A CLASSIFICATION RESULT FOR SIMPLE LIMITS OF CIRCLE
ALGEBRAS WITH DIMENSION DROPS
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ABSTRACT. We prove that the simple unital inductive limits of finite direct
sums of C*-algebras of the form {f € C(T)® M, : f(z;) € Mg, i =
1,2,...,N}, where z1,22,...,zN are elements of T and di,da,...,dy are
positive integers dividing n, are classified by the Elliott invariant, if either Ko
is non-cyclic or K contains an element of infinite order.
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1. INTRODUCTION

During the last decade there has been considerable progress in the field of clas-
sification of simple stably finite C*-algebras, see e.g [7], [8], [19], [9], [21], [13], [14],
[18]. The invariant employed is the Elliott invariant that consists of the Ky-group,
the K;j-group, and the tracial state space, together with its pairing with the K-
group. This paper can be seen as an attempt to unify all these results, except
that of [14]. Obviously, the classification results of [7], [8], [19], [9], and [13] are
contained in the classification result of either [21] or [18].

In [13] Jiang and Su proved that the Elliott invariant is a complete invariant for
the class of simple unital infinite dimensional inductive limits of sequences of finite
direct sums of building blocks of the form

{f€Cl0,1]® M, : f(0) € Ma,, f(1) € M, },
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where dy and dy are positive integers dividing n. This was generalised by the author
in [18] where building blocks of the form

{f60[0,1]®Mnf(ZL'Z) € My, 1= 1,2,...,N},

where d;,ds, . ..,dy are positive integers dividing n, were considered. Remarkably,
Jiang and Su showed that their class contains a simple unital projectionless C*-
algebra Z with the same Elliott invariant as C, thus explaining their assumption
of infinite dimensionality.

In [21] Thomsen proved that the Elliott invariant is a complete invariant for the
class of simple unital inductive limits of finite direct sums of building blocks of the
form

{f eC(TY® M, : f(x;) € My, i = ].,2,...,]\[}7

where d is a positive integer dividing n and z1, 2, ...,2zx € T. By [21, Theorem 9.1]
Thomsen’s class contains C*-algebras, for which the Kj-group contains elements
of infinite order, that were not included in the class considered in [18]. On the
other hand, by [18, Theorem 8.9], the class considered in [18] contains C*-algebras,
for which the Ky-group is cyclic, and which were not included in Thomsen’s result.
Therefore these results are independant, in the sense that neither of them generalises
the other.

In order to construct a class containing both these classes we will in this thesis
consider the class of simple unital inductive limits of sequences of finite direct sums
of building blocks of the form

{feC(T)® M, : f(z;) € Mg;,, i=1,2,...,N},

where z1,2,...,2y € T and di,ds,...,dyN are positive integers dividing n. Un-
fortunately, we have only been able to give a classification result for a subclass of
this class. To be precise, our main result is the following theorem:

Theorem 1.1. Let A and B be a simple unital inductive limit of a finite direct
sum of building blocks such that either Ko(A) is non-cyclic or K1(A) contains an
element of infinite order. Let o : Ko(A) — Ko(B) be an isomorphism of groups
with order units, let @1 : K1(A) — K1(B) be an isomorphism of groups, and let
o1 : T(B) — T(A) be an affine homeomorphism such that

r8(W)(¢o(2)) = ralpr(w)(@)), =€ Ko(A), weT(B).

There exists a *-isomorphism ¢ : A — B such that . = po on Ky(A), such that
v« = @1 on K1(A), and such that ¢* = o7 on T(B).

By [21, Theorem 9.1] this result generalises the classification result of Thomsen
[21]. Restricted to the class of non-cyclic Ko-group it generalises the classification
result in [18]. However, the question of whether those C*-algebras with cyclic Ko-
group, contained in the class considered in [18], are uniquely determined by their
Elliott invariant, in the class considered in this thesis, is left open. In particular, the
question of whether the C*-algebra Z is the only infinite dimensional C*-algebra
in this class with the same Elliott invariant as C, is left open.

I would like to thank Henning Haahr Andersen who put me on the track of the
proof of Lemma 3.1, and Ebbe Thue Poulsen, who found the proof of Lemma 6.2.
Thanks are also due to Jesper Villadsen for some useful discussions. But most of
all, T am grateful to my advisor Klaus Thomsen for giving this problem to me and
for his inspiring and enthusiastic supervision of me during the last four years.
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2. BUILDING BLOCKS

Let T denote the unit circle in the complex plane. We will equip T with the

metric
p(e®™, ™) = min{|s —t+q|:q € Z}

which is easily seen to be equivalent to the usual metric on T inherited from C.

Recall some definitions from [19]. A tuple (a1,as,...,ar) of elements from T is
cyclically numbered if there exist numbers s1, s2,...,s, € R such that a; = €™,
7=1,2,...,L, and

851 <8 <---<s;, <8+ 1.

If furthermore s1, 89, ..., € [0,1] we say that the tuple is naturally numbered.
By a building block we will understand a C*-algebra of the form

A(n,dl,dg,...,d]v) :{fGC(T)(@Mn:f(.’Ei) € Mg,, i=1,2,...,N},

where N > 2, z1,29,...,2y are (mutually different) elements of T, d;|n for i =
1,2,...,N, and My, is embedded unitally into M, e.g via the *-homomorphism
a +— (a,a,...,a). The points x1,x2,...,zy will be called the exceptional points
of A. We allow d; = n such that the circle algebra C(T) ® M,, = A(n,n,n)
is an example of a building block. It will be convenient to always assume that
(z1,22,...,2N) is a naturally numbered tuple and that 1 is not an exceptional
point.

Building blocks will sometimes (but not always) be called circle building blocks,
in order to distinguish them from interval building blocks. An interval building
block is a C*-algebra of the form

A(?’L,dl,dg,...,dN) = {fEC[O,].]@Mnf(l'z) GMdi, i21,2,...,N},

where 21,22,...,25 € [0,1] and di,ds,...,dny are positive integers dividing n.
Simple unital inductive limits of finite direct sums of interval building blocks were
studied by the author in [18].

For every i = 1,2,...,N, evaluation at z; induces a *-homomorphism from
A to My,. This *-homomorphism will be denoted by A; or sometimes A#. The
representation A; @ A; & --- @ A; of A on Mg, is denoted by AjS.

The following lemmas are left as exercises.

Lemma 2.1. Let A = A(n,d1,ds,...,dN) be a building block. The irreducible
representations of A are A1, Aq, ..., Ay, together with evaluation at non-exceptional
points.

Lemma 2.2. Let I be a closed two-sided ideal in A. There is a closed set F' C T
such that

I={feA: f(x)=0 forallz € F}.

Let T'(A) denote the compact convex set of tracial states on the C*-algebra
A. Let AffT(A) denote the order unit space of all continuous real-valued affine
functions on T'(A).

Lemma 2.3. Let A = A(n,d1,dz,...,dy) be a building block and let w € T(A).
There exists a Borel probability measure p on T such that

w(f) = / 7(f(2)) du(a),
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where T denotes the (normalised) trace on M,. Hence AffT(A) and Cr(T) are
isomorphic as order unit spaces via the map

fr(wrw(fel), weT(A), feCr(T).

Theorem 2.4. Let A be a finite direct sum of circle and interval building blocks.
Then A = C*(G|R) for a finite set of stable relations R in a finite number of
indeterminates.

Proof. First note that A is a one-dimensional non-commutative CW complex, as
defined in [6]. Hence A is semiprojective by [6, Theorem 6.2.2] and finitely generated
by [6, Lemma 2.4.3]. Thus by [16, Theorem 14.1.4] and [6, Lemma 2.2.5] we get
the desired conclusion. O

In the following we let gcd denote the greatest common divisor and lem the least
common multiple of a set of positive integers.
Let A= A(n,dy,ds,...,dn). We define

$(A) = min(dy,ds, . ..,dy),
d(A) = ged(dy,da, ... ,dN).
A=A ® A @ ---@ AL is a finite direct sum of building blocks we set
S(4) = min s(4;),
d(A) = m]_in d(A;).

3. K-THEORY

The purpose of this section is to calculate and interpret the K-theory of a build-
ing block. We start out with the following lemma, which will be used to calculate
the K;-group.

Lemma 3.1. Let N > 2 and let a1, a2, ...,an be positive integers. Define a group
homomorphism ¢ : ZN — ZN to be multiplication with the N x N matriz

ai —Aas
az —as
C = as
—ay
—ap an
Fori=1,2,...,N —1, set
s; =lem(ay,az,...,a;)
and
r; = ged(8i, ai41) = ged(lem(ay,az, ..., a;),a;41).

Choose integers a; and (3; such that
rizaisi+ﬁiai+1, 1=1,2,...,N—1.

Then
coker(p) 2L S Ly ®Lry,® DLy ;.
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This isomorphism can be chosen such that for i = 1,2,...,N — 2, a generator of
the direct summand Z., is mapped to the coset
Biaist oy .
(0705"'70717_ - 70507"'707_ 11)+’Lm(§0>’
~——— T — T
1—1 times N—1—2 times

such that a generator of the direct summand Z,, _, is mapped to the coset
(0,0,...,0,1,—1) + im(y),
and such that a generator of the direct summand 7Z is mapped to the coset
(0,0,...,0,1) +im(ep).

Proof. Let I, denote the k x k identity matrix for any non-negative integer k. For
eachi=1,2,...,N — 2, define an integer matrix of size N x N by

I

Let D, denote the 2 x 2 matrix

(%)
and define for i = 1,2,..., N — 1, an integer matrix of size N x N by
Iy
B; = D;
In—i-1
Fori=10,1,2,...,N — 2, define yet another N x N matrix by

T
T2
Ti
X = Si41  —Qiy2
Sit1 —Q;43
Sit1 —an
0 0
Finally, let P be the N x N matrix

1

11

1 11
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Note that for ¢ =1,2,...,N — 2,

SiGi41
Sip1 = lem(s;,a541) = -
1

Using this, it is easily seen by induction that
A1A1_1A1PCBlBgB1:XZ 220,1,2,,N—2
From this it follows that

AN_2AN_1-- AyPCBBy---By_; =

TN—-1

0

As all the matrices on the left-hand side, except C, are invertible in My (Z), we
obtain the desired calculation of coker(y). Finally, it is easily verified that

1
_ Biaz 1
T1
I |
- Bsas 1
(An_2Ay_1---AP)t=| O o -5
. ‘ ‘ Bn— ‘a _
0o =l
—eas _ewsy o _ON-25N-p g
T1 T2 TN -2
The last part of the lemma follows from this. O

Let A = A(n,d1,ds,...,dN) be a building block with exceptional points e?™*,
1=1,2,...,N, where 0 < t; <tg <--- <ty <1. Set tyy1 =t1 +1.

Define continuous functions w; : T — T for ¢ =1,2,..., N, by
- t—t;
wi(e2’r“) = emp(?]” ti+1—t¢) ti S t S ti+17
1 tiv1 St <ti+ 1.

Let U; be the unitary in A defined by
U(z) = diag(w;(2),1,1,...,1), z€T.

Theorem 3.2. Let A = A(n,d1,do,...,dy) be a building block. Set for i =
1,2,...,N—1,

and

——) = ged(lem(
dit1

Choose integers a; and B; such that

r; = ged(s;,

n
T = ;8 + B

, i=1,2,...,N—1.
di+1

Then
Ki(A 22 Bl BLry® - Dlry_,-
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This isomorphism can be chosen such that for i = 1,2,...,N — 2, a generator of
the direct summand Z., is mapped to
Bin Q;8;
U;] — ——[Uiz1] — Uy
(U] - 7o ] - S50,

such that a generator of the direct summand Z.., _, is mapped to
[Un-1] = [Un],

and such that a generator of the direct summand Z is mapped to [Un].
Proof. Define a *-homomorphism 7 : A — My, & Mg, & --- & My, by

7(f) = (AL(f), A2(f),s - - s AN (S))-
Under the identification SM, = Cy(0,1) ® M, we define a *-homomorphism ¢ :
(SM,)N — A by
. t—t;
Wiy for o IN)(E™) = fi( /), ti <t <t
tiy1 —t;

The short exact sequence

0 —— (SMp)Y —— A —"— My, &My, & &My, —— 0
induces a six-term exact sequence

KO((SMn)N) — KO(A) — KO(Mdl 69"'@]\[dN)

I s

Kl(Md1 @"'@MdN> — Kl(A> — Kl((SMn)N)

T Ly

where 6 denotes the exponential map.
By Bott periodicity K;((SM,)") = Z" is generated by [V1], [Va], - - ., [Vn], where

Vi(t) = (1,1,...,1,diag(e*"*,1,...,1),1,1,...,1), t € [0,1].

~
coordinate j

Note that ©(V;) = U,;. As K;(My, & --- & My, ) = 0 it follows that K;(A) is
generated by [U1],...,[Un], and that ¢, gives rise to an isomorphism between the
cokernel of 6 and K;(A).

Let {e};} denote the standard matrix units in Mg, @ --- & Mgy, . Recall that
Ko(My, @+ ® Mg, ) = Z" is generated by [el,],[€2,],...,[e]}]. We leave it with
the reader to check that

n n
8(fenr]) = — = [Vn] + — V1],
dy dy
and for¢=2,3,..., N,
i n n
6(lel1]) = _d—i[Vz‘—l] + d_z[VZ]
The conclusion follows from Lemma 3.1. O

For a building block A as above, choose a continuous function « : T — R such
that

Det(Un(2)) = zexp(2mia(z)), =z € T.
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Define the canonical unitary V4 in A by

Va(z) = UN(z)exp(—27ri$), z €T.
By the above theorem [V4] generates the direct summand Z of K;(A). Note that
Det(Va(z)) = 2, z € T.

Lemma 3.3. Let A = A(n,dy,ds,...,dN) be a building block and let U € A be a
unitary. Assume that

Det(A;(U)) =1, i=1,2,...,N,
Det(U(z)) = exp(2miy(z)), z€ T,

where v : T — R is a continuous function that equals 0 at all the exceptional points
of A. Then U is trivial in K;(A).

Proof. First note that if W is a unitary in a circle algebra B, if Det(W(-)) has
winding number 0, and if W(z) = 1 on some arc I C T, then W is homotopic to 1
via a path (W;).g[o,1) of unitaries in B with W;(2) =1 for z € I.

Let 21,22, ...,2N denote the exceptional points of A. As the group of unitaries
in My, with determinant 1 is arcwise connected, there exist unitaries V; € C(T) ®
Mgy, C C(T) ® M, such that Det(V;(z)) = 1, z € T, such that V;(z;) = U(x,),
and such that V; equals 1 on some arc I; that contains the remaining exceptional
points of A. By the above remark, V; is homotopic to 1 in C(T) ® M, via a path of
unitaries that equal 1 on I;. Hence V; is homotopic to 1 within the unitary group
of A. Set

V=UWVy.. V.
Then Det(V(2)) = exp(2miy(2)), z € T, V(z;) = 1,1 =1,2,...,N, and [U] = [V]
in K1 (A)

Now let z; = €™ where 0 < t; <ty < --- <ty < 1. Set tyi; =t +1 and
let fori=1,2,..., N,

J; = {627rit 't € [ti,tﬂ_l]}.

Yi(2) = {V(z) z € J;,

1 otherwise,

Define a unitary Y; by

0 otherwise.

=f e

Then V =Y1Y>...Yn, and Det(Y;(2)) = exp(2miv;(2)), z € T. Again by the above
remark, Y; is homotopic to 1 in C(T) ® M,, via a path of unitaries that equal 1 on
T\J?. It follows that Y; is homotopic to 1 within the unitary group of A. Hence
[V]=[1]in K;(A). O

Theorem 3.4. Let A = A(n,d1,ds,...,dn) be a building block with exceptional
points x1,%a,...,xy. Let W € A be a unitary such that Det(A;(W)) =1, ¢ =
1,2,...,N. Assume that W is trivial in K1(A). Then Det(W(z)) = e2*1(2) for a
continuous function v : T — R that satisfies
n

=1,2,...,N.
di’ ? L] )

v(z;) =0 mod
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Proof. As W is trivial in K1(A), Det(W(-)) is homotopic to a constant loop. Thus
there exists a continuous function 4 : T — R such that Det(W(z)) = >*(2),
zeT.

Define s;, r;, a;, and §; as in Theorem 3.2. Set

Bin a;s;

V,=UiU, 7" Uy ", i=1,2,...,N -2,
Vn_1 = UN_1U]§1.

Set

t1 = y(z2) —v(z1),
Bi—in

ri—1d;
By induction, we see that for k =1,2,..., N — 2,

ti = v(ziy1) — (i) + tiz1, i=23,...,N—1.

(orp1)—y(on) 17 mlihs  — ok it
Vv v = Ulv(zz)—v(wl) PR T e =17
As
N-1 N—2 Bin
t; =v(xn) —v(x1) + "t
3 b =) =) + 3
we see that
() o) =ty S =4 3
T — r1) = — — i = — .
YN Y{Z1 N-1 2o redipt N—1 2,

Thus
V1t1 V2t2 o V]f]]v—_ll — U{Y(mz)—’Y(ml) . U]’\Y](fiv)—’Y(zN—l) UJ’\Y[(wl)—’Y(wN).

By Lemma 3.3, this unitary equals W in K;(A). Hence by Theorem 3.2 there exist
integers ll, lz, . ,lN_l, such that ¢; = Tili, 1= 1,2,... ,N — 1. Set

N-1
g="(z1)+ Y ajl;s;.
=1

By induction,

N-1
n .
v(x:) = /Bi—lli—lz - E ojl;s;+q, 1=2,3,...,N.
7 _’]:1
Hence if we substitute v — ¢ for v we obtain the desired conclusion. O

Let A = A(n,dy,ds,...,dy) be a building block and set d = d(A). Since d(A)
divides d; for everyi = 1,2,..., N, we have an injective and unital *-homomorphism
€: My — A given by e(f) = diag(f, f,..., f)-

Lemma 3.5. Let p be a projection in A = A(n,dy,ds,...,dn). Then p is unitarily

equivalent to a projection in im (¢) C A. Hence if p has rank r € Z, r # 0, then
pAp = A(r, Ldy, Lda, ..., ZdN).

Proof. Let ti1,ts,...,tn €]0,1[ be numbers such that e2™* are the exceptional
points of A, =1,2,...,N. Set

B:{f€0[071]®Mnf(O):f(1)v f(ti)eMdm 2':1327---3N}'
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Then the map ¢ : A — B, o(f)(t) = f(e2™*), is an isomorphism. For convenience,
we will prove the lemma for B.

Set d = d(A). As 7 divides r for i = 1,2,..., N, it follows that % also divides
r. Hence there is a projection e € My C A with the same trace as p.

For each ¢ € [0,1] there is a unitary u; € M, such that

e =wup(t)us”.

We may assume that vy, € Mg,,%2=1,2,..., N, and that ug = u3. By compactness,
write
L-1
[07 1] = U [skask-l—l]
k=1
where 0 =81 < 82 < --- < s, =1, {z1,22,...,25} C {51, 82,...,81}, and

£ € 5%, k1] = i P 0" — el] < 1.
Set 21, (t) = vi(t)|ve (t)| 7 for t € [s, Sk41], k=1,2,..., L — 1, where
ve(t) =1 — ug, p(t) us,™ — e + 2euq, p(t) us, ™.

Then t +— zi(t), t € [Sk,Sk+1], IS a path of unitaries in M, and by [17, Lemma
6.2.1]

e = zg(t) us, p(t) us, ™ 2zx ()", t € [k, Sk+1]-
AsU(M,)n{e} is path-connected there is, foreach k = 1,2,..., L—1, a continuous
map 7k : [Sk, Sk+1] — U(M,) N {e} such that
Ye(sk) =1, W(Sk41) = Uspyy s, 2r(Sk41)"
Since zx(sg) =1 for k=1,2,...,L — 1, we can define a unitary u € B by
w(t) = () zr(t)us,, b€ [k, Skp]-
Then upu* = e. O

Corollary 3.6. The *-homomorphism € : My — A induces an isomorphism €, :
Ko(My) — Ko(A) of ordered groups with order unit. In particular,

(Ko(A), Ko(A)T,[1]) = (Z,Z%,d(A)).
Lemma 3.7. A(n,d;,ds,...,dy) is unital projectionless if and only if d(A) = 1.

Proof. As in the proof of Lemma 3.5 we see that there exists a projection p € A of

rank r if and only if ﬁ divides r. The conclusion follows. O
Lemma 3.8. Let d and K be positive integers and let H be a finite abelian group.
There ezists a building block A with (Ko(A), Ko(A)t,[1])) = (Z,Z%,d), K{(A) =
Z®H, and s(A) > K.

Proof. Let
H= Zp’lcl @Zp’gz D @prnma
where m is a positive integer, ki, ..., k&, are non-negative integers, and py,...,pm

are prime numbers. Let g1, g2, ..., ¢m+1 > K be prime numbers, mutually different
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as well as different from p1, pe, ..., pm. Define integers n and di,ds,...,dmn+1 by

kv k -
n=dpi p5 ... pir 1 a2 g,

di =dgaq3-. . Gm+1,

e e L N R S

d; =d P 2<i<m+1.
;5 4
Set A = A(n,dy1,da,...,dmy1). Then Kq1(A) = Z @& H by Theorem 3.2. And by
Corollary 3.6 we have that (Ko(A), Ko(A)T,[1]) = (Z,Z7,d). O

4. KK-THEORY

K K-theory seems to be an indispensable tool when it comes to classification of
simple inductive limits of C*-algebras with dimension drops, cf [9], [13], [21]. This
paper is no exception.

Recall a few facts about K K-theory. K K is a homotopy invariant bifunctor from
the category of C*-algebras to the category of abelian groups that is contravariant in
the first variable and covariant in the second. A *-homomorphism ¢ : A — M, (B)
defines an element [¢] € KK (A, B). We have an associative map KK (B,C) x
KK(A,B) — KK(A,C), the Kasparov product, that generalises composition of
*.homomorphisms.

We will need the K-homology groups K°(A) = KK(A,C). If ¢ : A —» Bis a
*_homomorphism, ¢ induces a group homomorphism ¢* : K°(B) — K°(A) via the
Kasparov product. K°(M,) = 7Z is generated by the class of the identity map on
M,.

Lemma 4.1. Let A = A(n,dy,ds,...,dN) be an interval building block. Then

K°(A) is generated by [A1],[A2],...,[AN]. For ai,aa,...,an € Z we have that
al[Al] +CL2[A2] + ---+aN[AN] =0 & dby,...,bN_1 EZ:
ay = —by—
1= ldla
n
aN-—1 = —bN—1m,
n
any = (by +--- +bN_1)d—.
N
Finally, K°(A) 2 Z & K1 (A).
Proof. See [18, Lemma 3.4]. O

Lemma 4.2. Let A = A(n,d1,...,dn) be a buz’ld_ing block with exceptional points
r1,%2,...,2Nn € T. Choose t; €]0,1] such that €™ = x;, i =1,2,...,N. Let

B={feCl0,11® My, : f(t;) € My,, i=1,2,...,N}.

The *-homomorphism 1 : A — B defined by 1(f)(t) = f(e2™%), t € [0,1], f € A,
induces an isomorphism 1* : K°(B) — KY(A).

Proof. Let m : A — M, be evaluation at 1 € T. Let o : M,, — M, & M,, denote
the map a(z) = (z,z). Let §: B — M,, & M,, be the map 3(f) = (f(0), f(1)). We



12 JESPER MYGIND

have a pull-back diagram

B —— M,®M,.
B

By [2, Theorem 21.5.1] this induces a six-term exact sequence

KM, ® M,) =227 gor) e KO(B) =F5 KO(A)

I !

