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Introdu
tion 5Introdu
tionThe free loop spa
e LX of a spa
e X is the spa
e of 
ontinuous maps from
S1 to X. The 
ir
le group S1 a
ts on LX by rotation, and we study thespa
e of homotopy orbits, LXhS1 = ES1×S1 LX, sometimes 
alled the Borel
onstru
tion. The main method for understanding this spa
e will be Morsetheory on the energy fun
tional, whi
h to a 
losed 
urve asso
iates its en-ergy. This version of Morse theory has been studied by W. Klingenberg in[Klilngenberg1℄. As one would expe
t, the 
riti
al points of this fun
tional arethe 
losed geodesi
s of X, so knowing those will be an important ingredientin understanding LXhS1 via Morse theory.In this paper we study LXhS1 for a parti
ular spa
e, namely the proje
tivespa
e X = FP r, where F = C or F = H. The goal is to determine the
ohomology of LHP r

hS1 and the 
omplex K-theory of LCP r
hS1. This is
alled S1-equivariant 
ohomology (or K-theory) of LFP r. In general, we geta map

ES1 ×S1 LX −→ BS1by proje
tion on the �rst fa
tor. For a 
ohomology theory h∗, we therefore geta map h∗(BS1) −→ h∗(LXhS1), so h∗(LXhS1) be
omes a h∗(BS1)-module.The methods of Morse theory require the use of Thom isomorphism, whi
hdestroys the produ
t stru
ture, so we 
annot hope to 
al
ulate h∗(LFP r
hS1) asa ring. But the h∗(BS1)-module stru
ture is preserved by the Morse theoryma
hinery, so the aim is to 
al
ulate h∗(LFP r

hS1) as an h∗(BS1)-module,where h∗ is either singular 
ohomology H∗ or 
omplex K-theory K∗.We will now outline our main results. For X = HP r, we study the
ohomology with Fp-
oe�
ients of LXhS1, where Fp = Z/pZ, and obtain a
omplete des
ription as an H∗(BS1; Fp) = Fp[u]-module:Theorem 1. As a graded H∗(BS1; Fp) = Fp[u]-module, H∗(LHP r
hS1; Fp) isisomorphi
 to

Fp[u]⊕
⊕

2k∈IF
Fp[u]f2k ⊕

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1.Here the lower index denotes the degree of the generator, and the index sets

IF and IT are known disjoint subsets of {(4r + 2)i+ 4j | 0 ≤ j ≤ r, i ≥ 0}.In parti
ular, there is at most one generator in ea
h degree.For X = CP r, we study the 
omplex K-theory of LCP r
hS1, and obtainTheorem 2. As a K∗(BS1) = Z[[t]]-module,

K0(LCP r
hS1) = K0(BS1) = Z[[t]] .As an abelian group, K1(LCP r
hS1) is torsion-free.



6 Introdu
tionThis is one of the �rst 
al
ulations of K∗(LMhS1) for a non-trivial mani-foldM . The result is quite surprising when 
ompared toH∗(LCP r
hS1), whi
hhas a lot of torsion a

ording to [Bökstedt-Ottosen℄.Unfortunately, we have not been able to determine K1(LCP r
hS1) as a

K∗(BS1)-module. As a partial result in this dire
tion, we haveTheorem 3. There is a spe
tral sequen
e of K∗(BS1) = Z[[t]]-modules 
on-verging strongly to K∗(LCP r
hS1), whi
h has E1 page,

E0,j
1 =

{
Z[[t]]⊗Z Z[h]/ 〈hr〉 , j even;
0, j odd.

En,j
1 =

{
Z[[t]](n) ⊗R(S1) Z[x, y]/ 〈Qr, Qr+1〉, j odd;
0, j even.The �rst di�erential d1 is given by d1(p(t) ⊗ hj) = p(t) ⊗ (xj − yj), where

p(t) ∈ Z[[t]].Theorem 2 states thatK0(LCP r
hS1) is (almost) trivial, whileK1(LCP r

hS1)is free abelian. This is rather similar to the well-known 
ase of K0(BG) asthe 
ompletion of the representation ring R(G) for a 
ompa
t Lie group G,while K1(BG) = 0. This is a 
lassi
al result of M. Atiyah. One 
an also
ompare to e.g. [Freed-Hopkins-Teleman℄, who �nd K∗τ (LBG) as the 
om-pletion of 
ertain representations of the loop group LG, although it shouldbe remarked that they 
onsider K-theory twisted by a 
ohomology 
lass τ ,and not S1-equivariant K-theory as we do. Still, this prompts the followingConje
ture. The exists a �representation theory� type group, su
h that
K1(LCP r

hS1) is a 
ompletion of this group.The outline of this paper is as follows: The paper 
onsists of two mainparts, ea
h divided in three se
tions. The �rst se
tion of ea
h part treats thegeneral theory needed and investigates the relevant spa
es and stru
tures,while the next two se
tions are more 
omputational and deal, respe
tively,with the 
ohomology for F = H, and the K-theory for F = C.Se
tion 1 investigates FP r and its geodesi
s, obtaining some useful �-brations. We 
onsider both the spa
e of parametrized and unparametrizedgeodesi
s; the latter being the quotient of the former under the a
tion of S1by rotation.Se
tion 2 
al
ulates the 
ohomology of the above spa
es using Serre'sspe
tral sequen
e for the �brations found in se
tion 1. We then turn to
S1-equivariant 
ohomology of the spa
e of parametrized geodesi
s, via two�brations and the non-equivariant 
ohomology results from the previous se
-tion.



Introdu
tion 7Se
tion 3 obtains similar results for K-theory. We use the Atiyah-Hirzebru
h spe
tral sequen
e along with the known 
ohomology results for
CP r to determine the K-theory of the spa
e of unparametrized geodesi
s.The S1-equivariant K-theory is determined using the same �brations as for
ohomology, but the method is di�erent, employing the result of Atiyah about
K-theory of 
lassifying spa
es.Se
tion 4 studies of the free loop spa
e, LFP r

hS1. First we explain theworkings of Morse theory in this setting, then we apply this to LFP r and
LFP r

hS1 to get the so-
alled Morse spe
tral sequen
e.Se
tion 5 is dedi
ated to proving Theorem 1. The method is 
loselybased upon a similar 
al
ulation by M. Bökstedt and I. Ottosen in their paperString Cohomology Groups of Complex Proje
tive Spa
es, [Bökstedt-Ottosen℄.We extra
t a lot of information about the Morse spe
tral sequen
e, its size,its di�erentials, and the relation between the equivariant and non-equivariant
ase. All this information is brought together to prove the Main Theoremfor 
ohomology, Theorem 1 above. But even then, it is ne
essary to turnto other sour
es of information to 
omplete the proof. One is lo
alization,the other is 
omparison with the Serre spe
tral sequen
e also 
onverging to
H∗(LHP r

hS1).Se
tion 6 is dedi
ated to proving Theorem 2. The methods here are quitedi�erent, relying on the fa
t that the Morse spe
tral sequen
e in Theorem3 has a rather spe
ial 
on�guration, whi
h implies that all its non-trivialdi�erentials start from the zeroth 
olumn. A very important point is the
al
ulation of the �rst di�erential d1. The 
entral idea is then to twist therotation a
tion of S1 with a positive integer, whi
h gives new Morse spe
tralsequen
es related to the standard one. This gives enough information toprove Theorem 2.For the reader's 
onvenien
e, we have assembled a table of notation atthe end of this do
ument.A
knowledgements. Finally, it is a pleasure to thank my advisor, Mar
elBökstedt, for his help through innumerable fruitful dis
ussions, whi
h addedmany new insights and ideas to this proje
t. Also, I would like to thankJørgen Tornehave for his time and valuable input when standing in as myadvisor for one year.



8 1 Proje
tive spa
e and geodesi
s1 Proje
tive spa
e and geodesi
s1.1 The quaternionsI start by introdu
ing the quaternions, H, as an asso
iative algebra of realdimension 4, generated by 1, i, j, k with the following multipli
ation rules:
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.It should be stressed, even though it is obvious from the above relations, that

H is not 
ommutative. If one wants to be 
on
rete, one 
an realize H as asubalgebra of M2(C) generated over R by (in the matrix entries, i =
√
−1):

i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
.It is straightforward to 
he
k the above multipli
ation rules. Similar to 
om-plex 
onjugation, there is an R-linear map, also 
alled 
onjugation,

H
∗−→ H

z = x0 + x1i+ x2j + x3k 7→ z∗ = x0 − x1i− x2j − x3k,satisfying the usual rule (zw)∗ = w∗z∗. In the matrix des
ription, this ispre
isely the usual ∗-operation of taking the 
onjugate transpose. This 
anbe used to de�ne an inner produ
t 〈z, w〉H = w∗z, whose real part is the usualinner produ
t on R4. Noting that 〈z, z〉H ∈ R we 
an then de�ne a norm
|z| =

√
〈z, z〉H. This satis�es |zw| = |z| |w| and |z∗| = |z|. The unit spherein H is usually denoted Sp(1) = {z ∈ H | |z| = 1}, and this is 
anoni
allyidenti�ed with S3. Finally we note that if z 6= 0 then z is invertible � thisis most easily seen by using the matrix des
ription, whi
h gives an expli
itinverse, and 
he
king that this belongs to H.We 
an take the dire
t produ
t of H with itself to form Hr. The operations

〈·, ·〉H and |·| from H are extended to Hr in the usual way: For z = (z1, . . . , zr)and w = (w1, . . . , wr), we set
〈z, w〉H =

r∑

j=1

〈zj, wj〉H, |z| =
√
|z1|2 + . . .+ |zr|2.1.2 Spa
es of geodesi
sLet F denote either C or H. To ease the notation we denote the unit sphere in

F by S(F). We de�ne the proje
tive spa
e FP r as the set of all 1-dimensional



1.2 Spa
es of geodesi
s 9
F-subspa
es zF of Fr+1, for z ∈ Fr+1. We de�ne the proje
tion map

π : Fr+1 \ {0} −→ FP r (1)
z = (z0, . . . , zr) 7→ [z0, . . . , zr] = zF,so π(z) = zF is the subspa
e spanned by z. Note that for F = H it is im-portant that we spe
ify whi
h side we multiply on; I have 
hosen to multiplyfrom the right. We give FP r the quotient topology from π. To show that

FP r is a smooth manifold of real dimension 2r (resp. 4r) for F = C (resp.
F = H), we display the expli
it 
harts

hj : Uj = {[z0, . . . , zr] ∈ FP r | zj 6= 0} −→ Fr,

hj([z0, . . . , zr]) = (z0zj
−1, . . . , ẑjzj−1, . . . , zrzj

−1),where the hat denotes omission; the 
harts have inverses
h−1
j (w1, . . . , wr) = [w1, . . . , 1, . . . , wr],with the 1 at the jth pla
e.Example 1.1. We will show HP 1 is di�eomorphi
 to S4. This 
an be seenby stereographi
 proje
tion. Think of S4 ⊆ R5 = R × H with north pole

p+ = (1, 0) and south pole p− = (−1, 0). Stereographi
 proje
tion are themaps
ψ± : S4 \ {p±} −→ H,whi
h takes a point (t, z) in S4 to the interse
tion of the line through (t, z)and p± with 0×H. This is easily 
omputed:

ψ+(t, z) =
z

1− t , ψ−(t, z) =
z

1 + t
,and are 
learly smooth maps. Now we want to 
ompose ψ+ and ψ− with the

h−1
j to get two maps to HP 1. When we do this, we would like the two mapsto agree when t ∈]− 1, 1[. To a
hieve this, we repla
e ψ+ with its 
onjugate
ψ∗+(t, z) = z∗

1−t . Doing this, we get maps,
S4 \ {p+}

ψ∗+−→ H
h−1
0−→ HP 1, S4 \ {p−}

ψ−−→ H
h−1
1−→ HP 1,given by

(t, z) 7→
[
1,

z∗

1 + t

]
, (t, z) 7→

[
z

1− t , 1
]
.By multiplying the �rst expression from the right by z

1−t and using that
1 = |(t, z)| = t2 + |z|2 = t2 + z∗z, we see that these two maps agree when
t ∈]− 1, 1[, so they 
ombine to a di�eomorphism S4 −→ HP 1.



10 1 Proje
tive spa
e and geodesi
sWe 
an modify the proje
tion map π in (1) to a map
π : S(Fr+1) −→ FP rwhere S(Fr+1) ⊆ Fr+1 is the unit sphere. This 
an be used to des
ribe thetangent bundle of FP r. Spe
i�
ally for z ∈ S(Fr+1) there is an F-linearisometry,

tz : (zF)⊥ ⊆ TzS(Fr+1)
π∗−→ Tπ(z)FP

r,where (zF)⊥ = {w ∈ Fr+1 | 〈w, z〉F = 0}. This map satis�es
tzλ(wλ) = tz(w) for λ ∈ S(F). (2)The above properties of FP r are rather elementary, and the reader 
ansee e.g. [Madsen-Tornehave℄ Chapter 14 for proofs of the results in the 
aseof CP r.Consider the Riemannian metri
 on FP r given by the real part of theinner produ
t on Fr+1. This is the standard metri
 on FP r, and we willuse a metri
 g whi
h is a s
alar multiple of this metri
. Take the unique
onne
tion on T (FP r) 
ompatible with this metri
, 
alled the Levi-Civita
onne
tion. We now de�ne G(r) = G(FP r) as the spa
e of parametrized,simple, 
losed geodesi
s f : [0, 1] −→ FP r with respe
t to this 
onne
tion.The s
alar determining g is spe
i�ed by requiring that su
h a geodesi
 haslength 1 with respe
t to g. Note that every geodesi
 in FP r is 
losed: Thegroup of F-orthogonal matri
es (U(r + 1) or Sp(r + 1), respe
tively) a
tstransitively on HP r, so it is only ne
essary to 
he
k it for one geodesi
, e.g.on FP 1 ⊆ FP r, and sin
e CP 1 ∼= S2 and HP 1 ∼= S4, all geodesi
s on FP 1 areknown to be 
losed.We also 
onsider the set of n times iterated geodesi
s Gn(r) for everyinteger n ≥ 1, whose elements γ : [0, 1] −→ FP r are given by γ(t) = f(nt)for some f ∈ G(r), where we make the obvious identi�
ation of the intervals

[j− 1, j] with [0, 1] for j = 2, . . . , n. There is an a
tion on Gn(r) by S1 givenby rotation; expli
itly,
S1 ×Gn(r) −→ Gn(r)

(e2πiθ, f(t)) 7→ f(t− θ).We 
an twist the rotation a
tion on G(r) by an integer n ≥ 1, and we denotethe resulting S1-spa
e G(r)(n):
S1 ×G(r)(n) −→ G(r)(n) (3)
(e2πiθ, f(t)) 7→ f(t− nθ).



1.2 Spa
es of geodesi
s 11This a
tion is the rotation a
tion pre
omposed with the nth power map
Pn : S1 −→ S1, Pn(z) = zn in 
omplex notation. Then Gn(r) and G(r)(n)are isomorphi
 as S1-spa
es via the obvious map G(r)(n) −→ Gn(r) given by
f(t) 7→ f(nt), so from now on, we will 
hie�y use G(r)(n) instead of Gn(r).We also 
onsider the quotient ∆(r) = S1 \ G(r) under the rotation a
tion,whi
h is the spa
e of oriented, unparametrized, simple, 
losed geodesi
s on
FP r.We now want to get a more 
on
rete des
ription of G(r) and ∆(r), fol-lowing [Bökstedt-Ottosen℄, �2. Let V2 = V2(Fr+1) be the Stiefel manifold of
F-orthonormal 2-frames in Fr+1, so

V2 =
{
(v, w) ∈ Fr+1 × Fr+1 | ‖v‖ = ‖w‖ = 1, 〈v, w〉F = 0

}
,and let PV2 be the quotient manifold by the right diagonal S(F) a
tion,

(v, w) ∗ z = (vz, wz). On V2 we have a left a
tion of S1 by rotation by anangle θ: For θ ∈ R, the a
tion is (v
w

)
7→ R(θ)

(
v
w

), where
R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]For ea
h n ∈ N, we 
an de�ne an a
tion of S1 on PV2, and we denote theresulting S1-spa
e by PV (n)
2 :

S1 × PV (n)
2 −→ PV

(n)
2 ; e2πiθ ∗ [x, y] = [R(nπθ)(x, y)].This gives a well-de�ned S1-a
tion on PV2, be
ause we multiply the matrix

R on the left, while PV2 = V2/diagS(F), where we multiply on the right. We
an now make an S1-equivariant di�eomorphism
ϕ1 : PV

(n)
2 −→ G(r)(n) (4)

[x, y] 7→ π ◦ c(x, y)where π : S(Fr+1) −→ FP r is the proje
tion, and c(x, y) is the simple 
losedgeodesi
 starting at x in dire
tion y; expli
itly,
c(x, y)(t) = cos(πt)x+ sin(πt)y, for t ∈ [0, 1].This is well-de�ned, and a bije
tion be
ause every geodesi
 on FP r is 
losed.Clearly, ϕ1 is a di�eomorphism, and it is straightforward to 
he
k that it is

S1-equivariant, using the trigonometri
 formulas.Another very useful model for G(r) is S(τ) = S(T (HP r)), the spherebundle of the tangent bundle τ of FP r. There is a di�eomorphism
ψ : PV2 −→ S(τ)

[x, y] 7→ tx(y) ∈ Tπ(x)FP
r



12 1 Proje
tive spa
e and geodesi
sThis is well-de�ned be
ause of (2), and we 
an give an expli
it inverse:Given y ∈ Tπ(x)FP r, ψ−1(y) = [x, t−1
x (y)]. Thus we 
an give S(T (FP r))a rotation a
tion of S1, namely the a
tion that makes this di�eomorphism

S1-equivariant. Combining this with (4), we have an S1-equivariant di�eo-morphism
ψ−1 ◦ ϕ1 : S(τ) −→ G(r). (5)The last des
ription only works for CP r. Going ba
k to PV2(Cr+1), we�rst 
hange 
oordinates as follows

ϕ2 : PV2(C
r+1) −→ P̃ V 2(C

r+1), [x, v] 7→
[
x+ iv√

2
,
x− iv√

2

]
.Here P̃ V 2 is PV2 equipped the S1-a
tion indu
ed from this 
hange of 
oordi-nates. It is easily 
omputed that the a
tion of θ ∈ [0, 1] is θ ∗ [a, b] = [za, zb]where z = eπiθ ∈ S1.We are interested in ∆(CP r), i.e. we divide out the rotation a
tion.Therefore we now 
onsider the following spa
e: Let γ2 be the standard 2-dimensional bundle over the Grassmannian Gr2(Cr+1) of 2-planes in Cr+1,and let p : P(γ2) −→ Gr2(Cr+1) be the asso
iated proje
tive bundle. Then

P(γ2) = {V1 ⊆ V2 ⊆ Cr+1 | dimC(Vj) = j}. We 
an make a di�eomorphism,
ϕ3 : S1 \ P̃ V 2(C

r+1) −→ P(γ2), [a, b] 7→ spanC {a} ⊆ spanC {a, b} .This is well-de�ned, but only for F = C. In 
on
lusion we get a 
omposite
S1-equivariant di�eomorphism

ϕ : ∆(CP r)
ϕ−1

1 // S1 \ PV2(Cr+1)
ϕ2 // S1 \ P̃ V2(Cr+1)

ϕ3 // P(γ2). (6)1.3 Fibrations involving spa
es of geodesi
sWe are going to 
ompute the 
ohomology and K-theory of the spa
es G(r)and ∆(r). In 
ohomology, our most important tool will be Serre's spe
-tral sequen
e. I will write down the most important part; for the 
ompleteformulation and proof, see e.g [Hat
her2℄ Thm 1.14 pp.Theorem 1.2 (Serre's Spe
tral Sequen
e). Let F −→ X −→ B be a �-bration, with B a path-
onne
ted CW 
omplex, and π1(B) a
ting triviallyon H∗(F ;G). Then there is a spe
tral sequen
e {Ep,q
r , dr} 
onverging to

H∗(X;G) with
Ep,q

2
∼= Hp(B;Hq(F ;G)).



1.3 Fibrations involving spa
es of geodesi
s 13If G = R is a ring, then there is a produ
t Ep,q
r × Es,t

r −→ Ep+s,r+t
r , and thedi�erentials are derivations, i.e. d(xy) = (dx)y + (−1)p+qx(dy). For r = 2the produ
t is (−1)qs times the standard 
up produ
t. The produ
t stru
tureon E∞ 
oin
ide with that indu
ed by the 
up produ
t on H∗(X;R).For the de�nition of a �bration, and the useful fa
t that �ber bundles are�brations, see [Hat
her1℄, p. 375 and Prop. 4.48.There is a similar result for a �bration in K-theory, but I am 
hie�y goingto use the important spe
ial 
ase where the �bration is ∗ −→ X −→ X, 
alledthe Atiyah-Hirzebru
h spe
tral sequen
e, see [Atiyah-Hirzebru
h℄:Theorem 1.3 (Atiyah-Hirzebru
h Spe
tral Sequen
e). Let X be a �nite CW
omplex. Then there is a spe
tral sequen
e {Ep,q

r , dr} 
onverging to K∗(X)with
Ep,q

2
∼= Hp(X;Kq(∗)).We will need a way to build �brations from other �brations, and this isprovided by the following theorem.Theorem 1.4. Let F −→ X −→ B be a �bration, and assume that the group

G a
ts freely on X. Then,
(i) If the G-a
tion preserves the �bres, F/G −→ X/G −→ B is a �bration.

(ii) If G a
ts freely on B, then F −→ X/G −→ B/G is a �bration.Proof. This follows from the fa
t that G −→ X −→ X/G is a �bration,whi
h is a 
onsequen
e of the �sli
e theorem�, [Bredon℄ Thm. 5.4.To apply the spe
tral sequen
es, we must know some �brations involvingthe spa
es of geodesi
s. First by de�nition we have the �bration
S1 −→ G(r) −→ ∆(r). (7)For the appli
ation of Serre's spe
tral sequen
e, note that the base is 1-
onne
ted. This 
an be seen from the long exa
t sequen
e of homotopygroups, using that G(r) ∼= S(τ) is 1-
onne
ted.Then there is the map
PV2(F

r+1) −→ Gr2(Fr+1)indu
ed by the map V2(Fr+1) −→ Gr2(Fr+1), (x, y) 7→ {xλ+ yµ | λ, µ ∈ F},whi
h is well-de�ned on PV2. The �bre is PV2(F2). By the di�eomorphism(4), this means we have the �bration
G(1) −→ G(r) −→ Gr2(Fr+1).



14 1 Proje
tive spa
e and geodesi
sSin
e the left S1 a
tion on the total spa
e is free and preserves the �bres, we
an divide by it in the total spa
e and �bre, by Theorem 1.4 (i) obtainingthe �bration
∆(1) −→ ∆(r) −→ Gr2(Fr+1). (8)Again we note that the base is 1-
onne
ted.1.4 Homotopy orbits of spa
es of geodesi
sIn this se
tion we are going to study the so-
alled homotopy orbits of thespa
es of geodesi
s we have studied so far. For this de�nition we need thefollowing 
on
epts: Let G be a group, and suppose we have a 
ontra
tiblespa
e with a free G a
tion. It turns out that all su
h spa
es are homotopyequivalent, so we 
an de�ne EG to be any su
h spa
e. We 
an then de�ne

BG = EG/G to be the 
lassifying spa
e of G. Note that this is a �working�de�nition; a
tually BG is de�ned for a 
ategory, but this is all I will need.For G = S1 we �nd ES1 ≃ S∞, sin
e this is 
ontra
tible. Thus we get
BS1 ≃ S∞/S1 = CP∞.De�nition 1.5. Let X be a topologi
al spa
e with a (left) a
tion of S1. Wede�ne the spa
e of homotopy orbits of X by

XhS1 = ES1 ×S1 X = ES1 ×X/
{
(e, tx) ∼ (et, x), t ∈ S1

}
.Proje
tion on the �rst fa
tor gives a map XhS1 −→ BS1, and for a 
oho-mology theory h∗ (we 
onsider 
ohomology and K-theory), we get an indu
edmap

h∗(BS1) −→ h∗(XhS1).As explained in the introdu
tion, this gives h∗(XhS1) the stru
ture of an
h∗(BS1)-module.Re
all that G(r) is the spa
e of simple parametrized geodesi
s with thefree left a
tion of S1 given by rotation. The spa
e of n-times iteratedgeodesi
s, Gn(r), we have identi�ed as an S1-spa
e with G(r)(n), whi
h is
G(r) with the rotation a
tion twisted by the nth power map Pn : S1 −→ S1,see (3).Proposition 1.6. In the following 
ommutative diagram, the verti
al and



1.4 Homotopy orbits of spa
es of geodesi
s 15horizontal maps are �brations with 1-
onne
ted base spa
es:
G(r)

��
BCn // ES1 ×S1 G(r)(n) //

��

∆(r)

��
BS1

BPn // BS1Here Cn ⊆ S1 denotes the group of nth roots of unity.Proof. To see that the verti
al map is a �bration, use the produ
t bundle
G(r)(n) −→ ES1 ×G(r)(n) pr1−→ ES1, and divide out by the free a
tion of S1on both total spa
e and base, a

ording to Theorem 1.4 (ii). Using the longexa
t homotopy sequen
e for the �bration S1 −→ ES1 −→ BS1 shows thatthe base BS1 is 1-
onne
ted.The horizontal �bration is built up in steps: We start with the produ
t�bre bundle,

ES1 −→ ES1 ×G(r)(n) pr2−→ G(r)(n).Clearly, Cn ⊆ S1 a
ts freely on ES1 × G(r)(n), preserving the �bres. So byTheorem 1.4 (i), dividing out by Cn in the total spa
e and �bre yields the�bration:
BCn −→ ES1 ×Cn

G(r)(n) −→ G(r)(n).We get ES1/Cn = BCn be
ause ES1 is a 
ontra
tible spa
e upon whi
h Cna
ts freely, and so ES1 ≃ ECn. Now 
onsider the quotient group S1/Cn,whi
h is isomorphi
 to S1 by the n'th power map. Sin
e Cn a
ts trivially on
G(r)(n), we have an a
tion of S1/Cn on G(r)(n). By de�nition, this a
ts on
G(r)(n) exa
tly as S1 a
ts on G(r), so (S1/Cn) \ G(r)(n) ∼= S1 \ G(r). ByTheorem 1.4 (ii), dividing out by this free a
tion in the total and base spa
esgives us the �bration

BCn −→
(
ES1 ×Cn

G(r)(n)
)
/(S1/Cn) −→ S1 \G(r).Now (ES1 ×Cn

G(r)(n)
)
/(S1/Cn) ∼= ES1×S1G(r)(n), by the de�nition of thea
tions, so we get the desired �bration. As noted in Se
tion 1.3, the base is

1-
onne
ted.To get the 
ommutative square, note that we have the homotopy equiv-alen
e pr2 : ES1 × G(r) −→ G(r), sin
e ES1 is 
ontra
tible. Sin
e thisis an S1 map and S1 a
ts freely on both spa
es, we 
an use [tomDie
k℄Prop. 2.7 to 
on
lude that ES1 ×S1 G(r) −→ S1 \ G(r) = ∆(r) is also a
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tive spa
e and geodesi
shomotopy equivalen
e. The upper verti
al map in the square is de�ned aspr2 : ES1×S1 G(r) −→ ∆(r) using this homotopy equivalen
e. For the iden-ti�
ation S1/Cn with S1 above, we used the nth power map Pn : S1 −→ S1,so for the diagram to 
ommutate, the lower horizontal map BS1 −→ BS1must also be the one indu
ed by Pn. Note: This is well-de�ned on BS1be
ause S1 is 
ommutative.Remark 1.7. If we let n = 1, the verti
al �bration be
omes G(r) −→
ES1×S1G(r) −→ BS1. As noted in the proof, ES1×S1G(r) −→ S1\G(r) isa homotopy equivalen
e. So, up to homotopy, we have in pra
ti
e a �bration

G(r) −→ ∆(r) −→ BS1. (9)



172 Cohomology of spa
es of geodesi
s in HP r2.1 The parametrized geodesi
sIn this se
tion we �nd the 
ohomology of the spa
e of parametrized geodesi
son HP r, G(r) = G(HP r), followed by some Lemmas ne
essary to determinethe spa
e of oriented, unparametrized geodesi
s, ∆(r) = ∆(HP r) = S1\G(r).Theorem 2.1. As a graded ring,
H∗(G(HP r); Z) ∼= Z[y, τ ]/

〈
(r + 1)yr, yr+1, τ 2

〉
,where y ∈ H4(G(HP r); Z) and τ ∈ H4r+3(G(HP r); Z).Let p be a prime number. Then

H∗(G(HP r); Fp) ∼=
{

Fp[y, σ]/ 〈yr+1 = 0, σ2 = 0〉 , p | r + 1;
Fp[y, τ ]/ 〈yr = 0, τ 2 = 0〉 , p ∤ r + 1.where y ∈ H4(G(HP r); Fp), σ ∈ H4r−1(G(HP r); Fp), τ ∈ H4r+3(G(HP r); Fp).Proof. We use the di�eomorphism from (5), G(r) ∼= S(τ), where S(τ) is thesphere bundle of the tangent bundle,

S4r−1 −→ S(τ) −→ HP r.Sin
e HP r is 1-
onne
ted, we 
an use Serre's spe
tral sequen
e,
Hp(HP r;Hq(S4r−1))⇒ Hp+q(S(τ)) (10)(here the 
oe�
ients will be Z at �rst, and Fp to prove the last part) whi
hhas the following E2 page:

4r−1 σ yσ y2σ yrσ

0 1 y y2 yr

0 4 8 . . . 4rWe 
an see for dimensional reasons that there 
an only be one non-trivialdi�erential, namely d4r(σ). For the sphere bundle, it is a general theorem thatthis di�erential is multipli
ation by the Euler 
hara
teristi
 of the manifold,here HP r, so d4r(σ) = (r + 1)yr. This is proved in [Milnor-Stashe�℄, Cor.



