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Introduction

The free loop space LX of a space X is the space of continuous maps from
St to X. The circle group S' acts on LX by rotation, and we study the
space of homotopy orbits, LX,s1 = ES' xg1 LX, sometimes called the Borel
construction. The main method for understanding this space will be Morse
theory on the energy functional, which to a closed curve associates its en-
ergy. This version of Morse theory has been studied by W. Klingenberg in
|Klilngenbergl|. As one would expect, the critical points of this functional are
the closed geodesics of X, so knowing those will be an important ingredient
in understanding L X} via Morse theory.

In this paper we study L.X} 41 for a particular space, namely the projective
space X = FP", where F = C or F = H. The goal is to determine the
cohomology of LHPF", o, and the complex K-theory of LCP", .. This is
called S'-equivariant cohomology (or K-theory) of LFP". In general, we get
a map

ES''xg1 LX — BS!

by projection on the first factor. For a cohomology theory h*, we therefore get
a map h*(BS') — h*(LXs1), so h*(LX,g1) becomes a h*(BS')-module.
The methods of Morse theory require the use of Thom isomorphism, which
destroys the product structure, so we cannot hope to calculate h*(LFP", ) as
a ring. But the h*(BS')-module structure is preserved by the Morse theory
machinery, so the aim is to calculate h*(LFP",¢,) as an h*(BS')-module,
where h* is either singular cohomology H* or complex K-theory K*.

We will now outline our main results. For X = HP", we study the
cohomology with F,-coefficients of LX} g1, where F, = Z/pZ, and obtain a
complete description as an H*(BS';F,) = F,[u]-module:

Theorem 1. As a graded H*(BS*;F,) = F,[u]-module, H*(LHP", ;;F,) is
1somorphic to

Folul & @ Fylulfoe® @ Fylulfos® @ (Fylul/ () tars.

2kelF 2kelF 2keIT

Here the lower index denotes the degree of the generator, and the index sets
IF and IT are known disjoint subsets of {(4r +2)i+45]0<j <r,i>0}.
In particular, there is at most one generator in each degree.

For X = CP", we study the complex K-theory of LCP", ., and obtain
Theorem 2. As a K*(BS") = Z|[[t]]-module,
KO(LCP',q) = K*(BS") = Z]ft].
As an abelian group, K'(LCP", ¢\) is torsion-free.
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This is one of the first calculations of K*(LMjg1) for a non-trivial mani-
fold M. The result is quite surprising when compared to H*(LCP", ), which
has a lot of torsion according to [Bokstedt-Ottosen].

Unfortunately, we have not been able to determine K'(LCP", ) as a
K*(BS')-module. As a partial result in this direction, we have

Theorem 3. There is a spectral sequence of K*(BS') = Z[[t]]-modules con-
verging strongly to K*(LCP", 1), which has E; page,

poi {Z[[tﬂ@ﬂ[h}/wm j even;

Lo, j odd.

B~ {Z[[t]](”’ (s Z[2, Y]/ (Qr, Qrin), J 0dd;
0,

J even.

The first differential dy is given by dy(p(t) @ h7) = p(t) @ (27 — y7), where
p(t) € Z[[t]].

Theorem 2 states that K°(LCP", ;) is (almost) trivial, while K'(LCP”, o)
is free abelian. This is rather similar to the well-known case of K°(BG) as
the completion of the representation ring R(G) for a compact Lie group G,
while K'(BG) = 0. This is a classical result of M. Atiyah. One can also
compare to e.g. |Freed-Hopkins-Teleman|, who find K*(LBG) as the com-
pletion of certain representations of the loop group LG, although it should
be remarked that they consider K-theory twisted by a cohomology class T,
and not S'-equivariant K-theory as we do. Still, this prompts the following

Conjecture. The exists a "representation theory” type group, such that
KY(LCP", ) is a completion of this group.

The outline of this paper is as follows: The paper consists of two main
parts, each divided in three sections. The first section of each part treats the
general theory needed and investigates the relevant spaces and structures,
while the next two sections are more computational and deal, respectively,
with the cohomology for F = H, and the K-theory for F = C.

Section 1 investigates FP" and its geodesics, obtaining some useful fi-
brations. We consider both the space of parametrized and unparametrized
geodesics; the latter being the quotient of the former under the action of S*
by rotation.

Section 2 calculates the cohomology of the above spaces using Serre’s
spectral sequence for the fibrations found in section 1. We then turn to
Sl-equivariant cohomology of the space of parametrized geodesics, via two
fibrations and the non-equivariant cohomology results from the previous sec-
tion.
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Section 3 obtains similar results for K-theory. We use the Atiyah-
Hirzebruch spectral sequence along with the known cohomology results for
CP" to determine the K-theory of the space of unparametrized geodesics.
The S'-equivariant K-theory is determined using the same fibrations as for
cohomology, but the method is different, employing the result of Atiyah about
K-theory of classifying spaces.

Section 4 studies of the free loop space, LFP", o,. First we explain the
workings of Morse theory in this setting, then we apply this to LIFP" and
LFP", i to get the so-called Morse spectral sequence.

Section 5 is dedicated to proving Theorem 1. The method is closely
based upon a similar calculation by M. Bokstedt and I. Ottosen in their paper
String Cohomology Groups of Complex Projective Spaces, |Bokstedt-Ottosen)|.
We extract a lot of information about the Morse spectral sequence, its size,
its differentials, and the relation between the equivariant and non-equivariant
case. All this information is brought together to prove the Main Theorem
for cohomology, Theorem 1 above. But even then, it is necessary to turn
to other sources of information to complete the proof. One is localization,
the other is comparison with the Serre spectral sequence also converging to
H*(LHP", ).

Section 6 is dedicated to proving Theorem 2. The methods here are quite
different, relying on the fact that the Morse spectral sequence in Theorem
3 has a rather special configuration, which implies that all its non-trivial
differentials start from the zeroth column. A very important point is the
calculation of the first differential d;. The central idea is then to twist the
rotation action of S* with a positive integer, which gives new Morse spectral
sequences related to the standard one. This gives enough information to
prove Theorem 2.

For the reader’s convenience, we have assembled a table of notation at
the end of this document.

Acknowledgements. Finally, it is a pleasure to thank my advisor, Marcel
Bokstedt, for his help through innumerable fruitful discussions, which added
many new insights and ideas to this project. Also, I would like to thank
Jorgen Tornehave for his time and valuable input when standing in as my
advisor for one year.
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1 Projective space and geodesics

1.1 The quaternions

I start by introducing the quaternions, H, as an associative algebra of real
dimension 4, generated by 1,4, j, k with the following multiplication rules:

It should be stressed, even though it is obvious from the above relations, that
H is not commutative. If one wants to be concrete, one can realize H as a
subalgebra of My(C) generated over R by (in the matrix entries, i = /—1):

S AR R A P

It is straightforward to check the above multiplication rules. Similar to com-
plex conjugation, there is an R-linear map, also called conjugation,

H 2 H

Z:$0+$1i+$2j+l’3k = Z*:flfo—flfl’i—flfgj—x;;]{?,

satisfying the usual rule (zw)* = w*z*. In the matrix description, this is
precisely the usual x-operation of taking the conjugate transpose. This can
be used to define an inner product (z, w)y = w*z, whose real part is the usual
inner product on R*. Noting that (z,z)y € R we can then define a norm
|z| = \/(z, z)m. This satisfies |zw| = |z||w| and |z*| = |z|. The unit sphere
in H is usually denoted Sp(1) = {z € H| |z| = 1}, and this is canonically
identified with S3. Finally we note that if z # 0 then z is invertible — this
is most easily seen by using the matrix description, which gives an explicit
inverse, and checking that this belongs to H.

We can take the direct product of H with itself to form H”". The operations
(-, )m and |-| from H are extended to H" in the usual way: For z = (21, ..., 2,)
and w = (wy,...,w,), we set

T

rwhn =S w12l = 2P+ |l

J=1

1.2 Spaces of geodesics

Let F denote either C or H. To ease the notation we denote the unit sphere in
F by S(F). We define the projective space FP" as the set of all 1-dimensional
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F-subspaces zIF of F'*1, for z € F**!. We define the projection map
m:Ft\ {0} — FP’ (1)

z="(20,.-y2-) — |20,...,2]=ZF,

so m(z) = zF is the subspace spanned by z. Note that for F = H it is im-
portant that we specify which side we multiply on; I have chosen to multiply
from the right. We give FP" the quotient topology from 7. To show that
FP" is a smooth manifold of real dimension 2r (resp. 4r) for F = C (resp.
F = H), we display the explicit charts

hj : Uj:{[ZO,...,Zr] e FP" | Zj}éO} — ]Fr,

—

hi([20,- -y 2)) = (0257 Yy zj2 Y oo 22,
where the hat denotes omission; the charts have inverses
h;l(wl,...,wr) = [wy,..., 1. .. w],

with the 1 at the jth place.

Example 1.1. We will show HP! is diffeomorphic to S*. This can be seen
by stereographic projection. Think of $* C R®> = R x H with north pole
p+ = (1,0) and south pole p_ = (—1,0). Stereographic projection are the
maps

Ye ST\ {pe} — H,

which takes a point (¢,2) in S? to the intersection of the line through (¢, 2)
and pL with 0 x H. This is easily computed:
z z

t2)=— b (t,2) = ——,
Vit 2) = T U2 = T
and are clearly smooth maps. Now we want to compose ¢, and ¢_ with the
hj_l to get two maps to HP!. When we do this, we would like the two maps
to agree when ¢ €] — 1, 1[. To achieve this, we replace ¢, with its conjugate
Pt z) = ﬁ Doing this, we get maps,

* —1 —1
S\ {ps} S H IS HPY, 90\ {po} S WA =P

given by

(t,2) > {1,12;4, () > LL_H}

By multiplying the first expression from the right by % and using that

1 =|(t,z)] = t* + |2|*> = t* + 2*2, we see that these two maps agree when
t €] —1,1[, so they combine to a diffeomorphism S* — HP!. O
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We can modify the projection map 7 in (1) to a map
7 : S(F*Y) — FP"

where S(F"*!) C F"™! is the unit sphere. This can be used to describe the
tangent bundle of FP". Specifically for z € S(F"') there is an F-linear
isometry,

t.: (2F)" CTLS(F™") = Try FP",
where (2F)* = {w € F*! | (w, z)r = 0}. This map satisfies

toa(wA) =t (w) for A € S(F). (2)

The above properties of FP" are rather elementary, and the reader can
see e.g. |Madsen-Tornehave| Chapter 14 for proofs of the results in the case
of CP".

Consider the Riemannian metric on FP" given by the real part of the
inner product on F"*'. This is the standard metric on FP", and we will
use a metric g which is a scalar multiple of this metric. Take the unique
connection on T(FP") compatible with this metric, called the Levi-Civita
connection. We now define G(r) = G(FP7") as the space of parametrized,
simple, closed geodesics f : [0,1] — FP" with respect to this connection.
The scalar determining ¢ is specified by requiring that such a geodesic has
length 1 with respect to g. Note that every geodesic in FP" is closed: The
group of F-orthogonal matrices (U(r + 1) or Sp(r + 1), respectively) acts
transitively on HP", so it is only necessary to check it for one geodesic, e.g.
on FP! C FP", and since CP! = S% and HP! = S4, all geodesics on FP! are
known to be closed.

We also consider the set of n times iterated geodesics G, (r) for every
integer n > 1, whose elements v : [0,1] — FP" are given by ~(t) = f(nt)
for some f € G(r), where we make the obvious identification of the intervals
[j —1, 4] with [0,1] for j = 2,...,n. There is an action on G, (r) by S given
by rotation; explicitly,

S x Gu(r) — Gn(r)
(€ () = f(t—0).

We can twist the rotation action on G(r) by an integer n > 1, and we denote
the resulting S'-space G(r)™;

Stx G(r\™W — G(r)™ (3)
(€™ f(1) = f(t—nb).
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This action is the rotation action precomposed with the nth power map
P, : S' — S', P,(z) = 2" in complex notation. Then G, (r) and G(r)™
are isomorphic as S'-spaces via the obvious map G(r)™ — G,,(r) given by
f(t) — f(nt), so from now on, we will chiefly use G(r)™ instead of G, (r).
We also consider the quotient A(r) = S*\ G(r) under the rotation action,
which is the space of oriented, unparametrized, simple, closed geodesics on
FP".

We now want to get a more concrete description of G(r) and A(r), fol-
lowing [Bokstedt-Ottosen], §2. Let Vo = Vo(F"!) be the Stiefel manifold of
F-orthonormal 2-frames in F"+!, so

Va={(v,w) € F"" x F™ | [lo]| = Jw|| = 1, (v, w)s = 0},

and let PV, be the quotient manifold by the right diagonal S(F) action,
(v,w) * z = (vz,wz). On V4 we have a left action of S* by rotation by an
angle 6: For § € R, the action is () — R(6)(?), where

cos(f) —sin(0)

R(6) = sin(f)  cos(0)

For each n € N, we can define an action of S* on PVs, and we denote the
resulting S'-space by PVQ("):

St x PV — P50 [1,y] = [R(nf) (w0, y)].

This gives a well-defined S'-action on PV5, because we multiply the matrix
R on the left, while PV, =V, /diagS(F), where we multiply on the right. We
can now make an S'-equivariant diffeomorphism

o1 PV — G (4)
[z,y] +— woc(x,y)

where 7 : S(F™') — FP" is the projection, and c(x,y) is the simple closed
geodesic starting at x in direction y; explicitly,

c(z,y)(t) = cos(mt)x + sin(wt)y, for ¢ € [0, 1].

This is well-defined, and a bijection because every geodesic on FP" is closed.
Clearly, ¢; is a diffeomorphism, and it is straightforward to check that it is
Sl-equivariant, using the trigonometric formulas.

Another very useful model for G(r) is S(r) = S(T(HP")), the sphere
bundle of the tangent bundle 7 of FP". There is a diffeomorphism

v PVy — S(7)
[z,y] = tu(y) € Tn@FP"
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This is well-defined because of (2), and we can give an explicit inverse:
Given y € TrFP", v '(y) = [z, t;'(y)]. Thus we can give S(T(FP"))
a rotation action of S', namely the action that makes this diffeomorphism
St-equivariant. Combining this with (4), we have an S'-equivariant diffeo-
morphism

Vv oy S(T) — G(r). (5)

The last description only works for CP". Going back to PVy(C™1), we
first change coordinates as follows

0y Pv'z((cr-i—l) N ﬁT/z(CT+1)’ [I,U] s |:.f(f +w T — Z’U:| .

V2 V2

Here ﬁ/g is PV, equipped the S'-action induced from this change of coordi-
nates. It is easily computed that the action of 6 € [0, 1] is 6 * [a, b] = [za, 2b]
where z = ™ € S

We are interested in A(CP"), i.e. we divide out the rotation action.
Therefore we now consider the following space: Let 7, be the standard 2-
dimensional bundle over the Grassmannian Gry(C"') of 2-planes in C"™!,
and let p : P(7) — Gry(C™*1) be the associated projective bundle. Then
P(y2) = {V4 C Vo C C™! | dimg(V;) = j}. We can make a diffeomorphism,

g : St \ ﬁ//Q(CT—'—l) — P(v2), [a,b] — spang {a} C spang{a,b}.

This is well-defined, but only for F = C. In conclusion we get a composite
Sl-equivariant diffeomorphism

p: A(CPT) 2 §1\ P(Cr+) —2- g1\ Pia(Cr+t) 2sPly,).  (6)

1.3 Fibrations involving spaces of geodesics

We are going to compute the cohomology and K-theory of the spaces G(r)
and A(r). In cohomology, our most important tool will be Serre’s spec-
tral sequence. I will write down the most important part; for the complete
formulation and proof, see e.g [Hatcher2| Thm 1.14 pp.

Theorem 1.2 (Serre’s Spectral Sequence). Let F' — X — B be a fi-
bration, with B a path-connected CW complez, and m (B) acting trivially
on H*(F;G). Then there is a spectral sequence {EP? d.} converging to
H*(X;G) with

B3t = HP(B; HY(F; G)).
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If G = R is a ring, then there is a product EP? x E3' — EPTS™ and the
differentials are derivations, i.e. d(zy) = (dz)y + (—=1)PT%x(dy). For r = 2
the product is (—1)% times the standard cup product. The product structure
on Es coincide with that induced by the cup product on H*(X; R).

For the definition of a fibration, and the useful fact that fiber bundles are
fibrations, see [Hatcherl|, p. 375 and Prop. 4.48.

There is a similar result for a fibration in K-theory, but I am chiefly going
to use the important special case where the fibration is x — X — X, called
the Atiyah-Hirzebruch spectral sequence, see |Atiyah-Hirzebruch|:

Theorem 1.3 (Atiyah-Hirzebruch Spectral Sequence). Let X be a finite CW
complex. Then there is a spectral sequence {EP? d,.} converging to K*(X)
with

EP? >~ HP(X; K9(x)).

We will need a way to build fibrations from other fibrations, and this is
provided by the following theorem.

Theorem 1.4. Let F — X — B be a fibration, and assume that the group
G acts freely on X. Then,

(1) If the G-action preserves the fibres, F/G — X /G — B is a fibration.
(17) If G acts freely on B, then F' — X/G — B/G is a fibration.

Proof. This follows from the fact that G — X — X/G is a fibration,
which is a consequence of the "slice theorem”, |Bredon| Thm. 5.4. U

To apply the spectral sequences, we must know some fibrations involving
the spaces of geodesics. First by definition we have the fibration

SU— G(r) — A(r). (7)

For the application of Serre’s spectral sequence, note that the base is 1-
connected. This can be seen from the long exact sequence of homotopy
groups, using that G(r) = S(7) is 1-connected.

Then there is the map

P‘/Q(FTJ’_:l) N Gr2(FT+1)

induced by the map Vo(F™™) — Gry(F™), (2,9) — {zA +yu | A\, u € F},
which is well-defined on PV,. The fibre is PV,(F?). By the diffeomorphism
(4), this means we have the fibration

G(1) — G(r) — Gro(F"™1).
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Since the left S* action on the total space is free and preserves the fibres, we
can divide by it in the total space and fibre, by Theorem 1.4 (i) obtaining
the fibration

A(1) — A(r) — Gry(F™). (8)

Again we note that the base is 1-connected.

1.4 Homotopy orbits of spaces of geodesics

In this section we are going to study the so-called homotopy orbits of the
spaces of geodesics we have studied so far. For this definition we need the
following concepts: Let G be a group, and suppose we have a contractible
space with a free GG action. It turns out that all such spaces are homotopy
equivalent, so we can define EG to be any such space. We can then define
BG = EG/G to be the classifying space of G. Note that this is a "working”
definition; actually BG is defined for a category, but this is all I will need.
For G = S' we find ES' ~ S, since this is contractible. Thus we get
BS' ~ §% /8t = CP®>.

Definition 1.5. Let X be a topological space with a (left) action of S*. We
define the space of homotopy orbits of X by

Xps1 = ES' xg1 X = ES' x X/ {(e, tx) ~ (et,z),t € S'}.

Projection on the first factor gives a map X,g1 — BS*, and for a coho-
mology theory h* (we consider cohomology and K-theory), we get an induced
map

h*(BSI> — h*(thl>.

As explained in the introduction, this gives h*(Xjgs1) the structure of an
h*(BSY)-module.

Recall that G(r) is the space of simple parametrized geodesics with the
free left action of S' given by rotation. The space of n-times iterated
geodesics, G, (1), we have identified as an S'-space with G(r)™, which is
G(r) with the rotation action twisted by the nth power map P, : S* — S*,
see (3).

Proposition 1.6. In the following commutative diagram, the vertical and
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horizontal maps are fibrations with 1-connected base spaces:

G(r)

|

BC,, —= ES' x g1 G(r)™ —= A(r)

| |

BS! —— B!

Here C,, C St denotes the group of nth roots of unity.

Proof. To see that the vertical map is a fibration, use the product bundle
G(r)™ — ES' x G(r)™ 2% ES!, and divide out by the free action of S*
on both total space and base, according to Theorem 1.4 (ii). Using the long
exact homotopy sequence for the fibration S' — ES' — BS' shows that
the base BS! is 1-connected.

The horizontal fibration is built up in steps: We start with the product
fibre bundle,

ES' — ES* x G(r)™ 22 G(r)™.

Clearly, C, C S* acts freely on ES* x G(r)™, preserving the fibres. So by
Theorem 1.4 (i), dividing out by C,, in the total space and fibre yields the
fibration:

BC, — ES' x¢, G(r)™ — G(r)™.

We get £S'/C,, = BC,, because ES" is a contractible space upon which C,,
acts freely, and so ES' ~ EC,. Now consider the quotient group S'/C,,
which is isomorphic to S! by the n’th power map. Since C,, acts trivially on
G(r)™, we have an action of S*/C, on G(r)™. By definition, this acts on
G(r)™ exactly as S' acts on G(r), so (S*/C,) \ G(r)™ = S'\ G(r). By
Theorem 1.4 (4i), dividing out by this free action in the total and base spaces
gives us the fibration

BC, — (ES" x¢, G(r)™) /(S*/C,,) — S\ G(r).

Now (ES! x¢, G(r)™) /(S*/C,) = ES* x 51 G(r)™, by the definition of the
actions, so we get the desired fibration. As noted in Section 1.3, the base is
1-connected.

