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FROBENIUS SPLITTING AND GEOMETRY
OF G-SCHUBERT VARIETIES

XUHUA HE AND JESPER FUNCH THOMSEN

ABSTRACT. Let X be an equivariant embedding of a connected reductive group G
over an algebraically closed field k of positive characteristic. Let B denote a Borel
subgroup of G. A G-Schubert variety in X is a subvariety of the form diag(G) -V,
where V is a B x B-orbit closure in X. In the case where X is the wonderful com-
pactification of a group of adjoint type, the G-Schubert varieties are the closures
of Lusztig’s G-stable pieces. We prove that X admits a Frobenius splitting that
compatibly splits all the G-Schubert varieties. Moreover, any G-Schubert variety
admits stable Frobenius splittings along ample divisors in case X is projective.
Although this indicates that G-Schubert varieties have nice singularities we give
an example, in the wonderful compactification of a group of adjoint type, which
is not normal. Finally we also extend the Frobenius splitting results to the more
general class of R-Schubert varieties.

1. INTRODUCTION

Let G be a connected reductive group over an algebraically closed field k of positive
characteristic and let B denote a Borel subgroup of G. An equivariant embedding
X of G is a G x G-variety which contains G = (G x (G)/ diag(G) as an open G x G-
invariant subset, where diag(G) is the diagonal image of G in G x G. When G is
a semisimple group of adjoint type there exists a canonical equivariant embedding
X which is called the wonderful compactification and which has been the subject of
much attention in recent years. Actually the wonderful compactifications are the
primary examples which we have in mind, but as the more general setup follows
almost identical, we have decided to state the obtained results in full generality.

Any equivariant embedding X of G contains finitely many B x B-orbits. In
recent years the geometry of closures of B x B-orbits has been studied by several
authors. The most general result was obtained in [H-T2] where it was proved that
B x B-orbit closures are normal, Cohen-Macaulay and have (F-)rational singularities
(actually, even stronger results were obtained). In the present paper we will need a
Frobenius splitting result of [H-T2] which is : the equivariant embedding X admits
a B x B-canonical Frobenius splitting which compatibly splits the closure of every
B x B-orbit. From this result we will derive that X admits a diag(B)-canonical
Frobenius splitting which compatibly splits every subset of the form diag(G) -V,
where V' denotes the closure of a B x B-orbit. In this paper, we will consider subsets
of the form diag(G) - V' which we call the G-Schubert varieties of X. If X is the
wonderful compactification, then diag(G) -V is the closure of some G-stable piece in
X and any closure of G-stable piece is of the form diag(G) -V for some B x B-orbit
closure V.

Before discussing the Frobenius splittings on the G-Schubert varieties, let us make
a short digression and discuss some motivations to study the G-stable pieces and
G-Schubert varieties (in the wonderful compactification).



2 XUHUA HE AND JESPER FUNCH THOMSEN

The decomposition (of the wonderful compactification) into G-stable pieces was
introduced by Lusztig in [L] to construct and study a class of perverse sheaves, which
generalizes his theory of character sheaves on reductive groups. More precisely, these
perverse sheaves are the intermediate extensions of the so-called “character sheaves”
on a G-stable piece. This is one of the motivations to study the geometry of the
closures of G-stable pieces.

When G is a simple group, the boundary of the closure of the unipotent subvariety
of G in the wonderful compactification is a union of certain G-Schubert varieties (see
[He] and [H-T]). Thus knowing the geometry of these G-Schubert varieties will help
us to understand the geometry of the closure of the unipotent variety.

There is another motivation to study the G-stable pieces and G-Schubert varieties
which comes from Poisson geometry. Let Lie(G) denote the Lie algebra of G and
<, > denote a fixed symmetric non-degenerate ad-invariant bilinear form. Let <, >
be the bilinear form on Lie(G) @ Lie(G) defined by < (z,y), (2/,y) >=< z,2' >
— < y,y >. In [E-L], Evens and Lu showed that each splitting Lie(G) & Lie(G) =
Il @l where [ and [" are Lagrangian subalgebras of Lie(G) @ Lie(G), gives rise to
a Poisson structure II;; on X. If moreover, one starts with the Belavin-Drinfeld
splitting, then all the G-stable pieces/G-Schubert varieties and B x B~-orbits of
X are Poisson subvarieties, where B~ is a Borel subgroup opposite to B. Thus
to understand the Poisson structure on X corresponding to the Belavin-Drinfeld
splitting, one needs to understand the geometry of the G-stable pieces/G-Schubert
varieties. However, if we start with another splitting, then we obtain a different
Poisson structure on X and in order to understand these Poisson structures, one
needs to study the R-stable pieces [L-Y] instead, which generalize both the G-stable
pieces and the B x B~ -orbits.

Now let us turn our attention back to the Frobenius splitting properties. To obtain
the described Frobenius splitting properties of the G-Schubert varieties we first prove
that diag(G) Xdiag(s) X admits a diag(B)-canonical Frobenius splitting which com-
patibly splits all closed subvarieties of the form diag(G) X iag(n) V., where V denotes
the closure of a B x B-orbit. By general theory on canonical Frobenius splitting this
would follow if X admits a diag(B)-canonical Frobenius splitting compatibly split-
ting all B x B-orbit closures [B-K, Prop.4.1.17]. However, we only know and expect,
that X admits a B x B-canonical Frobenius splitting, which is less restrictive. In par-
ticular, we cannot apply the result [loc.cite] directly. Still the proof of [loc.cite] can
be modified to the present situation. Actually we prove a result which both contain
the statement in [loc.cite] and also the statement which we need. Having obtained
the described Frobenius splitting properties of diag(G) Xgiag(py X we may apply a
push forward argument along the natural morphism : diag(G) Xgiag(z) X — X to
conclude that X admits a diag(B)-canonical Frobenius splitting which compatibly
splits all the G-Schubert varieties.

When X is a projective variety, a closer study of the obtained Frobenius splitting
reveals that when restricted to a G-Schubert variety X then it is actually a Frobenius
splitting along the support of an ample divisor . This has strong implication on the
cohomology of line bundles. E.g. the higher cohomology of every nef line bundle
(i.e. a line bundle £ such that L ® M is ample when M is ample) on X will be
zero. One should however notice that we do not claim that X admits a Frobenius
splitting along the support of an ample divisor which compatibly Frobenius splits
all the G-Schubert varieties. But letting Y denote the minimal G x G-orbit closure
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containing X it does follow, that Y admits a Frobenius splitting along the support of
an ample divisor which compatibly Frobenius splits X. In particular, the restriction
morphism

HO(Y. L) — HO(X, L),

for a nef line bundle £ on Y is surjective. We do not know if this is true when Y is
substituted by X. However, if £ is ample or X is the wonderful compactification of
an adjoint group, then H°(X, L) — H°(X, L) is surjective.

It seems natural to expect that the above described results should have strong im-
plications on the geometry of G-Schubert varieties. It therefore comes as a complete
surprise that these subvarieties are, in general, not even normal. We only provide a
single example of this phenomenon (for the wonderful compactification of a group
of type G2), but expect that this absence of normality is the general picture.

This paper is organized in the following way. In Section 2 we briefly define Frobe-
nius splitting and explain its fundamental ideas. Section 3 is devoted to some results
on linearized sheaves which should all be well known. In Section 4 we study the
Frobenius splitting of varieties of the form G xp X for a variety X with an action by
a parabolic subgroup P. The main idea is to decompose the Frobenius morphism on
G xp X into maps associated to the Frobenius morphism on the base ¢/p and the
fiber X of the natural morphism G xp X — G/p. In Section 5 we introduce canonical
Frobenius splittings and in Section 6 we study the obtained Frobenius splitting rel-
ative to effective divisors. Section 7 contains application to general B x B-varieties
of the previous sections. In section 8 we define the G-stable pieces and G-Schubert
varieties. In Section 9 we apply the material of the previous sections to the class of
equivariant embeddings and obtain Frobenius splitting as well as cohomology vanish-
ing results for G-Schubert varieties. Section 10 contains an example of a non-normal
G-Schubert variety. Finally Section 11 contains generalizations and variations of the
previous sections.

2. THE RELATIVE FROBENIUS MORPHISM

By a variety we mean a reduced and separated scheme of finite type over k. In
particular, we allow a variety to have multiple components. By definition a variety
X comes with an associated morphism

p: X — Spec(k)
of schemes. The Frobenius morphism on Spec(k) is the morphism of schemes
Fy : Spec(k) — Spec(k),

which on the level of coordinate rings is defined by a +— aP. As k is assumed to
be algebraically closed the morphism Fj, is actually an isomorphism and we let F}~ !
denote the inverse morphism. Composing p with F, 1;1 we obtain a new variety

p': X — Spec(k),

with underlying scheme X. In the following we suppress the morphism p from the
notation and simply use X as the notation for the variety defined by p. The variety

defined by p’ is then denoted by X'.
The relative Frobenius morphism on X is then the morphism of varieties :

Fy: X - X'
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which as a morphism of schemes is the identity map on the level of points and where
the associated map of sheaves

F)li( . OX/ — (Fx)*OX

is the p-th power map. A key property of the Frobenius morphism is the relation
(Fx)*N' ~ NP which is satisfied for every line bundle N on X (here N’ denotes the
corresponding line bundle on X').

2.1. Frobenius splitting. A variety X is said to be Frobenius split if the O x/-linear
map of sheaves :

F_g( : OX/ — (Fx)*OX
has a section; i.e. if there exists an element

s € Home, ((Fx).«Ox,0x),

such that the composition s o F)ﬁ( is the identity endomorphism of Q.. The section
s will be called a Frobenius splitting of X. In the following we will use the notation
Endp(X) to denote the sheaf

Homyg, ((FX)*@X, OX’):

while Endp(X) will denote the global sections of this sheaf. The subvectorspace of
Endg(X) consisting of the elements which maps the constant function 1 on X to a
constant function on X’ will be denoted by Endg(X).. In particular, any Frobenius
splitting of X will lie in Endg(X)..