18 2 Cohomology of spa
es of geodesi
s in HP r11.12 and Thm. 12.2. This is an inje
tive map Z −→ Z, so when passing tothe E4r+1 page, the result is
4r−1 0 yσ y · yσ yr−2 · yσ yr−1 · yσ

0 1 y y2 yr−1 yr

0 4 8 . . . 4r−4 4rAs mentioned, there are no other non-trivial di�erentials, so this is E∞. Also,there are no extension problems sin
e there is at most one non-trivial group onea
h diagonal p+q = n, so yσ de�nes a 
lass in H4r+3(S(τ); Z) whi
h we 
all
τ . We 
an then read o� the 
lasses y ∈ H4(S(τ); Z) and τ ∈ H4r+3(S(τ); Z)with the relations yr+1 = 0, (r + 1)yr = 0, and τ 2 = 0.To prove the result with Fp 
oe�
ients, we use the same spe
tral sequen
e(10), now with Fp-
oe�
ients. In 
ase p | r + 1, d2(σ) = 0, so there are nonon-trivial di�erentials, and E∞ = E2. As above, there are no extensionproblems, and σ de�nes an element in H4r−1(S(τ); Fp). So we 
an read o�the desired result. In 
ase p ∤ r+1, r+1 is a unit in Fp, so d2 : Fpσ −→ Fpyris an isomorphism. So when passing to the E4r+1 page, these two groupsdisappear. The result follows.Now we 
an deal with the smallest 
ase, HP 1, whi
h we have shown inExample 1.1 is di�eomorphi
 to S4. This is going to be useful, sin
e we havethe �bration ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1) from (8).Lemma 2.2.

H∗(∆(HP 1); Z) ∼= Z[x, t]/
〈
2t− x2, t2

〉
,where x ∈ H2(∆(HP 1); Z) and t ∈ H4(∆(HP 1); Z).Proof. We use the �bration S1 −→ G(HP 1) −→ ∆(HP 1) from the S1 a
tion.Here we know the 
ohomology of the �bre and the total spa
e, the latter fromTheorem 2.1,

Hn(G(HP 1)) =





Z, n = 0, 7;
Z/2Z, n = 4;
0, else.We 
an use the Serre's spe
tral sequen
e,

Hp(∆(HP 1);Hq(S1; Z))⇒ Hp+q(G(HP 1); Z),to �nd the 
ohomology of the base. Let σ ∈ H1(S1) denote a generator.The E2 page has only two non-zero rows. We see that the only possible



2.1 The parametrized geodesi
s 19non-trivial di�erentials are d2, so E3 = E∞. We know the total spa
e hasnothing in degree 1, so there must be zero at (1, 0) sin
e this 
annot bekilled by anything. So H1(∆(HP 1)) = 0, whi
h means there is zero at (1, 1),too. Also, σ must be killed by an outgoing di�erential, so d0,1
2 is inje
tive.A
tually it must be an isomorphism, otherwise something would survive indegree 2, and there is nothing. So we have a H2(∆(HP 1); Z) ∼= Z generated,say, by x = d2(σ). Let us take a look at the E2 page as we know it now:

1 σ 0 σx ? ? ? ? ? ? · · ·
0 1 0 x ? ? ? ? ? ? · · ·

0 1 2 3 4 5 6 7 8 · · ·Continuing in this fashion we see there is zero at (3, 0) sin
eH3(G(HP 1); Z) =
0, and so also at (3, 1). Likewise, there are zeroes at (5, 0) and (5, 1). Now
onsider d2,1

2 . This must be inje
tive, sin
e it starts in degree 3, where thetotal spa
e has nothing. Also, d2,1
2 ends at (4, 0), and must be su
h that weget H4(G(HP 1); Z) = Z/2Z when taking the 
okernel of it. This means itmust be multipli
ation by ±2; we might as well say 2 for 
on
reteness. So

H4(∆(HP 1); Z) ∼= Z generated by some t, whi
h we 
an 
hoose su
h that
d2(σx) = 2t. A qui
k summary:

1 σ 0 σx 0 σt 0 ? ? ? · · ·
0 1 0 x 0 t 0 ? ? ? · · ·

0 1 2 3 4 5 6 7 8 · · ·Now we have gotten something at (4, 1), but the total spa
e has zero in degree5, so σt must be killed by the outgoing di�erential d4,1
2 . Again it must be anisomorphism. Note that by the derivation property of d2,

d(σt) = d(σ)t− σd(t) = d(σ)t = xtso xt is a generator of H6(∆(HP 1); Z). This gives us a Z at (6, 1) generatedby σxt. Now to see what further happens, we note that ∆(HP 1) is at most
7-dimensional, sin
e G(HP 1) = S(T (HP 1)) is a 7-manifold. So we knowthat H∗(∆(HP 1); Z) is zero above degree 7. This means that σxt 
annotbe killed, so it survives to E∞, meaning there 
an be nothing else in degree
7. So from 
olumn 7 and onwards there are zeroes in the E2 page. Now weknow the full story:

1 σ 0 σx 0 σt 0 σxt 0 0 · · ·
0 1 0 x 0 t 0 xt 0 0 · · ·

0 1 2 3 4 5 6 7 8 · · ·



20 2 Cohomology of spa
es of geodesi
s in HP rTo get to the bottom of the multipli
ative stru
ture we 
al
ulate:
2t = d(σx) = d(σ)x− σd(x) = d(σ)x = x2.For dimensional reasons t2 = 0, and all other relations 
ome from these two(e.g. x3 = x2 · x = 2xt). This proves the result.We now turn to the general 
ase of ∆(r). We have the �bration from (8),

∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1).So in order to apply Serre's spe
tral sequen
e, we need to know the 
oho-mology of Gr2(Hr+1). This is taken 
are of by the following Lemma, whi
his the quaternion version of [Bökstedt-Ottosen℄ Thm. 3.1:Lemma 2.3. For r ≥ 1,
H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2]/ 〈ϕr, ϕr+1〉 ,where p1, p2 are the Pontryagin 
lasses of the standard bundle γ2 ց Gr2(Hr+1),and ϕi = ϕi(p1, p2) is the polynomial given indu
tively by

ϕ0 = 1, ϕ1 = p1, ϕi = −p1ϕi−1 − p2ϕi−2, for i ≥ 2.Proof. We use a result of Borel, [Borel℄ Prop. 31.1. Let γ2 ց Gr2(Hr+1)denote the standard 2-dimensional bundle, i.e. the �bre over V ⊆ Hr+1is V . Let pi, i ≥ 0 be the Pontryagin 
lasses, pi ∈ H4i(Gr2(Hr+1), whi
hsatisfy pi = 0 for i > 2, sin
e γ2 is 2-dimensional. Let γ̄r−1 denote its
(r − 1)-dimensional orthogonal 
omplement, i.e. the �bre over V ⊆ Hr+1 is
V ⊥ ⊆ Hr+1. Denote the Pontryagin 
lasses of this bundle by p̄j , j ≥ 0, p̄j ∈
H4j(Gr2(Hr+1)), and note that p̄j = 0 for j > r − 1. Then γ2 ⊕ γ̄r−1

∼= εr+1,the trivial bundle of dimension r+1. The sum formula for Pontryagin 
lassesgives the relations
∑

i+j=k

pip̄j = p̄k + p̄k−1p1 + p̄k−2p2 = 0, for k > 0 (11)Borel's theorem states that H∗(Gr2(Hr+1); Z) is generated by the Pontryagin
lasses of γ2 and γ̄r−1, subje
t to the relations mentioned above:
H∗
(Gr2(Hr+1); Z

) ∼= Z[pi, p̄j | i, j > 0]/〈{pi}i>2 , {p̄j}j>r−1 ,
( ∑

i+j=k

pip̄j
)
k>0
〉.By (11) we see that we 
an indu
tively express p̄k as a polynomial in p1 and

p2. Call that polynomial ϕk, so p̄k = ϕk(p1, p2), and we get from (11)
ϕ0 = 1, ϕ1 = p1, ϕi = −p1ϕi−1 − p2ϕi−1, i ≥ 2.
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s 21Then we get
H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2, p̄j | j > 0]/

〈
{p̄j}j>r−1 ,

( ∑

i+j=k

pip̄j

)
k>0

〉

∼= Z[p1, p2, p̄1, p̄2, . . .]/
〈
{p̄j}j>r−1 , {p̄k − ϕk(p1, p2)}k>0

〉

∼= Z[p1, p2]/ 〈ϕk | k ≥ r〉 .From the indu
tive formula for ϕk it is seen that 〈ϕk | k ≥ r〉 = 〈ϕr, ϕr+1〉,and this proves the lemma.2.2 The unparametrized geodesi
sRe
all H∗(BS1) ∼= H∗(CP∞) ∼= Z[u] where u has degree 2; a fa
t that 
anbe dedu
ed from H∗(CP n) ∼= Z[u]/ 〈un+1〉.Theorem 2.4. The spa
e of unparametrized oriented geodesi
s, ∆(HP r),has the following 
ohomology:
H∗(∆(HP r); Z) ∼= Z[x, t]/ 〈Qr, Qr+1〉 ,where x ∈ H2(∆(HP r); Z) is the image of the generator u ∈ H∗(BS1) ∼= Z[u]and t ∈ H4(∆(HP r); Z). Qk for k ∈ N is a polynomial in x and t indu
tivelygiven by

Q0 = 1, Q1 = 2t− x2, Qs = (2t− x2)Qs−1 − t2Qs−2, for s ≥ 2.Note that Lemma 2.2 is a spe
ial 
ase of this with r = 1: Q1 = 2t− x2,and Q2 = (2t−x2)Q1−t2 ≡ t2 (mod Q1). The proof of Theorem 2.4 for HP ris not at all like the CP r 
ase, sin
e ∆(HP r) is not isomorphi
 to P(γ2), andthe proof will take quite some time. First we show that the 
ohomology is apolynomial algebra generated by 
lasses x and t as in the Theorem, modulo
ertain relations. It will follow from Lemma 2.3 that the polynomials Qr,
Qr+1 are among these relations. Then we use a purely algebrai
 
ountingargument to show that there 
an be no further relations.Proposition 2.5 (Theorem 2.4, Part 1). There is a surje
tive map

Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z).Proof of Theorem 2.4, Part 1. We write down the E2 page of the Serre'sspe
tral sequen
e for the �bration ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1),



22 2 Cohomology of spa
es of geodesi
s in HP rusing Lemma 2.2 and the above Lemma 2.3:
4 t

...
2 x xp1 · · ·
0 1 p1 p2

0 2 4 6 8We see there 
an be no di�erentials for dimension reasons, so E2 = E∞. Sin
e
x is the only element of degree 2 in E∞, it de�nes a 
lass x ∈ H2(∆(HP r)); Z).We also have pi ∈ H4i(∆(HP r); Z) for i = 1, 2: the image of pi underthe map indu
ed by ∆(HP r) −→ Gr2(Hr+1). But t is only de�ned upto higher �ltration. That is, we 
an 
hoose t̄ ∈ H4(∆(HP r)) whi
h hits
t ∈ H4(∆(HP 1)), but for any m ∈ Z, t̄ + mp1 also hits t. As an abeliangroup, H4(∆(HP r); Z) ∼= Zp1 ⊕ Zt̄, so there must be a relation

x̄2 = ap1 + bt̄. (12)We will show that we 
an 
hoose t̄ a representative for t in H4(∆(HP r); Z)in su
h a way that p1 = x̄2 − 2t̄.To get more information about H∗(∆(HP r)), we use Serre's spe
tral se-quen
e for the �bration from Remark 1.7, G(HP r) −→ ∆(HP r) −→ BS1.By Theorem 2.1, the E2 page has only one non-trivial group in total degree2, namely a Z generated by u from H∗(BS1) ∼= Z[u]. As x̄ also generates
H2(∆(HP r)), we must have x̄ = ±u. We 
an simply 
hoose x̄ to be the im-age of u. Also, u2 generates a Z in H4(∆(HP r); Z) ∼= Z⊕Z, so in parti
ular,
x̄2 is not divisible by 2, whi
h we will need shortly.We 
an make the following diagram where the middle is H4(∆(HP r); Z):

Zx2

�� ##F
F

F
F

F
F

F
F

F

0 // Zp1
// Z⊕ Z // Zt // 0Sin
e, in the �bre, we have the relation x2 = 2t, the diagonal map sends x2 to

2t. This implies that b = 2 in (12). So we now have x̄2 = ap1 +2t̄. Changing
t̄ by adding an integer multiple of p1 yields that we 
an obtain either of thetwo relations

x̄2 = p1 + 2t̄, or x̄2 = 2t̄,depending on whether a is odd or even. As noted, x̄2 
annot be divisible by
2, so we 
an 
hoose t as desired.Now I will drop the bar, and simply refer to these 
lasses as x, t, p1 and
p2. We have found the relation p1 = x2 − 2t in H4(∆(HP r)), and sin
e
H4 ∼= Z⊕ Z, there 
an be no further relations in degree 4.



2.2 The unparametrized geodesi
s 23Lemma 2.6. In the above setting, p2 = t2.Proof. Re
all the notation from se
tion 1.2,
V2(H

r+1) =
{
(v, w) ∈ Hr+1 ×Hr+1 | ‖v‖ = ‖w‖ = 1, 〈v, w〉H = 0

}
.Also re
all from (5) that

G(HP r) ∼= PV2(H
r+1) = V2(H

r+1)/diagS3,identifying the unit sphere in H with S3. We also have a right S1 a
tionon V2, simply by restri
ting the S3 a
tion to S1. Now we mod out by theleft S1 a
tion of rotation �rst, de�ning Y2(Hr+1) = S1 \ V2(Hr+1). As thetwo a
tions are on the right and left, respe
tively, they 
learly 
ommute. So
Y2(Hr+1)/S3 ∼= ∆(HP r). In order to investigate p2, we rely on the results for
CP r, so we also 
onsider V2(Cr+1) and de�ne Y2(Cr+1) = S1 \ V2(Cr+1). Wethen 
onsider the following diagram:

∆(CP r) ∼= Y2(Cr+1)/S1

pC

��

i // Y2(Hr+1)/S1 q // Y2(Hr+1)/S3 ∼= ∆(HP r)

pH

��Gr2(Cr+1)
h // Gr2(Hr+1) (13)All maps are the obvious ones: pC and pH are the standard maps taking thepair of ve
tors to their span, i is indu
ed by the in
lusion C ⊆ H, and q isthe quotient map. The map h sends a 2-dimensional 
omplex subspa
e V to

V ⊗C H. Clearly, the diagram is 
ommutative.We investigate this diagram on 
ohomology. First note that Serre's spe
-tral sequen
e for the �bration S2 −→ Y2(Hr+1)/S1 q−→ Y2(Hr+1)/S3 has allnon-trivial groups in even total degree, so there are no di�erentials, and wesee that the indu
ed map q∗ on 
ohomology is inje
tive. The map i is de-�ned on representatives, so we 
an look at the 
orresponding map ĩ on V2.Now V2(Cr+1) �ts into the �bration S2r−1 −→ V2(Cr+1) −→ S2r+1 (similarfor V2(Hr+1)), by 
hoosing a unit ve
tor v and then a unit ve
tor w in v'sorthogonal 
omplement. So these V2-spa
es are at least (2r − 2)-
onne
ted.Thus ĩ on V2 is highly 
onne
ted. When dividing by the S1 a
tions, right andthen left, we note that they are free a
tions. So we 
an apply e.g. [tomDie
k℄II.2.7 to 
on
lude that i in the diagram is as highly 
onne
ted. Thus i∗ is anisomorphism on 
ohomology in degrees less than 2r − 2.The idea is to obtain a relation in H∗(∆(CP r)) by going around thediagram (13). To �nd (pC)∗, we will use the 
omputation from the 
omplex
ase, and the results are found in [Bökstedt-Ottosen℄, Thm. 3.2 and Cor.



24 2 Cohomology of spa
es of geodesi
s in HP r3.3. From here we get H∗(∆(CP r)) ∼= Z[x1, x2]/relations, where x1, x2 are indegree 2, and (pC)∗ is given by c1 7→ x1 + x2 and c2 7→ x1x2, ci denoting the
ith Chern 
lass in H∗(Gr2(Cr+1)).To relate p2 to the other 
lasses in H∗(∆(HP r)), we must know theirimages in H∗(∆(CP r)) under j∗ = (q ◦ i)∗. The 
lasses p1, p2 
ome fromthe Pontryagin 
lasses in H∗(Gr2(Hr+1)), and we 
an use Cor. 15.5 from[Milnor-Stashe�℄ whi
h relates the Pontryagin and Chern 
lasses to �nd
h∗(p1) = c 2

1 −2c2 and h∗(p2) = c 2
2 in H∗(Gr2(Cr+1)). As noted, x is the 
lass
oming from the generator u ∈ H∗(BS1), and a

ording to [Bökstedt-Ottosen℄page 13, u maps to x1 − x2. As we have the relation p1 = x2 − 2t in

H∗(∆(HP r)), we get j∗(2t) = j∗(x2) − j∗p1 in H∗(∆(CP r)). So we 
an
ompute all our 
lasses in terms of x1 and x2:
j∗p1 = (pC)∗(c 2

1 − 2c2) = (x1 + x2)
2 − 2x1x2 = x 2

1 + x 2
2 ,

j∗p2 = (pC)∗(c 2
2 ) = (x1x2)

2,
j∗x = x1 − x2,
j∗(2t) = j∗(x2)− j∗(p1) = (x1 − x2)

2 − x 2
1 − x 2

2 = −2x1x2.Sin
e H∗(∆(CP r)) is torsion-free, we see j∗t = −x1x2, and thus j∗(t2) =
j∗(p2). This implies t2 = p2 in H∗(∆(HP r)), sin
e q∗ is inje
tive and i∗ isan isomorphism on 
ohomology in degree 8, when r is large (r > 5). Bynaturality, it is enough to 
onsider large r, sin
e the 
lasses pull ba
k underthe in
lusion HP r −→ HP r+1.To re
apitulate, H∗(∆(HP r)) ∼= Z[x, t]/relations, and the 
lasses p1 and
p2 
oming from H∗(Gr2(Hr+1)) are related to x and t by p1 = x2 − 2t and
p2 = t2. By Lemma 2.3, in H∗(Gr2(Hr+1)) we have the relations ϕr, ϕr+1,whi
h are polynomials in p1 and p2. Substituting the expressions for p1 and
p2, we obtain the following relations Qr and Qr+1 in H∗(∆(HP r)), where Qsis the polynomial in x and t given by:
Qs(x, t) = ϕs(x

2−2t, t2) = −(x2−2t)ϕs−1−t2ϕs−2 = (2t−x2)Qs−1−t2Qs−2.This ends Part 1 of the proof.I now investigate the Q-polynomials in order to 
omplete the proof ofTheorem 2.4. Qs is a polynomial in x and t, where x has degree 2 and t hasdegree 4. It is given indu
tively by:
Q0 = 1, Q1 = 2t− x2, Qr = (2t− x2)Qr−1 − t2Qr−2 for r ≥ 2. (14)Note that Qr is a homogenous polynomial when taking into a

ount that xhas degree 2 and t has degree 4. It then has degree 4r. It will be useful toknow an expli
it formula, and this is provided by the following lemma:
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s 25Lemma 2.7. For any r ≥ 0,
Qr =

r∑

k=0

(−1)k
(
r + k + 1

r − k

)
tr−kx2k.Proof. Not surprisingly, this is proved by indu
tion in r. It is 
learly true for

r = 0 and r = 1. Let us denote the 
oe�
ient of tlxm in Qs by asl,m. Thenwe 
an write the 
oe�
ient of tr−kx2k in Qr = (2t− x2)Qr−1 − t2Qr−2 as:
arr−k,2k = 2ar−1

r−k−1,2k − ar−1
r−k,2k−2 − ar−2

r−k−2,2k

= 2ar−1
r−1−k,2k − ar−1

r−1−(k−1),2(k−1) − ar−2
r−2−k,2k.By indu
tion we 
an substitute ass−k,2k by (−1)k

(
s+k+1
s−k

) if s < r. So:
arr−k,2k = 2(−1)k

(
r − 1 + k + 1

r − 1− k

)
− (−1)k−1

(
r − 1 + k

r − 1− k + 1

)

−(−1)k
(
r − 2 + k + 1

r − 2− k

)

= (−1)k
(

2

(
r + k

r − k − 1

)
+

(
r + k − 1

r − k

)
−
(
r + k − 1

r − k − 2

))
.All we need to show is that

2

(
r + k

r − k − 1

)
+

(
r + k − 1

r − k

)
−
(
r + k − 1

r − k − 2

)
=

(
r + k + 1

r − k

)
,and this is easily done by three times applying the Pas
al's triangle formula,(

m−1
j−1

)
+
(
m−1
j

)
=
(
m
j

).Part 2 of the proof of Theorem 2.4 
onsists in to showing that the tworings Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z) have the same size, and dedu
ingthat the map must be an isomorphism. This will be done in the followinglemmas.Lemma 2.8. The map
Qr +Qr+1 : Z[x, t]4r ⊕ Z[x, t]4r−4 −→ Z[x, t]8r,given by (f, g) 7→ fQr + gQr+1, is surje
tive.Proof. Let Mr ⊆ Z[x, t]8r denote the image of Qr +Qr+1. Re
all that x hasdegree 2, t has degree 4, and the degree of Qs is 4s, so Mr is generated over

Z by
Qrt

r−kx2k, k = 0, . . . , r; Qr+1t
r−1−kx2k, k = 0, . . . , r − 1. (15)
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es of geodesi
s in HP rWe use indu
tion in r. The indu
tion start, r = 1, is easy:
t2 = (2t− x)Q1 −Q2,

x2t = 2t2 − tQ1,

x4 = Q2 − 4x2t+ 3t2.Now assume r ≥ 2. Now let us rewrite the generators of Mr in (15), tryingto bring into play the indu
tive de�nition of the Q-polynomials:
Qr+1 = (2t− x2)Qr − t2Qr−1.We 
an add the generators as follows for k = 0, . . . , r − 1:

Qrt
r−(k+1)x2(k+1) +Qr+1t

r−1−kx2k − 2Qrt
r−kx2k

= tr−1−kx2k(Qr+1 + x2Qr − 2tQr) = −t2 ·Qr−1t
r−1−kx2kFurthermore, we have the ones involving Qr, slightly rewritten:

t2 ·Qrt
r−k−2x2k, k = 0, . . . , r − 2.Now, indu
tively we assume that Mr−1 = Z[x, t]8(r−1). This means thateverything in Z[x, t]8(r−1) 
an be expressed as Z-linear 
ombinations of

Qr−1t
r−1−kx2k, k = 0, . . . , r − 1; Qrt

r−2−kx2k, k = 0, . . . , r − 2.We see that, if multiplied by t2, these are exa
tly the elements we have foundin Mr ⊆ Z[x, t]8r. This means by indu
tion that every generator for Z[x, t]8rwhi
h is divisible by t2 is in Mr.All we are missing are the generators x4r and tx4r−2. Using Lemma 2.7,we see that:
Qrtx

2r−2 = (−1)rtx4r−2 +
r−1∑

k=0

(−1)k
(
r + k + 1

r − k

)
tr−k+1x2k+2r−2

︸ ︷︷ ︸divisible by t2 .So tx4r−2 ∈ Mr, sin
e elements divisible by t2 are in Mr. Similarly, writingout Qrx
2r, we get x4r ∈ Mr as desired. This a

ounts for all the generatorsin Z[x, t]8r and ends the proof of surje
tivity.I now 
ompute the size of the ring Z[x, t]/ 〈Qr, Qr+1〉. For the formulationof the lemma below, it will be 
onvenient to use the notational tool of thePoin
aré series. This is simply a short way of expressing the ranks of a graded

R-module A =
⊕

mAm. (In order for the rank to be well-de�ned, we 
anassume R is 
ommutative; mostly we will have R = Z.) The Poin
aré seriesof A is then the formal expression PA(t) =
∑

m rank(Am)tm.
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s 27Lemma 2.9. Write A = Z[x, t]/ 〈Qr, Qr+1〉. Then A is torsion free, and thePoin
aré series of the graded ring A is given by
P (t) = (1 + t2) · 1− t

4r

1− t4 ·
1− t4(r+1)

1− t4 .Remark 2.10. This gives that the ranks of A in ea
h degree are as follows:
0 2 4 6 8 · · · 4r−6 4r−4 4r−2 4r 4r+2 4r+4 · · · 8r−4 8r−2

1 1 2 2 3 · · · r − 1 r r r r r − 1 · · · 1 1where the degree is in the top row. Ea
h rank is repeated twi
e, in
reasingby one from 1 to r up to the verti
al line, and then de
reasing by one from
r to 1. For this, see the start of the proof below.Proof. Let us try to write the Poin
aré series di�erently. We 
al
ulate
1− t4r
1− t4 ·

1− t4(r+1)

1− t4 =

(
r−1∑

i=0

t4i

)(
r∑

j=0

t4j

)
=

2r−1∑

k=0

(
∑

i+j=k

t4k

)
=

2r−1∑

k=0

akt
4k,where

ak =

{
k + 1, k < r;
2r − k, k ≥ r.simply by 
ounting the number of ways to write k as a sum of i and j. Sowe must show that the Poin
aré series is

(1 + t2)

2r−1∑

k=0

akt
4k, where ak =

{
k + 1, k < r;
2r − k, k ≥ r.

