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Introduction

This thesis is an exposition of the results obtained during my four years as
a PhD student at the Center for the Topology and Quantization of Moduli
Spaces. Some of the results have already appeared in print or on the arXiv,
but a few ideas which have not yet made it into separate papers are also
presented.

∗ ∗ ∗
I will now give an ultrabrief and somewhat informal description of the
background for this project. In [1], Andersen considers a family J of
Kähler structures on a compact symplectic manifold (M, ω) smoothly
parametrized by a manifold T . Under certain topological assumptions, he
is able to generalize work by Hitchin [25] to obtain a connection in a certain
finite rank bundle over T , a generalized Verlinde bundle. Using Toeplitz
operator techniques then allows him to construct a T -parametrized family
of star products on (M, ω). If Γ is a group acting on T and (symplectically)
on M, such that J is Γ-equivariant, one may ask if it is possible to turn this
family of star products into one Γ-invariant star product on M. This turns
out to depend on a number of cohomological conditions. One of these is
the vanishing of the first cohomology group

H1(Γ, C∞(M)) (†)

of Γ with coefficients in the module of smooth functions on M.
One situation in which all of the above applies is when T is the Teich-

müller space of a closed surface Σ, Γ the mapping class group of Σ and
M is the moduli space of flat SU(n)-connections over Σ− {∗} with fixed
central holonomy around the puncture.

One of the original goals of the project was to compute (†) in the case
M = M1

SU(2). While this has not yet been done, I have, jointly with
Andersen, been able to prove the vanishing of H1(Γ, A) for certain modules
of functions on certain related moduli spaces. Another motivation for
studying these cohomology groups is the question of whether or not the
mapping class group has Kazhdan’s Property (T). Although this has been
answered in the negative by Andersen [2], it may still provide insight to
find other counterexamples.

∗ ∗ ∗
The thesis is organized as follows: The first chapter serves as an introduc-
tion to group cohomology. Since we only need to »recognize a cocycle
when we see one«, we provide simple working definitions of cocycles,
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iv Introduction

coboundaries, H1 and H0. The last three sections contain a number of
well-known results which will be useful in various places.

In Chapter 2, we recall the definition of the mapping class group of
a surface, along with the important notion of Dehn twists and known
relations between these. We also present the Dehn-Thurston coordinates
on the set of multicurves (isotopy classes of 1-submanifolds of Σ). The
mapping class group acts on geometric objects associated to Σ, and we
use Section 2.4 to describe the action on the set of multicurves and on the
first integral homology group of Σ. Speaking of the latter, in Section 2.5
we briefly touch on the kernel of the action, the Torelli group. In the final
section we prove that a certain (obvious) obstruction to the vanishing of
H1(Γ, V) is satisfied for any unitary representation V, provided g ≥ 3. An
immediate consequence is that counterexamples to Property (T) must be
found among the unitary representations which do not restrict to the trivial
representation of the Torelli group.

In Chapter 3 we discuss deformation quantizations of a symplectic mani-
fold. The importance of the group (†) becomes apparent in Proposition 3.10.
Section 3.4 contains a brief explanation of how geometric quantization of a
Kähler manifold induces a star product on the underlying symplectic mani-
fold. This idea is taken one step further in Section 3.5, where we assume
the existence of a whole family of Kähler structures, giving a corresponding
family of star products.

The so-called moduli space of flat G-connections is the subject of the
fourth chapter. There are two quite different, but actually equivalent,
definitions. We choose to define it as the space of G-representations of the
fundamental group of Σ, modulo conjugation. The alternative definition,
from which the space gets its name, is also given, along with a short
explanation of the equivalence between the two definitions. (The appendix
contains some standard material on principal bundles and connections.)
In the following sections we explain how the moduli space is endowed
with various structures. Actually, »the« moduli space is slightly misleading,
since one is often forced to make small variations in the definition. For
example,MG is rarely a smooth manifold, but the open and dense subset
represented by irreducible representations is. If one needs a manifold
which is both smooth and compact, one may restrict to the representations
with fixed behaviour on the boundary of Σ. This is what we do in order to
obtain our favorite examples, Md

SU(n). The last section explains why the
theory from Chapter 3 can be applied to these spaces.