K'(A) — K'(M,)® K'(B) —— K'(M,).
T (—a*,6%)

K°(M,, & M,) = Z & Zis generated by [r1] and [rs] where 71,72 : M, & M,, — M,
are the coordinate projections. K%(M,,) = 7Z is generated by the class of the identity
map id on M,. Note that

w (lid]) = (A7),
COAPD =AM, =12 N,
(. 8")alm] +blm)) = (~(a+ b)id]. (a +b) - [AP)).

As 7 +1* maps onto K9(A) (because K'(M,) = 0) and as im(7*) C im(1*), we
see that ¢* is surjective. Assume that +*(z) = 0. Then (0,z) € im(—a*,3*) and

N

)

hence x = 0 by the above. O
Corollary 4.3. Let A = A(n,dy,da,...,dn) be a circle building block. Then
K°(A) is generated by [A1],[A2],...,[AN]. For ai,as,...,an € Z we have that
al[A1] +LL2[A2] + - +CI,N[AN] =0 < 3dby,...,.by_1 EZ:
ay = —by—
1= 1d17
n
1 =—-by_
anN-1 N 1dN—17
n
an = (b1 + "'+bN—1)d_-
N

Finally, K°(A) = K1(A).

Proof. Combine Lemma 4.1 and Lemma 4.2 to get the first statement. The second
statement follows from the universal coefficient theorem, [20, Theorem 1.17]. O

Lemma 4.4. Let A = A(n,dy,ds,...,dn), B = A(m, ey, ea,...,ep) be building
blocks. Let h € Hom(K°(B),K°(A)). For every j =1,2,...,.M,i=1,2,...,N,
there is a uniquely determined integer hj;, with 0 < h;; < N for i # N, such that

h([AB]) hit bz ... by [[AfY]
h([AZ]) ha1  ha2 ... han [A3]

hGKﬁD hLl h;z e h@N [A%]
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This will be called the standard form for h.
The integers determined by h above satisfy the equations

mhﬂEﬂth mod 2, j:]_,Q,...,M’ 7;:1’2,_”’]\]’
€; €M d;

m N m N

_Zhjidi:_ZhMidi, i=12,..., M.

ej =1 em i=1

Proof. By Corollary 4.3, or simply because homotopic *-homomorphisms A — M,
define the same elements in K°(A),

n n .
E[Aﬁ]:d_[/\f]’ 7’:1727"'7N'

From this the existence follows.
To check uniqueness, assume

h21 h22 P th [A?]
where n "
—E<hji<z, i=1,2,...,N—1,j=1,2,...,M.

By Corollary 4.3 there are, for j = 1,2,..., M, integers b;;, ¢ = 1,2,...,N — 1,
such that

n
hj1 = —bjld—1,
n
hjn-1) = =biv-n g
n
hin = (bjn + -+ bjv—) g
Therefore hj; = hj2 =--+ = hjny_1) = 0 and hence h;y = 0.
Finally, for each j =1,2,..., M we have that
N
m m m m
0=n(0) = h(——[AP] + —[AF]) =) (——hji + —hui)[AL]-
(©) = H- AL+ ZHARD = =T+ b A
Hence there exist integers bj;, 4 = 1,2,..., N — 1, such that
m m n
——hj;+—hy;=-bj—, 1=1,2,...,N—1,
€; 7 +6M M J di !
and m m n
—e—jth + &hMN = (bjl + -+ bj(N_l))E.
The desired conclusion follows easily from these equations. O

From now on, let A = A(n,d;,ds,...,dy) and B = A(m,e1,ea,...,ep) be
building blocks. Define a group homomorphism

I': KK(A,B) - Hom(K°(B),K°(A)) ® K,(B)
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by

I(r) = (&7, £« ([Val))
and let Ty : KK(A,B) — Hom(K°(B),K°(A)) be the projection onto the first
coordinate, i.e I'; (k) = k*. We want to show that I' is an isomorphism when s(B)
is large.

Proposition 4.5. Let h: K9(B) — K°(A) be a group homomorphism with stan-
dard form

h([AT]) hin hia ... hiy [Af]
h([AS]) hor  hay ... hoy [AZ]
h([A]) hai hme --. hun) \[AY]
where hjy > 2= for j = 1,2,...,M, and ., hasid; = ens. Let x € Ki(B).

There is a unital *~homomorphism ¢ : A — B such that T'([¢]) = (h, ).

Proof. Let 1 < i < N. By Lemma 4.4 there is an integer s;, 0 < s5; < 7, and
integers l;;, § = 1,2,..., M, such that
m n
e i +s (1)
Note that for each 7, [;; > 0 fors=1,2,...,N —1, and l;y > 1. By Lemma 4.4
we see that for j =1,2,..., M,
m X m & N
m=— ZhMidi = — Zhﬁd,‘ = Z(l]‘in + Sidi).
eM €5 “— —
=1 1=1 1=1

By (1) there exists a unitary V; € M, such that the matrix
deiag(Afl(f), ... ,A;,N(f),f(xl), ceo flz),. . ,f(ﬂlcN)7 ... ,f(xNDVj*

7

~~ ~
11 times ljn times

belongs to M., C My, for all f € A.

Set
1 N N
L=—(m—23idi)=21ﬁ, 1=1,2.... M.
n =1 =1
Let x1, 22, ..., 2N denote the exceptional points of A and let 41,92, ...,y be those
of B. Choose continuous functions A1, As,...,Ar_1 : T — T such that
()\l(yj)a)\2(yj)77)‘L—1(y])) = (x17"'7x17"'73;N—17"'7xN—Lv\xN7"'7xN)

;1 times lj(n—1) times Ijn—1 times

as ordered tuples. Choose a unitary U € C(T) ® M, such that U(y;) = V;. Define
a unital *-homomorphism ¢ : A — B by

D(f)(2) = U(2)diag (AT (f), .-, AN (f), f(Ma(2)), -, f(Ar=1(2)), f(an)) U(2)".

By Theorem 3.2 we have that x = E]Nil a;[UJ] for some ay,ay, . ..,ap € Z. Let

a[Val = 3 b,[U7]
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in K1(B). Define £ : T — T by

M
=[] Det(U/ (2))% ",

j=1

and define Ay : T — T by Ap(2) = £(2)zy. Now define ¢ : A — B by

@(f)(2) = U(z)diag(AT*(f), - -, AW (), F(M1(2)), -, F(AL(2))) U (2)".
Then by Lemma 3.3, we see that in K;(B),

@x[Val = ulVa] + [z = U(2)diag(1,1,..., 1, Va(AL(2))Va(zn)")U(2)"]

= [Val+ > (a; = b)[UF1 =D a;[UP.

Jj=1 7=1
As A (y;) = oy we see that o(f)(y;) =¥(f)(y;), f€A, j=1,2,...,M. Thus
N
P (A7) = [Af o] = [A7 0 9] =D (si + big. )2 Z[Af] = Zh’ﬂ[AA]
i=1

O

Proposition 4.6. Assume that there exists a homomorphism h' : K°(B) — K°(A)
with standard form

R'([AL]) hin o ki o Ry (1A
R(AZD) | [ hon hhe o hyy || [AF]
SA) Wy By oo R/ \[AR]

where bl > o forj = 1,2,...,M, and vazl h'y.di = em. Then the map
I'y: KK(A,B) — Hom(K°(B),K°(A)) is surjective.

Proof. W' € im(T1) by Proposition 4.5. Let h € Hom(K°(B),K°(A)) have stan-
dard form

R([AP]) hir hiz ... hin [Af]
RIAZD | [ her hee oo haw | | [A9]
WAE))  \han ha . haw) \[A%)

By adding an integer-multiple of A’ we may assume that h;ny > 0forj =1,2,..., M.
Define [;; and s;,7=1,2,..., N, as in the proof of Proposition 4.5. Let

N
:%thdi— Zhazd —Z (Lin + sids), §=1,2,..., M.
=1

=1

Choose a positive integer d such that ¢ < dm. Then thereis foreach j =1,2,...
a unitary V; € Mgy, such that the matrix
V]dlag(Ail(f),,Af\}"(f),f(azl),,f(xlz,,f(xN),,f(xN),O,,O)VJ*

~ - N———

lj1 times ljn times dm—c

belongs to Mg.; C Mg, for all f € A.
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As in the proof of Proposition 4.5 these matrices can be connected to give a *-
homomorphism ¢ : A — My(B). We leave it with the reader to check that ¢* = h
on K°(B). O

Theorem 4.7. Assume that there exists a homomorphism h' : K°(B) — K°(A)
with standard form

) By Ry R\ (A
POMD | [ M iy | [ (6]
WAR) o Bha r Hare) \ (A2

where h;-N > 7= forj =1,2,....,M, and vazl hyy.di = ey. Then the map
I': KK(A,B) — Hom(K°(B),K°(A)) & K1(B) is an isomorphism.
Proof. By Theorem 3.2 there exist finite abelian groups G and H such that K;(A4) =
Z&G, K1(B) 2 Z®H. According to the universal coefficient theorem, [20, Theorem
1.17],
KK(A,B) = Ext(Ko(A), K1(B)) ® Ext(K1(A), Ko(B)) &
Hom(Ko(A), Ko(B)) ® Hom(K1(A), K1(B))
*06G®Z® Hom(G, H)® K(B).
As K°(A) = K, (A), K°(B) = K;(B) by Corollary 4.3, we also have that
Hom(K°(B),K°(A)) ® K1(B) = K,(A) ® Hom(H,G) & K,(B).

Hence Hom(K°(B), K°(A))®K;(B) and KK (A, B) are isomorphic groups. As any
surjective endomorphism of a finitely generated abelian group is an isomorphism,
it suffices to show that I" is surjective.

Let therefore (h,x) € Hom(K°(B), K°(A)) @ K;(B). By Proposition 4.6 there
exists a k € KK(A, B) such that I'(k) = (h — ', n) for some n € K;(B). Next, by
Proposition 4.5 there exists a § € KK(A, B) such that I'(3) = (h',x —n). Thus

T(x+B) = (h, ). O

Theorem 4.8. Let A= A(n,dy,ds,...,dn) and B = A(m,e1,es,...,en) be build-
ing blocks such that s(B) > Nn. Let k € KK(A,B) be an element such that
Ky @ Ko(A) — Ko(B) preserves the order unit. Then the map I’ : KK(A,B) —
Hom(K°(B),K°(A)) @ K,(B) is an isomorphism and there exists a unital *-
homomorphism ¢ : A — B such that [p] = k.

Proof. Let k* : K°(B) — K°(A) have standard form

&*([AB]) hin  hiz ... hin [A]
f@*([Af]) ho1 hea ... han [Aé]
@08)) i bare o b\

Let - denote the Kasparov product. By assumption we have that [14] - x = [15] €
KK(C,B) = Ko(B). Thus

(L] - [A7] = [1a] - & [AT] = [14] - (Z hyi[A7])
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in KK(C,C) = Z. Hence for j =1,2,..., M,

N
€; = Z hj,'di.
=1

This implies that h;y > 7 as

N N-1
Nn < Zhﬂdz < Z dﬁdz + hjndy = (N_ 1)n+thdN'
=1 i=1

Thus by Proposition 4.5 there is a unital *-homomorphism ¢ : A — B such that
I'([¢]) = T'(x). Hence [¢] = & by Theorem 4.7. O

Let A = A(n,dy,ds,...,dy) and B = A(m,ej,ea,...,ex) be building blocks.
Let ¢ : A — B be a unital *-homomorphism. As in [21, Chapter 1] we define the
small remainders of o, s7(4,7), to be the multiplicity of the representation A! in the
representation Af opfori=1,2,...,N,53=1,2,..., M. Note that approximately
unitarily equivalent *-homomorphisms have the same small remainders. Let t‘j‘-’ be
the total multiplicity of all representations that are evaluations at non-exceptional
points.

Proposition 4.9. Let A = A(n,d;,ds,...,dy) and B = A(m,e1,ea,...,enm) be
building blocks and let ¢ : A — B be a unital *~homomorphism. There exist integers
r; with 0 <r; < 2, 1=1,2,...,N, and an integer L > 0 such that, ifp: A — B
is a unital *-homomorphism with ©* = * in Hom(K°(B),K°(A)), then there
exist continuous functions Ay, Aa,..., Ap 2 [0,1] = T and puy,p2,...,prp : [0,1] = T
together with unitaries w,v € C[0,1] ® My, such that ¢ is approrimately unitarily
equivalent to a *-homomorphism of the form

¢ (™) = ult)diag(AT (), - -, AF(F), FOL®)), Fa (D)), -, FOAL () u (D),

and 1 is approrimately unitarily equivalent to a *-homomorphism of the form
O (F)(e*™) = v(t)diag (AT (f), -, AN (F), F(a (1)), F(p2(8)); - -, F(ur(t)))v(t)",
where f € A, t € [0,1]. Furthermore, fori=1,2,...,N, j=1,2,..., M,

$2(j,i) = s%(j,i) mod g.

T

Proof. By [21, Corollary 1.5] there exist integers r; with 0 < r; < 7.1=1,2,...,N,
an integer L > 0, and continuous functions A1, A, ..., Ay : [0,1] — T such that ¢
is approximately unitarily equivalent to a *~homomorphism of the form

¢'(F) (™) = u(t)diag (AT (), - - AN () FOL(®), Fa(B)s -, FOAL()))u(t)*.
Assume that 1) : A — B is a unital *-homomorphism such that ¢* = 1*. Let

n

$°(5,1) = a® i) + b7 (G )
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where 0 < b%(j,1) < 7. Let {h“’} and {h¢} be the (unique) M x N matrices from
Lemma 4.4 correspondlng to ¢* and 9%, respectlvely Note that by Corollary 4.3,

(AP = [AF oy = Zﬂ gy AA]+t 7o [AR]
N— N n
Z SO+ (D (i) + )7 + 70, N)AR].

It follows that for i =1,2,..., N,
. n
h¥; = s%(j,4) mod —-.

&

Similarly,
h% = s¥(j,4) mod 5
Hence

s?(5,4) = s¥(j,i) mod g.
By [21, Corollary 1.5] we get that ¢ is approximately unitarily equivalent to a
*-homomorphism of the form

O (™) = v(t)diag(AT* (f), -, AN (F), Fa (), F(p2(8))s - - -, Flrrc (£))o(t)*,
for f € A, t € [0,1], where s; is an integer such that 0 < s; < z>1=12,...,N,

and pq, pto, ...,k : [0,1] — T are continuous functions. Since for i =1,2,..., N,
1=12,..., M,
.. m ro.o.m n
S(P(jal)_ =57 (j,l)— =7+ #{1" = 1327" '7L : )‘T(yj) = xi}_a
€j €; d;
.. m roo.m n
Sd}(]al)_ = 81/1 (]77‘)_ =8; + #{T = 1727' "7L : ,u’r(yj) = xi}_a
€;j €;j d;

it follows that r; = s;, 4 =1,2,...,N. And as

N N
m =Ln+2ridi =Kn+23,—di
1=1 7=1
we see that K = L. O

5. THE COMMUTATOR SUBGROUP OF THE UNITARY GROUP

In [19] Nielsen and Thomsen introduced a new group into the classification pro-
gramme: The unitary group modulo the closure of its commutator subgroup. We
start this section by repeating some of their notation.

Let A be a unital C*-algebra. Let U(A) denote the unitary group of A and let
DU(A) denote its commutator subgroup (i.e the group generated by all unitaries
of the form wvu*v*). Let ¢/y : U(A) — U(A)/DU(A) be the canonical map. We
equip U(A)/DU(A) with the quotient metric

Da(da(u), da(v)) = inf{|luv” — z|| : 2 € DU(A)}.

Let 74 : T(A) — SKp(A) be the restriction map, where SKo(A) denotes the
state space of Ko(A). Let pa : Ko(A) — AfT(A) be the group homomorphism

pa(@)(w) =ra(w)(z), weT(A), z€ Ky(A).
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We equip the group AfT(A)/pa(Ko(A)) with the quotint metric d’4. This space
can be equipped with another metric which gives rise to the same topology, namely

da(F.g) = {2 a4(f,9) > 5,

|e27rid£4(f79) — ]_| diq(f7g) < %’

cf. [19, Chapter 3]. If a € A is self-adjoint we define @ € AffT(A) by a(w) = w(a),
weT(A).

Theorem 5.1. Let A be a unital inductive limit of a sequence of finite direct sums
of building blocks. Then the canonical maps mo(U(A)) — K1(A) and 71 (U(A)) —
Ky(A) are isomorphisms.

Proof. Let k, denote the non-stable K-groups defined in [22], n = —1,0,1,....
We need to show that the canonical maps k_1(A4) — k_1(4 ® K) = K;(A) and
ko(A) — ko(A® K) = Ky(A) are isomorphisms, cf. [22, Proposition 2.6], where K
denotes the set of compact operators on a separable infinite dimensional Hilbert-
space. As noted in [22] it follows from [12, Proposition 4.4] that k,, is a continuous
functor. Since it obviously is additive it suffices to prove the theorem in the case
that A is a building block.

As in the proof of Theorem 3.2 we see that there exists finite dimensional C*-
algebras F' and G such that we have a short exact sequence of the form

0 SF A G 0.
Since k_1(G) = k_1(G® K) = 0 and k1(G) = ki(G ® K) = 0 we get by [22,

Proposition 2.5] commutative diagrams of the form

0 ko(SF) ko (A) ko(G) k_1(SF)

| | |

0— > ko(SF®K) — > ko(A®K) — ko(G ® K) —> k_(SF ® K)

ko(G) k_1(SF) k_1(A) 0

l | L

ko(GOK) ——=k_1(SFRK) ——=k_1(A®K)——=0

where the rows are exact and the vertical maps are canonical. It is well-known
(cf. [22, Lemma 2.3]) that the vertical maps, except those involving A, are isomor-
phisms. The theorem follows. O

Let A be a unital C*-algebra such that the canonical maps mo(U(A4)) — K1(A)
and m1(U(A)) — Ko(A) are isomorphisms. Then there exists an injective group
homomorphism A4 : AfT(A)/pa(Ko(A)) — U(A)/DU(A) given by Aa(qa(a)) =
¢y (e?™@) cf. [19, Chapter 3]. Let ma : U(A)/DU(A) — K1(A) be the canonical

map.

Proposition 5.2. Let A be a unital inductive limit of a sequence of finite direct
sums of building blocks. There exists a split exact sequence

0 —— AFT(A)/pa(Ko(A)) —2— U(A)/DU(A) —2— Ki(A) — 0.

A4 is an isometry when AffT(A)/pa(Ko(A)) is equipped with the metric d4.
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Proof. Combine Theorem 5.1 with [21, Lemma 6.4]. O
Lemma 5.3. Let A = A(n,dy,ds,...,dN) be a building block. Let a € A be a

self-adjoint element such that Tr(a(z)) =0 for = € T. Then €2 € DU(A).

Proof. Let x1,x2,...,2y denote the exceptional points of A. By [10, Lemma 3.5]
there exists for each z € T an element ¢, € M, such that a(z) = c,ci — cic,. We
may assume that ¢, € My,, 41 =1,2,...,N. Let ¢ > 0. For each z € T there exists
a neighbourhood V, of z such that

lla(z) — (co(z)c. ()" — co(x) e (2))]| <€, x€V,.
Since T is compact there exist points 21, 22,...,2r € T such that T = U]LZIVZ].. We
may assume that L > N, that z; = z,, and that z; ¢ V; for j #4,i=1,2,...,N.
Let {h; : j = 1,2,...,L} be a continuous partition of unity in C(T) subordinate
to the cover {V; : j =1,2,...,L}. Define b; € A by b;(z) = \/h;(x)c;,(z), x € T,

7=1,2,...,L. Then
L

lla =) " (b;b} — b5b;)|| < e.

j=1
Note that

L

i S L bE—b* b 7i(b;b* —b*b; . = ATEY

gy (7T im0 b)) = TT gy (e2™5%5=%50)) = ¢4 (1) in U(A)/DU(A),
j=1

where the last equality follows from the last part of the proof of [25, Lemma 3.1].
Since € > 0 was arbitrary we conclude that €7@ € DU(A). O

Lemma 5.4. Let A = A(n,d1,ds,...,dn) be a building block. Assume that A4 = 1
for some A € T, where d = d(A). Then A\1 € DU(A).

Proof. As there exists a unital *-homomorphism My — A it suffices to prove this
for the C*-algebra M,. And this case follows from the fact that there exists a
unitary 4 € My such that
diag(\, A, ..., A)diag(1,, A2, ..., A% 1)
= diag(\, A?,..., %)
= udiag(1, A\, A2, ..., A D ur

The main result of this section is the following:

Theorem 5.5. Let A = A(n,d;,ds,...,dyN) be a building block. Let u € A be a
unitary. Assume that
Det(u(z))=1, =z €T,
Det(Ay(u)) =1, i=1,2,...,N.

Then uw € DU(A).
Proof. By Lemma 3.3 we see that u is trivial in K;(A). Hence by Theorem 5.1,

2miay 271ag 27iag,

u==e € ... €

for self-adjoint elements aq,as,...,arp € A. Set b = a1 + a3+ --- +ap. As
Det(u(z)) = exp(2miTr(b(2))), z € T, it follows that Tr(b(-)) is constantly equal



CLASSIFICATION OF SIMPLE LIMITS 21

to some k € Z. Set ¢ = b— £1. By Lemma 5.3 we see that 2™ € DU(A). Hence
¢4 (u) = ¢4 (e™®) = ¢/4(A1) in U(A)/DU(A), where A = exp(2mi£). By assump-
tion A% = 1. Hence dl,- divides k for each i = 1,2,..., N. It follows that % divides
k, where d = d(A). Thus A¢ = 1. The conclusion follows from Lemma 5.4. O

We conclude this section with some lemmas for later use.

Lemma 5.6. Let A = A(n,d;,ds,...,dy) be a building block. Let uw € A be a
unitary that is trivial in K1(A) and let p be a non-zero integer. Then there exists
a unitary v € A that is trivial in K1(A) such that

04(v") = dy(u) in U(A)/DU(A).

Proof. By Theorem 5.1 there exists self-adjoint elements ay,as,...,ar € A such
that
U = e2Tiar p2mias  2miak
Set a=ay +as+ - -+ ar and define 5 : T — T by
2miTr(a(z))

B(z) = exp( ).

np
Define v € A by

v(z) = diag(8(z), B(2), - - . ,ﬁ(zl), z€T.

~

~~
n times

Then
Det(v(2)?) = B(z)™ = 2™T7(a(2)) = Det(e?™4?)) = Det(u(z)), z€T,
and fori=1,2,...,N,
Det(A;(vP)) = e2miTr(a(zi))5h — (2miTr(Ai(a)) — Det(A;(€?™)) = Det(A;(u)).
The conclusion follows by applying Theorem 5.5. O

Lemma 5.7. Let A be a building block and let u € A be a unitary of finite order in
K1(A). Then there exists a unitary w € A such that [u] = [w] in K1(A) and such
that Det(w(-)) is constant.

Proof. Let p denote the order of u in K;(A). By Lemma 5.6 there exists a unitary
v € A that is trivial in K;(A) such that

da(v") = ¢4(u”) in U(A)/DU(A).