(16)Let As ⊆ Z[x, t]s denote the homogeneous polynomials in A of degree s. Sin
e
Qr has degree 4r, we must have As = Z[x, t]s for s < 4r, sin
e there are norelations. So As is torsion-free for s < 4r. The generators of Z[x, t]s are: For
s = 4k, {tk−jx2j | j = 0, . . . , k

} and for s = 4k+2, {tk−jx2j+1 | j = 0, . . . , k
},so the rank is k + 1 in both 
ases. From this, the Poin
aré series of Z[x, t] is

(1 + t2)
∑∞

k=0(k + 1)t4k, so it is 
lear that ak = k + 1 for k < r as 
laimed in(16).Now we handle degrees 4r and 4r+2. Here the only relations are Qr and
xQr, respe
tively. By Lemma 2.7, the 
oe�
ient of x2r (resp. x2r+1) in Qr(resp. xQr) is ±1, we get exa
tly one generator less than in Z[x, t]4r (resp.
Z[x, t]4r+2), whi
h had rank r+1. This means A4r and A4r+2 are torsion-free,and the rank is r in both 
ases, as (16) 
laims.



28 2 Cohomology of spa
es of geodesi
s in HP rWe now show that the A4r+2m is torsion-free for 2 ≤ m ≤ 2r. To do this,assume there was a torsion element a ∈ Z[x, t]4r+2m, i.e. na = Qrf +Qr+1gfor some n ∈ Z. Multiplying by x2r−m gives
nax2r−m = Qrfx

2r−m +Qr+1gx
2r−m ∈ Z[x, y]8r. (17)Now, ax2r−m ∈ Z[x, y]8r, so sin
e Qr + Qr+1 is onto this by Lemma 2.8, wehave

ax2r−m = Qrf
′ +Qr+1g

′, for some f ′, g′. (18)Multiplying this by n and 
omparing with (17) we get
(fx2r−m − nf ′)Qr = (−gx2r−m + ng′)Qr+1. (19)Sin
e Qr+Qr+1 is surje
tive onto Z[x, y]8r, Qr and Qr+1 are relatively prime.We then 
on
lude from (19) that x2r+m divides f ′ and g′. So we 
an divideby x2r+m in (18) and obtain the relation a = Qrf

′′ + Qr+1g
′′. So a = 0 in

A4r+2m, and there is no torsion.For the last part, the surje
tivity result of Lemma 2.8 implies As = 0for s ≥ 8r, as the Poin
aré series states. We already 
al
ulated the rank of
Z[x, t]4s to be s + 1, so we see that both Z[x, t]4r ⊕ Z[x, t]4r−4 and Z[x, t]8rhave rank 2r + 1. Sin
e we have shown A is torsion-free, this means thatthe map Qr +Qr+1 : Z[x, t]4r ⊕ Z[x, t]4r−4 ։ Z[x, t]8r must also be inje
tive.This implies that for any m su
h that 2 ≤ m ≤ 2r, the map

Qr +Qr+1 : Z[x, t]2m ⊕ Z[x, t]2m−4 −→ Z[x, t]4r+2mis also inje
tive, sin
e we 
an multiply a relation Qrf + Qr+1g = 0 in
Z[x, t]4r+2m by x2r−m, and get a similar relation in Z[x, t]8r, where Qr +Qr+1is inje
tive. Therefore,rank(A4r+2m) = rankCok(Qr +Qr+1)

= rankZ[x, t]4r+2m − rank (Z[x, t]2m ⊕ Z[x, t]2m−4) .These ranks we already know. If m = 2l or m = 2l+ 1 we get in either 
ase:rank(A4r+2m) = r + l + 1− (l + 1)− l = r − l, for 2 ≤ m ≤ 2rwhi
h, substituting k = r + l, is 2r − k, as 
laimed in (16).Now we 
an �nish the proof of Theorem 2.4:



2.2 The unparametrized geodesi
s 29Proof of Theorem 2.4, Part 2. Pi
king up where we left in Part 1, we have asurje
tive map
Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z). (20)By Lemma 2.9 and 2.8 we have 
omputed the ranks of the free, graduated

Z-module Z[x, t]/ 〈Qr, Qr+1〉. It has the Poin
aré series
PZ[x,t]/〈Qr,Qr+1〉(t) = (1 + t2) · 1− t

4r

1− t4 ·
1− t4(r+1)

1− t4 .If H∗(∆(HP r); Z) has the same Poin
aré series, the surje
tive map (20) mustbe an isomorphism. We 
ompute the ranks via the spe
tral sequen
e of the�bration (8), ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1). We see that the non-trivial part of the E2 page sits in even total degree, so E∞ = E2, and we 
an
ompute the Poin
aré series of the total spa
e,
PH∗(∆(HP r))(t) = PH∗(∆(HP 1))(t) · PH∗(Gr2(Hr+1))(t).Here we know by Lemma 2.2

Hn(∆(HP 1); Z) ∼=
{

Z, n = 0, 2, 4, 6;
0, otherwise.so its Poin
aré series is PH∗(∆(HP 1))(t) = 1 + t2 + t4 + t6 = (1− t8)/(1− t2).Also by Lemma 2.3

H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2]/ 〈ϕr, ϕr+1〉 .To 
ompute the Poin
aré series, one pro
eeds as in Lemmas 2.8 and 2.9.Lemma 2.9 does not 
over the Grassmannian 
ase, for when I tried statingand proving a more general lemma that 
ould handle both 
ases, everythinggot extremely 
ompli
ated. So I simply state the result for the Grassmannian,the proof of whi
h is just like Lemma 2.9:
PH∗(Gr2(Hr+1))(t) =

1− t4r+4

1− t4 · 1− t
4r

1− t8 .Then
PH∗(∆(HP r))(t) = PH∗(∆(HP 1))(t) · PH∗(Gr2(Hr+1))(t)

=
1− t8
1− t2 ·

1− t4r+4

1− t4 · 1− t
4r

1− t8

= (1 + t2) · 1− t
4r+4

1− t4 · 1− t
4r

1− t4 = PZ[x,t]/〈Qr,Qr+1〉(t).This �nishes the proof.



30 2 Cohomology of spa
es of geodesi
s in HP r2.3 Equivariant 
ohomology of spa
es of geodesi
sUsing our previous 
omputations (Theorems 2.1 and 2.4) and Serre's spe
tralsequen
e, we will be able to 
ompute the equivariant 
ohomology of the spa
eof geodesi
s, G(HP r)(n).We �rst 
onsider the 
ase p ∤ n, sin
e this is the easiest. We show:Proposition 2.11. For p ∤ n:
Hm(BCn; Fp) = 0, for m > 0.Proof. We are going to use that ECn −→ BCn is a 
overing, sin
e Cn isdis
rete. In general, given a k-sheet 
overing π : E −→ B (assume B 
on-ne
ted), one 
an 
onstru
t a so-
alled transfer map. By bary
entri
 sub-division one knows that it is enough to 
onsider very small simpli
es in

B. Therefore, given a simplex in B we 
an assume it is 
ontained in aneighborhood U su
h that π−1(U) is a disjoint union of open sets mappedhomeomorphi
ally to U by π. Then we 
an pull the simplex in U ba
kby π, yielding k 
opies of the simplex in E, whi
h we formally add, giv-ing a 
hain map τ : Cm(B) −→ Cm(E). This indu
es the transfer map
τ ∗ : Hm(E) −→ Hm(B) on 
ohomology. From the de�nition, π♯ ◦ τ ismultipli
ation by k, and so τ ∗π∗ is also multipli
ation by k. In our 
ase,
ECn −→ BCn is an n-sheet 
overing, and so the 
omposition

Hm(BCn; Fp)
τ∗−→ Hm(ECn; Fp)

π∗−→ Hm(BCn; Fp)is multipli
ation by n. Sin
e we are using Fp-
oe�
ients and p ∤ n, this is anisomorphism. On the other hand, for m > 0, the middle term is zero, sin
e
ECn is 
ontra
tible. Thus Hm(BCn; Fp) = 0 for m > 0.With this we 
an prove:Theorem 2.12. For p ∤ n, the equivariant 
ohomology with Fp 
oe�
ientsof the n-twisted spa
e of geodesi
s on HP r is

H∗((G(HP r)(n))hS1; Fp) ∼= Fp[x, t]/ 〈Qr, Qr+1〉 ,where x has degree 2, and t has degree 4, and x is the image of the generator
u ∈ H2(BS1) under the map ∆(HP r) −→ BS1 in (9).Proof. We use the Serre's spe
tral sequen
e of the �bration from Prop. 1.6:

BCn −→ ES1 ×S1 G(r)(n) −→ ∆(r).Proposition 2.11 above now immediately implies that
H∗((G(r)(n))hS1; Fp) = H∗(ES1 ×S1 G(r)(n); Fp) ∼= H∗(∆(r); Fp)The theorem is now proved by our 
omputation in Theorem 2.4.



2.3 Equivariant 
ohomology of spa
es of geodesi
s 31The 
ase p | n requires more work, and one needs to take into a

ountwhether or not p | r + 1. But �rst we need a 
omputation of H∗(BCn; Fp):Proposition 2.13. For p | n,
H∗(BCn; Fp) ∼= Fp[u, e]/

〈
e2
〉
.Proof. Use Theorem 1.4 (i) on the �bration S1 −→ ES1 −→ BS1 to divideout the a
tion of Cn ⊆ S1, and obtain a �bration

S1 −→ BCn −→ BS1. (21)Here we have identi�ed the quotient group S1/Cn with S1 itself via the nthpower map z 7→ zn. We will apply Serre's spe
tral sequen
e.First, though, we will �nd H1(BCn; Fp). Sin
e Cn is dis
rete, ECn −→
BCn is the universal 
overing. From 
overing spa
e theory, π1(BCn) ∼= Cn,and sin
e this is abelian, it follows that H1(BCn; Z) ∼= Z/nZ. Using theUniversal Coe�
ient theorem, we 
an 
ompute H1(BCn; Fp). Note that
H0(BCn) = Z, so Ext(H0(BCn),Fp) = 0, and therefore, sin
e p | n:

H1(BCn; Fp) ∼= Hom(H1(BCn),Fp) ∼= Hom(Z/nZ,Z/pZ) ∼= Fp,Now we turn to Serre's spe
tral sequen
e for the �bration (21), with
Ep,q

2 = Hp(BS1;Hq(S1; Fp)) = Hp(BS1,Fp) ⊗ Hq(S1; Fp). Note that theonly possible non-trivial di�erential is d2, sin
e the E2 page has only twonon-zero rows. Knowing that H1(BCn; Fp) ∼= Fp, we 
on
lude that the �rstdi�erential d0,1
2 must be a map Fp −→ Fp with kernel isomorphi
 to Fp. Thisfor
es d2(e) = 0, where e generates H(S1; Fp). Using the derivation property:

d(euj) = d(e)uj ± ed(uj) = 0.So all di�erentials are zero, the spe
tral sequen
e 
ollapses, and E∞ = E2.There are no extension problems, sin
e ea
h diagonal p + q = ∗ 
ontains atmost one non-zero group, so H∗(BCn; Fp) = E∞, as desired.Theorem 2.14. Let p be a prime number and n ∈ N su
h that p | n. As
Fp[u]-modules, the following holds:

(i) Suppose p ∤ r + 1. Then
H∗
((
G(HP r)(n)

)
hS1 ; Fp

) ∼= Fp[u]
{
1, y, y2, . . . , yr−1, τ, τy, . . . , τyr−1

}
.

(ii) Suppose p | r + 1. Then
H∗
((
G(HP r)(n)

)
hS1 ; Fp

) ∼= Fp[u]
{
1, y, y2, . . . , yr, σ, σy, . . . , σyr

}
.



32 2 Cohomology of spa
es of geodesi
s in HP rwhere y has degree 4, τ has degree 4r + 3 and σ has degree 4r − 1.Proof. In the beginning, the proofs of the two 
ases are the same. Considerthe spe
tral sequen
e for the �bration from Prop. 1.6
G(r) −→ ES1 ×S1 G(r)(n) −→ BS1. (22)A

ording to our 
omputation of the 
ohomology of the �bre in Theorem2.1, neither the �bre nor the base has anything in 
ohomology of degree 1.This means that H1((G(r)(n))hS1) = 0. We 
an use this when 
onsideringthe spe
tral sequen
e for the other �bration from Prop. 1.6:
BCn −→ ES1 ×S1 G(r)(n) −→ ∆(r).A

ording to Prop. 2.13, Eq,s

2 = Hq(∆(r);Hs(BCn; Fp) looks as follows:
3 ue uex uex2, uet . . .
2 u ux ux2, ut
1 e ex ex2, et . . .
0 1 x x2, t

0 1 2 3 4 · · ·

(23)Let us denote the two lower rows of the E2 page by F . Then the next tworows (rows 2 and 3) 
onsists of uF , the next two are u2F , et
. Consider thedi�erential d2 as a map d2 : eH∗(∆(r)) −→ H∗(∆(r)) from row 1 to row0. Then, using the derivation property of the di�erentials we see that d2 ismultipli
ation with d2(e). When passing from the E2 to the E3 page, F willbe repla
ed by two rows, Cok d2 and Ker d2, uF will be repla
ed by uCok d2and uKer d2, et
.So to determine the E3 page, we need to �nd d2(e). As noted, the totalspa
e has H1 = 0, so d0,1
2 : E0,1

2 −→ E2,0
2 must be an inje
tive map, hen
e anisomorphism. This for
es d2(e) = unit ·x; we might as well say d2(e) = x. So

d2 is multipli
ation by x, and we must determine Cok(x) and Ker(x). UsingTheorem 2.4, we see thatCok(x) ∼= Fp[x, t]/ 〈x,Qr, Qr+1〉 ∼= Fp[t]/ 〈Qr(0, t), Qr+1(0, t)〉 . (24)Now by Lemma 2.7, Qr(0, t) = (r + 1)tr and Qr+1(0, t) = (r + 2)tr+1. Thisis where we must distinguish between the two 
ases.But let us �rst investigate the kernel. I have tried to diagram the dimen-sions of Fp[x, t]/ 〈Qr, Qr+1〉 using Remark 2.10, with boldfa
e indi
ating thedegrees where, for dimension reasons, the kernel must be non-trivial. Thedegrees are in the top row:
0 2 4 6 8 · · · 4r 4r+2 4r+4 4r+6 4r+8 4r+10 4r+12 · · ·
1 1 2 2 3 · · · r r r − 1 r − 1 r − 2 r − 2 r − 3 · · ·



2.3 Equivariant 
ohomology of spa
es of geodesi
s 33The pattern is (hopefully) 
lear: There must be a part of the kernel in degrees
4(r + i) − 2 for i = 1, ..., r. In parti
ular, the dimension is at least r. Now,for the rest of the proof, we need to handle the two 
ases separately.Case (i): p ∤ r + 1. In this 
ase, r + 1 is a unit in Fp, so (24) be
omesCok(x) ∼= Fp[t]/ 〈tr〉. In parti
ular, the dimension of Cok(x) is r, generatedby 1, t, . . . , tr−1.Sin
e dimKer(x) = dimCok(x) = r, we have determined above that thekernel is in degrees 4(r + i)− 2 for i = 1, ..., r. In ea
h degree, the kernel isone-dimensional, say generated by ϕi in degree 4(r+ i)− 2. So we 
an writedown the E3 page:

3 uϕ1 uϕ2 · · · uϕr
2 u ut ut2 · · · utr−1

1 ϕ1 ϕ2 · · · ϕr
0 1 t t2 · · · tr−1

0 2 4 6 8 . . . 4r−4 4r−2 4r 4r+2 4r+4 4r+6 . . . 8r−2Be
ause there are no further di�erentials on t and u, and the di�erentialssatisfy the derivation property, we see that the spe
tral sequen
e 
ollapsesfrom the E3 page. Now let us 
ompare this to the spe
tral sequen
e for the�bration G(r) −→ ES1 ×S1 G(r)(n) −→ BS1 from (22) 
onsidered in thebeginning, whi
h also 
onverges to H∗((G(r)(n))hS1; Fp). Sin
e
H∗(G(r); Fp) ∼= Fp[y, τ ]/

〈
yr = 0, τ 2 = 0

〉
,where y has degree 4 and τ has degree 4r + 3, we get the E2 page,

E∗,∗2
∼= Fp[y, τ ]/

〈
yr = 0, τ 2 = 0

〉
⊗ Fp[u]Comparing this to the E3 page above, we see that we have in ea
h 
ase

2r generators whi
h are multiplied by 1, u, u2, et
. This means, sin
e the�rst spe
tral sequen
e 
ollapses, that this se
ond one must also 
ollapse.Consequently we 
an read o� that H∗(G(r)
(n)

hS1; Fp) as an Fp[u]-module isgenerated by {
1, y, y2, . . . , yr−1, τ, τy, . . . , τyr−1

}Case (ii): p | r+ 1. In this 
ase, r + 1 is zero in Fp, but r+ 2 is a unit, so(24) be
omes: Cok(x) ∼= Fp[t]/t
r+1.In parti
ular, the dimension of Cok(x) is r + 1, generated by 1, t, . . . , tr.
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es of geodesi
s in HP rConsequently, dimKer(x) = r+1, so we need to �nd an additional elementin the kernel. By Lemma 2.7, Qr is the polynomial
Qr = (r + 1)tr −

(
r + 2

r − 1

)
tr−1x2 + · · · ± x2r,so x divides Qr in Fp[x, t]. This means we have an element ϕ0 = Qr/x indegree 4r − 2 whi
h is in the kernel of x. So together with the elements

ϕ1, . . . , ϕr from before, we have found generators of the kernel.As in Case (i), we see that the spe
tral sequen
e 
ollapses from the E3page. Comparing with the E2 page of the �bration (22), and using that sin
e
p | r + 1,

H∗(G(r); Fp) ∼= Fp[y, σ]/
{
yr+1 = 0, σ2 = 0

}
,we 
on
lude as above that H∗(G(r)

(n)

hS1; Fp) as an Fp[u] module is generatedby {
1, y, y2, . . . , yr, σ, σy, . . . , σyr

}
.Corollary 2.15. For the Serre spe
tral sequen
e of the �bration

G(HP r) −→ G(HP r)
(n)

hS1 −→ BS1the following holds: If p | n, it 
ollapses from the E2 page. If p ∤ n thein
lusion of the �bre indu
es a surje
tive map on even degree 
ohomology
H2∗(G(HP r)

(n)
hS1; Fp) −→ H2∗(G(HP r); Fp)Proof. The 
ase p | n follows dire
tly from the proof of Theorem 2.14 above.For the 
ase p ∤ n, we must 
he
k that the 
lasses yj from Theorem 2.1 are inthe image of the in
lusion of the �bre. To do this, we 
onsider the E2 pageof the spe
tral sequen
e, and must show that the 
lasses yj survive to E∞.Sin
e the di�erentials are derivations, ds(yj) = jyj−1ds(y), and so it su�
esto show y survives. Clearly it does, sin
e any di�erential starting at y endsin total degree 5, and there are no non-trivial 
lasses in total degree 5.



353 K-theory of spa
es of geodesi
s in CP rLet G(r) = G(CP r) be the spa
e of simple, 
losed, parametrized geodesi
sin CP r, and let ∆(r) = S1 \ G(r) be the quotient spa
e under the rotationa
tion. In this 
hapter we obtain K-theoreti
 analogues of the results for
ohomology from the previous 
hapter.By K-theory we mean 
omplex K-theory, i.e. K0(X) for a CW-
omplex
X is the group 
ompletion of the semi-group of 
omplex ve
tor bundles withbase spa
e X. De�ne K∗(X) for a general spa
e X as follows: Chose anyCW 
omplex Y weakly equivalent to X, put K(X) = K(Y ). This is wellde�ned, sin
e two 
hoi
es of Y will be homotopy equivalent, and K-theoryis homotopy invariant. We most often employ the Z/2Z-grading from Bott-periodi
ity, writing K∗(X) = K0(X)⊕K1(X).3.1 The unparametrized geodesi
sRe
all the model for ∆(r) from the end of se
tion 1.2. We had γ2, thestandard 2-dimensional bundle over the Grassmannian Gr2(Cr+1) and p :
P(γ2) −→ Gr2(Cr+1) the asso
iated proje
tive bundle. Then we had a 
om-posite map (6), whi
h is an S1-equivariant di�eomorphism

ϕ : ∆(r) −→ P(γ2)Take the standard line bundle γ1 over P(γ2). The pullba
k ϕ∗(γ1) of γ1under ϕ is a line bundle we will denote X. We 
onsider also the 
onjugateline bundle γ⊥1 to γ1 over P(γ2), i.e. γ1 ⊕ γ⊥1 = p∗γ2. The pullba
k ϕ∗(γ⊥1 )of this bundle to ∆(r) we will denote Y . In K0(∆(r)) we de�ne the 
lasses
x = [X]− 1 and y = [Y ]− 1.Theorem 3.1. Let x, y ∈ K0(∆(r)) be the 
lasses de�ned above. Then

K0(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉 ,
K1(∆(r)) = 0,where Qs for s ∈ N is the homogeneous polynomial in x, y given by

Qs(x, y) =

s∑

j=0

xjys−j.Note that these polynomials are not the same is in the 
ohomology 
ase,but I use the same notation, sin
e they play pre
isely the same role.



36 3 K-theory of spa
es of geodesi
s in CP rProof. We apply the Atiyah-Hirzebru
h spe
tral sequen
e, Theorem 1.3
H∗(∆(r);K∗(∗))⇒ K∗(∆(r)). (25)Sin
e we know the 
ohomology of ∆(r) from [Bökstedt-Ottosen℄,

H∗(∆(r)) ∼= Z[x1, x2]/ 〈Qr, Qr+1〉 ,and x1, x2 have degree 2, we see that all di�erentials in (25) are trivial, sothat
E∞ = E2

∼= Z[x1, x2]/ 〈Qr, Qr+1〉 ⊗ Z[β, β−1],where β denotes the Bott element. This shows that K1(∆(r)) = 0, and
K0(∆(r)) is free abelian of the same rank as H∗(∆(r)).We use the Chern 
hara
ter,
h : K0(X) −→ H∗(X; Q),whi
h is a ring homomorphism. By 
onstru
tion, x1 = c1(X) and x2 = c1(Y )are the �rst Chern 
lasses of X and Y , 
f. [Bökstedt-Ottosen℄ Thm. 3.2, sosin
e X, Y are line bundles, we get
h(x) = 
h(X)− 1 = exp(c1(X))− 1 = exp(x1)− 1,
h(y) = 
h(Y )− 1 = exp(c1(Y ))− 1 = exp(x2)− 1.There is a relation between the Chern 
hara
ter 
h and the Atiyah-Hirzebru
hspe
tral sequen
e, by [Atiyah-Hirzebru
h℄ Cor. 2.5. We see that 
h(xiyj) =
h(x)i
h(y)j = xi1x

j
2 + higher terms, where �higher terms� means terms inhigher �ltration, whi
h in this 
ase is equivalent to higher total degree in

x1, x2. By (iii) in the 
orollary, this shows that the ring homomorphism
Z[x, y] −→ K∗(∆(r)) is surje
tive.This means we 
an use x, y as polynomial generators for K∗(X), and itremains to determine the relations. Again we use the Chern 
hara
ter, thistime after tensoring with Q:
h : K0(X)⊗Q −→ H∗(X,Q)whi
h is then a ring isomorphism. We now want to prove that 
h(x) and
h(y) satisfy the relations Qr, Qr+1. If we 
an prove this, we are done: Sin
ethe Chern 
hara
ter is an isomorphism after tensoring with Q, and the groupsare torsion-free, there 
an be no further relations in K0(S(τ)/S1), sin
e thishas the same rank as H∗(S(τ)/S1) ∼= Z[x1, x2]/ 〈Qr, Qr+1〉.So we need to prove that Qs(exp(x1)−1, exp(x2)−1) = 0 ifQs(x1, x2) = 0for s = r, r + 1. Re
alling that the ideals 〈Qr, Qr+1〉 and 〈Qr, x

r+1
1 , xr+1

2

〉



3.1 The unparametrized geodesi
s 37
oin
ide, we �rst get that (exp(xi) − 1)r+1 = xr+1
i (1 + higher terms) = 0.Consider the quotient map

R = Q[x1, x2]/
〈
xr+1

1 , xr+1
2

〉
−→ Q[x1, x2]/ 〈Qr, Qr+1〉 = S,whi
h has kernel I = 〈Qr〉. Given a power series without 
onstant term,

g(z) = a1z + a2z
2 + · · · , we 
an de�ne g∗ : R −→ R by xi 7→ g(xi) for

i = 1, 2. In our 
ase, g(z) = exp(z) − 1. If we 
an prove that g∗I ⊆ I, themap g∗ will be well-de�ned as a map S −→ S, as shown below:
0 // I //

g∗
��

R //

g∗
��

S //

��

0

0 // I // R // S // 0We will show I = Ker(x1 − x2). Consider a homogeneous polynomial f ∈ Rof degree m. It su�
es to take m ≥ r, for if f had lower degree, it 
ould notbe in I = 〈Qr〉, sin
e Qr has degree r. Then, using xr+1
1 = xr+1

2 = 0, we 
anwrite
f =

r∑

i=m−r
cix

i
1x

m−i
2 ⇒ (x1 − x2)f =

r∑

i=m−r+1

(ci−1 − ci)xi1xm−i2 .By [Bökstedt-Ottosen℄ Lemma 3.4, f ∈ I if and only if cm−r = . . . = cr, andwe 
on
lude I = Ker(x1 − x2). This implies g∗I ⊆ Ker(g∗x1 − g∗x2). So we
al
ulate
g∗x1 − g∗x2 =

∑

i≥1

ai(x
i
1 − xi2) = (x1 − x2)

∑

i

ai

(
i−1∑

k=0

xk1x
i−k−1
2

)
.This shows g∗I ⊆ Ker(g∗x1 − g∗x2) ⊆ Ker(x1 − x2) = I, as desired.Remark 3.2. Let M = K∗(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉. We often use�ltration arguments, so let us �x the notation now. Let Mj ⊆ M bethe group generated by monomials in x, y of total degree at least j, i.e.