To get the commutative square, note that we have the homotopy equiv-
alence pr, : ES' x G(r) — G(r), since ES' is contractible. Since this
is an S' map and S! acts freely on both spaces, we can use [tomDieck]
Prop. 2.7 to conclude that ES* xg G(r) — S'\ G(r) = A(r) is also a
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homotopy equivalence. The upper vertical map in the square is defined as
pry : ES' x g1 G(r) — A(r) using this homotopy equivalence. For the iden-
tification S'/C, with S* above, we used the nth power map P, : S* — S1,
so for the diagram to commutate, the lower horizontal map BS' — BS!
must also be the one induced by P,. Note: This is well-defined on BS!
because S! is commutative.

O

Remark 1.7. If we let n = 1, the vertical fibration becomes G(r) —
ES'x51G(r) — BS'. As noted in the proof, ES' x g1 G(r) — S'\ G(r) is

a homotopy equivalence. So, up to homotopy, we have in practice a fibration
G(r) — A(r) — BS". 9)

O
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2 Cohomology of spaces of geodesics in HP"

2.1 The parametrized geodesics

In this section we find the cohomology of the space of parametrized geodesics
on HP", G(r) = G(HP"), followed by some Lemmas necessary to determine
the space of oriented, unparametrized geodesics, A(r) = A(HP") = ST\G(r).
Theorem 2.1. As a graded ring,

HY(G(HP");Z) = Zly, 7]/ ((r + 1)y", 5", 7%)

where y € HY(G(HP); Z) and 7 € H"3(G(HPT); Z).

Let p be a prime number. Then

cmpry = { Blol/ T =000 =0, plre
remeyE) = gyl S5y

wherey € HY(G(HP");F,), 0 € H* 1 (GHP");F,), T € H" 3 (G(HP"); F,).

Proof. We use the diffeomorphism from (5), G(r) = S(7), where S(7) is the
sphere bundle of the tangent bundle,

S+t —s S(1) — HP".
Since HP" is 1-connected, we can use Serre’s spectral sequence,
HP(HP"; HY(SY" ) = HPT(S(7)) (10)

(here the coefficients will be Z at first, and F, to prove the last part) which
has the following Fy page:

w10 yo yo Yo
o |1y ¢ Y
0 4 8 . 4r

We can see for dimensional reasons that there can only be one non-trivial
differential, namely dg4,. (o). For the sphere bundle, it is a general theorem that
this differential is multiplication by the Euler characteristic of the manifold,
here HP", so dy.(c) = (r + 1)y". This is proved in [Milnor-Stasheff], Cor.
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11.12 and Thm. 12.2. This is an injective map Z — Z, so when passing to
the Fy..1 page, the result is

w110 yo y-yo Yy 2yo ylyo
0 1 Y y2 yr—l yr
0 4 8 ...  dr-4 ar

As mentioned, there are no other non-trivial differentials, so this is E,,. Also,
there are no extension problems since there is at most one non-trivial group on
each diagonal p+¢q = n, so yo defines a class in H*"*3(S(7); Z) which we call
7. We can then read off the classes y € H*(S(7);Z) and T € H*3(S(7); Z)
with the relations y"™ =0, (r + 1)y" = 0, and 72 = 0.

To prove the result with [F,, coefficients, we use the same spectral sequence
(10), now with F,-coefficients. In case p | » + 1, do(0) = 0, so there are no
non-trivial differentials, and E., = FE,. As above, there are no extension
problems, and o defines an element in H*~!(S(7);F,). So we can read off
the desired result. In case p{r+1, r+1is a unit in F), so dy : F,o — F,y"
is an isomorphism. So when passing to the FE,..; page, these two groups
disappear. The result follows. ]

Now we can deal with the smallest case, HP', which we have shown in

Example 1.1 is diffeomorphic to S*. This is going to be useful, since we have
the fibration A(HP') — A(HP") — Gro(H"™!) from (8).

Lemma 2.2.
H*(AHP');Z) = Z[z, 1]/ (2t — 2*, %),
where x € H*(A(HP); Z) and t € HY(A(HPY); Z).
Proof. We use the fibration S' — G(HP') — A(HP') from the S* action.

Here we know the cohomology of the fibre and the total space, the latter from
Theorem 2.1,

7, n=0,7;
H"(GMHPY) =S Z/2Z, n=4;
0, else.

We can use the Serre’s spectral sequence,
HP(A(HPY); HY(SYZ)) = HPT(G(HP'); Z),

to find the cohomology of the base. Let 0 € H'(S') denote a generator.
The FE5 page has only two non-zero rows. We see that the only possible
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non-trivial differentials are dy, so F3 = E.,. We know the total space has
nothing in degree 1, so there must be zero at (1,0) since this cannot be
killed by anything. So H'(A(HP')) = 0, which means there is zero at (1,1),
too. Also, o must be killed by an outgoing differential, so dg’l is injective.
Actually it must be an isomorphism, otherwise something would survive in
degree 2, and there is nothing. So we have a H*(A(HP');Z) = Z generated,
say, by x = dy(0). Let us take a look at the Fy page as we know it now:

1
0

agxr

ol 9

0
0
1

Ll =~ o
=~ 2
[S2{IRECEE
| v v
NI

?
x ?
01 2 3
Continuing in this fashion we see there is zero at (3, 0) since H*(G(HP'); Z) =
0, and so also at (3,1). Likewise, there are zeroes at (5,0) and (5,1). Now
consider dg’l. This must be injective, since it starts in degree 3, where the
total space has nothing. Also, do" ends at (4,0), and must be such that we
get HY(G(HP');Z) = 727 when taking the cokernel of it. This means it
must be multiplication by £2; we might as well say 2 for concreteness. So
HYA(HP');Z) = Z generated by some ¢, which we can choose such that
dy(ox) = 2t. A quick summary:

1le 0 ox 0 ot O 7 7 7
10 = 0 ¢t 0 7 77
01 2 3 4 56738

Now we have gotten something at (4, 1), but the total space has zero in degree
5, so ot must be killed by the outgoing differential d;"l. Again it must be an
isomorphism. Note that by the derivation property of ds,

d(ot) =d(o)t — od(t) = d(o)t = xt

so xt is a generator of HS(A(HP!);Z). This gives us a Z at (6, 1) generated
by oxt. Now to see what further happens, we note that A(HP!) is at most
7-dimensional, since G(HP') = S(T(HP')) is a 7-manifold. So we know
that H*(A(HP');Z) is zero above degree 7. This means that oxt cannot
be killed, so it survives to E,,, meaning there can be nothing else in degree
7. So from column 7 and onwards there are zeroes in the Es page. Now we
know the full story:

1{c 0 ox 0 ot 0 oxt 0O O
1 0 2 0 ¢t 0 =zt 0 O
01 2 3 45 6 738
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To get to the bottom of the multiplicative structure we calculate:
2t = d(ox) = d(o)z — od(z) = d(o)x = 2°.

For dimensional reasons t2 = 0, and all other relations come from these two
(e.g. 2 = x* - x = 2xt). This proves the result. O

We now turn to the general case of A(r). We have the fibration from (8),
A(HPY) — A(HP") — Gro(H™).

So in order to apply Serre’s spectral sequence, we need to know the coho-
mology of Gro(H"™!). This is taken care of by the following Lemma, which
is the quaternion version of [Bokstedt-Ottosen| Thm. 3.1:

Lemma 2.3. Forr > 1,

H*(Groy(H'™); Z) = Zlpy, pal / (@rs 0r41)

where p1, py are the Pontryagin classes of the standard bundle 5 \, Gry(H™1),
and ©; = i(p1,p2) is the polynomial given inductively by

wo=1, p1=p1, @©i=—pipi-1—Papi2, fori=>2.

Proof. We use a result of Borel, [Borel| Prop. 31.1. Let vy \, Gro(H™)
denote the standard 2-dimensional bundle, i.e. the fibre over V' C H"*!
is V. Let p;, i > 0 be the Pontryagin classes, p; € HY(Gry(H"*1), which
satisfy p; = 0 for ¢+ > 2, since 7, is 2-dimensional. Let %,_; denote its
(r — 1)-dimensional orthogonal complement, i.e. the fibre over V' C H" ! is
V+ C H™. Denote the Pontryagin classes of this bundle by p;, j >0, p; €
H%Y(Gry(H"™)), and note that p; = 0 for j >r — 1. Then 75 & 7,1 = "1,
the trivial bundle of dimension r+1. The sum formula for Pontryagin classes
gives the relations

Z PiPj = Pk + Pr—1p1 + Dr—2p2 = 0, for k>0 (11)
i+j=k

Borel’s theorem states that H*(Gry(H™); Z) is generated by the Pontryagin
classes of 7, and #,_1, subject to the relations mentioned above:

H” (Gr2(HT+1); Z) = Zlpi,pj | i,5 > O]/({pi}i>2 ) {pj}j>r—1 ’ ( Z piﬁj)mo)‘

By (11) we see that we can inductively express py as a polynomial in p; and
po. Call that polynomial @i, so pr = @k(p1, p2), and we get from (11)

wo=1, @1 =p1, @i=-—DP1Yi-1 — P2pi-1,1 > 2.
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Then we get

H*(GYQ(HT+1);Z) = Z[pbp%ﬁj |] > O]/ <{pj}j>r—1’< Z pipj)k>0>

i+j=k
= Z[pl>p2>pl>p2> .- ]/ <{ﬁj}j>7«_1 ) {pk - ka(plap2)}k>0>
Zlpr,pal/ (px | k> 1)

12

From the inductive formula for ¢y it is seen that (px | £ > r) = (@, Yri1),
and this proves the lemma. ]

2.2 The unparametrized geodesics

Recall H*(BS') & H*(CP>) = Z[u] where u has degree 2; a fact that can
be deduced from H*(CP™) = Z[u]/ (u™1).

Theorem 2.4. The space of unparametrized oriented geodesics, A(HP™),
has the following cohomology:

H*(A(HP"); Z) = Zlx, ]/ (Qr, Qri1) ,

where v € H*(A(HPT); Z) is the image of the generator u € H*(BS"') = Z[u]
andt € HY(A(HPT); Z). Qy for k € N is a polynomial in x and t inductively
given by

Q=1 Qi =2t—2% Q= 2t—1")Qs 1 —t*Qs_a, for s>2.

Note that Lemma 2.2 is a special case of this with r = 1: Q; = 2t — 22,
and Qy = (2t—2%)Q; —t* = ¢* (mod Q). The proof of Theorem 2.4 for HP"
is not at all like the CP" case, since A(HP") is not isomorphic to P(~,), and
the proof will take quite some time. First we show that the cohomology is a
polynomial algebra generated by classes z and ¢ as in the Theorem, modulo
certain relations. It will follow from Lemma 2.3 that the polynomials @),
@r+1 are among these relations. Then we use a purely algebraic counting
argument to show that there can be no further relations.

Proposition 2.5 (Theorem 2.4, Part 1). There is a surjective map
Zlx, 1]/ (Qr, Qrs1) — H*(A(HP"); Z).

Proof of Theorem 2.4, Part 1. We write down the E5 page of the Serre’s
spectral sequence for the fibration A(HP') — A(HP") — Gry(H™1),
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using Lemma 2.2 and the above Lemma 2.3:

4|t

2| Trp1

0|1 y4! b2
‘ 0 2 4 6 3

We see there can be no differentials for dimension reasons, so £y = E,. Since
x is the only element of degree 2 in ., it defines a class T € H*(A(HP")); Z).
We also have p; € HY(A(HP");Z) for ¢ = 1,2: the image of p; under
the map induced by A(HP") — Gry(H"). But t is only defined up
to higher filtration. That is, we can choose t € H*(A(HP")) which hits
t € HY(A(HP')), but for any m € Z, t + mp; also hits t. As an abelian
group, HY(A(HP"); Z) = Zpy ¢ Zt, so there must be a relation

7% = apy + bt. (12)

We will show that we can choose £ a representative for ¢t in H*(A(HPT);Z)
in such a way that p; = 72 — 2t.

To get more information about H*(A(HP")), we use Serre’s spectral se-
quence for the fibration from Remark 1.7, G(HP") — A(HP") — BS™.
By Theorem 2.1, the Fy page has only one non-trivial group in total degree
2, namely a Z generated by u from H*(BS') = Z[u]. As T also generates
H?(A(HPT)), we must have T = +u. We can simply choose T to be the im-
age of u. Also, u? generates a Z in HY(A(HP");Z) = Z®Z, so in particular,
72 is not divisible by 2, which we will need shortly.

We can make the following diagram where the middle is H*(A(HP");Z):

Zx?

|\

0 Zipy 7Dl ——7t—0

Since, in the fibre, we have the relation 22 = 2¢, the diagonal map sends 22 to
2t. This implies that b = 2 in (12). So we now have 7% = ap; + 2t. Changing
t by adding an integer multiple of Py yields that we can obtain either of the
two relations

T =p+2t, or =21,

depending on whether a is odd or even. As noted, z? cannot be divisible by
2, so we can choose t as desired.

Now I will drop the bar, and simply refer to these classes as z, t, p; and
p2. We have found the relation p; = 2? — 2t in H*(A(HP")), and since
H* >~ 7 & Z, there can be no further relations in degree 4.
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Lemma 2.6. In the above setting, p, = t>.

Proof. Recall the notation from section 1.2,
Vo(H™) = {(v,w) e I x H'™ | o] = [Jw]| = 1, (v, w) = 0} .
Also recall from (5) that
G(HP") = PVa(H'™) = Vo(H'™") /diag S°,

identifying the unit sphere in H with S3. We also have a right S! action
on V,, simply by restricting the S® action to S'. Now we mod out by the
left S* action of rotation first, defining Y5(H™) = S\ Vo(H™). As the
two actions are on the right and left, respectively, they clearly commute. So
Yo(H 1) /53 = A(HP"). In order to investigate py, we rely on the results for
CPr, so we also consider V5(C™) and define Y5(C™!) = S\ V5(C"1). We

then consider the following diagram:

A(CP") = ¥y(CrH) /81— Yy(H1) /S = Yy (H) /S = A(HP")

| |

Gry(Cr+1) L Gry(H™)

(13)
All maps are the obvious ones: pc and py are the standard maps taking the
pair of vectors to their span, 7 is induced by the inclusion C C H, and ¢ is
the quotient map. The map h sends a 2-dimensional complex subspace V' to
V ®c H. Clearly, the diagram is commutative.

We investigate this diagram on cohomology. First note that Serre’s spec-
tral sequence for the fibration S? — Yo(H™+1) /ST —Ls Y5 (H'*1)/S? has all
non-trivial groups in even total degree, so there are no differentials, and we
see that the induced map ¢* on cohomology is injective. The map ¢ is de-
fined on representatives, so we can look at the corresponding map ¢ on V.
Now V,(C"1) fits into the fibration S?"~! — V4(C™ 1) — S?*1 (similar
for Vo(H™)), by choosing a unit vector v and then a unit vector w in v’s
orthogonal complement. So these Vi-spaces are at least (2r — 2)-connected.
Thus 7 on V3 is highly connected. When dividing by the S* actions, right and
then left, we note that they are free actions. So we can apply e.g. [tomDieck|
[1.2.7 to conclude that ¢ in the diagram is as highly connected. Thus ¢* is an
isomorphism on cohomology in degrees less than 2r — 2.

The idea is to obtain a relation in H*(A(CP")) by going around the
diagram (13). To find (pc)*, we will use the computation from the complex
case, and the results are found in [Bokstedt-Ottosen|, Thm. 3.2 and Cor.
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3.3. From here we get H*(A(CP")) = Z[xy, x5]/relations, where x1, x9 are in
degree 2, and (pc)* is given by ¢; — x1 4+ 25 and ¢y — x179, ¢; denoting the
ith Chern class in H*(Gry(C"1)).

To relate py to the other classes in H*(A(HP")), we must know their
images in H*(A(CP")) under j* = (g o¢)*. The classes pi,ps come from
the Pontryagin classes in H*(Gro(H™1)), and we can use Cor. 15.5 from
[Milnor-Stasheff] which relates the Pontryagin and Chern classes to find
h*(p1) = ¢,>—2co and h*(py) = ¢, in H*(Gry(C™1)). As noted, x is the class
coming from the generator u € H*(BS'), and according to [Bokstedt-Ottosen|
page 13, u maps to 1 — 5. As we have the relation p; = 22 — 2t in
H*(A(HPT)), we get j*(2t) = j*(2?) — j*p; in H*(A(CP")). So we can

compute all our classes in terms of z; and x,:

Ip = (po)(e? —2¢) = (@1 +x2)* — 22129 = 7.2+ 17,
i'p2 = (po)*()?) = (w122)%,

j*x = TI1 — Ty,

7¥2t) = (@) -5 (p) = (w1 —2)? -2 -1, = —2m70.

Since H*(A(CPT)) is torsion-free, we see j*t = —x1x9, and thus j*(?) =
7*(p2). This implies t* = py in H*(A(HPT)), since ¢* is injective and i* is
an isomorphism on cohomology in degree 8, when r is large (r > 5). By

naturality, it is enough to consider large r, since the classes pull back under
the inclusion HP" — HP !, O

To recapitulate, H*(A(HP")) = Z[z, t] /relations, and the classes p; and
p2 coming from H*(Gry(H!)) are related to x and t by p; = 2% — 2t and
p2 = t2. By Lemma 2.3, in H*(Gro(H"™!)) we have the relations ¢,, @, 1,
which are polynomials in p; and p,. Substituting the expressions for p; and
pa, we obtain the following relations @, and @, in H*(A(HP")), where Q)
is the polynomial in x and ¢ given by:

Qs(z,t) = cps(:vz —2t, t2) = —(:B2 —2t)ps_1 —t2p,_g = (2t —:L’2)Q8_1 —12Q,_s.
This ends Part 1 of the proof. O

I now investigate the Q-polynomials in order to complete the proof of
Theorem 2.4. () is a polynomial in z and ¢, where x has degree 2 and t has
degree 4. It is given inductively by:

Qo=1, Q1 =2t— 372, Qr = <2t - ‘T2)Qr—1 - t2Qr—2 for r > 2. (14)

Note that (), is a homogenous polynomial when taking into account that z
has degree 2 and t has degree 4. It then has degree 4r. It will be useful to
know an explicit formula, and this is provided by the following lemma:



2.2 The unparametrized geodesics 25

Lemma 2.7. For anyr > 0,
J r4+k+1
= 1)k =k 2k
Q=30 (T e

Proof. Not surprisingly, this is proved by induction in r. It is clearly true for
r =0 and r = 1. Let us denote the coefficient of 2™ in Q, by aj - Then
we can write the coefficient of " *2% in Q, = (2t — 2?)Q,_1 — t2Q,_ as:

r _ r—1 =1 =2
Ap_pop = 2ar—k—1,2k A _kok—2 — Qp_fk—22k
r—1 r—1 r—2
20,71 gk = O (1) 20-1) — Gr—2—k 2k

By induction we can substitute as_, ,, by (—1) (*tMHY if s <. Sor

; N o S AP AR
%*%'_2(1)(r—1—k (=1) r—1—k+1
(=1) ( r—2—k
_l_

S S B P B (A )

All we need to show is that

5 r+k . r+k—1 r+k—1\ (r+k+1
r—k—1 r—k r—k—-2) \ r—k )’
and this is easily done by three times applying the Pascal’s triangle formula,
(o) + () = () O
J—1 J i’
Part 2 of the proof of Theorem 2.4 consists in to showing that the two
rings Z[z,t]/ (Qr, Qri1) — H*(A(HPT); Z) have the same size, and deducing

that the map must be an isomorphism. This will be done in the following
lemmas.

Lemma 2.8. The map
QT + Qr’-i-l : Z[l’,thr D Z[l’,t]4r_4 - Z[x>t]8r>

given by (f.9) = fQy + gQry1, is surjective.

Proof. Let M, C Z[z,t]g, denote the image of @, + Q,,1. Recall that = has
degree 2, t has degree 4, and the degree of (), is 4s, so M, is generated over
Z by

Qrtr_kl’zk, k= 0, SN Qr+1tr_1_kl’2k, k= 07 cee, T = L. (15)
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We use induction in r. The induction start, » = 1, is easy:

= (2t—2)Q1 — Qo
22t = 22 —tQq,
zt = Qy — 2%t + 3t%
Now assume r > 2. Now let us rewrite the generators of M, in (15), trying
to bring into play the inductive definition of the @)-polynomials:

Qr1 = (2t — $2)Qr - t2Qr—1-

We can add the generators as follows for £k =0,...,r — 1:

Qrtr_(k+l)x2(k+l) + Qr+1tT_1_kx2k . QQrtr_kI2k

— tr_l_k$2k(Qr+1 + x2Qr o Qth) _ —t2 . Qr_ltr—l—kljk
Furthermore, we have the ones involving @), slightly rewritten:
2 Q2 k=o0,...,r—2.

Now, inductively we assume that M,_; = Z[z,t]s,—1). This means that
everything in Z[z, t]g(r_l) can be expressed as Z-linear combinations of

Qat" 1Rk k=0,...,r—1; Qut g k=0,...,r—2.

We see that, if multiplied by ¢2, these are exactly the elements we have found
in M, C Z[z,t]s,. This means by induction that every generator for Z[z, t|s,
which is divisible by #? is in M,..