Set w = wv*. Then w? is trivial in U(A)/DU(A). O

If p : A — B is a unital *-homomorphism we let ¢# : U(A)/DU(A) —

U(B)/DU(B) be the group homomorphism ¢# (¢’ (u)) = ¢5(¢(u)).
Lemma 5.8. Let A = A(n,dy,da,...,dy) and B = A(m,eq,ea,...,en) be build-

ing blocks and let p,1) : A — B be unital *~homomorphisms such that o* = 9* in
Hom(K°(B),K°(A)). If W € A is a unitary such that Det(W (-)) is constant then

" (da(W)) = v*(dp(W)) in U(B)/DU(B).
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Proof. By Proposition 4.9 we see that ¢ and ¥ are approximately unitarily equiv-
alent to *-homomorphisms of the form

©'(£)(™) = u(t)diag (AT (£), - -, AW (f), Fu(2)), - - FOAL () u(®),
P (F)(e) = v(t)diag (AT (), -, AN (), Flpa (D), -, fur(2)))v(D)*,

for continuous functions Ay, Aa, ..., Ar, p, o, ..., pur ¢ [0,1] — T, integers r; with
0<r <zF,i1=1,2,...,N, and unitaries u,v € C[0,1] ® My,. It follows that

Det(o(W)(2)) = Det(¥(W)(z)), z€T.
Fix some j = 1,2,...,M. Also by Proposition 4.9 s%(j,i) = s¥(j,i) mod =
i=1,2,...,N. Choose s;, 0 < s; < 7, such that s; = $¥(4,1) mod 7 - By Lemma

2.1 there exist points a1,as,...,ap, b1,bs,...,bp € T and unitaries wy,wz € M.,
such that

Aj o o(f) = widiag(Ay (f), A3*(f) - - -, AN (£), flar), f(az),..., flan))wr™,
Aj o ip(f) = wadiag(AT* (), A5*(f), -, AN (£), F(B1), F(B2), -, F(bN))ws™.
Hence
Det(Aj o p(W)) = Det(Aj op(W)), j5=1,2,..., M.
The conclusion follows again from Theorem 5.5. O

6. *-HOMOMORPHISMS
Lemma 6.1. Assume that
(exp(27iby), ..., exp(2mifL)) = (exp(2miwy), ..., exp(2miwr))

as unordered L-tuples, where 01,605, ...,0r and wy,ws,...,wr are real numbers such
that

01 <0< <0, <0 +1,
w Swp <o Swp Swp+ 1.
There exists an integer r such that
0, =wryj, J=12,...,L,
when we define
Wi+ =w;j+k, j=12,...,L, k€Z.
Proof. Define
Orr+; =0;+k, j=1,2,....,L, k€ Z.
Choose m € Z such that 6, < 6,41 and choose n € Z such that
Om+1 = Wnt1 > wn.
Assume that
Omtp = Wntq + k.
for some p,q € Z,1 <p<L,1<q< L,and k € Z. Then
—1 <Omt1 —Omt1 < Omt1 — Omigp = Wny1 — Wnyq — kK < —k,
0<Omtp—Omy1 =Wnyq+k—wny1 <Wnyg+k—w, <1+k.
Hence k = 0. By assumption it follows that for every x € R,

#{i=1,2,...,L: 0=z} =#{j=1,2,...,L:wpy,; =2}



CLASSIFICATION OF SIMPLE LIMITS 23

Thus
(0m+179m+27 s 70m+L) = (wn+17wn+27 S 7wn+L)
as unordered L-tuples. Therefore
0m+j:wn+j7 .7:]-7277L
We conclude that
0; =wWn_m+j, J=1,2,...,L.

O
Lemma 6.2. Let A1, Ao,..., AL : [0,1] — T be continuous functions. There erist
continuous functions Fy, Fo, ..., Fr : [0,1] — R such that
Ft)<F@)<---<F(t) <Fi(t)+1
and such that for each t € [0,1],
(AL(8), A2 (), ..., AL(t)) = (exp(2miFy(t)), exp(2miFa(t)), . . ., exp(2miFL(t)))
as unordered L-tuples.
Proof. Choose a positive integer k such that
s — 1] < % S o (8), A () < % stel01], j=1,2,... L
We will prove by induction in m that there exist functions F1,..., F that satisfy

the above for t € [0, 2
Choose zp € T such that p(zo,A;(0)) > 2L, j=1,2,...,L. Choose ap € R
such that exp(2miag) = 29. There exist for j = 1,2, .. .,L, continuous functions
F; : [0, 1] —]ao, ao + 1] such that
Fi(t) S F(t) < - < FL(t)
for each t € [0, 1], and

(A(D), A2(8)s -, AL(E)) = (exp(2miFy (1)), exp(2miFy(t)), .. ., exp(2miFL (1))

as unordered L-tuples.
Now assume that we have constructed functions F, Fy, ..., Fr, : [0, ] — R such
that for each t € [0, 7], F1(t) < Fy(t) < -+ < F(t) and

(M (0) Ma(0)s - AL () = (exp(2iFy (1)), exp(2miFo(1)), ..., exp(2miFy (1)
as unordered L-tuples. Choose zn, € T such that p(zm,\;(%)) > 5 for j =

k
1,2,...,L. Choose a,,, € R such that exp(2mia,,) = zn. Choose continuous
functions G : [2, 2] —]aum, am + 1] such that for each ¢ € [, ZEL,

Gi(t) < Go(t) < -~ < Gi(t)
and

(Ar(D), A (t)s -, AL()) = (exp(2miGy (1)), exp(2miGa(t)), .. ., exp(2miGL (1))

as unordered L-tuples.
Set for j=1,2,...,L, p€ Z,
m m+1
Gyres(t) = G(t) + L, te |7, 2]
By Lemma 6.1 there exists an integer r such that for 17=12,...,L,

Fy () = Gras(T):
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Define for j = 1,2,...,L, F} : [0, 2] — R by

F;(t t € [0, 2],
Fjl(t) = ]( ) [m km+1
Gryj(t) T e[, 2]

F|{,F},...,F] satisfy the conclusion of the lemma for ¢ € [0, %], O

Proposition 6.3. Let A = A(n,d;,ds,...,dn) and B = A(m,e1,e2,...,enm) be
building blocks, and let ¢ : A — B be a unital *~homomorphism. There exist for
1 =1,2,...,N, integers r; with 0 < r; < dﬂi, an integer L > 0 and o unitary w
in My, such that if ¥ : A — B is a unital *-homomorphism such that [¢] = [¢] in
KK(A,B), then 9 is approrimately unitarily equivalent to a *-homomorphism of
the form

Y (F)E™) = u(t)diag(AT (), AR (f), F(@™ 50, f(@m e O))u(t)*,
fort € [0,1], f € A, where u € C[0,1] ® M., is a unitary with w(0) =1, u(1) = w,
and where Fy, Fa,...,Fp : [0,1] — T are continuous functions for that for every
t€[0,1],

Fi(t) < Fp(t) <--- < Fr(t) < Fi(t) + 1.

If k is an integer then 1 is also approximately unitarily equivalent to a unital

*_homomorphism of the form

V(F)(e) = v(t)diag (AT (£, AV (), F(2T D), f(e2 D))t
fort€[0,1], f € A, where v € C[0,1] @ M, is a unitary with v(0) =1, v(1) = w,
and where G1,Ga,...,Gr : [0,1] — T are continuous functions for that for every
t€[0,1],

Gr(t) < Galt) < -+ < Gu(t) < Ga(t) +1,
and such that

> (G.(t) = Fu(t)) =k, te[0,1].

Proof. Let I denote the winding number of the loop Det(p(V4)(+)). Let y be a
unitary (Ln) x (Ln) matrix such that

ydiag(a,as,...,ar)y* = diag(ar,a1,az2,...,a5_1)
for all ay,as,...,ar € M,,. Set
w = diag(1,1,...,1,9").
—_——

m—Ln times
Choose L and ry,rs,...,ry according to Proposition 4.9.

Now assume that ¢ : A — B is a unital *-homomorphism such that [¢] = [¢/] in
KK(A,B). By Proposition 4.9 there exist continuous functions p1, g2, - - -, pr and
a unitary v € C[0,1] ® M, such that 1 is approximately unitarily equivalent to a
*-homomorphism « : A — B of the form

a(f)(€™) = v(t)diag(AT (f), .., AR (F), F(r (8)), F(pa(t), - -, Fur(t)))v(t)"

By Proposition 6.2 there exist continuous functions Fi, ..., Fp : [0,1] — R such
that for each t € [0, 1],

Fi(t) < Fy(t) <+ < Fr(t) < Fi(t) +1
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and

(ul (t), ua(t), . .. ,uL(t)) = (exp(27riF1 (), exp(2wiFa(t)), . . . ,exp(27riFL(t))) (2)

as unordered L-tuples. Since [p] = [¢] in KK (A, B) we have that Det(o(V4)(:))
and Det(1¥(V4)(-)) have the same winding number. Thus

L

r=1

As
(exp(27iFy(0)), ..., exp(2miFL(0))) = (exp(2miFi(1)),...,exp(2miFL(1)))

as unordered L-tuples, we conclude by Lemma 6.1 that F,.(1) = F,.;;(0) for each
r=1,2,..., L. Therefore, for every f € A,

diag (AT (f), - -, AN (), (27O, ., f(e2WFO))
= wdiag(AT(f),. .., AR (f), f(e> M) L (2™ FeM))) .
Let t1,ta,...,ty €]0,1[ be numbers such that > are the exceptional points
of B. By (2) there exist a unitary u; € My, such that
uidiag(AT (f), .., AR (f), f(e2™ 5Dy | f(e2™ et ot € M., C My

for every f € A. Choose a unitary u € C[0,1] ® M, such that u(0) =1, (1) = w,
and u(t;) = u;, j =1,2,..., M. Note that we can define a unital *-homomorphism
Y :A— Bby

O (£)(€™) = u(t)diag(AT(f), -, AW (f), £, f(e@™FED))u(t)”,
for f € A, t € [0,1]. Then for every f € A, z € T,

Tr(¥(f)(2)) = Tr(a(f)(2) = Tr¥'(f)(2)).
Hence 9 and ' are approximately unitarily equivalent by [21, Theorem 1.4].

To see the last part of the proposition, set G, = F,4, and substitute G, for F.
in the proof above. O

7. UNIQUENESS

The purpose of this section is to prove a uniqueness theorem, i.e a theorem saying
that two unital *-homomorphisms between (finite direct sums of) building blocks
are close in a suitable sense if they approximately agree on the invariant. Many of
the arguments here are inspired by similar arguments in [7], [8], [19], [21], and [13].

We start out with some definitions. Let k& be a positive integer. A k-arc is an
arc-segment of the form

I={e"" te E,E
fe NN
where m and n are integers, m < n. We set
T+e={e?"":t¢ [%—e,%—}—e]}.

A permutation o of the set {1,2,...,n} will be called cyclic if there exists an integer
[ such that o(i) = ¢+ 1 mod n for i = 1,2,...,n. Finally we define a metric on the
set of unordered L-tuples consisting of elements from T by

RL((alaaQa .. '7aL)a (bla b2a .. '7bL)) = anéuEIL (lrél?éxnp(aia bo(i)))a
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where X,, denotes the group of permutations of the set {1,2,...,n}.

Lemma 7.1. Let ay,as,...,ar5,b1,ba,...,bp € T. Assume that there is a positive
integer k such that € < 21—k and
#{r: N el}<#{r:p€lte}
for all k-arcs I. Then
1
RL((al,ag, .. .,aL), (bl,bQ, .. -,bL)) < €+ E
Proof. Let S C {1,2,...,n} be a subset. Set

P(S) = Udr: ol Ay) < e+ 7).
jES
We will show that #S5 < #P(S).
Let J C T be the union of those k-arcs of length % that intersect non-trivially
with {\; : 7 € S}. Let I,I»,...,I; be the connected components of J. By
assumption we have that for j =1,2,...,q,

#{r: N e} <#{r:p €I, e}
As the sets {r : u, € I; £ €}, j € S, are disjoint and contained in P(S) we see
that #S < #P(S). By Hall’s marriage lemma, see e.g [4, Theorem 2.2], we see

that there exists a permutation o of {1,2,..., L} such that p(u;, A,(;)) < e+ % for
j=1,2,...,L. O

Lemma 7.2, Let aq < as < - < a, and by < by < --- < b, be real numbers.
Assume that there exists a permutation o of {1,2,...,n} such that |a; — by(;)| < €
for some € > 0. Then |a; — b;| < e.

Proof. If e.g a; < b; — € for some j then o must map the set {1,2,...,5} into
{1,2,...,57 — 1}. Contradiction. O

If the statement of the next lemma is clear to the reader, we urge him or her to
skip its awkward proof.

Lemma 7.3. Let (a1,0az,...,a,) and (b1, b, ..., b,) be naturally numbered tuples
in T. Assume that there exists a permutation o of {1,2,...,n} such that

plaj,bo(j)) <€, j=1,2,...,n,
for some € < %. Then there exists a cyclic permutation w such that
p(ajvbw(j))<€7 j:1,2,...,n.

Proof. We may assume that by, bs, ..., b, are mutually different. Let 7 be an integer.
If 7 = kn + r for some integers k and r, where 1 < r < n, then we set a; = a,,
b = by.

Let a; = exp(2miz;), z; € [0,1], j = 1,2,...,n. By assumption there exist
numbers y; €] — %, %[, j=1,2,...,n, such that

(b1,b, .., bn) = (exp(27iyy ), exp(2miys), . . ., exp(27iyy))

as unordered n-tuples, y1 < 92 < -+ < ¥n, and such that |z; — y,;)| < € for a
permutation 7 of {1,2,...,n}. Thus by Lemma 7.2,

lz; —y;l <e j=1,2,...,n. (3)
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There are integers s and t, 1 < s <t—1<mn —1, such that

1 3
ZijSZ}:{s,s—kl,...,t}.

Then y; E]%, %[, 7=2s8,5+1,...,t. Hence there exists an integer m such that

(=1,2,....n:

bmt; = exp(2miy;), j=s,5+1,...,t
Thus
Pbmtj,a5) <e, j=s,s+1,...,¢t (4)
By (3) there exists a permutation x of {t+1,t+2,...,n+ s — 1} such that
Pbmyjsayy) <€ J=t+1,t+2,...,n+s—1.
Choose z;,w; €]3, [ such that
a; = exp(2miz;), j=tt+1,...,n+s—1,

bjtm = exp(2miw;), j=tt+1,...,n+s—1.
As |w; — zy(j)| < €, we see by Lemma 7.2 that |z; — w;| < e. Hence

plaj,bjpm)<e, j=t+1,t+2,...,n+s—1.
The lemma follows from this and (4). O
Lemma 7.4. Let 61,04,...,0r and wi,ws,...,wr, be real numbers such that

01 <0< <0, <0 +1,
w Swe <+ Lwp Swp+ 1.

Assume that € > 0 and 6 > 0 satisfy that Le < 6, 26 < L and € < %. Assume
furthermore that

RL ((627ri€1 , 6271'1'92, . e27ri€,:,)7 (627riw1 , 627r'iwg7 o e27r'iu)L )) <e,
L
1> (05 —w))l <6, (5)
=1

and that s > 8 is an integer such that for every s-arc I,
#{j: ¥ €I} > 6.
Then
16; —wj| < e+ g, j=1,2,...,L.

Proof. Set
Wint; =wj+n, 3=1,2,...,L, neZ.

By Lemma 7.3 there exists an integer p, 0 < p < L — 1, such that

2716,

p(e™0i 2™ witr) < ¢, j=1,2,... L.

Hence there exist integers ¢;, 7 = 1,2,..., L, such that
|0j—wj+p+q]-|<e, ]:1,2,,L
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By assumption {e2>™i : j = 1,2,...,L} intersects non-trivially with every arc-
segment of length 2. Hence {€2™ : j = 1,2,..., L} intersects non-trivially with
every arc-segment of length % + 2¢. Thus
2
|0]'+1 —0]| S 2€+ g

Therefore, for y =1,2,...,L —1

) b

lgj+1 — ¢j]
S 8jt1 — Wit14p + Gr1| + 105 — winp + @] + 10541 — 05 + [wjt14p — Wjtp

2 2
<6+6+(2€+;)+;<1.
Let g=¢1 = ¢y =--- =qr. Then

L
ZO —w;)+ Lg— pl—lZ — wjtp + )| < Le.

By (5) it follows that

—Le—Lq+p<§:>q>—e+% %2—(6+%)2—1, (6)
and
Le—Lq+p>—(5:>q<6+£+é<e+é+1<2. (7)
L L~ L -

Therefore g =0 or g = 1.
If ¢ = 0 then by (6)

—Le+p<déd = p<d+ Le < 26.
Hence if we set J = {€?™ : w; < t < w;4,} then
#{j=1,2,...,L: i ¢ J} < 26.

Thus J intersects non-trivially with at most 3 s-arcs. Therefore
3
|wj — wjtp| < 5
It follows that for j =1,2,...,L,
3
10 = wil < 16; = witp| + |wijtp —wjl <e+ .
Similarly, if ¢ = 1 then by (7)
Le—L+p>—-6 = L—p<Le+6<26.

Set J = {€*™ : w;_(1_p) <t <w;}. Then J intersects non-trivially with at most

3 s-arcs. Hence
3
lwj —wi_(L—p)| < .

It follows that for j =1,2,...,L,

3
0; —w;| <10 — wjtp + 1| + |wj_(1—p) —wj| < e+ 3
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Let ¢ : A — B be a unital *-homomorphism. We define an affine continuous
map ¢* : T(B) — T(A) by ¢*(w) = w o . We define a positive linear order unit
preserving map ¢ : AfT(A) — AffT(B) by ¢(f)(w) = f(e*(w)), f € AfT(A4),
w € T(B).

Let A= A(n,d1,ds,...,dn) be a building block and p a positive integer. Let I
be a p-arc. Choose a continuous function f4 : T — [0, %] such that @ # supp f} C I
and such that ffl equals 0 at all the exceptional points of A. Choose a continuous
function g% : T — [0,1] such that g/, equals 1 on I, such that suppg} C I + %7

and such that supp g4\ I contains no exceptional points of A. Set
H(A,p) ={fh®1:1 p-arc},
H(A,p) = {g4 ®1: I p-arc}.

Theorem 7.5. Let A = A(n,dy,ds,...,dy) be a building block. Let € > 0 and let
F C A be a finite set. There exists a positive integer lg such that if I, p, k and
q are positive integers with lp < 1 < p < k < q, if B = A(m,eq,ea,...,en) is
a building block with exceptional points y1,v2,--.,Ym, if @, : A — B are unital
*-homomorphisms, if a: T —]— 7, [ is a continuous function, and if 6 > 0, such
that

@) ©(h) > 8, heH(AL;
(ii) P(h) > &, he H(Ap);
(iii) ¥(h) > L, he H(AK);

(v) %(h) > 6, he H(A,10q);
[p] =[¥] in KK(A,B);
Det(o(Va)(z)) = Det(yp(Va)(z)) exp(2mia(z)), 2z € T;
and such that at least one of the two statements
(a) d(B) 2 k,
(b) Det(Ajop(Va)) = Det(Ajop(Va)) and a(y;) =0, j=1,2,....M,
1s true; then there exists a unitary W € B such that

le(f) = Wo(f/)W*||<e, fE€F.

Proof. We may assume that ¢ < 12. Choose [y such that Iy > 32n, such that
lp > 2Nn, and such that for z,y € T,
10 €
p(z,y) < g IF(2) = fWll < 5. f€FU{Va}.
Let integers ¢ > k > p > 1 > ly, a building block B = A(m, ey, es,...,en), and
unital *-homomorphisms ¢, : A — B be given such that (i)-(vii) and either (a)
or (b) are satisfied. Choose ¢ > 0 such that for z,y € T,

)
)
)
(iv) |B(h) —(R)|| <6, h € H(A,2q);
)
(vi)

)

(vii

pz,y) <c = llo(f)@) —e(H W < 27 feF,

play) <c = (@) - v(HWI <z feF

Let for each j = 1,2,..., M, t; €]0,1] be the number such that e>"* = y;. Let
7: T — T be a continuous function such that |7(z) — z| < ¢ for every z € T, and
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such that for each j =1,2,..., M, T is constantly equal to y; on some arc
I = {™ . t € [a;,b)]},

where 0 < a; < t; < b; < 1. Define a unital *-homomorphism x : B — B by

X(f) = for. Set p1 = x o and ¥; = x 0. Then
lo(f) —er(DI < 5. FEF,
() —h(Hll <G feF

1 and 1, satisfies (i)-(vi), whereas (vii) can be replaced by
Det(p1(Va)(2)) = Det(¢1(Va)(2)) exp(2mion (z)), z €T,

where oy = avo7. Note that [|a1|le < F, and that a1 (y;) = a(y;), 7 =1,2,..., M.
Fix some j =1,2,...,M. Let 1; : M., — M, denote the (unital) inclusion. By

Proposition 4.9 and (vi) we have that s#(j,7) = s¥(j,4) mod Z,

i=1,2,...,N,

j =1,2,...,M. Choose sf, 0< sf < ¢, such that sg = s%(4,4) mod - By

Lemma 2.1 we see that for each z € I;,
P1(F)() = 1 (y]diag (AL (), AT (), (), F(&TP0))a"),
1(£)(2) = 15 (0iding (AT (£),- - AT (D), F(E7), o F(ET0)) i),

o J .7 J J J J
for some unitaries yy,y, € M.; and numbers 01,...,0Dj,w1,...,wD]_ € R By

changing y{ and y% we may assume that
0] <6< <0, <O +1,

W Swl < <wh <l 41,

and
D

1> (@i -6l <1.

r=1

Let I be a 2¢-arc. By (iv) and (v),
#{r: 2™l ¢ Iln + Z sid;
{i:z; €I}
< Tr(Ajopi(gf ®1))
< e;6 +Tr(Ajovu(gf @1))
wiw? 1 j
< ;6 + #{r: e f‘EIil—Oq}n+ | Z sld;
{uziEsupp g?}
iy 1 ,
. p2miw] - Jq.

#{r:e GIiSq}n—l— Z sld;.

{i:m,- Esupp g}q

IA

Hence _ _ 1
#{r: 2™ e [} < #{r: ¥ e+ 5—}
q
Therefore by Lemma 7.1,

2767 i il
e D; )’ (627r1w1 , 627rm)2

*

2mifd  2mwifl
RDJ.((e 1,e°™% ey
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By (iii), if J is a k-arc then
#{r: 2"l ¢ J} > S

Clearly — Di< e’ . From (v) it follows that e; > 10g > ¢. Thus

|Z 0]|<1<E

and
il ; 4n
e]—Dn-i-st <Dn+Nn<Dn+ <Dn+E:>2 <D]'?<Dj.
=1
By Lemma 7.4 it follows that
|07—w]|<1+3 2 r=12..D,
k_k' 9 <y s g

For each r = 1,2,...,D;, choose a}, b’ such that a; < a} < t; < b < bj. Let
g} : [aj,b;] — R be the continuous function such that gZ(a;) = g¢2(b;) = 6,
gi(a}) = gi(b;) = wi, and such that g/ is linear when restricted to each of the

1ntervals [aj,a]] [a’, J] and [b},b;]. Note that

, g
lg2(t) - 0| < -, r=1,2,...,D;. (9)
Define a *-homomorphism ¢; : A — C(I;) ® M, by

& ()t = 1y (ydiag (AL (F), ..., A (£), (2R 0), ., 12790 D))yi®),
for t € [a;,b,], f € A.

Define £ : A — B by
() (2), zel, j=1,2,.... M,
p(f)z), zeT\UM, I,
Then

() =€ < 5. fEFU{Val

Hence [p1(Va)] = [£(V4)] in K1(B). Note that

Det(£(Va)(2)) = Det(p1(Va)(2)) exp(2mif(z)), z €T,
where 5 : T — R is a continuous function defined by, for ¢ € [0,1],

ﬂ(€27rit): ErD:Jl(gg“(t)_oi)s te [a’j7bj]7 j:1727"'7M7
0 otherwise.

Thus
Det(§(Va)(2)) = Det(1p1(Va)(2)) exp(2min (2))
where v = a3 + 5. Note that
m m m
P2 < o)+ 1B < T +4T =57, 2€T,
and that f — A; 0 £(f) and f — Aj o9y (f) are equivalent representations of A
on M,,,j=1,2,...,M. Hence & = ¢} = ¢} in Hom(K°(B), K°(A)). By (v) it
follows that e; > 10g > ¢ > Nn, 7 =1,2,..., M. Thus by Theorem 4.8 we see that
(€] = [¢1] in KK (A, B).
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Next we will construct a *-homomorphism A : A — B such that [A] = [¢1] in
KK(A, B), such that

len(H) =MDl <5, FEF,

and such that f — A; o A(f) and f — A, o ¢1(f) are equivalent representations

of Aon M, j=1,2,..., M, together with a continuous function v : T — R such

that v(y;) =0, j =1,2,..., M, such that |y(z)| < 82, z € T, and such that
Det(AVa)(z)) = Det(11(Va)(z)) exp(2miy(z)), =z € T.