In case G = SL2(C), it turns out that one may use the set of multicurves
on Σ as a basis for the space of regular functions on MG. This fact is
used in Chapter 5 to prove that the cohomology group H1(Γ,O(MG))
vanishes. The computations rely on the results from Chapter 2 and on the
introduction of the notions of future and past of interesting pairs.

In the sixth chapter, we turn our attention to the abelian moduli space
MU(1). It is a trivial consequence of the results presented at the end
of Chapter 2 that H1(Γ, L2) = 0, where L2 denotes the space of square-
integrable functions on MU(1). In [7] this is used to establish that also
the cohomology group with coefficients in the space of smooth functions
vanishes. However, in Chapter 6 we give an alternative proof of this, which
does not rely on the knowledge of H1(Γ, L2). Instead, we use the same



Introduction v

methods as those applied in Chapter 5.
In the final chapter, we explain how a combination of the ideas from

Chapters 5 and 6 may be used to prove the vanishing of the cohomology
with coefficients in a certain module of »rapidly decreasing« linear combi-
nations of multicurves. We also discuss how these linear combinations give
rise to continuous functions on the SU(2) moduli space. Whether or not
this association is faithful is one of the open questions with which we end
the dissertation.

∗ ∗ ∗

I am grateful, first of all, to my supervisor, Jørgen Ellegaard Andersen, for
sugggesting this project to me, for patiently answering my many questions,
and for believing in my capabilities at times when I did not. I also wish to
thank Robert Penner for numerous helpful discussions and Magnus Roed
Lauridsen for volunteering to proofread the manuscript with ε-notice.

Enjoy reading!





Chapter 1
Group Cohomology

In this brief chapter, we give a rudimentary introduction to those concepts
from the language of group cohomology which we will need later on. It
merely serves the purpose of introducing a little notation and adapting
known results to the settings we encounter. For a thorough exposition, the
reader is referred to Brown’s textbook [15].

1.1 Modules over Groups

Let G be a group. A (left) module over G is an abelian group M together
with an action of G on M, that is, a homomorphism G → Aut(M). Equiva-
lently, A is an ordinary module over the integral group ring ZG. If H is a
subgroup of G, any module over G is also a module over H in the obvious
way. This is known as restriction of scalars.

If M is a G-module, the group of invariants is the subset MG of M fixed
under the action of G; it is the largest subset of M for which the action of
G is trivial. Similarly, the group of co-invariants MG is the quotient of M
by the subgroup generated by elements of the form m− gm, m ∈ M, g ∈ G.
This may be thought of as the largest quotient of M on which G acts
trivially.

We may define a right G-module to mean a right module over the
group ring ZG. Then as usual, if M is a right module and N is a left
module over G, we may form the tensor product M �ZG N (which is
only an abelian group) from the tensor product M � N = M �Z N by
introducing the relations mx � n = m � xn for x ∈ ZG. But since the
relations a(m � n) = ma � n = m � an for a ∈ Z already hold in M � N, we
need only add the relations mg � n = m � gn for g ∈ G. As an example,
consider Z as a trivial right ZG-module. Then we have an isomorphism
MG ∼= Z �ZG M given by [m] 7→ 1 � m, with inverse given by a � m 7→ a[m],
where [m] denotes the image of m ∈ M in MG.

For a commutative ring R, one need not distinguish between left and
right modules, because a left module X becomes a right module by defining
x.r = rx, and vice versa (in fact, this defines an isomorphism between the
categories of left and right R-modules). However, for a non-commutative

1



2 Chapter 1 · Group Cohomology

ring, such as the group ring of a non-abelian group, this procedure fails.
But if ϕ : R → R is an anti-automorphism, we may turn a left module X
into a right module by the formula x · r = ϕ(r)x (the construction above
may be seen as a special case, because a ring is commutative if and only if
the identity map is an anti-automorphism!).

