj . (12)

The two solutions

(x1, . . . , xs−1, xs, . . . , xn) = (b1, . . . , bs−1, 0, . . . , 0)

and (x1, . . . , xs−1, xs, xs+1, . . . , xn) = (0, . . . , 0, bs, 0, . . . , 0)

are feasible. Hence

zLP = Ps−1 + psx
LP
s ≤ Ps−1 + psbs ≤ 2z∗

follows. Furthermore, for the series of instances with n = 2, b1 = b2 =: b > 0,
D = 2b − ε, 0 < ε < b, c1 = c2 =: c > 0 and c(b − ε) < f1 = f2 =: f , one obtains
z∗ = pb and zLP = pb + p(b− ε) = 2pb− pε, where p := p1 = p2 = c− f/b.

3 Popular greedy algorithms

The greedy algorithm for the binary knapsack problem consists in filling the knap-
sack with the most profitable items until the knapsack’s capacity is reached. Prof-
itability is thereby measured as the ratio of profit to an item’s weight. A straightfor-
ward application of this greedy method to the SSFCTP is then to select the solution
to the LP relaxation as a feasible solution to the SSFCTP. This solution’s total cost
is then given by

ZG =
s−1∑
j=1

ejbj + fs + csx
LP
s = ZLP + fs + (cs − es)x

LP
s

= ZLP + fs

(
1− xLP

s /bs

)
.

(13)

In case of the min-KP, the greedy solution can be arbitrarily bad (see, e.g., Kellerer
et al. (2004), p. 403). Since the min-KP is a special case of the SSFCTP, this is also
true for the greedy solution (13).

Proposition 4. There exist instances of the SSFCTP such that ZG/Z is not bounded
from above.

Proof. The following series of instances slightly modifies a problem instance of the
min-KP used by Kellerer et al. (2004) for the purposes of showing that the greedy
procedure for the min-KP might be arbitrarily bad: n = 3, D ≥ 4 and

c1 = 1
D−1

, c2 = 1 , c3 = 2 ,

f1 = 1 , f2 = D − 2 , f3 = 1 ,

b1 = D − 1 , b2 = D − 1 , b3 = 1 .
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Because e1 = 2/(D − 1) ≤ e2 = 1 + (D − 2)/(D − 1) ≤ e3 = 3, the greedy solution
is x1 = D − 1, x2 = 1, x3 = 0 and has objective function value ZG = D + 1. The
optimal solution of value Z = 5 is x1 = D − 1, x2 = 0, and x3 = 1. Hence the ratio
ZG/Z diverges to infinity with increasing D.

In case of the binary knapsack problem, the so-called “Ext-greedy” procedure gives
a 2-approximation method. Ext-greedy simply compares the greedy solution’s ob-
jective value with the highest profit of a single item and selects the better solution.
It seems plausible that a similar property also holds for the maximization version
(8)–(11) of the SSFCTP. The greedy solution value zG for this problem is given by

zG =
s−1∑
j=1

pjbj + max
{
0, csx

LP
s − fs

}
, where xLP

s = D −
s−1∑
j=1

bj .

The value pj and the index s are defined as in Prop. 3. The Ext-greedy solution’s
objective value zeG is then

zeG = max
{
zG, max{pjbj : j = 1, . . . , n}

}
. (14)

Proposition 5. In case of the maximization version (8)–(11) of the SSFCTP, the
Ext-greedy algorithm has relative performance guarantee of 1

2
, that is zeG/z∗ ≥ 1

2
.

Proof. From relaxation and (14) we conclude that

z∗ ≤ zLP =
s−1∑
j=1

pjbj + psx
LP
s ≤ zG + psbs ≤ zeG + zeG = 2zeG .