First assume that (a) is true. Since [£(V4)] = [¢1(Va)] = [¥1(Va)] in K;1(B) and
since for j = 1,2,..., M, Det(A; 0 £(V4)) = Det(A; 091 (Va)), we get by Theorem
3.4 integers Iy, 15, ...l and C, such that

m
n(y;) =L—+C.
€;

Set e = d(B). As % divides 7 for every j = 1,2,..., M, (actually, we have that

T=lem(Z, 2, ..., £2)) we may assume that 0 < C' <2 < . Thus
m m e;
i—|<6— = |l;| <6-2.
|]€j|_ k |_7|— k
Fix some j =1,2,..., M. Let I be a p-arc and let I° denote its interior. By (ii)
#{r=1,2,...,D, L2l € I°y > Tr(Aj o i (i ®1)) > 6%. (10)

Assume that |w] — w£+“]_|| > % for some r € Z. Then there exists a p-arc I such
that I° C J, where
_g.2mit 5 J
J=A{e .wT<t<wT+|lj‘}.
Thus J contains at least 6% elements from the set {62”‘”1 :r=1,2,...,D,}. On
the other hand, by (10)
e
D; > 6% > |,
and therefore
#{s=1,2,..., D, : >t € J}
. . €.
=#{s=rr+1,... 7+ D; 1w <w] <wpyy, )} S|l -1< 6?].

Contradiction. Hence |w) — wi_ljl < %7 r=1,2,...,D;.

For r = 1,2,...,D;, let hJ : [a;,b;] — R be the continuous function such that
hi(t) = gi(t) for t € [a;,a’] U [b},b;], such that hi(t;) = wi_l]_ and such that hJ is
linear when restricted to each of the intervals [a’, ;] and [t;,b}]. Note that

, . . . . 2 4 6
|h(t) = 07] < [I(t) — g7.(£)] + |g7(t) — 07] < stEsy 1€ [a;,b5]. (1)

Define a *-homomorphism A, : A — C(I;) ® My, by, for t € [a;,b;], f € A,

A (F)(E™) = 1y (yldiag (AL (F), ..., A (f), F(e2™MW) | (e "2 D))y,
Define A: A — B by

N()(z), z€Il,j=1,2,...,M,

e1(f)(z), z€T\UL, I;.
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Note that .
IACF) = (Nl < &, F € FU{Va}
By Theorem 4.8 we see that [A] = [¢1] in KK (A4, B). Also

Det(A(Va)(z)) = Det(§(Va)(z)) exp(2mina(z)), z €T,
where 75 : T — R is a continuous function defined by, for ¢ € [0, 1],
72(627rit): Erzjl(hi(t)_wi)e_j te [a’]? _]] = 1727'--3Ma
0 otherwise.

Note that [12(z)] < 2%, z € T, and

Det(A(Va)(2)) = Det(41(Va)(2)) exp(2miy(2)), 2z €T,
where v =y +v2 — C. For each  =1,2,..., M,

€; = €;
and

m _m m m
V(&) < @)+ Ie()] + 101 <5 2oty S8, z€ T.

Now assume that (b) is true. Set A = ¢ and v = ;. Since
Det(Aj 0o p1(Va)) = Det(Ajoyr(Va)), j=1,2,..., M,
we get that the left-hand side of (8) is 0. Hence 3(y;) = 0 and thus we see that

Y(y;) =n(y;) = aa(y;) + B(y;) =0+0=0, j=1,2,...,M.
Also

m m
b =)l <53 <87 z€T.

This completes the construction in the case that (b) is true.

By Proposition 6.3, ¢1, %1, and A are approximately unitarily equivalent to ¢f,
11, and X, respectively, where ¢},9], A : A — B are *-homomorphisms of the
form

@1 (£) (™) = u(t)diag(AT (), - -, AW (f), f(2™ 11D, f(2™FE@))u(t)*,
LA™ = v(t)diag (AT (f), - -, AR (), £ D), ., f(e2™ D)) (t)",
N(F)(E2) = w(t)diag (AL (£, ., AR (), F(eXO), | fe2mHE)))u(t)”,
for integers ry,rg,...,ry with 0 < 7; < dﬂi, i = 1,2,...,N, unitaries u,v,w in
C[0,1] ® M,, with «(0) = v(0) = w(0), u(l) = v( ) w(1), and continuous
functions F,,G,,H, :[0,1] = R, r =1,2,..., L, such that for ¢ € [0, 1],
Fi(t) < Fa(t) < - < Fo(t) < Fi(t) +
Gi(t) < Galt) < -+ < GL(t) < Ga(t) +
Hi(t) < Ha(t) <--- < Hp(t) < Hi(t) +1

Note that for ¢ € [0, 1],

L
Det(N'(Va)(€*™)) = Det(y1(Va)(e*™)) exp(2ni Y _(Ho(t) = G(1))).

r=1
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On the other hand, by the above
Det(N'(Va)(€*™)) = Det(1(Va)(€*™)) exp(2miv(e*™)).
By the last part of Proposition 6.3 we may thus assume that for each ¢ € [0, 1],
L

V(™) =Y (He(t) — Go(1)). (12)

r=1

Hence
L m
| Y (H: () = G- (1)] < 8,
r=1
From (11) if (a) is true, or (9) if (b) is true, we get that for each ¢ € [0, 1],

R, ((627riF1(t)’ . ‘,627riFL(t)) (627riH1(t)’ N ’627riHL(t))) <

SHE

Let t € [0,1] and let I be a 2g-arc. Then by (iv) and (v)
#{r: 2™t (t) ¢ Iln+ Z r;id;
{i:z; €I}
< Tr(¢h (g7 @ 1)(€*™))
<md +Tr(¥; (g7 @ 1)(e™))

: 1
. ,2miGL(t) - .
<mé+H#{r:e EI:thq}n+ | Z rid;
{1:zi €supp g?}
: 1
< #{r: e2miG(t) ¢ 1 4 S_q}n + | Z rid;.
{i:z;€supp g7 }
Hence 1
#{r: 2O e [} < #{r: 27D e T+ 5_q}

It follows from Lemma 7.1 that for each t € [0, 1],

R (2750, @7iF®) (2miGi@) | 2miGu()) ¢ i+_ <

We conclude that

Ry (260, @miGu) (2m() | 2miHu(0)) ¢ l+§ <!
g pp

Since f — ¥;(f)(y;) and f — N (f)(y;) are equivalent representations of A on
M,, for y =1,2,..., M, we get that
(eQWiGl(tj)7 . ,eszL(tj)) _ (6271'2'1‘11('t]')7 .

. eZﬂ'ZHL(t]'))

as unordered L-tuples. Since v(y;) =0, 7 =1,2,..., M, it follows from Lemma 6.1
and (12) that

G,(t;)=H,(t;), r=1,2,...,L j=12,... M.
As v(0) = w(0), v(1) = w(1), we may thus define a *-homomorphism x : A — B by
u(f)(€¥™) = v(t)diag (AT (f), ..., AW (f), F(€2H D), L, f(e2™He(®))y(t)*,
for f € A, t €[0,1]. Since
Tr(u(f)(2)) = Tr(N(£)(2)) = Tr(A(f)(2)), =2€T, f € A4,
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we get from [21, Theorem 1.4] that p and X are approximately unitarily equivalent.
By (i) we have that for every l-arc J,

#{r: 260 e 1 > 8%.

As L% < 8, and since m > ¢, we see that

N
32L
m=In+Y rdi<In+Nn<In+2<In+t = 160 <> "<
=1 2 2 p p
We conclude from Lemma 7.4 that

7 3 _10
|G-(8) = H-(O)] < S+ 7 < T

Hence

€
I6(f) =1 (NIl < 5
Choose unitaries U,V € B such that

INF) = UV <5, fEF,
[ () =V (VI <G, FeF
Set W =UV. Then for f € F,
lo(f) = Wo(Hw|
< () = o1 (DIl + lea(F) = MOI + IAC) = Un(HU* | +

IT(HT" = UL (AU + 1T (U = UV (VU™ +
Wi (H)W™ =Wy (f )W

<€+f+€+6+€+€_
66 6 6 6 6

feF

O
Let A= A1 A D ---® Agr be a ﬁnite direct sum of building blocks. For each
t=1,2,..., R, we define a unitary V} in A by
Vi=(1,...,1,Va,,1,...,1).
If p is a positive integer, we set

H(A,p) = U, u(H(A;, p)),

ﬁ(A7p) = Ui:lL’i(ﬁ(A’iap)>’
where ¢; : A; — A denotes the inclusion, i = 1,2,..., R.

Theorem 7.6, Let A= A1 ®A;P---D AR be a finite direct sum of building blocks.
Let p1,pa,...,pr be the minimal non-zero central projections in A. Let e > 0 and
let F C A be a finite set. There exists a positive integer | such that if p, k and q are
positive integers with | < p < k < q, if B is a finite direct sum of building blocks, if
p,% : A — B are unital *-homomorphisms, if 6 > 0, and if

o~ o~

() ¥(h) >3, heHAID,
(i) ¥(h)>&, heH(Ap),
m

h
(i) P(h)>1L, heHAK),
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(i) [13(R) —d(R)|| <8, he H(A,29),

(v) ©(h)>86, he H(A,10q),

i) [p ]:[ | in KK(A,B),

(vii) Dp(o#(d4(V4), v#(ds(V4)) < 22, i=1,2,...,R,
(vii) P(B) > L, i=1,2,...,R,

(ix) d(B) > k?;
then there exists a unitary W € B such that

lo(F) =Wp(HW*[| <€, feF.

Proof. Foreach:=1,2,..., R, let t; : A; — A be the inclusion and let 7; : A — A;
be the projection. Choose by Theorem 7.5 a positive integer [; with respect to the
finite set m;(F) C A; and € > 0. Set | = max; [{.

Let integers ¢ > k > p > [, a finite direct sum of building blocks B, and unital
*-homomorphisms ¢, : A — B be given such that (i)-(ix) are satisfied. It is easy
to reduce to the case where B = A(m,eq,ea,...,en) is a single building block.

As pu[pi] = ¥«[pi] in Ko(B) for i =1,2,..., R, there is by Lemma 3.5 a unitary
U € B such that Up(p;)U* = 9(p;) for every i = 1,2, ..., R. Hence we may assume
that o(p;) = ¥(pi), 1 =1,2,..., R. Set ¢; = ¥(p;). It follows from (viii) that ¢; # 0,
i=1,2,...,R.

Let ¢;,%; : A; — ¢;Bgq; be the induced maps. Let ¢; : ¢;Bg; — B be the
inclusion. Then [e;] € KK(q;Bg;, B) is a K K-equivalence. Thus

[oi] = [&] ™" [l - [u] =[] ™" - W] - [u] = (]
in KK(A;,q;Bg;). By Lemma 3.5 we have that

Qz'BQi EA(mi,—el,—e2,...7—eM) (13)
m m m

where m; € Z denotes the rank of g;.
Fix somei =1, 2, , M. There exist some ¢; € DU(B) and a selfadjoint element
bi € B with ||b]| < = such that

CP(V;i) = ce 2mib; ¢(VZ)
Thus
Det(p(V4)(2) = TN Det(p(Vi)(2)), = €T
Note that
Det(p(V4)(2)) = Det(¢i(Va,)(2)), z€T,
where the latter determinant is calculated in M,,,, and similarly for ¢. Thus
Det(pi(Va,)(2) = ™7 Det(yi(Va,)(2)), =z €T.
As

we see that
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and that
d(g;Bg;) = gcd(—e1, —ea,...,—enr)
m m

= @gcd(el,eg,...,eM) = @d(B) > Tig2 s k.
m m m

1
w\qi
we see that ¢, and 1; also satisfy (i)-(v) in Theorem 7.5. Hence we get a unitary
W; € q;Bgq; such that
loi(f) = Wii(F)Wi" || <, f € mi(F).
Set W = Eil W;. Then W € B is a unitary and

lo(f) =Wo(H )W <€ fEeF.

Finally, as every tracial state on ¢; Bg; is of the form —)w|qi3q1. for some w € T'(B),

8. EXISTENCE

In this section we prove some existence results for *-homomorphisms between
finite direct sums of building blocks. Together with the uniqueness results of the
previous section, these results are the cornerstones in the proof of the classification
theorem.

Lemma 8.1. Let A = A(n,d1,ds,...,dn) and B be building blocks where s(B) >
Nn. Let ¢ : A — B be a unital *~homomorphism and let k € KK(A,B) be an
element such that k. : Ko(A) — Ko(B) preserves the order unit. Assume that
©* = k* in Hom(K°(B), K°(A)) and that p.[u] = k«[u] in K1(B), where u € A is
a ungtary such that Det(u(-)) has winding number 1. Then [p] = k in KK (A, B).

Proof. By Theorem 4.8 there exists a unital *-homomorphism v : A — B such that
[¥] = k in KK(A, B). Vau* is a unitary of finite order in K;(A) and hence by
Lemma 5.7 [Vqu*] = [w] in K;(A) where w € A is a unitary such that Det(w(-))
is constant. By Lemma 5.8 we see that ¢, [w] = ¥.[w] in K;(B). It follows that
©«[Va] = 1¥«[Va]. Hence [¢] = [¢] = k in KK (A, B) by Theorem 4.8. O

Let A and B be building blocks and let ¢ : A — B be a *-homomorphism. We
define a continuous function A : T — T to be an eigenvalue function for ¢ if A(z) is
an eigenvalue for the matrix ¢(: @ 1)(2) for every z € T. Here ¢ : T — C denotes
the inclusion.

Theorem 8.2. Let A = A(n,d;,ds,...,dN) be a building block, let € > 0, and let
C be a positive integer. There exists a positive integer K such that if

(i) v € A is a unitary such that Det(u(z)) = zexp(2mifB(z)), z € T, where
B:T — R is a continuous function;
(i) B = A(m,e1,€s,...,en) is a building block and k € KK (A, B) is an element
such that ky : Ko(A) — Ko(B) preserves the order unit;
(i) s(B) > K;
(iv) A, A2,..., ¢ : T —= T are continuous functions;
(v) v € B is a unitary such that k.[u] = [v] in K1(B);
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then there exists a unital *-homomorphism ¢ : A — B such that [p] = Kk in
KK(A, B), such that A1, Aa. ..., ¢ are eigenvalue functions for ¢ and such that

C
16F) ~ & D2 Foxell <ellfll, £ € AFT(A),
k=1

when we identify AffT () and Cr(T) as order unit spaces, together with a continuous
function a : T — R with ||a]|e < 2||B]|co that equals O at all the exceptional points
of B such that

Det(p(u)(z)) = Det(v(z)) exp(2mia(z)), z€ T,
and
Det(Aj o p(u)) = Det(A;(v)), j=1,2,...,M.
Proof. We may assume that C > %. Let K be a positive integer such that

4N +C+2)n
€
Let B, k, u, 3, and v be as above. Let x1,22,...,2x5 € T denote the exceptional

points of A and let y1,¥a2,...,ynm € T be those of B.
Let x* : K9(B) — K°(A) have standard form (cf. Lemma 4.4)

K > max( ,Nn).

&*([A7]) hin  hi2 ... hin [A4Y)
&*([A5]) har  haa ... han [A3Y)
K*([AF]) hay haa - huw/ \[AN]
As in the proof of Theorem 4.8 we see that
N
ej =) hjd; (14)
i=1

and hence h;y > 0 for j =1,2,...,M. Define l;; and s; fori =1,2,..., N, and
7=1,2,..., M, as in the proof of Proposition 4.5, i.e such that

m n

—hji =1l — i

e i +s

For j =1,2,..., M, choose integers hjy, 0 < h?y < 7-, and r; > 0 such that
n o
hin = Eis R,

and note that
Mo =100 2 4+ g
e; JN JN dN N
for some integers 7y >0, j =1,2,..., M. Then
m
l]'N — l;N = e—jTj.
Let for each j
r; = ]CJ(C+2) +’LLj
for some integers k; > 0 and 0 < u; < C + 2 and set

. m
b= min k;,—.
1< e
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Note that for j =1,2,..., M,
N
e; = Zhﬁdi <(N-=1)n+rjn+hiydy < Nn+rin
i=1

=(N+C+2)n+(rj—(0+2))n§iej+(rj—(0+2))n.

Hence
(1= 2)e; < (r; = (C+D)n.
Therefore
nkij(C+2) = =n(r; —u) = > n(r; —(C+2) = >1—-S)m.  (15)
€; €; €; 4

Since by (14)

nk;(C +2) 7 <y < hyvdy " < m, (16)
€; €; €j

we see that
nbg < nbC < nb(C +2) < m.
By this and (15),
m(l— %) <nb(C +2) < nbC + im.
Hence from (16) we conclude that

0<1- 2 ¢
m

[N )

Define a continuous map v: T — T by
7(z) = Det(v(z)).
Define n: T — T by
n(z) = Det(u(z)) = zexp(2mif(2)).
Set for j =1,2,..., M,

N-1
a; = (T Det(Ai(w))™*) Det(Ay (u))s
=1
and note that
m N1 N
a; = (I @) )n(an)in [T Det(As(u))™. (17)
=1 1=1
Set for j =1,2,..., M,
¢; = Det(A;(v))
and note that
;% =7(y;)- (18)
As 7 is surjective, we can choose a continuous function Ag41 : T — T such that
C

NAc+1(9)) ™ = aje; n()® D) TL o)™, j=1,2,....M.  (19)
k=1
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There exists a unitary W; € M,, such that the matrix

W; diag (Ail(f),...,A;’,"(f),f(xl),...,f(xll,...,f(xN_l),...,f(:L‘N_ll,

' '

[j1 times lj(n—1) times
f(xN)v' '~7f(levf(A1(yj))v 7f()‘1(y])27 ]
l?N ‘trimes k; %—‘I; times
FQo41(y5)s - FPona(yy), f(1),..., f(1)
kj %—‘l; times (kj+uj)%—b times
FOu3))s - FOu(5)s -5 FAe41(95))s - -5 F(Ao(95)),
b times b times
F), . FQ) )W
b times

belongs to M., € M,, for every f € A. Set

st (C + 2)b.
For each j =1,2,..., M, we have that by (14),
N
° m
L= Zzﬂ 0+2b_Zlj,+le+;(kj(c+2)+uj)—(0+2)b.

J

Choose for k£ = 1,2,...,L continuous functions u; : T — T such that for each
i=1,2,..., M,

(Nl(yj),/JQ(yj)w"7/J’L(yj))=(x17"-7x17"'7xN—17"'7xN—17$N7"'7'TN7
~— ~ ~ ~ -~
lj1 times lj(n—1) times I?N times

M) M) Aen ) Aon(), LL.1 )

'

~
k:j%—b times kj %—b times (kj+uj)2"—j—b times

as ordered tuples.
Choose a unitary W € C(T) ® M,, such that W(y;) = W, for j =1,2,..., M.
Define a continuous function g : T — T such that

C+1

H n(pr(z H n(Ak(z bHDet =4(2)n(1)™", z€eT.

Then by (17), (18), and (19) we have that g(y;) = 1 for j = 1,2,..., M. Define
@p:A— Bby
w(f)(z)=W(Z)diag(Afl(f)»---vA?vN(f)»f( 1(2)), -, f(pc(2)),
F(2),- -, fAa(2)), -+ F(Ae41(2), - - F(Ao4a(2)),

~~ ~~
b times b times

Fo(), 1), -, (1) )W (2)".
~—_———

b—1 times
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 is a unital *-homomorphism and
¢"([A7]) = [A7 o ¢]

N-1
_ S 4 MpoViAAT 4 8 e T AA
= ; e DA o+ Gy + (O + 20k -+ 2)IAR]
N-1 N
€, n n
= Ej(si + Elﬁ)[Af] + (hjn + EU)[AM =Y hulAf.
=1 B =1
Thus ¢* = k* in Hom(K°(B), K°(A)). For w € T(B), f € ART(A),
C C
~ 1 1
[P()w) ~ & D fod(w) = lw(p(f@1)) - o 2 w((fodk) @1
1=1 k=1
1 1 & 1 <
< |—(m—=Con)[|f| +[|—bn Y fode— 5D okl
k=1 k=1
1 1 1 Chn
< |=(m-— Sy =21 - —— .
< [ (m = Con) Il +[—bn = F|CNfll =21 = —=[ I f]| < ell £l
Hence

C
16(F) — & 3 Fo xell < el
k=1

Furthermore, for z € T,

Det(p(u)(2))
N L C+1
- HDet(Al(u))S T 7 () (T O (2))") (g (2))m(1)>~
. " ori
= [ Det(As(w))* T nlue () (J] n(2e(2))°) 9(2) exp(27iB(g(2))) n(1)"~
=1 k=1 k=1

= y(2)n(1) ™" exp(2mif(g(2))) n(1)*~
= Det(v(z)) exp(2mi(8(g(2)) — B(1)))-
Thus, if we define o : T — R by a(z) = B(g(z)) — B(1) we conclude that
Det(p(u)(z)) = Det(v(z)) exp(2mia(z)), =z € T,
that a(y;) =0 for j =1,2,..., M, and that
lalloo < 2(|B]|oo-
Finally by (19), for j =1,2,..., M,

N-1 C+1
Det(Aj o p(u)) = (H Det(A;(u))"*) Det(An (w))"5 (T n(h(ys))™ )n(1)®s+e)
= (_l:[ Det(Ay(u))"") Det(An (u))"i¥ a; 7 c; = Det(A;(v)).

Hence [p(u)] = [v] in K1(B) by Lemma 3.3. It follows from Lemma 8.1 that [¢] = k
in KK(A,B). O
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The following result is due to Li [15, Theorem 2.1]. It generalises a theorem
of Thomsen [24, Theorem 2.1] and it is perhaps the most important step towards
Theorem 8.8 below.

Theorem 8.3. Let X be a path-connected compact Hausdorff space, let F C Cr(X)
be a finite subset and let € > 0. There exists a positive integer L such that for all
N > L, for all compact Hausdorff spaces Y and for all positive linear order unit
preserving maps © : Cr(X) — Cr(Y'), there exist continuous functions A\, : Y —
X, k=1,2,...,N, such that

le(f ——ZfoAk||<e fePF

Theorem 8.4. Let A = A(n,dy,ds,...,dNn) be a building block, let € > 0, let
F C AffT(A) be a finite set, and let C be a non-negative integer. There exists a
positive integer K such that if
(i) u € A is a unitary such that Det(u(z)) = zexp(2mifB(z)), z € T, where
B:T — R is a continuous function;
(i) B = A(m,e1,€s,...,en) is a building block and k € KK (A, B) is an element
such that n* : Ko(A) — Ko(B) preserves the order unit;

(iil) s(B) >
(iv) ©: AﬁT( ) — AffT(B) is a positive linear order unit preserving map;
(v) M, A2,...,A¢ : T —= T are continuous functions;

(vi) v € B is a unitary such that k.[u] = [v] in K1(B);

then there exists a unital *-homomorphism ¢ : A — B such that [p] = Kk in
KK(A, B), such that

I6(f) -l <e feF,

and such that A1, Ae, ..., Ao are eigenvalue functions for ¢, together with a contin-
uous function a : T — R with ||a]le < 2|8l that equals O at all the exceptional
points of B such that

Det(p(u)(z)) = Det(v(z)) exp(2mia(z)), z €T,
and

Det(Aj o p(u)) = Det(A;(v)), j=1,2,...,M.