In particular, for a group ring ZG, the anti-automorphism g 7→ g−1

of G extends to an anti-automorphism of ZG, and in this way we can make
sense of the tensor product of two left G-modules M and N. Concretely this
means that we obtain M �G N from the abelian group M � N by introducing
the relations (g−1m) � n = mg � n = m � gn, and, replacing m by gm this
may be written m � n = gm � gn. Thus we have M �G N = (M � N)G,
where G acts diagonally on M � N: g(m � n) = gm � gn. This shows that
the usual natural commutativity of the tensor product of abelian groups
induces a natural commutativity of the tensor product of left G-modules,
M �G N ∼= N �G M.

1.2 Cocycles and Coboundaries

Let M be a G-module. A 1-cocycle (henceforth simply called a cocycle) on
G with values in M is a map u : G → M satisfying the cocycle condition,

u(gh) = u(g) + gu(h) (1.1)

for all g, h ∈ G. A cocycle is a coboundary if it is of the form g 7→
δm(g) = m− gm = (1− g)m for some m ∈ M. The sets of all cocycles and
coboundaries are denoted by Z1(G, M) and B1(G, M), respectively. The
first cohomology group of G with coefficients in M is the quotient

H1(G, M) = Z1(G, M)/B1(G, M). (1.2)

If one wishes to emphasize the given action ρ : G → Aut(M) of G on M
one may also denote this cohomology group by H1(G, ρ).

The »closed 0-cochains« (or 0-cocycles), the elements m ∈ M such that
δm = 0, are clearly the same as the invariant elements of M. We put

H0(G, M) = MG = {m ∈ M | gm = m ∀g ∈ G}.

Letting 1 ∈ G denote the identity element, it follows from (1.1) that
u(1) = u(1) + u(1), so u(1) = 0 for any cocycle u. This in turn implies
0 = u(gg−1) = u(g) + gu(g−1), which may be rewritten

u(g−1) = −g−1u(g). (1.3)

Combining (1.1) and (1.3), we obtain

u(ghg−1) = u(g) + gu(h) + ghu(g−1)

= gu(h) + (1− ghg−1)u(g). (1.4)

It is clear from (1.1) and (1.3) that a cocycle is determined by its values
on a set of generators for G. This observation is particularly useful when
the group is finitely generated.
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If the action of G on M is trivial, the cocycle condition (1.1) simply
means that a cocycle is a group homomorphism G → M. Also, the space
of coboundaries vanishes, so we have

H1(G, M) = Hom(G, M) = Hom(Gab, M) (1.5)

where Gab denotes the abelianization of G.

1.3 Sums and Products

Let (Mα) be a collection of G-modules. There is an obvious bijection

Z1(G, ∏
α

Mα)→∏
α

Z1(G, Mα) (1.6)

given by mapping a cocycle u : G → ∏α Mα to the family (uα) of cocycles
given by uα(g) = u(g)α. This bijection induces an isomorphism

H1(G, ∏
α

Mα) ∼= ∏
α

H1(G, Mα). (1.7)

For direct sums, the situation is a little more subtle. A cocycle u : G →⊕
α Mα need not give rise to an element of

⊕
α Z1(G, Mα). The problem is

best explained by introducing a little notation. For g ∈ G, let Ag denote
the (finite) set of indices α such that the coordinate u(g)α is non-zero.
Then a necessary and sufficient condition for u to define an element of⊕

α Z1(G, Mα) is that
⋃

g∈G Ag is finite. One additional assumption that
ensures this is that G is finitely generated, since if G is generated by
g1, . . . , gN , we have that

⋃
g∈G Ag is the finite union of the finite sets Agj ,

j = 1, . . . , N. So for finitely generated groups we do have

H1(G,
⊕

α

Mα) ∼=
⊕

α

H1(G, Mα). (1.8)

1.4 Shapiro’s Lemma

Let G be a group, H a subgroup and M a module over H. The coinduced
module CoindG

H M is the G-module

CoindG
H M = HomZH(ZG, M)

consisting of H-equivariant homomorphisms ZG → M, ie. maps f satis-
fying f (hx) = h f (x) for h ∈ H, x ∈ ZG. The (left) action of G is given by
(g · f )(x) = f (xg).