All we are missing are the generators z*" and tz* 2. Using Lemma 2.7,
we see that:

T

-1
k+1

Otz =2 = (_1)rm4r—2 i (_1)k (7“ 1’_‘]2‘ )tr—k+1x2k+2r—2 .

k=0

J

~
divisible by t2

So tx*" =2 € M,, since elements divisible by ¢? are in M,. Similarly, writing
out Q,z%, we get 2% € M, as desired. This accounts for all the generators
in Z[z,t|s, and ends the proof of surjectivity. O

I now compute the size of the ring Z[z, t|/ (Q., Q,11). For the formulation
of the lemma below, it will be convenient to use the notational tool of the
Poincaré series. This is simply a short way of expressing the ranks of a graded
R-module A = @,, Ay,. (In order for the rank to be well-defined, we can
assume R is commutative; mostly we will have R = Z.) The Poincaré series
of A is then the formal expression P4(t) = > rank(A,,)t".
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Lemma 2.9. Write A = Z[z,t]/ (Qr, Qr+1). Then A is torsion free, and the
Poincaré series of the graded ring A is given by

1 1— t4(r+1)

Pt)= (141t T

Remark 2.10. This gives that the ranks of A in each degree are as follows:

0O 2 4 6 8 --- 4r—6 4r—4 47“—2‘47’ 4r4-2 Ar4-4 cec 8r—4 8r—2
11223 -+ r—1 r 7"7”7’7‘—1~-~1 1

where the degree is in the top row. Each rank is repeated twice, increasing
by one from 1 to r up to the vertical line, and then decreasing by one from
r to 1. For this, see the start of the proof below.

Proof. Let us try to write the Poincaré series differently. We calculate

1 — #4r 1 — A0+ -1 ro 2r—1 2r—1
R _ (Z t4z> (Z t4j> _ Z ( Z t4k> _ Z akt4k,
k=0

i=0 j=0 k=0 \i+j=k

where
R+ k<
CE o —k k>

simply by counting the number of ways to write k as a sum of ¢ and j. So
we must show that the Poincaré series is

2r—1
kE+1, k<r;
2 4k o ’ )
(1+1¢) ,;_0 apt™, where a = { o —k k> (16)

Let A; C Z[z, t]s denote the homogeneous polynomials in A of degree s. Since
Q). has degree 4r, we must have Ay = Z[z,t]; for s < 4r, since there are no
relations. So Aj is torsion-free for s < 4r. The generators of Z[x, t], are: For
s = 4k, {tk_szj |7=0,..., k:} and for s = 4k+2, {tk_szj“ |7=0,..., k:},
so the rank is k£ + 1 in both cases. From this, the Poincaré series of Z[z, ] is
(L+ %) >0 (k+1)t*, so it is clear that a, = k+ 1 for k < r as claimed in
(16).

Now we handle degrees 4r and 4r + 2. Here the only relations are (), and
zQ,, respectively. By Lemma 2.7, the coefficient of 22" (resp. z?"™!) in Q,
(resp. z@,) is £1, we get exactly one generator less than in Z[x,t]s. (resp.
Z[z, t]4r42), which had rank r+ 1. This means Ay, and Ay, 4o are torsion-free,
and the rank is 7 in both cases, as (16) claims.
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We now show that the Ay, 9, is torsion-free for 2 < m < 2r. To do this,
assume there was a torsion element a € Z[x, t|44om, i.. na = Q. f + Qri19
for some n € Z. Multiplying by 2% =™ gives

naxzr—m _ Qrf$2r_m 4 QH_lgl’zr_m € Z[l’, y]gr- (17)

Now, az*~™ € Z[x,yls,, so since Q, + Q.41 is onto this by Lemma 2.8, we
have

02?7 = Q,f' + Qrirg’.  for some f g’ (18)

Multiplying this by n and comparing with (17) we get

(fz* ™" = nf)Qr = (—g2™ ™™ + ng')Qri1. (19)

Since @, + Q41 is surjective onto Z[z, y|s,, @, and @, are relatively prime.
We then conclude from (19) that 2™ divides f’ and ¢’. So we can divide
by z**™ in (18) and obtain the relation a = Q,f” + Q,119”. So a = 0 in
A4riom, and there is no torsion.

For the last part, the surjectivity result of Lemma 2.8 implies A, = 0
for s > 8r, as the Poincaré series states. We already calculated the rank of
Z[z,t]4s to be s+ 1, so we see that both Z|x,t]y, ® Zlx,t]4—4 and Z[z, s,
have rank 2r + 1. Since we have shown A is torsion-free, this means that
the map Q, + Q41 : Zlx, t)sr & Z[x, t)4r—4 — Z[x,t]s, must also be injective.
This implies that for any m such that 2 < m < 27, the map

Qr + Qry1 : L[z, t)oy @ Z[, tom—s — Z[7, t]4r42m
is also injective, since we can multiply a relation Q,f + Q.19 = 0 in
Z|x, t]4r42m by 2?"~™ and get a similar relation in Z[z, t]s,, where Q, + Q.11

is injective. Therefore,

rank(Ag19,) = rank Cok(Q, + Qri1)
= rank Z[z, t|4r1om — rank (Zlx, t)om & Z[z, tlom—4) -

These ranks we already know. If m = 2] or m = 2[4+ 1 we get in either case:
rank(Agyiom) =r+I1l+1—-(1+1)—1l=r—1, for2<m<2r
which, substituting k = r + [, is 2r — k, as claimed in (16). O

Now we can finish the proof of Theorem 2.4:
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Proof of Theorem 2./, Part 2. Picking up where we left in Part 1, we have a
surjective map

Lz, 1]/ (Qr, Qryr) — H™(A(HP"); Z). (20)

By Lemma 2.9 and 2.8 we have computed the ranks of the free, graduated
Z-module Z[z,t]/ (Q,, Q+1). Tt has the Poincaré series

1t 11— t4(7’+1)

1t 1

If H*(A(HP"); Z) has the same Poincaré series, the surjective map (20) must
be an isomorphism. We compute the ranks via the spectral sequence of the
fibration (8), A(HP') — A(HP") — Gry(H™). We see that the non-

trivial part of the Fy page sits in even total degree, so F,, = E5, and we can
compute the Poincaré series of the total space,

Priod)@rarin) () = (L+ 1) -

PH*(A(HPT')) (t) = PH*(A(le)) (t) . PH*(GFQ(HT+1))(t)'
Here we know by Lemma 2.2

Z, n=20,2,4,0;
0, otherwise.

H"(A(HP'); Z) = {

so its Poincaré series is Ppy«aqpi))(t) = 1+ + ¢4+ = (1 — %) /(1 — ¢%).
Also by Lemma 2.3

H*(Gry(H™); Z) = Zp1, pal/ (1, prs1) -

To compute the Poincaré series, one proceeds as in Lemmas 2.8 and 2.9.
Lemma 2.9 does not cover the Grassmannian case, for when I tried stating
and proving a more general lemma that could handle both cases, everything
got extremely complicated. So I simply state the result for the Grassmannian,
the proof of which is just like Lemma 2.9:

1_t4r+4 1_t4r
1—tt 15

PH*(GrQ(H’"+1)) (t) =
Then

PH*(A(HPT)) (t) — PH*(A(HPI)) (t) : PH*(GTQ(HT+1)) (t)
1—t8 1_t4r+4 1_t4r
1—1¢2 1—tt 1—18
1— t4r+4 1 — t4r
= (]‘ + t2) : 1 _ t4 : 1 _ t4 = PZ[mvt}/<Qr7Qr+l>(t)'

This finishes the proof. O
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2.3 Equivariant cohomology of spaces of geodesics

Using our previous computations (Theorems 2.1 and 2.4) and Serre’s spectral
sequence, we will be able to compute the equivariant cohomology of the space
of geodesics, G(HP™)™.

We first consider the case p 1 n, since this is the easiest. We show:

Proposition 2.11. For ptn:
H™(BC,;F,) =0, form>0.

Proof. We are going to use that EC,, — BC), is a covering, since C), is
discrete. In general, given a k-sheet covering 7 : F — B (assume B con-
nected), one can construct a so-called transfer map. By barycentric sub-
division one knows that it is enough to consider very small simplices in
B. Therefore, given a simplex in B we can assume it is contained in a
neighborhood U such that 7=(U) is a disjoint union of open sets mapped
homeomorphically to U by w. Then we can pull the simplex in U back
by 7, yielding k£ copies of the simplex in E, which we formally add, giv-
ing a chain map 7 : C,,(B) — C,,(£). This induces the transfer map
"« H™(E) — H™(B) on cohomology. From the definition, m; o 7 is
multiplication by k, and so 77" is also multiplication by k. In our case,
EC,, — BC(C,, is an n-sheet covering, and so the composition

H™BC,;F,) — H™(EC,:F,) = H™(BC,;F,)

is multiplication by n. Since we are using F,-coefficients and p 1 n, this is an
isomorphism. On the other hand, for m > 0, the middle term is zero, since
EC,, is contractible. Thus H™(BC,,;F,) = 0 for m > 0. O

With this we can prove:

Theorem 2.12. For p { n, the equivariant cohomology with I, coefficients
of the n-twisted space of geodesics on HP" s

H*((GHP")™)ys13F,) 2= Fyl, 1]/ (Qr, Qra)

where x has degree 2, and t has degree 4, and x s the image of the generator
u € H*(BS") under the map A(HP") — BS in (9).

Proof. We use the Serre’s spectral sequence of the fibration from Prop. 1.6:
BC,, — ES* xg1 G(r)™ — A(r).
Proposition 2.11 above now immediately implies that
H*(G(r))asii F,) = HY(BS' x50 G(r) "5 F,) = H*(A(r):F,)

The theorem is now proved by our computation in Theorem 2.4. O
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The case p | n requires more work, and one needs to take into account
whether or not p | r + 1. But first we need a computation of H*(BC,,;F,):

Proposition 2.13. For p | n,
H*(BCy;Fp) = Fylu,e]/ (¢*).

Proof. Use Theorem 1.4 (i) on the fibration S' — ES' — BS? to divide
out the action of C,, C S*, and obtain a fibration

st — BC, — BS". (21)

Here we have identified the quotient group S'/C,, with S! itself via the nth
power map z — z". We will apply Serre’s spectral sequence.

First, though, we will find H'(BC,;F,). Since C, is discrete, EC,, —
BC,, is the universal covering. From covering space theory, m (BC,) = C,,
and since this is abelian, it follows that H,(BC,;Z) = Z/nZ. Using the
Universal Coefficient theorem, we can compute H'(BC,;F,). Note that
Hy(BC,,) = Z, so Ext(Hy(BC,),F,) =0, and therefore, since p | n:

HY(BC,;F,) = Hom(H,(BC,),F,) = Hom(Z/nZ,7/pZ) = F,,

Now we turn to Serre’s spectral sequence for the fibration (21), with
EYY = HP(BSY; H1(SY;F,)) = H?(BS',F,) ® H1(S';F,). Note that the
only possible non-trivial differential is d?, since the E? page has only two
non-zero rows. Knowing that H'(BC,;F,) = F,, we conclude that the first
differential o' must be a map F, — [, with kernel isomorphic to FF,. This
forces dy(e) = 0, where e generates H(S';F,). Using the derivation property:

d(ev’) = d(e)u! & ed(uv’) = 0.

So all differentials are zero, the spectral sequence collapses, and E,, = Es.
There are no extension problems, since each diagonal p + ¢ = * contains at
most one non-zero group, so H*(BC,;F,) = E. as desired. ]

Theorem 2.14. Let p be a prime number and n € N such that p | n. As
F,[u]-modules, the following holds:

(i) Suppose ptr+ 1. Then
H* ((G(]HIP”)("))hS1 ;Fp) = Fylul {1,y,y2, Ly Ty Tyr_l} )

(13) Suppose p | r+ 1. Then

H* ((CT'(]I-]IPT’)("))hS1 ;Fp) = F)lul {l,y,yQ, ooy ooy, ..., ayr} )



32 2 Cohomology of spaces of geodesics in HP"

where y has degree 4, T has degree 4r + 3 and o has degree 4r — 1.

Proof. In the beginning, the proofs of the two cases are the same. Consider
the spectral sequence for the fibration from Prop. 1.6

G(r) — ES' xg1 G(r)™ — BS*. (22)

According to our computation of the cohomology of the fibre in Theorem
2.1, neither the fibre nor the base has anything in cohomology of degree 1.
This means that H*((G(r)™),s1) = 0. We can use this when considering
the spectral sequence for the other fibration from Prop. 1.6:

BC, — ES' xg1 G(r)™ — A(r).
According to Prop. 2.13, E3* = HI(A(r); H*(BC,;F,) looks as follows:

3 | ue uex uex?, uet
2| u ux uw?, ut
1] e ex ex?, et (23)
ol 1 x 22t
o 1 2 3 4

Let us denote the two lower rows of the Fy page by F. Then the next two
rows (rows 2 and 3) consists of uF, the next two are u?F, etc. Consider the
differential dy as a map dy : eH*(A(r)) — H*(A(r)) from row 1 to row
0. Then, using the derivation property of the differentials we see that ds is
multiplication with dy(e). When passing from the Es to the E3 page, F' will
be replaced by two rows, Cok dy and Ker ds, uF will be replaced by uCok dy
and uKer dy, etc.

So to determine the E3 page, we need to find dy(e). As noted, the total
space has H! = 0, so dg’l : Eg’l — E22’0 must be an injective map, hence an
isomorphism. This forces dy(e) = unit - x; we might as well say ds(e) = x. So
ds is multiplication by z, and we must determine Cok(z) and Ker(z). Using
Theorem 2.4, we see that

Cok(x) = Fpla, 1)/ (x, Qr, Qri1) = Fp[t]/ (@r(0,1), @rs1(0,1)) - (24)

Now by Lemma 2.7, Q,(0,t) = (r + 1)¢" and Q,.1(0,t) = (r + 2)¢"*!. This
is where we must distinguish between the two cases.

But let us first investigate the kernel. I have tried to diagram the dimen-
sions of F,[z,t]/ (Q,, Qr+1) using Remark 2.10, with boldface indicating the
degrees where, for dimension reasons, the kernel must be non-trivial. The
degrees are in the top row:

0 2 4 6 8 Ar  Ar+2  4dr+44 4r+6 4r+8 4r4-10 4r4-12
11223 - 7 r r—1 rr—1 r—-2 r—2 r—3
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The pattern is (hopefully) clear: There must be a part of the kernel in degrees
A(r+1i) — 2 for i = 1,...,r. In particular, the dimension is at least . Now,
for the rest of the proof, we need to handle the two cases separately.

Case (i): ptr+ 1. In this case, r + 1 is a unit in F,, so (24) becomes
Cok(z) = F,[t]/ (t"). In particular, the dimension of Cok(z) is r, generated
by 1,t,...,t" L

Since dim Ker(z) = dim Cok(z) = r, we have determined above that the
kernel is in degrees 4(r +1i) — 2 for ¢ = 1,...,r. In each degree, the kernel is
one-dimensional, say generated by ¢; in degree 4(r + i) — 2. So we can write
down the E3 page:

3 ups ups - UPy
2| u ut ut? oo ut™ !
1 ¥1 w2 Pr
0|1 t 2

0 2 4 6 8 ... 4dr—4 4r—2 4dr 4r+2 4dr+4 446 ... Sr—2

Because there are no further differentials on ¢ and u, and the differentials
satisfy the derivation property, we see that the spectral sequence collapses
from the F3 page. Now let us compare this to the spectral sequence for the
fibration G(r) — ES! xg1 G(r)™ — BS' from (22) considered in the
beginning, which also converges to H*((G(r)™),s1;F,). Since

H*(G(T>7 Fp) = Fp[va]/ <yr = 07 7—2 = 0> )
where y has degree 4 and 7 has degree 4r + 3, we get the Es page,
Ey* = Fyly, 7]/ (y" = 0,7" = 0) @ F,[u]

Comparing this to the F3 page above, we see that we have in each case
21 generators which are multiplied by 1, u, u?, etc. This means, since the
first spectral sequence collapses, that this second one must also collapse.
Consequently we can read off that H*(G(r)("zsl;Fl,) as an [, [u]-module is

generated by

{17y7 y27 A 7yr_177—77—y7 A '7Tyr_1}

Case (ii): p|r+ 1. In this case, r + 1 is zero in F,, but 4 2 is a unit, so
(24) becomes:
Cok(x) 2 F,[t]/t".

In particular, the dimension of Cok(x) is r 4+ 1, generated by 1,¢,... t".
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Consequently, dim Ker(z) = r+1, so we need to find an additional element
in the kernel. By Lemma 2.7, @), is the polynomial

r+2
r—1

Q.= (r+ 1t — < )t’"_1:v2+---i—x27’,

so x divides @, in Fy[z,t]. This means we have an element ¢y = @, /x in
degree 4r — 2 which is in the kernel of z. So together with the elements
©1, ..., @, from before, we have found generators of the kernel.

As in Case (7), we see that the spectral sequence collapses from the Fj3
page. Comparing with the E, page of the fibration (22), and using that since
plr+1,

H*(G(r);Fy) 2 Fply, 0]/ {y" =0,0° =0},

we conclude as above that H*(G(r)(")hsl;Fp) as an F,[u] module is generated
by
{17y7y2""7yr’0-?o-y""’0-yr}' D

Corollary 2.15. For the Serre spectral sequence of the fibration
GHP") — GHP)™, ,, — BS?

the following holds: If p | n, it collapses from the Eo page. If p ¥ n the
inclusion of the fibre induces a surjective map on even degree cohomology

H*(GHP)™, i F,) — H*(G(HP");F,)

Proof. The case p | n follows directly from the proof of Theorem 2.14 above.
For the case p t n, we must check that the classes 3/ from Theorem 2.1 are in
the image of the inclusion of the fibre. To do this, we consider the Fy page
of the spectral sequence, and must show that the classes y’ survive to E...
Since the differentials are derivations, dy(y’) = jy’~1d.(y), and so it suffices
to show y survives. Clearly it does, since any differential starting at y ends
in total degree 5, and there are no non-trivial classes in total degree 5. [
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3 K-theory of spaces of geodesics in CP"

Let G(r) = G(CP") be the space of simple, closed, parametrized geodesics
in CP", and let A(r) = S\ G(r) be the quotient space under the rotation
action. In this chapter we obtain K-theoretic analogues of the results for
cohomology from the previous chapter.

By K-theory we mean complex K-theory, i.e. K°(X) for a CW-complex
X is the group completion of the semi-group of complex vector bundles with
base space X. Define K*(X) for a general space X as follows: Chose any
CW complex Y weakly equivalent to X, put K(X) = K(Y). This is well
defined, since two choices of Y will be homotopy equivalent, and K-theory
is homotopy invariant. We most often employ the Z/2Z-grading from Bott-
periodicity, writing K*(X) = K°(X) & K'(X).

3.1 The unparametrized geodesics

Recall the model for A(r) from the end of section 1.2. We had ~,, the
standard 2-dimensional bundle over the Grassmannian Gry(C™1) and p :
P(vy5) — Gry(C™) the associated projective bundle. Then we had a com-
posite map (6), which is an S'-equivariant diffeomorphism

P A(r) — P(y)

Take the standard line bundle ~; over P(vy2). The pullback ¢*(7y1) of v
under ¢ is a line bundle we will denote X. We consider also the conjugate
line bundle ~i- to v, over P(y,), i.e. v ® {1 = p*v2. The pullback ¢*(vi)
of this bundle to A(r) we will denote Y. In K°(A(r)) we define the classes
r=[X]-1landy=[Y] -1

Theorem 3.1. Let z,y € K°(A(r)) be the classes defined above. Then

KYA(r) = Zlz,y]/ (Qr, Qria)
K (A(r) = 0,

where Qg for s € N is the homogeneous polynomial in x,y given by

Qsla,y) =D _aly*™.
=0

Note that these polynomials are not the same is in the cohomology case,
but I use the same notation, since they play precisely the same role.
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Proof. We apply the Atiyah-Hirzebruch spectral sequence, Theorem 1.3
H*(A(r); K*(x)) = K*(A(r)). (25)
Since we know the cohomology of A(r) from |Bokstedt-Ottosen|,

HY(A(r)) = Zlay, 2]/ (Qr, Qri1)

and x1, 5 have degree 2, we see that all differentials in (25) are trivial, so
that

By = Ey = Z[x1, 23]/ (Qr, Qr1) ® Z[3, 571,

where 3 denotes the Bott element. This shows that K'(A(r)) = 0, and
K°(A(r)) is free abelian of the same rank as H*(A(r)).
We use the Chern character,

ch: K°(X) — H*(X;Q),

which is a ring homomorphism. By construction, 1 = ¢1(X) and 29 = ¢;(Y)
are the first Chern classes of X and Y, cf. [Bokstedt-Ottosen| Thm. 3.2, so
since X, Y are line bundles, we get

ch(z) = ch(X)—1=-exp(ci(X)) —1=-exp(zy) — 1,
ch(y) = ch(Y)—1=exp(c1(Y)) —1 = exp(xq) — 1.

There is a relation between the Chern character ch and the Atiyah-Hirzebruch
spectral sequence, by [Atiyah-Hirzebruch| Cor. 2.5. We see that ch(z'y’) =
ch(z)’ch(y)’ = z!a) + higher terms, where “higher terms” means terms in
higher filtration, which in this case is equivalent to higher total degree in
x1, Tz. By (iii) in the corollary, this shows that the ring homomorphism
Zlz,y] — K*(A(r)) is surjective.