Proof. We may assume that ||f|| <1, f € F. Identify AfT'(A) and Cg(T) as order
unit spaces. Choose by Theorem 8.3 an integer L with respect to F C AffT(A) and

. We may assume that L > C and that 1 — C—+L < 5. Then choose by Theorem
8 2 an integer K with respect to C'+ L and 3
Now let B, k, ©, u, 8, A1, Aa,...,Ac, and v be given as above. Choose continuous
functions A¢g41,Ac42,---,Ac+r : T — T such that
C+L
le(f) — = Z fo)\k||< feF
L,z C+1

By Theorem 8.2 there exists a unital *-homomorphism ¢ : A — B and a continuous
function a : T — R with ||a]|e < 2||8||c that equals zero at the exceptional points

of B, such that [¢] = k in KK (A, B), such that A, \s,..., Aoy are eigenvalue
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functions for ¢ and such that

1 C+L

() = 55 2o foMll <e  feAfT(4),
k=1

Det(p(u >( )) = Det(uv(z)) exp(2mia(z)), z€T,

Det(Aj o p(u)) = Det(A;(v)), j=1,2,...,M.

Since for f € AfT(A),
C+L C+L

C+L2f oh—7 Y fol
k C+1
1 C+L 1 C+L
<| Yoo fox—7 > foxl+lg g wa\kll
C+Lk C+1 k C+1 C+L
1 L-C
< |l— = = =
<lgT1 L ||f||+C+LC||f|| (1- C+L)I|f||< “1Ifl,

we get that

I2(f) -0l <e feF
O

Theorem 8.5. Let A = A(n,di,ds,...,dn) be a building block, let € > 0, let
F C AffT(A) be a finite set, and let u € A be a unitary of infinite order in K;(A).
There exists a positive integer K such that if

(i) B= A(m,ey,ea,...,en) is a building block and k € KK (A, B) is an element

such that k. : Ko(A) — Ko(B) preserves the order unit;

(i) s(B) > K;

(iii) © : AffT(A) — AffT(B) is a positive linear order unit preserving map;

(iv) v € B is a unitary such that k.[u] = [v] in K1(B);
then there exists a unital *-homomorphism ¢ : A — B such that [p] = Kk in
KK(A, B) and such that

I2(F) -l <e feF,

together with a continuous function v : T — R with ||v||c < em that equals 0 at all
the exceptional points of B such that

Det(p(u)(z)) = Det(v(z)) exp(2miy(2)), z€T
and
Det(Aj o p(u)) = Det(A;(v)), j=1,2,...,M.

Proof. Let

[u] = [u1]”[uz]
in K1(A), where u; € A is a unitary such that Det(u;(-)) : T — T has winding
number 1, uz € A is a unitary of finite order in K;(A), and p is a non-zero integer.

By Lemma 5.7 we may assume that Det(uz(-)) is constant.
Let ¢ € A be the unitary such that

u = cuiPus.
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As ¢ is trivial in K;(A) there exists by Lemma 5.6 a unitary ¢’ € A that is trivial
in K;(A) such that

d4(c)" = qy(c) in U(A)/DU(A). (20)
Set u} = c'uy. Then
da(u) = da(uy"uz) in U(A)/DU(A).
Choose K by Theorem 8.4 with respect to ¢, FF C AfT(A), and C = 0. We may
assume that K > Nn and K > 2[p||||lc, where 8 : T — R is a continuous
function such that Det(u}(z)) = zexp(2mif(z)), z € T.

Now let B, k, ©, and v be as above. By Theorem 4.8 there exists a unital *-
homomorphism v : A — B such that [¢] = k in KK (A, B). Set vo = 9(us) and
w = P(u)). As [u] = [u1]P[uz] = [u]]Puzg] in K1(A), it follows that [v] = [w]P[ve] in
K1(B). Hence v = ywPv, for a unitary y € B that is trivial in K;(B). Choose by
Lemma 5.6 a unitary ¢’ € B that is trivial in K;(B) such that

45(y")" = qp(y) in U(B)/DU(B).

Set v1 = 9'w, and note that

4 (v) = gp(viv2) in U(B)/DU(B).

By Theorem 8.4 there exists a unital *-homomorphism ¢ : A — B such that
[¢] = k in KK(A, B), such that

12(f) —O(f)ll <e, fEF,
and such that
Det(o(u})(2)) = Det(vi(2)) exp(2mia(z)), =z €T, (21)
Det(Aj 0 o(uy)) = Det(Aj(v1)), 7=1,2,..., M, (22)

where o : T — R is a continuous function with ||¢||e < 2||8||e that equals 0 at all
the exceptional points of B. Note that by (20),

¢* (da(u)) = % (d4(u1"uz)) in U(B)/DU(B).
As p* = k* =" in Hom(K°(B), K°(A)) we get from Lemma 5.8 that
!

¢# (g4 (w)) = ¢* (¢4 (ui"v2)) in U(B)/DU(B).

Hence by (21) and (22),

Det(p(u)(2)) = Det(vi(2))Pe* () Det(vy(2)) = Det(v(2))e?™#), 2 €T,

Det(A, o ¢(u)) = Det(A; (1))" Det(Ay(2)) = Det(A; (1)), j=1,2,..., M,
where v : T — R is defined by v(z) = pa(z). Note that

Mlloo = Ipl latll oo < 2P| [|Bllcc < €K < €m
and that v equals 0 at all the exceptional points of B. O
Lemma 8.6. Let A = A(n,dy,ds,...,dy) be a building block with exceptional
points x1,Zo,...,xn. Let g : T — T be a continuous function and let s; € T
be such that s, = g(x;), i =1,2,...,N. There exists a unitary u € A such that
Det(u(z)) = g(2), z€T,
Det(Ai(u)) =s;, i=1,2,...,N.
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Proof. Choose a unitary v € A such that Det(A;(v)) = s;, 4 = 1,2,...,N. Let
Det(v(2)) = h(z), z € T. Then h(z;) = s = g(2;). Thus we can define a unitary
w € A by

w(z) = diag(g(2)h(2)"%,1,1,...,1), z€T.

Set v = wv. O

Lemma 8.7. Let A= A(n,dy,ds,...,dy) be a building block, let p € A be a non-
zero projection, and let w € A be a unitary. Then there exists a unitary w € pAp
such that

da(u) = da(w + (1 —p)) in U(A)/DU(A).
Proof. Let r denote the rank of p. Then pAp = A(r, ~dy, Zdy, ..., -dy) by Lemma
3.5. By Lemma 8.6 there exists a unitary w € pAp such that
Det(w(z)) = Det(u(z)), z€T,
Det(A;(w)) = Det(A;(w)), i=1,2,...,N.

Then ¢4 (u) = ¢4(w + (1 — p)) in U(A)/DU(A) by Theorem 5.5. O
Let A, As,..., AR, be unital C*-algebras with T'(A4;) # 0, and let A be their

direct sum. It is well-known that the map
AfT(A) — off | AfT(A,)
[ @(f),m(f), ... 7r(f))
where m; : A — A; denotes the projection, is an isomorphism in the category of
order unit spaces (recall that the direct sum of order unit spaces is the vector space

direct sum equipped with the supremum norm and the obvious order and order
unit). Let J; : AfT(A;) — AfT(A) be the inclusion.

Theorem 8.8. Let A= A1 ®A;P---DARg be a finite direct sum of building blocks.
Let F C AffT(A) be a finite set and let € > 0. There exists a positive integer K
such that if

(i) B=B1® By ®---® Bg is a finite direct sum of building blocks and k €
KK(A,B) is an element such that k. : Ko(A) — Ky(B) preserves the order
unit;

(i) for every minimal non-zero central projection p in A,

s(B) pp(k«lp]) > K in AffT(B);
(iii) there exists a linear positive order unit preserving map © : AffT(A) —

AffT(B) such that the diagram
Ko(4) —"— AfT(A)

.| o

Ky(B) —— AffT(B)

PB
commutes;
(iv) u1,u2,...,un € B are unitaries such that

ka[VE] = [us] in K1(A), i=1,2,...,R;
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then there exists a unital *-homomorphism ¢ : A — B such that [p] = Kk in
KK(A, B), and such that

16(f) =l <e feF,

(p#(q;&(vj)) :qg(ui) in U(B)/DU(B)v 1=1,2,...,R.

Proof. Let m : A — A; be the projection and ¢# : A; — A be the inclusion,
1=1,2,...,R. Let p1,p2,...,pr denote the minimal non-zero central projections
in A. Choose by Theorem 8.4 a K; with respect to each 7A(F) C AfT(4;), ¢ >0
and C' = 0. Set K = maxi<;<gr K.

Let B, k, ©, and uy,us,...,uy be as above. We may assume that S = 1. To
see this, assume that the case S = 1 has been settled. Let 7rlB : B — B; be the
projection and ¢Z : B, — B be the inclusion. As the diagram

Ko(A) —22 AffT(A)

B “B
T L OKx T 00

Ko(B)) —— AffT(B))
PBy
commutes for [ = 1,2,...,5, and since s(B;)pp, (77, o ki[p;]) > K for i =
1,2,...,R, I = 1,2,...,8, we get unital *-homomorphisms ¢; : A — B; such
that

[Sol] = [TrlB] K in KK(AvBl)v
1Gi(f) — 7P o®(f)l <e, fEF,

Qofé(qui(vj)) = qlBl (WlB(ui)) in U(Bl)/DU(Bl)v i = 1727 s '7R'
Define ¢ : A — B by ¢(a) = (¢1(a), va2(a),...,ps(a)). Then

s s
l=1 W owl=) ] [rf]- k= in KK(A,B),
=1 =1

—

I2(f) — ()l = mla»XII;IB °o@(f)—mlo0(f)ll<e, fEF,
©*(@4(VA)) = dp(us) in U(B)/DU(B), i=1,2,...,R.

So assume B = A(m,ej,es,...,ey). Note that by assumption k.[p;] > 0 in
Ky(B) fori=1,2,...,R. Let e = d(B). Choose by Corollary 3.6 orthogonal non-
zero projections r; € M, C B, fori =1,2,..., R, with sum 1 such that k.[p;] = [r;].
Let t; be the normalised trace of r;. Define

®i : Aﬁ'T(AZ) — AHT(TiBTi)

0:(f)(7oe) = OUNT), T ET(B)

7 7
where ¢; : 7;Br; — B denotes the inclusion.
0; is a linear positive order unit preserving map, since

0:(1)(570e) = 1O(F)(r) = 1o 0k [pl(r) = 1.

As r; is a full projection [¢;] € KK (r;Br;, B) is a K K-equivalence. Note that
[ei]™" - k- [1f'] € KK(A;,r;Br))
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induces a homomorphism Ky(A4;) — Ko(r;Br;) that preserves the order unit.
Choose by Lemma 8.7 a unitary w; € r;Br; such that

dp(wi + (1 —1i)) = qp(w;) in U(B)/DU(B).

As r;Br; 2 A(t;m,tie1,tea,...,tiep) and as tie; > K for j =1,2,..., M, we get
by combining Theorem 8.4 and Theorem 5.5 a unital *-homomorphism ¢; : A; —
r;Br; such that

[os] =[] k- [1f]  in KK(A;,riBry),
16:(f) = @i(H)l <e. feni(F),
vi(Va,) = w; mod DU(r;Br;).
Now define p: A — B by

R
p(a) =3 05 0 mh(a).
=1
@ is a unital *-homomorphism and
R R
o] = le] - [w] - 7] =D k- [f]- 7] =& in KK(4,B).
=1 =1

For f € AfT(A), T € T(B), we have that

R . R .
O(f)(r) = Z@)(Ji(ﬂz“(f)))(T) = Zti@i(ﬂf‘(f))(tlf ° &),
o 1 _ u —~ 1
P(f)(1) =f(rop) = f(_zt"t_f oeopiomf) = th'@(ﬂf(f))(t—f 0€).
It follows that - -
12(f) —e(f)ll<e, feF.

Finally, fori =1,2,...,R,

9. INJECTIVE CONNECTING MAPS

In this section we show that a simple unital infinite dimensional inductive limit
of a sequence of finite direct sums of building blocks can be realised as an inductive
limit of a sequence of finite direct sums of building blocks with unital and injective
connecting maps.

Define a continuous function « : T — [0, 1] by

K(€27rit)_ 2t tE[O, %]v
2-2t te[i,1].

Define continuous functions 1,15 : [0,1] — T by 1, (t) = ™%, 15(t) = e~™%. Note
that ko1 = Ko 1y = id[o,l].
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Let A = A(n,dy,ds,...,dy) be an interval building block with exceptional points
Z1,Z2,...,2N. Define a circle building block by

AT ={f e C(T) @ M, : f(t1(z:)), f(talxs)) € My,, i =1,2,...,N}.
Define unital *-homomorphisms &4 : A — AT by €4(f) = fok, f € A, and jY,5% :
AT — A by jh(g) =gou, j5(9) = go2, g € AT. Then jh o€y = j% 0 €a =ida4.
Consider a finite direct sum of circle and interval building blocks.
A=B1® - - By Ci&--- & Cyy,

where By, ..., By are interval building blocks and C4,...,Cys are circle building
blocks. Define a finite direct sum of circle building blocks AT by

AT:B}I‘@...@B%@CI@...@CM_
Define £4 : A — AT by

éA(xla"'v'/I;vala"'vyM> = (531(];1)7---,{BN(J;N);:UI,---,yM)-
Define j},j4 : AT — A by

jz]Z(xlv"'arL'Naylv"'ayM) = (jgl(xl)a"'7j1]ZN(xN)ay17"'7yM)a k= 172

Note that j4 o &4 = j% 0 €4 = id4. Note also that {4 is injective and that
ja(f)=74(f)=0 = f=0, feA" (23)

Lemma 9.1. Let A be a finite direct sum of circle and interval building blocks. Let
G C A be a finite set and let € > 0. There exists a finite set H C A of positive
non-zero elements such that whenever B is a finite direct sum of circle and interval
building blocks, and ¢ : A — B is a unital *~homomorphism such that p(h) # 0,
h € H, there exists a unital and injective *-homomorphism v : A — B such that

lle(g) =v(g)ll <€ g €.

Proof. We may assume that A is a circle or an interval building block rather than
a finite direct sum of such algebras. Assume first that A = A(n,d;,ds,...,dN) is
a circle building block.

Choose 6 > 0 such that for z,y € T,

p(z,y) <26 = |lg(z) —g)l <€ ge€G.
Let T = UX | V; where each V; is an open arc-segment of length less than §. Choose
for each i =1,2,..., K, a non-zero continuous function y; : T — [0, 1] with support
in V; and such that y; is zero at every exceptional point of A. Set
H={x1®1,x2®1,...,xx ®1}.

Let ¢ : A — B be given such that ¢(h) # 0, h € H. Let B = B, @ --- @® Bg,
where By, ..., Bg are circle building blocks and Bgy1, ..., Bg are interval building
blocks. Let B, = A(m,,e], e}, ... ,eywr). Let 7, : B — B, denote the coordinate
projections, r = 1,2,...,R. By [21, Chapter 1] we may assume that for r =
1,2,...,8,t€0,1],

7r 0 o(F)(€™) = u, () diag (A (f), -, A (F)s FATE)), - -, FONT () un(2)7,
and that forr=5+4+1,5+2,...,R, t€[0,1],
7 0 0(f)(8) = un(B)diag (AT (£), -, AR ()y FOL(E)), - - -, FONL, () un(t),
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where u, € C[0,1] ® M, is a unitary, A],..., A} :[0,1] — T are continuous func-
tions, and sy, s%, ..., s are non-negative integers, r = 1,2,..., R. Since ¢(h) # 0,
h € H, it follows that the set

r

R
U U A&(0,1)

r=1k=1

bl

is 6-dense in T.

Fix some 7 = 1,2,...,S. Let t1,ts,...,ty, €]0,1] be numbers such that €7,
7=1,2,...,M,, are the exceptional points of B,. For each k =1,2,..., L,, choose
a continuous function g}, : [0, 1] — T such that

{z € T:p(2,A;([0,1])) < 6} € pi([0, 1),

such that p(u;(t), A7(t)) < 26, t € [0,1], and such that pj(t) = A} (t) for each
t € {t1,t2,...,tn,0,1}. Define 9, : A — B, by, for t € [0,1],

Ur(F)(€¥) = up(t)diag (AT (f), - AT (), FHE(®), - F(1E, (D)) ur(2)"

Now fix some j = S+ 1,5+ 2,...,R. Let y1,ya2,...,yn, be the exceptional
points of B,. For each k =1,2,..., L., choose a continuous function pj, : [0,1] — T
such that

{z € T: p(z,A;([0,1])) <6} € i ([0,1)),
such that p(u(t), A.(t)) < 26, t € [0,1], and such that pj(t) = A} (t) for each

t € {v1,¥2,.-.,Yn, }- Define a unital *-homomorphism %, : A — B, by, for
t €[0,1],

Dr(F)(E) = ur (t)diag (AT (£), -, AR (), FUL(E))s o, £l (8)))ur(D)™.
Define ¢ : A — B by $(f) = ($1(f),%2(f), - - -, ¥r(f)). Since

it follows that 1 is injective. Note that ||¢(g) — ¥ (9)|| <€, g € G.

If A is an interval building block, choose by the above a finite set HT C AT of
positive non-zero elements with respect to £4(G) C AT and e. Set H = j4(HT). If
¢ : A — B is a unital *-homomorphism and ¢(h) # 0, h € H, then by the above
there exists a unital and injective *-homomorphism p : AT — B such that

lpoia(z) —u@)l <e, = €&a(G).
Thus

lp(g) —pnolalg)ll <e, g€G.
O

Theorem 9.2. Let A be a separable unital C*-algebra. The following are equiva-
lent:

(i) A is isomorphic to the inductive limit of a sequence of finite direct sums of
circle and interval building blocks with injective and unital connecting maps.

(ii) Given € > 0 and a finite subset F C A there exists a unital C*-subalgebra
B C A such that B is isomorphic to a finite direct sum of circle and interval
building blocks and such that F C. B.
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Proof. (i) = (ii) is trivial so assume (ii). Let {z,} be a dense sequence in A. We
will construct a sequence of unital C*-subalgebras, A4, C A, such that A, is a finite
direct sum of circle and interval building blocks, together with unital injective *-
homomorphisms v,, : A,, = A,+1, and finite subsets F,, C A,, containing the unit,
such that

GTL g F’n?
’Yn(Fn) g Fn+17
lve(z) —z|| <27%, =z € Fy,
{$17$2a .. 7mn} g2*" Fn7
where A,, = C*(G,|R,) for a finite set R,, of stable relations in a finite number of
indeterminates, cf. Theorem 2.4.
This is done inductively. An+1, v» and F,41 are constructed in step n.

Choose a unital C*-subalgebra A; C A isomorphic to a finite direct sum of circle
and interval building blocks such that {z1} Q% A;. Choose y; € A; such that
|lz1 — 1l < 1 and set

F = {yl} U {1} UG@G,.

Now assume that A, and F;, have been constructed. Apply Lemma 9.1 to choose
a finite set of norm 1 elements H C A,, with respect to G = F,, and € = 2~ (n+1)

As A, has stable relations [16, Lemma 15.2.1] gives a § > 0 such thatif ¢ : A,, —
B is a *-homomorphism into any C*-algebra B and C C B is a C*-subalgebra with
o(H U F,) Cs C then there exists a *-homomorphism ¢ : A,, — C such that
llo(z) —¥(z)|| < 2=tV 2 € HU F,. We may assume that § < 2~ (»+1),

By assumption there is a unital C*-subalgebra A, ; C A isomorphic to a finite
direct sum of circle and interval building blocks such that

{z1,22,.. ., Znt1} UF, UH Cs Apyq.
Thus there is a *-homomorphism ¥, : A, — A,+1 such that

lz —vn(2)| <2~ z€ HUF,.
Note that 1, is unital and v, (z) # 0, = € H. Hence by Lemma 9.1 there is a
unital and injective *-homomorphism v, : A, — An+1 such that

[9n(2) =y ()] <27, 2 € B

Thus ||z — v (z)|| < 27", z € F,.
Choose {y1,%2, - -,Ynt1} C Any1 such that ||jy; — ;|| <270 i =1,... n+1.
Set

Frop1 =Y (Fn) UGnp1t U{y1, 92, - -« Yntr }-

This concludes the construction. That A = lim(A,,v,) follows as in the proof
of [16, Lemma 15.2.2]. O

It

Al (23] 142 a2 A3 a3
is a sequence of C*-algebras and *-homomorphisms with inductive limit A, we let
Onym = Q1 0 Qm_2 0+ 00y : A, — A, when m > n. We set o, ,, = id and let
Oln,oo 1 A, — A denote the canonical map.
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Lemma 9.3. Let A be a unital C*-algebra which is the inductive limit of a se-
quence of finite direct sums of circle building blocks, A = li_r)n(An,ozn). Then
A= @(Bn,ﬁn) where B, is a finite direct sum of circle building blocks and each
B, 1s a unital *~-homomorphism.

Proof. Let A, = AT ® A3 @ ---® A}, and let 1,, € A, denote the unit. Let

et,e3,... ey denote the minimal non-zero central projections of A,. Note that
we may assume that o, «(e) # 0 for i = 1,2,...,m,, and all positive integers n.

Hence by Lemma 2.2, if a,, o0 (p) = 0 for a projection p € A,, then p =0.
As {an,00(1n)}02, is an approximate unit for A there exists a positive integer
N such that @y o(1x) = 1 for all £ > N. Thus for k > N,

k41,00 (1e41 — ar(1x)) = 0.
Hence ai(1x) = 1g41, k> N. O

Lemma 9.4. Let X C T be a closed set and let G C X be a finite subset. Let € > 0
be given. There exist a set R C X, such that G C R and such that R is a union
of finitely many closed arc-segments and points, and a continuous map o : X — R
such that a(z) =z, z € R, and |a(z) — 2| <€, z € X.

Proof. An easy exercise. O
Lemma 9.5. Let A be a C*-algebra of the form A = A1 ® As & --- ® A,, where
Al:{fEC(XZ)®Mﬂ1f(x}c)eMd;C7 k=1727"‘7Ni}

for points x7, 2%, ..., 2%, € X; and closed subsets X; CT, i=1,2,...,m.
Let F C A be a finite subset and let € > 0. There are a C*-algebra B that
18 o finite direct sum of circle building blocks, interval building blocks, and matriz
algebras, and a unital injective *-homomorphism v : B — A such that F C. (B).
If none of the sets X; contains an arc-segment then B can be assumed to be finite
dimensional.

Proof. Let i € {1,2,...,m}. Let m; : A — A, denote the projection. Choose
by Lemma 9.4 a "nice” subset R; C X; such that z,2%,...,2% € R; and a
continuous function «; : X; — R; such that a,;(z) = 2, z € R;, and such that
|Ifoai(z) — f(2)|| <e f€m(F), z€X,. Set

Bi={f € C(R:) @ My, : f(a}) € My, k=1,2,...,N;}.
Set B = Bl 6BB2GBGBBWL Deﬁne¢ :B— A by w(f17f27"‘7fm) = (f10a17f20
@2,y fm 00y,). Then F C, 9(B).

If none of the sets X; contains an arc-segment then each R; C X; is a finite set
and hence B is finite dimensional. O

Lemma 9.6. Let A be a unital inductive limit of a sequence of finite direct sums
of circle building blocks. Assume that A is simple and infinite dimensional. Then
A contains a unitary w with full spectrum, i.e with o(u) = T.

Proof. We may assume by Lemma 9.3 that the connecting maps are unital. Hence
A = lim(A;, ;) where each «; is a unital and injective *-homomorphism and each
A; is a quotient of a finite direct sum of circle building blocks. Thus A; = A?l ®
Aé@---@Aini where for j =1,2,...,m,,

A; = {f € C(ij) ® Mn(i,j) : f(aj;cﬂ) € Md(i,j,k:)a k= ]-727 .- 7N(7’7])}7
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for a closed subset X! C T and points ol bl xz\’,j(i,j) e T.