2.2. Compatibly Frobenius splitting. Let Y denote a closed subvariety of X
defined by the sheaf of ideals Jy. Let Y’ denote the associated closed subvariety of
X' with sheaf of ideals Jy+, and let #}, : Y’ — X’ denote the inclusion. The kernel
of the morphism

j‘COHloX, ((Fx)*OX, OX/) — j‘COHloX, ((Fx)*[y, (Z/Y)*Oy/)

induced by the inclusion Jy C Oy and the projection Ox/ — (i ).Oy, will be
denoted by Endgr(X,Y). The set of global sections of Endp(X,Y) will be denoted
by Endr(X,Y), and consists of the elements s in Endp(X) satisfying

S((Fx)*jy) C Jy/.

Thus such an element defines an element in Endz(Y') and we say that s is compatible
with Y. If s moreover is a Frobenius splitting of X then we say that Y is compatibly
Frobenius split by s.
IfY7,Ys, ..., Y, is a collection of closed subvarieties of X then notation Endg (X, Y7,
., Yy (or sometimes Endg(X,{Y;};)) will denote the intersection of the sub-
sheaves Endp(X,Y;) for i = 1,...,m. The set of global sections of the sheaf
Endp(X,Y7,...,Y,,) will be denoted by Endp(X,Y,...,Y,,). Finally we use the
notation Endr(X,Y). to denote the intersection of Endp(X). with Endp(X,Y).
The notation Endg(X, Y7, ..., Y,). is then defined similarly.
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2.3. Frobenius D-splittings. Let £ denote a line bundle on X and let o denote
a global section of L. Then ¢ induces a map

Homy,, ((FX)*L, OX/) — Endp(X).
When Y is a closed subvariety of X then an element s of the vectorspace
Home, ((Fx).L,0x)
is said to be compatible with Y if
s((Fx)«(Jy ® L)) C Iy
The following is then an easy consequence of the definition

Lemma 2.1. Assume that s is compatible with closed subvarieties Y and Z of X.
Then

(1) s is compatible with every irreducible component of Y .
(2) If the scheme theoretic intersection ZNY is reduced then s is compatible with
ZNY.

Proof. Let Y] denote an irreducible component of Y and let
J= 3((FX)*(:]Y1 ®£¢)) C Ox.

Let U denote the open complement (in X') of the irreducible components of Y’
which are different from Y/. Then Jy; coincides with Jy» on U and consequently
Jiv € (Jyr)v as s is compatible with Y. In particular, Jjy C (Jy;)jv. As UNY/
is dense in Y] and Y/ is reduced it follows from the relation J C Oxs that J C Jyr.
This proves that s is compatible with Y;. The second claim follows as the sheaf of
ideals of the intersection Z NY is Jy +J5. O

Consider the situation where £ is the line bundle O x (D) associated to an effective
Cartier divisor D on X. Let ¢ = op denote the associated global section. When
the image of s in Endr(X) is a Frobenius splitting § of X then we say that § is
a Frobenius D-splitting of X. The following result assures that, in this case, the
compatibility condition with closed subvarieties agrees with the classical definition

R, Defn.1.2].

Lemma 2.2. Assume that s defines a Frobenius D-splitting of X. Then s is com-
patible with Y if and only if (i) § compatibly Frobenius splits Y and (i) the support
of D does not contain any irreducible component of Y.

Proof. The if part of the statement follows from [R, Prop.1.4]. So assume that s is
compatible with Y. Then s induces a morphism

S (Fy)*OX(D)D/ — Oy/,

satisfying 5((op)jy) is the constant function 1 on Y’. As a consequence (op)y does
not vanish on any of the irreducible components of Y. This proves part (ii) of the
statement. Part (i) is clearly satisfied. d

It follows that if s is compatible with Y and, moreover, defines a Frobenius D-
splitting of X then D NY makes sense as an effective Cartier divisor on Y and s
induces a Frobenius D N Y-splitting of Y.
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2.4. Stable Frobenius splittings along divisors. Generalizing the ideas above
we may consider the morphism

Homo_,, ((Fx)!O0x(D),0xwm) — Homo_,, ((Fx)!O0x,0xwm),

induced by op, where X(™ denotes the n-th iterated Frobenius twist of X. Then
the image of an element s in Homox(n) ((FX)Z}OX(D), OX(n>) is said to be a stable

Frobenius splitting of X along D if it maps the global section op of (Fx)!Ox (D)
to the global section 1 of Ox. In this case a closed subvariety Y of X is said to be
compatibly with the stable Frobenius splitting if

s((Fx)2(Jy ® Ox(D))) C Tyw.
The following is well known (see e.g. [B-T, Lem.3.1])

Lemma 2.3. Let Dy and D, denote effective divisors on X. Then X admits stable
Frobenius splittings along Dy and Dy if and only if X admits a stable Frobenius
splitting along Dy + Ds.

The following result explains one of the main applications of (stable) Frobenius
splitting.

Proposition 2.4. Assume that X admits a stable Frobenius splitting along an ef-
fective Cartier divisor D. Then there exists an n such that for each line bundle L
on X we have an inclusion of abelian groups

HY(X,L) C HY(X,LF" ® Ox(D)).
In particular, if D is ample and L is nef, then H(X,L) = 0 for i > 0. Moreover,
if Y is compatibly Frobenius split, D 1s ample and L is nef then the restriction
morphism
H(X, L) — H(Y, L),
18 surjective.
Proof. Argue as in the proof [R, Prop.1.13(i)]. O

2.5. Duality for Fx. By duality (see [Har2, Ex.IT1.6.10]) for the finite morphism
Fx we may to each quasi-coherent Ox/-module F associate an O x-module denoted
by (Fx)'F and satisfying

(Fx)«(Fx)'F = Homo, ((Fx)«0x,F).

Actually, as Fy is the identity on the level of points we may define (Fx)'F as the
sheaf of abelian groups
g‘COIIloX, ((Fx)*oX, fTr),

with Ox-module structure defined by

(g-9)(f) = og]),
for g, f € Ox and ¢ € Homg,, ((Fx)*OX,St). When F = Ox we will also use the
notation Endy(X) for (Fx)'Ox. If Y1,Y,, ..., Y,, is a collection of closed subvarieties
of X then &ndy(X,Y:,..., V) (or Endk(X,{Y;}™,)) will denote the subsheaf of

&ndy(X) consisting of elements compatible with Y; for i = 1,...,m.
Later we will consider O x-linear morphisms of the form

¢: M — Endy(X),
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where M is a line bundle on X. Notice, that a morphism of this form is equivalent
to a global section s of the sheaf

j’(OIIlOX, ((Fx)*M, OX/) .
Moreover, the image ¢(o) of a global section ¢ of M will factor as

(Fx )0

(Fx).0x —— (Fx).M = Ox.
It follows

Lemma 2.5. Let Y denote a closed subvariety of X. Then the image of ¢ is con-
tained in Endw(X,Y) if and only if s is compatible with'Y .

A similar result is true for a collection of closed subvarieties of X. We will also
need the following remark

Lemma 2.6. Let D denote a reduced effective Cartier divisor on X and L denote a
line bundle on X. Let M = Ox((p—1)D)® L and assume that we have a morphism
¢ : M — Endy(X), as above. Let op denote the canonical section of Ox (D) and
consider the map

¢p : L — Endp(X),
Then the element
Sp € :H:Omox, ((FX)*'EM OX’)7

induced by ¢p is compatible with the variety associated with D. In particular, the
mmage of ¢p is contained in 8nd!F(X, D).

: -1
induced by oy .

Proof. Notice that sp is the composition

(Fx)woty !

Sp - (FX)*L (Fx)*M i> OX/.

Hence, the restriction of sp to L ® Ox(—D) coincides with the map

(Fx). (£ @ 0x(=D)) L0 (poy w2 0.
But the restriction of s to
(Fx). (0x(=pD) @ M) = O (= D) @ (Fi). M.
maps by linearity into Ox/(—D’). This ends the proof. O

When X is a smooth variety then Endy(X) coincides with the line bundle w}(_p )
where wx denotes the dualizing sheaf of X (see e.g. [B-K, Sect.1.3]).

2.6. Push-forward operation. Assume that f : X — Z is a morphism of varieties
satisfying that the associated map f* : O, — f,Ox is an isomorphism. Let f’: X’ —
Y’ denote the associated morphism. Then f! induces a morphism

If Y C X is a closed subset then this map maps f. Endp(X,Y) to Endp(X, f(Y))

where f(Y) denotes the variety associated to the closure of the image of Y. On the
level of global sections this means that every Frobenius splitting s of X induces a
Frobenius splitting f/s of Z such that when s compatibly Frobenius splits Y then

f1s compatibly Frobenius splits f(Y). Likewise
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Lemma 2.7. With notation as above let L denote a line bundle on Z and let s be
an element of

HOIHOX, ((Fx)*f*ﬁz, OX/).
Then f.s is an element of

HOIH@Z, ((Fz)*ﬁz, OZ’)~

Moreover, if s is compatible with a closed subvariety Y of X then fls is compatible

with f(Y).

Proof. This follows easily from the fact that the sheaf of ideals of f(Y') coincides
with f,Jy [B-K, Lem.1.1.8]. O

3. LINEARIZED SHEAVES

Let H denote a linear algebraic group over the field k£ and let X denote a H-
variety with H-action defined by 0 : H x X — X. We let p; : H x X — X denote
projection on the second coordinate. A H -linearization of a quasi-coherent sheaf F
on X is an Qg x-linear isomorphism

¢:0"F — piTF,
satisfying the relation

(1 X 1x)"¢ = pyzdpo (1 X 0)"¢ (1)
as morphisms of sheaves on H x H x X. Here p : H x H — H (resp. pos :
H x Hx X — H x X) denotes the multiplication on H (resp. the projection on
the second and third coordinate).