Mj = Z[x, y]≥j/ 〈Qr, Qr+1〉. This makes sense sin
e Qr, Qr+1 are homoge-neous. Then 0 = M2r ⊆ M2r−1 ⊆ · · · ⊆ M1 ⊆ M0 = M is a �ltration of
M .



38 3 K-theory of spa
es of geodesi
s in CP r3.2 Equivariant K-theory of spa
es of geodesi
sRe
all the 
ommutative diagram of �brations from Prop. 1.6,
S(τ)

��
BCn // ES1 ×S1 G(r)(n) //

��

∆(r)

��
BS1

BPn // BS1Here the map BPn : BS1 −→ BS1 is indu
ed by the nth power map Pn :
S1 −→ S1, z 7→ zn, and Cn ⊆ S1 denotes the group of nth roots of unity.Taking the K-theory gives the 
ommutative square

K∗(ES1 ×S1 G(r)(n)) K∗(∆(r))oo

K∗(BS1)

OO

K∗(BS1)
BPnoo

OO
(26)

We see we will need to know the K-theory of 
lassifying spa
es in order topro
eed, and lu
kily there is a general theorem due to Atiyah about this,whi
h I will now explain and use. So let G be a 
ompa
t Lie group. Therepresentation ring R(G) is de�ned as the Groethendie
k group 
ompletionof the semigroup of representations of G under dire
t sum. This be
omes aring via the tensor produ
t. We 
an de�ne a map
R(G) −→ K0(BG), (27)

V 7→ {EG×G V ց BG} ;and extend by the Groethendie
k 
onstru
tion. De�ne the augmentationideal, I = I(G) ⊆ R(G) by
I = Ker{R(G)

dim−→ Z
}
.We de�ne the 
ompletion to be the inverse limit,

R̂(G)I = lim←−
k

R(G)/Ik,and 
an now state the theorem, se [Atiyah2℄ Thm. 7.2 for G a �nite group,and [Atiyah-Hirzebru
h℄ Thm. 4.6 for G a 
onne
ted 
ompa
t Lie group:



3.2 Equivariant K-theory of spa
es of geodesi
s 39Theorem 3.3 (Atiyah). Let G be a 
ompa
t Lie group. Then
(i) K0(BG) ∼= R̂(G)I ,

(ii) K1(BG) = 0.I will now use this theorem to determine K∗(BS1) and K∗(BCn).Lemma 3.4. Let T : S1 →֒ C∗ be the natural 1-dimensional representationof S1, and let t = [T ]− 1 ∈ K0(BS1). Then
R(S1) = Z[T, T−1], I = 〈T − 1〉 , K0(BS1) ∼= R̂(S1)I = Z[[t]].Proof. First note that a representation ρ : S1 −→ GLn(C) 
an be 
onjugatedto ρ : S1 −→ U(n), by 
hoosing an inner produ
t on Cn (all of whi
h are
onjugate) whi
h is S1-invariant. So it su�
es to look at representations

ρ : S1 −→ U(n). Now ρ(t) ∈ U(n) (for t ∈ [0, 2π]) is diagonizable, ρ(t) ∼diag(eiθ1 , . . . , eiθn). This also diagonalizes ρ(kt), k ≥ 1, so if we 
hoose trationally independent of π, this diagonalization works for a dense subset of
S1. So by 
ontinuity we 
an diagonalize ρ(t) for all t simultaneously, and so
ρ is given by diag(ρ1(t), . . . , ρn(t)), where ρk : S1 −→ S1 is a homomorphism.This means ρk(z) = zmk , mk ∈ Z. Using the natural representation T : z 7→
z, and its inverse T−1 : z 7→ z−1, we 
an reformulate this by saying that everyrepresentation of S1 has the form ∑N

i=−N niT
i, ni ≥ 0. The Groethendie
k
onstru
tion yields

R(S1) =

{
N∑

i=−N
niT

i | ni ∈ Z

}
= Z[T, T−1].Now to the augmentation ideal. By de�nition

I =

{
N∑

i=−N
niT

i |
N∑

i=−N
ni = 0

}
.Clearly, T − 1 ∈ I, and also, ∑N

i=−N niT
i ∈ I is divisible by T − 1, be
ausethe sum of the 
oe�
ients is zero. So I = 〈T − 1〉. Now Ik =

〈
(T − 1)k

〉,and R(S1)/Ik has generators 1, T −1, (T −1)2, . . . , (T −1)k−1. Consequently,putting t = [T ]− 1, we get
K0(BS1) ∼= R̂(S1)I = Z[[t]].



40 3 K-theory of spa
es of geodesi
s in CP rLemma 3.5. Let n ∈ N be a number with prime fa
torisation n =
∏

p|n p
i(p).Then

K0(BCn) ∼= Z⊕
⊕

p|n
(Ẑp)

pi(p)−1,where Ẑp denotes the p-adi
 integers.Proof. Let W be the natural 1-dimensional representation of Cn ⊆ C∗. Asin the proof of Lemma 3.4 above, we only need look at representations
ρ : Cn −→ U(m) and diagonalize, so that ρ = diag(ρ1, . . . , ρm). Here ea
h
ρj : Cn −→ S1 is a group homomorphism, and so is a power of W , withthe relation W n = 1. Consequently R(Cn) = Z[W ]/ 〈W n − 1〉. The aug-mentation ideal is I = 〈W − 1〉 for the same reason as before, and we must
ompute the inverse limit lim←−

k

R(Cn)/I
k. This we propose to do in two steps:First assume n = pi. Then Cpi is a p-group, and a

ording to [Atiyah2℄the I-adi
 and p-adi
 topologies on I = I(Cpi) are equivalent, so that

K0(BCpi) ∼= R̂(Cpi)
I

= Z⊕ Î(Cpi)
I
∼= Z⊕ Î(Cpi)

p
.To 
al
ulate this, let w = W − 1, and note that I(Cpi) = 〈w〉 in the ring

Z[w]/
〈
(w + 1)p

i

= 1
〉, and so I(Cpi) ∼= Zpi−1. Thus Î(Cpi)

p
∼= (Ẑp)

pi−1.Now take any n ∈ N. Observe that Cpi(p), where n = pi(p)m with
gcd(p,m) = 1, are exa
tly the Sylow p subgroups of Cn. Then by [Atiyah2℄Prop. 4.10, there is an inje
tive map

K0(BCn) −→
⊕

p|n
K0(BCpi(p)),and in parti
ular

Î(Cn)I(Cn) −→
⊕

p|n

̂I(Cpi(p))
I(C

pi(p) )is inje
tive. By using that Cn ∼= ∏p|nCpi(p) by the Chinese Remainder The-orem, it is easily seen that this map is an isomorphism, so that
K0(BCn) ∼= Z⊕

⊕

p|n

̂I(Cpi(p)) ∼= Z⊕
⊕

p|n
(Ẑp)

pi(p)−1,by the result for pi above.



3.2 Equivariant K-theory of spa
es of geodesi
s 41With these results, let us �rst take a look at the K∗(BS1)-module stru
-ture on K∗(XhS1), where X is an S1-spa
e, as des
ribed in Se
tion 1.4. Fol-lowing the notation in Lemma 3.4, we have the 
anoni
al representation Tof S1, whi
h by (27) gives a bundle over BS1, whi
h we also 
all T . On K-theory, T de�nes a 
lass in K∗(BS1), and K∗(BS1) = Z[[t]], where t = T −1.Using the proje
tion pr1 : XhS1 −→ BS1, we get 
lasses pr∗1(T ) and pr∗1(t) in
K∗(XhS1). We will suppress the map pr1 from the notation, and simply 
allthese 
lasses T and t again.We 
an now determine theK∗(BS1) module stru
ture on ∆(r) ≃ G(r)hS1:Lemma 3.6. The K∗(BS1) = Z[[t]] module stru
ture on K(∆(r)) is givenby t 7→ (x− y)/(y + 1). In parti
ular, t2r a
ts as 0.Proof. We use the results from 
ohomology, where the H∗(BS1) = Z[u]module stru
ture on H∗(G(r)/S1) = Z[x1, x2]/ 〈Qr, Qr+1〉 is given by u 7→
x1−x2, 
f. [Bökstedt-Ottosen℄ Cor. 3.7. Re
all that x = [X]−1, y = [Y ]−1,where x1 = c1(X) and x2 = c1(Y ) are the �rst Chern 
lasses. Also u = c1(T ).The �rst Chern 
lass gives a group isomorphism from 
omplex line bundlesover ∆(r) to H2(∆(r)), so sin
e

c1(T ⊗ Y ) = c1(T ) + c1(Y ) = u+ x2 = x1 = c1(X).we get T ⊗ Y = X. Then we 
al
ulate
(T − 1)⊗ (Y − 1) = T ⊗ Y − Y − T + 1 = (X − 1)− (Y − 1)− (T − 1)Isolating T − 1 gives

(T − 1) = ((X − 1)− (Y − 1))⊗ Y −1.In K∗(∆(r)) this equality gives t = (x − y)(y + 1)−1, as desired. Sin
e in
K(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉 all non-zero elements have a total degree in
x, y whi
h is less than 2r, we see that t2r = (x− y)2r(y + 1)−2r = 0.Now we prove the main Theorem of this se
tion, but �rst we introdu
ea bit of notation: We write K∗hS1(X) for K∗(ES1 ×S1 X), when X is an
S1-spa
e. Re
all the diagram (26)

K∗hS1(G(r)(n)) K∗(∆(r))oo

K∗(BS1)

OO

K∗(BS1)
BPnoo

OO



42 3 K-theory of spa
es of geodesi
s in CP rThis gives a map
K∗(BS1)(n) ⊗K∗(BS1) K

∗(∆(r)) −→ K∗hS1(G(r)(n))where the K∗(BS1)(n) denotes that the map BPn should be applied in thetensor produ
t, as the diagram indi
ates.Theorem 3.7. Let n ∈ N. Then the map
K∗(BS1)(n) ⊗R(S1) K

∗(∆(r)) −→ K∗hS1(G(r)(n))is an isomorphism of rings. In parti
ular, K1
hS1(G(r)(n)) = 0.To �x the notation and avoid long, 
umbersome expressions, put

R = R(S1) = Z[U,U−1], R̂ = K0(BS1) = Z[[u]], u = U − 1.

S = R(S1) = Z[T, T−1], Ŝ = K0(BS1) = Z[[t]], t = T − 1.

M = K∗(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉 .Here S is an R-module by the map U 7→ T n, and likewise Ŝ is an R̂-moduleby u 7→ (t+1)n−1. By Lemma 3.6,M is an R̂-module by u 7→ (x−y)/(1+y),and thus an R-module by U 7→ (x− y)/(1 + y) + 1.The Theorem says that Ŝ(n) ⊗R M ∼= KhS1(G(r)(n)). The reason forrestri
ting to R instead of R̂ is given by the following lemma, whi
h alsoshows that for the isomorphism, this restri
tion does not matter.Lemma 3.8. Ŝ is a �at R-module, and
Ŝ ⊗R̂ N ∼= Ŝ ⊗R N.for any �nitely generated R̂-module N where um a
ts as 0 on N for some m.In parti
ular this holds for the �ltration modules Mj from Remark 3.2, for

M = M2r+1, and for the quotients Mj/Mj+1.Proof. Clearly, S is a free R-module (with basis {1, U, . . . , Un−1}), so S is�at over R. Sin
e S is Noetherian, Ŝ is �at over S, see [Atiyah-Ma
Donald℄,Prop. 10.14. By the natural isomorphism, for any R-module M ,
Ŝ ⊗RM ∼= Ŝ ⊗S S ⊗R M,we see that Ŝ is �at over R.Take N as in the lemma. Then the 
ompletion by the ideal I = 〈u〉 ⊆ R̂gives
N̂ = lim

←

k

N/ukN = N.
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es of geodesi
s 43Also by [Atiyah-Ma
Donald℄, Prop. 10.13, sin
e R is Noetherian and Nis �nitely generated, N̂ ∼= R̂ ⊗R N . Combining these two fa
ts yields theisomorphism
Ŝ ⊗R̂ N ∼= Ŝ ⊗R̂ N̂ ∼= Ŝ ⊗R̂ (R̂⊗R N) ∼= Ŝ ⊗R N.Now 
onsider the R̂-module Mj . Sin
e u a
ts as (x − y)/(1 + y), and Mj
onsists of polynomials degree at least j, u2r+1 a
ts as zero. For the quotient

Mj/Mj+1, u itself a
ts as zero. So the requirements of N holds for thesemodules.We will use the �ltration Mj of M to prove the Theorem, so we need aLemma whi
h proves the Theorem in the 
ase M = Z:Lemma 3.9. The following map is an isomorphism:
K∗(BS1)⊗R(S1) Z −→ K∗(BCn).Proof. Let A = S ⊗R Z and B = Ŝ ⊗R Z, and let A −→ B be the mapindu
ed by the 
ompletion S −→ Ŝ. We now de�ne another map

A −→ R(Cn) = Z[W ]/ 〈W n − 1〉 , T 7→ W.This is 
learly an isomorphism, and preserves the augmentation ideal. Con-sider the diagram:
B

��

Aoo
∼= //

��

R(Cn)

��

B̂ Âoo
∼=// K0(BCn)Here the verti
al arrows denote 
ompletion with respe
t to the augmentationideals; respe
tively tB, (T − 1)A, and 〈W − 1〉). To prove the Lemma, wemust show B ∼= Â. First note that Â −→ B̂ is an isomorphism, sin
e for any

k, the map given by T 7→ t+ 1, is an isomorphism:
A/(T − 1)k = Z[T ]/

〈
T n − 1, (T − 1)k

〉
−→ Z[t]/

〈
(t+ 1)n − 1, tk

〉
= B/tkB.Next we show that B −→ B̂ is an isomorphism. To show this, 
onsider theexa
t sequen
e given by multipli
ation by u− 1 ∈ R,

0 // R
u−1 // R // Z // 0 .Sin
e Ŝ is �at over R, we obtain a new exa
t sequen
e,

0 // Ŝ ⊗R R
1⊗(u−1) // Ŝ ⊗R R // Ŝ ⊗R Z // 0 ,



44 3 K-theory of spa
es of geodesi
s in CP rwhi
h, after applying the natural isomorphism, be
omes
0 // Ŝ

(t+1)n−1 // Ŝ // Ŝ ⊗R Z // 0 . (28)Completing this with respe
t to the ideal 〈t〉, whi
h is an exa
t fun
tor, weobtain yet another exa
t sequen
e
0 // lim

←
Ŝ/
〈
tk
〉 (t+1)n−1 // lim

←
Ŝ/
〈
tk
〉

// lim
←

(Ŝ ⊗R Z)/
〈
tk
〉

// 0 .Re
all Ŝ = Z[[t]]. After applying the isomorphism lim← Ŝ/
〈
tk
〉 ∼= Ŝ, we getthe exa
t sequen
e,

0 // Ŝ
(t+1)n−1 // Ŝ // lim←(Ŝ ⊗R Z)/

〈
tk
〉

// 0 . (29)Comparing (28) and (29), we see that B ∼= B̂. As already noted, this meansthat Â ∼= B, and this proves the result.Now we 
an prove the main Theorem 3.7:Proof of Theorem 3.7. First we 
laim that the map
K∗(BS1)⊗Z K

∗
hS1(G(r)) −→ K∗hS1(G(r)(n)) (30)is surje
tive. To see this, we �rst note that the map K∗(BCn) −→ K∗(BS1)is surje
tive. This follows from the fa
t that the map of representation rings,

R(Cn) −→ R(S1) is surje
tive, sin
e any representation of Cn 
an be ex-tended to a representation of S1. Now to prove surje
tivity of (30), we use a�ltration argument in the spe
tral sequen
e
H∗(∆(r);K∗(BCn))⇒ K∗hS1(G(r)(n)).This 
ollapses, sin
e everything sits in even degrees. As in the proof ofTheorem 3.1, we now use Cor. 2.5 of [Atiyah-Hirzebru
h℄, so let A denotethe image of K∗(BS1) ⊗Z K

∗
hS1(G(r)) in K∗hS1(G(r)(n)). In �ltration degree0 we have K∗(BCn). As already shown K∗(BS1) is surje
tive onto this,so the lowest �ltration 
an be hit. Anything else in H∗(∆(r);K∗(BCn)) isgenerated by monomials xi1xj2, and we have xiyj ∈ A with 
h(xiyj) = xi1x

j
2 +higher terms. This shows that A = K∗hS1(G(r)(n)), so (30) is surje
tive.Now we show that the map is inje
tive. We will use a �ltration argument,where we �lter M = K0(S(τ)/S1) as in Remark 3.2. We look at the exa
tsequen
e,

0 −→Mi+1 −→Mi −→Mi/Mi+1 −→ 0.
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es of geodesi
s 45As Ŝ is �at over R by Lemma 3.8, we get the exa
t sequen
e
0 −→ Ŝ ⊗RMi+1 −→ Ŝ ⊗R Mi −→ Ŝ ⊗RMi/Mi+1 −→ 0. (31)We �rst apply this to K-theory with Fp = Z/pZ 
oe�
ients. For the �eld

Fp, we have by the Universal Coe�
ient Theorem, K∗(X; Fp) ∼= K∗(X)⊗Fp.Clearly the �ltration M ′i = Mi ⊗ Fp works for Fp 
oe�
ients, so we 
anuse the result above. But sin
e Fp is a �eld, the exa
t sequen
e (31) splits,so we 
an do a 
ounting argument quite easily. Observe that M ′i/M ′i+1 =
Fp[x, y]i/ 〈Qr, Qr−1〉 = (Fp)ni, where ni ∈ N. By Lemma 3.9, we know

Ŝ ⊗RM ′i/M ′i+1
∼= (K0(BCn; Fp))

ni. (32)and in addition, K0(BCn; Fp) is a �nite number of 
opies of Fp, so it makessense to 
ount them. Also M ′2r−1 = Fp, so Ŝ ⊗R M ′2r−1
∼= K0(BCn; Fp). Soindu
tively, sin
e M ⊗ Fp is a graded ring with a total of r(r + 1) 
opies of

Fp, then
Ŝ ⊗RM ⊗ Fp ∼= (K0(BCn; Fp))

r(r+1).We 
ompare this with K∗(G(r)(n); Fp) via the spe
tral sequen
e for the ver-ti
al �bration in Prop. 1.6:
E2 = H∗(∆(r);K∗(BCn; Fp))⇒ K∗(G(r)(n); Fp).We see everything sits in even degrees in E2, so there are no di�erentials, and,working over a �eld Fp, we 
an simply 
ount the dimension of K0(G(r)(n); Fp)as the sum of the dimensions of Em,n

2 on the diagonal m + n = 0. Sin
e
H∗(∆(r); Fp) ∼= Fp[x, y]/ 〈Qr, Qr+1〉 also has a total of r(r + 1) 
opies of Fp,again by Lemma 3.5, we get,

K0(G(r)n; Fp) ∼= (K0(BCn; Fp))
r(r+1).So the map of Fp-ve
tor spa
es

Ŝ ⊗R M ⊗ Zp = K0(BS1)⊗R(S1) K
0(S(τ)/S1; Zp) −→ K0(S(τ)

(p)

hS1; Zp)is a surje
tion between spa
es of the same dimension, and is thus an isomor-phism, and this holds for every prime number p.Now we 
ompare Z- and Fp-
oe�
ients (for a prime p) by the diagram
K0(∆(r)) // K0(G(r)(n); Fp)

Ŝ ⊗RM //

ϕ

OO

Ŝ ⊗RM ⊗ Fp

∼=

OO
(33)



46 3 K-theory of spa
es of geodesi
s in CP rAssume a ∈ Ŝ ⊗R F is in the kernel of ϕ. Then, by the diagram, a redu
edmod p is zero, so a = p · a1 for some a1. But then, sin
e K0(∆(r)) is torsionfree, a1 ∈ ker(ϕ), so a1 = p · a2, et
. Consequently, if a ∈ ker(ϕ), then ais divisible by p in�nitely often. Re
all that this holds for any prime p, andthus also for n, so a is in�nitely often divisible by n.Now take a look at the �ltration again
0 −→ Ŝ ⊗R Mi−1 −→ Ŝ ⊗R Mi −→ Ŝ ⊗RMi/Mi−1 −→ 0. (34)If a ∈ Ŝ ⊗RMi is divisible by n in�nitely often, then the image in

Ŝ ⊗RMi/Mi−1
∼= ZN ⊕

⊕

p|n
(Ẑp)

Npis zero (the isomorphism is Lemma 3.5 and Lemma 3.9). So a 
omes from
a′ in Ŝ ⊗R Mi−1 and a′ is also in�nitely often divisible by n. So indu
tively
a 
omes from a0 ∈ Ŝ ⊗R F0

∼= Z ⊕⊕p|n(Ẑp)
pi−1, and a0 is divisible by nin�nitely often, and so a0 = 0, whi
h implies a = 0.This shows that the kernel of ϕ is zero, and thus the map

ϕ : K0(BS1)⊗R(S1) K
0(S(τ)/S1) −→ K0(S(τ)

(p)

hS1) (35)is an isomorphism.



474 The free loop spa
e and Morse theoryNow we turn to study the free loop spa
e L(FP r), where as usual F = C or
F = H. First a de�nition:De�nition 4.1. Let X be a topologi
al spa
e. The spa
e

LX = {f : [0, 1] −→ X | f(0) = f(1), f is 
ontinuous} ,with the 
ompa
t-open topology, is 
alled the free loop spa
e of X.We are going to use Morse theory to study LM for a smooth manifold
M , where we will take M = FP r. It is a fa
t that it does not 
hange thehomotopy type of LM if we require all f ∈ LM to be di�erentiable, or evensmooth, so we do that.Now let us 
onsider how one 
ould do Morse theory on the free loopspa
e LM as well the spa
e of homotopy orbits LMhS1 , where M denotesa 
ompa
t n-dimensional manifold. For details, I refer to [Klilngenberg1℄,and [Bökstedt-Ottosen℄, espe
ially 
hapters 7 and 8. LM is not a �nite-dimensional manifold, but one 
an make a model of LM whi
h is a so-
alledHilbert manifold, 
f. [Klilngenberg1℄ �1.2, meaning there are 
harts on LMmaking it lo
ally homeomorphi
 to a Hilbert spa
e. The tangent spa
e ofa loop f ∈ LM is the spa
e Γ(f) of ve
tor �elds along f . Let 〈·, ·〉 denotethe Riemannian metri
 on M . Now the tangent spa
e TfLM 
arries thestru
ture of a Hilbert spa
e via

〈ξ, η〉c =

∫

S1

(
〈ξ(t), η(t)〉+ c〈∇ξ(t),∇η(t)〉

)
dt, (36)where ξ, η ∈ TfLM are ve
tor �elds along f in LM , and ∇ denotes the
ovariant derivative along f . The 
onstant c ∈ R makes the inner produ
tvary. This is ne
essary to ensure that the n-fold iteration map, Pn, be
omesan isometry

P∗n = Df(Pn) : TfLM −→ TPnfLM, P∗n(ξ(z)) = ξ(zn)sin
e 〈P∗nξ,P∗nη〉1 = 〈ξ, η〉n2, see [Bökstedt-Ottosen℄ �7.We are going to do Morse theory via the energy fun
tion
E : LM −→ R, f 7→

∫

S1

|f ′(t)|2 dt.For ea
h a ∈ R, we set F(a) = E−1 (]−∞, a]) ⊆ LM . The 
riti
al points of
E are the 
losed geodesi
s on M . We shall assume that the 
riti
al points



48 4 The free loop spa
e and Morse theoryare 
olle
ted on 
ompa
t submanifolds, ea
h of whi
h satisfy the Bott non-degenera
y 
ondition. This strong 
ondition is needed for the Morse theoryma
hinery, and it is satis�ed forM = FP r, and more generally for symmetri
spa
es, [Ziller℄. Call the 
riti
al values 0 = λ0 < λ1 < . . ., and 
onsider the�ltration
F(λ0) ⊆ F(λ1) ⊆ · · · ⊆ LM. (37)This �ltration is equivariant with respe
t to the S1 a
tion. This means itindu
es a �ltration of LMhS1 ,

F(λ0)hS1 ⊆ F(λ1)hS1 ⊆ · · · ⊆ LMhS1 . (38)The non-degenera
y 
ondition ensure that ea
h 
riti
al submanifold N(λ) =
E−1(λ) is �nite-dimensional, and the tangent bundle T (LM)|N(λ) ⊆ T (LM)splits S1-equivariantly:

T (LM)|N(λ)
∼= µ−(λ)⊕ µ0(λ)⊕ µ+(λ),into the bundles of negative, zero-, and positive dire
tions, respe
tively, andthe negative bundle µ−(λ) is �nite-dimensional. To ease the notation, write

Fn = F(λn) and µ−n = µ−(λn). The main result of Morse theory in thissetting is proved by Klingenberg in [Klilngenberg1℄, �2.4: There is an S1-equivariant homotopy equivalen
e
Fn)/Fn−1 ≃ Th(µ−n ). (39)We want a similar result for (LM)hS1 , so we 
onsider the quotients of the�ltration (38):

ES1 ×S1 Fn/ES1 ×S1 Fn−1
∼= ES1

+ ∧S1 Fn/Fn−1,where ES1
+ ∧S1 X = (ES1

+ ∧ X)/S1 is the smash produ
t modded out bythe diagonal S1 a
tion. The obvious map de�ned on representatives is ahomeomorphism. Thus by the Morse theorem in (39),
ES1 ×S1 Fn/ES1 ×S1 Fn−1 ≃ ES1

+ ∧S1 Th(µ−n ).We 
an use [Bökstedt-Ottosen℄ Lemma 5.1 to �nd that
(Fn)hS1/(Fn−1)hS1 ≃ ES1

+ ∧S1 Th(µ−n ) ∼= Th((µ−n )hS1) (40)where for an S1-ve
tor bundle ξ given by a proje
tion map p : E −→ B wedenote by ξhS1 the bundle with proje
tion id×p : ES1×S1E −→ ES1×S1B.This means we also have a Morse theorem for the S1-equivariant �ltration.