To show that this bound is tight consider the following example that slightly modifies
an instance used by Kellerer et al. (2004) for the purposes of analyzing Ext-greedy
for the knapsack problem: n = 3, b1 = 1, b2 = b3 = M , D = 2M , c1 = 3, f1 = 1,
c2 = c3 = M + 1 and f2 = f3 = M2. The relative profits are then p1 = 2 > p2 =
p3 = 1. Because

c3(D − b1 − b2)− f3 = (M + 1)(M − 1)−M2 = −1 < 0 ,

the greedy solution of total profit zG = 2+M is x1 = 1, x2 = M and x3 = 0. In case
of this example, the Ext-greedy solution equals the greedy solution. The optimal
solution of total profit z∗ = 2M is to set x1 = 0, x2 = x3 = M . Hence the ratio
zeG/z∗ = (2 + M)/(2M) converges to 1

2
with increasing value of M .

Herer et al. (1996) introduce a variation of the greedy procedure for the SSFCTP
and Chauhan et al. (2004) apply an accordingly modified version of this method
to the “linear cost supply problem”, which slightly generalizes the SSFCTP by
including variable upper bounds xj ≥ ljyj on the flow variables. After the greedy
procedure sets the first s−1 flow variables xj to the upper bounds bj, the remaining
demand D := D −∑s−1

j=1 bj is usually smaller than the split supplier’s capacity. It is

thus reasonable to use the “effective capacity” bj := min{D, bj} for the purposes of
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linearizing the fixed costs and selecting the next supplier to which a positive amount
of supply should be allotted. This yields the heuristic solution procedure below that
we call “adaptive” greedy procedure.

Step 1: For j = 1, . . . , s− 1 set xj = bj. Set D = D −∑s−1
j=1 bj.

Step 2: Find supplier i with

ci +
fi

min{D, bi}
= min

j=s,...,n

{
cj +

fj

min{D, bj}
: xj = 0

}
.

Step 3: Set xi = min{D, bi} and D := D − xi. If D > 0 return to Step 2.

The procedure’s computational effort amounts to O(n2) in contrast to a time com-
plexity of O(n log n) or even O(n) for performing the greedy procedure. Chauhan
et al. (2004) claim that this adaptive greedy procedure gives a 2-approximation al-
gorithm for the SSFCTP. The following proposition shows that this is not the case;
the algorithm may also produce arbitrarily bad solutions.

Proposition 6. There exist instances of the SSFCTP such that ZAG/Z is not
bounded from above, where ZAG denotes the solution value obtained with the adaptive
greedy procedure.

Proof. Consider the following series of problem instances with n ≥ 5, D = 2n−1,
cj = 0 for j = 1, . . . , n, and

f1 = 1 , b1 = 2n−2 + 1 ,

fj = 2n−2 , bj = 2j−1 − 1 for j = 2, . . . , n− 2 ,

fn−1 = 2n−1 , bn−1 = 2n−2 − 1 ,

fn = n− 3 , bn = n− 3 .

For these data the following inequality holds:

bn +
n−2∑
j=2

bj = n− 3 +
n−2∑
j=2

(2j−1 − 1)

= (n− 3)− (n− 3) +
n−3∑
j=1

2j

= 2n−2 − 2 ≤ bn−1 ≤ b1 < D .

Furthermore, 2n−2−2+ b1 = 2n−1−1 < D and 2n−2−2+ bn−1 < D. Feasibility thus
requires that suppliers 1 and n− 1 supply a positive amount. The optimal solution
is therefore x1 = 2n−2 + 1, xj = 0 for j ∈ {2, . . . , n− 2, n} and xn−1 = 2n−2− 1. The
solution’s objective value is Z = 2n−1 + 1.
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In the first two iterations, the adaptive greedy procedures selects x1 = b1 and xn =
bn = n− 3. The remaining demand then amounts to

D3 = D − b1 − bn = 2n−1 − 2n−2 − 1− n + 3 = 2n−2 − n + 2 .