A morphism ¢ : F — F" of H-linearized sheaves is a morphism of Ox-modules
commuting with the linearizations ¢ and ¢’ of ¥ and ¥, i.e. ¢/ 0 o*(¢)) = pi(¥) o ¢.
Linearized sheaves form an abelian category which we denote by Shy(X).

3.1. Quotients and linearizations. Assume that the quotient ¢ : X — X/H
exists and ¢ is a locally trivial principal H-bundle. Then for § € Sh(X/H), ¢*S
is naturally a H-linearized sheaf on X. This defines a functor ¢* : Sh(X/H) —
Shy(X). On the other hand, for F € Shy(X), ¢.F has a natural action of H.
Define a functor ¢ : Shy(X) — Sh(X/H) by ¢(F) = (¢.F)" the subsheaf of
H-invariants of ¢,F. It is known that the functor ¢* : Sh(X/H) — Shy(X) is an
equivalence of category and the inverse functor is ¢ : Shy(X) — Sh(X/H).

In general, if H is a closed normal subgroup of G and X is a G-variety such that H
acts freely on X, then X/H is a G/H-variety and the functor ¢* : Shq/y(X/H) —
Shg(X) is an equivalence of category and the inverse functor is ¢ : Shg(X) —
She u(X/H).

3.2. Induction equivalence. Consider now a connected linear algebraic group GG
and a parabolic subgroup P in here. Let X denote a P-variety. Then Y = G x X
is a G x P-variety by
(9,p)(h,x) = (ghp™", pz)

for g,h € G, p € P and € X. Then P acts freely on G x X and we denote by
Z = G xp X the quotient space and 7 : Y — Z the quotient map. The quotient
of Y by G also exists and may be identified with the projection py : G x X — X.
In particular, we may apply the above consideration to obtain an equivalences be-
tween the categories of Shp(X), Shgxp(Y) and Shg(Z). Notice that under this
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equivalence a P-linearized sheaf ¥ on X corresponds to the G-linearized sheaf
Ind%(F) = (m,p5F)P. In particular, the global sections of Ind%(F) equals

Md3(F)(Z2) = (p3F(G x X)) = (kG @, F(X))" = mdE(F(X),  (2)
where the second equality follows by the Kiinneth formula. This also explains the
notation Ind$(F). Similarly, starting with a G-linearized sheaf G on G xp X then
the associated P-linearized line bundle on X equals § = ((ps).7*G)¢. However,
by [Bri, Lemma 2(1)] the latter also equals the more simple pull back i*G by the
P-equivariant map

1: X =G xXpX,

sending x to w(1,z). In particular, we conclude that the functor i* : Shg(Z) —

Shp(X) is an equivalence of categories and the inverse functor is Ind%. Notice also
that the global sections of G is then G-equivariantly isomorphic to

$(2) = Indg((i*9)(X)),
which follows by (2) above.

4. FROBENIUS SPLITTING OF G xp X

Let GG denote a linear algebraic group over an algebraically closed field £ of positive
characteristic p > 0. Let P denote a parabolic subgroup of G and let X denote a
P-variety. In this section we want to consider Frobenius splittings of the quotient
Z=GxpXof Gx X by P. Welet m:Z — G/p denote the morphism induced by
the projection of G x X on the first coordinate. When g € G and x € X we use the
notation [g, z] to denote the element in Z represented by (g, z).

4.1. Decomposing the Frobenius morphism. The Frobenius morphism F; ad-
mits a decomposition F; = Fj, o Fy where Fy, (resp. FY) is related to the Frobenius

morphism on the base (resp. fiber) of 7. More precisely, define Z and the mor-
phisms 7, F}, as part of the fiber product diagram

Ep

Z z'
ﬁl lﬂ'/ (3)
Foyp

6Jp = (6/p)

A local calculation shows that we may identify Z with the quotient G x p X', where
the P-action on the Frobenius twist X’ of X is the natural one. With this identi-
fication 7 : G xp X' — G/p is just the map [g,2'] — gP. It also follows that the
natural morphism (induced by the Frobenius morphism on X)

FfiGXpX%GXPX,

makes the following diagram commutative

AN 'z
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For a given O -module F we now introduce the following notation
énd}(2), = Home,, ((£).F, 0z),

8ndg(Z)f = :H:OHIOZ ((Ff)*OZ, 3:)
When JF = 0 we also write Endp(Z), and Endp(Z); respectively. Then using the
decomposition F; = Fj o Fy we obtain a map
Dy : Endi(2)y @ (Fy)Endi(Z) s — Endp(2),
induced by composition of morphisms. Taking global sections of the considered
sheaves we arrive at a map
Oy(Z') : Endi(2), @1 End%(Z) s — Endp(2),

where End}(Z); (resp. Endy.(Z);) denotes the global sections of sheaf Endy(Z),
(resp. Endy(2);).

4.2. An equivariant setup. From now on we assume that F = L is the pull
back 7*L of a G-linearized line bundle £ on &/p. The restriction of £ to the point
eP € G/p is then a trivial line bundle with global sections k. We let A denote the
P-character defining the P-action on k.

4.2.1. A description of Endi(Z) ;. Now Endf:(Z) is a G-linearized sheaf on G'x p X
Let Y C X denote a P-stable subvariety of X and let Zy = G xp Y denote the
associated subvariety of Z with sheaf of ideals Iz, C Oz. Let Zy denote the subset
G xpY' of G xp X'. Then there is a natural morphism of G-linearized sheaves

EHdF(Z)f = fHomoZ((Ff)*OZ, OZ) - J‘COIHOZ ((Ff)*jzy, Ozy)7

induced by the inclusion Jz, C Oz and the projection 05 — 04 . Welet Endp(Z, Zy);
denote the G-linearized kernel of the above map and arrive at a left exact sequence
of G-linearized sheaves

0 — &ndp(Z, Zy); — Endp(Z); — Homo, ((Ff)Jz,,04)
and consequently also

0 — Endp(Z, Zy); @ £ — Endf(Z); — Homo, ((F)uIzy . L ,).

Taking global section we may identify global sections of Endr(Z, Zy)f ® L with the

set of elements in Endy(Z); which maps (F}).Jz, to (Jz, ® L)yccl.

Using the observations in Section 3.2 we will now give another description of the
global sections of Endp(Z, Zy ) ® L. Leti': X' — G xp X' denote the morphism
i'(z) = [1,z]. Then, as noticed in Section 3.2, the functor ¢’ is exact on the category
of G-linearized sheaves. We want to use this fact on the left exact sequence above :
notice first that

(i) €nd(2); = Homo,, ()" (F}).0z, ({)"L)
where, moreover, (i')*L = Ox: ® ky and (#')*(F;).0z = (Fx),Ox. Thus
()" end4(2); = Endp(X) @y k.
Similarly,
(i')* Homo, ((Fy)Jz,, £,z,) = Homo, (Fx).Jy, Oy) & ky
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where Jy denotes the sheaf of ideals defining Y in X. In particular, we see that the
P-linearized sheaf on X’ corresponding to Endp(Z, Zy)s ® L equals the kernel of
the natural map

8ndF(X) Rk k’)\ — g‘fomoX,((Fx)*Jy, OY/) X k>\,

ie. it equals Endp(X,Y)®kky. By Section 3.2 the global sections of Endp(Z, Zy ) ;&
L then identities G-equivariantly with

Ind% (Endr(X,Y) @ ky).
In conclusion we find
Proposition 4.1. With notation above,

End&(Z); = IndS (Endp(X) @ ky).

Moreover, when Y is a closed P-stable subvariety of X then the set of elements in
Endz(Z) s which maps (Fy).Jz, to (Jz, ® L) C L coincides with the set

Ind% (Endp(X,Y) ® ky).
4.2.2. A description of End%(Z)b. As 7" in the fiber-diagram (3) is flat the natural

morphism (7')*(Fe/p) L — (F3).m*L is an isomorphism ([Har2, Prop.I11.9.3]). Thus
there is a natural isomorphism of G-linearized sheaves

8nd§(z)b ~ (WI)*%OmO(G/P), ((FG/P)*L, O(G/P)/).

Let V denote a closed subset of ¢/p and let Iy C Oc/p denote the associated sheaf
of ideals. Let Ky denote the kernel of the natural map (which is not G-linearized)

iHomo(c/p)/ ((Fc/p)*ﬁu O(G/p)l) — j'COmO(G/P), ((Fc/p)*(JV & L), OOV’)’

i.e. Ky is the subsheaf of fHomo(G/P), ((FG/P)*L, O(G/p)/) consisting of elements map-
ping (Fo/p)«(Jv @ L) to Iy,

Let p : G — G/p denote the quotient map. Then 7~ '(V) identifies with the
quotient p~1(V) xp X’. Moreover, as 7’ is locally trivial it follows that #*(Jy) =
Jp1(v)xpxs. In particular,

(') (Foyp)«(Jy ® L) = (Fy)o7* (Jy ® L) = (F)u(Tpm1(vyspxr ® L)
and thus the sheaf
(W/)*j{omo(G/P>, ((Fc/p)*(jv X L), OOV’)
is isomorphic to
J‘COIHOZ, ((Fb)*(jp_l(V)XpX/ X ﬁ;), O(p_l(V)XpX)/) .

