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On solutions in arithmetic progressions to
homogenous systems of linear equations

Jonas Lindstrøm Jensen∗

Abstract

We consider subsets of the natural numbers that contains infinitely
many aritmetic progressions (APs) of any given length – such sets will
be called AP-sets and we know due to the Green-Tao Theorem that the
primes is an AP-set. We prove that the equation

Mx = 0,

where M is an integer matrix whose null space has dimension at least 2,
has infinitely many solutions in any AP-set such that the coordinates of
each solution are elements in the same AP, if and only if (1, 1, . . . , 1) is
a solution.

We will furthermore prove that AP-sets are exactly the sets that has
infinitely many solutions to a homogeneous system of linear equations,
whenever the sum of the columns is zero.

1 Introduction
The existence of different kinds of additive structures in the primes is a field
of research that has drawn much attention. Recently Ben Green and Terrence
Tao [1] has proved the existence of arbitrarily long arithmetic progressions in
the primes and Granville [3] has considered several additive structures that
can be found using the results of Green and Tao. Inspired by this we are
looking for solutions in any subset of the integers that contains arbitrarily
long aritmethic progressions to homogeneous systems of linear equations – in
particular solutions consisting of primes.

Balog [4] gave a lower bound on the number of prime solutions to a ho-
mogeneous system of linear equations Mx = 0 if the matrix M has a certain
admissible structure, the null space contains a vector with positive coordinates
and Mx ≡ 0 (mod p)α has integer solutions coprime to p for all prime pow-
ers pα. In particular he proved that if M is admissible and (1, 1, . . . , 1) is
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a solution, then Mx = 0 has prime solutions. Choi, Liu and Tsang [5] has
considered upper bounds for prime solutions to ternary linear equations.

In this paper we will prove that we have infinitely many solutions to a
system of linear equations in a set with arbitrarily long arithmetic progressions
if the null space of the matrix has dimension at least 2 and contains (1, 1, . . . , 1).
Due to the Green-Tao Theorem the primes is such a set and due to Szemeredi’s
Theorem [2] all subsets of the integers with positive density are such sets.

The main result in this paper is that the method here also gives us that for
each of the solutions the coordinates are in the same arithmetic progression,
and that the sets that contain arithmetic progressions of any length are exactly
the sets that have infinitely many solutions to a homogeneous system of linear
equations whenever the sum of the columns is zero. This gives us a new
arithmetic structure on such sets and a new formulation of the Erdős-Turan
Conjecture.

The results in this paper have been found while working on my master
thesis and I would like to thank my supervisors Jørgen Brandt and Simon
Kristensen for their help. I would furthermore like to thank Andrew Granville
for reading and commenting on the results.

2 APs and GAPs
As we are considering arithmetic progressions the following notation will come
in handy.

Definition 1 (Arithmetic progressions). Let k, d ≥ 1 and a ≥ 0 be integers.
Then an arithmetic progression (AP) of length k, base a and step d is the set

AP(k, a, d) = {a+ λd | 0 ≤ λ < k}.

We consider subsets of N that contains arbitrarily large arithmetic pro-
gressions. We will call these sets AP-sets and define them as follows.

Definition 2 (AP-set). Let A ⊆ N. We will call A an AP-set if there for any
k ≥ 1 exists a pair (a, d) ∈ N2 such that

AP(k, a, d) ⊆ A.

Remark 3. Notice that an AP-set contains infinitely many APs of any length.
We will now consider generalizes arithmetic progressions which we define

as follows.

Definition 4 (Generalized arithmetic progressions). Let d ≥ 1, a ≥ 0, b1, . . . ,
bd ≥ 1 and N1, . . . , Nd ≥ 1 be integers. Then a generalized arithmetic progres-
sion (GAP) of dimension d, base a, step (b1, . . . , bd) and volume (N1, . . . , Nd)
is the set

{a+ n1b1 + · · ·+ ndbd | 0 ≤ ni < Ni for all i}.
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Remark 5. Notice that a GAP of dimension d, base a, step (b1, . . . , bd) and
volume (2N1 − 1, . . . , 2Nd − 1) can be written as

{a′ + n1b1 + · · ·+ ndbd | −Ni < ni < Ni for all i} (1)

where a′ = a+ (N1 − 1)b1 + · · ·+ (Nd − 1)bd.
We can construct a GAP of any dimension and volume from a sufficiently

long AP, so in particular an AP-set contains infinitely many GAPs of any given
dimension and volume. The following lemma is taken from [3] and gives us a
little more than just GAPs in AP-sets.

Lemma 6. Any AP-set containts infitely many GAPs of any given dimension
and volume such that each GAP is contained in an AP.

3 Finding solutions in an AP-set
Using the existence of GAPs in AP-sets we can now find infinitely many solu-
tions to systems of linear equations in any AP-set.

Theorem 7. Let n ≥ 3 and m ≥ 1 and let M ∈ Matm,n(Z). Assume that the
solution space of

Mx = 0 (2)

has dimension d ≥ 2 and contains (1, 1, . . . , 1). Then (2) has infinitely many
solutions in any given AP-set with the coordinates of a solution being elements
in the same AP and not all equal.