Proposition 1.1. If G is a group, H a subgroup and M a module over H, then

H1(H, M) ∼= H1(G, CoindG
H M). (1.9)

This is a special case of Shapiro’s lemma (Proposition III.6.2 in [15]). We
are going to need even more specialized versions of (1.9).
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Assume G acts on a set S. For any abelian group A, the set Map(S, A)
of all maps S → A becomes a G-module by setting (g f )(s) = f (g−1s).
Writing S as the disjoint union

⊔
α Sα of its G-orbits, clearly

Map(S, A) = ∏
α

Map(Sα, A) (1.10)

as G-modules. Choose a set R of representatives for the G-orbits of S.
Denote the representative of the orbit Sα by rα. For each α, let Gα denote the
subgroup of G stabilizing rα. Then there is a bijection G/Gα → Sα given
by gGα 7→ grα. Combining with the usual bijection between the sets of left
and right cosets given by gGα 7→ Gαg−1, we obtain induced bijections

Map(Sα, A)↔ Map(G/Gα, A)↔ Map(Gα\G, A). (1.11)

The latter two sets both admit a natural left action of G making them
G-modules, and the bijections are then G-isomorphisms.

Considering A as a trivial Gα-module, there is an isomorphism of
G-modules

CoindG
Gα

A = HomZGα
(ZG, A)→ Map(Gα\G, A) (1.12)

given by f 7→ (Gαg 7→ f (g)).

Theorem 1.2. With the notation above, we have an isomorphism

H1(G, Map(S, A)) ∼= ∏
α

Hom(Gα, A). (1.13)

Proof. Using (1.10) and (1.7), we obtain

H1(G, Map(S, A)) ∼= ∏
α

H1(G, Map(Sα, A)).

Focusing on the individual factors on the right-hand side, the isomor-
phisms (1.11) and (1.12) induce an isomorphism

H1(G, Map(Sα, A)) ∼= H1(G, CoindG
Gα

A).

Finally, we may apply Proposition 1.1 and (1.5) to obtain (1.13). �

It will be useful to know an explicit formula for the isomorphism (1.13),
and fortunately it is rather easy to describe. In the special case where the
action of G on S is transitive, let r ∈ S be some element and let Gr be the
stabilizer of r. Then the isomorphism

ϕ : H1(G, Map(S, A))→ Hom(Gr, A)

is given by
ϕ([u])(g) = u(g)(r). (1.14)

In other words, the image of the cohomology class represented by the
cocycle u is the homomorphism obtained by restricting u to Gr and post-
composing with evaluation in r.

The general case of course has a similar description. The image of
the cohomology class [u] under (1.13) is the collection of homomorphisms
uα : Gα → A, whose α-coordinate is given by

uα(g) = u(g)(rα). (1.15)
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1.5 The Hochschild-Serre Spectral Sequence

A celebrated result relates the cohomology of a group to the cohomology
of a normal subgroup and of the quotient.

Theorem 1.3 (Hochschild-Serre). Let 1→ K → G → Q→ 1 be a short exact
sequence of groups, and let M be a G-module. Then there is a spectral sequence

E2
p,q = Hp(Q, Hq(K, M)) =⇒ Hp+q(G, M).

In low degrees, this spectral sequence gives an exact sequence of cohomo-
logy groups.