This means we can use z,y as polynomial generators for K*(X), and it
remains to determine the relations. Again we use the Chern character, this
time after tensoring with Q:

ch: K'(X)®Q — H*(X,Q)

which is then a ring isomorphism. We now want to prove that ch(z) and
ch(y) satisfy the relations @,, @,.1. If we can prove this, we are done: Since
the Chern character is an isomorphism after tensoring with @, and the groups
are torsion-free, there can be no further relations in K°(S(7)/S"), since this
has the same rank as H*(S(7)/S') & Z[x1, 23]/ (Qy, Qri1)-

So we need to prove that Q (exp(z1)—1,exp(z2)—1) = 0if Qs(z1,22) =0
for s = r,r + 1. Recalling that the ideals (Q,,Q,+1) and (Q,,z]"", z5*")
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coincide, we first get that (exp(x;) — 1)"*! = 2/*(1 + higher terms) = 0.
Consider the quotient map

R = @[Il"'w]/ <ZE71,+1’1'12“+1> - Q[xl’x2]/ (Qra@r—i—l) =5,

which has kernel I = (Q,). Given a power series without constant term,
g(z) = a1z + azz* + -+, we can define g, : R — R by z; — g(z;) for
i =1,2. In our case, g(z) = exp(z) — 1. If we can prove that g.I C I, the
map g, will be well-defined as a map S — S, as shown below:

0 1 R S 0
lg* lg*
v

0 1 R S 0

We will show I = Ker(z; — x2). Consider a homogeneous polynomial f € R
of degree m. It suffices to take m > r, for if f had lower degree, it could not

be in I = (Q,), since @, has degree r. Then, using 2} = 25" = 0, we can
write
T T
f = Z Cilexgn—z = (Il — l’g)f = Z (Ci—l — Ci)IZII;n_Z.
i=m-r i=m—r+1
By |Bokstedt-Ottosen| Lemma 3.4, f € [ if and only if ¢,,,_, = ... = ¢,, and

we conclude I = Ker(x; — x2). This implies g,/ C Ker(g,z1 — g.x2). So we
calculate

i—1
g1 = gurs = Y alwl = w5) = (o1 —22) Y (Z ) |
i k=0

1>1

This shows g.I C Ker(g.xq — g.x2) C Ker(zy — x9) = I, as desired. O

Remark 3.2. Let M = K*(A(r)) = Z[x,y]/ (Qr,Qr11). We often use
filtration arguments, so let us fix the notation now. Let M; C M be
the group generated by monomials in x,y of total degree at least j, i.e.
M; = Zlz,y]>;/ (Qr, @r41). This makes sense since @), Q41 are homoge-
neous. Then 0 = M,, € M,y C --- C M; C My = M is a filtration of
M.
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3.2 Equivariant K-theory of spaces of geodesics

Recall the commutative diagram of fibrations from Prop. 1.6,

S(7)

|

BC,, —— ES" x g1 G(r)™ — A(r)

| |

B§t—""— BS!

Here the map BP, : BS' — BS! is induced by the nth power map P, :
St — St 2+ 2" and C, C S* denotes the group of nth roots of unity.
Taking the K-theory gives the commutative square

K*(ES" x 51 G(r)™) ~—— K*(A(r)) (26)
K*(BSY) <22 K*(BSY)

We see we will need to know the K-theory of classifying spaces in order to
proceed, and luckily there is a general theorem due to Atiyah about this,
which T will now explain and use. So let G be a compact Lie group. The
representation ring R(G) is defined as the Groethendieck group completion
of the semigroup of representations of G under direct sum. This becomes a
ring via the tensor product. We can define a map

R(G) — K°(BG), (27)
V o {EGxqV\ BGY;

and extend by the Groethendieck construction. Define the augmentation

ideal, I = I(G) C R(G) by
I = Ker {R(G) dim, Z} :

We define the completion to be the inverse limit,

R(G), = lim R(G)/I",

k

and can now state the theorem, se [Atiyah2] Thm. 7.2 for G a finite group,
and [Atiyah-Hirzebruch] Thm. 4.6 for G a connected compact Lie group:
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Theorem 3.3 (Atiyah). Let G be a compact Lie group. Then
(i) K°(BG) = R(G),.
(ii) K'(BG) = 0.
I will now use this theorem to determine K*(BS"') and K*(BC,).

Lemma 3.4. Let T : S' — C* be the natural 1-dimensional representation

of S', and let t = [T] —1 € K°(BS"). Then
R(SY) =ZIT.T7Y, I=(T'-1), K°(BS")=R(S"), =Z[]].

Proof. First note that a representation p : S* — GL, (C) can be conjugated
to p : St — U(n), by choosing an inner product on C" (all of which are
conjugate) which is S'-invariant. So it suffices to look at representations
p: St — U(n). Now p(t) € U(n) (for t € [0,2n]) is diagonizable, p(t) ~
diag(e®, ... e?). This also diagonalizes p(kt), k > 1, so if we choose t
rationally independent of 7, this diagonalization works for a dense subset of
S1. So by continuity we can diagonalize p(t) for all ¢ simultaneously, and so
p is given by diag(py(t),. .., pa(t)), where p : St — S is a homomorphism.
This means pg(z) = 2", my € Z. Using the natural representation 7" : z —
2z, and its inverse T~ ' : z +— 27!, we can reformulate this by saying that every
representation of S* has the form Zfi_N n;T% n; > 0. The Groethendieck
construction yields

R(S") = { > T |n € Z} =Z[T, T".

Now to the augmentation ideal. By definition

N N
i=—N i=—N

Clearly, T'— 1 € I, and also, Zﬁ\;_N n;T* € I is divisible by T — 1, because
the sum of the coefficients is zero. So I = (I'—1). Now [* = ((T —1)¥),
and R(SY)/I* has generators 1,7 —1,(T—1)%,...,(T—1)k"1. Consequently,
putting ¢t = [T] — 1, we get

—

K(BS') = R(S"); = Z[[t]].
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Lemma 3.5. Let n € N be a number with prime factorisation n = Hp‘npi(p).

Then _
K(BC,) = Z& Pz,

pln

where Zp denotes the p-adic integers.

Proof. Let W be the natural 1-dimensional representation of C,, C C*. As
in the proof of Lemma 3.4 above, we only need look at representations
p: C, — U(m) and diagonalize, so that p = diag(p1,...,pm). Here each
pj : C, — S' is a group homomorphism, and so is a power of W, with
the relation W" = 1. Consequently R(C,) = Z[W]/(W" —1). The aug-
mentation ideal is I = (W — 1) for the same reason as before, and we must
compute the inverse limit hﬂ R(C,,)/I*. This we propose to do in two steps:

k
First assume n = p’. Then C); is a p-group, and according to [Atiyah2]

the /-adic and p-adic topologies on I = I(C,:) are equivalent, so that

—

KO(Bsz) = R(sz)l =7 P [(sz)l =7 ](sz)p
To calculate this, let w = W — 1, and note that /(C,i) = (w) in the ring
Zw]/ <(w +1)7 = > and so [(Cpi) = ZP' =1 Thus 1(Cpe), = (Z,)"' "

Now take any n € N. Observe that Clip), where n = p"P)m with
ged(p,m) = 1, are exactly the Sylow p subgroups of C,. Then by |Atiyah2|
Prop. 4.10, there is an injective map

K°(BC,) — P K°(BCy),
pln

and in particular

] n)1(Cn) _’@[ i) C i)

pln

is injective. By using that C,, = Hp‘n Ciw by the Chinese Remainder The-
orem, it is easily seen that this map is an isomorphism, so that

ZEB@[ i) Z@@ Z(p) 1

pln

by the result for p' above. O



3.2 Equivariant K-theory of spaces of geodesics 41

With these results, let us first take a look at the K*(BS')-module struc-
ture on K*(X}51), where X is an Sl-space, as described in Section 1.4. Fol-
lowing the notation in Lemma 3.4, we have the canonical representation 7'
of S*, which by (27) gives a bundle over BS*, which we also call T. On K-
theory, T defines a class in K*(BS'), and K*(BS"') = Z[[t]], where t = T —1.
Using the projection pry : Xps1 — BS', we get classes pri(T) and pri(t) in
K*(X}51). We will suppress the map pr; from the notation, and simply call
these classes 1" and t again.

We can now determine the K*(BS') module structure on A(r) ~ G(r),s::

Lemma 3.6. The K*(BS') = Z[[t]] module structure on K(A(r)) is given
byt (x—y)/(y+1). In particular, t*" acts as 0.

Proof. We use the results from cohomology, where the H*(BS') = Z[u]
module structure on H*(G(r)/SY) = Z[x1, 3]/ (Qr, Qr11) is given by u —
21— 29, cf. |Bokstedt-Ottosen| Cor. 3.7. Recall that x = [X]—1, y = [Y]—1,
where 1 = ¢1(X) and 23 = ¢ (Y") are the first Chern classes. Also u = ¢, (7).
The first Chern class gives a group isomorphism from complex line bundles

over A(r) to H*(A(r)), so since
AT RY)=c(T)+ca(Y)=u+ 1z =21 = 1(X).
we get T'® Y = X. Then we calculate
Tr-1NeY-))=TY-Y-T+1=(X-1)—-(Y-1)—(T—-1)
Isolating 7" — 1 gives
T-1)=(X-1)-(Y-1)eYy "
In K*(A(r)) this equality gives t = (z — y)(y + 1)7', as desired. Since in
K(A(r)) = Z[z,y]/ (Qr, Qr+1) all non-zero elements have a total degree in

x,y which is less than 2r, we see that t*" = (z — y)*(y +1)"%" = 0. O

Now we prove the main Theorem of this section, but first we introduce
a bit of notation: We write K¢ (X) for K*(ES* xg X), when X is an
Sl-space. Recall the diagram (26)

hSl(G(T)(n)) ~— K*(A(r))

™ |

P KH(BSY)
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This gives a map
K*(BSY™ @ st K (A(r)) — Kps (G(r)™)

where the K*(BS")™ denotes that the map BP, should be applied in the
tensor product, as the diagram indicates.

Theorem 3.7. Let n € N. Then the map
K*(BSHY™ @ps1) K*(A(r) — Kji(G(r)™)
is an isomorphism of rings. In particular, K}LSl(G(T)(")) =0.
To fix the notation and avoid long, cumbersome expressions, put

R = R(S")
S = R(SY)

ZU,UTY, R=K%BSY=2Z[u]], u=U-1.
ZIT, T7Y, S=K%BSY)=17[t], t=T-1.
M = K*(A(T)) = Z[l’,y]/ <QT‘7QT+1> :

Here S is an R-module by the map U — T™, and likewise S is an R-module
by u — (t+1)"—1. By Lemma 3.6, M is an R-module by u — (z—1)/(1+y),
and thus an R-module by U — (x —y)/(1+y) + 1.

The Theorem says that S @gx M = K (G(r)™). The reason for
restricting to R instead of R is given by the following lemma, which also
shows that for the isomorphism, this restriction does not matter.

Lemma 3.8. S is a flat R-module, and
S®; N =8®gN.

for any finitely generated R-module N where u™ acts as 0 on N for some m.
In particular this holds for the filtration modules M; from Remark 3.2, for
M = My, 41, and for the quotients M;/M;.4.

Proof. Clearly, S is a free R-module (with basis {1,U,.. LU, s0 S s
flat over R. Since S is Noetherian, S is flat over S, see [Atiyah-MacDonald|,
Prop. 10.14. By the natural isomorphism, for any R-module M,

§®RMgg®55®RM,

we see that S is flat over R.
Take N as in the lemma. Then the completion by the ideal I = (u) C R
gives
N =lim N/u*N = N.
k
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Also by [Atiyah-MacDonald|, Prop. 10.13, since R is Noetherian and N
is finitely generated, N = R ®r N. Combining these two facts yields the
isomorphism

S@aN=S@sN=2S@, (RorN)=Sez N

Now consider the R-module M. Since u acts as (z — y)/(1 + ), and M,
consists of polynomials degree at least j, u* ™! acts as zero. For the quotient
M; /M4y, u itself acts as zero. So the requirements of N holds for these
modules. O

We will use the filtration M; of M to prove the Theorem, so we need a
Lemma which proves the Theorem in the case M = Z:

Lemma 3.9. The following map is an isomorphism:
K*(BS") @ps1y Z — K*(BC,).

Proof. Let A = S ®g 7Z and B = S ®rZ, and let A — B be the map
induced by the completion S — S. We now define another map

A— R(C,) =2Z[W]/(W"=1), T—W.

This is clearly an isomorphism, and preserves the augmentation ideal. Con-
sider the diagram:

B~—A——=R(C,)
Lo
B<—A—K°(BC,)

Here the vertical arrows denote completion with respect to the augmentation
ideals; respectively tB, (T — 1)A, and (W — 1)). To prove the Lemma, we
must show B 2 A. First note that A — B is an isomorphism, since for any
k, the map given by 7'+ ¢ + 1, is an isomorphism:

A/T-1)F=2Z[T)/{T" - 1,(T - 1)*) — Z[t]/ ((t + 1)" — 1,¢*) = B/t*B
Next we show that B — B is an isomorphism. To show this, consider the
exact sequence given by multiplication by u — 1 € R,

u—1

0 R R Z 0.

Since S is flat over R, we obtain a new exact sequence,

1®(u—1)

O—>g®RR S®RR—>§®RZ—>Oa
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which, after applying the natural isomorphism, becomes

. (D1 .
0 S S S®@rZ—=0. (28)

Completing this with respect to the ideal (¢), which is an exact functor, we
obtain yet another exact sequence

0 ——lim §/ (¢*) "L gim S/ (%) lim(S @ Z)/ () —— .
Recall S = Z[[t]]. After applying the isomorphism lim._ S/ (th) = S, we get
the exact sequence,

RS S L R,

0 g S lim_ (S ®gZ)/ (") —=0. (29)

Comparing (28) and (29), we see that B = B. As already noted, this means
that A = B, and this proves the result. O

Now we can prove the main Theorem 3.7:

Proof of Theorem 3.7. First we claim that the map
K*(BS") @z K51 (G(r)) — K51 (G(r)™) (30)

is surjective. To see this, we first note that the map K*(BC,) — K*(BS")
is surjective. This follows from the fact that the map of representation rings,
R(C,) — R(S') is surjective, since any representation of C,, can be ex-
tended to a representation of S*. Now to prove surjectivity of (30), we use a
filtration argument in the spectral sequence

H*(A(r); K*(BCy)) = Kjysi (G(r)™).

This collapses, since everything sits in even degrees. As in the proof of
Theorem 3.1, we now use Cor. 2.5 of [Atiyah-Hirzebruch|, so let A denote
the image of K*(BS') @7 K;¢:(G(r)) in K} (G(r)™). In filtration degree
0 we have K*(BC,). As already shown K*(BS') is surjective onto this,
so the lowest filtration can be hit. Anything else in H*(A(r); K*(BC,,)) is
generated by monomials z¢ 2, and we have z'y/ € A with ch(z'y?) = zia) +
higher terms. This shows that 4 = K (G(r)™), so (30) is surjective.

Now we show that the map is injective. We will use a filtration argument,
where we filter M = K°(S(7)/S') as in Remark 3.2. We look at the exact
sequence,

0— M1y — M; — Mz‘/Mi—i-l — 0.
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As S is flat over R by Lemma 3.8, we get the exact sequence
0— S®r Miy1 — S®r M; — S @p M;/M;y, — 0. (31)

We first apply this to K-theory with F,, = Z/pZ coefficients. For the field
[F,, we have by the Universal Coefficient Theorem, K*(X;F,) = K*(X)®F,.
Clearly the filtration M = M; ® F, works for F, coefficients, so we can
use the result above. But since [, is a field, the exact sequence (31) splits,
so we can do a counting argument quite easily. Observe that M;/M; , =

F,lx,y]i/ (Qr, Qr_1) = (F,)™, where n; € N. By Lemma 3.9, we know
S @ Mj /M,y = (K°(BCy; Fy))™. (32)

and in addition, K°(BC,,;F,) is a finite number of copies of F,, so it makes
sense to count them. Also M, | = F,, so S ®z M}, = K°(BC,:F,). So
inductively, since M ® IF, is a graded ring with a total of r(r + 1) copies of
F,, then

S®rMQF, = (K°(BC,;F,)) Y.
We compare this with K*(G(r)™;F,) via the spectral sequence for the ver-
tical fibration in Prop. 1.6:

Ey = H*(A(r); K*(BC,;F,)) = K*(G(r)™;F,).

We see everything sits in even degrees in Es, so there are no differentials, and,
working over a field IF,, we can simply count the dimension of K°(G(r)™;TF,)
as the sum of the dimensions of E3"" on the diagonal m +n = 0. Since
H*(A(r); F,) = Fplz,y]/ (Qr, @r41) also has a total of r(r + 1) copies of F,,

again by Lemma 3.5, we get,
K°(G(r)" F,y) = (K°(BC,; )",
So the map of F,-vector spaces

S@r M @7, = K*(BS") @r(s1) K(S(7)/5"Z,) — K°(S()}9: Z,)

is a surjection between spaces of the same dimension, and is thus an isomor-
phism, and this holds for every prime number p.
Now we compare Z- and F,-coefficients (for a prime p) by the diagram

K°(A(r) — K°(G(r)™); F) (33)

1

S@rM——= SR M®F,
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Assume a € S ®@g F is in the kernel of . Then, by the diagram, a reduced
mod p is zero, so a = p - a; for some a;. But then, since K°(A(r)) is torsion
free, a; € ker(p), so a; = p - ag, etc. Consequently, if a € ker(p), then a
is divisible by p infinitely often. Recall that this holds for any prime p, and
thus also for n, so a is infinitely often divisible by n.

Now take a look at the filtration again

0—>»§®R M; —>'§®R M; —>§®R Mi/Mi—l — 0. (34)
If a € S®p M, is divisible by n infinitely often, then the image in

S ®r M;/M;_y = 7" & @(Zp)Np
Pl

is zero (the isomorphism is Lemma 3.5 and Lemma 3.9). So a comes from
@ in S ®p M,;_; and @ is also infinitely often divisible by n. So inductively
a comes from ag € S @ Fy & 7 @ @pm(zp)f"—l, and aq is divisible by n
infinitely often, and so ay = 0, which implies a = 0.

This shows that the kernel of ¢ is zero, and thus the map

p: K(BSY) @psty KO(S(r)/SY) — K°(S(1)\",) (35)

is an isomorphism. O
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4 The free loop space and Morse theory

Now we turn to study the free loop space L(FP"), where as usual F = C or
F = H. First a definition:

Definition 4.1. Let X be a topological space. The space
LX ={f:[0,1] — X | f(0) = f(1), f is continuous},
with the compact-open topology, is called the free loop space of X.

We are going to use Morse theory to study LM for a smooth manifold
M, where we will take M = FP". It is a fact that it does not change the
homotopy type of LM if we require all f € LM to be differentiable, or even
smooth, so we do that.

Now let us consider how one could do Morse theory on the free loop
space LM as well the space of homotopy orbits LM;gq1, where M denotes
a compact n-dimensional manifold. For details, I refer to |Klilngenbergl|,
and |Bokstedt-Ottosen|, especially chapters 7 and 8. LM is not a finite-
dimensional manifold, but one can make a model of LM which is a so-called
Hilbert manifold, cf. [Klilngenbergl| §1.2, meaning there are charts on LM
making it locally homeomorphic to a Hilbert space. The tangent space of
a loop f € LM is the space I'(f) of vector fields along f. Let (-,-) denote
the Riemannian metric on M. Now the tangent space TyLM carries the
structure of a Hilbert space via

(& me = /Sl ({66, m()) + c(VER), V(1)) dt, (36)

where &, € TyLM are vector fields along f in LM, and V denotes the
covariant derivative along f. The constant ¢ € R makes the inner product
vary. This is necessary to ensure that the n-fold iteration map, P,,, becomes
an isometry

Py = Ds(Pn) : TyLM — Tp, s LM, P;(£(2)) = £(2")

since (P&, Pin)1 = (&, m)n2, see |Bokstedt-Ottosen| §7.
We are going to do Morse theory via the energy function

E:LM — R, fH/Sl |F/(0)] dt.

For each a € R, we set F(a) = E~' (] — 00,a]) € LM. The critical points of
E are the closed geodesics on M. We shall assume that the critical points
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are collected on compact submanifolds, each of which satisfy the Bott non-
degeneracy condition. This strong condition is needed for the Morse theory
machinery, and it is satisfied for M = FP", and more generally for symmetric
spaces, |Ziller|. Call the critical values 0 = Ay < A\; < ..., and consider the
filtration

F(Xo) € F(A) C - C LM. (37)
This filtration is equivariant with respect to the S' action. This means it
induces a filtration of LM; g1,

F(Xo)nst € F(M)pst € -+ C LMpgr. (38)

The non-degeneracy condition ensure that each critical submanifold N(\) =
E~*(X) is finite-dimensional, and the tangent bundle T'(LM)| nxy € T(LM)
splits St-equivariantly:

T(LM) vy = 1™ (\) & p’(A) & (V)

into the bundles of negative, zero-, and positive directions, respectively, and
the negative bundle p~(\) is finite-dimensional. To ease the notation, write
Fn = F(\n) and g, = p~(A,). The main result of Morse theory in this
setting is proved by Klingenberg in [Klilngenbergl|, §2.4: There is an Sl-
equivariant homotopy equivalence

Fo)/Fu-1 = Thp, ). (39)

We want a similar result for (LM);g1, so we consider the quotients of the
filtration (38):

ES' xg1 F/ES' x51 Fpio1 2 ESY As1 F) F1,

where ES} At X = (ES; A X)/S* is the smash product modded out by
the diagonal S' action. The obvious map defined on representatives is a
homeomorphism. Thus by the Morse theorem in (39),

ES' xg1 F/ES* X1 Froy = ESY Agt Th(py,).
We can use [Bokstedt-Ottosen| Lemma 5.1 to find that
(Fonsr/(Fu-t)nst = BSy At Th(p,) = Th((py )ns:) (40)

where for an S*-vector bundle £ given by a projection map p : E — B we
denote by &,51 the bundle with projection idxp : ES' xg1 E — ES' x g1 B.
This means we also have a Morse theorem for the S'-equivariant filtration.
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4.1 The negative bundle

In |Bokstedt-Ottosen| Lemma 5.1, it is shown that the negative bundle
(1, Jnst is an oriented vector bundle if p is. But to use the Thom iso-
morphism in K-theory we need to know that the negative bundle is complex,
or more precisely

Proposition 4.2. The negative bundle i, for the energy filtration of LCP"
can be written as € ® v, where € is a trivial real S*-line bundle, and v is a
complex S* vector bundle. Consequently, the negative bundle (u,, )ns1 for the
energy filtration of LCP", o can also be written as € @ vyg.