Proof. The solution space of (2) can be written as

m1r1 +m2r2 + · · ·+mdrd, mi ∈ R

where r1 = (1, 1, . . . , 1), ri = (ri1, . . . , rin) ∈ Zn for 2 ≤ i ≤ d and r1, . . . , rd
are linearly independent over R. Now let N = maxi,j |rij|+ 1 and take a GAP
of dimension d− 1 and volume (2N − 1, . . . , 2N − 1). According to Lemma 6
we can construct GAPs of any given size such that it is contained in an AP.
Now take such a GAP, and as we did in (1) we write it as

{a+ n1b1 + · · ·+ nd−1bd−1 | −N < ni < N for all i}. (3)

Now
ar1 + b1r2 + · · ·+ bd−1rd

is a solution to (2) and each coordinate is an element in the GAP given in (3).
Now assume that the solution we have found has all coordinates equal. Then
it is equal to cr1 for some c ∈ N so

(a− c)r1 + b1r2 + · · ·+ bd−1rd = 0.

This is not possible since r1, . . . , rd are linearly independent.
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4 Prime-like sets
Theorem 7 on the previous page gives us a sufficient condition to be able to
find infinitely many solutions in an AP-set. Let us now examine in what way
it also is a nescessary condition. To examine this we need to require a bit more
from our AP-set.

Definition 8 (Prime-like sets). A set A ⊆ N is called prime-like if for each
AP(k, a, d) ⊆ A with k ≥ 3 we have gcd(a, d) = 1.

Notice that the primes is prime-like because if we have a progression AP(k, a, d)
in the primes, then a is prime and d is even.

Theorem 9. Let A be a prime-like AP-set, M ∈ Matm,n(Z) and k ≥ 3.
Assume that

Mx = 0 (4)

has infinitely many solutions such that for each solution (x1, . . . , xn) there is
(a, d) ∈ N2 such that

{x1, . . . , xn} ⊆ AP (k, a, d) ⊆ A.

Then (1, 1, . . . , 1) is a solution to (4).

Proof. Let 1 ≤ i ≤ m be given. Assume for contradiction that ai1 + · · · +
ain 6= 0. Let {(x(j)

1 , . . . , x
(j)
n ) | j ∈ N} be the infinitely many solutions given in

the lemma. For each j ∈ N there exist bj and dj such that x(j)
l = bj+λ

(j)
l dj with

0 ≤ λ
(j)
l < k for all l = 1, . . . , n since each x(j)

l is an element of AP(k, bj, dj).
Inserting this in (4) we get that we for each j ∈ N have

bj(ai1 + · · ·+ ain) = −dj(ai1λ(j)
1 + · · ·+ ainλ

(j)
n ).

Since gcd(bj, dj) = 1, bj must divide a1λ
(j)
1 + · · · + anλ

(j)
n so if we let C =

|ai1|+ · · ·+ |ain| we have bj ≤ Ck. Now

|dj| =
∣∣∣∣∣bj

a1 + · · ·+ an

a1λ
(j)
1 + · · ·+ anλ

(j)
n

∣∣∣∣∣ ≤ Ck

so the set {dj | j ∈ N} is also finite. The solutions {(x(j)
1 , . . . , x

(j)
n ) | j ∈ N} are

therefore taken from only finitely many APs of length k, and there can hence
be only finitely many of them. This is a contradiction against the assumption,
and this finishes the proof.

Combining this with Theorem 7 on the preceding page we get the following.
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Theorem 10. Let A be a prime-like AP-set and let M ∈ Matm,n(Z) such that
the null space of M has dimension at least 2. Then there is a k ∈ N such that
the equation

Mx = 0

has infinitely many solutions where for each solution, all coordinates are ele-
ments of the same AP of length k if and only if (1, 1, . . . , 1) is a solution.

We now give an example of an application of Theorem 7 on page 3. This
is a known result, see for instance [3].

Corollary 11. Let an AP-set A and n ≥ 1 be given. Then there exists in-
finitely many n-tuples in x1, . . . , xn ∈ A with xi 6= xj for some i, j such that

x1 + · · ·+ xn
n

∈ A.

Proof. When n = 1 it is trivial so let n ≥ 2 be given. Consider the linear
equation

x1 + · · ·+ xn − nxn+1 = 0.

From Theorem 7 on page 3 we know that this equation has infinitely many
solutions x1, . . . , xn, xn+1 ∈ A with xi 6= xj for some i, j. Now for each of these
we have

x1 + · · ·+ xn
n

= xn+1 ∈ A,

which finishes the proof.

5 Zero-solution sets
We have proven that in any AP-set we can find infinitely many solutions to
any system of linear equation, as long as the sum of the columns of the matrix
is zero. This motivates the following definition.

Definition 12 (Zero-solution sets). Let M ∈ Matm,n(Z) such that the sum of
the columns is zero and the null space of M has dimension at least 2. A set
A ⊆ N is a zero-solution set if

Mx = 0

has infinitely many solutions x = (x1, . . . , xn) with x1, . . . , xn ∈ A and xi 6= xj
for some i, j.

Now Theorem 7 on page 3 can be formulated as follows: If A is an AP-set
then A is a zero-solution set. We now want to prove that zero-solution sets
and AP-sets are the same.

Theorem 13. Let A ⊆ N. Then A is a zero-solution set if and only if A is
an AP-set.
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Proof. The ’if’ part we get from Theorem 7 on page 3. Let n ≥ 3 be an integer
and let M ∈ Matn−2,n(Z) be given such that the solution space of Mx = 0 is
given by

m1(1, 1, . . . , 1) +m2(0, 1, 2, . . . , n− 1), m1,m2 ∈ R.

Since A is a zero-solution set there are infinitely many solutions in A with
m2 6= 0. We also see that such a solution is in A so it is integer and both
m1 and m2 are hence integer. Each of these solutions gives us an AP of
length n.

This result gives us a new formulation of the Erdős-Turan conjecture [6],

∑

a∈A

1

a
=∞ ⇒ A is a zero-solution set.
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