Because bn−1 = 2n−2 − 1 > D3 = 2n−2 − n + 2 for n ≥ 4, one obtains

fn−1

min{D3, bn−1}
=

fn−1

D3

=
2n−1

2n−2 − n + 2

>
fn−2

min{D3, bn−2}
=

fn−2

bn−2

=
2n−2

2n−3 − 1
=

2n−1

2n−2 − 2

and the procedure’s next choice is to set xn−2 = bn−2 = 2n−3 − 1. In each iteration
k = 3, . . . , n − 1 the residual demand thus decreases by an amount of 2n−k − 1
units. Before iteration k is executed the remaining demand, say Dk, amounts then
to Dk = 2n−k+1 − n + k − 1 and one obtains

fn−1

Dk

=
2n−1

2n−k+1 − n + k − 1
≥ fn−k+1

bn−k+1

=
2n−2

2n−k − 1
=

2n−1

2n−k+1 − 2

for k = 3, . . . , n−1. Hence, in iterations k = 3, . . . , n−1 the procedure sets xn−k+1 =
bn−k+1 until the residual demand amounts to Dn = 1 and xn−1 is set to 1 in the last
iteration. The objective value of the computed solution is then given by

ZAG =
n∑

j=1

fj = 1 +
n−2∑
j=2

2n−2 + 2n−1 + n− 3

= n− 2 + (n− 3)2n−2 + 2n−1 = n− 2 + (n− 1)2n−2

=
n− 1

2

(
2n−1 + 2− 2

n− 1

)
≥ n− 1

2

(
2n−1 + 1

)
=

n− 1

2
Z

and the ratio ZAG/Z ≥ n−1
2

diverges to infinity with increasing problem size n.

4 Approximation algorithms

Csirik et al. (1991) analyze a greedy-type heuristic of Gens and Levner (1979) for
the min-KP and show that this procedure gives a 2-approximation algorithm for
this problem. They also provide an improvement to this method having a worst-
case performance ratio of 3/2. In the sequel, these methods are adjusted to the case
of the SSFCTP.

4.1 A 2-approximation algorithm for the SSFCTP

It is straightforward to adjust the greedy-type method of Gens and Levner (1979) for
the min-KP to the case of the SSFCTP: Assume again that the suppliers are sorted
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according to non-decreasing relative costs ej = cj + fj/bj. The set of all suppliers is
then divided into consecutive sets Sq and Bq of so-called “small” and “big” suppliers
as indicated below

S1︷ ︸︸ ︷
1, . . . , j1 ,

B1︷ ︸︸ ︷
j1 + 1, . . . , j2 − 1 ,

S2︷ ︸︸ ︷
j2, . . . , j3 ,

B2︷ ︸︸ ︷
j3 + 1, . . . , j4 − 1 , . . . ,

, . . . ,

Sl︷ ︸︸ ︷
jl, . . . , jl+1 ,

Bl︷ ︸︸ ︷
jl+1 + 1, . . . , jl+2 − 1 , . . . ,

, . . . ,

Sm︷ ︸︸ ︷
jm, . . . , jm+1 ,

Bm︷ ︸︸ ︷
jm+1 + 1, . . . , jm+2 − 1 ,

Sm+1︷ ︸︸ ︷
jm+2, . . . , n .

The set Sm+1 is possibly empty, in which case jm+2 − 1 = n. No subset of suppliers
comprising only small suppliers is able to meet the total demand D; such a solution
has always to be completed by including a big supplier. More precisely, we have∑

j∈
⋃l

i=1
Sj

bj < D for all l = 1, . . . ,m + 1 , (15)

∑
j∈

⋃l

i=1
Sj

bj + br ≥ D for all l = 1, . . . ,m and all r ∈ Bl . (16)

The procedure then consists in checking for l = 1, . . . ,m all the trial solutions

xj = bj for all j ∈ S :=
l⋃

i=1

Si and xr = D −
∑
j∈S

bj for one r ∈ Bl

and picking the best one. After sorting the suppliers, checking all these solutions can
be done in linear time. The method’s computational complexity is thus O(n log n).
Moreover the method does also provide a 2-approximation algorithm for the SS-
FCTP.

Proposition 7. ZGR ≤ 2Z and there exist instances of the SSFCTP such that this
bound is tight.