As 7" is a flat morphism we conclude that (7')*Ky, as a subsheaf of Endl%(Z)b,
consists of the elements which maps (F).(Jp-1vyxpxr @ L) to Jp-1(v)xpxy. In
conclusion

Proposition 4.2. There ezists a natural G-equivariant morphism

()" : HOIHO(G/P>,((FG/F)*£J, O(a/py) — End(2)s.
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Moreover, with V' as above, an element in Homo(G/P)/ ((FG/P)*L, O(G/P)/) which maps

(Fa/p)«(Jy @ L) to Iy is by (7')" mapped to an element which maps
(F)«(Tprvyxpxr @ L)
to Jp-1(vyxpxy-
From now on we will use the notation End%(G/p) to denote the G-module
Homo,g ., ((Foye )L, Oerry ),

while the subspace consisting of of elements which maps (Fe/p).(Jy ® L) to Iy will
be denoted by Endg(G/p, V).
The following is also useful.

Lemma 4.3. Let Y denote a closed P-stable subvariety of X and fix notation as
above. Then each element of Endz(Z), maps (F3)«(Jz, @ L) to J(zyy-

Proof. Tt suffices to show that the natural morphism
J{omoz, ((Fb)*ﬁ;, OZ’) — iHomoZ, ((Fb)*(jzy X ﬁ;), O(Zy)’)
is zero. The latter will follow if the natural morphism
vy @ (F)L — (F)u(Iy, © L)

is an isomorphism and this can be checked by local calculation. O

4.3. Conclusions. Consider the P-equivariant morphism
evy : Endp(X) — Homg, (Ox/,0x) = Ox/(X'),
induced by the morphism F )ﬁ( It follows that there is a morphism
Ind@ (Endp(X). ® ky) — Ind@(ky) = H(G/p, L),
and thus also an induced morphism
®, : Endj(6/p) ®;, Ind§ (Endp(X)e ® ky) — Oe/py ((6/P)) = k.
We can now state our main technical result.

Theorem 4.4. Let L denote an equivariant line bundle on G/p associated to the
P-weight A\. Then there exists a G-equivariant map

® : End(6/p) @), Ind§ (Endp(X) ® ky) — Endp(2),
satisfying

(1) When Y is a P-stable closed subset of X then the restriction of ® to the
subspace :

End;(6/p) @ Indf (Endp(X,Y) ® k),
maps into Endp(Z, Zy).
(2) When V' denotes a closed subset of G/p then the restriction of ® to the sub-
space
Endg(¢/p, V) @ Indg (Endp(X) ® ky),

maps into Endg(Z,p~ (V) xp X).
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(3) The restriction of ® to
Endz(¢/p) @), Ind% (Endp(X), ® ky),

maps into Endp(Z).. Moreover, the composition of this restriction with the
morphism evy, defined similar to evx above, coincides with ®..

Proof. Set ® = ®;(Z") o ((7')* ® llndg(EndF(X)®kA)), where(7’)* is defined in Propo-
sition 4.2. The first statement then follows from Proposition 4.1 and Lemma 4.3.
The second statement follows from Proposition 4.2 and Lemma 4.5. It remains to
prove the third statement. Consider the natural morphism

iHom(Fﬁ, ) End%(Z)f — Homop, (03, ﬁ) =L

induced by Fﬁ : Oy — (Ff)«Oz defined by Fy. Applying the functor (i')*, as in
Section 4.2.1, we obtain a morphism

(Z/)*}COIH(FJ%, *) . SHdF(X) R ]{/’)\ — OX/ ® k?)\.
It follows that Hom(F ﬁ, x) on the level of global section
Ind%( Endp(X) ®@ ky) — Ind(Ox/(X') @ k)

is the map induced by evy. By this observation and the definition of ® the result
now easily follows. O

Lemma 4.5. Let V' denote a closed subset of G/p. Then every element of 8nd§(Z)f
will map (Ff)*jﬂfl(v) to j(ﬂ-/)fl(v) QL.

Proof. 1t suffices to prove that the natural morphism
Jiay-1v) @ (Fp) 0z — (Fy)Je1v),

is an isomorphism which can be checked by a local calculation. O

5. CANONICAL FROBENIUS SPLITTINGS

In this section we assume that G is a connected linear algebraic group. By duality
for the Frobenius morphism Fg/, there is an isomorphism

:H:OmO(G/P)/ ((FG/P)*Ly O(G/P)/) ~ (FG/p)* (wé/_lf X L_1)7

where wa/p-denotes the dualizing sheaf on G/p. This way we obtain a G-equivariant
identification of Endj(¢/p) with the global sections of the line bundle wé/_f ® L1

Let x denote the P-character associated to the G-linearized line bundle w, 1P Then
multiplication defines a G-equivariant map

Ind%((p — 1)x — A) @, Ind$ () — Ind§((p — 1)x) ~ Endr (/p).

Actually the above multiplication map is surjective if the domain is nonzero [R-R,
Thm.3], i.e. if L and w(l;/_lf ®@L~1 are effective line bundles. Moreover, by construction
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the multiplication map makes the following diagram commutative

Endf(¢/p) @ nd% (Endp(X), ® ky) —— Endp(2).

1®Ind§ (evx ®1) l
Ind%((p — 1)x — A) @ IndG(A) evy
Endgp (G/P) S k

In particular, the following statement is now an easy consequence.

Corollary 5.1. Assume that L and wé/f ® L1 are effective line bundles on G/p
and that the G-equivariant morphism

Ind%(evy ® 1) : Ind% (Endp(X), ® ky) — IndF (),
1s surjective. Then G xXp X admits a Frobenius splitting.

We then define

Definition 5.2. With notation as above, a A-canonical Frobenius splitting of X is
a P-equivariant morphism

gb)\ : Indg()\) (24 k?_>\ — EndF(X)w

such that the composed map evyx o ¢, is nonzero; or equivalently, the image of ¢,
contains a Frobenius splitting of X.

Notice that a A-canonical Frobenius splitting of X defines a composed surjective
morphism

mdS(\) 22 Endp(X), @ ky <25 k.

But the set of P-equivariant morphisms between Ind%(\) and k) is 1-dimensional.
In particular, Frobenius reciprocity implies that the induced map

1! G ev
md$(A) 225 1S (Bndp(X), ® ky) —2, 1aG(n),
is surjective. Thus also the map Ind$(evx ®@ 1) is surjective. It follows

Proposition 5.3. Assume that X admits a A-canonical Frobenius splitting. Then
oy and P induces a G-equivariant morphism

D, : Indg((p —1x— ) % Indg()\) — Endp(Z2).
such that the diagram

d%((p — 1)x — A) @k Ind%(A) —> Endp(Z).

l evy

Endp (¢/P) k

eva,p

1s commutative. In particular, if wé/f ® L7 is an effective line bundle then the
image of ®, contains a Frobenius splitting of Z.
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The notion of a A-canonical Frobenius splitting generalizes the existing definition
of a B-canonical Frobenius splitting (see the subsection below) . Actually we are
only going to apply the notion in the case of a B-canonical Frobenius splittings, but
as the general notion seems so natural we have decided also to include it in this

paper.

5.1. B-Canonical Frobenius splitting. Assume for a moment that G is a con-
nected, semisimple and simply connected linear algebraic group. We will consider
the situation described above for the special case where P equals a Borel subgroup
B of G. In this case, the dualizing sheaf on G/p is the square of the linearized sheaf
defined by the B-weight p. The induced module Ind%((1 — p)p) is called the Stein-
berg module of G and will be denoted by St. It is well known that St is a simple and
selfdual G-module and thus, by Frobenius reciprocity, there exists up to a nonzero
constant a unique G-equivariant non-degenerate bilinear form

n:St®St — k.
A (1 — p)p-canonical Frobenius splitting of X is then a B-equivariant map
St ® kp-1), — Endp(X).,

such that the image contains a Frobenius splitting of X. Actually it suffices to as-
sume that that the image of the above map is contained in Endg(X) : as the image
contains a Frobenius splitting, which has T-weight 0 and is contained in Endg(X).,
it follows by the simplicity of St that the image will automatically be contained
in Endp(X).. In particular, this coincides with the condition for X to admit a
B-canonical Frobenius splitting as presented e.g. in [B-K, Lemma 4.1.2]. The im-
portance of B-canonical Frobenius splitting was first observed by O. Mathieu in
connection with good filtrations of G-modules. From now on a (1 — p)p-canonical
Frobenius splitting in the above setting will be called a B-canonical Frobenius split-
ting.

Corollary 5.4. Let ¢px : St @ k1), — Endp(X). denote a B-canonical Frobenius
splitting of X. Then there is an induced morphism

CI)X :St® St — EHdF(G X B X)C

such that the composed map evy o ®x coincides with the G-equivariant bilinear map
1 defined above. Moreover,
(1) If the image of ¢x is contained in Endp(X,Y). for a B-stable closed subva-
riety Y of X, then the image of ®x is contained in Endp(G xg X,G xgY)..
(2) Let f denote an element of Ind$(—p). Consider f as a global section of the
line bundle on G/B associated with the B-character —p, and let V denote
the zero scheme of f. Then V is a subvariety of G/B. Furthermore, for any
element w € St we have

Px(fP ' ®@w) € Endp(G x5 X,p (V) x5 X)
with p : G — G/B denoting the quotient map.

Proof. The first part of the statement follows from the considerations above and
Theorem 4.4(1). Let L denote the G-linearized line bundle associated with the
weight (1 — p)p. To prove the last part of the statement it suffices, by Theorem
4.4(2), to check that V is a variety and that fP~' as an clement of Endz(¢/B) is
contained in Endz(G/B, V). Both these statements follow from [L-T, Thm.2.3]. O
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The first part of the above result is well known (see e.g. [B-K, Ex. 4.1.E(4)]).
However, the second part seems to be new.