If X} contains an arc-segment for some i,j then A% and hence A contains a
unitary with full spectrum.

Otherwise, let a finite set ' C A and € > 0 be given. By Lemma 9.5 there is
a finite dimensional unital C*-subalgebra B C A; for some positive integer ¢ such
that F' C¢ ,00(B). It follows from [5, Theorem 2.2] that A is an AF-algebra.
And it is a well-known result that a simple unital infinite dimensional AF-algebra

contains a unitary with full spectrum. |

Proposition 9.7. Let A be the inductive limit of a sequence of finite direct sums
of circle building blocks. Assume that A is simple unital and infinite dimensional.
Then A is the inductive limit of a sequence

B1

B, B, B2 Bs B3
where each B, is a finite direct sums of circle and interval building blocks and each
B 1s unital and injective.

Proof. Let a finite subset F C A and € > 0 be given. By Lemma 9.3 write A =
lim(An, a,) where each A, is a quotient of a finite direct sum of circle building
blocks and each «,, is unital and injective.

By Lemma 9.5 there is a unital C*-algebra B C A that is a finite direct sum
of circle building blocks, interval building blocks, and matrix algebras such that
F C. B. It is sufficient to show that B is contained in a C*-subalgebra of A that
is a finite direct sum of circle and interval building blocks, cf. Theorem 9.2. Write
B = C @ F where C is a finite direct sum of circle and interval building blocks and
F is finite dimensional.

Let p € A be a minimal non-zero projection in the centre of F. As pAp is a
simple unital infinite dimensional inductive limit of a sequence of finite direct sums
of circle building blocks we see that it is enough to consider the case where B = M,
is a unital C*-subalgebra of A. Then A = M,(A N B’) and hence AN B’ is also a
simple unital infinite dimensional inductive limit of a sequence of finite direct sums
of circle building blocks. Thus by Lemma 9.6 there is a unitary v € A N B’ with
full spectrum. Then C*(u,B) 2 C(T) ® M,,. O

Theorem 9.8. Let A be a simple unital infinite dimensional inductive limit of a
sequence of finite direct sums of circle building blocks. Then A is the inductive limit
of a sequence of finite direct sums of circle building blocks with unital and injective
connecting maps.

Proof. By Proposition 9.7 we see that A is the inductive limit of a sequence
Al @1 Az [ A3 a3

where each A, is a finite direct sum of circle and interval building blocks and each
a, is a unital and injective *-homomorphism.

By passing to a subsequence, if necessary, we may assume that, either every A,
is a circle or an interval building block, or every A, is a finite direct sum of at least
two circle and/or interval building blocks.

Let us first assume that the latter is the case.

Let A, = AT® A3 ®---® A}, where each A is a circle or interval building block.
For each n let n* : A, — A} denote the coordinate projections, ¢ = 1,2,..., N,.
First we will show that we may assume that all the maps 77*! o a,, are injective.

1
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By Elliott’s approximate intertwining argument it suffices to show that given
a finite set G C A, and € > 0 there exists an integer m > n and a unital *-
homomorphism 4 : A, — A,, such that ||a,,n(9) —¥(9)|]| < €, g € G, and such
that 7] o ¢ is injective, ¢ = 1,2,..., Ny,.

Choose by Lemma 9.1 a finite set H C A,, of positive non-zero elements with
respect to G and e. As A is simple and the connecting maps are injective, we
have that oz/n?o(ﬁ) > 0, h € H. Thus there exists an integer m > n such that
oz/nTn(ﬁ) > 0, h € H. Hence 7™ o aym(h) # 0,7 = 1,2,...,N,,, and the result
follows by N,, applications of Lemma 9.1.

Define a unital *-homomorphism 1, : AL — A,41 by

1 1 1 2 1 )
Yn(z) = (11 o ap 0 gy, (2), 13 F 0 an 054, (2),... mNEL 0 an 0 g}, (2)).
As the maps w{”’l oa,, are injective, 1 = 1,2,..., N,y1, and as N, 41 > 2, it follows

from (23) that 1, is injective. The theorem therefore follows in this case from the
commutativity of the diagram

a1 a2 a3

A A, As ...
e L | l/
A’Jl‘

T T cen
L gayonn 43 Eagot As Ea 03

It remains to prove the theorem in the first case. By passing to a subsequence we
may assume that each A, is an interval building block. Let € > 0, let k be a positive
integer, and let F' C Ay be finite. Again by Elliott’s approximative intertwining
argument, it suffices to show that there exists an integer [ > k and a unital and
injective *-homomorphism 1 : AT — A; such that

lok (x) —poéa,(z)]| <€, =€F.

To prove this equation we will use the uniqueness theorem of [18].

Choose by [18, Theorem 5.1] a finite set H C Ay of positive non-zero elements
with respect to F' and e. We may assume that ||h|| <1, h € H. Choose § > 0 such
that

aros(h) > 26, heH.
Let Ay, = A(n,d1,ds,...,dy). By [18, Lemma 7.3] there exists an integer | > k
such that s(4;) > max(%, Nn) and such that oTk\,l(ﬁ) > 26, h € H Let A =
A(m,ey,es,...,en). By [21, Chapter 1] ag, o g}, - A7 — A; is approximately
unitarily equivalent to a unital *-homomorphism 3 : AT — A; of the form

B(FI(E) = u(t)diag(AT (f),-- -, AN () flpa (), -, flur(t))u(®)”, te€[0,1],

where u € C[0,1] ® M, is a unitary and pq, pta, ..., pr : [0,1] — T are continuous
functions. Choose a continuous function g} : [0,1] — T such that puj = p; at the
exceptional points of A; and such that yuj is surjective. Define ¢ : AT — A; by

e(£)(t) = u(t)diag (AT (f),- - AN (), F(u () f(p2(®)), - -, F(ur(2))u(t)*.
Note that ¢ is injective, and that for h € H,

—

18 0 €, (h) — @il = 1§(Ea, (h)) — @i 0 5 (Eap (W) < 13— Bl <

[\~

n
— <.
m
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Finally,as Ajop =A;03,5=1,2,..., M, we see that
(poéa) =& 0B =&4, 004,) oap, =ap, in Hom(K°(A), K°(Ay)).

Thus [poéa,] = [ak,] in KK(Ag, A;) by [18, Theorem 3.9]. Hence by [18, Theorem
5.1] there exists a unitary W € A; such that

[Ad(W) 0 po&a,(z) —aru(z)| <€, z€G.
Set 1 = Ad(W) o . O

10. CLASSIFICATION - Ky NON-CYCLIC

In this section we prove a classification result for simple unital inductive limits of
finite direct sums of building blocks with non-cyclic Ky-group. Our proofs depend
heavily on the fact that the functors involved are continuous.

KK(A,-) is continuous by [20, Theorem 1.14] and [20, Theorem 7.13] provided
that K,(A) is finitely generated.

Inductive limits in the category of order unit spaces and linear positive order unit
preserving maps were introduced by Thomsen [24]. It follows from [24, Lemma 3.3]
that AffT(-) is a continuous functor from the category of separable unital C*-
algebras and unital *-homomorphisms to the category of order unit spaces.

Finally, it is an elementary exercise to prove that U(-)/DU(-) is a continuous
functor from the category of unital C*-algebras and unital *-homomorphisms to
the category of complete metric groups and contractive group homomorphisms
(a group G equipped with a metric d is a metric group if d(fg, fh) = d(g,h),
d(gf,hf) = d(g,h), for f,g,h € G).

Lemma 10.1. Let A be a simple inductive limit of a sequence
Al (%1 A2 asg A3 ag

of finite direct sums of building blocks with unital and injective connecting maps.
Assume that Ko(A) is not cyclic. Then d(A,) — oo.

Proof. If B is a building block then (Ko(B),[1]) =2 (Z,d(B)) as groups with order
unit, cf. Corollary 3.6. As the connecting maps are unital it follows that {d(A,)}
is an increasing sequence.

Since A is simple and the connecting maps are injective we may by passing to
a subsequence assume that o, (p) > 0 for every non-zero projection p € A,. From
this it follows that if each A, is a finite direct sum of at least two building blocks
then d(A,) — oc.

Therefore we may assume that each A, is a building block. If d(A,) — d then
by passing to a subsequence again we may assume that (Ky(A4,),[1]) = (Z,d) for
every n. Hence (Ko(A),[1]) = (Z,d). Contradiction. O

Lemma 10.2. Let A be a finite direct sum of building blocks. Let uw € A be a uni-

tary. Assume thatu is trivial in K1(A) and that u has finite order in U(A)/DU(A).
Then .
D ! (1 _—.
A(QA(U)a QA( )) < d(A)
Proof. We may assume that A = A(n,d1,ds,...,dn) is a building block. By The-
orem 5.1,

__ _27iay 27iag 27iag,

u==e € ... €
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where ay,as,...,ar, € A are self-adjoint. Set b = a; + a2 +---+ar. As Det(u(-))
is constant, T'r(b(-)) is constantly equal to some p € T. Set a = b — £1. By

Lemma 5.3 ¢?™* € DU(A), and hence ¢y (u) = ¢4 (exp(27i£)1) in U(A)/DU(A).
Set d = d(A). Choose A € T such that A* = 1 and p(\, ezp(2mi£)) < 4. Tt follows
that [[A1 — exp(2mi£)1|| < Z. Finally, A1 € DU(A) by Lemma 5.4. O

n

Lemma 10.3. Let A be an inductive limit of a sequence

(e} [e3 [e3
Ay L Ay 2 As 2

of finite direct sums of building blocks with unital connecting maps. Let B be an
inductive limit of a similar sequence

B

B B3

By B; Bs
with unital connecting maps and such that d(By) — oo. Assume that there ezist

group homomorphisms A : K1(A) — K1(B) and ® : U(A)/DU(A) — U(B)/DU(B)
such that the diagram

U(A)/DUA) —™— Ki(A)

°| B

U(B)/DU(B) —— Ki(B)

B

commutes. Let n and m be positive integers and let ¢ : A, — B,, be a unital

* homomorphism. Let u € A, be a unitary of finite order in U(A)/DU(A) such
that

Brmyoo, © @x[t] = Ao an oo, [u] in Ki(B).
Then
B o0 0™ (d, () = @oa¥  (d4,(v)) inU(B)/DU(B).

Proof. Let u have order p in U(A)/DU(A). We may assume that p # 0. Let
0<e< %. There exists a positive integer k£ and a unitary v € By such that

Dy (B (a5, (v), ®oaf (¢4, (1)) <e (24)
Hence fi,00,[v] = A 0 n o0, [u] in K1 (B) and
Dy (B (a5, (v7)) , q(1)) < pe < 1.
Thus there exists an integer [ > k such that
D, (B (ds,(07)) , dis, (1)) < pe < 1.

It follows that there exists a self-adjoint element b € B; such that ||e2™® — 1|| < pe
and such that ﬂfjfl(qjgk (7)) = ¢, (e>™*) in U(B;)/DU(By).
Set w = ﬂk,l(v)e_%i%. Then

w2 T
Dp, (g5, (w), B (g5, (v)) < [l€7% —1]] < [ — 1] < pe, (25)

and
Bm,ooy © Pxtt] = A0 0 oo (U] = Br,co,[V] = Bi,e0, [w] in Ki(B).
Thus there exists an integer j > I, m such that d(B;) > T and such that

Bm,j, © @«lu] = B, [w] in Ki(Bj).
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Note that both 3, ; o ¢(uP) and S ;(wP) are trivial in U(B;)/DU(B;). Hence by
Lemma 10.2,

D, (8% 0 o* (g, (u), B (da,(w))) <
It follows from (24), (25), and (26) that
Dp (B o 0 0¥ (da, (1), ®oal (¢4, () < (p+2)e.

AsO<e< % was arbitrary the conclusion follows. O

i(B;) <e. (26)

Lemma 10.4. Let A be a finite direct sum of building blocks, let € > 0, and let
F C AffT(A) be a finite set. Let B be the inductive limit of a sequence of finite
direct sums of building blocks

B B2 B3

B]_ B2 B3 -
with unital connecting maps. Let J : AffT(A) — AffT(B) be a linear positive
order unit preserving map and let kK € KK(A,B) be an element such that ki :
Ky(A) — Ko(B) preserves the order unit. There exists a positive integer n, a linear
positive order unit preserving map M : AffT(A) — AffT(B,), and an element
we€ KK(A, B,) such that w, : Ko(A) — Ko(B,,) preserves the order unit and such
that

”J(f)_ﬁn,oooM(f)“<€a fEeF,
Kk = [fBn,c] - w in KK(A,B).
Proof. We may assume that ||f|| <1, f € F. Decompose A=A; ® Ay ®---® Ay
as a finite direct sum of building blocks and let 7; : A — A; denote the projection,
i=1,2,...,N.
For every i = 1,2,...,N, identify AffT(A;) and Cr(T). Choose open sets
Vi,Va,..., Vi, € T such that Uf”le} =T and such that

zy eV, = |f@) - @I <35 feRE).

Let {h;:j=1,2,...,k;} be a continuous partition of unity in Cg(T) subordinate
to the cover {V; : j = 1,2,...,k;} and let z; € V, be an arbitrary point, j =
1,2,...,k;. Define linear positive order unit preserving maps T; : AfT(A4;) — R
and S; : R¥ — AfT(A;) by

TZ(f) = (f($1)7f(x2)7' "7f(xki))7
ki
Si(tlat27"'7tki) :thhj'

j=1
Note that
ISco T~ fll < 5. f € RAF).
Hence there exist linear positive order unit preserving maps
T :AfT(A) — RF,
S:RF — AFT(A),
where k = Zi\il k;, such that

ISeT(f)~fl <5 feF
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Let {e; : = 1,2,...,k} be the standard basis in R*. As {JoS(e;):5=1,2,...,k}
are positive elements with sum 1 in AffT(B), there exist a positive integer ! and
positive elements z1,xs,...,2; € AffT(B)) such that E?zl z; =1 and

— € .
||/Bl,00(xj)_‘]os(e])||<ﬁ7 .7:1727"'7k'

Define linear positive order unit preserving maps V : R* — AffT(B;) by

k k
V(Y tie;) =Dt
j=1 j=1
and W : AffT(A) - AfT(B;) by W =V oT. Since
B0V —Jo 8| < %
we see that

1B o W(f) — J(f)l <e, fEF

By continuity of K K (A, ) there exist an integer m and an element v € KK (A, B,y,)
such that [Bm,c0] - ¥ = K. As

Brm,ooy © Vs[1] = Kx[1] = [1] = Bm,o0,[1] in Ko(B)
we see that there exists an integer n > m, [ such that
B, ovi[1] =[1] in Ko(B,).
Setw:[ﬂm,n]-vanszﬁl:oW. O
Proposition 10.5. Let A be a simple inductive limit of a sequence
A —2 Ay —2 5 A3 =

of finite direct sums of building blocks with unital and injective connecting maps.
Let B be an inductive limit of a similar sequence

B1 B2 B3

Bl B3

with unital connecting maps. Assume that there exist a k € KK (A, B) such that
k«[1] = [1] in Ko(B) and an affine continuous map o7 : T(B) — T(A) such that
).

rp(w)(k«(z)) = ralpr(w))(z), =€ Ko(A), weT(B

Let o7, : AffT(A) — AffT(B) denote the positive linear order unit preserving
map induced by or. Let € > 0 and let F C AffT(A,) be a finite subset for some
positive integer n. There exist a positive integer m and a linear positive order unit
preserving map M : AffT(A,) — AffT(Bn) such that

[1Bim,o0 © M(f) = o1, 0 Gnoo(f)l <€, fEF,

and an element w € KK(A,, By,) such that w, : Ko(A,) — Ko(By,) preserves the
order unit and such that

[Brm,ool "W =k [an,c0] in KK(An, B),
Mopa, =pB, ows on Ky(A,).

B;



58 JESPER MYGIND

Proof. We may assume that ||f|| <1, f € F. Decompose A, = AT @A @ ---® A},

as a finite direct sum of building blocks. Let r1,73,...,rny € A, be projections such
that [r1],[r2], . - -, [rn] generate Ko(A,). There exist positive integers dy,ds, ..., dn
such that

=1
As A is simple and the connecting maps are injective there exists a §; > 0 such
that

Qnooo(T3) >80, 1=1,2,...,N.
Choose § > 0 such that 6 < 6 and 6(1 + Y1, d;) < e.

By Lemma 10.4 there exist a positive integer [ and a linear positive order unit
preserving map V : AffT(A4,) — AffT(B;) such that
1Bioe o V(f) = ors 0 Gum(DI < 8, f € FU{#1, ..., 7N},

and an element v € KK(A,, B;) such that v, : Ko(A,) — Ko(By,) preserves the
order unit and such that

[Bioo] V=K [ane] in KK(A,,B).
Since by assumption pgok. = pr,0p4 on Ko(A) we see that fori =1,2,..., N,

5/1,;0,03, oV [1i] = PB O Brco, OVk[ri] = @1, 040 O o, [1i] = P17y 0 O oo (i) > bo.
Hence

1Br.o0 © pBy 0 Valrs] = Brow o V(R < 6, i=1,2,...,N.
Choose m > [ such that fort =1,2,..., N,

5/1; 0 pB, © Vi[r;] > bg,
1Bim © Py © va[ri] = Brm 0 V(7)) < 6.

Define W : AT (A,) — AfT(B,,) by W = E-;l oV. Define w € KK (A, By,) by
W= [ﬂl,m] v

Decompose B, = BI* @ By* & --- @ BT as a finite direct sum of building blocks
and let m; : B,, — BT" be the projection, j = 1,2,..., L. Identify AffT(B,,) with
GBJLZIC’R(T). Fix some j = 1,2,...,L. Set W; =7, o W. As § < &, W;(7;) is a
strictly positive function in Cg(T). Thus for each ¢ = 1,2,..., N, we can define
M; : AfT(A,) =2 &N (AT (A?) — Cr(T) by

1

Mj(fl,fg, .. .,fN) = ZW]‘(O, .. .,O,f,-,O, .. .,O)W’ﬁ'\j(me ow*[n']).

i=1 J
M; is positive and linear, and it preserves the order unit since
N 1 N
M;(1) = ZWj(diﬁ)mﬂ(me ow.fri]) = > Fi(pp,, o wa(dilri])) = 1.
i=1 AN i=1
Let now g € Cr(T) = AfT(A?), |lgl| <1,fori=1,2,...,N. Since
_dzﬁ S (07"'7079307"'70) S dz'f‘\z
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in AffT(A,) we have that
|M;(0,...,9,...,0) — W;(0,...,g,...,0)|
1 ~ ~
W(% (P8, 0 wilri]) = W;(70))
< dil|75(pB,, 0 wi[ri]) = W;(F)|| < bds.

= ||W;(0,...,g,...,0)

Hence if f € AT (A,), ||f]| < 1, then

N
1M,(5) = Wil < 3
=1
Define a linear positive order unit preserving map M : AfT(A,) — AffT(B,,)
by
M(f) = (Mi(f), M2(f),- -, ML(f))

Then

N

IM(f)=W(HI <D bdi, feABT(A), [IfI <1,

=1

and hence

N
B0 0 M(f) = @1, 0 Gnoa(f)| <6+ 6di<e, fEF.
=1

Finally, M (7;) = pp,, o ws[r:], i = 1,2,..., N. It follows that M o pa, = pp,, ©ws
on Ko(Ay). O

Proposition 10.6. Let A be a simple inductive limit of a sequence

Al (o5} A2 [e3] A3 [ %]

of finite direct sums of building blocks with unital and injective connecting maps.
Let B be an inductive limit of a similar sequence

B B2 B3

B,

B;

Bs
with unital connecting maps and such that s(By) — oco. Assume that there erist

a k € KK(A, B) such that k.[1] = [1] in Ko(B) and an affine continuous map
o1 : T(B) — T(A) such that

re(W)(k«(z)) = ralpr(w))(2), =€ Ko(A), we T(B).

Let  : U(A)/DU(A) — U(B)/DU(B) be a homomorphism such that the diagram
U(A)/DU(A) —*— Ki(4)

o] [~

U(B)/DU(B) —— K;(B)
B
commutes. Let n be a positive integer, let A, = A} @ A3 @ --- @ A}, let F C
AffT(A,) be a finite subset, and let € > 0. There exist a positive integer m and a
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unital *-homomorphism ¢ : A, — By, such that
[Brm,ocl - [¢] = & - [an,00] in KK(An, B),
1B 0 0 B(f) = r, 0 Gnm( )l <€, fEF,
Dp(®oa (¢s, (VA,)), B 0 9®(da, (Vi) <€ i=12,...,N.

Proof. We may assume that € < 2. Let py, ps,...,pny denote the minimal non-zero
central projections in A,. As A is simple and the connecting maps are injective,
there exists a 6 > 0 such that a,, »(p;) > 6, i = 1,2,...,N. By Proposition
10.5 there exist a positive integer [, a linear positive order unit preserving map
M : AfT(A,) — AffT(B,), and an element w € KK(A,, B;) such that w, :
Ky(A,) — Ko(B;) preserves the order unit and such that

Bioo] - w=K-[an,c] in KK(A,,B),
_ o €
181,00 © M(f) — @7, © @, ()l < 3 fEFR
Mopa, =pp ow. on Ko(4,).

Choose an integer K by Theorem 8.8 with respect to /' C AffT(A,) and 5. Choose
a positive integer k and unitaries uq,us,...,uy € By such that

Dp(®oa (¢4, (Vi) Bl (g, (w))) <€, i=1,2,...,N.
From this it follows that k. 0 ap,00,[V4 ] = Bk cc, [ui] in K1(B). Hence
Bi,00, ow*[an] = Br,oo, [ui), ©=1,2,...,N.
As pp o ky = 1, 0 pg we see that for: =1,2,..., N,
Bioo(p5(@ilpi]) = p5(Bioo, 0wi[pi]) = @1, 0 a0 Ano, [Bi] = 91, 0T (B3) > 6.
Hence there exists an integer m > k,[ such that s(B,,) > K6~! and such that
/B/I,Tn(pBl(w*[pl]))>67 7:=1727"'7N7

Bim, ows[Va 1= Brym,[ui] in K1(Bm), i=1,2,...,N.

It follows that s(Bm)ps,, (Bi,m, © w«[pi]) > K and that

ﬂl,m oMo PA, = /Bl,m ©pB, OWx = PB,, © 6l,m* Owsx On KO(An)

Therefore by Theorem 8.8 there exists a unital *-homomorphism ¢ : A, — B,
such that

[¢] = [Bi,m] -w  in KK(An, Bp),
¢#(d4,(VA,)) = ds,,(Bem(ws)) in U(Bw)/DU(By), i=1,2,...,N,
IB(f) = Bum o M) < 5. fEF.
It follows that
[Brm,o] - [¢] = [Broc] - w = K- [an,00]  in KK (Ag, B),
Brse 0 B(f) = 91, 0 Gmm(fl <e, fEF,
B o0 0¥ (da,(VA,) = Bf (¢4, (w), nU(B)/DUB), i=1,2,...,N.

From the last equation we get that

Dp(®oaf o(da,(V4,)), B0 9™(da,(V4,)) <& i=1,2,...,N.
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Proposition 10.7. Let A be a simple inductive limit of a sequence

(e (3 (o4
Ay s Ay > Az 2

of finite direct sums of building blocks with unital and injective connecting maps.
Let B be an inductive limit of a similar sequence

B1 B2 B3

B, B; B;

with unital connecting maps and such that d(By) — oo. Assume that there exist
a k € KK(A, B) such that k.[1] = [1] in Ko(B) and an affine continuous map
o1 : T(B) — T(A) such that

r8(W)(ka(2)) = Ta(pr(W))(2), =€ Ko(A), weT(B).