Proof. There is a Hermitian inner product (-, -)c on TCP", and the Rieman-
nian metric is (-,-) = Re((-,-)c). The tangent space TyLCP" is a complex
vector space, and it carries the structure of a Hilbert space via

(&m) = /51 ((€(), n(t)) + (V&(t), V(1)) dt,

where £, € Ty LCP" are vector fields along f in LCP", and V denotes the
covariant derivative along f. Since (-,-) = Re((:,")c), we get

(z€,2m) = (£,n) for z € S*, (41)

If f is a critical point of the energy functional E (a geodesic), then the
tangent space of LCP" splits as

T,LCP" = D(Rf') & D(Rif') & T((f)") (42)

where e.g. T'(Rf’) C T'(f) denotes the vector fields & along f with £(t) €
Rf'(t) € Ty»HCP". We can use the inner product to represent the Hessian
H = D?F of E by a linear operator A = A; on T;LCP", by requiring
(A&, &) = H(&1,&). Then we get by (41) that ZAz = A for 2 € St which
implies that A is complex linear.

According to Klingenberg, |Klilngenbergl| Thm. 2.4.2,

Ap=id—(1—-V?) o (K;+1),
where
Ki(€)(t) = RE®), ') 1)
w2 (f'(OER), F1) =2 (1), £@) + E@R(F' (1), £'(1))

Note the factor 2; it appears because our metric on CP" is scaled so that the
“circumference” is 1, not m. This gives us the following eigenvalue equation
A& = N\ .

(A= 1)V2E = (K + N)¢ (43)
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The negative bundle consists of solutions to this equation with A < 0. Notice
that by the formula for A, it preserves the decomposition (42), since covariant
derivative commutes with the complex structure on TCP". Thus we can solve
(43) in the three spaces separately.

(7)

(i)

(iid)

¢ € I'(Rf'): Then &(t) = g(t)f'(t) where g : [0,1] — R is a smooth

function with ¢(0) = g(1). Then K(t) = 0, and equation (43) becomes
A=1)g"=X & ¢g'=349 = ¢=0
since A < 0 and g must be periodic. So we have no non-trivial solutions.

EeT((f)*): Since (f')* is a complex vector space, and A is complex
linear as noted, we see that A{ = A implies A(i€) = A(i€). So this
space of solutions has a complex structure.

¢ € I'(Rif’): Then &(t) = g(t)if'(t), where g : [0,1] — R is a smooth
function with g(0) = g(1). Then K(t) = 4n2 || f/(t)||” £(t) = 4n*n2E(t),
since f is a geodesic of length n. The equation (43) then becomes

y Amn? 4

A=1)g" = (dr*n?*+N)g <« T

g

To get a periodic solution g, we must have % <0, ie. A >
—47%n?. For A = —4m*n? we must have g constant, and this gives the
trivial real line bundle e. If —472n% < A\ < 0 we have the solution set
spanned over R by

gX(t) = cos(K - 2nt), and gif(t) = sin(K - 2nt), t € [0,1]

472n2 + A\
K=/——m d K eN
\ 2er—1) MRS

since the functions must be periodic with period 1. This happens if
and only if

where

\ 412(K? — n?)
 4AmK?4+1
so for a fixed n we get solutions with A < 0 for K = 1,...,n — 1.

This space of solutions can be given a complex structure J by rotating
tt— -+ where t € [0,1], i.e.

1K
J(g7) = g2, J(g5) = —gi.

and extending linearly. Clearly J satisfies J? = —id.
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This gives the bundle v, which is clearly an S bundle, with the S* action
given by rotation.

Now let us see that the result for p implies that for (u,, )ps1. The bundle
(1, )nst is defined so that the pullback of (p, )nst agrees with pr*(u,,) in the
following diagram,

fyy <~ D1 (147, ) (17 Jnst

| | |

G(r) <= ES' x G,(r) —= ES" xg1 G, (r)

where G, (1) denotes the space of n-times iterated geodesics. Since p, = e@v
is a decomposition in S*-bundles, we automatically get the decomposition for

(1 nst- 0

4.2 The power map

We consider the nth power map P,, : LFP" — LIFP", which iterates a loop
n times: For f : S' — LFP", P,(f)(2) = f(z") for z € S* C C. When
restricting to the energy filtration, we get P, : F; — F,;, which gives
diagrams

Fi —>E+1 —>E+1/ﬂ

an an an
Fri — Fu(ivr) — Fuiis)/ Fui
We now compare this to the n-twisted action of S* on F;. We see that we

get an Sl-equivariant map P, : }"Z.(") — Fni, and consequently a diagram of
Sl-maps

F = P —— F (44)

fni - fn(i—i—l) - n(z-i—l)/fnz

In particular when ¢ = 0, since the action on Fjy is trivial, we get a map
Po: FV ) Fo — Ful Fo. (45)
We can compose with the inclusion map F,, — F,, to get
Po: FV ) Fo — Fuol Fo. (46)

This will be very useful in section 6.
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4.3 The Morse theory spectral sequence

To avoid excessive use of parentheses, write LFP", o for (L(FP")),s:1. To
prove convergence of the Morse spectral sequences, we will need the following:

Lemma 4.3. Given k, there is m such that the inclusions F,, — LFP"
and (Fp)pst — LFP7, o1 induce isomorphism on m; and Hj, for all j < k.

Proof. First we show that the homology groups of LM and LM, are finitely
generated in each degree when M = FP" (we say LM and LM, are of finite
type): By Serre’s spectral sequence for the fibration QM — PM — M
we see that QM is of finite type, and then the spectral sequence for the
fibration QM — LM — M shows that LM is of finite type. The fibration
LM — LMyg1 — BS' then shows LMg is of finite type. For the
filtration spaces F,, (Fmn)nst, we can use the same fibrations if we restrict the
spaces LM, QM, PM to curves of maximal energy m?. The same argument,
works for homotopy groups, using the long exact sequence for a fibration
instead of Serre’s spectral sequence.

We first show the lemma for homology groups. Write X C X; C ... C X
to cover both situations, 7; € LFP" and (F;),s1 € LFP", ;. Let k be given,
and consider numbers m, M with £ < m < M, and with the following
properties:

(1) Hp(X;) — Hp(X) is surjective.
(it) Ker(Hi(X,,) — Hi(X)) = Ker(Hy(Xm) — Hi(Xu)).

A simplex A* — X is compact, so it has finite energy. Take m such that
m? is bigger than the maximum energy over the finitely many generators of
Hi(X), then the inclusion X,, — X induces a surjective map on Hy. We
see we can chose m as in (7). Given this m, we consider Ker(Hg(X,,) —
Hi (X)), which is finitely generated, since Hy(X,,) is. Such a generator is
a formal sum of simplices A¥ — X, which, when included in X, is the
boundary of some formal sum of (k + 1)-simplices. Again by compactness,
these have finite energy, and we can choose M > m as desired.

Consider a pair (X;;1,X;) in the chain X,, — X,,;1 — -+ — X
By Morse theory we know the quotient X;,;/X; is homotopy equivalent to
the Thom space of a bundle of dimension at least 27z, and such a Thom space
can be given the cell structure with one 0-cell, and all other cells of dimension
at least 2r7. So by cellular homology, the relative homology groups satisty:

Hj(Xi—l—laXi) = 0, fOI‘j < 27i. (47)
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Then by the long exact sequence for homology groups, the maps Hy(X;) —
Hy(X;41) are isomorphisms, since k < m < 2ri — 2 for ¢ > m. This means
Hiy(X0n) = Hi(Xar), so by (ii), the map Hy(X,,) — Hg(X) is injective,
and thus by () an isomorphism.

To show the Lemma for homotopy groups, do the same for 7; in place of
H;. Use Hurewicz on (47) to get m;(X;11, X;) = 0 for j < 274, then conclude
as above. O

We now state the result about Morse spectral sequences. In cohomology,
we need both the S'-equivariant and the non-equivariant case, but in K-
theory we need only the S!-equivariant case:

Theorem 4.4. There are convergent spectral sequences in. cohomology,

E™(M)(LHP") = H"(LHP")
EQM)(LHPyq) = H"(LHP',g1)

with Ey pages given by, for n > 1, respectively,

E?’q%gn+q(Th(/L;)) ~ Hn+q_(4r+2)n+4r_1(Gn(HPT)),
E?’ngn+q(Th(/L;)h51) ~ Hn+q_(4r+2)n+4r_1(Gn(HPT)),

and for n =0, E® = HY(HP") and E® = H1(BS' x HP"), respectively.
There is a strongly convergent spectral sequence in K -theory,

Er(M)(LCPg) = K™ (LCP,g1)
with By page given by E)" = K4(BS") @ K9(CP"), and
EPt = K" (Th(p pgt) = KMH2=D=1(G (CP"),g1), forn > 1,
where G,(FP") denotes the space of geodesics of length n for n > 1.

Proof. A closed, simple geodesic has energy 1, and when iterated n times has
energy n?. So the critical values are 0 < 12 < 22 < 32 < ..., and we denote
F(n?) by F,. Using the energy filtrations (37) and (38), respectively, we
make an exact couple via the long exact sequences for the pair (F,, F,_1),
and ((Fn)nst, (Fn_1)nst), respectively. For details about this process, the
reader can see e.g. |Hatcher2|, §1.1. This gives rise to a spectral sequence
{EP9(M)},, which we call a Morse spectral sequence. The process which
constructs a spectral sequence from the exact pairs works for any cohomology
theory, so we get spectral sequences in both cohomology and K-theory. By



54 4 The free loop space and Morse theory

construction together with the homotopy equivalences from Morse theory,
(39) and (40), the E; page is given by, for n > 1,

EPY M) (LM) = JEI"W(}“”/]-“”_l)%FI"*Q(T@(M;));
EP (M) (LMyst) = H*((Fa)nst/(Fa-)nst) = H (Th(py, )nst);

and similar for K-theory. The negative bundle ., is a bundle over the
critical submanifold N(n?), which is the space G, (r) of geodesics of length
n. It follows that (i, )ns1 is a bundle over G, (FP")ps1.

For n = 0, Fq is space of loops of energy zero, i.e. the constant loops, so
Fo = FP" itself, and the S* action is trivial, so ES' xg1 Fy = BS' x FP".
The result follows for n = 0.

Now let n > 1, and consider first HIP". The negative bundle p, is found
in [Bokstedt-Ottosen2|, Thm. 6.2, and here one can see it is oriented and has
dimension (4r + 2)n — 4r + 1. By [Bokstedt-Ottosen| Lemma 5.2, (11, )ps1 i8
also oriented. So we can use the Thom isomorphism, which gives:

EYI(M)(LEP) = H"™9(Th(s;)) = H™ 024G (BPT)),
By (MY (LHP 1) 2 M (Th(ja, Jyst) & B0 20001 (P 50);

Similarly for K-theory, but here we use Prop. 4.2 to get that the bundles
o and (p,, )pst are both the sum of a trivial real line bundle with a complex
bundle. This means we can use the Thom isomorphism for K-theory. From
[Bokstedt-Ottosen2] Thm. 6.1, we see that the negative bundles p, and
(i )pst have dimension 2r(n — 1) + 1 for n > 1.

For the convergence, note that the cohomology Morse spectral sequence is
a first quadrant spectral sequence. By [Hatcher2| Prop. 1.2 the criterion for
convergence is that the inclusions F,, < LHP", resp. (F,)ps1 — LHPF”, .
induce isomorphism on H9(—;F,) if n is large enough compared to ¢. By the
universal coefficient theorem it suffices to show this on H,(—;F,), and this
is proved in Lemma 4.3.

The K-theory Morse spectral sequence is not first quadrant, so the con-
vergence question is more subtle. Note that, if we take a finite filtration
(Fo)nst € -+« C (Fn)nst, the corresponding Morse spectral sequence con-
verges to K*((F,)ns1). The Morse spectral sequence then determines the
inverse limit of the K*((F,)nst). There is a surjective map

K*(L(Cprhsl) E— @K*((Fn)hsl)7
n
and we say say the spectral sequence converges strongly, if this map is an

isomorphism. This requires some work, and will be shown in the lemmas
below. ]
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To show convergence of the Morse spectral sequence in K-theory, let
XoC X;C...,and X = UX,. We want to find conditions that ensure

it K (X) = lim K*(X;) (*)

when X = LCP", ;. Asmentioned in the proof above, the map is ¢ surjective,
so the question is injectivity.

Lemma 4.5. Let X = ES' xg1 LCP". Let X,, denote the n-skeleton of X.
Then (*) holds.

Proof. First note that the lemma is equivalent to saying that the Atiyah-
Hirzebruch spectral sequence for X converges strongly. We have K°(X) =
[X,Z x BU] and K'(X) = [X, U], so a class in K-theory can be considered
a (homotopy class of a) map from X to either Y =Z x BU or Y = U. A
class in the kernel of 7 is then a map X — Y whose restriction to each X,
is null-homotopic. Such a map is called a phantom map, and we denote by
Ph(X,Y) the set of homotopy classes of phantom maps X — Y. Their
existence is studied in [McGibbon-Roitberg|, who give the following criterion
(Thm. 1): The following are equivalent:

(7) Ph(X,Y) =0 for every Y with finitely generated homotopy groups.

(77) There exists a map from X to a wedge of spheres that induces an
isomorphism in rational homology.

A map as in (4i) we call a rational equivalence. Note that Z x BU and U have
finitely generated homotopy groups. Let us apply this to X = ES! xq Z,
where we will specialize to Z = LCP".

First we consider the bundle & = p*T" over X, the pullback of the standard
line bundle T — BS! under the map p : ES' xg1 Z — BS'. We use the
cofiber sequence

S(&) — D(§) — Th(§) — B5(E). (48

We claim it suffices to show the result for Th() instead of X: K*(X) =
K*(Th(&)) by Thom isomorphism, and the cell structure on X gives rise to
a natural cell structure on Th(§) \, X, where n-cells in X correspond to

(n 4+ 2)-cells in Th(&). So we also get an isomorphism of the inverse systems
{K*(X,)} and {K*(Th(£),)} such that the obvious diagram commutes:

K*(X) ——1im K7(Xy,)

- l%

K*(Th(¢)) —— im K*(Th(&)n)
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So we investigate (48). We have of course D(§) ~ X = ES' x¢1 Z, and
we will show that S(£) = ES! x Z: First note

S(€) ={(le;z];t) € ES" xs Zx T'[ |le] =1, ||t =1, € spance},

where we consider ¢ € ES! = 8 C C® and t € T C C*, by viewing
BS* = CP> as complex lines in C*. For ([e, z|,t) € S(£), we see that there
is s € S! with es = t. We can then construct a homeomorphism

F:S() — ES"'x Z, F(le,z],t) = (t,s7'2). (49)

This is well-defined, with inverse G(t, z) = ([t, 2|, t).

Now let Z = LCP". By |Bokstedt-Ottosen2| Theorem 6.1, there is a ho-
motopy equivalence X LCP" — X(CP")V\/, ¥Th(y; ), which is the splitting
result for the non-equivariant case. So clearly, the Atiyah-Hirzebruch spec-
tral sequence converges in this case, i.e. there are no phantom maps from
LCP", so by the criterion, there is rational equivalence from X LCP" to a
wedge of spheres. Since S(§) & ES! x LCP" ~ LCP", we see that we have a
rational equivalence f> from XS(§) to a wedge of spheres. By (48) this gives
a map from Th(§) to a wedge of spheres,

Th(e) L x(6) L\, 57 (50)

Let us consider the inclusion LCP" — ES' xg1 LCP". One can in-
vestigate this map on rational cohomology using Serre’s spectral sequence
for the fibration LCP" — ES' xg1 LCP" — BS!'. This is done in
|[Bokstedt-Ottosen| Prop. 15.2, and it emerges that F., = Ej3 with all non-
trivial groups in either Ey* C ES* = H*(LCP"; Q) or E3° = H*(BS"; Q).
This implies that the combined map

H*(LCP";Q) & H*(BS"; Q) — H*(ES* xg1 LCP"; Q) (51)

is surjective.
In (48), use the homotopy equivalences S(¢) =2 ES' x LCP™ and D(§) ~
ES' x g1 LCPT", and project on the first factor to get

S(€) D(€) Th(¢)

L |

BS BS! BS'/ES' ~ BS!

which gives a map g, : Th(§) — BS'. Note that the Atiyah-Hirzebruch
spectral sequence for BS' converges, so by the criterion, there is a rational
equivalence gy : BBST — \/; S
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Combining with (50), we can make a composite map

o STh(E) —2= XTh(€) v STh(€) 2% 25(¢) v 2 BS! Y2 \/, s

Here fyV gy is a rational equivalence, and by (51), A*o(f1V f2)* is surjective
on reduced cohomology with rational coefficients. So the composite map ¢*
is surjective on rational cohomology, and by collapsing some of the spheres,
we can ensure it becomes injective. We have constructed the desired rational
equivalence. ]

Lemma 4.6. If X; is a sequence of subcomplexes of the CW complex X =
LCP", o, and if for every k there is an m such that the k-skeleton Skk(X) C
X, then condition (*) applies.

Proof. We must show that the map
K*(X) — lim K*(X;)
N
7
is injective. Let a be in the kernel of this map. Because of our condition

on the filtration, a will restrict trivially to each skeleton. Then Lemma 4.5
shows that a vanishes. 0J

Now consider the general case. By Lemma 4.3, the condition on 7; is

satisfied for X = LCP", ;.

Lemma 4.7. If X; is a sequence of subspaces of X as above, and if for every
k there is an m such that 7;(X,,) — m;(X) is an isomorphism for j < k,
then condition (*) applies.

Proof. Using relative CW approximation (see [Hatcherl| Prop. 4.13), we can
inductively construct a sequence of CW complexes Y; such that the following
ladder commutes,

Yg——=Y, —>---

|

and such that the vertical maps are weak homotopy equivalences. Fur-
thermore, for a given & we have by assumption that there is m such that
7;(X.n) — 7;(X) is an isomorphism for j < k, and this means we can ensure
that all Y,, for n > m are constructed from Y,,_; by adding cells of dimension
greater than k. So letting Y = U,Y;, we have that for each k there is an m
such that Sk*(Y) C Y™,

The map ¥ — X is a weak homotopy equivalence. Noting that a weak
homotopy equivalence preserves K-theory, the lemma follows from the pre-
vious one. O
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5 Sl-equivariant cohomology of LHP’

5.1 The Morse spectral sequences
For LHP", ¢1, the Morse spectral sequence is as follows:

Theorem 5.1. The Morse spectral sequence EX*(M)(LHP", o1) is a spectral
sequence of H*(BSY;F,) = F,[u]-modules, and it has the following E; page:
Assume p | r+ 1. Then

B> = Fplu,y]/ (y"™);
Efm—‘rk’* = (Ipm+ka[u>t]/ <Qra QT+1> 5 for m 2 O’ 1 <k< P 1’
Efm’* = CYmep[u] {1ay7"'>yra07"'a0yr} for m > 1.

Assume ptr+1. Then

B = Fyluy)/ Y
B = iy [, 1]/ (Qr, Qr) form20,1<k<p-1
E{)m’* = O‘mep[u] {17y7'"7yr+177—7”'77—yr+1} fOI' m Z 1

In filtration n = pm + k, the element aymxu't’ has total degree (4r + 2)n —
dr + 2i + 45 + 1. In filtration n = pm, the generators are free F,[u]-module
generators, which have the following degrees:

Class  Case Total degree

oy’ plr+1,0<i<r (4r + 2)pm — 4r + 4i + 1
Oy’ pIr+1,0<i<r—1 (4r+2)pm —4dr+4i+1
O‘pmyia plr+1,0<i<r (4r + 2)pm + 4i
mny'T pir+1,0<i<r—1 (dr+2)pm+4i+4

Note that the columns EY™", m > 0, are infinite, while the class aperkuitj
in EP™ R s zero when i > 4r or j > 2r.

Remark 5.2. The symbol «,, refers to the Thom isomorphism. The notation
apx etc. denotes the cup product with the Thom class of p in the critical
submanifold N (n?). The product is not defined in the spectral sequence, and
so it is a bit of abuse of notation. But it is a very practical way of keeping
track of the dimension shift and should be read as such. O

Proof. The Morse spectral sequence is described in Theorem 4.4. We use co-
homology with [F, coefficients. First take filtration n = 0. Then Go(HP"),s1 =
HP", o itself, and the S action is trivial. Thus

EY (M)(LHP", ) = H*(HP";F,) = H(BS' x HP";F,)
=~ H*(BSY;F,) ® H*(HP";F,) = Fylu] ® Fy[z]/ ().
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Now take n > 1. From Theorem 4.4,
E{L’*(M)(LHPrhgl) o Hn+*—((4r+2)n—4r+l)(G(Hpr)ggl; Fp)'

Now we can use the previous results about the spaces of geodesics, Theorems
2.12 and 2.14. For the case n = pm + k we know from Theorem 2.12 that
u maps to x, and so the F,[u]-module structure is that multiplication by u
equals multiplication by x. This is incorporated in the notation by writing
u for the class previously named z. The last part of the theorem is Lemma
2.9. O

The next Lemma is based upon |Bokstedt-Ottosen|, Lemma 9.8:

Lemma 5.3. In the Morse spectral sequence for LHP", o1, all differentials
starting in odd total degree are trivial.