Although Corollary 5.4 is only stated for connected, semisimple and simply con-
nected groups it also applies in other cases : assume that G is a connected linear
algebraic group containing a connected semisimple subgroup H such that the in-
duced map #/HnB — G/B is an isomorphism. E.g. this is satisfied for any parabolic
subgroup of a reductive connected linear algebraic group. Let ¢ : H,, — H denote a
simply connected cover of H. Then X admits an action of the parabolic subgroup
By := ¢ (BN H) of Hy. Furthermore, the natural morphism

Hsc XBSCXHGXBX,

is then an isomorphism. We then say that X admits a B-canonical Frobenius split-
ting if X, as a Bs.-module, admits a Bg.-canonical Frobenius splitting. In this case
we may apply Corollary 5.4 to obtain Frobenius splitting properties of G xg X.

5.2. Restriction to Levi subgroups. Return to the setup where G is simply con-
nected and let P; denote the parabolic subgroup of G containing B and associated
to a subset J of the set of simple roots. Let L; denote the Levi subgroup of P,
containing the maximal torus 7" and let L, denote the commutator subgroup of
L;. Then L', is a simply connected semisimple linear algebraic group with Borel
subgroup B; = L, N B and maximal torus 7, = TN L;. We let St; denote the

associated Steinberg module. Notice that St; = Indg’f(k(p,l)p ,) where p; denotes
the restriction of p to T';. The following should be well known but we do not know
a good reference.

Lemma 5.5. There exists L', -equivariant morphism
StJ — St,

such that B -invariant line of Sty maps surjectively to the B~ -invariant line of St.
In particular, if X is a G-variety admitting a B-canonical Frobenius splitting then
X admits a Bj-canonical Frobenius splitting as a L';-variety.

Proof. Let M denote the T-stable complement to the B-stable line in St. Then M
is B~ -invariant and thus also Bj-invariant. Let wy denote the longest element in
the Weyl group of T'; and let w(‘)’ denote a representative of this element in N r, (Ty).
Then the translate wg M is invariant under Bj. In particular, we obtain a Bj-
equivariant morphism

St — St/ (g M) =~ ka—p)p, -

By Frobenius reciprocity this defines a L’;-equivariant map St — St; such that the
B-stable line of St maps onto the Bj-stable line of St;. Now apply the selfduality
of St; and St to obtain the desired map. This proves the first part of the statement.

The second part follows easily by composing the obtained morphism St; — St
with the B-canonical Frobenius splitting

St — Endp(X). ® k(l_p)p,

of X and noticing that the restriction of p to B is py.
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6. FROBENIUS D-SPLITTINGS

In this section we study some D-splittings properties of the Frobenius splittings
considered in the previous section. The two results give Frobenius splitting prop-
erties relative to divisors along the base scheme &/p and the fibre scheme X of Z
respectively. We use the same notation as in the previous section.

6.1. D-splittings associated to the base.

Proposition 6.1. Let v denote a nonzero global section of the line bundle wéff@ﬁ_l

and let D denote the effective Cartier divisor associated to the pull back 7*(v) to Z.
Let o denote the canonical section of Oz(D). Then for any w in Ind§ (Endp(X)®k,)
the element ®(v ® w) will factor through the morphism

(Fz)«o

(Fz)«0z —— (F2).02(D),

induced by o. In particular, any Frobenius splitting of Z of the form ®(v @ w) is a
D-splitting.

Proof. By the discussion in Section 5 we may consider v as an element in
HOIH@(G/P), ((FG/p)*L, O(G/p)/).
Actually v then identifies (up to a nonzero constant) with the composed map

(Feyp)av) .
(Feyp) ok = (Fejp)awi) = Oary

where the second map denotes a nonzero element in
1—
Homo, ,, ((FG/P)*wG/}f, Oaypy) = k.
In particular, the element (7')*(v) = Homg,, ((Fb)*f), Oy) factors through the map
po (F)«7 (v) N
(Fy) L —"—= (Fp). (7" (wey))-

Regard w as an element of Homp, ((F )0z, ﬁJ) and notice that we have a commu-
tative diagram
(Fp)sw

(Fz)«0z (Fb)*ﬁ
(Ff)*al l(Fb)*ff*(v)
(F2).02(D) (F)« (7" (we2)
where the lower horizontal map is the tensor product of (Fy).w with (7’ )*(wé/f ®
L~1). Now the statement follows by the definition of ®. U

6.2. D-splitting associated to the fibre. Let M denote a P-linearized line bundle
on X. Assume that there is a morphism of P-linearized sheaves

Y : M — Endp(X,Y) @ ky.
Inducing from P to G this defines a morphism

vz : Indf(M) — (Fy)'L,
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of sheaves on Z. Here (Fy)'L is defined by duality of the finite morphism F; such
that the relation

(Fp)«(Fy)'L = Homo, ((Fy).0z,L)

as O -modules is satisfied.
As in Section 2.5 the morphism 1, defines a global section s of

Homy, ((Ff).Ind% (M), ﬁ)
The compatibility of ¢ with Y then implies
s((Fy)«(Iz, ® ndE(M))) C I, @ L.

Moreover, let o denote a global section of the line bundle Ind%(M). Then the image
Yz (o) will factor as

Ff) g

(Fp),0, —L5 (Ff),Ind$(M) S L.
It follows

Lemma 6.2. With notation as above let v be an element in Endy(G/pP). Then
®(v®iz(0)) € Endp(Z, Zy) factors as

FZ * T (Fb) S

(F2)s0z, ——

where the composition (w)*v o (Fy).s is compatible with Zy .

(Fy), IndG (M) —=% (F).L )", Oy,

Proof. Apply Lemma 4.3 and the remarks above. O

In case X is a G-variety we may identify Z with ¢/px X. Under this identification
Ind$ (M) corresponds to the pull back (ps)*M of M by projection on the second
factor. In particular, the global sections of M and Ind%(M) coincide. Thus, for
v € End%(G/P), we obtain a map

My - M(X) — EHdF(Z, Zy)

Moreover, any Frobenius splitting 7,(c) in the image of 7, will factor through
(Fz, )«Mz where My denotes the pull back of M to Z by the morphism Z — X
defined by [g,x] — g - .

7. APPLICATIONS TO G X (G-VARIETIES

In this section we assume that GG is a connected linear algebraic group containing
a connected semisimple subgroup H such that #/unB — G/B is an isomorphism. We
define Hy, and B, as in the end of Section 5.1. We will need the following well
known result (see e.g. [B-K, Thm.2.3.8 including proof])

Lemma 7.1. Assume that G = Hy. and apply the notation of Section 5.1. Let M
denote the line bundle on G/B x G/B associated with the weight (1 —p)p X (1 — p)p.
Let f denote a nonzero diag(G)-invariant element of St X St. Then the image s of
f under the identification

St IX St ~ HomO(G/BXG/B)/ ((FG/BxG/B)*M, O(G/BXG/B)/)

is compatible with the diagonal diag(¢/B) in G/B x G/B.
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We want to apply the results of the preceding sections to the case when the group
equals G x G. So let X denote a B x B-variety and assume that X admits a
Bg. X Bg.-canonical Frobenius splitting defined by

O : (St X St) & (k’(p,l)p X k(p,l)p) — EndF(X)c

which compatibly splits certain B x B-stable subvarieties X1, ..., X,,, i.e. the image
of ¢ is contained in Endg (X, X;) for all i. Then

Theorem 7.2. With assumptions as above, the variety (G X G) Xpxp X admits a
Frobenius splitting which compatibly splits the subvarieties diag(G) Xaiag(z) X and
(G x G) X(pxp) X; for all i.

Proof. 1t suffices to consider the case where G = H,.. By Corollary 5.4 there exists
a G x G-equivariant morphism

' : (St X St) ® (St X St) — Endr((G x G) Xpxp X),

satisfying certain compatibility conditions. Let f € St X St denote the element of
Lemma 7.1. Let v € St KISt denote any element such that &’ ( f® v) is a Frobenius
splitting of (G X G) xXpxp X. Then by construction of ® and Theorem 4.4 the
element @’ ( f® v) has the desired properties. U

As f, in the proof of the above result, is diag(G)-invariant the map
CI)A : St X St — Endp(dlag(G) Xdiag(B) X),

given by ®a(w) = P'(f ® w), defines a diag(B)-canonical Frobenius splitting of
diag(G) Xdiag(p) X. By the general machinery of canonical Frobenius splittings this
would also be true if X had a diag(B)-canonical Frobenius splitting (see e.g. [B-K,
Prop.4.1.7]). However in the present setup X only admits a B x B-canonical Frobe-
nius splitting which is less restrictive than a diag(B)-canonical Frobenius splitting.
Notice however that, in contrast to the situation when X admits a diag(B)-canonical
Frobenius splitting , we do not obtain compatibly splitting of subvarieties of the form
p 1Y) x5 X with Y denoting a Schubert variety of ¢/s.

8. G-SCHUBERT VARIETIES IN EQUIVARIANT EMBEDDINGS

From now on, unless otherwise stated, we assume that G is a connected reductive
group. We fix a Borel subgroup B and a maximal torus 7' C B. The set of simple
roots determined by (B,T') will be denoted by A. The Weyl group W = Ng(T)/T
is then generated by the simple reflections s; for ¢ € A. The length of w € W will
be denoted by [(w). For J C A, let W; denote the subgroup of W generated by
J and W7 (resp. W) denote the set of minimal length coset representatives for
W/W; (resp. W;\W). The unique maximal element in W will be denoted by wy
and the unique maximal element in W will be denoted by wy. For any w € W, let
w denote a representative of w in Ng(T').

For J C A, let P; D B denote the corresponding standard parabolic subgroup
and P, D B~ its opposite. Let L; = P; N P; be the common Levi subgroup of P;
and P;. Let U (resp. U™) denote the unipotent radical of B (resp. B™).