Let ® : U(A)/DU(A) — U(B)/DU(B) be a homomorphism such that the diagram

AFT(A)/pa(Ko(A)) —2— U(A)/DUA) —"2— Ki(A)

| . I+

AffT(B)/pB(Ko(B)) — U(B)/DU(B) E— K1(B)
commutes, where @ : AffT(A)/pa(Ko(A)) — AffT(B)/ps(Ko(B)) is the map in-
duced by o1, : AffT(A) — AffT(B).

Let n be a positive integer, let Fy C AffT(A,) and F» C U(A,)/DU(A,) be
finite subsets, and let € > 0. There exist a positive integer m and a unital *-
homomorphism 1 : A, — B,, such that

(Bl - [¥] = K - [an,00]  in KK (Ay, B),

Brmoo 0 D(f) — o, 0 @mm(f)l <& f€F,
Dp(®oaf (2), B} o ov#(2)) <¢, z€P.

Proof. Decompose A, = AT @ A} ® --- & AR, as a finite direct sum of building
blocks. For each z € U(A,)/DU(A,) there exist by Proposition 5.2 an element
a, € AfT(A,)/pa, (Ko(Ay)), integers kX, k2,... kY, and a unitary w, € A, such

that ¢/y (w:) has finite order in U(A,)/DU(A,) and such that

N .
2=, (az) dn, (JT(VA,) ") da, (wz) 10 U(A,)/DU(A,).

=1

Choose b, € AffT(A,) such that ga, (by) = a,. Set F] = Fy U {b, : z € Fp}.
Choose 0 < 6 < % such that 6 < € and such that

N
|62’”'6—1|+t52k§‘c <€ x€PF.

i=1
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By Proposition 10.6 there exists a positive integer m and a unital *-homomorphism
¥ : A, — B, such that

Brisso] - 0] = b+ [tnoe]  in KK (A, B),
[Broe 0 9(f) = @7 0 Gmea( Il < 8, f € F,
Di(B# o 0 0#(dy, (VA,)), ®oa¥ (¢4, (VA)) <8 i=12.. N
Note that
iy (Brnoo 0 9(a2) , 30 Gmroo(az) ) = dig (5 (Brme © D(bs)) » 4507, © G (b2)) )

- > — 1
S ”5m,oo o ’lp(bz) — P14 © an,oo(bz)” < 6 < 5

Hence
dB(ﬂm,oo Ow(az)7 SZOO‘/H\,:O(QI)) < |€2M6 - 1|v z € F3.

By Proposition 5.2, Ap is an isometry when AffT(B)/pp(Ko(B)) is equipped with
the metric dg. It follows that

DB()\B omozz(az), Apo{o m(az)) < |e2 ¥ —1).

Thus
DB(IB;%,OQ op* oAy, (az), ® oozf’OO o )\A"(az)) <|e¥™ —1|, z€F.
By Lemma 10.3 we see that for x € Fj,
B oo 00" (4, (w2)) = @ oo (¢4, (we)) in U(B)/DU(B)
Hence for x € F5,
Dp (B 0 0¥™(2), ®oaf (2))
< Dp(B 00 0¥ (A, (62)), B o0 o (Aa,(a2))) +

N
> ki Dp(BE . 0 (g, (VA,)), ®oaf (g, (VA,)))
=1

N
<[ — 1+ D kb <e

=1

Lemma 10.8. Let A be a simple inductive limit of a sequence
Al a1 A2 [ A3 a3

of finite direct sums of building blocks with unital and injective connecting maps.
Let n be a positive integer, let G C A, be a finite set and let € > 0. There exist finite
sets D C AffT(A,) and E CU(A,)/DU(A,), a 6 > 0 and an integer r > n such
that if B is a finite direct sum of building blocks with d(B) > 6 tand if ¢ : A, — B,

¥ : A, — B are unital *~homomorphisms such that

13(f) — b oans(f)l <6, feD,

Dp(¢*(f), v* oo (f)) <6, [€E,
[‘p] = [,¢'] ’ [an,r] in KK(AnaB)a
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then there exists a unitary W € B such that
10 amr(z) = Wolz)W?[| <€, =z € Gn.

Proof. Let A, = AT ® A} & --- @ A}, be a decomposition of A, as a finite direct
sum of building blocks. Let pi1,pa,...,pn denote the minimal non-zero central
projections in A,,. Choose by Theorem 7.6 a positive integer [ with respect to A,,
e >0,and G C A,. As A is simple and the connecting maps are injective, there
exists an integer p > [ such that

Gom(B)> 2, he H(A.

Next, choose an integer k£ > p such that

e~ 6
an,oo(h)> Ev hEH(Amp)U{pl,Pb-"apN}-
Choose an integer ¢ > k such that

—— T ]-
On,0(h) > 7 he H(A,, k).

Finally, choose 6 > 0 such that 6 < 1%2 and

~

Anoo(h) > 6, h € H(Ap,10q).

Set D = H(A,,2q). Choose r > n such that
8

nr(R) > o heHAD,
o~ 6
an,’f‘(h)> Ev heH(Anvp)u{p17p27"'7pN}7

~ 1
an,r(h) > 7 he H(Ap k),

ans(h) > 6, he H(A,, 10q).

Set B = {¢y, (Vi ):da, (VZ),-...ds, (VA')}. The conclusion follows from Theo-
rem 7.6. g

Theorem 10.9. Let A be a unital simple inductive limit of a sequence
Al %} A2 %)) Ag a3

of finite direct sums of building blocks. Let B be an inductive limit of a similar
sequence

B B2 B3

Bl B2 B3 .
with unital connecting maps and such that d(By) — oo. Assume that there ezist
a k € KK(A, B) such that k.[1] = [1] in Ko(B) and an affine continuous map
o1 : T(B) — T(A) such that

re(W)(k(2)) = Talpr(W))(2), 2 € Ko(4), w € T(B).

Let ® : U(A)/DU(A) — U(B)/DU(B) be a homomorphism such that the diagram

AFFT(A)/pa(Ko(A)) —2— U(A)/DUA) —2— K(4)

| .| I+
AffT(B)/pp(Ko(B)) —— U(B)/DU(B) —— Ki(B)

AB B




64 JESPER MYGIND

commutes, where @ : AffT(A)/pa(Ko(A)) — AT (B)/ps(Ko(B)) is the map in-
duced by o1, : AffT(A) — AffT(B).

There ezists a unital *-homomorphism ¢ : A — B such that ¥v* = pr on T(B),
such that #* = ® on U(A)/DU(A), and such that [)] - [u] = k - [u] in KK (D, B)
whenever D is a finite direct sum of building blocks and p : D — A is a unital
*_homomorphism.

Proof. We may assume that A is infinite dimensional. Hence by Theorem 9.8 we
may assume that each «, is unital and injective. For each positive integer n,
choose a finite set G,, C A,, such that G,, generates A, as a C*-algebra. We may
assume that a,(G,) C G,41. Choose by Lemma 10.8 finite sets D,, C AffT(A,),
E, CU(A,)/DU(A,), a positive integer r,, and a §, > 0 with respect to G,, and
27",

Choose finite sets F,, C AffT'(A,) such that D,, C F,, such that &, (F,) C Fn41,
and such that U &, (F,) is dense in AffT(A).

Next, choose finite sets K, C U(A,)/DU(A,) such that E, C K,, such that
o (K,,) C Kny1, and such that U2 off | (K,) is dense in U(A)/DU(A).
We will construct by induction strictly increasing sequences {n;} and {m;} and

unital *-homomorphisms vy, : A,, — Bm, such that
(i) ”lek—l,mk 0 '@bk—l(l') - ":Dk O Qny_y,np ('T)|| <27l € Gnk—l’ k >2,
N e _— . fe—m. bn
(i) [|Bmy,00 © Vu(f) = o1 0 Oy oo (f)Il < min{277, 2}, f €
(iii) Dp (B, 0V (@), @oaf, (2) <min{2~™, %}, € K,,
(iV) [ﬁmk,m] : [wk] =K [ank,OO] in KK(Anka)'
ng, my, and 9 are constructed in step k. The case k = 1 follows immediately from
Proposition 10.7.

Assume that ng, my, and ¢, have been constructed. Set ngy1 = rp, . Choose by
Proposition 10.7 a positive integer [ and a unital *-homomorphism A : A — By
such that

—_— o~ — . —npg1 6nk 6nk+1
”/61,00 o )‘(f) — P74 0 ank—)—laoo(f)“ < mln{Z ) 77 D) }7 f € Fnk+17
6n, On
DB(ﬁ#OO o X (z), ®o aﬁk“,m(ac) ) < min{27 "+, 7’“, %}a

[ﬂl,oo] : [)‘] =kK- [aﬂk+1,0°] in KK(A”k+17B)'

Mk 41

T € Knyyrs

It follows that
||6l,000/)‘\oan/k,n\k+1(f)_ﬁmk,ooO"vbk(f)” <6’”«k7 fank7
Dy(Bf 0N oaf ... (), B, o ¥ (2)) <bny, €Ky,

Nk k41

[ﬁmk,m] [w] = [51,00] “[A]- [ank,nk+1] in KK (A, B).

Hence there exists an integer myy1 > I such that d(Bp,,,) > 6nk_1 and such that

1Brmigs © A0 Qngnigs (F) = By © V() <y f € Fry,
DB(ﬂ#mk+1O)\#OCl{# (x),ﬂﬁk,mk+10¢f($)) <6nk7 xEKnka

[ﬁmkymk+1] : [T/Jk] = [ﬁl,mk-u] : [)‘] : [ank,nk+1] in KK(A’E’B)

By Lemma 10.8 there exists a unitary W € B such that

M1

||/8mk,mk+1 o ¢k($) - WIBl,mk+1 oAo Qng gt ((L‘)W*” < 2_nka VS Gnk'
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Set Yr11 = Ad(W) o Bim,,, © A It is easily seen that (i)-(iv) are satisfied. This
completes the induction step.

By Elliott’s approximate intertwining argument, see e.g [23, Lemma 1], there
exists a *-homomorphism 9 : A — B such that

(oo (2)) = 0 g0 0 Y1 0 g (1), 7 € A

Clearly, v is unital. Let f € F,,, w € T(B). The sequence w 0 S, 0o © Yk © Q. .y,
converges to w 0 9 0 @, o in T(A,) as k — co. Hence it follows that

Brproe 0Bk 0 G (/@) = Do @mm(f)(w) as k — oo.

On the other hand, from (ii) it follows that

Breoo © Dk 0 G (F)(@) = @1, 0 @mon(f)(w)  as k — oo.

Hence 9 = o7, on AffT(A) and thus ¢* = o7 on T(B).
As A, has stable relations there exists by [16, Theorem 15.1.1] a positive integer
[ > n such that 9 o a, « is homotopic to B, 00 © 1 © Otn n,. Hence

[7/}] ) [an,m] = [ﬁmz,m] ’ [Qpl] : [an,nz] = kK- [anz,m] ) [an,nz] = kK- [O‘n,OO]

in KK(A,,B). Let D be a finite direct sum of building blocks and p : D — A a
*-homomorphism. By [16, Corollary 15.1.3] there exist a positive integer n and a
*-homomorphism A : D — A, such that p is homotopic to e, 0 0 A. Thus

(W] - [u] = [¥] - [on,c0] - [A] = & - [am,00] - [A] = &+ [14]
in KK(D, B). O
Corollary 10.10. Let A be a unital simple inductive limit of a sequence
.A.l (23] A2 o A3 a3

of finite direct sums of building blocks. Let B be an inductive limit of a similar
sequence

B1 B2 B3

B, B; B;
with unital connecting maps and such that d(By) — 0o. Assume that there exist
a k € KK(A,B) such that k.[1] = [1] in Ko(B) and an affine continuous map
wr : T(B) — T(A) such that

re(W)(k«(2)) = ra(pr(w))(2), =€ Ko(A), we T(B).

There exists a unital *-homomorphism ¢ : A — B such that v* = @1 on T(B)
and such that [¢] - [u] = k- [p] in KK (D, B) whenever D is a finite direct sum of
building blocks and p: D — A is a unital *-homomorphism.

Proof. As @1, 0 pa = pB © K., pr induces a contractive group homomorphism
@ AfT(A)/pa(Ko(A)) — AfT(B)/pp(Ko(B)). By Proposition 5.2 there exists
a group homomorphism @ : U(A)/DU(A) — U(B)/DU(B) such that the diagram

AfFT(A)/pa(Ko(A)) —2— U(A)/DUA) —2— Ki(A)

al @l lm

ABT(B)/p5(Ko(B)) —— U(B)/DUB) —— Ki(B)

A 7B

commutes. The corollary now follows from Theorem 10.9. O
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Corollary 10.11. Let A be a unital simple inductive limit of a sequence

[e3 (3 (o3
Ay L Ay 2 A3 2

of finite direct sums of building blocks. Let B be an inductive limit of a similar
sequence

B B2 B3

By By Bs ..
with unital connecting maps and such that d(By) — 0o. Let g : Ko(A) — Ko(B)
be a group homomorphism that preserves the order unit. Let p1 : K1(A) — K1(B)
be a group homomorphism, and let o1 : T(B) — T(A) be a continuous affine map
such that

r8(¢0(2)) =Talpr(Ww))(z), =€ Ko(A), weT(B).
There exists a unital *~homomorphism ¢ : A — B such that ¥* = @1 on T(B),
v« = o on Ko(A), and ¢, = @1 on K1(A).

Proof. By the universal coefficient theorem [20, Theorem 1.17], there exists an
element K € KK (A, B) such that k., = ¢o on Ko(A) and k. = ¢1 on K;(A). The
corollary thus follows from Corollary 10.10. O

Theorem 10.12. Let A be a simple unital inductive limit of a sequence

%1 (3] a3
Ay A As

of finite direct sums of building blocks. Let B be an inductive limit of a similar
sequence

B1 B2 B3

By By Bs
with unital connecting maps and such that d(By) — oco. Let ¢,9 : A — B be two
unital *-homomorphisms and assume that ©* = * on T(B), that * = % on
U(A)/DU(A), and that [¢] - [u] = [¥] - [u] in KK(D, B) whenever yp: D — A is a
*_homomorphism from a finite direct sum of building blocks D. Then ¢ and v are
approrimately unitarily equivalent.

Proof. We may assume that A is infinite dimensional and hence by Theorem 9.8
that the connecting maps are unital and injective.

Let n be a positive integer, let ' C A,, be a finite set and let € > 0. It suffices
to find a unitary U € B such that

o 0 am,oo(z) — Ad(U) 0 0 oo (2)|| <€, z € F.

We may assume that 1 € F'. Let A, = AT®A®-- - ®AY,. Let p1,p2,...,pn denote
the minimal non-zero central projections in A,. Choose by uniqueness, Theorem
7.6, a positive integer [ with respect to F' and 5. As A is simple and the connecting
maps are injective there exists an integer p > [ such that

arm(®) > 2, heH(Aw).
p
Next, choose k > p such that

— 7
On,0(h) > —

k7 heH(A’an)U{plap277pN}

Choose ¢ > k such that

—

anw(h) > 2 heH(ALR).
q
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Finally, choose 6 > 0 such that § < ¢, such that § < Z, such that § < %, and such
that

AA

On,0(h) > 8, he H(A,, 10q).

Since A, has stable relations there exists by [16, Corollary 15.1.3] a positive
integer r and *-homomorphisms ¢1,91 : A, — B, such that 3, o is homotopic
t0 ¢ 0 iy 00, such that B, . o1 is homotopic to ¥ o a0, such that for z €
FUH(An 29 U{V} ,VZ ..., Vi),

0

”51",00 o 901(1') —@o a’n,oo(x)” < 57

and such that for z in the set
FUH(A,,2q)UH(An,109)UH (A, ) UH(An, p)UH(A,, K)U{VE V3 .. VY,

we have that

1Broo ©11(2) — 1 © oo (2)]] < g < é

In particular we see that by increasing r we may assume that ¢; and 9 are unital.
By assumption

[/Br,oo] : [¢1] = [¢] : [an,oo] = [QD] : [an,oo] = [/Br,oo] : [Lpl] in KK(ATHB>
As ¢* =1* on T(B) we see that for h € H(A,,2q),
1Br.00 0 91(R) = Brooo 0 G1(R)]
W e §
< ||Bri0 0 Y1(h) = 0 @0 (B)|| + (| @ 0 Qnyoo () — Broeo 0 P1(R)]| < 2?
Note that

— ~ 26
/87‘,00 °¢1(h) > ?7 h e H(An1 ]-OQ)a
— —_~ o~ 8
/B'r,oo © ¢1(h) > 57 he H(Anal)v
e NN 6
ﬂr,oo °¢1(h) > E’
e N 1
Br,00 091 () > Y he H(A, k).

h € H(Anap) U {p17p27"'7pN}7

As ¢# = # on U(A)/DU(A) we see that fori = 1,2,..., N,
Dp( B 0wl (€4, (VA,)), Bl o0 (¢4, (V4,)))
< Dp(Bfw 09l (¢4, (VA,)), 0¥ 0af o (da, (VA,)) +

Dp(¢* ook (dh,(VA,)), Blw o 0¥ (4, (VA,))) < S+z=T
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Choose an integer m > r such that d(B,,) > k? and such that
[Brsm] - [p1] = [Brm] - [1]  in KK (An, Bm),
om0 GilR) = om0 iR < & € (A, 20),
Brom 0 1(h) > %5, h € H(A,,10q),

— —~ o~ 8
ﬁr,m°¢1(h)>57 hEH(Anal)a

— ~ ~ 6

/BT,molbl(h)>%a heH(Anap)u{plap27"'apN}1
—— —~ ~ 1
/Br,m O¢1(h) > 5, h S H(An,k),

. ; 26 1 .
DB(/B#mOQO#(qAn(VA"))a ﬂfmoqpi#(qgn(VAn))) < ? < ﬁa 1= 1123"'7N'

By Theorem 7.6 there exists a unitary W € B,, such that
€
1Br,m © o1(x) = W Brm 01 ()W < 30 T€ F.
If we put U = B0 (W) we have that

[ 0 tn,00(z) = Ad(U) © ¢ © atn, o0 ()|
< |l 0 noo(®) = Bryoo 0 1(@)|| + [|Br,00 © 01(2) = UBryoc 0 P1(x)U™]| +
187,00 © P1(2) — ¥ 0 a0 (2)|
< é + < + é <e¢ x€F
3 3 3 ’ )
O

Theorem 10.13. Let A and B be simple unital inductive limits of sequences of
finite direct sum of building blocks. Assume that Ko(A) is not cyclic. Let ¢ :
Ky(A) — Ko(B) be an isomorphism of groups with order units, let ¢1 : K1(A) —
K1(B) be an isomorphism of groups, and let or : T(B) — T(A) be an affine
homeomorphism such that

rB(W)(po(2)) =ralpr(w)(z)), z€ Ko(4), we T(B).
There exists a *-isomorphism ¢ : A — B such that g« = po on Ko(A), such that
v« = @1 on K1(A), and such that o7 = ¢* on T(B).
Proof. By Theorem 9.8 we may assume that A is the inductive limit of a sequence
A —2 5 4, —2 5 43 =

of finite direct sums of building blocks with unital and injective connecting maps.
Similarly we may assume that B is the inductive limit of a sequence

B1 B2 B3

By B, B;
of finite direct sums of building blocks with unital and injective connecting maps.
By Lemma 10.1 d(A,) — oo and d(B,) — o0 as n — 0.

By [20, Theorem 7.3] there exists a K K-equivalence k € KK(A, B) such that
Kk« = o on Ko(A) and k. = o1 on K;(A). From Proposition 5.2 it follows that
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there exists a group isomorphism ® : U(A)/DU(A) — U(B)/DU(B) such that the
diagram

0 —— AffT(A)/pa(Ko(A)) —2— U(A)/DU(A) —2— Ki(A) —— 0

al @l l“*

0 —— AffT(B)/pp(Ko(B)) - U(B)/DU(B) —— K;(B) —— 0
B B
commutes.

By Theorem 10.9 there exists a unital *-homomorphism A : A — B such that
\* = o7 on T(B), such that \# = ® on U(A)/DU(A), and such that [\]-[u] = &-[u]
in KK (D, B) whenever D is a finite direct sum of building blocks and p: D — A
is a *-homomorphism.

Similarly there exists a unital *-homomorphism ¢ : A — B such that ¥* = @7~
on T(A), such that \#¥ = &1 on U(B)/DU(B), and such that [¢] - [v] = k™! - [V]
in KK(C, A) whenever C is a finite direct sum of building blocks and v : C — B
is a *-homomorphism.

Let u: D — A be a *-homomorphism from a finite direct sum of building blocks
D. As Ao p is a *-homomorphism from a finite direct sum of building blocks into
B we have that

oA [ul =[] Noul=x"Nopl=r"" k- [ul = [y

in KK(D, A). Hence by Theorem 10.12 the *-homomorphisms 1 o A and id4 are
approximately unitarily equivalent. Similarly A o ¢ and idp are approximately
unitarily equivalent. Thus there are sequences of unitaries {u,} and {v,}, in A
and B respectively, such that if we put A, = Ad(v,) o XA and ¥, = Ad(u,) o9, the
diagram

1

A ida A id A A ida
Al AQ )\3

l Y1 l P2 l Y3

B dp B idp B dp

becomes an approximate intertwining. Hence by e.g [23, Theorem 3] there is a
*_isomorphism ¢ : A — B such that

p(z) = lim v, A(z)v,*, z € A.

n—oo

It follows that ¢* = A* = ¢ on T(B), that ., = A, = o on Ko(A), and that
©x = A = p1 on Kq1(A). O

11. A PARTIAL CLASSIFICATION FOR K CYCLIC

Lemma 11.1. Let A be a simple inductive limit of a sequence

(e} a2 e %}
Al A2 A3

of finite direct sums of building blocks with unital and injective connecting maps.
Then s(A,) — .
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Proof. Let N be a positive integer and let aq1,as,...,any be mutually orthogonal
positive non-zero elements in A;. As A is simple and the connecting maps are
injective there exists a positive integer L such that

ani(@) >0, i=1,2,...,N,

for I > L. Hence by composing the projection from A; onto a direct summand with
any exceptional representation we obtain N positive mutually orthogonal non-zero
elements. Thus s(A4;) > N for [ > L. O

Lemma 11.2. Let A be the inductive limit of a sequence

(e} (o3 [e3
Ay L Ag 5 A3 2

of building blocks with unital and injective connecting maps. Assume that A is
simple. Let n be a positive integer, let G C A,, be a finite subset, and let € > 0.
There ezist a finite subset E C AffT(A,), a 6 > 0, and an integer h > n such
that, if r > h is an integer, if B = A(m,e1,ea,...,enm) 18 a building block, if
v : T —]—méb, mé[ is a continuous function such that v equals 0 at all the exceptional
points of B, and if ¢ : A, — B, 9 : A, — B are unital *~homomorphisms such
that

IB(f) = o ann(f)ll <6, fE€E,
[(,0] = [¢] : [an,r] m KK(AnaB)a

Det(¢(Va,)(z)) = Det(¢ 0 anr(Va,)(2)) exp(2miy(2)), =z €T,
Det(Ajop(Va,)) = Det(Ajopoan,.(Va,)), j=1,2,...,M,

then there exists a unitary W € B such that

¥ 0 anr(z) = Weo(z)W*|| <e, z€G.

Proof. Choose by Theorem 7.5 a positive integer [ with respect to G C A,, and e.
As A is simple and the connecting maps are injective there exists an integer p > [
such that

am) > 2, h e H(Aw, 1),

Next, choose an integer k > p such that

—_— 6
an,oo(h) > Ea hEH(Anvp)

Choose an integer ¢ > k such that

— T 1

On,00(h) > 7 h e H(A,, k).
Finally, choose 6 > 0 such that 6 < % and

anw(h)>6, he H(An,10q).
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Set E = H(An,2q). Choose h > n such that

o~ 8
a&nn(h) > P h e H(Ap,),
o~ 6
an,h(h) > E7 h € H(An7p)7
o~ 1
ann(h) > 7 he H(A,, k),

ann(h) > 6, he H(A,,10q).