4.1 The negative bundle 494.1 The negative bundleIn [Bökstedt-Ottosen℄ Lemma 5.1, it is shown that the negative bundle
(µ−n )hS1 is an oriented ve
tor bundle if µ−n is. But to use the Thom iso-morphism in K-theory we need to know that the negative bundle is 
omplex,or more pre
iselyProposition 4.2. The negative bundle µ−n for the energy �ltration of LCP r
an be written as ε ⊕ ν, where ε is a trivial real S1-line bundle, and ν is a
omplex S1 ve
tor bundle. Consequently, the negative bundle (µ−n )hS1 for theenergy �ltration of LCP r

hS1 
an also be written as ε⊕ νhS1.Proof. There is a Hermitian inner produ
t 〈·, ·〉C on TCP r, and the Rieman-nian metri
 is 〈·, ·〉 = Re(〈·, ·〉C). The tangent spa
e TfLCP r is a 
omplexve
tor spa
e, and it 
arries the stru
ture of a Hilbert spa
e via
〈ξ, η〉 =

∫

S1

(〈ξ(t), η(t)〉+ 〈∇ξ(t),∇η(t)〉)dt,where ξ, η ∈ TfLCP r are ve
tor �elds along f in LCP r, and ∇ denotes the
ovariant derivative along f . Sin
e 〈·, ·〉 = Re(〈·, ·〉C), we get
〈zξ, zη〉 = 〈ξ, η〉 for z ∈ S1. (41)If f is a 
riti
al point of the energy fun
tional E (a geodesi
), then thetangent spa
e of LCP r splits as

TfLCP r = Γ(Rf ′)⊕ Γ(Rif ′)⊕ Γ((f ′)⊥) (42)where e.g. Γ(Rf ′) ⊆ Γ(f) denotes the ve
tor �elds ξ along f with ξ(t) ∈
Rf ′(t) ⊆ Tf(t)CP r. We 
an use the inner produ
t to represent the Hessian
H = D2E of E by a linear operator A = Af on TfLCP r, by requiring
〈Aξ1, ξ2〉 = H(ξ1, ξ2). Then we get by (41) that z̄Az = A for z ∈ S1, whi
himplies that A is 
omplex linear.A

ording to Klingenberg, [Klilngenberg1℄ Thm. 2.4.2,

Af = id− (1−∇2)−1 ◦ (K̃f + 1),where
K̃f(ξ)(t) = R(ξ(t), f ′(t))f ′(t)

= π2 (f ′(t)〈ξ(t), f ′(t)〉 − 2f ′(t)〈f ′(t), ξ(t)〉+ ξ(t)〈f ′(t), f ′(t)〉)Note the fa
tor π2; it appears be
ause our metri
 on CP r is s
aled so that the�
ir
umferen
e� is 1, not π. This gives us the following eigenvalue equation
Aξ = λξ:

(λ− 1)∇2ξ = (K̃f + λ)ξ (43)



50 4 The free loop spa
e and Morse theoryThe negative bundle 
onsists of solutions to this equation with λ < 0. Noti
ethat by the formula for A, it preserves the de
omposition (42), sin
e 
ovariantderivative 
ommutes with the 
omplex stru
ture on TCP r. Thus we 
an solve(43) in the three spa
es separately.
(i) ξ ∈ Γ(Rf ′): Then ξ(t) = g(t)f ′(t) where g : [0, 1] −→ R is a smoothfun
tion with g(0) = g(1). Then K̃f(t) = 0, and equation (43) be
omes

(λ− 1)g′′ = λg ⇔ g′′ = λ
λ−1

g ⇒ g = 0sin
e λ < 0 and g must be periodi
. So we have no non-trivial solutions.
(ii) ξ ∈ Γ((f ′)⊥): Sin
e (f ′)⊥ is a 
omplex ve
tor spa
e, and A is 
omplexlinear as noted, we see that Aξ = λξ implies A(iξ) = λ(iξ). So thisspa
e of solutions has a 
omplex stru
ture.

(iii) ξ ∈ Γ(Rif ′): Then ξ(t) = g(t)if ′(t), where g : [0, 1] −→ R is a smoothfun
tion with g(0) = g(1). Then K̃f (t) = 4π2 ‖f ′(t)‖2 ξ(t) = 4π2n2ξ(t),sin
e f is a geodesi
 of length n. The equation (43) then be
omes
(λ− 1)g′′ = (4π2n2 + λ)g ⇔ g′′ =

4π2n2 + λ

λ− 1
gTo get a periodi
 solution g, we must have 4π2n2+λ

λ−1
≤ 0, i.e. λ ≥

−4π2n2. For λ = −4π2n2 we must have g 
onstant, and this gives thetrivial real line bundle ε. If −4π2n2 < λ < 0 we have the solution setspanned over R by
gK1 (t) = cos(K · 2πt), and gK2 (t) = sin(K · 2πt), t ∈ [0, 1]where

K =

√
−4π2n2 + λ

2π(λ− 1)
, and K ∈ N,sin
e the fun
tions must be periodi
 with period 1. This happens ifand only if

λ =
4π2(K2 − n2)

4π2K2 + 1
,so for a �xed n we get solutions with λ < 0 for K = 1, . . . , n − 1.This spa
e of solutions 
an be given a 
omplex stru
ture J by rotating

t 7→ t− 1
4K

, where t ∈ [0, 1], i.e.
J(gK1 ) = gK2 , J(gK2 ) = −gK1 .and extending linearly. Clearly J satis�es J2 = −id.



4.2 The power map 51This gives the bundle ν, whi
h is 
learly an S1 bundle, with the S1 a
tiongiven by rotation.Now let us see that the result for µ−n implies that for (µ−n )hS1. The bundle
(µ−n )hS1 is de�ned so that the pullba
k of (µ−n )hS1 agrees with pr∗(µ−n ) in thefollowing diagram,

µ−n

��

pr∗(µ−n )

��

//oo (µ−n )hS1

��
Gn(r) ES1 ×Gn(r) //proo ES1 ×S1 Gn(r)where Gn(r) denotes the spa
e of n-times iterated geodesi
s. Sin
e µ−n = ε⊕νis a de
omposition in S1-bundles, we automati
ally get the de
omposition for

(µ−n )hS1.4.2 The power mapWe 
onsider the nth power map Pn : LFP r −→ LFP r, whi
h iterates a loop
n times: For f : S1 −→ LFP r, Pn(f)(z) = f(zn) for z ∈ S1 ⊆ C. Whenrestri
ting to the energy �ltration, we get Pn : Fi −→ Fni, whi
h givesdiagrams

Fi //

Pn

��

Fi+1
//

Pn

��

Fi+1/Fi
Pn

��
Fni // Fn(i+1)

// Fn(i+1)/FniWe now 
ompare this to the n-twisted a
tion of S1 on Fi. We see that weget an S1-equivariant map Pn : F (n)
i −→ Fni, and 
onsequently a diagram of

S1-maps
F (n)
i

//

Pn

��

F (n)
i+1

//

Pn

��

F (n)
i+1/F (n)

i

Pn

��
Fni // Fn(i+1) // Fn(i+1)/Fni

(44)
In parti
ular when i = 0, sin
e the a
tion on F0 is trivial, we get a map

Pn : F (n)
1 /F0 −→ Fn/F0. (45)We 
an 
ompose with the in
lusion map Fn −→ F∞ to get

Pn : F (n)
1 /F0 −→ F∞/F0. (46)This will be very useful in se
tion 6.



52 4 The free loop spa
e and Morse theory4.3 The Morse theory spe
tral sequen
eTo avoid ex
essive use of parentheses, write LFP r
hS1 for (L(FP r))hS1. Toprove 
onvergen
e of the Morse spe
tral sequen
es, we will need the following:Lemma 4.3. Given k, there is m su
h that the in
lusions Fm −→ LFP rand (Fm)hS1 −→ LFP r

hS1 indu
e isomorphism on πj and Hj, for all j ≤ k.Proof. First we show that the homology groups of LM and LMhS1 are �nitelygenerated in ea
h degree whenM = FP r (we say LM and LMhS1 are of �nitetype): By Serre's spe
tral sequen
e for the �bration ΩM −→ PM −→ Mwe see that ΩM is of �nite type, and then the spe
tral sequen
e for the�bration ΩM −→ LM −→M shows that LM is of �nite type. The �bration
LM −→ LMhS1 −→ BS1 then shows LMhS1 is of �nite type. For the�ltration spa
es Fm, (Fm)hS1, we 
an use the same �brations if we restri
t thespa
es LM , ΩM , PM to 
urves of maximal energy m2. The same argumentworks for homotopy groups, using the long exa
t sequen
e for a �brationinstead of Serre's spe
tral sequen
e.We �rst show the lemma for homology groups. WriteX0 ⊆ X1 ⊆ · · · ⊆ Xto 
over both situations, Fi ⊆ LFP r and (Fi)hS1 ⊆ LFP r

hS1. Let k be given,and 
onsider numbers m, M with k ≤ m ≤ M , and with the followingproperties:
(i) Hk(Xm) −→ Hk(X) is surje
tive.

(ii) Ker(Hk(Xm) −→ Hk(X)) = Ker(Hk(Xm) −→ Hk(XM)).A simplex ∆k −→ X is 
ompa
t, so it has �nite energy. Take m su
h that
m2 is bigger than the maximum energy over the �nitely many generators of
Hk(X), then the in
lusion Xm −→ X indu
es a surje
tive map on Hk. Wesee we 
an 
hose m as in (i). Given this m, we 
onsider Ker(Hk(Xm) −→
Hk(X)), whi
h is �nitely generated, sin
e Hk(Xm) is. Su
h a generator isa formal sum of simpli
es ∆k −→ Xm, whi
h, when in
luded in X, is theboundary of some formal sum of (k + 1)-simpli
es. Again by 
ompa
tness,these have �nite energy, and we 
an 
hoose M ≥ m as desired.Consider a pair (Xi+1, Xi) in the 
hain Xm −→ Xm+1 −→ · · · −→ XM .By Morse theory we know the quotient Xi+1/Xi is homotopy equivalent tothe Thom spa
e of a bundle of dimension at least 2ri, and su
h a Thom spa
e
an be given the 
ell stru
ture with one 0-
ell, and all other 
ells of dimensionat least 2ri. So by 
ellular homology, the relative homology groups satisfy:

Hj(Xi+1, Xi) = 0, for j < 2ri. (47)



4.3 The Morse theory spe
tral sequen
e 53Then by the long exa
t sequen
e for homology groups, the maps Hk(Xi) −→
Hk(Xi+1) are isomorphisms, sin
e k ≤ m ≤ 2ri − 2 for i ≥ m. This means
Hk(Xm)

∼=−→ Hk(XM), so by (ii), the map Hk(Xm) −→ Hk(X) is inje
tive,and thus by (i) an isomorphism.To show the Lemma for homotopy groups, do the same for πj in pla
e of
Hj. Use Hurewi
z on (47) to get πj(Xi+1, Xi) = 0 for j < 2ri, then 
on
ludeas above.We now state the result about Morse spe
tral sequen
es. In 
ohomology,we need both the S1-equivariant and the non-equivariant 
ase, but in K-theory we need only the S1-equivariant 
ase:Theorem 4.4. There are 
onvergent spe
tral sequen
es in 
ohomology,

En,q
s (M)(LHP r) ⇒ Hn+q(LHP r)

En,q
s (M)(LHP r

hS1) ⇒ Hn+q(LHP r
hS1)with E1 pages given by, for n ≥ 1, respe
tively,

En,q
1
∼= H̃n+q(Th(µ−n )) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP

r)),

En,q
1
∼= H̃n+q(Th(µ−n )hS1) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP

r)),and for n = 0, E0,q = Hq(HP r) and E0,q = Hq(BS1 ×HP r), respe
tively.There is a strongly 
onvergent spe
tral sequen
e in K-theory,
En,q
s (M)(LCP r

hS1)⇒ Kn+q(LCP r
hS1)with E1 page given by E0,q

1 = Kq(BS1)⊗Kq(CP r), and
En,q

1
∼= K̃n+q(Th(µ−n )hS1) ∼= Kn+q−2r(n−1)−1(Gn(CP

r)hS1), for n ≥ 1,where Gn(FP r) denotes the spa
e of geodesi
s of length n for n ≥ 1.Proof. A 
losed, simple geodesi
 has energy 1, and when iterated n times hasenergy n2. So the 
riti
al values are 0 < 12 < 22 < 32 < . . ., and we denote
F(n2) by Fn. Using the energy �ltrations (37) and (38), respe
tively, wemake an exa
t 
ouple via the long exa
t sequen
es for the pair (Fn,Fn−1),and ((Fn)hS1, (Fn−1)hS1), respe
tively. For details about this pro
ess, thereader 
an see e.g. [Hat
her2℄, �1.1. This gives rise to a spe
tral sequen
e
{Ep,q

r (M)}r, whi
h we 
all a Morse spe
tral sequen
e. The pro
ess whi
h
onstru
ts a spe
tral sequen
e from the exa
t pairs works for any 
ohomologytheory, so we get spe
tral sequen
es in both 
ohomology and K-theory. By



54 4 The free loop spa
e and Morse theory
onstru
tion together with the homotopy equivalen
es from Morse theory,(39) and (40), the E1 page is given by, for n ≥ 1,
En,q

1 (M)(LM) = H̃n+q(Fn/Fn−1) ∼= H̃n+q(Th(µ−n ));

En,∗
1 (M)(LMhS1) = H̃∗((Fn)hS1/(Fn−1)hS1) ∼= H̃∗(Th(µ−n )hS1);and similar for K-theory. The negative bundle µ−n is a bundle over the
riti
al submanifold N(n2), whi
h is the spa
e Gn(r) of geodesi
s of length

n. It follows that (µ−n )hS1 is a bundle over Gn(FP r)hS1.For n = 0, F0 is spa
e of loops of energy zero, i.e. the 
onstant loops, so
F0 = FP r itself, and the S1 a
tion is trivial, so ES1 ×S1 F0 = BS1 × FP r.The result follows for n = 0.Now let n ≥ 1, and 
onsider �rst HP r. The negative bundle µ−n is foundin [Bökstedt-Ottosen2℄, Thm. 6.2, and here one 
an see it is oriented and hasdimension (4r+ 2)n− 4r + 1. By [Bökstedt-Ottosen℄ Lemma 5.2, (µ−n )hS1 isalso oriented. So we 
an use the Thom isomorphism, whi
h gives:
En,q

1 (M)(LHP r) ∼= H̃n+q(Th(µ−n )) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP
r));

En,q
1 (M)(LHP r

hS1) ∼= H̃n+q(Th(µ−n )hS1) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP
r)hS1);Similarly for K-theory, but here we use Prop. 4.2 to get that the bundles

µ−n and (µ−n )hS1 are both the sum of a trivial real line bundle with a 
omplexbundle. This means we 
an use the Thom isomorphism for K-theory. From[Bökstedt-Ottosen2℄ Thm. 6.1, we see that the negative bundles µ−n and
(µ−n )hS1 have dimension 2r(n− 1) + 1 for n ≥ 1.For the 
onvergen
e, note that the 
ohomology Morse spe
tral sequen
e isa �rst quadrant spe
tral sequen
e. By [Hat
her2℄ Prop. 1.2 the 
riterion for
onvergen
e is that the in
lusions Fn →֒ LHP r, resp. (Fn)hS1 →֒ LHP r

hS1,indu
e isomorphism on Hq(−; Fp) if n is large enough 
ompared to q. By theuniversal 
oe�
ient theorem it su�
es to show this on Hq(−; Fp), and thisis proved in Lemma 4.3.The K-theory Morse spe
tral sequen
e is not �rst quadrant, so the 
on-vergen
e question is more subtle. Note that, if we take a �nite �ltration
(F0)hS1 ⊆ · · · ⊆ (Fn)hS1, the 
orresponding Morse spe
tral sequen
e 
on-verges to K∗((Fn)hS1). The Morse spe
tral sequen
e then determines theinverse limit of the K∗((Fn)hS1). There is a surje
tive map

K∗(LCP r
hS1) −→ lim←−

n

K∗((Fn)hS1),and we say say the spe
tral sequen
e 
onverges strongly, if this map is anisomorphism. This requires some work, and will be shown in the lemmasbelow.



4.3 The Morse theory spe
tral sequen
e 55To show 
onvergen
e of the Morse spe
tral sequen
e in K-theory, let
X0 ⊂ X1 ⊂ . . . , and X = ∪Xi. We want to �nd 
onditions that ensure

i : K∗(X)
∼=−→ lim←−

i

K∗(Xi) (*)whenX = LCP r
hS1. As mentioned in the proof above, the map is i surje
tive,so the question is inje
tivity.Lemma 4.5. Let X = ES1 ×S1 LCP r. Let Xn denote the n-skeleton of X.Then (∗) holds.Proof. First note that the lemma is equivalent to saying that the Atiyah-Hirzebru
h spe
tral sequen
e for X 
onverges strongly. We have K0(X) =

[X,Z × BU ] and K1(X) = [X,U ], so a 
lass in K-theory 
an be 
onsidereda (homotopy 
lass of a) map from X to either Y = Z × BU or Y = U . A
lass in the kernel of i is then a map X −→ Y whose restri
tion to ea
h Xnis null-homotopi
. Su
h a map is 
alled a phantom map, and we denote byPh(X, Y ) the set of homotopy 
lasses of phantom maps X −→ Y . Theirexisten
e is studied in [M
Gibbon-Roitberg℄, who give the following 
riterion(Thm. 1): The following are equivalent:
(i) Ph(X, Y ) = 0 for every Y with �nitely generated homotopy groups.

(ii) There exists a map from ΣX to a wedge of spheres that indu
es anisomorphism in rational homology.A map as in (ii) we 
all a rational equivalen
e. Note that Z×BU and U have�nitely generated homotopy groups. Let us apply this to X = ES1 ×S1 Z,where we will spe
ialize to Z = LCP r.First we 
onsider the bundle ξ = p∗T over X, the pullba
k of the standardline bundle T −→ BS1 under the map p : ES1 ×S1 Z −→ BS1. We use the
o�ber sequen
e
S(ξ) −→ D(ξ) −→ Th(ξ) −→ ΣS(ξ). (48)We 
laim it su�
es to show the result for Th(ξ) instead of X: K∗(X) ∼=

K∗(Th(ξ)) by Thom isomorphism, and the 
ell stru
ture on X gives rise toa natural 
ell stru
ture on Th(ξ) ց X, where n-
ells in X 
orrespond to
(n+ 2)-
ells in Th(ξ). So we also get an isomorphism of the inverse systems
{K∗(Xn)} and {K∗(Th(ξ)n)} su
h that the obvious diagram 
ommutes:

K∗(X)

∼=
��

i // lim
←−

K∗(Xn)

∼=
��

K∗(Th(ξ)) i // lim
←−

K∗(Th(ξ)n)
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e and Morse theorySo we investigate (48). We have of 
ourse D(ξ) ≃ X = ES1 ×S1 Z, andwe will show that S(ξ) ∼= ES1 × Z: First note
S(ξ) =

{
([e, z], t) ∈ ES1 ×S1 Z × T | ‖e‖ = 1, ‖t‖ = 1, t ∈ spanCe

}
,where we 
onsider e ∈ ES1 = S∞ ⊆ C∞ and t ∈ T ⊆ C∞, by viewing

BS1 = CP∞ as 
omplex lines in C∞. For ([e, z], t) ∈ S(ξ), we see that thereis s ∈ S1 with es = t. We 
an then 
onstru
t a homeomorphism
F : S(ξ) −→ ES1 × Z, F ([e, z], t) = (t, s−1z). (49)This is well-de�ned, with inverse G(t, z) = ([t, z], t).Now let Z = LCP r. By [Bökstedt-Ottosen2℄ Theorem 6.1, there is a ho-motopy equivalen
e ΣLCP r −→ Σ(CP r)∨∨i ΣTh(µ

−
i ), whi
h is the splittingresult for the non-equivariant 
ase. So 
learly, the Atiyah-Hirzebru
h spe
-tral sequen
e 
onverges in this 
ase, i.e. there are no phantom maps from

LCP r, so by the 
riterion, there is rational equivalen
e from ΣLCP r to awedge of spheres. Sin
e S(ξ) ∼= ES1×LCP r ≃ LCP r, we see that we have arational equivalen
e f2 from ΣS(ξ) to a wedge of spheres. By (48) this givesa map from Th(ξ) to a wedge of spheres,
Th(ξ)

f1 // Σ(ξ)
f2 //
∨
i S

ni . (50)Let us 
onsider the in
lusion LCP r −→ ES1 ×S1 LCP r. One 
an in-vestigate this map on rational 
ohomology using Serre's spe
tral sequen
efor the �bration LCP r −→ ES1 ×S1 LCP r −→ BS1. This is done in[Bökstedt-Ottosen℄ Prop. 15.2, and it emerges that E∞ = E3 with all non-trivial groups in either E0,∗
3 ⊆ E0,∗

2 = H∗(LCP r; Q) or E∗,03 = H∗(BS1; Q).This implies that the 
ombined map
H̃∗(LCP r; Q)⊕ H̃∗(BS1; Q) −→ H̃∗(ES1 ×S1 LCP r; Q) (51)is surje
tive.In (48), use the homotopy equivalen
es S(ξ) ∼= ES1×LCP r and D(ξ) ≃

ES1 ×S1 LCP r, and proje
t on the �rst fa
tor to get
S(ξ) //

��

D(ξ) //

��

Th(ξ)

��

ES1 // BS1 // BS1/ES1 ≃ BS1whi
h gives a map g1 : Th(ξ) −→ BS1. Note that the Atiyah-Hirzebru
hspe
tral sequen
e for BS1 
onverges, so by the 
riterion, there is a rationalequivalen
e g2 : ΣBS1 −→ ∨
j S

nj .
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tral sequen
e 57Combining with (50), we 
an make a 
omposite map
ϕ : ΣTh(ξ)

∆ // ΣTh(ξ) ∨ ΣTh(ξ)
f1∨g1 // Σ2S(ξ) ∨ ΣBS1 f2∨g2 //

∨
k S

nkHere f2∨g2 is a rational equivalen
e, and by (51), ∆∗ ◦ (f1∨f2)
∗ is surje
tiveon redu
ed 
ohomology with rational 
oe�
ients. So the 
omposite map ϕ∗is surje
tive on rational 
ohomology, and by 
ollapsing some of the spheres,we 
an ensure it be
omes inje
tive. We have 
onstru
ted the desired rationalequivalen
e.Lemma 4.6. If Xi is a sequen
e of sub
omplexes of the CW 
omplex X =

LCP r
hS1, and if for every k there is an m su
h that the k-skeleton Skk(X) ⊆

Xm, then 
ondition (∗) applies.Proof. We must show that the map
K∗(X) −→ lim←−

i

K∗(Xi)is inje
tive. Let a be in the kernel of this map. Be
ause of our 
onditionon the �ltration, a will restri
t trivially to ea
h skeleton. Then Lemma 4.5shows that a vanishes.Now 
onsider the general 
ase. By Lemma 4.3, the 
ondition on πj issatis�ed for X = LCP r
hS1.Lemma 4.7. If Xi is a sequen
e of subspa
es of X as above, and if for every

k there is an m su
h that πj(Xm) → πj(X) is an isomorphism for j ≤ k,then 
ondition (∗) applies.Proof. Using relative CW approximation (see [Hat
her1℄ Prop. 4.13), we 
anindu
tively 
onstru
t a sequen
e of CW 
omplexes Yi su
h that the followingladder 
ommutes,
Y0

��

// Y1
//

��

. . .

X0
// X1

// . . .and su
h that the verti
al maps are weak homotopy equivalen
es. Fur-thermore, for a given k we have by assumption that there is m su
h that
πj(Xm)→ πj(X) is an isomorphism for j ≤ k, and this means we 
an ensurethat all Yn for n ≥ m are 
onstru
ted from Yn−1 by adding 
ells of dimensiongreater than k. So letting Y = ∪iYi, we have that for ea
h k there is an msu
h that Skk(Y ) ⊆ Y m.The map Y → X is a weak homotopy equivalen
e. Noting that a weakhomotopy equivalen
e preserves K-theory, the lemma follows from the pre-vious one.
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ohomology of LHP r5 S1-equivariant 
ohomology of LHP r5.1 The Morse spe
tral sequen
esFor LHP r
hS1, the Morse spe
tral sequen
e is as follows:Theorem 5.1. The Morse spe
tral sequen
e E∗,∗r (M)(LHP r

hS1) is a spe
tralsequen
e of H∗(BS1; Fp) = Fp[u]-modules, and it has the following E1 page:Assume p | r + 1. Then
E0,∗

1 = Fp[u, y]/ 〈yr+1〉 ;
Epm+k,∗

1 = αpm+kFp[u, t]/ 〈Qr, Qr+1〉 , for m ≥ 0, 1 < k < p− 1;
Epm,∗

1 = αpmFp[u] {1, y, . . . , yr, σ, . . . , σyr} for m ≥ 1.Assume p ∤ r + 1. Then
E0,∗

1 = Fp[u, y]/ 〈yr+1〉 ;
Epm+k,∗

1 = αpm+kFp[u, t]/ 〈Qr, Qr+1〉 , for m ≥ 0, 1 < k < p− 1;
Epm,∗

1 = αpmFp[u] {1, y, . . . , yr+1, τ, . . . , τyr+1} for m ≥ 1.In �ltration n = pm+ k, the element αpm+ku
itj has total degree (4r + 2)n−

4r + 2i + 4j + 1. In �ltration n = pm, the generators are free Fp[u]-modulegenerators, whi
h have the following degrees:Class Case Total degree
αpmy

i p | r + 1, 0 ≤ i ≤ r (4r + 2)pm− 4r + 4i+ 1
αpmy

i p ∤ r + 1, 0 ≤ i ≤ r − 1 (4r + 2)pm− 4r + 4i+ 1
αpmy

iσ p | r + 1, 0 ≤ i ≤ r (4r + 2)pm+ 4i
αpmy

iτ p ∤ r + 1, 0 ≤ i ≤ r − 1 (4r + 2)pm+ 4i+ 4Note that the 
olumns Epm,∗
1 , m ≥ 0, are in�nite, while the 
lass αpm+ku

itjin Epm+k,∗
1 is zero when i ≥ 4r or j ≥ 2r.Remark 5.2. The symbol αn refers to the Thom isomorphism. The notation

αnx et
. denotes the 
up produ
t with the Thom 
lass of µ−n in the 
riti
alsubmanifold N(n2). The produ
t is not de�ned in the spe
tral sequen
e, andso it is a bit of abuse of notation. But it is a very pra
ti
al way of keepingtra
k of the dimension shift and should be read as su
h.Proof. The Morse spe
tral sequen
e is des
ribed in Theorem 4.4. We use 
o-homology with Fp 
oe�
ients. First take �ltration n = 0. ThenG0(HP r)hS1 =
HP r

hS1 itself, and the S1 a
tion is trivial. Thus
E0,∗

1 (M)(LHP r
hS1) ∼= H∗(HP r

hS1; Fp) = H∗(BS1 ×HP r; Fp)
∼= H∗(BS1; Fp)⊗H∗(HP r; Fp) ∼= Fp[u]⊗ Fp[x]/ 〈xr〉 .
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tral sequen
es 59Now take n ≥ 1. From Theorem 4.4,
En,∗

1 (M)(LHP r
hS1) ∼= Hn+∗−((4r+2)n−4r+1)(G(HP r)

(n)

hS1; Fp).Now we 
an use the previous results about the spa
es of geodesi
s, Theorems2.12 and 2.14. For the 
ase n = pm + k we know from Theorem 2.12 that
u maps to x, and so the Fp[u]-module stru
ture is that multipli
ation by uequals multipli
ation by x. This is in
orporated in the notation by writing
u for the 
lass previously named x. The last part of the theorem is Lemma2.9.The next Lemma is based upon [Bökstedt-Ottosen℄, Lemma 9.8:Lemma 5.3. In the Morse spe
tral sequen
e for LHP r

hS1, all di�erentialsstarting in odd total degree are trivial.Proof. This is mostly seen for dimensional reasons. Using the table in The-orem 5.1, we see that elements of odd total degree in the spe
tral sequen
ehave the form αny
iuj or αnuitj . Be
ause of the derivation property of thedi�erentials, it is enough to 
onsider the Fp[u] generators, i.e. αpmy

i and
αpm+kt

j for m ≥ 0.So let us prove that ds(αpmyi) is trivial (s ≥ 1). This has total degree
(4r+2)pm−4r+4i+2 and �ltration degree pm+s. By the table in Theorem5.1, observe that a non-trivial 
lass of �ltration n and even total degree existsif and only if p | n. Furthermore, in 
ase p | n we 
an determine the 
lass of�ltration n with lowest total degree. If p | (r + 1), this 
lass is αnσ of totaldegree (4r+2)n, and if p ∤ n this 
lass is αnτ of total degree (4r+2)n+4. Soif ds(αpmyi) is non-trivial, its total degree must be at least the total degreementioned above. That is,

(4r + 2)pm− 4r + 4i+ 2 ≥
{

(4r + 2)(pm+ s), p | (r + 1);
(4r + 2)(pm+ s) + 4, p ∤ (r + 1).Suppose p | r + 1. Then we 
an redu
e the inequality to

−4r + 4i+ 2 ≥ (4r + 2)s ⇔ (−4r + 2)(s+ 1) + 4i ≥ 0.This is easier to satisfy if s is small and i is large, so we try s = 1 (minimum)and i = r (maximum), obtaining the equality 2(−4r+2)+4r = −4r+4 ≥ 0,whi
h only holds for r = 1. In this 
ase we have equality. If s > 1 or
i < r, there are no solutions. So the question is whether d1(αpmy) 
an be anon-trivial 
lass of even total degree in �ltration n = pm+ 1, and it 
annot,sin
e then, as noted earlier, p should divide pm+ 1. If p ∤ r + 1 there are nosolutions at all.
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ohomology of LHP rNow take the 
ase αpm+kt
j . Then ds(αpm+kt

j) has �ltration degree pm+
k+ s and total degree (4r+ 2)(pm+ k)− 4r+ 4j + 2, whi
h is even. By thesame observation as before, if ds(αpm+kt

j) were to be non-trivial, its totaldegree must satisfy
(4r + 2)(pm+ k)− 4r + 4j + 2 ≥

{
(4r + 2)(pm+ s+ k), p | (r + 1);
(4r + 2)(pm+ s+ k) + 4, p ∤ (r + 1).Like before, we redu
e for p | r + 1:

−4r + 4j + 2 ≥ (4r + 2)s ⇔ (4r + 2)(s+ 1)− 4 ≤ 4jRe
all s ≥ 1, so to satisfy this, j ≥ 2r. But then the 
lass αpm+kt
j is zero,a

ording to the last part of Theorem 5.1. Likewise for p | r+1. This provesthe Lemma.We are going to need an overview of the size of the E1 page of the Morsespe
tral sequen
e.Lemma 5.4. The Poin
aré series P (t) of E1(L(HP r)hS1) is given by for

p ∤ r + 1:
1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r)(t4r+3 + t4r+4)

(1− t2)(1− t4) .and for p | r + 1,
1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r+4)(t4r−1 + t4r)

(1− t2)(1− t4) .Proof. I only prove this for p ∤ r+1. The other 
ase is exa
tly the same. We�rst �nd the Poin
aré series for En,∗
1 .