Proposition 1.4. Let 1→ K → G → Q→ 1 be a short exact sequence of groups,
and let M be a G-module. Then there is an exact sequence

0→ H1(Q, MK)→ H1(G, M)→ H1(K, M)G. (1.16)

A few remarks are in order: Although M is not necessarily a module
over Q, the submodule MK = H0(K, M) invariant under K has a natural
structure as Q-module. Since G acts on K by group homomorphisms (via
conjugation), there is an induced action on H1(K, M) making it a G-module,
and H1(K, M)G = H0(G, H1(K, M)). For a cocycle u : K → M and g ∈ G,
the cocycle g · u is given by the commutative diagram

K
cg

//

g·u
��

K

u
��

M
g

// M

(1.17)

The sequence (1.16) may be continued by two H2-terms, but we will only
need the part shown above. It is not hard to give a direct proof, which does
not rely on knowledge of spectral sequences, for the proposition as stated.

Proof of Proposition 1.4. The first map above is given by precomposing a
cocycle u : Q → MK with the projection map π : G → Q. This clearly
maps cocycles to cocycles. If u ∈ Z1(Q, MK) is the coboundary of some
element v ∈ MK, then the cocycle u ◦ π ∈ Z1(G, M) is also the coboundary
of v. Hence the first map above is well-defined. Furthermore, if u ◦ π is
a coboundary of some element v ∈ M, then 0 = u(π(k)) = (1− k)v for
each k ∈ K, so that in fact v ∈ MK. Then the calculation u(q) = u(π(q̃)) =
(1− q̃)v = (1− q)v, where q̃ is any element of G mapping to q under π,
shows that u is the coboundary of v. This proves that the first map above is
injective, and hence proves exactness at H1(Q, MK).

The second map above is given by restricting a cocycle u : G → M to K.
Clearly, the restricted map is a cocycle K → M, and coboundaries map to
coboundaries. To see that the map takes values in H1(K, M)G, we compute
the action of g ∈ G using (1.17):

(g · u)(k) = g−1u(gkg−1)

= g−1((1− gkg−1)u(g) + gu(k)
)

= u(k) + (1− k)g−1u(g)

= u(k)− δ(g−1u(g))(k)
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This shows that the cocycles u and g · u, when restricted to K, differ by the
coboundary δ(g−1u(g)).

Clearly, if u is a cocycle Q → MK, the composition K → G → Q → M
is zero, so the image of the first map is contained in the kernel of second.
Conversely, assume that u : G → M is a cocycle which satisfies u(k) = 0 for
any k ∈ K. Such a cocycle takes values in MK, because

0 = u(gkg−1) = (1− gkg−1)u(g)

for any g ∈ G and k ∈ K. For q ∈ Q, choose some g ∈ G mapping
to q, and put ũ(q) = u(g). This is well-defined, as another choice g′ of
lift would differ from g by an element k ∈ K, and then u(g′) = u(gk) =
u(g) + gu(k) = u(g). If q1, q2 ∈ Q, choose lifts g1, g2 ∈ G. Then the product
g1g2 is a lift of q1q2, and we have

ũ(q1q2) = u(g1g2) = u(g1) + g1u(g2) = ũ(q1) + q1ũ(q2),

so ũ is a cocycle on Q. This proves exactness at H1(G, M). �

1.6 Kazhdan’s Property (T)

Two properties of topological groups, known as Property (T) and Prop-
erty (FH), respectively, are intimately related to the cohomology of groups
with coefficients in real or complex Hilbert spaces. A thorough exposition
of these properties and their relationship to group cohomology is far be-
yond the scope of this thesis. We instead refer the interested reader to the
very comprehensive book [11]. In this short section we will simply outline
the facts we need.

Definition 1.5. Let G be a topological group and π : G → U(V) be a
unitary representation on a Hilbert space V.

(1) Let ε > 0 and K ⊆ G be a compact subset. A unit vector v ∈ V is called
(ε, K)-invariant if

sup
g∈K
|π(g)v− v| < ε.

(2) The representation π is said to have almost invariant vectors if there is
an (ε, K)-invariant vector for all such pairs.