Proof. Let x∗ be an optimal solution to the SSFCTP. Because no set of small suppli-
ers is able to meet the demand, there is at least one big supplier t such that x∗t > 0.
Let then t ∈ Bq for some q ∈ {1, . . . ,m} be the supplier with smallest index such
that x∗t > 0. Define

S =
q⋃

i=1

Si and DS = D −
∑
j∈S

bj . (17)

The heuristic procedure investigates all possibilities of combining supplies from
“small suppliers” j ∈ ∪l

i=1Si, 1 ≤ l ≤ m, with the supply of one “big supplier”
j ∈ Bl. Hence,

ZGR ≤
∑
j∈S

ejbj + ft + ctDS . (18)

Since x∗j = 0 for all big suppliers j < t, these suppliers can be removed from

consideration. The LP bound denoted by Z̃LP to this reduced problem is then given
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by

Z̃LP =
∑
j∈S

ejbj + etDS .

Hence, we obtain

ZGR ≤
∑
j∈S

ejbj + ft + ctDS ≤
∑
j∈S

ejbj + etDS + ft = Z̃LP + ft ≤ 2Z .

To complete the proof, it remains to show that the bound ZGR ≤ 2Z can be strict.
Consider the following series of problem instances that adjusts the example of Csirik
et al. (1991) to the case of the SSFCTP: n = 3 and

b1 = 1 , b2 = D − 2 , b3 = D − 1 ,

f1 = 1 , f2 = D − 2 , f3 = D − 1 ,

c1 = 0 , c2 = 1/(2D) , c3 = 1/D .

The optimal solution is x1 = 1, x2 = 0, x3 = D − 1, Z = D + 1 − 1
D

. The solution
obtained with the above greedy heuristic is x1 = 1, x2 = D − 2, x3 = 1 and has
objective function value ZGR = 2D − 3

2
. Hence, ZGR/Z gets arbitrarily close to 2 if

D increases.

It has to be noted that Güntzer and Jungnickel (2000) propose a greedy approach
to the min-KP closely resembling that of Csirik et al. (1991) and Gens and Lev-
ner (1979), respectively. The only difference is that Güntzer and Jungnickel (2000)
investigate additional trial solutions by trying to insert just the first elements of a
subset Sl of small items into the knapsack. More or less the same principle can be
implemented by removing small items (suppliers) with highest index from the solu-
tion produced by the above method as long as this is feasible. Csirik et al. (1991)
already hint on this improvement step; the worst-case is however not affected.

4.2 Two 3/2-approximation algorithms for the SSFCTP

Csirik et al. (1991) additionally showed how the above greedy-type method can be
improved to 3/2-approximation algorithm for the min-KP. To this end, the method
of Gens and Levner is rerun on a reduced problem that results from including in
turn each single big item into the knapsack solution. Two slightly different ways of
using this idea in case of the SSFCTP can be distinguished.

The first approach consists in the application of the steps listed below.

Step 1: Apply the greedy-type method of Gens and Levner as descibed above. Let

ZGR be the solution’s objective function value.

Step 2: For each big supplier i ∈ B :=
⋃m

l=1 Bl apply the greedy-type method to the

10



modified problem

Zi := min
n∑

j=1

cjxj +
∑
j 6=i

fjyj

s.t.: (2), (3),(4)

(19)

and let xGRi be the solution of objective function value ZGRi obtained this way for
the modified problem.

Step 3: Return the best solution encountered, that is the solution of cost

ZIGR = min
{
min
i∈B

{ZGRi + Fi(x
GRi
i }, ZGR

}
, (20)

where Fi(xi) := fi if xi > 0 and Fi(xi) = 0 otherwise.

After the suppliers are sorted in non-decreasing order of the relative costs ej, restor-
ing this ordering after setting fi = 0 can be done in linear time. The above procedure
thus runs in O(n2) time. The following proposition extends the result of Csirik et al.
(1991) obtained for the min-KP to the case of the SSFCTP.

Proposition 8. ZIGR ≤ 3
2
Z. Futhermore, there exist instances of the SSFCTP such

that this bound is tight.

Proof. The proof follows a similar reasoning as that used by Csirik et al. (1991)
in their proof of the corresponding worst-case bound for the min-KP. Let x∗, t ∈
Bq, S and DS be defined as in the proof of Prop. 7. The following two cases are
distinguished.