Proof. This is mostly seen for dimensional reasons. Using the table in The-
orem 5.1, we see that elements of odd total degree in the spectral sequence
have the form o,y'u’ or a,u’t’. Because of the derivation property of the
differentials, it is enough to consider the F,u] generators, i.e. apny’ and
Qpm i t? for m > 0.

So let us prove that dg(ay,y’) is trivial (s > 1). This has total degree
(4r+2)pm —4r+4i+2 and filtration degree pm+s. By the table in Theorem
5.1, observe that a non-trivial class of filtration n and even total degree exists
if and only if p | n. Furthermore, in case p | n we can determine the class of
filtration n with lowest total degree. If p | (r + 1), this class is a,0 of total
degree (47 +2)n, and if p 1 n this class is «, 7 of total degree (4r+2)n+4. So
if dg(apmy’) is non-trivial, its total degree must be at least the total degree
mentioned above. That is,

(4r +2)(pm + s), pl(r+1);

(4r+2)pm—4r+4z'+22{ (4r +2)(pm+s) +4, pf(r+1).

Suppose p | r + 1. Then we can reduce the inequality to
—dr+4i+2>4r+2)s & (—4dr+2)(s+1)+4i>0.

This is easier to satisfy if s is small and i is large, so we try s = 1 (minimum)
and ¢ = r (maximum), obtaining the equality 2(—4r +2)+4r = —4r+4 > 0,
which only holds for » = 1. In this case we have equality. If s > 1 or
i < r, there are no solutions. So the question is whether d;(a,,y) can be a
non-trivial class of even total degree in filtration n = pm + 1, and it cannot,
since then, as noted earlier, p should divide pm + 1. If p{ r 4+ 1 there are no
solutions at all.
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Now take the case apmirt?. Then dg(apmsrt’) has filtration degree pm +
k + s and total degree (4r 4 2)(pm + k) — 4r + 47 + 2, which is even. By the
same observation as before, if ds(apm+ktj) were to be non-trivial, its total
degree must satisfy

(4r +2)(pm + s + k), pl(r+1);
_l’_

(4r+2)(pm+k)—47“+49'+22{ (dr+2)(pm+s+k)+4, pt(r

Like before, we reduce for p | r + 1:
—Ar+45+2>Ar+2)s & (Ar+2)(s+1)—4<4j

Recall s > 1, so to satisfy this, 7 > 2r. But then the class apm+ktj is zero,
according to the last part of Theorem 5.1. Likewise for p | 74 1. This proves
the Lemma. O

We are going to need an overview of the size of the E; page of the Morse
spectral sequence.

Lemma 5.4. The Poincaré series P(t) of Ey(L(HP"),s1) is given by for
pir+1:

tp(47“+2)747“+1

1— t4r+4 + 1_;%“(1 _ t4r)(1 _ t47‘+4) + W(l _ t4r)(t47"+3 + t4r+4)
(1 —22)(1 —1t4) '

and for p|r+1,

tp(4'r+2) —4r+4+1

1— t4r+4 ‘l‘ t4r+2 (1 _ t4r)(1 _ t47‘+4) + W(l _ t47“+4)(t4r—1 + t4r)
(1—12)(1—1t) '

Proof. T only prove this for p { r+ 1. The other case is exactly the same. We
first find the Poincaré series for E}""

e n = 0: By Theorem 5.1, since E?’* is a free [F,[u]-module,
1 1— t4(7‘+1)
11—z 1—

P(BY")(t) = P(Fylu]) - P(Fyl2]/ (a")) =

e p1n: By Theorem 5.1
P(ETT)() = 00T P [t ul/ (Qr, Qrin)
1—thr 1 — ¢t
1t 1
t4r(n—1)+2n+1 (1 — t4r)(1 — t4r+4)
(1—t2)(1—1t*)
using Lemma 2.9 to find P(F,[t, u]/ (Qr, Qri1)).

t4r(n—1)+2n+1(1 + t2) .
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e p | n: According to Theorem 5.1, we obtain

P(ET™)(t) = =D PR [u] {Ly,....y"" 71yt
t47‘(n—1)+2n+1 1 (1 — t47")(1 + t4r+3>.

1—1¢2 11—t
since y has degree 4 and 7 has degree 4r + 3.

We must sum over n > 1 to calculate P(E;)(t). Only the factor ¢ (n=1+2n+1
depends on n, so we sum that first, in the two cases p | n and p{ n:

Z g = Z Ar(mp—1)+2mp+1 _ gplir+2)—ar+1

1 — pdr+2) -~
n>1pln m>1

Using this, we can compute

tp(4r+2)_4r+1 #3 tp(4r+2)—47’+1

4r(n—1)+2n+1 __ dr(n—1)4+2n+1 _ .
Z t - Zt 1 — tp(4r+2) 1 — $4r+2 1 — p(4r42)
n>1,pin n>1

Combining the results above and summing over n > 1 then yields:

P(E)(t) = PE)(0)+ Y PE)O+ Y, PEMO)

n>1,pln n>1, ptn

1 A(r+1) gpirt2) - Ar Ar+3
- TEiE (1—t gy (L= ) (L4 £7)
3 p(Ar+2)—4r41 " it
v (=~ T ) 1= ) -
v 3 r r (4r+2)—4r+1 r r r
1 — 4+ s (1 — ) (1 — ¢4+ 4 o (1 — ) (#9744

(1—)(1 =11
O

Remark 5.5. Later we are going to need the odd and even parts of Fy, i.e.
EY =@, aa BV, and likewise for E5¥". Notice that

p(Ar+2)—dr+1

K(t) = 1— tp(4r+2)

has odd degree. Then we get from the above Lemma that for ptr + 1,
1— t47“+4 + K(t)(l _ t4r)t47‘+3 .
(I —t)(1 -1t ’

P(ET™)(1)
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Similarly for p | r + 1,

PEN™0) = o (14 KO,
PO = g (G et + KO

O

For comparison purposes we are also going to need the non-equivariant
case, H*(LHP").

Theorem 5.6. Let EY* = EX*(M)(LHP"). Assume p | r+ 1. Then

EY" = Flyl/ (y);
EIM* = Oéan[y’O']/<yr+1’0'2> for n Z L

Assume ptr+ 1. Then

EY = Flyl/ ()
EY" = a,Fly, 7]/ (y",7?) forn > 1.

where |x| =4, |o| = 4r — 1,|7| = 4r + 3,|a| = (4r +2)n — 4r + 1.
This spectral sequence collapses from the Ey page. This determines H*(LHP";F),)
as an abelian group, and it has the following Poincaré series: Forptr+1,

1— t4r+4 N (1 _ t4r)(1 + t4r+3)t3.
1—¢1 (1 — ¢hy(1 — tirt2)

Py« zupry(t) =

and for p|r+1,

1 _ t47“+4 + (1 _ t47‘+4)(1 + t47“—1)t3
[ ST )

Py« zupry(t) =

The map induced by inclusion
i EPCYTN M) (LHPY, 1) — BT (M) (LHPT)
1S surjective.

Proof. The computation of E; via Morse theory is just like the proof of the
equivariant case, Theorem 5.1. That the spectral sequence collapses follows
from a splitting result for LHP". Such a result can be found in |Ziller]|.
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For the computation of the Poincaré series, since the spectral sequence
collapses, we can compute Py« upry = Pg,, = Pg,. We reuse the computa-
tions from the proof of Lemma 5.4. Consider the case p t r + 1. (The case
p |7+ 1is similar.) In filtration n > 0 we have,

1—t*
P(E?*)(t) _ t4r(n—1)+2n+1 — (1 + t47“+3)
And so
P(E )(t) _ 1 — ¢+t + Z t4r(n—1)+2n+1 L—th (1 + t4r+3)
R e 11—t
B 1— t4r+4 (1 _ t4r)(1 + t4r+3)t3
- (1 —t4)(1 — 4r+2)

For the surjectivity, we prove for every n € N that the map
B (M)(LHP 1) — B (M)(LHP)

is surjective. For n = 0 the target space is zero, so the result is trivial. For
n > 0, the degree of the Thom class «, is odd, so by the formula for the £}
page, the question is whether i* : Heve“(G(HP”)hsl) — He(G(HP)™)
is surjective. This follows from Corollary 2.15. O

Remark 5.7. We also need the odd and even parts, so I will do that com-
putation now. For p{r +1,

Piftunen(®) = 1 _fg(fi)irw);
and
P = ot s 6
_ dr\44
= 1+ (1 _(14)(f _)i4r+2)'
Note that
t- P(H°YY(LHP"))(t) = P(H®*"(LHP"))(t) — 1, (53)
and that

Py () = 3L+t o 4 Z grr+2) (54)
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has all coefficients equal to 0 or 1, and the difference in degree between the
1-coefficients is at least four. We have the same properties when p | r + 1,
and for future reference, when p | r + 1,

Podd t . (1 - t4r+4)t3 - t3 1 t4 t47‘ - tn(4r+2) 55
*(L]HIPT)( ) - (1_t4>(1_t4r+2) - ( T4+ )Z ( )
n=0

O

Corollary 5.8. For the energy filtration Fo CF, C--- C F, C--- C LHP",
the dimension of H°Y(F,,) as an T, vector space is as follows:

m(r+1), plr+1;

: odd o
dim H (fm)_{ mr, ptr+1.

Proof. The Morse spectral sequence { E¥*} = {ES*(M)(LHP")} induced by
the energy filtration of LHP" collapses from the E; page by Theorem 5.6
above. This means that £, = E;. Comparing with the spectral sequence
{Es(Fn)} of the finite filtration Fo C Fy C --- C F,, we see that its F;
page is the same as E; (M)(LHP") up to filtration m. So by naturality, both
spectral sequences collapse from the F; page, and E..(F,,) equals E,(LHP")
up to filtration m. So we can calculate the dimension of H°4(F,,) as an F,
vector space:

dim H*Y(F,) = dim E™°44""(F,) + -+ dim ELY(F,)

_ [ mlr+1), plr+L
| mr, ptr+1.

Here the last equality is from (54) and (55). O

To squeeze the last information out of the Morse spectral sequences, we
are going to use localization. The general setup is as follows: Given an R
module M and a multiplicative set U C R (i.e. if u,v € U then uwv € U), we
define M localized away from U as

M[U‘l]:{%hneM,ueU}/w
where ™ ~ :T_// if there is v € U such that vu'm = vum/. Tt is an elementary
algebraic fact that localization away from U C R is an exact functor on
R-modules.

We are going to use U = {u™ | n € N} C F,[u], where v as usually de-
notes our generator u € H*(BSY;F,), such that H*(BSY;F,) = F,[u]. The
main localization result here is [Bokstedt-Ottosen| Theorem 8.3, which I state
without proof:
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Theorem 5.9. There is an isomorphism of spectral sequences
1
BAM)(HP ) || & BLHP) & Bl o]

when re-indexing the columns: filtration pm goes to filtration m for m € N.

Note: This implies that the localized spectral sequence E,(M)(LHP", o) [2]

u

collapses from the £, page, since E,(M)(LHP") collapses from the E; page.

5.2 The Main Theorem

To prove the Main Theorem, we follow the method used in [Bokstedt-Ottosen|
§13, adopting the strategy and proofs to the quaternion case. We need all
the information that we have hitherto deduced from the Morse spectral se-
quences. For convenience, we collect the necessary structural facts below:

SF(1) Classes of even total degree only occur in EP™*(M)(LHP", &), m > 0.

SF(2) EP™*(M)(LHPF", ) is a free Fp[ul-module. If p { n, E*(M)(LHP", o)
is a finite dimensional F,, vector space.

SF(3) Non-trivial differentials in E,(M)(LHP],) start in even total degree.

SF(4) The inclusion j : (F,)ps1 — LHP/ induces a surjective map on
cohomology, j* : H*Y(LHP", o) — H°Y((Fy)nst).

SF(5) EP* ™ "(M)(LHP") = 0 if one of the following hold: p | 4+ 1 and
i>2r+1n,orpfr+1andi> (2r+1)n—2.

SF(6) The map ¢* : H*Y(LHP", o) — H°Y(LHP") is surjective.

Proof. SF(1) and SF(2) is Theorem 5.1. SF(3) is Lemma 5.3. For SF(4), we
consider the map between the two Morse spectral sequences converging to
H*(LHP", 13 F,) resp. H*((F,)ns1:Fp) induced by the two energy filtrations.
By SF(3) every differential starting in odd total degree is trivial, so the map
is seen to be surjective on H°,

To prove SF(5), we use Theorem 5.6 to find the maximal degree of a
non-trivial element of odd total degree in filtration n. We get:

plr+1: |opz"| = Ar+2n—4r+14+4r=“Ar+2)n+1
ptr+1: |laz™ Y = Ar+2n—4r+1+4(r—1)= 4r+2)n—3

It follows that E/"*'"(M)(LHP") = 0 if

plr+1: 2i+1 > (Ar+2n+1 < i>(2r+1)n,
pifr+1: 2i+1 > (dr+2n—-3 <= i>2r+1)n—2.
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To prove SF(6), we first recall that by Theorem 5.6, the induced map
i* o EYYY(M)(LHP", o) — EYY(M)(LHP") is surjective. Since every dif-
ferential in £,(M)(LHP", ) starting in odd total degree is trivial, the map
i* o EQYY(M)(LHP", ¢1) — E3Y(M)(LHP") is also surjective. It is a gen-
eral fact for spectral sequences that the induced map on their limits is then

also surjective, and this is easily seen by a filtration argument. This means

that ¢* : HOY(LHP", ;1) — H°(LHP") is surjective. O

We first prove the Main Theorem for the odd part of the cohomology.
There are two kinds of F,[u] generators, torsion and free, and we need to
use the S* transfer map 7 to find the first kind. Let ¢ : LHP" — ES' xq
LHP" = LHP", 4 be the inclusion. Then it follows from [Békstedt-Ottosen|
Thm. 14.1 that the S! action differential d is composed as follows

H*(LHPT) d H*(LHPT) (56)

H*(LHP", )

In general, for a space X with an action g : S' x X — X, the map d is
given by
Hn-i—l(X) SN H"+1(Sl % X) - Hn-l—l(X) @HH(X)
a — p(a) — (a,d(a))
where the last map is the Kiinneth formula. For ease of reference, in the

Lemma below I have collected all the facts I need about the action differential.
First some notation:

IF =IF(r,p) = {4r+2)i+4j|6<j<r,0<4pl|(r+1)i+j}\{0},
IT =TT (r,p) = {(Ar+2)i+4j|0<j<r,0<i,pt(r+1)i+j};

where

5= 1, ptr+1;
10, plr+1.

Set ZA =ZF UZT. Then define power series by

B = n [ 1, neI(r,p);
Pr(t) = Z%ant . where a, _{ 0. néIirp) (57)

for T =7F, 7T ,TA. By |Bokstedt-Ottosen| Lemma 11.4, ZF NZ7T = (), so
we get Pra = Pry + Prr. Also note that by (54),

1

Pryoaaupry(t) = ;PZA(t)- (58)
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The following Lemma on the action differential is proved in [Bokstedt-Ottosen|
lemma 11.6.

Lemma 5.10 (The Action Differential). Put H* = H*(LHP") and let k € N.

(i) Ker(d : H* — H?*~1) is either a trivial or a I1-dimensional vector
space. It is non-trivial if and only if 2k € ZF (r,p).

(ii) Tm(d : H* — H?~1) is either a trivial or a I1-dimensional vector
space. It is non-trivial if and only if 2k € ZT (r,p).

(7ii) The cokernel of the map
. %42 2k+1
: OSks(g?l)mp—cS " OSks(g?l)mp—é N
has dimension rm if ptr+ 1, and dimension (r+ 1)m if p | r+ 1.
The next two Lemmas specify the F,u] generators for H*(LHP", o:;F,):
Lemma 5.11. There is a graded subgroup T* C H°Y(LHP", ¢,) such that
(1) uT*=0.

-+ H(LHP", o)) 7+ — H*(LHP") is

(17) The restricted inclusion map ©*
njective.

(i11) The image i*(T*) C H*(LHP") equals the image d(H***(LHP")) C
H*(LHP").

Proof. We use property (7ii) to construct 7*. We choose a graded subgroup
T C H**1(LHPT), such that d maps T isomorphically onto Imd. This we
can do simply by lifting each generator of Imd C H*(LHP") to H**'(LHP").
Now we put 7* = 7(7 ). Then (iii) follows by construction, since i*(7*) =
*o7m*(T ) = d(T") by the diagram (56). Also (i) holds, since i* restricted
to 7% corresponds to i* o 7 = d restricted to 7*, and we chose 7 such that
d was an isomorphism of 7~ onto its image. As for property (), this holds
because ur = 0 according to |Bokstedt-Ottosen| Thm. 14.1. This is because
the transfer map 7 appears right after multiplication by u in the Gysin exact
sequence. [

Remark 5.12. By definition of 7* it follows from Lemma 5.10 (i7) that the
non-trivial part of 7* sits in degree 2k — 1 if and only if 2k € Z7 (r, p). Using
the notation in (57), we can write down the Poincaré series of 7*:

ﬂqw:%%ﬂw
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Lemma 5.13. There is a graded subgroup U* C H°Y(LHP", o) such that

(1) The composition
T* @ u*(_> HOdd(LH i:5’1> L> Hodd(LHPT’)
1 an 1somorphism.

(17) The restriction
U2+t —— H* Y (LHP", &) SN H* (Fpm)nst)

is trivial if either p | v+ 1 and ¢ > (2r + )pm, or p { r + 1 and
i>2r+1)pm—2.

Proof. Again we first specify a subgroup & C H°(LHP"), by demanding
that it must be a complementary subgroup of i*(7*), so that we have the I,
vector space isomorphism H°Y(LHP") = ¢*(T*) @ U . The idea is to find
U* C H*(LHP", ;) such that i* maps it isomorphically to U". This can be
done since i* is surjective by SF(6).

We now use the Gysin sequence, see |Bokstedt-Ottosen| Thm. 14.1, to
make the following diagram with exact rows:

H* N(LHP', o) —%> H**(LHP] ¢ ) —— H2TY(LHP")  (59)

! ! |

H2 = (Fpm)nst) —— H* N (Fpm)nsr) —— H**H(Fpm)

The vertical maps j* are surjective according to SF(4). By SF(6), the upper
horizontal map ¢* is surjective.

Under the assumption in (i7), we get from SF(5) that H*Y(F,, F,_1) =
EP#H — 0 for 0 < n < pm. Using the long exact sequence for the pair
(Fny Fnoq) for n=0,1,...,pm gives a series of injective maps,

H¥ N (Fpm) = H (Fppa) < - B (Fy) e HPHH(FLy) = 0.

This means H**Y(F,,,) = 0. So 2" is in the kernel of the right vertical
map. To ensure that U?*! is also in the kernel of the middle vertical map
j*, we use diagram chase. The image j*(U*™!) maps to zero, so it comes
from H*~Y(F,,). The left j* map is onto this, so we can lift it, map it into
H?*TY(LHP"), and subtract it from the original 4**!. This gives a choice of
U*T! that satisfies both (i) and (ii). O
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Remark 5.14. By property (i) of U*, we can calculate its Poincaré series

1 1
Py« (t) = Proaapupry(t) — Pre(t) = ;(PIA(t) — Pr7(t) = ?sz(t%
where we have used Remark 5.12 and (58). O

Remark 5.15. We will need the dimension of parts of U*. As 7" & U*
HeYY(LHPT), and i*(7*) = Imd C H°Y(LHP"), we can compute the di-
mension of U* as the dimension of the cokernel of the action differential d.
For this we can use Lemma 5.10 (4i7) and (iv), and get

pir+1 dim( @ Z/{%_l):rm,

kE<(2r+1)mp—1

plr+1 : dim( @ L{Qk_l):(r+1)m.

k<(2r+1)pm
Now we can prove the Main Theorem for the odd degree cohomology:

Theorem 5.16. The map of Fylu]-modules,
hi @ hy : (Fo[u) @U*) @ T* — H*Y(LHP", )

induced by the inclusions of U* and T*, is an isomorphism of Flu]-modules.
Expressed in terms of generators, HOdd(LHPThsl) 1s 1somorphic as a
graded F,[u]-module to

P Folulforr® @ Eplul/ (W) tarr,

2keTF 2keIT
where the lower index denotes the degree of the generators.

Proof. From Lemma 5.11 (i) we see that 7* is actually an F,[u]-submodule
of H°Y(LHP/4 ), and so the inclusion hy : 7% — HC°Y(LHP/,) is an
F,[u]-linear map. On the contrary we just consider U* as a subgroup, and
make the F,[u]-module F)[u] @ U*. There is then a unique way to extend the
inclusion of U* to an Fp[ul-linear map h; : Fylu] @ U* — HY(LHP/,,).

First we remark that h; @ hy is surjective. To see this we use part of the
Gysin exact sequence, see (59), where the rightmost zero is SF(6):

H* N (LHP", &) = H** (LHP] o) —— H**(LHP") — 0.

This is a sequence of I, vector spaces, so it suffices to show that we can hit
the image u(H*'(LHP", 4 )) and the cokernel H**(LHP", )/ ker(i*) =



70 5 Sl-equivariant cohomology of LHP"

H?*TY(LHP"). The cokernel can be hit according to (i) in Lemma 5.13. We
now use induction in the degree 2 + 1. The induction start is trivial. We
get inductively that the image u(H*~'(LHP", 4 )) can be hit by u((F,[u] ®
U DT*) C (Fplu] @U*) & T*, where the last inclusion follows from Lemma
5.11. So it remains to show that hy @ hs is injective.