Definition 1.6. A topological group G has Kazhdan’s Property (T) if any
unitary representation of G which has almost invariant vectors has an
actual (non-trivial) invariant vector.

Proposition 1.7. For g ≥ 2, the discrete group Sp(2g, Z) has Property (T).

Proof. By Theorem 1.5.3 of [11], the locally compact group Sp(2g, R) has
Property (T), and by Theorem 1.7.1, Property (T) is inherited by lattices
in locally compact groups. Finally, Sp(2g, Z) is known to be a lattice in
Sp(2g, R). �



1.6 Kazhdan’s Property (T) 7

When G is a topological group and V is a unitary representation, the
space Z1(G, V) of cocycles is given the topology of uniform convergence
over compact subsets. In this topology, B1(G, V) may or may not be closed
in Z1(G, V); in any case, the quotient

H1(G, V) = Z1(G, V)/B1(G, V) (1.18)

is known as the reduced cohomology of G with coefficients in V.
For finitely generated groups, a number of conditions are known to be

equivalent to Property (T). The following is quoted from [11], Theorem 3.2.1.

Theorem 1.8. Let G be a locally compact group which is second countable and
compactly generated. The following conditions are equivalent:

(i) G has Property (T);

(ii) H1(G, π) = 0 for every irreducible unitary representation π of G;

(iii) H1(G, π) = 0 for every irreducible unitary representation π of G;

(iv) H1(G, π) = 0 for every unitary representation π of G.

In fact, one can add a fifth condition to the list.

Lemma 1.9. Let G be a group satisfying the conditions of Theorem 1.8. Then
conditions (i)–(iv) are also equivalent to

(v) H1(G, π) = 0 for every unitary representation π of G.

Proof. Clearly (v) implies (ii) and hence the other conditions. By the
Delorme-Guichardet Theorem (Theorem 2.12.4 in [11]), Property (T) and
Property (FH) are equivalent for the class of groups considered, so Prop-
erty (T) implies that H1(G, π) = 0 for any orthogonal representation π.
Any unitary representation is in particular an orthogonal representation,
so H1(G, π) = 0 for any unitary representation as well. �

For a (discrete) set X, we let `2(X) denote the set of square summable
functions X → C, that is, the set

`2(X) =
{

f : X → C | ∑
x∈X
| f (x)|2 < ∞

}
. (1.19)

We will sometimes write such a function as a formal linear combination
∑x∈X f (x)x or ∑x∈X fxx. If a group G acts on X, it is clear that `2(X) is a
unitary representation of G.





Chapter 2
Mapping Class Groups and

Multicurves

Let Σ = Σg,r denote a compact, oriented surface of genus g with r bound-
ary components, g, r ≥ 0. The mapping class group Γ = Γ(Σ) = Γg,r
of Σ is defined to be the quotient group Diff(Σ; ∂Σ)/ Diff0(Σ; ∂Σ), where
Diff(Σ; ∂Σ) is the group of orientation-preserving diffeomorphisms of Σ fix-
ing the boundary point-wise, and Diff0(Σ; ∂Σ) is the subgroup consisting of
diffeomorphisms isotopic (smoothly homotopic through diffeomorphisms
fixed on the boundary) to the identity. Equivalently, Γ is the group of
components π0 Diff(Σ; ∂Σ). We will often denote an orientation-preserving
diffeomorphism f : Σ→ Σ and its mapping class f ∈ Γ by the same symbol,
when there is little or no chance of confusion.

Remark 2.1. Since any homeomorphism of Σ is isotopic (through home-
omorphisms) to a diffeomorphism, and since any continuous isotopy be-
tween two diffeomorphisms may be smoothed, we could also have defined
the mapping class group in terms of the orientation-preserving homeomor-
phisms of Σ. Thus we may occasionally talk about the mapping class of
a homeomorphism or represent elements of Γ by homeomorphisms; this
does not cause any ambiguity.

Remark 2.2. Note that in case r ≥ 1, any diffeomorphism fixing the bound-
ary is automatically orientation-preserving.