Case 1: ft ≤ 1
2
Z. The proof of Prop. 7 has shown that

ZGR ≤
∑
j∈S

ejbj + ft + ctDS

≤
(∑

j∈S

ejbj + etDS

)
+ ft

= Z̃LP + ft ≤ Z + ft ≤ Z + 1
2
Z = 3

2
Z ,

where Z̃LP is the LP-bound that results if all big suppliers j < t are not taken into
consideration.

Case 2: ft > 1
2
Z. From (20) it follows that

ZIGR ≤ ZGRt + Ft(x
GRt
t ) .

From Prop. 7 we have ZGRt ≤ 2Zt. Since x∗ is a feasible solution for the modified
problem (19), we therewith obtain

ZIGR ≤ 2Zt + Ft(x
GRt
t )

≤ 2(Z − ft) + Ft(x
GRt
t )

≤ 2(Z − ft) + ft ≤ 2Z − ft ≤ 2Z − 1
2
Z = 3

2
Z .
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To complete the proof, it remains to show that the bound of 3
2
Z is tight. An optimal

solution to the series of problem instances with n = 4, D = 2M , c1 = c2 = c3 =
c4 = 0, b1 = b2 = M − 1, b3 = b4 = M , fj = 2bj for j = 1, . . . , 4 is given by
x∗1 = x∗2 = 0, x∗3 = x∗4 = M . The objective function value is Z = 4M . The greedy-
type procedure yields the solution

x1 = x2 = M − 1 , x3 = 2 and x4 = 0

with objective value ZGR = 4(M −1)+2M = 6M −4. Finally, the improved greedy
procedure gives the solution x3 = M , x1 = M − 1 and x2 = 1. The objective value
is

ZIGR = ZGR3 + 2M = 4(M − 1) + 2M = 6M − 4 = ZGR .

Hence, ZIGR/Z = (6M − 4)/(4M) = 3/2 − 1/M and this ratio converges to 3/2
with increasing value of M .

The second possible way of improving the Gens-Levner type heuristic for the SS-
FCTP is to fix in turn the supply of each big supplier i ∈ B to the upper bound bi

and to solve the reduced problem

Z ′
i := min

∑
j 6=i

(
cjxj + fjyj

)
s.t.:

∑
j 6=i

xj = D − bi ,

0 ≤ xj ≤ bjyj ∀ j 6= i ,

yj ∈ {0, 1} ∀ j 6= i .

(21)

by means of the Gens-Levner type heuristic. The approach can be summarized as
follows.

Step 1: Apply the greedy-type method of Gens and Levner. Let ZGR be the solution’s
objective function value.

Step 2: For each big supplier i ∈ B :=
⋃m

l=1 Bl apply the greedy-type method to the

reduced problem (21) and let ZGR′
i be the objective function value of the solution

obtained this way for the reduced problem (21).

Step 3: Return the best solution encountered, that is the solution of cost

ZIGR′
= min

{
min
i∈B

{ZGR′
i + cibi + fi}, ZGR

}
. (22)

Compared to the approach of Prop. 8, the method has the advantage that the
ordering of the suppliers need not to be changed when solving the reduced problem.
Some further results are, however, required in order to proof that this method also
gives a 3/2-approximation algorithm for the SSFCTP.

Lemma 1. Let x∗ and t ∈ Bq with x∗t > 0 be defined as above. As in the proof to
Prop. 7, let Z̃LP be the LP bound that results if the big suppliers j < t are removed

12



from consideration. Then

Z̃LP + ft

(
1− x∗t /bt

)
≤ Z . (23)

Proof. If x∗t = bt, the statement is obviously true. With S and DS defined as in (17),
we obtain in the case of 0 < x∗t < bt:

Z ≥ ctx
∗
t + ft + min

{∑
j 6=t

ejxj :
∑
j 6=t

xj = D − x∗t , 0 ≤ xj ≤ bj ∀ j 6= t
}

≥ ctx
∗
t + ft + min

{∑
j 6=t

(ej − et)xj : 0 ≤ xj ≤ bj ∀ j 6= t
}

+ et(D − x∗t )

= ctx
∗
t + ft +

∑
j 6=t

min{0, ej − et}bj + etD − etx
∗
t

= ctx
∗
t + ft +

∑
j∈S

ejbj + et

(
D −

∑
j∈S

bj

)
− etx

∗
t

= ctx
∗
t + ft +

∑
j∈S

ejbj + etDS − etx
∗
t

= ctx
∗
t + ft + Z̃LP − etx

∗
t

= Z̃LP + ft

(
1− x∗t /bt

)
.