• n = 0: By Theorem 5.1, sin
e E0,∗
1 is a free Fp[u]-module,

P (E0,∗
1 )(t) = P (Fp[u]) · P (Fp[x]/ 〈xr〉) =

1

1− t2 ·
1− t4(r+1)

1− t4 .

• p ∤ n: By Theorem 5.1
P (En,∗

1 )(t) = t4r(n−1)+2n+1 · P (Fp[t, u]/ 〈Qr, Qr+1〉)

= t4r(n−1)+2n+1(1 + t2) · 1− t
4r

1− t4 ·
1− t4(r+1)

1− t4

= t4r(n−1)+2n+1 (1− t4r)(1− t4r+4)

(1− t2)(1− t4) ,using Lemma 2.9 to �nd P (Fp[t, u]/ 〈Qr, Qr+1〉).
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tral sequen
es 61
• p | n: A

ording to Theorem 5.1, we obtain

P (En,∗
1 )(t) = t4r(n−1)+2n+1 · P (Fp[u]

{
1, y, . . . , yr+1, τ, . . . , τyr+1

}
)

= t4r(n−1)+2n+1 1

1− t2 ·
(1− t4r)(1 + t4r+3)

1− t4 .sin
e y has degree 4 and τ has degree 4r + 3.We must sum over n ≥ 1 to 
al
ulate P (E1)(t). Only the fa
tor t4r(n−1)+2n+1depends on n, so we sum that �rst, in the two 
ases p | n and p ∤ n:
∑

n≥1,p|n
t4r(n−1)+2n+1 =

∑

m≥1

t4r(mp−1)+2mp+1 =
tp(4r+2)−4r+1

1− tp(4r+2)
.Using this, we 
an 
ompute

∑

n≥1, p∤n

t4r(n−1)+2n+1 =
∑

n≥1

t4r(n−1)+2n+1−t
p(4r+2)−4r+1

1− tp(4r+2)
=

t3

1− t4r+2
−t

p(4r+2)−4r+1

1− tp(4r+2)
.Combining the results above and summing over n ≥ 1 then yields:

P (E1)(t) = P (E0,∗
1 )(t) +

∑

n≥1, p|n
P (En,∗

1 )(t) +
∑

n≥1, p∤n

P (En,∗
1 )(t)

=
1

(1− t2)(1− t4) ·
(

1− t4(r+1) +
tp(4r+2)−4r+1

1− tp(4r+2)
(1− t4r)(1 + t4r+3)

+

(
t3

1− t4r+2
− tp(4r+2)−4r+1

1− tp(4r+2)

)
(1− t4r)(1− t4r+4)

)
=

1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r)(t4r+3 + t4r+4)

(1− t2)(1− t4) .Remark 5.5. Later we are going to need the odd and even parts of E1, i.e.
Eodd

1 =
⊕

p+q oddEp,q
1 , and likewise for Eeven

1 . Noti
e that
K(t) :=

tp(4r+2)−4r+1

1− tp(4r+2)has odd degree. Then we get from the above Lemma that for p ∤ r + 1,
P (Eeven

1 )(t) =
1− t4r+4 +K(t)(1− t4r)t4r+3

(1− t2)(1− t4) ;

P (Eodd
1 )(t) =

1− t4r
(1− t2)(1− t4)

(
(1− t4r+4)t3

1− t4r+2
+K(t)t4r+4

)
.
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ohomology of LHP rSimilarly for p | r + 1,
P (Eeven

1 )(t) =
1− t4r+4

(1− t2)(1− t4)
(
1 +K(t)t4r−1

)
;

P (Eodd
1 )(t) =

1− t4r+4

(1− t2)(1− t4)

(
(1− t4r)t3
1− t4r+2

+K(t)t4r
)
.For 
omparison purposes we are also going to need the non-equivariant
ase, H∗(LHP r).Theorem 5.6. Let E∗,∗s = E∗,∗s (M)(LHP r). Assume p | r + 1. Then

E0,∗
1 = Fp[y]/ 〈yr+1〉 ;

En,∗
1 = αnFp[y, σ]/ 〈yr+1, σ2〉 for n ≥ 1.Assume p ∤ r + 1. Then
E0,∗

1 = Fp[y]/ 〈yr+1〉 ;
En,∗

1 = αnFp[y, τ ]/ 〈yr, τ 2〉 for n ≥ 1.where |x| = 4, |σ| = 4r − 1,|τ | = 4r + 3,|αn| = (4r + 2)n− 4r + 1.This spe
tral sequen
e 
ollapses from the E1 page. This determinesH∗(LHP r; Fp)as an abelian group, and it has the following Poin
aré series: For p ∤ r + 1,
PH∗(LHP r)(t) =

1− t4r+4

1− t4 +
(1− t4r)(1 + t4r+3)t3

(1− t4)(1− t4r+2)
;and for p | r + 1,

PH∗(LHP r)(t) =
1− t4r+4

1− t4 +
(1− t4r+4)(1 + t4r−1)t3

(1− t4)(1− t4r+2)
.The map indu
ed by in
lusion

i∗ : En,odd−n
1 (M)(LHP r

hS1) −→ En,odd−n
1 (M)(LHP r)is surje
tive.Proof. The 
omputation of E1 via Morse theory is just like the proof of theequivariant 
ase, Theorem 5.1. That the spe
tral sequen
e 
ollapses followsfrom a splitting result for LHP r. Su
h a result 
an be found in [Ziller℄.



5.1 The Morse spe
tral sequen
es 63For the 
omputation of the Poin
aré series, sin
e the spe
tral sequen
e
ollapses, we 
an 
ompute PH∗(LHP r) = PE∞ = PE1. We reuse the 
omputa-tions from the proof of Lemma 5.4. Consider the 
ase p ∤ r + 1. (The 
ase
p | r + 1 is similar.) In �ltration n > 0 we have,

P (En,∗
1 )(t) = t4r(n−1)+2n+1 · 1− t

4r

1− t4 (1 + t4r+3).And so
P (E1)(t) =

1− t4r+4

1− t4 +
∑

n>0

(
t4r(n−1)+2n+1 · 1− t

4r

1− t4 (1 + t4r+3)

)

=
1− t4r+4

1− t4 +
(1− t4r)(1 + t4r+3)t3

(1− t4)(1− t4r+2)
.For the surje
tivity, we prove for every n ∈ N that the map

En,odd−n
1 (M)(LHP r

hS1) −→ En,odd−n
1 (M)(LHP r)is surje
tive. For n = 0 the target spa
e is zero, so the result is trivial. For

n > 0, the degree of the Thom 
lass αn is odd, so by the formula for the E1page, the question is whether i∗ : Heven(G(HP r)
(n)
hS1) −→ Heven(G(HP r)(n))is surje
tive. This follows from Corollary 2.15.Remark 5.7. We also need the odd and even parts, so I will do that 
om-putation now. For p ∤ r + 1,

P odd
H∗(LHP r)(t) =

(1− t4r)t3
(1− t4)(1− t4r+2)

;and
P even
H∗(LHP r)(t) =

1− t4r+4

1− t4 +
(1− t4r)t4r+6

(1− t4)(1− t4r+2)
(52)

= 1 +
(1− t4r)t4

(1− t4)(1− t4r+2)
.Note that

t · P (Hodd(LHP r))(t) = P (Heven(LHP r))(t)− 1, (53)and that
P odd
H∗(LHP r)(t) = t3(1 + t4 + · · ·+ t4r−4)

∞∑

n=0

tn(4r+2) (54)



64 5 S1-equivariant 
ohomology of LHP rhas all 
oe�
ients equal to 0 or 1, and the di�eren
e in degree between the1-
oe�
ients is at least four. We have the same properties when p | r + 1,and for future referen
e, when p | r + 1,
P odd
H∗(LHP r)(t) =

(1− t4r+4)t3

(1− t4)(1− t4r+2)
= t3(1 + t4 + · · ·+ t4r)

∞∑

n=0

tn(4r+2) (55)Corollary 5.8. For the energy �ltration F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ LHP r,the dimension of Hodd(Fm) as an Fp ve
tor spa
e is as follows:
dimHodd(Fm) =

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.Proof. The Morse spe
tral sequen
e {E∗,∗s } = {E∗,∗s (M)(LHP r)} indu
ed bythe energy �ltration of LHP r 
ollapses from the E1 page by Theorem 5.6above. This means that E∞ = E1. Comparing with the spe
tral sequen
e

{Es(Fm)} of the �nite �ltration F0 ⊆ F1 ⊆ · · · ⊆ Fm we see that its E1page is the same as E1(M)(LHP r) up to �ltrationm. So by naturality, bothspe
tral sequen
es 
ollapse from the E1 page, and E∞(Fm) equals E∞(LHP r)up to �ltration m. So we 
an 
al
ulate the dimension of Hodd(Fm) as an Fpve
tor spa
e:
dimHodd(Fm) = dimEm,odd−m

∞ (Fm) + · · ·+ dimE1,odd−1
∞ (Fm)

=

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.Here the last equality is from (54) and (55).To squeeze the last information out of the Morse spe
tral sequen
es, weare going to use lo
alization. The general setup is as follows: Given an Rmodule M and a multipli
ative set U ⊆ R (i.e. if u, v ∈ U then uv ∈ U), wede�ne M lo
alized away from U as

M [U−1] =
{m
u
| m ∈M,u ∈ U

}
/ ∼where m

u
∼ m′

u′
if there is v ∈ U su
h that vu′m = vum′. It is an elementaryalgebrai
 fa
t that lo
alization away from U ⊆ R is an exa
t fun
tor on

R-modules.We are going to use U = {un | n ∈ N} ⊆ Fp[u], where u as usually de-notes our generator u ∈ H2(BS1; Fp), su
h that H∗(BS1; Fp) ∼= Fp[u]. Themain lo
alization result here is [Bökstedt-Ottosen℄ Theorem 8.3, whi
h I statewithout proof:



5.2 The Main Theorem 65Theorem 5.9. There is an isomorphism of spe
tral sequen
es
E∗(M)(LHP r

hS1)

[
1

u

]
∼= E∗(M)(LHP r)⊗ Fp[u, u

−1].when re-indexing the 
olumns: �ltration pm goes to �ltration m for m ∈ N.Note: This implies that the lo
alized spe
tral sequen
e E∗(M)(LHP r
hS1)

[
1
u

]
ollapses from the Ep page, sin
e E∗(M)(LHP r) 
ollapses from the E1 page.5.2 The Main TheoremTo prove the Main Theorem, we follow the method used in [Bökstedt-Ottosen℄�13, adopting the strategy and proofs to the quaternion 
ase. We need allthe information that we have hitherto dedu
ed from the Morse spe
tral se-quen
es. For 
onvenien
e, we 
olle
t the ne
essary stru
tural fa
ts below:SF(1) Classes of even total degree only o

ur in Epm,∗
∗ (M)(LHP r

hS1), m ≥ 0.SF(2) Epm,∗
∗ (M)(LHP r

hS1) is a free Fp[u]-module. If p ∤ n, En,∗
∗ (M)(LHP r

hS1)is a �nite dimensional Fp ve
tor spa
e.SF(3) Non-trivial di�erentials in E∗(M)(LHP r
hS1) start in even total degree.SF(4) The in
lusion j : (Fn)hS1 −→ LHP r

hS1 indu
es a surje
tive map on
ohomology, j∗ : Hodd(LHP r
hS1) −→ Hodd((Fn)hS1).SF(5) En,2i+1−n

1 (M)(LHP r) = 0 if one of the following hold: p | r + 1 and
i > (2r + 1)n, or p ∤ r + 1 and i > (2r + 1)n− 2.SF(6) The map i∗ : Hodd(LHP r

hS1) −→ Hodd(LHP r) is surje
tive.Proof. SF(1) and SF(2) is Theorem 5.1. SF(3) is Lemma 5.3. For SF(4), we
onsider the map between the two Morse spe
tral sequen
es 
onverging to
H∗(LHP r

hS1; Fp) resp. H∗((Fn)hS1; Fp) indu
ed by the two energy �ltrations.By SF(3) every di�erential starting in odd total degree is trivial, so the mapis seen to be surje
tive on Hodd.To prove SF(5), we use Theorem 5.6 to �nd the maximal degree of anon-trivial element of odd total degree in �ltration n. We get:
p | r + 1 : |αnxr| = (4r + 2)n− 4r + 1 + 4r = (4r + 2)n+ 1
p ∤ r + 1 : |αnxr−1| = (4r + 2)n− 4r + 1 + 4(r − 1) = (4r + 2)n− 3It follows that En,2i+1−n

1 (M)(LHP r) = 0 if
p | r + 1 : 2i+ 1 > (4r + 2)n + 1 ⇐⇒ i > (2r + 1)n,
p ∤ r + 1 : 2i+ 1 > (4r + 2)n− 3 ⇐⇒ i > (2r + 1)n− 2.



66 5 S1-equivariant 
ohomology of LHP rTo prove SF(6), we �rst re
all that by Theorem 5.6, the indu
ed map
i∗ : Eodd

1 (M)(LHP r
hS1) −→ Eodd

1 (M)(LHP r) is surje
tive. Sin
e every dif-ferential in Es(M)(LHP r
hS1) starting in odd total degree is trivial, the map

i∗ : Eodd
∞ (M)(LHP r

hS1) −→ Eodd
∞ (M)(LHP r) is also surje
tive. It is a gen-eral fa
t for spe
tral sequen
es that the indu
ed map on their limits is thenalso surje
tive, and this is easily seen by a �ltration argument. This meansthat i∗ : Hodd(LHP r

hS1) −→ Hodd(LHP r) is surje
tive.We �rst prove the Main Theorem for the odd part of the 
ohomology.There are two kinds of Fp[u] generators, torsion and free, and we need touse the S1 transfer map τ to �nd the �rst kind. Let i : LHP r −→ ES1 ×S1

LHP r = LHP r
hS1 be the in
lusion. Then it follows from [Bökstedt-Ottosen℄Thm. 14.1 that the S1 a
tion di�erential d is 
omposed as follows
H∗+1(LHP r)

τ

((QQQQQQQQQQQQQ

d // H∗(LHP r)

H∗(LHP r
hS1)

i∗
66nnnnnnnnnnnn

(56)
In general, for a spa
e X with an a
tion µ : S1 × X −→ X, the map d isgiven by

Hn+1(X) −→ Hn+1(S1 ×X) −→ Hn+1(X)⊕Hn(X)
a 7→ µ∗(a) 7→ (a, d(a))where the last map is the Künneth formula. For ease of referen
e, in theLemma below I have 
olle
ted all the fa
ts I need about the a
tion di�erential.First some notation:

IF = IF(r, p) = {(4r + 2)i+ 4j | δ ≤ j ≤ r, 0 ≤ i, p | (r + 1)i+ j} \ {0} ,
IT = IT (r, p) = {(4r + 2)i+ 4j | δ ≤ j ≤ r, 0 ≤ i, p ∤ (r + 1)i+ j} ;where

δ =

{
1, p ∤ r + 1;
0, p | r + 1.Set IA = IF ∪ IT . Then de�ne power series by

PI(t) =

∞∑

n=0

ant
n, where an =

{
1, n ∈ I(r, p);
0, n /∈ I(r, p). (57)for I = IF , IT , IA. By [Bökstedt-Ottosen℄ Lemma 11.4, IF ∩ IT = ∅, sowe get PIA = PIF + PIT . Also note that by (54),

PHodd(LHP r)(t) =
1

t
PIA(t). (58)



5.2 The Main Theorem 67The following Lemma on the a
tion di�erential is proved in [Bökstedt-Ottosen℄lemma 11.6.Lemma 5.10 (The A
tion Di�erential). Put H∗ = H∗(LHP r) and let k ∈ N.
(i) Ker(d : H2k −→ H2k−1) is either a trivial or a 1-dimensional ve
torspa
e. It is non-trivial if and only if 2k ∈ IF(r, p).
(ii) Im(d : H2k −→ H2k−1) is either a trivial or a 1-dimensional ve
torspa
e. It is non-trivial if and only if 2k ∈ IT (r, p).
(iii) The 
okernel of the map

d :
⊕

0≤k≤(2r+1)mp−δ
H2k+2 −→

⊕

0≤k≤(2r+1)mp−δ
H2k+1has dimension rm if p ∤ r + 1, and dimension (r + 1)m if p | r + 1.The next two Lemmas spe
ify the Fp[u] generators for H∗(LHP r

hS1; Fp):Lemma 5.11. There is a graded subgroup T ∗ ⊆ Hodd(LHP r
hS1) su
h that

(i) uT ∗ = 0.
(ii) The restri
ted in
lusion map i∗|T ∗ : H∗(LHP r

hS1)|T ∗ −→ H∗(LHP r) isinje
tive.
(iii) The image i∗(T ∗) ⊆ H∗(LHP r) equals the image d(H∗+1(LHP r)) ⊆

H∗(LHP r).Proof. We use property (iii) to 
onstru
t T ∗. We 
hoose a graded subgroup
T ∗ ⊆ H∗+1(LHP r), su
h that d maps T ∗ isomorphi
ally onto Im d. This we
an do simply by lifting ea
h generator of Im d ⊆ H∗(LHP r) toH∗+1(LHP r).Now we put T ∗ = τ(T ∗). Then (iii) follows by 
onstru
tion, sin
e i∗(T ∗) =
i∗ ◦ τ ∗(T ∗) = d(T ∗) by the diagram (56). Also (ii) holds, sin
e i∗ restri
tedto T ∗ 
orresponds to i∗ ◦ τ = d restri
ted to T ∗, and we 
hose T ∗ su
h that
d was an isomorphism of T ∗ onto its image. As for property (i), this holdsbe
ause uτ = 0 a

ording to [Bökstedt-Ottosen℄ Thm. 14.1. This is be
ausethe transfer map τ appears right after multipli
ation by u in the Gysin exa
tsequen
e.Remark 5.12. By de�nition of T ∗ it follows from Lemma 5.10 (ii) that thenon-trivial part of T ∗ sits in degree 2k−1 if and only if 2k ∈ IT (r, p). Usingthe notation in (57), we 
an write down the Poin
aré series of T ∗:

PT ∗(t) =
1

t
PIT (t).



68 5 S1-equivariant 
ohomology of LHP rLemma 5.13. There is a graded subgroup U∗ ⊆ Hodd(LHP r
hS1) su
h that

(i) The 
omposition
T ∗ ⊕ U∗ � � // Hodd(LHP r

hS1)
i∗ // Hodd(LHP r)is an isomorphism.

(ii) The restri
tion
U2i+1 // H2i+1(LHP r

hS1)
j∗ // H2i+1((Fpm)hS1)is trivial if either p | r + 1 and i > (2r + 1)pm, or p ∤ r + 1 and

i > (2r + 1)pm− 2.Proof. Again we �rst spe
ify a subgroup U∗ ⊆ Hodd(LHP r), by demandingthat it must be a 
omplementary subgroup of i∗(T ∗), so that we have the Fpve
tor spa
e isomorphism Hodd(LHP r) ∼= i∗(T ∗) ⊕ U∗. The idea is to �nd
U∗ ⊆ H∗(LHP r

hS1) su
h that i∗ maps it isomorphi
ally to U ∗. This 
an bedone sin
e i∗ is surje
tive by SF(6).We now use the Gysin sequen
e, see [Bökstedt-Ottosen℄ Thm. 14.1, tomake the following diagram with exa
t rows:
H2i−1(LHP r

hS1)
·u //

j∗
����

H2i+1(LHP r
hS1)

j∗
����

i∗ // // H2i+1(LHP r)

��
H2i−1((Fpm)hS1)

·u // H2i+1((Fpm)hS1) // H2i+1(Fpm)

(59)
The verti
al maps j∗ are surje
tive a

ording to SF(4). By SF(6), the upperhorizontal map i∗ is surje
tive.Under the assumption in (ii), we get from SF(5) that H2i+1(Fn,Fn−1) =
En,2i+1−n

1 = 0 for 0 ≤ n ≤ pm. Using the long exa
t sequen
e for the pair
(Fn,Fn−1) for n = 0, 1, . . . , pm gives a series of inje
tive maps,

H2i+1(Fpm) →֒ H2i+1(Fpm−1) →֒ · · ·H2i+1(F0) →֒ H2i+1(F−1) = 0.This means H2i+1(Fpm) = 0. So U 2i+1 is in the kernel of the right verti
almap. To ensure that U2i+1 is also in the kernel of the middle verti
al map
j∗, we use diagram 
hase. The image j∗(U2i+1) maps to zero, so it 
omesfrom H2i−1(Fpm). The left j∗ map is onto this, so we 
an lift it, map it into
H2i+1(LHP r), and subtra
t it from the original U2i+1. This gives a 
hoi
e of
U2i+1 that satis�es both (i) and (ii).