The reader is probably aware that different, but related groups are also
known as »the« mapping class group. For a survey of the various possibili-
ties we refer to [18].

2.1 Dehn Twists

Let A ⊆ R2 denote the annulus given in the standard polar coordinates
(r, θ) by 1 ≤ r ≤ 2. Its boundary components are denoted ∂1 A and ∂2 A,
respectively. Fix a smooth, increasing diffeomorphism λ : [1, 2] → [0, 2π]
with vanishing derivatives to all orders at 1 and 2. The standard (left) twist

9
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of A is the diffeomorphism t given by (r, θ) 7→ (r, θ + λ(r)). Up to isotopy
fixed on the boundary of A, t does not depend on the particular choice of
λ.

Next let γ be an oriented simple closed curve on Σ, and let e : A→ Σ be
an embedding such that e|∂1 A is an orientation-preserving diffeomorphism
onto γ. The geometric Dehn twist associated to e is the diffeomorphism
te of Σ which on e(A) is given by e ◦ t ◦ e−1, and is the identity on the rest
of Σ. The isotopy class of te only depends on the isotopy class of γ (as an
unoriented curve), and this isotopy class is called the (left) Dehn twist on γ,
denoted τγ.

2.2 Generators and Relations

A fundamental result is that the mapping class group is generated by Dehn
twists. For g ≥ 2 and r ≤ 1, Humphries [26] has shown that the minimal
number of twists needed is 2g + 1, and this number is realizable. In fact,
Wajnryb [40] gives a complete presentation in terms of generators and
relations of the mapping class group Γg,r for r ≤ 1. Be aware, however,
that [40] contains some errors which are corrected in [12]. More recently,
Gervais [20] gave a completely general finite (but non-minimal) presen-
tation of Γg,r for g ≥ 1 and any number of boundary components. The
number of generators in [20] is rather large (of the order (g + r)2), but
this disadvantage is outweighed by the simplicity and symmetry of the
relations.

We will not need a complete presentation of the mapping class group,
but we will need the fact that it is generated by Dehn twists, and some
simple relations among such twists. For later use we record these well-
known results. Proofs can be found in [18] and [27].

Lemma 2.3. Dehn twists on disjoint curves commute.

Lemma 2.4. If α and β are simple closed curves intersecting transversely in a
single point, the associated Dehn twists are braided. That is, τατβτα = τβτατβ.

Lemma 2.5. If α is a simple closed curve on Σ and f ∈ Γ, we have f ◦ τα ◦ f−1 =
τf (α).

Lemma 2.6 (Chain relation). Let α, β and γ be simple closed curves in a two-
holed torus as in Figure 2.1, and let δ, ε denote curves parallel to the boundary
components of the torus. Then (τατβτγ)4 = τδτε.

Lemma 2.7 (Lantern relation). Consider the surface Σ0,4, ie. a sphere with four
holes. Let γi denote the i’th boundary component, 0 ≤ i ≤ 3, and γij a loop
enclosing the i’th and j’th boundary components, 1 ≤ i < j ≤ 3. Let τi = τγi and
τij = τγij . Then

τ0τ1τ2τ3 = τ12τ13τ23. (2.1)

For a picture of the lantern relation, see the left-hand part of Figure 2.4 on
page 21.
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α

β

γ

δ ε

(a) A two-holed torus.

δ ε

β

β

γγ

α

(b) A more schematic picture.

Figure 2.1: The chain relation.

Corollary 2.8. If g ≥ 2, the Dehn twist on a boundary component of Σg,r can be
written in terms of Dehn twists on non-separating curves.

Proof. The assumption on the genus implies that we may find an embedding
of Σ0,4 → Σg,r such that γ0 is mapped to the boundary component in
question and the remaining six curves involved in the lantern relation are
mapped to non-separating curves (think of Σg,r as being obtained by gluing
three boundary components of Σg−2,r+2 to γ1, γ2 and γ3, respectively).
Then the relation τ0 = τ12τ13τ23τ−1

3 τ−1
2 τ−1

1 also holds in Γg,r. �

Proposition 2.9. If g ≥ 2, Γg,r is generated by Dehn twists on non-separating
curves.