The idea of the proof is now to show that map hy @ hy localized away
from u, which we denote (hy ® hs)[1], is injective. Again by Lemma 5.11 (i)
we see that when localizing away from u, 7* vanishes. So we look at hq, and
by Lemma 5.13 there is a commutative diagram,

h1

Fplu] @ @, U™ H*Y(LHPyg) (60)
lid@proj ij*
i h 0
Fp [U] ® @ig(%—i—l)pm—& Uurt - H dd((Fpm)hSl)

where

5= I, ptr+1;
10, plr+1.

The map j* is surjective according to SF(4).

Localizing away from u can be done by tensoring with F,[u,u™'] over
Fy[u]. Since hy @ hy is surjective, and localization is exact, (hy ® ho)[2] is
also surjective. As noted, hy vanishes when localizing away from wu, so we
conclude that

1 — * o T 1
hal=]: Fylu,u™] @ U — H™(LHP}o)[-]

is surjective. When localizing, we conclude from the diagram (60) that

— 1 ) 1

hil=]1: -1 2i+1 odd -

LR @ W — (e
0<i<(2r+1)pm—4

is also surjective.

To show El[%] as injective, we will prove that the domain and target
spaces are isomorphic as abstract modules. So we first study the domain
of hi[X]. The dimension of the &* part is calculated in Remark 5.15, and
tensoring with F,[u, u™!] we obtain the rank:

N ' +1)m, p|r+1;
rank(lﬁ‘p[u,u ® @ u2z+l> :{ (r , ;
0<i<(2r+1)pm—3§ rm, p Jf r+ 1.

Turning to the target space of iy [1], H*Y((Fpm)nst)[2], we use Theorem 5.9:

O (Fns )] 2 HO(F) © Byl ™) (61)
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Consequently, by Corollary 5.8 we can calculate the rank as an F,[u]-module:

1 m(r—+1), plr+1;
odd 1 ’ ’

So hi[1] is a surjective map between two free F,[u, u=']-modules of the
same rank. Then h;[1] must also be injective.

All that remains is to show that hy & hy is injective. Actually it will be
enough to show that h; @ hs is injective for each m, since a given element will
be in the domain of h; ® hy for a large enough m. So consider an element
(a,t) € Fplu] @ Bjcgrirppm_s U @& T* in the kernel of hy © hy. When
localizing, ¢ vanishes, so ¢ localized must be in the kernel of hy localized,
which we have shown is injective. This means c localized is zero. But the
localization map on Fylu] ® U*,

Fpu] @ U* " Fyfu, ] @, (Fplu] @ U*) = Fplu, u™') @ U*

is injective, so c is zero itself. This means ¢ is in the kernel of h;. And by
Lemma 5.11, h, is injective, so t is zero.

The expression with generators follows directly from the isomorphism
HOYY(LHP", ) = (Fplu] ® U*) @ T* together with the computation of the
Poincaré series in Remarks 5.12 and 5.14. U

We can now prove the general Main Theorem, giving a complete descrip-
tion of H*(LHP", o3 F,):

Theorem 5.17. As a graded Fplu]-module, H*(LHP", o.;F,) is isomorphic

to
@F f2k€9@F f2k1@@ )) tok—1.

2keIF 2keIF 2keIT

Here the lower index denotes the degree of the generator, and their names
are meant to suggest free and torsion generators.

Proof. First, note that when taking the odd part, we have already proved
this in Theorem 5.16. So it remains to show that H**"(LHP";F,) is a free
F,[u]-module with generators in the stated degrees.

First I argue why H"(LHP", ;) is free, using the Morse spectral se-
quence, B} = E2*(M)(LHPF, o). By SF(1) and SF(2), E{¥" is a free F, [ul-
module, which is concentrated in Ef"™". Since by SF(3) all non-trivial differ-
entials start in even degrees, E2°" is a submodule of E§¥*". Note that E™" is
a finitely generated F,[u]-module. Since [F,[u] is a principal ideal domain, the
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submodule EX™%" of the free F,[u]-module EF™ ig also free. Since
the spectral sequence E converges to H*(LHP", ¢,;F,), H*"(LHP", ¢1;F))
is filtered by free F,[u] modules and is thus free itself. The generators are
the generators of E5*".

Now we must find the degrees of the generators. We will compute E*"
in terms of Poincaré series, and deduce the generator degrees from this. The
Morse spectral sequence alone does not provide enough information, so we
compare with Serre’s spectral sequence for the fibration

LHPT —_— LHPThsl — BSl,

that is,
H*(BS'; H*(LHP",F,)) = H*(LHP", 4 ;F,).

Denote this spectral sequence by E**(S). Then EJ*(S) = H*(LHP";F,) ®
F,[u]. According to (54) and (53), H*(LHP";F,) has the following form: the
non-trivial part is one-dimensional in each degree, and, apart from degree
zero, sits in degrees that come in pairs of odd-even, with at least 2 zero-rows
between the pairs. I have tried to diagram what this might look like below,
a star indicating a non-trivial group.

Ey(S) s * * Es(S) s
7| * * * 7
4 : 4
3 3| %
0| * * * 0| * * *
1 2 3 4 5 .. 01 2 3 4 5

We also see the only non-trivial dy differentials must be from the even to
the odd row in the odd-even pairs. What happens when we pass to E3(S)
depends on whether dy is zero or an isomorphism (the only possibilities). If d
is zero, the odd-even row pair will survive to Fj3, and if dy is an isomorphism,
only the odd group in filtration 0 will survive to Ej3, as indicated above.

Here we can use a shortcut: The differential dy can be determined geo-
metrically; it is actually given by the action differential. By Lemma 5.10 (7)
we then see that dg’% = 0 if and only if 2k € ZF. Then we can write down
the Poincaré series of the E3 page:

1
1—1t2

Pre(t)  tPrs(t)

P(E(S))(t) = et T

+ P(H°Y(LHP"))(t) +

(62)
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This might not look very helpful, but if we use (52) to calculate

PEF(S)(0) ~ T PIERIOND) = o+ P (LEP) (1) =
1 t2(1 o t4r) B 1— t47“+4
=2 =M=t — (=)= (63)

we get a quantity that does not depend on Prz(t).
Let us return to the Morse spectral sequence. Using Remark 2.10, we can
compute the same quantity for the F1(M) page. For p{r + 1 this yields

PP (M))(1) ~ 1 P(EY (M) (1)

L=t 4 K () (1 — )3
(I—=2)(1 -1t
1— t47“ (1 _ t47“+4)t2 43
TToea o ( e TR
1— t4r+4 < (1 _ t4r)t2) 1 — t47“+4

IO e ) T aomu ey (64

Using the formulas for p | r + 1, though slightly different, also give the same
quantity. As we wanted to compute F. (M), we really want to know this
quantity for B, (M). Since by SF(3), all non-trivial differentials in E,(M)
goes from even to odd total degree, we have

dim E2* + dim ( B B — E,i’j)> = dim E}"*.

k>1yi4+j=2n+1

From this we deduce

dim E?" = dim E?" — dim ( B I B — E,i’j)>
k>1yi4+j=2n+1
= dim E?" — dim B! 4 dim B2
Expressing this by Poincaré series yields
even 1 odd even 1 odd
P(EL™)(M) = S P(ELT)(M) = P(EY™)(M) — S P(EY™) (M)
Now by (63) and (64) we can conclude

PES™)(M) — ¢ P(EZ)(M) = P(ES™)(S) - 3 P(E3)(S)
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To conclude P(EZ")(M) = P(E$*™)(S), we must show P(E%4)(M) =
P(E$9)(8S). We can compute P(E24)(M) by Theorem 5.16:

P(EZ)(M) = P(H“(LHP", ) = P((F,[u] @U") & T7)

1 1
= T Py (t) + Pr«(t) = Prr(t) + ;Pn(t),

1
tH1— )

where I have used Remarks 5.12 and 5.14. Now by Lemma 5.10 (7),

PES(S)(t) = P(H™(LEP)(1) + T
= %PI,A(T/) + 7 _ttz Prz(t) = ﬁpﬂf(t) + %PIT(t)-

This allows us to conclude that P(EZ*")(M) = P(E$™)(S), and we can
compute by (62),

1 Prs(t)

PEZ™)(M) = PEF™)(S) = = + 10,

as stated in the Theorem. ]



75

6 Sl-equivariant K-theory of LCP"

Recall that the Morse spectral sequence comes from the S'-equivariant energy
filtration

CPr=FCFC---CF,C---CF,=LCP", (65)

which consequently gives a filtration {(F;)ns1}, of LCP" o. The Morse
spectral sequence E,(M)(LCP", ;) in K-theory has the following structure,

Theorem 6.1. The Morse spectral sequence E5*(M)(LCP", 41) converging
to K*(LCP", o) is a spectral sequence of K*(BS') = Z|[[t]]-modules, and it
has the following E page, using the 7 /27 grading of K-theory:

s _ [ ZID @22/ (), evens
! 0, i odd.
{ 0, J even;

2™ @rZlz, yl/ (Qr, Qrir), j odd.

Here, R = R(SY) = Z[U,UY), and Z[[t]]|™ denotes the R-module structure
U (t+ 1)" on Z[[t]]. The R-module structure on Z[z,y]/ (Qr, Qr+1) is
U~ (x—y)/(1+y)+1.

EM = forn > 1.

Proof. The method is exactly as in Theorem 5.1. The Morse spectral se-
quence is Theorem 4.4, and we use Theorem 3.7 which gives K/ (G(r)™),
with the module structures stated just below the Theorem. Finally, using
the Z/27Z-grading from Bott-periodicity, we suppress the Thom isomorphism,
and simply get a shift from even to odd degree when n > 1. O

Remark 6.2. Note that when n = 1, the S'-action is free on G(r), so
G(r)pst =~ A(r). So EYdd = KO(A(r)) = Zlz,y]/ (Qr, Qry1), with Z[[t]]-
module structure t — (z —y)/(1+y).

We can depict the Morse spectral sequence schematically as follows, where
an empty space denotes zero, and a * denotes a non-trivial module:

* *
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From the configuration of this spectral sequence, we can immediately estab-
lish a number of structural facts. Recall the notation K (X) = K*(Xj61),
when X is an S'-space.

Proposition 6.3. The Morse spectral sequence converging to K ¢ (LCP")
has the following properties:

(1) The only possible non-trivial differentials start from column 0.

(i4) K)o (LCP") is a submodule of K} ¢ (Fo) = K°(BS)®7 K°(CP"), and

in particular it is a free abelian group.

(44i) The spectral sequence for the filtration {F;/Fo}; has K*(point) in col-
umn 0, and thus it collapses. So K} ¢ (Foo/Fo) =0, and Kj g (Foo/Fo)
15 free abelian.

We will also need the twisted case, i.e the Morse spectral sequence for the
(n)-twisted filtration Fy = fén) C F C ... C (LCP")™, where we have

Lemma 6.4. For the (n)-twisted filtration fén) C .7:1(") C...C(LCP)™,
the following holds: f(’gsl(.ﬂ(n)/]—"o) =0, and
Ko (R 1Fo) = Z[[0)™ @rZlw, y]/ (Qr, Qria)

Proof. Morse theory says that F;/Fy ~ Th(u;) as S'-spaces, since the fil-
tration is S'-equivariant. As a consequence,

Fi | Fo = (Fi ) Fo)™ = (Th(uy)™ = Th((uy)™),

where the last equality is clear from the definition Th(§) = D(£)/S(§). So
by Thom isomorphism, K}, (FM ) Fy) = KD (G(r)™), which by Theorem
3.7 is isomorphic to Z[[#]]™ @rZ[z,y]/ (Qr, Qrs1). Likewise for K. O

6.1 The first differential

We want to determine the first differential d; : E\"* — E™* in the Morse
spectral sequence converging to K, (LCP"). Using Remark 6.2, we have a
concrete description of the E; term, and we get the following explicit formula
for d;:

Theorem 6.5. The first differential dy in E,(M)(LCP", ) is the Z[[t]]-
module homomorphism

di : Z[[)) @ Z[h] /W — Zlz, Y]/ (Qr, Qri1)

given by di(h?) = 27 —y? for j =0,1,...,7.
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Proof. The first differential is induced by the boundary map ¢ below:

(Fonst — (F1)nst — (Fi)ns1 /(Fo)nsr ——= Z((Fo)nst)

where ¥ denotes the (reduced) suspension. From Morse theory (40) we have
(F)nst/(Fo)nst =~ Th((uy )nst), where uj is the negative bundle over X =
G(r), and we have the diagram

S((uy )nst) — D((p1 )nsr) —= Th((py )nsr) —= 28 ((p11 )nsr)

l | 5 l

(Fo)nst (Fnst ——= (F1)nsr/(Fo)nst ——= S((Fo)ns1)

The vertical maps from the sphere- and disc bundles are given by the flow of
the energy functional; we return to them later. First, since pj is an S'-vector
bundle, we can assume that the Riemmanian metric on it is S'-invariant, so
that S((u] )ns1) = ES* x g1 S(uy ), and D((py )ns1) = ES* xg1 D(py). Then
Th((p7)nst) = ESL Ast Th(py), see |Bokstedt-Ottosen| Lemma 5.2, and we
get the diagram

ES" xg1 S(uy) —=ES" xg1 D(py) —= ESL Agr Th(yy)

lidx(ﬂuf) l l%

ES' xq1 F ES!' x¢1 Fy ES Nst Fi/Fo

This means we can simply ignore the ES*-factor, and consider the diagram

S(py) —=D(py ) —=Th(py) —= XS (uy)

J/f+uf l l lwzf

Fo Fi Fi)Fo—2=%F,

1%

By the proof of Prop. 4.2, p; is a trivial real line bundle, and over a geodesic
v € X, we can parametrize uj as Riy’. Therefore the sphere bundle S(uy) =
X, UX_ is adisjoint union of two copies of the base space X, where the fiber
is (X1), = +i7" and (X_), = —i¢/. The map fy : Xy — Fy is given by the
flow of the energy functional: For a geodesic v € X, fi(v) gives the endpoint
in Fy = CP" for the flowlines in direction £i4’. Since p; is 1-dimensional,
the Thom space Th(uy ) is just the suspension XX of the base space X, and
YS(py) =2XX,vEX_. The map § : Fy/Fy — XF is now the composition

SVESf_

§: Fi)Fo—=2(X)—= XX, VEX_ > F. (66)



78 6 S'-equivariant K-theory of LCP"

Here, the last map folds the two summands in the wedge.

We now investigate the maps fiy : G(r) — CP". Recall from (4) that
the simple closed geodesic v in CP" determined by [v, w] € PV, is given by
the map

PVy — G(r), [v,w]— qoc(x,v),

where c(x,v)(t) = cos(mt)x + sin(rt)v for t € [0,1], and ¢ : S* 1 — CP"
is the projection. Such a 7 is a geodesic on a CP! = P {v,w} C CP", and
we can give P{v, w} homogeneous coordinates, [a,, a,] = q(a,v + a,,w), and
map

P{v,w} — CU{o0}, [ay,ay]— v
We see that v under this map is the curve ¢t — Zfs((::)) = tantm) € CU{oo}

for t € [0,1], i.e. the real line traversed in the "negative” direction, from
+o0o to —oo. It is now clear that the flow in direction +i7" will end in

—i € CU {00}, or homogeneous coordinates %[1,1’] € P{v,w}, so fi(y) =

%[1,2’] € P{v,w}. The flow in direction —i7’ ends in i € C U {00}, so

f—(fy) = %[17 _7:] < P{Uv w}'

Having determined fi, we can now calculate the induced map f} on
K°(CP") = Z[h]/ (h"), so we need only determine f(h), where h = [H] — 1
and H \, CP" is the standard line bundle. We do this by determining
the pullback fi(H). From the preceding paragraph we see that the fiber of
[ (H) over a simple closed geodesic v determined by [v, w] € PV} is exactly
all the points on the line given by %(v + 1w). Recall that the line bundle
X was defined as the pullback of the standard bundle v, N\, P(+2) under the
composite

Gr) — PV — PV, — P(72),
v [v,w] e %[thiw,v—iw] — C(v+iv) CCv® Cuw

It follows that f}(H) = X, so fi(h) = . Likewise we get f*(h) = y,
because Y is the pullback of the complement of 7, in ;. Since f} is a ring
homomorphism, we get f%(h/) = 27, and f*(h’) = y’. From (66), we can now
compute di(h?). When folding the maps, the second suspension in the wedge
Y X, VIX_ has the orientation reversed, so we obtain d;(h?) =2/ —¢/. O

In the Morse spectral sequence E*(M)((L(CP’")("LSl) for the (n)-twisted

filtration, the first differential is a map d{" : K} (XF) — f(;sl(fl(")/fo),
cf. Lemma 6.4.
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Lemma 6.6. The first differential in E*(M)((L(CP’")(HLSQ is the map of
Z[[t]]-modules given by

& Z[[] @ Z[h)/ (W) —  Z[[H) " @rZlz, yl/ (@Qr, Qi)
dﬁ”)(hj) = 2 —y), forj=0,1,...,r

Proof. Using the same diagram as in the proof of Theorem 6.5 above, we see
that the geometry of this situation is exactly the same, so the flow map is
identical to the one computed before. ]

From (44), the power map P; gives a map of the following exact sequences,
giving a commutative diagram:

e

Fo Foo Foo)Fo—2>SF,

where 59) denotes the boundary map which induces the first differential dgj)
in the Morse spectral sequence FE, (M)((LCP’“)%Sl). So the differential dgj)
determined in Lemma 6.6 can also be written as the composite map

. 5~ N> '
A : K51 (SF0) = Kjsi(Fuo/ Fo) = K (FY /Ry (67)

6.2 The Main Theorem for » > 1

Again recall the notation K¢ (X) = K*(Xjs1). Now we introduce some
more notation: For an S'-space X with a connected set F of fixed points for
the Sl-action, let € F be some fixed point. The inclusion of z in X gives
an Sl-equivariant map i = i, : * — X. (Since F is connected, any two such
inclusions i, and i,, x,y € F, are homotopic.) Since i is S'-equivariant, we
obtain a map

BS' = ES! xg1 % — ES' xg1 X = X}41.

Thus we can consider the relative group K*(X,g1, BS!), and we use the
notation K¢ (X, %) := K*(X,g,BS"). Note that since the composition

% — X — x is the identity, we get

K (%) — Kjgi(X) — K (*)
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is the identity. This gives a canonical splitting K¢, (X) = K*(BS")®Ker(i*),
and we see that K (X, x) = Ker(i*).

In this section, we will investigate K¢, (LCP"). The idea is to twist the
filtration with an integer. First we need a technical lemma:

Lemma 6.7. Let f € Z[[t]], and let g; : Z[[t]] — Z([1]]Y®r Z be the natural
map, where R = Z[U,U™Y], Z[[)]” is Z[[t]] with the R-module structure
U (t+1)', and Z has the module structure U — 1. Then:

(i) If i(f) € n-Z[[t]|"@r Z for all i € N, then f € n- Z][1]].
(i1) If gi(f) =0 for alli € N, then f =0 in Z[[t]].

Proof. First note that (ii) follows from (i): If ¢;(f) = 0 for all ¢ € N, then
a(f) € n-Z[[t)]Y @k Z for all i and all n. By (i) we get f € n - Z[[t]] for all
n € N, and since only 0 in Z[[t]] is divisible by any n, this implies that f = 0
in 2],

So we must prove (). By prime factoring n, We can assume n = p° where
pis a prime number. Assume ¢;(f) € n - Z[[t]”) ©x Z for all i € N.

We have an injective map 4, : Z[[t] < Z,[[t]], and we claim: If i,(f) €
p*Z,[[t]], then f € p*Z[[t]]. Writing f = >, cit! we have f € p°Z[[t]] if and
only if p* | ¢; for all j. By assumption we know p® | i,(c;) for all j. This
means that the image of ¢; under the composition

ip z . m s
Z—>Zp:<hTmZ/p — Z/p°,
is zero. But the composition is clearly the natural map Z — Z/p°, so p° | ¢;
for any j. This proves the claim.
Knowing this, it suffices to show that i,(f) € p*Z,[[t]]. We apply the
isomorphism
e : Zp[[t]] — lim Z,[Cypm]

—
m

cf [Lang|, Thm. 1.1, where C} denotes the kth roots of unity, to make the
following diagram for any ¢ € N:

i

2" ®r 2 (68)

Z[[t]
l =

&Ly {V}®-- ® LV}

pr; al

<— Zp [Cpi]
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Here the map pr; denotes the natural projection on the ¢th term in the
inverse limit, and the isomorphism ¢ is Lemma 3.9 and 3.5. This diagram is
commutative by the definitions of the maps. Let g = ¢(i,(f)) € im Z,[Cpm].

It is clear that if g satisfies pr;(g) € p*Z,[C.] for all i, then g is divisible by p*.
Together with the commutativity of (68), this proves that i,(f) € p°Z,[[t]],
and we are done. O

We will prove the following

Theorem 6.8. The map
0 K1 (BF0, %) — Kjigi (Foo/ Fo)
1S 1njective.

Proof. We restrict the differential d : K} (2F) — Kl (F9 ) Fo) to the
summand K¢, (5F0, *); it is zero on K)o (*). By (67) this differential is the
composition,

) - pE )
47 K51 (SFo. %) == Kjgi(Fuo/ Fo) = Kjsr (F ) Fo).
Thus we can make a combined map, call it d,

d: K (SFo, %) — Khgi(Foo/Fo) — [ Kisn (FP ) Fo).