The conclusion follows from Theorem 7.5. O

The next lemma is formulated rather generally so that it can be used in the
proofs of both Theorem 11.4 and Theorem 11.5.

Lemma 11.3. Let A be the inductive limit of a sequence

e o o
Ay L Ay 2 As 2

of building blocks with unital and injective connecting maps. Let B be the inductive
limit of a sequence

b1 B2 B3

B By Bs

of building blocks with unital connecting maps and such that s(By) — oco. Let
pr : T(B) — T(A) be an affine continuous map and let k € KK(A,B) be an
element such that k. : Ko(A) — Ko(B) preserves the order unit. Let C be a building
block, let n and r be positive integers, let 1 > 0 and e5 > 0, let Fy C AffT(C)
and Fy C AffT(A,) be finite sets, and let p : C — B, and A : C — A, be unital
*_ homomorphisms such that A(Vg) is a unitary of infinite order in K,(A,) and
such that

€1

lpr. © Gnse 0 M(f) = Broe 0 AU < 5, € R,
K [Qn,oo] - [N = [Bree] - 4] in KK(C,B).
There exists an integer p > 1 such that if k > p and if B, = A(m,e1,ea,...,en)

then there exists a unital *-homomorphism ¢ : A, — By and a continuous function
v: T —] — exm, e;m[ that equals 0 at all the exceptional points of By such that

1BoXf) = Brg o)l <er, f€ R,
97, 0 Gmso(f) = Broo 0 B < €2, f € P,
ko [On,o0] = [Broo]  [¢]  in KK (An, B),
o] - [\ = [Bri] - ] in KEK(C,By),
Det(p o AM(Ve)(2)) = Det(Bri 0 (Ve )(z)) exp(2miy(z)), z €T,
Det(Aj oo AN(Ve)) = Det(Ajo Brropn(Ve)), j=1,2,...,M.

Proof. Let ¢ = min(e;,ez). By Lemma 10.4 there exists a positive integer I, a
positive linear order unit preserving map M : AffT(A,) — AffT(B;) such that

lor. o Gum(f) = Ao MDI < 5. fEXR)U R,
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and an element w € KK(A,, B;) such that w, : Ko(4,) — Ko(B;) preserves the
order unit and such that

Boo] - w= K- [ano] in KK(A,,B).

Note that
261

100 0 Mo X(f) = Brow o BN < 51 f € R

[B,00] - @ - [A] = [Br.co] - [u]  in KK(C,B).

Therefore there exists an integer p > [, r such that

— ~ — 2
1By MoX(f) = Brpo AN < 55 f€ R,

[Bipl-w-[Al = [Brpl - [u] in KK(C,By),
and such that s(B,) > K where K is the integer from Theorem 8.5, chosen with

respect to /)\\(Fl) UF, C AfT(A,), §, and the unitary A(Vg). Let k > p and let

By = A(m,e1,es,...,en). There exists a unital *-homomorphism ¢ : A, — By
and a continuous function v : T —] — e3m, e;m[ that equals 0 at all the exceptional
points of By such that

16(f) = Buro M) < 5. fEXR)UF,
() = [Bual - in KK(A,, By),

Det(p(A(Vo))(2)) = Det(Brs o p(Ver)(2)) exp(2min(z)), = €T,
Det(Aj ] QD()\(VC))) = Det(AJ o /Br,k: o /,I,(Vc)), _] = 1,27 .. 7]\4.

It follows that
1@ oAf) = Brr o ()| < €1, f €,

o7, © Gmm(f) = Bryoo 0 Bl < €2, f € Fa,
K [anoo] = [Bryoc] - l¢]  in KK (A, B),
(] - [A] = [Brk) - [#] in KK(C,By).

Theorem 11.4. Let A be the inductive limit of a sequence

Al @1 A.2 o2 A3 a3

of building blocks with unital and injective connecting maps. Assume that A is
simple and that K1 (A) contains an element of infinite order. Let B be an inductive
limit of a sequence

B B2 B3

B,

B;

Bs

of building blocks with unital connecting maps and such that s(By) — co. Assume
that there exist group homomorphisms g : Ko(A) — Ko(B) and ¢ : K1(A) —
K1(B) such that po([1]) = [1] in Ko(B), and an affine continuous map pr : T(B) —
T(A). Then there erists a unital *-homomorphism ¢ : A — B such that ¢* = pr
onT(B), ¢ = @ on Ko(A), and p. = p1 on K;(A).
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Proof. By passing to a subsequence we may assume that each unitary as(Vy4,) has
infinite order in K;(Asy1).

Choose finite subsets G5 C A, such that G, generates A, as a C*-algebra and
such that as(Gs) € Gs+1. Choose by Lemma 11.2 a finite set E;, C AffT(Ay), a
number §; > 0, and an integer hs with respect to G5 and 27°.

Choose finite subsets F; C AffT(A;) such that E; C Fy, such that a;(Fs) C
Fy11, and such that U @, - (F5) is dense in AffT(A). By the universal coefficient
theorem, [20, Theorem 1.17], there exists an element k € KK(A, B) such that
Ky« = o on Ko(A) and k. = ¢1 on K;(A).

For each positive integer s we will construct positive integers n, and ms such
that n; <my < -+ < ng and m; < mg < --- < m,, and a unital *-homomorphism
s : An, — Bp,, such that

(1) 1Bm._1m. 0 Ps—1(2) = @s 0 n, 10, (T)|| <2771, 2 € Gn,_,, 822,

(ii) [ﬂw] [ps] = k- [on,,0] in KK(Ay,,B),

(ii) |Bm.,o0 0 @s(f) = @14 0 Qg oo ()l < gmin(bn,,27°), f € Fa,.
This is done by induction. ns, m, and ¢s are constructed in step s. The case s =1
is settled by combining Lemma 10.4 and Theorem 8.5.

Assume that ns_;, ms—; and ¢s;_; have been constructed. Set ny = h,,_,.
By Lemma 11.3 we get an integer m; > ms_; and a unital *-homomorphism
s : Ap, — Bp,, such that, if we let B,,, = A(m,e1,es,...,€en),

195 © @nerona () = Brneaym © Bomt (H] < min(dn,,,27C7Y), fe Ry,

— —_— 1 s
”QOT*Oaﬂsyoo(f)_/Bms,OOOws(f)” < gmln(6ﬂ572 )a fans,
K [n.,00] = [Bm.,co] * [ps] in KK(An,,B),

[905] : [O‘ns_hns] = [ﬁms_hms] ’ [905—1] in KK(An,_,,Bm.),

together with a continuous function vy : T —] — mbn,_,,mén,_, [ that equals 0 at
every point of By, such that for z € T,

Det(ps 0 an,_y,n,(Van,_,)(2)) = Det(Bm, s m, © ps—1(Va,_, )(2)) exp(2miv(2)),
and for 7 =1,2,..., M,
Det(Aj 0 s 0an, 1 (Va,,_,)) = Det(Ajofm,_m, ©ps—1(Va,,_,))-
By Lemma 11.2 we get a unitary W € B,,, such that
1Bmas,m. © 0s—1(x) = Weps 0 n_yn (@)W <277, 2 € G,y

Hence by substituting Ad(W) o ¢, for ¢ we complete the induction step.
By Elliott’s approximate intertwining argument, see e.g [23, Lemma 1], there
exists a *-homomorphism ¢ : A — B such that

P(an,c0(z)) = lim B, 0 0 P50 nn, (2), T € Ap.

Clearly, ¢ is unital, . = ¢ on Ko(A), and . = 1 on K;(A). Finally, ¢o* = ¢r
follows as in the proof of 10.9. O

Theorem 11.5. Let A and B be inductive limits of sequences

Al @1 A.2 o2 A3 a3

and

51 B2 B3

B B, Bs
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of building blocks with unital and injective connecting maps. Assume that A and B
are simple and that K1(A) contains an element of infinite order. Let g : Ko(A) —
Ky(B) be an isomorphism such that @o([1]) = [1], let v1 : K1(A) — K1(B) be an
isomorphism and let o : T(B) — T(A) be an affine homeomorphism. Then there
exists a *-isomorphism ¢ : A — B such that p. = @o on Ko(A), v« = @1 on
Ki(A), and ¢* = o1 on T(B).

Proof. By Lemma 11.1 we see that s(A;) — oo and s(By) — co. And by passing to
subsequences we may assume that for every positive integer n, a,,(Va, ) and 5,(Vg,)
have infinite order in K7(A,+1) and K;(Bn+1), respectively. By [20, Theorem 7.3]
we see that there exists a K K-equivalence k € KK(A, B) such that k. = g on
Ky(A) and k. = @1 on K;(A).

Choose finite sets G; C A and G, C B, such that G, and G, generate A,
and By, respectively, as C*-algebras, and such that a;(Gs) C Gst1, Bs(GL) C
G'y1. Choose finite sets F; C AffT(A;), F] C AffT(B;), such that a;(Fs) C

Faop1, Bo(F!) C F!, ., and such that U2, &, (F) and Ugilﬂ/s;(Fs') are dense in
AffT(A) and AfT(B), respectively.

We will inductively construct two strictly increasing sequences of positive integers
{ns} and {m,} and unital *-homomorphisms ¢, : A,,, — Bm,, ¥s : Bm, — A

such that, if we set

Ms419

s—1

Hs = Gﬂs U U Onyiq,mg Olpt(Glmt)a
t=1
H; = Glms U U ,Bmi,ms © Sot(GTbt)ﬂ
t=1

it Es C AffT(A,,) and 65 are chosen by Lemma 11.2 with respect to Hs and 2%,
and if E! C AffT(B,,,) and é, are chosen by Lemma 11.2 with respect to H. and
27° then
(i) ”908 °¢s—1($) - les—lyms (:L’)” <27%, xe H;—la 522,
(ii) ”WS(-T) — Qngneqq ()| <27, ze€H,,
(i) 1m0 0 B5(F) = 01, 0 @ (Hll < Lmin(8,,27%), f € B, U F,,
(iv) llom o0 0 s (f) = 975" © B oo (£l < 3 min(6;,27%), f € E UF,,
)
)

—

i
(v [ﬂms,m] psl =k [ans,m] in KK(A,,,B),
(vi [O‘ns+1,00] [hs] = KL [Bm..o] in KK(Bm,,A).
n1, m; and ¢; are constructed by combining Lemma 10.4 with Theorem 8.5.
Assume that ngs, mg, and ¢s; have been constructed. We will construct ngsyq,
Mst1, Vs, and Qst1.
Let hs be the integer from Lemma 11.2 chosen along with E; and 6. As

)

lorit 0 Bmsoo 0 Balf) = Em (Al < 5 f € Bsy
K o, o] - [03] = [, o),

and since ¢,(Vy, ) has infinite order in K1 (B,,, ), we get by Lemma 11.3 an integer
ns41 > hg such that if A, = A(m,e1,es,...,en), then there exists a unital *-

homomorphism %, : B,, — A,,,, and a continuous function y : T —] —mé,, mé;|
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that equals 0 at all the exceptional points of A, ,, such that
19s 0 Ba(f) = Gmema (DI < &, f € B,
— o~ 1 . .
“@T:l o ﬂms,oo(f) - aﬂs+1,00 o ¢s(f)|| < g mln(6;7 2 )7 f € E; u F’rILS’
K [/Bms,OO] = [a"s+1100] : [¢S] in KK(BmsﬂA)v
['QDS] : [905] = [aﬂs,ns+1] in KK(ATL37B)=
Det(¢s 0 s(Va,,)(2)) = Det(om, n.1(Va,, )(2)) exp(2min(z)), 2z €T,
Det(AJ o 77/}5 o SOS(‘/AnS )) = ‘Det(A] o an.s,ns+1 (VAns ))7 .7 = ]-7 27 R M
By Lemma 11.2 we get a unitary W € A,,,, such that
lan n. (2) = Wihs 0 o (2)W7[| <27°,  z € H,.

If we substitute Ad(W) o s for 95 we see that (ii), (iv), and (vi) are satisfied.
The construction of ms41 and @41 : A — B, such that (i), (iii), and (v)
are satisfied, is similar.
The proof can now be completed with Elliott’s approximate intertwining argu-
ment. By e.g [23, Theorem 3] we get a *-isomorphism ¢ : A — B such that

MNs41

P(An,00(2)) = UM fm 00 © P © Anyn, (2), 2 € An.

As in the proof of Theorem 11.4 we see that ¢, = g on Ky(A4), ¢« = p1 on Kq1(A4),
and ¢* = o7 on T'(B). O

Corollary 11.6. Let A and B be simple unital inductive limits of sequences of
finite direct sums of building blocks. Let d be a positive integer. Assume that
Ko(A) = Ko(B) = (Z,d) as groups with order unit, that K1(A) contains an element
of infinite order, and that B is infinite dimensional. Let ¢y : K1(A) — K;1(B) be
a group homomorphism and let o1 : T(B) — T(A) be an affine homeomorphism.
Then there erists a unital *-homomorphism ¢ : A — B such that @, = @1 on
Ki(A) and ¢* = o7 on T(B). Furthermore, if @1 is an isomorphism and pr is an
affine homeomorphism then @ may be chosen to be an isomorphism.

Proof. By Theorem 9.8 we may assume that A and B are inductive limits of se-
quences of finite direct sums of building blocks with unital and injective connecting
maps. As Ko(A) and Ky(B) are cyclic groups, it follows that A and B are induc-
tive limits of sequences of building blocks (rather than finite directs sums of such
algebras). By Lemma 11.1 we see that s(Bj) — oco. The conclusions follow from
Theorem 11.4 and Theorem 11.5. |

12. RANGE OF THE INVARIANT

The purpose of this section is to determine the range of the Elliott invariant, i.e to
answer the question which quadruples (Ko(A), K1(A),T(A),r4) occur as the Elliott
invariant for simple unital infinite dimensional C*-algebras that are inductive limits
of sequences of finite direct sums of building blocks. Villadsen [26] has answered
this question in the case where A is an inductive limit of a sequence of finite direct
sums of circle algebras. Using this result Thomsen has been able to determine the
range of the Elliott invariant for those C*-algebras that are inductive limits of finite
direct sums of building blocks of the form A(n,d,d,...,d), see below.
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We start out by examining the restrictions on (Ko(A), K1(A),T(A),r4). Let A
be a simple unital infinite dimensional inductive limit of a sequence

A]_ o1 A2 2 A3 a3
of finite direct sums of building blocks. We may by Theorem 9.8 assume that each
a, is unital and injective. By Corollary 3.6 each Ky(Ay) is isomorphic (as an
ordered group with order unit) to the Ky-group of a finite dimensional C*-algebra.
Thus Ky(A) must be a countable dimension group. This group has to be simple as
A is simple.

If Ko(A) = Z then by passing to a subsequence, if necessary, we may assume
that A is the inductive limit of a sequence of building blocks, rather than finite
direct sums of such algebras. By Lemma 3.8 it follows that K;(A) an inductive
limit of groups of the form Z & G, where G is any finite abelian group.

If Ko(A) is not cyclic our only immediate conclusion is that K;(A) is a countable
abelian group.

T(A) must be a metrisable Choquet simplex. If B is a building block then
obviously rg : T(B) — SKo(B) maps extreme points to extreme points. By [26,
Corollary 1.6] and [26, Corollary 1.7] the same must be the case for r4. Finally,
r4 is surjective by [3, Theorem 3.3] and [11] (or more elementary, because each
ra, : T(Ar) — SKo(Ay) is surjective). As we will see in Theorem 12.1 and Theorem
12.4, these are the only restrictions.

As mentioned above, Thomsen has calculated the range of the invariant for a
subclass of the class we are considering. By [21, Theorem 9.2] we have the following:

Theorem 12.1. Let G be a countable non-cyclic abelian group with order unit, H
a countable abelian group, A a compact metrisable Choquet simplex, and X\ : A —
SG an affine continuous extreme point preserving surjection. Then there exists a
simple unital inductive limit of a sequence of finite direct sums of building blocks A
together with an isomorphism g : Ko(A) — G of ordered groups with order unit,
an isomorphism @1 : K1(A) — H, and an affine homeomorphism o1 : A — T(A)
such that
ra(er(w))(@) = Aw)(po()), weA, x€ Ko(A).

A can be realised as an inductive limit of circle algebras and interval building blocks
of the form A(n,d,d).

A different proof of this theorem could be based on Theorem 8.2 and [26, Theo-
rem 4.2].
Combining this theorem with Theorem 10.13 we get the following;:

Theorem 12.2. Let A be a simple unital inductive limit of a sequence of finite
direct sums of building blocks such that Ko(A) is non-cyclic. Then A is the inductive
limit of a sequence of finite direct sums of circle algebras and interval building blocks
of the form A(n,d,d).

We are left with the case of cyclic Ky-group. Note that the equation

ra(pr(w))(z) = Aw)(po(x), weA, z€Ko(A)
is trivial when A is a unital C*-algebra such that Ky(A) = Z.

Lemma 12.3. Let A be a simple unital inductive limit of a sequence of finite direct
sums of building blocks. Then (Ko(A), Ko(A)*,[1]) =2 (Z,Z%,1) if and only if A is
unital projectionless.



CLASSIFICATION OF SIMPLE LIMITS 7

Proof. This follows easily from Theorem 9.8 and Lemma, 3.7. O

Theorem 12.4. Let d be a positive integer, let A be a metrisable Choquet simplez,
and let H be the inductive limit of a sequence of groups of the form Z®G, where G is
any finite abelian group. There exists a simple unital infinite dimensional inductive
limit A of a sequence of building blocks, with (Ko(A), Ko(A)*T,[1]) = (Z,Z%,d),
K1(A) = H, and such that T(A) is affinely homeomorphic to A.

Proof. By [24, Lemma 3.8] Aff A is isomorphic to an inductive limit in the category
of order unit spaces of a sequence

Cr[0,1] —— Cg[0,1] —— Cg[0,1] —— ...

It is easy to see that this implies that Aff A is isomorphic to an inductive limit of
a sequence of the form

Cr(T) —2— Cg(T) —2— Cg(T) —2=— ...

Let H = lim(Hy, hi,) in the category of groups, where each Hjy is the direct sum
of Z and a finite abelian group. Choose a dense sequence {z;}%2; in Cr(T) and a
dense sequence {z;}32, in T.

For every positive integer k£ we will construct a building block Aj such that
(Ko(Ar), Ko(Ax)™,[1]) = (Z,7Z%,d) and K;(Ax) = Hj, together with a unital
and injective *-homomorphism ay : Ay — Agy1 such that each of the (constant)
functions z +— 21,z — 23,...,2 — z, are among the eigenvalue functions for ay,
such that ay, = hy on K;(Ag) (under the identification K;(Ay) = Hy) and such
that

@ (f) —ex(Hll <27%  feF,
under the identification AffT'(Ag) = Cr(T), where

k-1 k—1
Fy, ={z1,29,...,2%} U 0, r({z1,22,...,21}) U a;r({z1,22,. .., 28 }).
j=1 j=1

First choose by Lemma 3.8 a building block A; such that K;(A4;) = H; and
(KO(Al)v KU(A1)+7 [1]) = (Zv Z+7 d)

Assume that Ay has been constructed. We will construct Ax4+1 and . Choose
K by Theorem 8.4 with respect to Fj, C AffT(A), e = 27% and the integer k+1. By
Lemma 3.8 there exists a building block Agy; such that s(Axy1) > K, K1 (A1) =
Hyit1, and (Ko(Ag+1), Ko(Ak+1)t,[1]) = (Z,Z7,d). By the universal coefficient
theorem, [20, Theorem 1.17], there exists an element k € K K (A, Axt1) such that
Ky : Ko(Ar) — Ko(Ags1) preserves the order unit and k. = hg on K;(Ag). By
Theorem 8.4 there exists a unital *~homomorphism ay, : Ay — Agy1 such that the
identity function on T and each of the functions z — 21,2z +— 2z5,...,2 — 2z are
among the eigenvalue functions for o and such that

lax(f) = Ox(HIl <27%, f€F,
[Oék] =K in KK(Ak,Ak.H).

This completes the construction.

Set A = lim(A,ax). A is infinite dimensional as the connecting maps are
injective. Obviously, (Ko(A), Ko(A)T,[1]) = (Z,Z*,d) and K,(A) = H. By [24,
Lemma 3.4] AfT(A) = lim(Cr[0,1],0) = AffA, and hence T(A) and A are
affinely homeomorphic.
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Let I C A be a closed two-sided ideal in A, I # {0}. By (the proof of) [5,
Lemma 3.1],

I= | anoo(@n,e0~ (1))
n=1
Choose a positive integer n such that a,, . ~'(I) # {0}. Choose f € ay,00 (1)
such that f # 0. Choose k > n such that f(zx) # 0. Then a,;(f)(2) # 0 for every
z € T and I > k. Hence by Lemma 2.2 al,oo_l(I) = A; for every [ > k. Tt follows
that 7 = A. Hence A is simple. O

Corollary 12.5. Let A be a metrisable Choquet simplex and H an inductive limit
of a sequence of groups of the form Z & G, where G is any finite abelian group.
Then there exists an infinite dimensional simple unital projectionless C*-algebra A
that is an inductive limit of building blocks such that T(A) = A and K;(A) = H.

Proof. Combine Theorem 12.4 and Lemma 12.3. O

13. CONCLUSION
We can now state our main result:

Theorem 13.1. Let A and B be a simple unital inductive limit of a finite direct
sum of building blocks such that either Ko(A) is not cyclic or K1(A) contains an
element of infinite order. Let o : Ko(A) — Ko(B) be an isomorphism of groups
with order units, let p1 : K1(A) — K;(B) be an isomorphism of groups, and let
o1 : T(B) — T(A) be an affine homeomorphism such that

r8(W)(o(2)) = ralpr(w)(@)), € Ko(A), weT(B).

There exists a *-isomorphism ¢ : A — B such that . = po on Ko(A), such that

v« = 1 on K1(A), and such that ¢* = o1 on T(B).
Proof. Combine Theorem 10.13 and Corollary 11.6. O

It is natural to ask whether the techniques used to prove the above classification
result in the case that the Ky-group is non-cyclic can be generalised to give a proof
of a classification result in the general case. In order to show that this is not
immediate, let us give an example to show that Theorem 10.9 does not hold for
every simple unital C*-algebra in the class of simple unital inductive limits of finite
direct sums of building blocks.

By [18, Theorem 8.7] there exists a simple unital C*-algebra A with Ky(A) = Z,
K;(A) = Z,, and a unique tracial state. This C*-algebra can be realised as an
inductive limit of a sequence of interval building blocks and is hence contained in our

class. By Proposition 5.2 the group U(A)/DU(A) can be identified with the group
(R/Z) ® Zso. Let ® : U(A)/DU(A) — U(A)/DU(A) be the group homomorphism
given by
k
O(z, k)= (z+ 5,]{:), x €R/Z, k € Zs.

If Theorem 10.9 were true there would exist a unital *-homomorphism 3 : A —
B such that v# = & on U(A)/DU(A) and [¢] - [¢] = [ida] - [4] in KK (D, B)
whenever D is a finite direct sum of building blocks and p : D — A is a unital *-
homomorphism. But then [18, Theorem 7.6] would imply that 4 is approximately

inner. This contradicts the fact that the action on U(A)/DU(A) is non-trivial.
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This example takes advantage of the fact that the group AffT(A)/pa(Ko(A))
contains an element of finite order. Let us show that this is not the case for
Ky(A) non-cyclic (where A is a simple unital inductive limit of a sequence of fi-
nite direct sums of building blocks). As Ky(A) is a simple non-cyclic countable
dimension group we see by [1, Proposition 3.1] that the image of the canonical map
Ky(A) — AfFSKy(A) is dense. Tt follows that p4(Ko(A)) is dense in some subspace
of AffT(A). Hence the quotient AfT(A)/pa(K(A)) is in fact a vector space.
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