5.2 The Main Theorem 69Remark 5.14. By property (i) of U∗, we 
an 
al
ulate its Poin
aré series
PU∗(t) = PHodd(LHP r)(t)− PT ∗(t) =

1

t
(PIA(t)− PIT (t)) =

1

t
PIF(t),where we have used Remark 5.12 and (58).Remark 5.15. We will need the dimension of parts of U∗. As T ∗ ⊕ U∗ i∗∼=

Hodd(LHP r), and i∗(T ∗) = Im d ⊆ Hodd(LHP r), we 
an 
ompute the di-mension of U∗ as the dimension of the 
okernel of the a
tion di�erential d.For this we 
an use Lemma 5.10 (iii) and (iv), and get
p ∤ r + 1 : dim

( ⊕

k≤(2r+1)mp−1

U2k−1
)

= rm,

p | r + 1 : dim
( ⊕

k≤(2r+1)pm

U2k−1
)

= (r + 1)m.Now we 
an prove the Main Theorem for the odd degree 
ohomology:Theorem 5.16. The map of Fp[u]-modules,
h1 ⊕ h2 : (Fp[u]⊗ U∗)⊕ T ∗ −→ Hodd(LHP r

hS1)indu
ed by the in
lusions of U∗ and T ∗, is an isomorphism of Fp[u]-modules.Expressed in terms of generators, Hodd(LHP r
hS1) is isomorphi
 as agraded Fp[u]-module to

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1,where the lower index denotes the degree of the generators.Proof. From Lemma 5.11 (i) we see that T ∗ is a
tually an Fp[u]-submoduleof Hodd(LHP r

hS1), and so the in
lusion h2 : T ∗ −→ Hodd(LHP r
hS1) is an

Fp[u]-linear map. On the 
ontrary we just 
onsider U∗ as a subgroup, andmake the Fp[u]-module Fp[u]⊗U∗. There is then a unique way to extend thein
lusion of U∗ to an Fp[u]-linear map h1 : Fp[u]⊗ U∗ −→ Hodd(LHP r
hS1).First we remark that h1 ⊕ h2 is surje
tive. To see this we use part of theGysin exa
t sequen
e, see (59), where the rightmost zero is SF(6):

H2i−1(LHP r
hS1)

u−→ H2i+1(LHP r
hS1)

i∗−→ H2i+1(LHP r) −→ 0.This is a sequen
e of Fp ve
tor spa
es, so it su�
es to show that we 
an hitthe image u(H2i−1(LHP r
hS1)) and the 
okernel H2i+1(LHP r

hS1)/ ker(i∗) ∼=
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H2i+1(LHP r). The 
okernel 
an be hit a

ording to (i) in Lemma 5.13. Wenow use indu
tion in the degree 2i + 1. The indu
tion start is trivial. Weget indu
tively that the image u(H2i−1(LHP r
hS1)) 
an be hit by u((Fp[u]⊗

U∗)⊕T ∗
)
⊆ (Fp[u]⊗U∗)⊕T ∗, where the last in
lusion follows from Lemma5.11. So it remains to show that h1 ⊕ h2 is inje
tive.The idea of the proof is now to show that map h1 ⊕ h2 lo
alized awayfrom u, whi
h we denote (h1 ⊕ h2)[

1
u
], is inje
tive. Again by Lemma 5.11 (i)we see that when lo
alizing away from u, T ∗ vanishes. So we look at h1, andby Lemma 5.13 there is a 
ommutative diagram,

Fp[u]⊗
⊕

i U2i+1 h1 //id⊗proj
��

Hodd(LHP r
hS1)

j∗

����
Fp[u]⊗

⊕
i≤(2r+1)pm−δ U2i+1 h1 // Hodd((Fpm)hS1)

(60)
where

δ =

{
1, p ∤ r + 1;
0, p | r + 1.The map j∗ is surje
tive a

ording to SF(4).Lo
alizing away from u 
an be done by tensoring with Fp[u, u−1] over

Fp[u]. Sin
e h1 ⊕ h2 is surje
tive, and lo
alization is exa
t, (h1 ⊕ h2)[
1
u
] isalso surje
tive. As noted, h2 vanishes when lo
alizing away from u, so we
on
lude that

h1[
1

u
] : Fp[u, u

−1]⊗ U∗ −→ Hodd(LHP r
hS1)[

1

u
]is surje
tive. When lo
alizing, we 
on
lude from the diagram (60) that

h1[
1

u
] : Fp[u, u

−1]⊗
⊕

0≤i≤(2r+1)pm−δ
U2i+1 −→ Hodd((Fpm)hS1)[

1

u
]is also surje
tive.To show h1[

1
u
] as inje
tive, we will prove that the domain and targetspa
es are isomorphi
 as abstra
t modules. So we �rst study the domainof h1[

1
u
]. The dimension of the U∗ part is 
al
ulated in Remark 5.15, andtensoring with Fp[u, u−1] we obtain the rank:rank(Fp[u, u

−1]⊗
⊕

0≤i≤(2r+1)pm−δ
U2i+1

)
=

{
(r + 1)m, p | r + 1;
rm, p ∤ r + 1.Turning to the target spa
e of h1[

1
u
], Hodd((Fpm)hS1)[ 1

u
], we use Theorem 5.9:

Hodd((Fpm)hS1)[
1

u
] ∼= Hodd(Fm)⊗ Fp[u, u

−1] (61)



5.2 The Main Theorem 71Consequently, by Corollary 5.8 we 
an 
al
ulate the rank as an Fp[u]-module:rankHodd((Fpm)hS1)[
1

u
] =

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.So h1[

1
u
] is a surje
tive map between two free Fp[u, u−1]-modules of thesame rank. Then h1[

1
u
] must also be inje
tive.All that remains is to show that h1 ⊕ h2 is inje
tive. A
tually it will beenough to show that h1⊕h2 is inje
tive for ea
h m, sin
e a given element willbe in the domain of h1 ⊕ h2 for a large enough m. So 
onsider an element

(a, t) ∈ Fp[u] ⊗
⊕

i≤(2r+1)pm−δ U2i+1 ⊕ T ∗ in the kernel of h1 ⊕ h2. Whenlo
alizing, t vanishes, so c lo
alized must be in the kernel of h1 lo
alized,whi
h we have shown is inje
tive. This means c lo
alized is zero. But thelo
alization map on Fp[u]⊗ U∗,
Fp[u]⊗ U∗ lo
alization−→ Fp[u, u

−1]⊗Fp[u] (Fp[u]⊗ U∗) ∼= Fp[u, u
−1]⊗ U∗is inje
tive, so c is zero itself. This means t is in the kernel of h1. And byLemma 5.11, h1 is inje
tive, so t is zero.The expression with generators follows dire
tly from the isomorphism

Hodd(LHP r
hS1) ∼= (Fp[u] ⊗ U∗) ⊕ T ∗ together with the 
omputation of thePoin
aré series in Remarks 5.12 and 5.14.We 
an now prove the general Main Theorem, giving a 
omplete des
rip-tion of H∗(LHP r

hS1; Fp):Theorem 5.17. As a graded Fp[u]-module, H∗(LHP r
hS1 ; Fp) is isomorphi
to

Fp[u]⊕
⊕

2k∈IF
Fp[u]f2k ⊕

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1.Here the lower index denotes the degree of the generator, and their namesare meant to suggest free and torsion generators.Proof. First, note that when taking the odd part, we have already provedthis in Theorem 5.16. So it remains to show that Heven(LHP r; Fp) is a free

Fp[u]-module with generators in the stated degrees.First I argue why Heven(LHP r
hS1; Fp) is free, using the Morse spe
tral se-quen
e, E∗,∗s = E∗,∗s (M)(LHP r

hS1). By SF(1) and SF(2), Eeven
1 is a free Fp[u]-module, whi
h is 
on
entrated in Epm,∗

1 . Sin
e by SF(3) all non-trivial di�er-entials start in even degrees, Eeven
∞ is a submodule of Eeven

1 . Note that Epm,∗
1 isa �nitely generated Fp[u]-module. Sin
e Fp[u] is a prin
ipal ideal domain, the



72 5 S1-equivariant 
ohomology of LHP rsubmodule E(pm,∗)even
∞ of the free Fp[u]-module E(pm,∗)even

1 is also free. Sin
ethe spe
tral sequen
e Es 
onverges to H∗(LHP r
hS1; Fp), Heven(LHP r

hS1; Fp)is �ltered by free Fp[u] modules and is thus free itself. The generators arethe generators of Eeven
∞ .Now we must �nd the degrees of the generators. We will 
ompute Eeven

∞in terms of Poin
aré series, and dedu
e the generator degrees from this. TheMorse spe
tral sequen
e alone does not provide enough information, so we
ompare with Serre's spe
tral sequen
e for the �bration
LHP r −→ LHP r

hS1 −→ BS1,that is,
H∗(BS1;H∗(LHP r,Fp))⇒ H∗(LHP r

hS1; Fp).Denote this spe
tral sequen
e by E∗,∗s (S). Then E∗,∗2 (S) = H∗(LHP r; Fp)⊗
Fp[u]. A

ording to (54) and (53), H∗(LHP r; Fp) has the following form: thenon-trivial part is one-dimensional in ea
h degree, and, apart from degreezero, sits in degrees that 
ome in pairs of odd-even, with at least 2 zero-rowsbetween the pairs. I have tried to diagram what this might look like below,a star indi
ating a non-trivial group.

E2(S) 8 ∗ ∗ ∗ · · ·
7 ∗ ∗ ∗ · · ·

4 ∗ ∗ ∗ · · ·
3 ∗ ∗ ∗ · · ·

0 ∗ ∗ ∗ · · ·
0 1 2 3 4 5 ...

E3(S) 8 ∗ ∗ ∗ · · ·
7 ∗ ∗ ∗ · · ·

4 · · ·
3 ∗ · · ·

0 ∗ ∗ ∗ · · ·
0 1 2 3 4 5 ...We also see the only non-trivial d2 di�erentials must be from the even tothe odd row in the odd-even pairs. What happens when we pass to E3(S)depends on whether d2 is zero or an isomorphism (the only possibilities). If d2is zero, the odd-even row pair will survive to E3, and if d2 is an isomorphism,only the odd group in �ltration 0 will survive to E3, as indi
ated above.Here we 
an use a short
ut: The di�erential d2 
an be determined geo-metri
ally; it is a
tually given by the a
tion di�erential. By Lemma 5.10 (i)we then see that d0,2k

2 = 0 if and only if 2k ∈ IF . Then we 
an write downthe Poin
aré series of the E3 page:
P (E3(S))(t) =

1

1− t2 + P (Hodd(LHP r))(t) +
PIF(t)

1− t2 +
tPIF(t)

1− t2 . (62)



5.2 The Main Theorem 73This might not look very helpful, but if we use (52) to 
al
ulate
P (Eeven

3 (S))(t)− 1

t
P (Eodd

3 (S))(t) =
1

1− t2 +
1

t
P (Hodd(LHP r))(t) =

1

1− t2 −
t2(1− t4r)

(1− t4)(1− t4r+2)
=

1− t4r+4

(1− t4)(1− t4r+2)
(63)we get a quantity that does not depend on PIF(t).Let us return to the Morse spe
tral sequen
e. Using Remark 2.10, we 
an
ompute the same quantity for the E1(M) page. For p ∤ r + 1 this yields

P (Eeven
1 (M))(t)− 1

t
P (Eodd

1 (M))(t)

=
1− t4r+4 +K(t)(1− t4r)t4r+3

(1− t2)(1− t4)

− 1− t4r
(1− t2)(1− t4)

(
(1− t4r+4)t2

1− t4r+2
+K(t)t4r+3

)

=
1− t4r+4

(1− t2)(1− t4)

(
1− (1− t4r)t2

1− t4r+2

)
=

1− t4r+4

(1− t4)(1− t4r+2)
. (64)Using the formulas for p | r+ 1, though slightly di�erent, also give the samequantity. As we wanted to 
ompute E∞(M), we really want to know thisquantity for E∞(M). Sin
e by SF(3), all non-trivial di�erentials in E∗(M)goes from even to odd total degree, we have

dimE2n+1
∞ + dim

(
⊕

k≥1;i+j=2n+1

Im(dk : Ei−k,j−k+1
k −→ Ei,j

k )

)
= dimE2n+1

1 .From this we dedu
e
dimE2n

∞ = dimE2n
1 − dim

(
⊕

k≥1;i+j=2n+1

Im(dk : Ei−k,j−k+1
k −→ Ei,j

k )

)

= dimE2n
1 − dimE2n+1

1 + dimE2n+1
∞ .Expressing this by Poin
aré series yields

P (Eeven
∞ )(M)− 1

t
P (Eodd

∞ )(M) = P (Eeven
1 )(M)− 1

t
P (Eodd

1 )(M)Now by (63) and (64) we 
an 
on
lude
P (Eeven

∞ )(M)− 1

t
P (Eodd

∞ )(M) = P (Eeven
3 )(S)− 1

t
P (Eodd

3 )(S)



74 5 S1-equivariant 
ohomology of LHP rTo 
on
lude P (Eeven
∞ )(M) = P (Eeven

3 )(S), we must show P (Eodd
∞ )(M) =

P (Eodd
3 )(S). We 
an 
ompute P (Eodd

∞ )(M) by Theorem 5.16:
P (Eodd

∞ )(M) = P (Hodd(LHP r
hS1)) = P ((Fp[u]⊗ U∗)⊕ T ∗)

=
1

1− t2PU∗(t) + PT ∗(t) =
1

t(1− t2)PIF(t) +
1

t
PIT (t),where I have used Remarks 5.12 and 5.14. Now by Lemma 5.10 (i),

P (Eodd
3 (S))(t) = P (Hodd(LHP r))(t) +

tPIF(t)

1− t2

=
1

t
PIA(t) +

t

1− t2PIF(t) =
1

t(1− t2)PIF(t) +
1

t
PIT (t).This allows us to 
on
lude that P (Eeven

∞ )(M) = P (Eeven
3 )(S), and we 
an
ompute by (62),

P (Eeven
∞ )(M) = P (Eeven

3 )(S) =
1

1− t2 +
PIF(t)

1− t2 ,as stated in the Theorem.



756 S1-equivariant K-theory of LCP rRe
all that the Morse spe
tral sequen
e 
omes from the S1-equivariant energy�ltration
CP r = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F∞ = LCP r, (65)whi
h 
onsequently gives a �ltration {(Fn)hS1}n of LCP r

hS1. The Morsespe
tral sequen
e E∗(M)(LCP r
hS1) in K-theory has the following stru
ture,Theorem 6.1. The Morse spe
tral sequen
e E∗,∗r (M)(LCP r

hS1) 
onvergingto K∗(LCP r
hS1) is a spe
tral sequen
e of K∗(BS1) = Z[[t]]-modules, and ithas the following E1 page, using the Z/2Z grading of K-theory:

E0,j
1 =

{
Z[[t]]⊗Z Z[h]/ 〈hr〉 , j even;
0, j odd.

En,j
1 =

{
0, j even;
Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 , j odd. for n ≥ 1.Here, R = R(S1) = Z[U,U−1], and Z[[t]](n) denotes the R-module stru
ture

U 7→ (t + 1)n on Z[[t]]. The R-module stru
ture on Z[x, y]/ 〈Qr, Qr+1〉 is
U 7→ (x− y)/(1 + y) + 1.Proof. The method is exa
tly as in Theorem 5.1. The Morse spe
tral se-quen
e is Theorem 4.4, and we use Theorem 3.7 whi
h gives K∗hS1(G(r)(n)),with the module stru
tures stated just below the Theorem. Finally, usingthe Z/2Z-grading from Bott-periodi
ity, we suppress the Thom isomorphism,and simply get a shift from even to odd degree when n ≥ 1.Remark 6.2. Note that when n = 1, the S1-a
tion is free on G(r), so
G(r)hS1 ≃ ∆(r). So E1,odd ∼= K0(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉, with Z[[t]]-module stru
ture t 7→ (x− y)/(1 + y).We 
an depi
t the Morse spe
tral sequen
e s
hemati
ally as follows, wherean empty spa
e denotes zero, and a ∗ denotes a non-trivial module:

3 ∗ ∗
2 ∗ ∗ ∗ ∗
1 ∗ ∗
0 ∗ ∗ ∗ ∗
−1 ∗ ∗
−2 ∗ ∗ ∗ ∗
−3 ∗ ∗
−4 ∗ ∗ ∗ ∗



76 6 S1-equivariant K-theory of LCP rFrom the 
on�guration of this spe
tral sequen
e, we 
an immediately estab-lish a number of stru
tural fa
ts. Re
all the notation K∗hS1(X) = K∗(XhS1),when X is an S1-spa
e.Proposition 6.3. The Morse spe
tral sequen
e 
onverging to K∗hS1(LCP r)has the following properties:
(i) The only possible non-trivial di�erentials start from 
olumn 0.

(ii) K0
hS1(LCP r) is a submodule of K0

hS1(F0) = K0(BS1)⊗ZK
0(CP r), andin parti
ular it is a free abelian group.

(iii) The spe
tral sequen
e for the �ltration {Fi/F0}i has K∗(point) in 
ol-umn 0, and thus it 
ollapses. So K̃0
hS1(F∞/F0) = 0, and K1

hS1(F∞/F0)is free abelian.We will also need the twisted 
ase, i.e the Morse spe
tral sequen
e for the
(n)-twisted �ltration F0 = F (n)

0 ⊆ F (n)
1 ⊆ · · · ⊆ (LCP r)(n), where we haveLemma 6.4. For the (n)-twisted �ltration F (n)

0 ⊆ F (n)
1 ⊆ · · · ⊆ (LCP r)(n),the following holds: K̃0

hS1(F (n)
1 /F0) = 0, and

K̃1
hS1(F (n)

1 /F0) ∼= Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 .Proof. Morse theory says that F1/F0 ≃ Th(µ−1 ) as S1-spa
es, sin
e the �l-tration is S1-equivariant. As a 
onsequen
e,
F (n)

1 /F0 = (F1/F0)
(n) ≃ (Th(µ−1 ))(n) = Th((µ−1 )(n)),where the last equality is 
lear from the de�nition Th(ξ) = D(ξ)/S(ξ). Soby Thom isomorphism, K̃1

hS1(F (n)
1 /F0) ∼= K0

hS1(G(r)(n)), whi
h by Theorem3.7 is isomorphi
 to Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉. Likewise for K̃0
hS1.6.1 The �rst di�erentialWe want to determine the �rst di�erential d1 : E0,∗

1 −→ E1,∗
1 in the Morsespe
tral sequen
e 
onverging to K∗hS1(LCP r). Using Remark 6.2, we have a
on
rete des
ription of the E1 term, and we get the following expli
it formulafor d1:Theorem 6.5. The �rst di�erential d1 in E∗(M)(LCP r

hS1) is the Z[[t]]-module homomorphism
d1 : Z[[t]]⊗ Z[h]/hr+1 −→ Z[x, y]/ 〈Qr, Qr+1〉given by d1(h

j) = xj − yj for j = 0, 1, . . . , r.



6.1 The �rst di�erential 77Proof. The �rst di�erential is indu
ed by the boundary map δ below:
(F0)hS1 // (F1)hS1 // (F1)hS1/(F0)hS1

δ // Σ((F0)hS1)where Σ denotes the (redu
ed) suspension. From Morse theory (40) we have
(F1)hS1/(F0)hS1 ≃ Th((µ−1 )hS1), where µ−1 is the negative bundle over X =
G(r), and we have the diagram

S((µ−1 )hS1) //

��

D((µ−1 )hS1) //

��

Th((µ−1 )hS1) //

∼=
��

ΣS((µ−1 )hS1)

��
(F0)hS1 // (F1)hS1 // (F1)hS1/(F0)hS1

δ // Σ((F0)hS1)The verti
al maps from the sphere- and dis
 bundles are given by the �ow ofthe energy fun
tional; we return to them later. First, sin
e µ−1 is an S1-ve
torbundle, we 
an assume that the Riemmanian metri
 on it is S1-invariant, sothat S((µ−1 )hS1) = ES1×S1 S(µ−1 ), and D((µ−1 )hS1) = ES1×S1 D(µ−1 ). Then
Th((µ−1 )hS1) ∼= ES1

+ ∧S1 Th(µ−1 ), see [Bökstedt-Ottosen℄ Lemma 5.2, and weget the diagram
ES1 ×S1 S(µ−1 ) //id×(f+⊔f−)

��

ES1 ×S1 D(µ−1 ) //

��

ES1
+ ∧S1 Th(µ−1 )

∼=
��

ES1 ×S1 F0
// ES1 ×S1 F1

// ES1
+ ∧S1 F1/F0This means we 
an simply ignore the ES1-fa
tor, and 
onsider the diagram

S(µ−1 ) //

f+⊔f−
��

D(µ−1 ) //

��

Th(µ−1 ) //

∼=
��

ΣS(µ−1 )

Σf+∨Σf−
��

F0
// F1

// F1/F0
δ // ΣF0By the proof of Prop. 4.2, µ−1 is a trivial real line bundle, and over a geodesi


γ ∈ X, we 
an parametrize µ−1 as Riγ′. Therefore the sphere bundle S(µ−1 ) =
X+⊔X− is a disjoint union of two 
opies of the base spa
e X, where the �beris (X+)γ = +iγ′ and (X−)γ = −iγ′. The map f± : X± −→ F0 is given by the�ow of the energy fun
tional: For a geodesi
 γ ∈ X, f±(γ) gives the endpointin F0 = CP r for the �owlines in dire
tion ±iγ′. Sin
e µ−1 is 1-dimensional,the Thom spa
e Th(µ−1 ) is just the suspension ΣX of the base spa
e X, and
ΣS(µ−1 ) = ΣX+∨ΣX−. The map δ : F1/F0 −→ ΣF0 is now the 
omposition

δ : F1/F0

∼= // Σ(X) // ΣX+ ∨ ΣX−
Σf+∨Σf− // ΣF0. (66)



78 6 S1-equivariant K-theory of LCP rHere, the last map folds the two summands in the wedge.We now investigate the maps f± : G(r) −→ CP r. Re
all from (4) thatthe simple 
losed geodesi
 γ in CP r determined by [v, w] ∈ PV2 is given bythe map
PV2 −→ G(r), [v, w] 7→ q ◦ c(x, v),where c(x, v)(t) = cos(πt)x + sin(πt)v for t ∈ [0, 1], and q : S2r+1 −→ CP ris the proje
tion. Su
h a γ is a geodesi
 on a CP 1 = P {v, w} ⊆ CP r, andwe 
an give P {v, w} homogeneous 
oordinates, [av, aw] = q(avv + aww), andmap

P {v, w} −→ C ∪ {∞} , [av, aw] 7→ av
aw
.We see that γ under this map is the 
urve t 7→ cos(πt)

sin(πt)
= 1

tan(πt)
∈ C ∪ {∞}for t ∈ [0, 1], i.e. the real line traversed in the �negative� dire
tion, from

+∞ to −∞. It is now 
lear that the �ow in dire
tion +iγ′ will end in
−i ∈ C ∪ {∞}, or homogeneous 
oordinates 1√

2
[1, i] ∈ P {v, w}, so f+(γ) =

1√
2
[1, i] ∈ P {v, w}. The �ow in dire
tion −iγ′ ends in i ∈ C ∪ {∞}, so

f−(γ) = 1√
2
[1,−i] ∈ P {v, w}.Having determined f±, we 
an now 
al
ulate the indu
ed map f ∗± on

K0(CP r) ∼= Z[h]/ 〈hr〉, so we need only determine f ∗±(h), where h = [H ]− 1and H ց CP r is the standard line bundle. We do this by determiningthe pullba
k f ∗±(H). From the pre
eding paragraph we see that the �ber of
f ∗+(H) over a simple 
losed geodesi
 γ determined by [v, w] ∈ PV2 is exa
tlyall the points on the line given by 1√

2
(v + iw). Re
all that the line bundle

X was de�ned as the pullba
k of the standard bundle γ1 ց P(γ2) under the
omposite
G(r) −→ PV2 −→ P̃ V 2 −→ P(γ2),
γ 7→ [v, w] 7→ 1√

2
[v + iw, v − iw] 7→ C(v + iv) ⊆ Cv ⊕ CwIt follows that f ∗+(H) = X, so f ∗+(h) = x. Likewise we get f ∗−(h) = y,be
ause Y is the pullba
k of the 
omplement of γ1 in γ2. Sin
e f ∗± is a ringhomomorphism, we get f ∗+(hj) = xj , and f ∗−(hj) = yj. From (66), we 
an now
ompute d1(h

j). When folding the maps, the se
ond suspension in the wedge
ΣX+ ∨ΣX− has the orientation reversed, so we obtain d1(h

j) = xj − yj.In the Morse spe
tral sequen
e E∗(M)((LCP r)
(n)

hS1) for the (n)-twisted�ltration, the �rst di�erential is a map d(n)
1 : K∗hS1(ΣF0) −→ K̃∗hS1(F (n)

1 /F0),
f. Lemma 6.4.



6.2 The Main Theorem for r > 1 79Lemma 6.6. The �rst di�erential in E∗(M)((LCP r)
(n)
hS1) is the map of

Z[[t]]-modules given by
d

(n)
1 : Z[[t]]⊗ Z[h]/

〈
hr+1

〉
−→ Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 ,

d
(n)
1 (hj) = xj − yj, for j = 0, 1, . . . , r.Proof. Using the same diagram as in the proof of Theorem 6.5 above, we seethat the geometry of this situation is exa
tly the same, so the �ow map isidenti
al to the one 
omputed before.From (44), the power map Pj gives a map of the following exa
t sequen
es,giving a 
ommutative diagram:

F0
//id

��

F (j)
1

//

Pj

��

F (j)
1 /F0

δ
(j)
1 //

Pj

��

ΣF0id
��

F0
// F∞ // F∞/F0

δ // ΣF0where δ(j)
1 denotes the boundary map whi
h indu
es the �rst di�erential d(j)

1in the Morse spe
tral sequen
e E∗(M)((LCP r)
(j)
hS1). So the di�erential d(j)

1determined in Lemma 6.6 
an also be written as the 
omposite map
d

(j)
1 : K1

hS1(ΣF0)
δ−→ K̃1

hS1(F∞/F0)
P∗j−→ K̃1

hS1(F (j)
1 /F0). (67)6.2 The Main Theorem for r > 1Again re
all the notation K∗hS1(X) = K∗(XhS1). Now we introdu
e somemore notation: For an S1-spa
e X with a 
onne
ted set F of �xed points forthe S1-a
tion, let x ∈ F be some �xed point. The in
lusion of x in X givesan S1-equivariant map i = ix : ∗ −→ X. (Sin
e F is 
onne
ted, any two su
hin
lusions ix and iy, x, y ∈ F , are homotopi
.) Sin
e i is S1-equivariant, weobtain a map

BS1 = ES1 ×S1 ∗ −→ ES1 ×S1 X = XhS1.Thus we 
an 
onsider the relative group K∗(XhS1, BS1), and we use thenotation K∗hS1(X, ∗) := K∗(XhS1, BS1). Note that sin
e the 
omposition
∗ i−→ X −→ ∗ is the identity, we get

K∗hS1(∗) −→ K∗hS1(X)
i∗−→ K∗hS1(∗)



80 6 S1-equivariant K-theory of LCP ris the identity. This gives a 
anoni
al splittingK∗hS1(X) = K∗(BS1)⊕Ker(i∗),and we see that K∗hS1(X, ∗) = Ker(i∗).In this se
tion, we will investigate K∗hS1(LCP r). The idea is to twist the�ltration with an integer. First we need a te
hni
al lemma:Lemma 6.7. Let f ∈ Z[[t]], and let qi : Z[[t]] −→ Z[[t]](i)⊗R Z be the naturalmap, where R = Z[U,U−1], Z[[t]](i) is Z[[t]] with the R-module stru
ture
U 7→ (t+ 1)i, and Z has the module stru
ture U 7→ 1. Then:

(i) If qi(f) ∈ n · Z[[t]](i)⊗R Z for all i ∈ N, then f ∈ n · Z[[t]].
(ii) If qi(f) = 0 for all i ∈ N, then f = 0 in Z[[t]].Proof. First note that (ii) follows from (i): If qi(f) = 0 for all i ∈ N, then
qi(f) ∈ n · Z[[t]](i)⊗R Z for all i and all n. By (i) we get f ∈ n · Z[[t]] for all
n ∈ N, and sin
e only 0 in Z[[t]] is divisible by any n, this implies that f = 0in Z[[t]].So we must prove (i). By prime fa
toring n, we 
an assume n = ps where
p is a prime number. Assume qi(f) ∈ n · Z[[t]](i)⊗R Z for all i ∈ N.We have an inje
tive map ip : Z[[t]] →֒ Ẑp[[t]], and we 
laim: If ip(f) ∈
psẐp[[t]], then f ∈ psZ[[t]]. Writing f =

∑
j cjt

j we have f ∈ psZ[[t]] if andonly if ps | cj for all j. By assumption we know ps | ip(cj) for all j. Thismeans that the image of cj under the 
omposition
Z

ip−→ Ẑp = lim←−
m

Z/pm −→ Z/ps,is zero. But the 
omposition is 
learly the natural map Z −→ Z/ps, so ps | cjfor any j. This proves the 
laim.Knowing this, it su�
es to show that ip(f) ∈ psẐp[[t]]. We apply theisomorphism
ε : Ẑp[[t]]

∼=−→ lim←−
m

Ẑp[Cpm]
f [Lang℄, Thm. 1.1, where Ck denotes the kth roots of unity, to make thefollowing diagram for any i ∈ N:
Z[[t]]

q
pi

//

ip
��

Z[[t]](p
i)⊗R Z

∼=ϕ

��

Ẑp[[t]]

ε∼=
��

Z⊕ Ẑp {V } ⊕ · · · ⊕ Ẑp{V pi−1}
� _

��
lim←−
m

Ẑp[Cpm] pri // Ẑp[Cpi]

(68)



6.2 The Main Theorem for r > 1 81Here the map pri denotes the natural proje
tion on the ith term in theinverse limit, and the isomorphism ϕ is Lemma 3.9 and 3.5. This diagram is
ommutative by the de�nitions of the maps. Let g = ε(ip(f)) ∈ lim Ẑp[Cpm ].It is 
lear that if g satis�es pri(g) ∈ ps·Ẑp[Cpi] for all i, then g is divisible by ps.Together with the 
ommutativity of (68), this proves that ip(f) ∈ psẐp[[t]],and we are done.We will prove the followingTheorem 6.8. The map
δ : K1

hS1(ΣF0, ∗) −→ K̃1
hS1(F∞/F0)is inje
tive.Proof. We restri
t the di�erential d(j)

1 : K1
hS1(ΣF0) −→ K̃1

hS1(F (j)
1 /F0) to thesummand K1

hS1(ΣF0, ∗); it is zero on K0
hS1(∗). By (67) this di�erential is the
omposition,

d
(j)
1 : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0)

P∗j−→ K̃1
hS1(F (j)

1 /F0).Thus we 
an make a 
ombined map, 
all it d,
d : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0) −→

∐

j

K̃1
hS1(F (j)

1 /F0).To prove that δ is inje
tive, it su�
es to show that d is inje
tive. So let
a ∈ K1

hS1(ΣF0, ∗) with d(i)
1 (a) = 0 for all i. We must prove a = 0. Re
all byLemma 6.4,

K̃1
hS1(F (i)/F0) = Z[[t]](i)⊗RM,where M = K0(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉. Let Mj ⊆ M be the �ltra-tion from Remark 3.2. Then Z[[t]](i)⊗RMj gives a �ltration of Z[[t]](i)⊗R

M . Similarly, let Lj ⊆ Z[h]/ 〈hr+1〉 be generated by {hj, . . . , hr}. Then
K1
hS1(ΣF0, ∗) = Z[[t]]⊗Z L1.Write a = f1(t)h + f2(t)h

2 + . . . + fr(t)h
r, where fj(t) ∈ Z[[t]]. For thepurpose of indu
tion, 
onsider aj = fj(t)h

j + fj+1(t)h
j+1 + . . .+ fr(t)h

r, andassume d(i)
1 (aj) = 0 for all i. This holds for j = 1. Then aj ∈ Z[[t]]⊗Lj , andwe 
onsider the image of under d(i)

1 , see Lemma 6.6:
Z[[t]]⊗ Lj

d
(i)
1−→ Z[[t]](i)⊗RMj ,

fjh
j + . . .+ frh

r 7→ fj(x
j − yj) + . . .+ fr(x

r − yr).