The right hand side of the first inequality is the LP bound of the SSFCTP with the
additional constraint xt = x∗t , which shows that the inequality is valid. The second
inequality is obtained by further relaxing the demand constraint in a Lagrangean
manner with multiplier et.

Prop. 7 and the above lemma directly lead to the following statement.

Lemma 2. Let x∗ and t ∈ Bq be defined as above. If ftx
∗
t /bt ≤ Z/2 then ZIGR′ ≤ 3

2
Z.

Proof. As in the proof to Prop. 7, we have ZGR ≤ Z̃LP + ft. From Lemma 1 we
know Z̃LP + ft ≤ Z + x∗t ft/bt. Hence,

ZGR ≤ Z + x∗t ft/bt ≤ Z +
Z

2
=

3

2
Z ,

where the second inequality above follows from the assumption.

The Lemma below uses a different assumption under which the procedure is also a
1.5-approximation method.

Lemma 3. Let x∗, t ∈ Bq, and DS be defined as before. If

ct(bt − x∗t ) ≤ ctx
∗
t + (ft/bt)DS ,

then ZIGR′ ≤ 3
2
Z.

13



Proof. From the way the solution of value ZIGR′
is constructed and the fact that

the Gens-Levner type heuristic is a 2-approximation algorithm, we have

ZIGR′ ≤ ZGR′
t + ctbt + ft ≤ 2Z ′

t + ctbt + ft .

The solution xj = x∗j for all j 6= t is a feasible solution to the reduced problem (21),
if the equality constraint

∑
j 6=t xj = D − bt is replaced by

∑
j 6=t xj ≥ D − bt. Since

the objective function value of the SSFCTP does not decrease with an increasing
demand of the sink node, the objective function value of this solution cannot be
smaller than Z ′

t. Hence,

ZIGR′ ≤ 2(Z − ctx
∗
t − ft) + ctbt + ft = 2Z −

(
ft + ct(2x

∗
t − bt)

)
.

In case of ft + ct(2x
∗
t − bt) ≥ Z/2, the desired result follows immediately. Thus

assume ft + ct(2x
∗
t − bt) < Z/2. As in the proof of Prop. 7, we have

ZGR ≤
∑
j∈S

ejbj + ft + ctDS .

Moreover∑
j∈S

ejbj + ft + ctDS = ft + ct(2x
∗
t − bt) +

∑
j∈S

ejbj + ct(bt − x∗t )− ct(x
∗
t −DS) .

Using ft + ct(2x
∗
t − bt) < Z/2 and ct(bt − x∗t ) ≤ ctx

∗
t + (ft/bt)DS then gives

ZGR ≤ Z/2 +
∑
j∈S

ejbj + ctx
∗
t + (ft/bt)DS − ct(x

∗
t −DS)

= Z/2 +
∑
j∈S

ejbj +
(
(ft/bt) + ct

)
DS

= Z/2 +
∑
j∈S

ejbj + etDS = Z/2 + Z̃LP ≤ Z/2 + Z = 3Z/2 .

The above analyses allows now to state the following proposition.

Proposition 9. ZIGR′ ≤ 3
2
Z. Futhermore, there exist instances of the SSFCTP

such that this bound is tight.

Proof. In case of ftx
∗
t /bt ≤ Z/2 the result follows from Lemma 2, and in case of

ct(bt − x∗t ) ≤ ctx
∗
t + (ft/bt)DS the result is obtained from Lemma 3. Hence, assume

that
ft

bt

x∗t > Z/2 and ct(bt − 2x∗t ) >
ft

bt

DS .