J

To prove that ¢ is injective, it suffices to show that d is injective. So let
a € K} ¢ (XFp,*) with d{”(a) = 0 for all i. We must prove a = 0. Recall by
Lemma 6.4,
Ky (FO ) Fo) = Z[[t]) " @r M,

where M = K°(A(r)) = Z[x,y]/(Qr, Qrs1). Let M; C M be the filtra-
tion from Remark 3.2. Then Z[[t]]”) @x M; gives a filtration of Z[[]" ®r
M. Similarly, let L; C Z[h]/ (h"*') be generated by {h?,...,h"}. Then
K} o (XFo, %) = Z[[t] @z L.

Write a = fi(t)h + fo()h? + ... + f.(t)h", where f;(t) € Z[[t]]. For the
purpose of induction, consider a; = f;(t)h7 + fj1(E)R T 4+ ...+ f.(£)h", and
assume dgi)(aj) = 0 for all 4. This holds for j = 1. Then a; € Z|[[t]] ® L;, and
we consider the image of under dgi), see Lemma 6.6:

po ,
Z[f) © L; — Z[[t)” ©rM;,
fl2 4 A LR fidd =) A f(a" —yT).
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By assumption, 0 = dgi) (aj) = fi(27 —y?) + ...+ fo(a" —y") for all i. Now
we use the projection m; : M; — M;/M,., which induces a map

Z[[) ©rM; 5 Z{[H]) " @R My /M.

Then 0 = Wj(dgi)(aj)) = f;(z7 =) in Z[[t]](i)®RMj/Mj+1 for all <. Note that
M; /M = Za? & Za? 'y @ ---® Zy’. Construct a map ¢ : M;/M; 1, — Z,
by

g(@?) =1, q(z''y)=—1, q(a’"y") =0, for k> 1. (69)
This is well-defined: If 5 < r the monomials are independent, and if j = r
we have in M;/M;,; the relation @), = 0, and the map satisfies ¢(Q,) = 0.
So we get a map

q: 2t ®rM;/M;1 — Z[[H]V @R Z. (70)

It j > 1 we get q(fj(27 —y’)) = f;, and if j = 1 we get q(fi(z —y)) = 2f1,
but we also have (f;(z/ — 7)) = q(m;(d\"(a;))) = 0. The conclusion is in
both cases that f;(t) =0 in Z[[H]"®x Z for all i. By Lemma 6.7 this implies
f;(t) = 0in Z[[t]]. Since a; = f;(t)a? + a1, inductively we get dgi)(aﬂl) =0
for all 4. This finishes the induction step. This induction shows that a = 0
in K} (S, ). 0

As a corollary, we obtain
Main Theorem 6.9. As K*(BS')-modules,
K)o (LCP") = K°(BS") = Z][[t]] .

Proof. Tt suffices to show that K)o (LCP", %) = 0. We use the long exact
sequence for Fy — Foo — Foo/Fo — LF0,

0 — Kpa(Foo/Fo) — Kpgi(Fos) —

6 ~
K51 (5F0) — Ko (Foo/Fo) — Kpsi (Fox) — 0 (71)

By the Morse spectral sequence, we know that f(,?sl (Fso/Fo) = 0, see Prop.
6.3. We can write part of (71) as follows:

0 — Kpgi (Foo, %) ® Kpgi(x) — Kjgi (SFo, %) Kpgr (%) = K1 (Foo/ Fo)

Theorem 6.8 tells us that & : Kj ¢ (SFo, ) — K} o1 (Foo/Fo) is injective, so
when we split off the summand Kj,g1 (%), we get that K}, (Foo, ) =0. O
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Having determined K}, (LCP"), we now move on to K} ¢ (LCP"). Re-
grettably, we are only able to determine this as an abelian group, not a
K*(BS')-module.

Main Theorem 6.10. K, (LCP") is a free abelian group.

In this section we prove the Theorem in all cases except one:
Theorem 6.11. If (r,n) # (1,2), then K}¢,(LCP") has no n-torsion.
The essential part of the proof is the following proposition:

Proposition 6.12. Let a € K} o (SF,*), and assume that for all i > 1,
d(a) € nK} 4 (F ) Fo). Then,

(1) If r > 1, then a € nKj ¢, (XFo, ).
(46) If r =1 and n > 2, then 2a € nKj ¢ (XFy, ).

Proof that Theorem 6.11 follows from Prop. 6.12. Assume b € K} ¢, (Fs) with
nb = 0 for some n € Z. We will show b is not n-torsion. By the exact se-
quence

6 ~
Kflzsl(me *) — Kflzsl (Foo/ Fo) — f1L51(fw) — 0,

we can li_ft btobe .f(,llsl (Fw/Fo), and there is a € K} o (EF, *) with image
§(a) = nb. Since d\” is the composition,

i 4 of o )
A\ Kl (SFo, %) 5 K (Fao/Fo) — Kl (FO/Fy),

and 8(a) = nb, we see that d\’(a) € nK}g (FD ) Fy) for all i. So we can
apply the proposition. In case (i) we get a € nkK} ¢ (XFy,*), so a = nd'.
Then in K}g(Fuo/Fo), nd(a’) = nb. But K} (Fu/Fo) is torsion-free by
Prop. 6.3, so §(a’) = b, which implies b = 0. This proves the claim in case
(). In case (ii), we get 2a = na’, so nd(a') = 2nb in K} o\ (Foo/Fo) which is
torsion-free, so 6(a’) = 2b, i.e. 2b = 0. Since n > 2, b is not n-torsion. O

Proof of Proposition 6.12. Let a € K} (3F, *), and assume n | dgi)(a) for
all 7. This proof is similar to the proof of Theorem 6.8.

Let M = Zlz,y]/ (Qr,Qr41), and let M; C M be the filtration from
Remark 3.2. Then Z[[t]](i)®RMj gives a filtration of Z[[t]]?®zM. Similarly,
let L; C Z[z]/ (z"™) be generated by {27,...,2"}. Then Kj (SFy,*) =
Z[[t]] ® Ly. Write a = fi(t)x + fo(t)2® + ... + f.(t)z", where f;(t) € Z[[t]).
For the purpose of induction, consider a; = f; ()27 + fo(t)z* + ... + f(t)2",
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and assume n | dgi)(aj) for all 4. This holds for j = 1. Then a; € Z[[t]] ® L
and we consider the image of under dgl):

'E

po ,
Zlt) ©rL; — Z[[)” ©rM;,

fird +. 4+ frirm = fi@ =)+ o+ (@ =),

By assumption, f;(z7 —y?) + ...+ f.(z" —y") = nb for some b. Now we use
the projection m; : M; — M;/M;q, which induces a map

Z[t) P orM; 5 Z[[)]Y ®rM;/Mj,
fil@ =y +. .+ fia —y)=nb —  fi(a? —y) =n-m;(D).

We wish to map M;/M;,1 — Z. For now, assume r > 1. If j > 1, we use
the map ¢ from (69), (70). Since q(z7 —y?) =1 for j > 1, we get

Z[t)Y @rM;/ M 5 Z[[)Y @8 Z,
fited =) =n-m) —  fj=n-qmb). (72)

If 7 =1, we use the well-defined map ¢;(z) =1, ¢1(y) = 0, and get the same
result. The conclusion is that f;(t) € n - Z[[t]]”) ®g Z for all i. By Lemma
6.7 this implies f;(t) € nZ|[[t]]. Since a; = f;(t)2? + a;41, inductively we get
n | dgi)(ajﬂ) for all 4. This finishes the induction step. This induction shows
that n | f;(¢) for all j =1,...,7, s0 a € nK} ¢ (SF, *).

Now take r = 1. Then j = 1. We use the map ¢ : M;/My — Z from
(69). Then in (72), we get instead 2f,(t) € n - Z[[t]] ®g Z. By Lemma 6.7,
2f1(t) € nZ[[t]], and 2a € nK} ¢ (XFo, *). O

6.3 The Main Theorem for »r =1

In this section we show the result of Main Theorem 6.10 in the case r = 1:
Theorem 6.13. K/ (LCP') has no 2-torsion.

First recall by Theorem 6.1 and Lemma 6.4 that when r = 1,

Kl (FP ) Fo) 2 K} o (Fi) Fo) 2 Z[[t)] P @p M,  where M = Z[z]/2>.
This is because M = Z[z,y]/ (Q1,Qs), and Q1 = x +y, so y = —z, which

when substituting in Q, = 22 + 2y + y? gives 2% = 0.
In the proof we will need the S! transfer map on K-theory:
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Lemma 6.14. There is an S transfer map 7 on K-theory, which fits into
the following exact sequence,

— K(X) == K (X) == Kje (X) = K'(X) = Kjgi(X) —
where K*(BS') = Z|[[t]], and the map ¢ is multiplication by —t.

Proof. Let T'— BS" denote the standard complex line bundle, as usual.
Let p: £S'xg1 X — BS', be projection on the first factor, and let ¢ = p*T
denote the pullback. As in (48), we use the cofiber sequence,

5(&) — D(§) — Th(9).

As shown in (49), S(§) = ES!' x X ~ X. The long exact sequence on
K-theory becomes, using the Thom isomorphism, cf. [Atiyah| Cor. 2.7.3,

KYX) -5 K (ESY xg1 X) -2 K*(ES' xg1 X) — K*(X) -

The map ¢ is given by multiplication with A_{(7) =1 —T = —t, since T is
a line bundle. We define the S! transfer map 7 to be the boundary map ¢ in
the long exact sequence. O

By exactness, Im(7) = Ker(p), and so we will need the kernel of ¢:
Lemma 6.15. The kernel of the map given by multiplication by t,
t: Z[[()"Y ©rZlz)/a* — Z[[()" ©rZle]/*
is Zpp—1(t)x, where (t + 1)* — 1 = tpp_1(t).

Proof. First we relate the kernel of ¢ to the kernel of u : M — M (this part
holds for all ). Recall R = R(S') = Z[U,U™!], and let v = U — 1. Then
M is an R-module by u — (z — y)/(1+y), and Z[[]]* is an R-module by
u +— (t+1)¥ — 1. Consider the exact sequence

0 — Z[[t]] = Z[[t]] — Z —0.
Tensoring with M over R yields the exact sequence
0 — Torf(Z, M) —= Z[[t)] P @ s M ——= Z[[t]| ¥ @ g M

To compute Ker(t) = Torf(Z, M), we use the following free resolution of Z
over R:

0 R R Z 0.
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Again, we tensor over R with M and find
0—Torf(Z, M) —= R®r M —> R®p M — Z[[t]](k)@)R 7Z—=0.

so Torf(Z, M) = Ker(u). All we need to know is how to translate from
Ker(u) to Ker(t). The following diagram,

0 — Ker(u) Re@pM —"—>R@r M AT Y/

l lpkdt)@id i lid

0—Ker(t) —Z[[() ¥ @pM ——Z[[)] ¥ @M — Z[[t] ¥ @1 Z

is commutative, since tp,_1(t) = (t+1)¥ —1 = u. From this diagram, we see
that Ker(t) = pr_1(t)Ker(u).

So all that remains is to determine Ker(u). This can be done for any r,
but it is especially easy when r = 1, and M = Z[z]/2?, where ul = 2z and
uz = 0. Clearly Ker(u) = Zz, and so Ker(t) = Zpy_1(t)x. O

We can now prove the Main Theorem in case r = 1:
Proof of Theorem 6.13. By the exact sequence
K51 (SFo, %) = Kjs1 (Foe) Fo) — Kjisr (Foc) — 0,

we see that K} (LCP') = Kj q (Fu) is isomorphic to the cokernel Cok(é)
of 0. Since r =1, K} ¢ (XFy,*) = Z[[t]] - h, so let f(t) € Z[[t] be given, and
assume that 0(f(t)h) is divisible by 2. We will show that this implies f(¢) is
divisible by 2, meaning that there is no 2-torsion in Cok(¢).

For contradiction, assume that f(t) is not divisible by 2. Then, without
loss of generality, f(t) has the form t'g(t), where g(t) = 1 + tp(t) for some
p(t) € Z[[t]]. Here [ is the first exponent in f(t) with an odd coefficient, and
so 2 | 0(f(t)h) if and only if 2 | 5(t'g(t)h). Then g(t) is a unit in Z|[t]], so since
§ is a Z[[t]]-module homomorphism, 2 | §(t'g(t)h) if and only if 2 | 6(t'h).
We have shown that if §(f(¢)h) is divisible by 2, but f(t) is not divisible by
2, then §(tN~'h) is also divisible by 2 for all N > [.

We will now show that this leads to a contradiction if N = 2" > [.
Consider the composite map, which we call déN),

~ ~ Py~
K1 (BF0, ) = K1 (Foo/ Fo) — K1 (Fane/ Fo) — = Kp(F™)/ Fo)
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Then d™ (t¥=1h) is divisible by 2, since §(t¥~'h) is. We will investigate
dS™ (tN-1R) via the following diagram:

= Fy (F1 /o))

D

(F1/Fo) M) —— (F2/ Fo)N) —— (F2/ 7))

The maps into XF; are the ones inducing the various differentials in the
Morse spectral sequences. The map (F;/Fo)?N) — (F/F1)WN) is simply
the composite of the two other maps in the triangle

NEY)
(F1/Fo) B —= (Fo ) Fo) ) — (Fo/ F1) ™).
On S'-equivariant K-theory this becomes

(2N)

Kl (SF0) —2— K (F1/F) V) (73)

(N)

K} (Fr)Fo) V) <—— K} i ((Fo/ Fo) ™) - K} ((Fo/ Fr)™)

with the lower row short exact (i surjective and j injective). When N = 2"
we have
pyo1(t) =t H((t+ 1D = 1) =tV 1 2¢(1),

for some polynomial ¢(t), since all binomial coefficients (2;) are divisible by
2 for j # 0,27, Since we have deduced that d (#¥=1h) is divisible by 2, we
therefore get dgN) (pn—_1(t)h) is also divisible by 2, say dgN) (pn_1(t)h) = 2a
for some a in K}, ((Fo/Fo)™). By Lemma 5.3 we see that d™ (py_1(t)h) =
2py_1(t)z. Since the diagram (73) is commutative, we get i(a) = py_1(t)z,
since the group K}, ((F1/Fo)™) is torsion-free, see Lemma 6.4.

We now use the S! transfer, see Lemma 6.14. We can choose a transfer
class e € K'(F/F), such that 7(e) = py_1(t)z by Lemma 6.15. We can
lift this transfer class to e € K'(Fy/Fy), so i(7(e)) = 7(e) = py_1(t)z. Thus
we have an element w = a — 7(€) € K} o ((F2/Fo)™)) with i(w) = 0. By
exactness of the lower row in (73), there is an element » € K} o, ((Fa/F;)NM)
with j(z) = w. By commutativity of (73), we get

En(2) = k(w) = k(a —7(€)) = k(a) — k(7(e)),

so let us compute this. Since 2a = dgN)(pN_lh), we see that k(2a) =
d*™ (py_1h) = 2py_1z, and since K} 1 ((F1/Fo)®V) is torsion-free, k(a) =
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pn—1z. But k(7(€)) is in the image of the transfer map, so by Lemma 6.15,
k(7(€)) = mpan_1(t)z for some m € Z. In conclusion,

En(z) = k(w) = (pn-1(t) — mpan—1(t)). (74)

To investigate this equality, we will need to use Fs-coefficients, and to deter-
mine the map Ey. This is done in the following lemmas:

Lemma 6.16. As K*(BS") = Z|[[t]]-modules,
Kisi (F1 ) Fo)®)s o) = (Fo[t] /7)1 @ (Fot] /42w
Proof. As explained in the beginning,
i (71 Fo)® )i Fo) 2 Z[) ) 0p M @2 T,

where M = Z[z]/2?%, and ul = 2z, uz = 0. So we see that M @7 Fy = Fo ®F,
is trivial as an R = Z[U, U~']-module. So

Z[)* ©rM ®2 Fy = (Z[[1]*" ©xF2)1 @ (Z[[t]*" @rF2)z.

On Z[[t ](zk), wacts as (t+1)2" —1 = ¥ (mod 2). Therefore, Z[[t]]@k)@RFQ =
Fo[t]/t*". This shows the Lemma. O

Lemma 6.17. The map Ey is multiplication by 1 — (t + 1)V,

Proof. We must determine the map induced by (F,/Fo)®Y) — (Fy/F1)W),
which is the (N)-twisting of the composite map

(fl/fo)@) & fg/fo E— fg/fl.

We will first study this untwisted case. The induced map, call it E, is given
as follows:

=~ ~ (o2

K} s (F2/ F) K} (Th(py)) ——= Kpgi(Ga(r))

| | 5

Kl (Fo/ F)@) —= Kl (Th((17) ) —= K01 (G(r)?)

where the first isomorphisms are Morse theory, and the ®; denote the Thom
isomorphisms (the index indicates which negative bundle). Also, Go(r) is
the geodesics of length 2, which as an S'-space is isomorphic to G(r)®, the
(2)-twisted space of simple closed geodesics of length 1.
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This is a special case of the following general situation: For a bundle and
a subbundle, £ C n, over a space X, the following diagram commutes

K*(Th(n)) —= K*(Th(¢))

q)nT% QéT%

K (X) —A s K*(X)

The vertical maps are the Thom isomorphisms. Then the induced map on
K-theory of the base space is given by multiplication by the Euler class
A =A_1(n— &) of the bundle n — ¢, i.e. the (orthogonal) complement of £
inside 7).

So we need the negative bundle p; = g9 @ 15 over Go(r), see Proposition
4.2. 1 have given € and v an index, so one can distinguish between them for
iy and gy . Now (uy )@ is not a priori a subbundle of y5 , but since y; = e,
where the S action is trivial on the fibers, we see that (1 )® = e, as bundles
over G(r)® = Gy(r), so that puy — (u7)® = 15 = v, where v is the complex
bundle found in the proof of Proposition 4.2. From here, we know that for a
geodesic f of length 2, parametrized as f(t) for t € [0, 1], the fiber of v over
f is given by g(t)if'(t) for t € [0,1], where g € spang {cos(27t), sin(27t)}.
The rotation action of S is given by, for 6 € [0, 1]:

0 x (f(t),cos(2mt)if'(t)) = (f(t — 0),cos(2nt — 270)if'(t — 6))

and similarly for sin(27t). The complex structure J found in the proof of
Proposition 4.2 is J(cos(2nt)) = sin(27t).
Now let us compare this to the bundle 7', i.e. the bundle coming from the

standard representation of S*. Ignoring the S!' action, T is just a product
bundle Go(r) x C. The S* action of § € [0, 1] is given by

0% (f(t),c) = (f(t—0),e*™c), forte|0,1].
We will now construct a map ¢ : T" — v, given by
o(f,c)(t) = (f(t), ccos(2mt)if'(t)).

We check that this is S'-equivariant, i.e. that the following diagram com-
mutes (it suffices to check ¢ = 1):

TLLI (f(tf, 1) - (f(t>,cos(T27rt)z'f’<t))
T v (f(t —0), 0~ (f(t — 0), 2 cgs(%t)z'f’(t —9))
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276

This commutes, since e?™ = cos(276) + isin(276) is multiplied on cos(27t)

as

™ cos(2mt) = cos(2m6) cos(2nt) + sin(2m0).J (cos(27t))
= cos(2mh) cos(2mt) + sin(270) sin(27t)
= cos(2n(t —0))

by the trigonometric formula. So ¢ is S'-equivariant. Then ¢ defines an
isomorphism of S* bundles, since it is clearly an isomorphism on the fibers.
We have shown uy, — (u)® =v =T.

Now let us look at the (N)-twisted case. We get again (u;)?N) = ey,
and 50 (g )N — (u7)PN) = M) = TIN) by the above isomorphism. Now,
T™W) is the bundle with S* action of # € [0, 1] given by

0% (f(t),c) = (f(t—0),(e™)Ne¢), fortel0,1].

This shows that this is the same bundle as 7, so the map Ey is multi-
plication by the Euler class of TV, and since this is a line bundle, we get
A(TN)y=1-TN=1-(t+1)V. O

Using the previous two lemmas, we can now investigate equation (74)
in K} g ((Fi/Fo)?M);Fy), where N = 2". As already noted, py_i(t) =
t¥=(mod 2), and so the left-hand side of (74) is (t"~! — mt* =)z mod-
ulo 2. The right-hand side is Eyx(z) = (1 — (¢t + 1)*")z = —t?"z(mod 2).
So

(N =N e = V2 € (Z[H)/P)1 @ (2] /)
Clearly, this is impossible, since the term t¥~'z cannot be cancelled by —t" 2
in (Z[t]/t*N)1 @ (Z[t]/t*)z. This gives a contradiction, so the given f we
started with must be divisible by 2. This proves the Theorem. O
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Notation

In this table can be found some of the frequently used notation in this paper:

~ (between topological spaces): homotopy equivalent.

F C or HL

G(r) The space of simple parametrized closed geodesics on FP".
Sometimes written G(HP") or G(CP") to be specific.

Gn(r) The space of parametrized closed geodesics of length n,
can be obtained by iterating n times the elements of G(r).

A(r) The quotient S*\ G(r) under the rotation action of S*.

EG A contractible space with a free action of the group G;
unique up to homotopy.

BG EG/G, the classifying space of G.

Xpst ES' x g1 X, where X is an S'-space.

K} (X) K*(Xjs1).

K;i(X,*) The relative group K*(Xjg1, BS").

T The standard complex line bundle over BS* = CP>, or its
pullback to X} g1 under the map pr, : ES! xg1 X — BS™.
Also used for the class of this bundle in K-theory.

t the class T'— 1, see T.

Fa E~Y(] — 00, n?), the nth term in the Morse filtration.

i the negative bundle for the critical manifold G,,(r).
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