82 6 S1-equivariant K-theory of LCP rBy assumption, 0 = d
(i)
1 (aj) = fj(x

j − yj) + . . . + fr(x
r − yr) for all i. Nowwe use the proje
tion πj : Mj −→Mj/Mj+1, whi
h indu
es a map

Z[[t]](i)⊗RMj
πj−→ Z[[t]](i)⊗RMj/Mj+1.Then 0 = πj(d

(i)
1 (aj)) = fj(x

j−yj) in Z[[t]](i)⊗RMj/Mj+1 for all i. Note that
Mj/Mj+1 = Zxj ⊕Zxj−1y⊕ · · ·⊕Zyj. Constru
t a map q : Mj/Mj+1 −→ Z,by

q(xj) = 1, q(xj−1y) = −1, q(xj−kyk) = 0, for k > 1. (69)This is well-de�ned: If j < r the monomials are independent, and if j = rwe have in Mj/Mj+1 the relation Qr = 0, and the map satis�es q(Qr) = 0.So we get a map
q : Z[[t]](i)⊗RMj/Mj+1 −→ Z[[t]](i)⊗R Z. (70)If j > 1 we get q(fj(xj − yj)) = fj , and if j = 1 we get q(f1(x − y)) = 2f1,but we also have q(fj(xj − yj)) = q(πj(d

(i)
1 (aj))) = 0. The 
on
lusion is inboth 
ases that fj(t) = 0 in Z[[t]](i)⊗R Z for all i. By Lemma 6.7 this implies

fj(t) = 0 in Z[[t]]. Sin
e aj = fj(t)x
j +aj+1, indu
tively we get d(i)

1 (aj+1) = 0for all i. This �nishes the indu
tion step. This indu
tion shows that a = 0in K1
hS1(ΣF0, ∗).As a 
orollary, we obtainMain Theorem 6.9. As K∗(BS1)-modules,

K0
hS1(LCP r) = K0(BS1) = Z[[t]] .Proof. It su�
es to show that K0

hS1(LCP r, ∗) = 0. We use the long exa
tsequen
e for F0 −→ F∞ −→ F∞/F0 −→ ΣF0,
0 −→ K̃0

hS1(F∞/F0) −→ K0
hS1(F∞) −→

K1
hS1(ΣF0)

δ−→ K̃1
hS1(F∞/F0) −→ K1

hS1(F∞) −→ 0 (71)By the Morse spe
tral sequen
e, we know that K̃0
hS1(F∞/F0) = 0, see Prop.6.3. We 
an write part of (71) as follows:

0 −→ K0
hS1(F∞, ∗)⊕KhS1(∗) −→ K1

hS1(ΣF0, ∗)⊕KhS1(∗) δ−→ K̃1
hS1(F∞/F0)Theorem 6.8 tells us that δ : K1

hS1(ΣF0, ∗) −→ K1
hS1(F∞/F0) is inje
tive, sowhen we split o� the summand KhS1(∗), we get that K0

hS1(F∞, ∗) = 0.



6.2 The Main Theorem for r > 1 83Having determined K0
hS1(LCP r), we now move on to K1

hS1(LCP r). Re-grettably, we are only able to determine this as an abelian group, not a
K∗(BS1)-module.Main Theorem 6.10. K1

hS1(LCP r) is a free abelian group.In this se
tion we prove the Theorem in all 
ases ex
ept one:Theorem 6.11. If (r, n) 6= (1, 2), then K1
hS1(LCP r) has no n-torsion.The essential part of the proof is the following proposition:Proposition 6.12. Let a ∈ K1

hS1(ΣF0, ∗), and assume that for all i ≥ 1,
d

(i)
1 (a) ∈ nK̃1

hS1(F (i)
1 /F0). Then,

(i) If r > 1, then a ∈ nK1
hS1(ΣF0, ∗).

(ii) If r = 1 and n > 2, then 2a ∈ nK1
hS1(ΣF0, ∗).Proof that Theorem 6.11 follows from Prop. 6.12. Assume b ∈ K1

hS1(F∞) with
nb = 0 for some n ∈ Z. We will show b is not n-torsion. By the exa
t se-quen
e

K1
hS1(ΣF0, ∗) δ−→ K̃1

hS1(F∞/F0) −→ K1
hS1(F∞) −→ 0,we 
an lift b to b̄ ∈ K̃1

hS1(F∞/F0), and there is a ∈ K1
hS1(ΣF0, ∗) with image

δ(a) = nb̄. Sin
e d(i)
1 is the 
omposition,

d
(i)
1 : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0) −→ K̃1

hS1(F (i)/F0),and δ(a) = nb̄, we see that d(i)
1 (a) ∈ nK̃1

hS1(F (i)
1 /F0) for all i. So we 
anapply the proposition. In 
ase (i) we get a ∈ nK1

hS1(ΣF0, ∗), so a = na′.Then in K̃1
hS1(F∞/F0), nδ(a′) = nb̄. But K̃1

hS1(F∞/F0) is torsion-free byProp. 6.3, so δ(a′) = b̄, whi
h implies b = 0. This proves the 
laim in 
ase
(i). In 
ase (ii), we get 2a = na′, so nδ(a′) = 2nb̄ in K̃1

hS1(F∞/F0) whi
h istorsion-free, so δ(a′) = 2b̄, i.e. 2b = 0. Sin
e n > 2, b is not n-torsion.Proof of Proposition 6.12. Let a ∈ K1
hS1(ΣF0, ∗), and assume n | d(i)

1 (a) forall i. This proof is similar to the proof of Theorem 6.8.Let M = Z[x, y]/ 〈Qr, Qr+1〉, and let Mj ⊆ M be the �ltration fromRemark 3.2. Then Z[[t]](i)⊗RMj gives a �ltration of Z[[t]](i)⊗RM . Similarly,let Lj ⊆ Z[x]/ 〈xr+1〉 be generated by {xj , . . . , xr}. Then K1
hS1(ΣF0, ∗) =

Z[[t]] ⊗ L1. Write a = f1(t)x + f2(t)x
2 + . . . + fr(t)x

r, where fj(t) ∈ Z[[t]].For the purpose of indu
tion, 
onsider aj = fj(t)x
j + f2(t)x

2 + . . .+ fr(t)x
r,



84 6 S1-equivariant K-theory of LCP rand assume n | d(i)
1 (aj) for all i. This holds for j = 1. Then aj ∈ Z[[t]]⊗ Lj,and we 
onsider the image of under d(i)

1 :
Z[[t]]⊗R Lj

d
(i)
1−→ Z[[t]](i)⊗RMj ,

fjx
j + . . .+ frx

r 7→ fj(x
j − yj) + . . .+ fr(x

r − yr).By assumption, fj(xj − yj) + . . .+ fr(x
r − yr) = nb for some b. Now we usethe proje
tion πj : Mj −→Mj/Mj+1, whi
h indu
es a map

Z[[t]](i)⊗RMj
πj−→ Z[[t]](i)⊗RMj/Mj+1,

fj(x
j − yj) + . . .+ fr(x

r − yr) = nb 7→ fj(x
j − yj) = n · πj(b).We wish to map Mj/Mj+1 −→ Z. For now, assume r > 1. If j > 1, we usethe map q from (69), (70). Sin
e q(xj − yj) = 1 for j > 1, we get

Z[[t]](i)⊗RMj/Mj+1
q−→ Z[[t]](i) ⊗R Z,

fj(x
j − yj) = n · πj(b) 7→ fj = n · qπj(b). (72)If j = 1, we use the well-de�ned map q1(x) = 1, q1(y) = 0, and get the sameresult. The 
on
lusion is that fj(t) ∈ n · Z[[t]](i) ⊗R Z for all i. By Lemma6.7 this implies fj(t) ∈ nZ[[t]]. Sin
e aj = fj(t)x

j + aj+1, indu
tively we get
n | d(i)

1 (aj+1) for all i. This �nishes the indu
tion step. This indu
tion showsthat n | fj(t) for all j = 1, . . . , r, so a ∈ nK1
hS1(ΣF0, ∗).Now take r = 1. Then j = 1. We use the map q : M1/M2 −→ Z from(69). Then in (72), we get instead 2f1(t) ∈ n · Z[[t]] ⊗R Z. By Lemma 6.7,

2f1(t) ∈ nZ[[t]], and 2a ∈ nK1
hS1(ΣF0, ∗).6.3 The Main Theorem for r = 1In this se
tion we show the result of Main Theorem 6.10 in the 
ase r = 1:Theorem 6.13. K1

hS1(LCP 1) has no 2-torsion.First re
all by Theorem 6.1 and Lemma 6.4 that when r = 1,
K̃1
hS1(F (k)

1 /F0) ∼= K̃1
hS1(Fk/F0) ∼= Z[[t]](k)⊗RM, where M = Z[x]/x2.This is be
ause M = Z[x, y]/ 〈Q1, Q2〉, and Q1 = x + y, so y = −x, whi
hwhen substituting in Q2 = x2 + xy + y2 gives x2 = 0.In the proof we will need the S1 transfer map on K-theory:



6.3 The Main Theorem for r = 1 85Lemma 6.14. There is an S1 transfer map τ on K-theory, whi
h �ts intothe following exa
t sequen
e,
−→ K0(X)

τ−→ K1
hS1(X)

ϕ−→ K1
hS1(X)

q−→ K1(X)
τ−→ K0

hS1(X) −→where K∗(BS1) = Z[[t]], and the map ϕ is multipli
ation by −t.Proof. Let T −→ BS1 denote the standard 
omplex line bundle, as usual.Let p : ES1×S1X −→ BS1, be proje
tion on the �rst fa
tor, and let ξ = p∗Tdenote the pullba
k. As in (48), we use the 
o�ber sequen
e,
S(ξ) −→ D(ξ) −→ Th(ξ).As shown in (49), S(ξ) ∼= ES1 × X ≃ X. The long exa
t sequen
e on

K-theory be
omes, using the Thom isomorphism, 
f. [Atiyah℄ Cor. 2.7.3,
K∗−1(X)

δ−→ K∗(ES1 ×S1 X)
ϕ−→ K∗(ES1 ×S1 X) −→ K∗(X)

δ−→The map ϕ is given by multipli
ation with Λ−1(T ) = 1− T = −t, sin
e T isa line bundle. We de�ne the S1 transfer map τ to be the boundary map δ inthe long exa
t sequen
e.By exa
tness, Im(τ) = Ker(ϕ), and so we will need the kernel of t:Lemma 6.15. The kernel of the map given by multipli
ation by t,
t : Z[[t]](k)⊗RZ[x]/x2 −→ Z[[t]](k)⊗RZ[x]/x2is Zpk−1(t)x, where (t+ 1)k − 1 = tpk−1(t).Proof. First we relate the kernel of t to the kernel of u : M −→M (this partholds for all r). Re
all R = R(S1) = Z[U,U−1], and let u = U − 1. Then

M is an R-module by u 7→ (x − y)/(1 + y), and Z[[t]](k) is an R-module by
u 7→ (t+ 1)k − 1. Consider the exa
t sequen
e

0 // Z[[t]]
t // Z[[t]] // Z // 0.Tensoring with M over R yields the exa
t sequen
e

0 // TorR1 (Z,M) // Z[[t]](k)⊗RM
t // Z[[t]](k)⊗RMTo 
ompute Ker(t) ∼= TorR1 (Z,M), we use the following free resolution of Zover R:

0 // R
u // R // Z // 0.



86 6 S1-equivariant K-theory of LCP rAgain, we tensor over R with M and �nd
0 // TorR1 (Z,M) // R⊗RM u // R⊗RM // Z[[t]](k)⊗R Z // 0.so TorR1 (Z,M) ∼= Ker(u). All we need to know is how to translate fromKer(u) to Ker(t). The following diagram,

0 // Ker(u) //

��

R⊗RM u //

pk−1(t)⊗id
��

R⊗RM //

��

Z[[t]](k)⊗R Zid
��

0 // Ker(t) // Z[[t]](k)⊗RM
t // Z[[t]](k)⊗RM // Z[[t]](k)⊗R Zis 
ommutative, sin
e tpk−1(t) = (t+ 1)k− 1 = u. From this diagram, we seethat Ker(t) = pk−1(t)Ker(u).So all that remains is to determine Ker(u). This 
an be done for any r,but it is espe
ially easy when r = 1, and M = Z[x]/x2, where u1 = 2x and

ux = 0. Clearly Ker(u) = Zx, and so Ker(t) = Zpk−1(t)x.We 
an now prove the Main Theorem in 
ase r = 1:Proof of Theorem 6.13. By the exa
t sequen
e
K1
hS1(ΣF0, ∗) δ−→ K̃1

hS1(F∞/F0) −→ K1
hS1(F∞) −→ 0,we see that K1

hS1(LCP 1) = K1
hS1(F∞) is isomorphi
 to the 
okernel Cok(δ)of δ. Sin
e r = 1, K1

hS1(ΣF0, ∗) = Z[[t]] · h, so let f(t) ∈ Z[[t]] be given, andassume that δ(f(t)h) is divisible by 2. We will show that this implies f(t) isdivisible by 2, meaning that there is no 2-torsion in Cok(δ).For 
ontradi
tion, assume that f(t) is not divisible by 2. Then, withoutloss of generality, f(t) has the form tlg(t), where g(t) = 1 + tp(t) for some
p(t) ∈ Z[[t]]. Here l is the �rst exponent in f(t) with an odd 
oe�
ient, andso 2 | δ(f(t)h) if and only if 2 | δ(tlg(t)h). Then g(t) is a unit in Z[[t]], so sin
e
δ is a Z[[t]]-module homomorphism, 2 | δ(tlg(t)h) if and only if 2 | δ(tlh).We have shown that if δ(f(t)h) is divisible by 2, but f(t) is not divisible by
2, then δ(tN−1h) is also divisible by 2 for all N > l.We will now show that this leads to a 
ontradi
tion if N = 2n > l.Consider the 
omposite map, whi
h we 
all d(N)

2 ,
K1
hS1(ΣF0, ∗) δ // K̃1

hS1(F∞/F0) // K̃1
hS1(F2N/F0)

P ∗N // K̃1
hS1(F (N)

2 /F0)



6.3 The Main Theorem for r = 1 87Then d
(N)
2 (tN−1h) is divisible by 2, sin
e δ(tN−1h) is. We will investigate

d
(N)
2 (tN−1h) via the following diagram:

ΣF0 (F1/F0)
(2N)oo

�� ''OOOOOOOOOOO

(F1/F0)
(N) //

OO

(F2/F0)
(N) //

ggOOOOOOOOOOOOO

(F2/F1)
(N)The maps into ΣF0 are the ones indu
ing the various di�erentials in theMorse spe
tral sequen
es. The map (F1/F0)

(2N) −→ (F2/F1)
(N) is simplythe 
omposite of the two other maps in the triangle

(F1/F0)
(2N)

P(N)
2 // (F2/F0)

(N) // (F2/F1)
(N) .On S1-equivariant K-theory this be
omes

K1
hS1(ΣF0)

d
(2N)
1 //

d
(N)
1

��

d
(N)
2

))SSSSSSSSSSSSSSS

K̃1
hS1((F1/F0)

(2N))

K̃1
hS1((F1/F0)

(N)) K̃1
hS1((F2/F0)

(N))
ioo

k

OO

K̃1
hS1((F2/F1)

(N))
joo

EN

iiSSSSSSSSSSSSSSS

(73)
with the lower row short exa
t (i surje
tive and j inje
tive). When N = 2n,we have

pN−1(t) = t−1((t+ 1)2n − 1) = tN−1 + 2q(t),for some polynomial q(t), sin
e all binomial 
oe�
ients (2n

j

) are divisible by
2 for j 6= 0, 2n. Sin
e we have dedu
ed that d(N)

2 (tN−1h) is divisible by 2, wetherefore get d(N)
2 (pN−1(t)h) is also divisible by 2, say d(N)

2 (pN−1(t)h) = 2afor some a in K̃1
hS1((F2/F0)

(N)). By Lemma 5.3 we see that d(N)
1 (pN−1(t)h) =

2pN−1(t)x. Sin
e the diagram (73) is 
ommutative, we get i(a) = pN−1(t)x,sin
e the group K̃1
hS1((F1/F0)

(N)) is torsion-free, see Lemma 6.4.We now use the S1 transfer, see Lemma 6.14. We 
an 
hoose a transfer
lass e ∈ K1(F1/F0), su
h that τ(e) = pN−1(t)x by Lemma 6.15. We 
anlift this transfer 
lass to ē ∈ K1(F2/F0), so i(τ(ē)) = τ(e) = pN−1(t)x. Thuswe have an element w = a − τ(ē) ∈ K̃1
hS1((F2/F0)

(N)) with i(w) = 0. Byexa
tness of the lower row in (73), there is an element z ∈ K̃1
hS1((F2/F1)

(N))with j(z) = w. By 
ommutativity of (73), we get
EN (z) = k(w) = k(a− τ(ē)) = k(a)− k(τ(ē)),so let us 
ompute this. Sin
e 2a = d

(N)
2 (pN−1h), we see that k(2a) =

d
(2N)
1 (pN−1h) = 2pN−1x, and sin
e K̃1

hS1((F1/F0)
(2N)) is torsion-free, k(a) =
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pN−1x. But k(τ(ē)) is in the image of the transfer map, so by Lemma 6.15,
k(τ(ē)) = mp2N−1(t)x for some m ∈ Z. In 
on
lusion,

EN(z) = k(w) = (pN−1(t)−mp2N−1(t))x. (74)To investigate this equality, we will need to use F2-
oe�
ients, and to deter-mine the map EN . This is done in the following lemmas:Lemma 6.16. As K∗(BS1) = Z[[t]]-modules,
K̃1
hS1((F1/F0)

(2k); F2) ∼= (F2[t]/t
2k

)1⊕ (F2[t]/t
2k

)x.Proof. As explained in the beginning,
K̃1
hS1((F1/F0)

(2k); F2) ∼= Z[[t]](2
k)⊗RM ⊗Z F2,whereM = Z[x]/x2, and u1 = 2x, ux = 0. So we see thatM⊗Z F2 = F2⊕F2is trivial as an R = Z[U,U−1]-module. So

Z[[t]](2
k)⊗RM ⊗Z F2 = (Z[[t]](2

k)⊗RF2)1⊕ (Z[[t]](2
k)⊗RF2)x.On Z[[t]](2

k), u a
ts as (t+1)2k−1 ≡ t2
k

(mod 2). Therefore, Z[[t]](2
k)⊗RF2 =

F2[t]/t
2k . This shows the Lemma.Lemma 6.17. The map EN is multipli
ation by 1− (t+ 1)N .Proof. We must determine the map indu
ed by (F1/F0)

(2N) −→ (F2/F1)
(N),whi
h is the (N)-twisting of the 
omposite map

(F1/F0)
(2) P2−→ F2/F0 −→ F2/F1.We will �rst study this untwisted 
ase. The indu
ed map, 
all it E, is givenas follows:

K̃1
hS1(F2/F1)

∼= //

��

K̃1
hS1(Th(µ

−
2 ))

Φ2 //

��

K0
hS1(G2(r))

E
��

K̃1
hS1((F2/F1)

(2))
∼= // K̃1

hS1(Th((µ
−
1 )(2)))

Φ1 // K0
hS1(G(r)(2))where the �rst isomorphisms are Morse theory, and the Φj denote the Thomisomorphisms (the index indi
ates whi
h negative bundle). Also, G2(r) isthe geodesi
s of length 2, whi
h as an S1-spa
e is isomorphi
 to G(r)(2), the

(2)-twisted spa
e of simple 
losed geodesi
s of length 1.



6.3 The Main Theorem for r = 1 89This is a spe
ial 
ase of the following general situation: For a bundle anda subbundle, ξ ⊆ η, over a spa
e X, the following diagram 
ommutes
K̃∗(Th(η)) // K̃∗(Th(ξ))

K∗(X)

Φη ∼=
OO

Λ // K∗(X)

Φξ ∼=
OO

The verti
al maps are the Thom isomorphisms. Then the indu
ed map on
K-theory of the base spa
e is given by multipli
ation by the Euler 
lass
Λ = Λ−1(η − ξ) of the bundle η − ξ, i.e. the (orthogonal) 
omplement of ξinside η.So we need the negative bundle µ−2 = ε2 ⊕ ν2 over G2(r), see Proposition4.2. I have given ε and ν an index, so one 
an distinguish between them for
µ−2 and µ−1 . Now (µ−1 )(2) is not a priori a subbundle of µ−2 , but sin
e µ−1 = ε1where the S1 a
tion is trivial on the �bers, we see that (µ−1 )(2) = ε2 as bundlesover G(r)(2) ∼= G2(r), so that µ−2 − (µ−1 )(2) = ν2 = ν, where ν is the 
omplexbundle found in the proof of Proposition 4.2. From here, we know that for ageodesi
 f of length 2, parametrized as f(t) for t ∈ [0, 1], the �ber of ν over
f is given by g(t)if ′(t) for t ∈ [0, 1], where g ∈ spanR {cos(2πt), sin(2πt)}.The rotation a
tion of S1 is given by, for θ ∈ [0, 1]:

θ ∗ (f(t), cos(2πt)if ′(t)) = (f(t− θ), cos(2πt− 2πθ)if ′(t− θ))and similarly for sin(2πt). The 
omplex stru
ture J found in the proof ofProposition 4.2 is J(cos(2πt)) = sin(2πt).Now let us 
ompare this to the bundle T , i.e. the bundle 
oming from thestandard representation of S1. Ignoring the S1 a
tion, T is just a produ
tbundle G2(r)×C. The S1 a
tion of θ ∈ [0, 1] is given by
θ ∗ (f(t), c) = (f(t− θ), e2πiθc), for t ∈ [0, 1].We will now 
onstru
t a map ϕ : T −→ ν, given by

ϕ(f, c)(t) = (f(t), c cos(2πt)if ′(t)).We 
he
k that this is S1-equivariant, i.e. that the following diagram 
om-mutes (it su�
es to 
he
k c = 1):
T

ϕ //

θ∗
��

ν

θ∗
��

(f(t), 1) � ϕ //
_

θ∗
��

(f(t), cos(2πt)if ′(t))
_

θ∗ ?
���
�

�

T
ϕ // ν (f(t− θ), e2πiθ) � ϕ // (f(t− θ), e2πiθ cos(2πt)if ′(t− θ))
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ommutes, sin
e e2πiθ = cos(2πθ) + i sin(2πθ) is multiplied on cos(2πt)as
e2πiθ cos(2πt) = cos(2πθ) cos(2πt) + sin(2πθ)J(cos(2πt))

= cos(2πθ) cos(2πt) + sin(2πθ) sin(2πt)

= cos(2π(t− θ))by the trigonometri
 formula. So ϕ is S1-equivariant. Then ϕ de�nes anisomorphism of S1 bundles, sin
e it is 
learly an isomorphism on the �bers.We have shown µ−2 − (µ−1 )(2) = ν ∼= T .Now let us look at the (N)-twisted 
ase. We get again (µ−1 )(2N) = ε2N ,and so (µ−2 )(N) − (µ−1 )(2N) = ν(N) ∼= T (N), by the above isomorphism. Now,
T (N) is the bundle with S1 a
tion of θ ∈ [0, 1] given by

θ ∗ (f(t), c) = (f(t− θ), (e2πit)Nc), for t ∈ [0, 1].This shows that this is the same bundle as TN , so the map EN is multi-pli
ation by the Euler 
lass of TN , and sin
e this is a line bundle, we get
Λ−1(T

N) = 1− TN = 1− (t+ 1)N .Using the previous two lemmas, we 
an now investigate equation (74)in K̃1
hS1((F1/F0)

(2N); F2), where N = 2n. As already noted, pN−1(t) ≡
tN−1(mod 2), and so the left-hand side of (74) is (tN−1 − mt2N−1)x mod-ulo 2. The right-hand side is EN (z) = (1 − (t + 1)2n

)z ≡ −t2n

z(mod 2).So
(tN−1 −mt2N−1)x = −tNz ∈ (Z[t]/t2N )1⊕ (Z[t]/t2N )xClearly, this is impossible, sin
e the term tN−1x 
annot be 
an
elled by −tNzin (Z[t]/t2N )1 ⊕ (Z[t]/t2N )x. This gives a 
ontradi
tion, so the given f westarted with must be divisible by 2. This proves the Theorem.



Notation 91NotationIn this table 
an be found some of the frequently used notation in this paper:
≃ (between topologi
al spa
es): homotopy equivalent.
F C or H.
G(r) The spa
e of simple parametrized 
losed geodesi
s on FP r.Sometimes written G(HP r) or G(CP r) to be spe
i�
.
Gn(r) The spa
e of parametrized 
losed geodesi
s of length n,
an be obtained by iterating n times the elements of G(r).
∆(r) The quotient S1 \G(r) under the rotation a
tion of S1.
EG A 
ontra
tible spa
e with a free a
tion of the group G;unique up to homotopy.
BG EG/G, the 
lassifying spa
e of G.
XhS1 ES1 ×S1 X, where X is an S1-spa
e.
K∗hS1(X) K∗(XhS1).
K∗hS1(X, ∗) The relative group K∗(XhS1, BS1).
T The standard 
omplex line bundle over BS1 = CP∞, or itspullba
k to XhS1 under the map pr1 : ES1 ×S1 X −→ BS1.Also used for the 
lass of this bundle in K-theory.
t the 
lass T − 1, see T .
Fn E−1(]−∞, n2]), the nth term in the Morse �ltration.
µ−n the negative bundle for the 
riti
al manifold Gn(r).
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