The second condition requires x∗t < bt/2, and from the first we obtain

Z

2
<

ft

bt

x∗t <
ft

bt

bt

2
=

ft

2
⇒ Z < ft ,

14



which is impossible, since x∗t > 0. The proof is completed by observing that the
procedure’s solution value also attains its worst case for the problem instance given
in the proof to Prop. 8.

5 Computational comparision

The heuristic algorithms presented in Sect. 3 and 4 were coded in C and run on
a 750 MHz Pentium III PC to approximately solve various test problem instances.
Optimal solutions for these test problems were obtained using the methods discussed
in Klose (2006).

The test problems are divided into two groups. The first group consists of 60 prob-
lem instances for each problem size of n = 500, 1000, 5000, and 10000 suppliers.
According to the problem generation method proposed by Herer et al. (1996), the
problem structure is determined by two parameters.

• The b-ratio Br = 100 ·D/
∑

j bj estimates the percentage number of suppliers that
supply a positive amount in an optimal solution. The computational experiments
are based on the four b-ratio values Br = 5 %, 10 %, 25 %, and 50 %. (Herer et al.
(1996) use the absolute number B′

r = Br · n/100; utilizing the same expected
number of employed suppliers for problems that largely differ in size is however
not meaningful.)

• The F -ratio Fr = f/(cb) is the ratio between the average fixed cost f = 1
n

∑
j fj

and the average transportation cost cb per supplier, where c = 1
n

∑
j cj and b =

1
n

∑
j bj. Three different F -ratio values were used, 0.3, 0.6 and 1.

The sink’s demand was set to D = 100000 and the other problem data were
generated randomly such that fj ∈ U [75000, 125000], cj ∈ U [8, 12], and bj ∈
U [7500, 12500], where U [a1, a2] denotes a uniformly distributed random number be-
tween a1 and a2. The fixed costs fj and the suppliers’ capacities bj were then scaled
to meet the desired b-ratio and F -ratio. Furthermore, the capacities as well as the
fixed costs were rounded to the nearest integer. Five problem instances were then
generated for each problem size and combination of b-ratio and F -ratio.

In the second set of 20 test problems, 5 instances were generated for each of the
problem sizes of n = 500, 1000, 5000 and 10000 suppliers. In this case, the suppliers’
capacities bj are integer random numbers from U [10, 100]. The sink’s demand was
set to D = 0.5

∑
j bj and rounded to the nearest integer. The cost data are then

generated such that a positive correlation between the capacity bj and a supplier j’s
total cost Cj := fj + cjbj is achieved. To this end, Cj is computed as Cj = bj + βj,
where βj ∈ [0, bj] is a random integer. The cost Cj is then distributed between fixed
and unit cost by setting fj = ϕCj and cj = (1− ϕ)Cj/bj with ϕ ∈ U [0.75, 1).

A solution x obtained with the greedy and adaptive greedy procedure, respectively,
was refined a bit by simply computing the optimal flows on the arcs k ∈ J1 := {j :
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xj > 0}. This is easily done by sorting suppliers j ∈ J1 according to non-decreasing
unit costs cj. Furthermore, we used the already mentioned proposal of Csirik et al.
(1991) for slightly improving any candidate solution

xj = bj ∀ j ∈ S := {j1, . . . , js} and xr = D −
∑
j∈S

bj

obtained in the course of the greedy type heuristic of Gens and Levner. To this end,
the worst small supplier js is removed in turn from the solution and the supply xr

of the big supplier r is increased by xjs as long as this can feasibly done.

For every single of the 260 test problem instances, the same solution was obtained
with the two versions of the 1.5-approximation algorithm for the SSFCTP, ZIGR

and ZIGR′
, respectively. After setting the fixed cost of a big supplier to zero, the

supplier is usually pushed a good deal forward in the ordering of suppliers such that
he becomes a small supplier with respect to the modified problem (19). Both versions
of the 1.5-approximation method will thus set his supply to the upper bound and
give identical solutions.