Consider G as a G x G-variety by left and right translation. An equivariant
embedding X of G is then a normal irreducible G x G-variety containing an open
subset which is G x G-equivariantly isomorphic to GG. In particular, we may identify
G with an open subset of X. Any equivariant embedding of G is a spherical variety
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(with respect to the induced B x B-action) and thus X contains finitely may B x B-
orbits.

A subvariety of the form diag(G) - V for some B x B-orbit closure V' is called a
G-Schubert variety. Notice that diag(G) -V is the image of diag(G) X giag(s) V' under
the proper map diag(G) Xdgiag(z) X — X. Thus the G-Schubert varieties are closed
subvarieties of X.

In the rest of this section, we will define the G-stable pieces in a toridal embedding
and show that the G-Schubert varieties are actually the closures of the G-stable
pieces. However, we don’t know if there is a good notion for G-stable pieces for
general equivariant embeddings.

8.1. G-stable pieces in the wonderful compactification. In this subsection,
we assume furthermore that GG is connected semisimple group of adjoint type and
X is the associated wonderful compactification. The boundary X \ G is a union of
irreducible divisors X;, j € A and they intersect transversally. For a subset J C A,
we denote the intersection N;e;X; by X ;. As a (G x G)-variety, X is isomorphic to
the variety (G x G) x Py Y, where Y denotes the wonderful compactification

of the adjoint group of La\;. Here the PA’\ ; X Pa\s-action on Y is defined by the

\JXPA\J

quotient maps Pa\; — La\s and PA’\J — La\y. Let h; € X; denote the image of
(1,1,1) € (G x G) x Y under this isomorphism.
For J C A and w € W2V we let

X jw = diag(G)(Bw,1) - h;
and call X, a G-stable piece of X. By [L, section 12| and [He, section 2],

X= || X
JCA
weWA\JS
Moreover, by the proof of [He2, Theorem 4.5], for any B x B-orbit closure V in
X, the G-Schubert variety diag(G) - V' is the closure of some G-stable piece and is
a finite union of GG-stable pieces.

8.2. GG-stable pieces in a toroidal embedding. Let G,q4 denote the semisimple
group of adjoint type associated to G and let X denote the wonderful compactifica-
tion of G,q. The equivariant embedding X is said to be toroidal if the natural map
G — (g extends to a morphism 7 : X — X.

We fix a toroidal embedding X of G. The irreducible components of the boundary
X — G will be denoted by Xi,...,X,. As G is an affine variety these boundary
component all have codimension 1 in X [Har, Prop.3.1]. For each G x G-orbit
closure Y in X we then associate the set

Ky ={ie{l,....n}|Y C X;},
where by definition Ky = @ when Y = X. Then by [B-K, Prop.6.2.3], Y = Nk, Xi.
Moreover, we define
J={Ky C{1,...,n}|Y a G x G-orbit closure in X },

and write Xy 1= Nex X; for K € J. Then (X )keq are the closures of G x G-orbits
in X. Then we may define a map p : I — P(A) such that 7(Xg) = Xpx). Here
P(A) denotes the set of subsets of A.
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As in [H-T2, 5.4], for K € J we may choose a base point hx in the open G X G-
orbit of Xx which maps to hy,). By [H-T2, Proposition 5.3], X is naturally

isomorphic to (G x G) X pg Lavy - hi, where J = p(K) and La\y - hi is a

\JXPA\J
toroidal embedding of a quotient Lay;/Ha\s by some subgroup Hay s of the center
of LA\J.

For K € J and w € WA we let

XK,w = dl&g(G)(BU), 1) ' hK

and call X, a G-stable piece of X. One can show in the same way as in [He2, 4.3]
that

X= || ZXxw
Kel
weW A\p(K)
Also similar to the proof of [He2, Theorem 4.5], for any B x B-orbit closure V' in

X, the G-Schubert variety diag(G) - V is the closure of some G-stable piece and is
a finite union of GG-stable pieces.

9. FROBENIUS SPLITTING OF (G-SCHUBERT VARIETIES

In this section, we assume that X is an equivariant embedding of G. Let G
denote a simply connected cover of the semisimple commutator subgroup (G, G) of
G. We also fix a Borel subgroup B of G and a compatible Borel subgroup Bs. of
Ge. Similarly we fix maximal tori 7' C B and Ty, C Bs.. By a canonical Frobenius
splitting of the G-variety X we mean canonical with respect to the induced Gg.-
action.

Let X4,..., X, denote the boundary divisors. The closure within X of the B x B-
orbit Bs;woB C G will be denoted by D;. Then Dj is also of codimension 1 in X.
The translate (wo, wo)D; of D; will be denoted by D;.

By earlier work we know

Theorem 9.1. [H-T2, Prop.7.1] The equivariant embedding X admits a B x B-

canonical Frobenius splitting which compatibly Frobenius splits the closure of every
B x B-orbit closure.

As a direct consequence of Theorem 7.2 we then obtain

Corollary 9.2. Let X denote an equivariant embedding of G. Then the variety
(G X G) xpxp X admits a Frobenius splitting which compatibly Frobenius splits the
subvarieties (G X G) xpxp Y and diag(G) Xdgiagp) Y for every B x B-orbit closure
Y in X. Moreover, (G X G) Xpxp Y admits a B x B-canonical Frobenius splitting
while diag(G) Xaiag() Y admits a diag(B)-canonical Frobenius splitting.

Proposition 9.3. The equivariant embedding X of G admits a diag(B)-canonical
Frobenius splitting which compatibly splits all the G-Schubert varieties.

Proof. By Corollary 9.2 the variety Z = diag(G) Xgiag(p) X admits a B-canonical
Frobenius splitting which compatibly Frobenius splits all subvarieties of the form
diag(G) Xdiag(p) Y with Y denoting a B x B-orbit closure in X. As X is a diag(G)-
stable we may identify Z with G/B x X via the isomorphism

dlag(G) X diag(B) X — G/B X X,
l9,2] — (9B, g ).
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In particular, we see that the morphism

w4 = dlag(G) X diag(B) X — X,

g, 7] — g - =,
is projective and that m,(Oz) = Ox. As a consequence (see Section 2.6) the Frobe-
nius splitting of Z induces a Frobenius splitting of X which compatibly splits all
subsets of the form

7(diag(G) Xdiagp) Y) = diag(G) - Y.
This ends the proof. O

As a direct consequence, we conclude the following vanishing result (see [B-K,
Theorem 1.2.8]).

Corollary 9.4. Let X denote a projective equivariant embedding of G. Let X denote
a G-Schubert variety and let L denote an ample line bundle on X. Then

HY(X,L) =0,i > 0.
Moreover, if X' C X is another G-Schubert variety, then the restriction map
HO(X, L) — HY (X', L)
18 surjective.

9.1. F-splittings along ample divisors. In this subsection we assume that X is
toroidal. The following structural properties of toroidal embeddings can all be found
in [B-K, Sect.6.2]. Let X denote the complement in X of the union of the subsets
Bs;B~ for i € A. Let X' denote the closure of 7" in G and let Xj = X' N X,. Then
X is a T-stable subset of X and the morphism

UXU_XX6—>X07

(:L‘7y7z) = (%y) T2
is an isomorphism. Moreover, every G x G-orbit in X intersects X|) in a unique
T-orbit. Consequently this intersection is isomorphic to a product of copies of £*.

Lemma 9.5. Let X denote a projective toroidal equivariant embedding of G and let
Y = Xk, K €7, denote a G x G-orbit closure in X. Then

v (UJxulJaw)n)

j¢K i€A
has pure codimension 1 in'Y and contains the support of an ample effective Cartier
divisor on Y.

Proof. Let X = Uj¢x X;. We claim that Y\ X* coincides with the open G x G-
orbit Yy of Y. Clearly Yj is contained in Y \ X%. On the other hand, let U be
a G x G-orbit in Y \ X®. Then X; contains U if and only if j ¢ K. But every
G x G-orbit closure is the intersection of the X;’s which contain it [B-K, Prop.6.2.3].
It follows that the closure of Y and U coincide and thus U =Y.

As X is normal we may choose a G x G-linearized very ample line bundle £ on X.
As HO(Y, L) is finite dimensional it contains an element v which is B x B~ -invariant
up to constants. The support of v is then the union of B x B~ -invariant divisors on
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Y. As Yy N X{ is a single T x T-orbit it follows that YoN Xo = U x U~ x (X, NYp)
is a single B x B~-orbit. In particular, the support of v is contained in

Y\ (YonXo) =Y n (XU 1 wo)Dy).
ieA
This shows the second part of the statement. The first part follows as Yy N Xy is
affine [Har, Prop.3.1]. O

Let now X denote a projective smooth toroidal embedding of G. In this case

there exists an isomorphism [B-K, Prop.6.2.6]
w;{l ~ Oy <Z<DZ + Dl) + ZX])
ieA j=1

Let 7; denote the canonical section of the line bundles Ox(D;). Then 7; is a By, X
Bg.-eigenvector with weight w; X —wqw;, where w; denotes the fundamental weight
associated to the i-th simple root. This follows from the corresponding statement for
X in [B-K, Prop.6.1.11] as the pull back of Ox(D;) to X is isomorphic to Ox(D;).

Let V denote a B x B-orbit closure in X and let K denote the set of elements j in
{1,...,n} such that X; contains V. Then Y = N;cx X; is the smallest G x G-stable
closed subset of X which contains V. Let p = 22:1 w;. As wy? is isomorphic to
End!F(X ) it follows by Lemma 2.6 that we have a morphism of By X Bg.-linearized
sheaves

M — Endy (X, {Ds, X;}ieajex) ® ka—p)omi-pyp:
where M denotes the line bundle Ox ((p — 1)(3,ca D; + Do ieK X;)).