Table 1 compares the solution values obtained with the five heuristic methods on
the first group of test problems. The table shows the deviation 1000 · (ZH − Z)/Z
of a heuristic solution value ZH from an optimal value Z in tenth of a percent,
averaged over the 5 problem instances per problem size and combination of b-ratio
and F -ratio. As can be seen from that table, all methods perform quite well on
these types of test problems. On average, the deviation from optimality amounts
to 0.10 %, 0.11 %, 0.06 % and 0.02 % for the greedy method (ZG), adaptive greedy
method (ZAG), Gens-Levner heuristic (ZGR) and the two versions of the improved
Gens-Levner heuristic (ZIGR and ZIGR′

, respectively).

Decreasing optimality errors could, on average, be observed with increasing problem
size. The deviation from optimality tended also to decline with decreasing values
of Fr (expected ratio of fixed cost to transportation cost) and increasing values
of Br (expected percentage number of suppliers employed). Computation times were
negligible (below 3 hundreth of a second per problem instance) for all procedures
except the two versions of the improved Gens-Levner approach. These two methods
call the Gens-Levner heuristic as many times as there are big suppliers, which can
be a relatively large number in case of n = 10000. On average, the first version
of the 1.5-approximation method (ZIGR) required then 0.04, 0.16, 4.45 and 26.77
seconds for problem instances of size n = 500, n = 1000, n = 5000 and n = 10000,
respectively. The second version of the 1.5-approximation algorithm (ZIGR′

) was
slightly faster. The procedure spent, on average, 0.04, 0.14, 3.57 and 20.61 seconds
of CPU time for solving test instances of size n = 500, n = 1000, n = 5000 and
n = 10000, respectively. Obviously, this large increase in computation times is hardly
justified by the relatively small improve in solution quality compared to the simple
Gens-Levner method (ZGR).

The results obtained for the second group of test problems are presented in Table 2
(averages over the 5 instances per problem size). Regarding computation times, we
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Table 2
Deviation (tenth of a percent) from optimality for group 2 test problems

n ZG ZAG ZGR ZIGR / ZIGR′

500 1.734 0.362 0.067 0.038

1000 0.678 0.232 0.036 0.013

5000 0.135 0.036 0.002 0.001

10000 0.067 0.026 0.001 0.000

obtain the same figure as in case of the first group of test problems. Negligible com-
putation times for the first three heuristic procedures, and a substantially larger
computational effort required by the two versions of the improved Gens-Levner
method. The first 1.5-approximation method took on average 0.03, 0.10, 2.99 and
20.34 seconds of computation time for a problem instance of size n = 500, n = 1000,
n = 5000 and n = 10000, respectively, whereas the second version of this method
required 0.03, 0.10, 2.53 and 16.69 seconds on average. As can be seen from Ta-
ble 2, the quality of the heuristic solutions improved again with increasing problem
size. Although it is generally more difficult to find proven optimal solutions for
group 2 than for the group 1 problems, see Klose (2006), the heuristic solutions
of Table 2 are even better than those for the group 1 test problems. The two ver-
sions of the improved Gens-Levner method gave solutions that were almost optimal.
Nevertheless, the relatively small observed improvement in solution quality of these
1.5-approximation methods over the 2-approximation method does hardly justify
the large increase in the required computational effort.

6 Conclusions

This paper investigated the worst-case performance of differrent greedy-type proce-
dures for approximately solving the SSFCTP. It was shown that two popular greedy
heuristics might give arbitrarily bad solutions, whereas a 2-approximation method
(Gens-Levner heuristic) as well as a 1.5-approximation algorithm (improved Gens-
Levner heuristic) could be obtained by adjusting corresponding procedures for the
min-knapsack problem. A further direction for future research in this area might be
the development of fully polynomial approximation schemes. In addition to the the-
oretical performance analysis, the different heuristics were also tested empirically
on a large set of test problems. The numerical experiments have shown that the
improved Gens-Levner heuristic gave almost optimal solutions. Regarding both, the
solution quality as well as the required computation time, the simple Gens-Levner
type heuristic performed however best.
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