By [H-T2, Prop.6.5] and Lemma 2.1 any element in End}(X) which is compatibly
with the closed subvarieties D;, ¢« € D, and X, j € K, is also compatibly with V'
and Y. In particular, we find

5: M — Endp(X,Y, V) @ k(_p)pR(1—p)p-
Let 0; denote the canonical section of Oy (X;) and consider the global section
o= HTipfl H a?il
€A J¢K

of M (here we use that Ox(D;) is isomorphic to Ox(D;)). Then o is a B x B-
eigenvector of weight (p—1)pX(p—1)p. By Frobenius reciprocity and the selfduality
of the Steinberg module St associated to G, it follows that we have a By, X Bigc-
equivariant morphism

Ox ® (St X St) — M = Endp(X, Y, V) @ k(1—p)pR(1—p)p-
Moreover, taking global section the induced map
St XSt — EndF(X, Y, V) X k)(l,p)pg(l,p)p,
defines a canonical Frobenius splitting of X. This follows as the section
(H(Tﬁz’) I1 Uj)p_la
ieA j=1

with 7; denoting the canonical section of O X(ﬁi), defines a Frobenius splitting of X
(see e.g. [B-K, proof of Thm.6.2.7]).
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Proposition 9.6. Fiz notation as above and let D denote the effective Cartier

divisor

(-1 (30w D+ X))

ieA JE¢K
on X. Then X admits a Frobenius D-splitting which compatibly Frobenius splits the
subvarieties Y and diag(G) - V.
Proof. Above we have constructed a Gg. X Gg.-equivariant map
St ) St — Ind% (Endp(X, Y, V) @ k—p)p=-p)p)-
Let £ denote the line bundle on Gsc/B,. x Gs/B,. associated to the weight (1 — p)p X
(1 —p)p. Applying the map ® from Theorem 4.4 we find
@ : Endj (Gse/Buc X Goe/B.) @ (St K St) — Endr (Z, Zy, Zv),
where 7 = (Gsc X Gsc) X(BscXBsc) X, Zy = (Gsc X Gsc) X(BscXBsc) Y and ZV =
(GSC X Gsc) X(BschSC) V Let
v € St W St ~ Endp (Gse/Buc X Gse/Buc),

denote a nonzero diag(G)-invariant element and let

w=vy Kv_ € StKSt

where vy (resp. v_) denotes a nonzero B (resp. B~) -eigenvector of St such that
®'(v K w) defines a Frobenius splitting.
Let My denote the pull back of M to Z by the map

n: (GSC X GSC) X (Bse X Bsc) X=X

[(97 h),l‘] = (gu h) " L.
Let o denote the global section of M, defined as the pull back of the image o, of
w under the morphism St X St — M(X) defined above. Then by Lemma 6.2 the
Frobenius splitting (v X w) will factor as

(F2).07 S22 (), 22 ()L 7% 0,

where s is some map (Fy). My — L. Moreover
t = (7")'vo (Fp)us: (Fz):Mz — Oy

is compatible with Zy and Zy, and by Proposition 4.2, Lemma 4.5 and Lemma 7.1,
also with Zan = diag(G) Xaiagp) X. In particular, ¢ is also compatible with the
intersection Zy a = diag(G) Xgiagp) V of Za and Zy.

Notice that the natural morphism 7* : Ox — 7,0 is an isomorphism. Thus, by
Lemma 2.7 the push forward

T]*t . (Fx)*M — OX/

is compatible with Y = 1(Zy ) and diag(G)-V = n(Zy,a). Moreover, the composition
of n,t with

Ne(Fz)s0 = (Fx)s0u : (Fx):Ox — (Fx)«M,

is, by construction, a Frobenius splitting of X. It follows that X admits a Frobenius
D-splitting which compatibly splits Y = n(Zy) and diag(G) -V = n(Zy.a), where D
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is the effective Cartier divisor associated to o,. But by the remarks preceding this
proposition it follows that D, by construction, equals

p—1) (Z X+, wo)Di>.

JEK N
This ends the proof. U

Definition 9.7. A morphism f : X — Y is a called a rational morphism if the
induced map f*: Oy — f.Ox is an isomorphism and R'f,Ox = 0, i > 0.

The following criteria for a morphism to be rational will be very useful ([R,
Lem.2.11]).

Lemma 9.8. Let f: X =Y denote a projective morphism of irreduciblq varieties
and let X denote a closed irreducible subvariety of X. Consider the image Y = f(X)
as a closed subvariety of Y. Let L denote an ample line bundle on'Y and assume

(1) f*(‘)X - Oy. o

(2) HY(X, f*L™) = HY(X, f*L™) =0, fori >0 and n > 0.

(3) The restriction map H°(X, f*L") — HY(X, f*L") is surjective for n > 0.
Then the induced map f: X — Y is a rational morphism.

Lemma 9.9. Let X denote a projective embedding of a reductive group G and let Y
denote a G X G-orbit closure of X. Then there exists a smooth toroidal embedding
X of G and a projective morphism f : X - X extending the identity map on
G. Moreover, we may also assume that X contains a G x G-orbit closure Y with
f(f/) =Y and such that the induced morphism f : Y — Y is a rational morphism.

Proof. Assume first that X is toroidal. Remember that the closure of T" in any
toroidal embedding of G is a a toric variety and that this defines (see [B-K, Sect.6.2])
a correspondence between certain toric varieties and the set of toroidal equivariant
embeddings of G. In particular, if we let T denote the closure of T in X, then there
exists a toroidal embedding X whose associated toric variety T is a resolution of
singularities of T. We may assume that T is constructed by a refinement of the
fan associated to T as discussed in [Ful, Sect.2.6]. Thus it follows that any T-orbit
closure V' of T is the birational image of a T-orbit closure Vin T (see e.g. the
discussion at the end of Chapter 5 in [Ful]).

By [B-K, Prop.6.2.3] T-orbit closures of T correspond to G' x G-orbit closures
in X. So let V be the T-orbit closure associated to Y. Choose V as above and let
Y denote the corresponding G x G-orbit closure of X. Then by the discussion in
[B-K, Sect.6.2] there is an induced birational map f : Y — Y. By [H-T2, Cor.8.4]
the orbit closure Y is normal and thus, by Zariski’s main theorem, we conclude
[0y = Oy. By Lemma 9.8 (used with X = XandY = Y) it now suffices to prove
that X

H(Y, f*L)=0,i>0
for a very ample line bundle £ on Y. This follows from [H-T2, Prop.7.2] and ends
the proof in the case when X is toroidal.

Consider now an arbitrary projective equivariant embedding X of G. Let X
denote the normalization of the closure of the image of the natural G x G-equivariant
embedding

G — X x X.
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Then X is a toroidal embedding of G with an induced equivariant morphism f:

X — X. Let Y denote any G x G-orbit closure in X. Then f : Y — f(Y) is a
rational morphism [H-T2, Lem.8.3]. In particular, we may find a G x G-orbit closure
Y of X with an induced rational morphism f : Y > Y. Finally we may apply the
first part of the proof to Y and use that a composition of rational morphisms is a
rational morphism. O

Corollary 9.10. Let X denote a projective embedding of a reductive group G and
let X denote a G-Schubert variety in X. Let'Y denote the minimal G x G-orbit
closure of X containing X. When L is a nef line bundle on X then

H(X,L) =0, i > 0.

Moreover, when L is a nef line bundle on Y then the restriction morphism
HO(Y, £) — HO(X, £),

18 surjective.

Proof. Assume first that X is smooth and toroidal. Then by Proposition 9.6 and
Lemma 9.5 the variety Y admits a stable Frobenius splitting along an ample divisor
which compatibly Frobenius splits X. Thus the statement follows in this case by
Proposition 2.4.

Let now X denote an arbitrary projective equivariant embedding of G. Choose
a projective toroidal embedding X as in Lemma 9.9 and let f: Y — Y denote
the induced rational morphism. Let V' denote a B x B-orbit in Y such that X =
diag(G)-V. AsY is the minimal G x G-orbit closure containing X it follows that V
is contained in the open G x G-orbit of Y. In particular, there exists a B x B-orbit
Vin X , contained in the open GG x G-orbit of }7, which maps to V. In particular,

X := diag(Q) - 1%

is a G-Schubert variety in X which by f maps onto X. Moreover, Y is the minimal
G x G-orbit closure containing X. Applying Lemma 9.8 and the part of the statement
which is already proved, it follows that f : X — X is a rational morphism. In
particular,

H'(X, L) = H'(X, f*L)

H'(Y, L) = H'(Y, f*L)
for all ¢ and all line bundles £ on X or Y. Now apply the part of statement which
is already proved. U

By the proof of the above result we also find that any G-Schubert variety X a
projective equivariant embeddmg of GG, will admit a G-equivariant rational mor-

phism f : X —X by the closure X of some G-stable piece of some smooth projective
toroidal embedding of G.

Remark 9.11. When X = X s the wonderful compactification of a group G of
adjoint type and L is a nef line bundle on X, then the restriction morphism
HO(X, L) — HO(Y, ),

to any G x G-stable irreducible subvariety Y of X is surjective. In particular, also
the restriction morphism

H°(X, L) — H°(X, L),
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to any G-Schubert variety X is surjective by the above result. We do not know if the
latter is true for arbitrary equivariant embedding.

10. NORMALITY QUESTIONS

It is natural to expect that the Frobenius splitting properties of closures of G-
stable pieces together with the cohomology vanishing results in Corollary 9.10 will
have strong implications on the geometry of G-Schubert varieties. However, below
will see that there exists an example of a G-Schubert variety in a wonderful com-
pactification which is not even normal. In fact, it seems that there are plenty of
such examples.

10.1. Some general theory. We keep the notations in 8.1. For J C A and w €
WAV We let X, denote the closure of X, in X. Let

K =max{K'Cc A\ J;uwK' C K'}.
By [He2, Prop. 1.12], we have a diag(G)-equivariant isomorphism
diag(G) Xgiag(py) (Prw, Pr)hy ~ X,
induced by the inclusion of (Pxw, Px)h;in X. Let V denote the closure of (Pxw, Pk )h;
within X. Then V is the closure of a B x B-orbit and we find that the induced map
[ diag(G) Xdiag(py) V = Xw

is a birational and projective morphism. By the results in [H-T2| the B x B-orbit
closure V' is normal. Thus a necessary condition for X ;,, to be normal is that the
fibers of f are connected.

10.2. An example of a non-normal closure. Let now, furthermore, G be a group
of type G5. Let ay denote the short simple root and as denote the long simple root.
The associated simple reflections are denoted by s; and s,. Let J be the subset of
A defined by as and let w = s185 € WA\ In this case K = () and we obtain a
birational map

f : dlag(G) xdiag(B) V ~ XJ7w
where V' is the closure of (Bw, B)h;. By [Sp, Prop. 2.4], the part of V which
intersect the open G x G-orbit of X ; equals

U (Bw',B)h,u | (Bw',Bsi)h,. (a)
w<w’ ws1<w’
In particular, x := (0, 1)h; is an element of V| where v = s351592. We claim that the
fiber of f over x is not connected. To see this let y denote a point in the fiber over
x. Then we may find g € G and & € V such that
y=lg,].
By (a), # = (buw',p)h; for some b € B, p € Pa\y and w’ > w. Then
(gbw’, gp)hy = (0, 1)hy.

It follows that (0~ 'gbw', gp) lies in the stabilizer of h;. In particular, gp € Pa\y
and thus also g € Pa\y. If g € B then y = [1,z]. So assume that g = u(t)$; where
uy is the root homomorphism associated to a;. Assume that ¢ # 0. Then we may
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find b; € B and s € k such that g = u_1(s)b; where u_; is the root homomorphism
associated to —a;. Thus

(97970, 1)h,

= (by lu 1(=8)0,97 )hy
(bllv 9 ) J

€ (Bv,Bsy)h;

T =

where the third equality follows as v ~'u_;(—s)0 is contained in the unipotent radical

of Py ;. But (Buv,Bsi)h; has empty intersection with V' which contradicts the
assumption that ¢ # 0. It follows that the only possibilities for y are [1,v] and
(31, (510, $1)hy]. As (519, $1)h; € V' we conclude that the fiber of f over x consists
of 2 points; in particular the fiber is not connected and thus X—Jw is not normal.

10.3. Normalization of G-Schubert varieties. The example above shows that
the G-Schubert varieties within wonderful compactifications are, in general, not nor-
mal. Now we turn our attention towards the normalization of GG-Schubert varieties
which we expect to have nice singularities.

Let X ., be a G-stable piece and let Z;,, denote the normalization of the closure
of Xj,. Then the birational morphism f factors through Z;,,. In particular, there
is an induced birational and projective morphism

f/ : dlag(G) Xdiag(B) V — Z’J’w.

By the results in [H-T2] the B x B-orbit closure V' is globally F-regular. Thus
diag(G) Xaiag(p) V' is locally strongly F-regular. As flOgiag(c)x aogyV = Oz, one
could hope that a similar result was true for Z;,,. Moreover, using Proposition 9.6
and Lemma 9.5 one may conclude that Z;, admits a stable Frobenius splitting
along an ample divisor. In particular, if the above hope was true then Z;,, would
be globally F-regular. At the moment we do not know if Z;,, is strongly F-regular.
We refer to [S] for an introduction to global F-regularity.

11. GENERALIZATIONS

An admissible triple of G x G is by definition a quadruple € = (J;, Js, 05) consisting
of Ji,Jy C A, an isomorphism § : W, — W, with 6(.J;) = Jo and an isomorphism
05 : L;j, — Lj, that maps T" to T" and the root subgroup U,, to the root subgroup
Uas,y for @ € Ji. To each admissible triple € = (J1, Ja, 05), we associate the subgroup
Re of G x G defined by

Re ={(p,q) : p € Pj,,q € Py, 05(ms,(p)) = 71,(q)},

where 77 : P; — Ly, for a subset J C A, denotes the natural quotient map.

Let Gg denote the simply connected cover of the commutator subgroup of G
and let € = (Jy, Jo,05) denote an admissible triple on Gy X Gs.. By definition in
[L-Y, section 7], a Re-stable piece in the wonderful compactification X of G,q is a
subvariety of the form Re - Y, where Y = (Bvy, Bvy) - hy for some J C A, v, € W/
and v, € ©2W. Notice that when J; = J, = A and 65 is the identity map then a Re-
stable piece is the same as a G-stable piece. On the other hand, when J; = Jo, = (),
then a Re-stable piece is the same as a B x B-orbit. Moreover, for any B x B-orbit
closure V in X, Re -V is the closure of some Re-stable piece and is a finite union of
Re-stable pieces [L-Y, Section 7]. We call Re - V' a Re-Schubert variety of X.
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The following is a generalization of Proposition 9.3 and Proposition 9.6.

Proposition 11.1. Every equivariant embedding X of G admits a Frobenius split-
ting which compatibly splits all closed subsets of the form Re- V', where V' denotes a
B x B-orbit closure of X. If, moreover, X is a smooth projective toroidal embedding
and Y = Xy s the minimal G X G-orbit closure containing a B x B-orbit closure
V', then X admits a Frobenius splitting along the Cartier divisor

D=(p-1) (Z(wgl, 1D+ Xj>,
i€EA JEK

which s compatibly with Y and Re - V.

Proof. In the following L, for a subset J C A, denotes the Levi subgroup in G,
associated to J. The corresponding commutator subgroup is denoted by L';. Define
Xeto be the L} x L'} -variety which as a variety is X but where the action is twisted
by the morphism
Ly, x Ly 20 1, < I

Then the (L}, N By) x (L}, N By)-canonical Frobenius splitting of X defined by
Theorem 9.1 and Lemma 5.5 induces a (L', N By.) x (L' N By.)-canonical Frobenius
splitting of Xe. In particular, all subvarieties of Xe which corresponds to B x B-
orbit closures in X will be compatibly Frobenius split by this canonical Frobenius
splitting. Now apply an argument as in the proof of Proposition 9.3 and use the
idenfication of Re -V C X with diag(Ly,) -V C Xe. This ends the proof of the first
statement.

Assume now that X is a smooth projective toroidal embedding and consider the
morphisms

Ox ® (StRSt) — M 2 Endp(X, Y, V) ® k(_p)p=(1_p)p-

of the discussion above Proposition 9.6 in Section 9. Let Ye and Vi be defined
similar to Xe. Applying Lemma 5.5 we obtain

Ox, @ (Sty, K Sty,) = M 5 Snd!F(Xe, Ye, Vo) ® k(lfp)PJl R(1—p)p., -

with notation as in Section 5.2. Let v_ (resp. v;) denote a lowest (resp. highest)
weight vector in (Sty, X St;,) and let o be the global section of M which is the image
of vy Kv_ under the map

StJl X StJl — M(X)
Let D denote the zero divisor of o. Arguing as in the proof of Proposition 9.6 we
then obtain a D-splitting of Xe which is compatible with the subvarieties Ye and
diag(Ly,) - Ve. Notice finally that D equals the divisor

=1 DD+ 3 X,).
i€EA j¢K
This ends the proof. U

In the case where k = C and X is the wonderful compactification, the subvarieties
(w(‘)] '.1)D;, X; and all the Re-Schubert varieties are Poisson subvarieties with respect
to the Poisson structure on X corresponding to the splitting

Lle(G) ) Lle(G) = ll D lg,
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where I; = Lie(Re) and I is certain subalgebra of Ad(wy") Lie(B~) @ Lie(B~). See
IL-Y2, 4.5].

We may also argue as in Corollary 9.10 to obtain

Corollary 11.2. Let X denote a projective embedding of a reductive group G and let
V' denote the closure of a B x B-orbit in X. Let'Y denote the minimal G X G-orbit
closure of X containing Xe = Re - V. When L is a nef line bundle on Xe then

H'(Xe, L) =0, i > 0.

Moreover, when L is a nef line bundle on Y then the restriction morphism
HO(Y, £) — H(Xe, £),

18 surjective.

11.1. Further variations. Define an To an admissible triple Re we may associate
the variety Ze = (G X G)/Re which can also be identified with the variety

(G X G) XleprZ LJl,
where the action of P;, x Pj, on G X G x Ly, is defined by

(p1,p2) - (91,92, 1) = (91]91792292,WJl(p1)l9§1(7TJ2(p2)fl))-
Then

Lemma 11.3. There is a B x B-canonical splitting on Ze that compatibly splits all
the B x B-orbit closures.

Proof. By [B-K, Thm.6.2.7], there exists a B x B-canonical splitting on L, that
compatibly splits all the B x B-orbit closures. Then by [B-K, Proposition 4.1.17 &
Exercise 4.1.E(4)], there exists a B x B-canonical splitting on (G X G) Xpxp Ly,
that compatibly splits all the B x B-orbit closures. By a push forward argument
this implies that Ze = (G'x G) Xp, xp,, L, admits a B X B-canonical Frobenius
splitting which compatibly Frobenius splits all B x B-orbits closures. U

Now let h be the element [1,1,1] € (G x G) Xp, xp,, L, = Ze and let €' =
(Ji, J3,0s) be another admissible triple. A Re-stable piece of Ze is then a subset of
the form Re - Y where Y = (Bvy, Bvs) - h for some v; € W7t and vy € L1V . Similar
to the proof of the first part of Proposition 11.1 we may then prove

Proposition 11.4. The variety Ze admits a Frobenius splitting which compatibly
Frobenius splits all closures of Re-stable pieces.
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