Proof. We already know that the mapping class group is generated by Dehn
twists. If g ≥ 3 and γ is a separating curve in Σ, cut Σ along γ and apply
Corollary 2.8 to the component which has genus ≥ 2, showing that τγ can
be written in terms of twists on non-separating curves in Σ.

Now assume g = 2 and that γ is a separating curve. The above argument
still holds if the two components of the cut surface Σγ has genera 0 and 2,
so assume that γ cuts Σ into two genus 1 surfaces, Σ1 and Σ2. In Σ1, we
may find a separating simple closed curve η such that cutting Σ1 along
η yields a genus 0 surface and a two-holed torus, whose other boundary
component is γ (η may, if necessary, be chosen to be null-homotopic). Then
in the surface Σ, the twist in η can be written in terms of non-separating
curves. But then the chain relation (Lemma 2.6) shows that τγ can be
written in terms of τη and twists in three non-separating curves in Σ1. �

Corollary 2.10. When g ≥ 3, the abelianization H1(Γ, Z) of the mapping class
group vanishes, and when g = 2 the group H1(Γ, Z) is cyclic of order dividing 10.

Proof. By the preceding proposition, Γg,r is generated by twists in non-
separating curves. By the classification of surfaces and Lemma 2.5, these
generators are all conjugate in Γ, so they represent the same element τ in
H1(Γ, Z). Hence this group is cyclic.

When g ≥ 3, one may embed the lantern relation in Σ in such a way that
all seven curves are non-separating (see Figure 2.4 on page 21). From this
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it follows that the generator represented by a non-separating twist satisfies
the relation 4τ = 3τ, so H1(Γ, Z) = 0. When g = 2, we may embed the
chain relation in Σ in such a way that all five curves are non-separating.
In this case, we get that the generator τ satisfies 12τ = 2τ, so τ has order
dividing 10. �

It can in fact be shown that H1(Γ2,r, Z) ∼= Z/10Z, but we will not need
this fact. We will, however, need the fact that H1(Γ, Q) = 0, so that also

Hom(Γ, C) = 0 (2.2)

whenever g ≥ 2.

2.3 Multicurves

A multicurve on Σ is the isotopy class of an unoriented, compact, closed
1-submanifold, such that no component is homotopically trivial. We will
often think of a multicurve as a collection of circles disjointly embedded
in Σ. In this definition, parallel copies of the same isotopy class of a simple
closed curve are allowed. Depending on the context, one may or may not
allow components parallel to a boundary component of Σ. We take the
liberal viewpoint of allowing boundary-parallel components, and denote
the set of all multicurves by S = S(Σ). The subset without boundary
parallel components is denoted S ′.

2.3.1 Dehn-Thurston Coordinates

Surfaces of negative Euler characteristic admit decompositions into pairs
of pants. Using this fact, Dehn found a way to parametrize the set of all
multicurves, which was later rediscovered and generalized (to encompass
the notion of measured foliations) by Thurston. A detailed exposition can be
found in [32]; presently we will give an informal presentation of the ideas
involved.

Let B = {β1, β2, . . . , βr} denote the set of boundary components of Σ.
A pants decomposition of Σ is a choice of 3g + r− 3 simple, closed, disjoint
curves P = {π1, . . . , π3g+r−3} such that the surface ΣP obtained by cutting
along each πj is a disjoint union of −χ(Σ) = 2g + r− 2 pairs of pants. A
pair of pants is simply a three-holed sphere.

In the language of [32], a basis for the set of multicurves consists of
a choice of pants decomposition along with a choice of characteristic
maps identifying each pair of pants with a standard copy, and also an
identification of a closed regular neighbourhood of each pants curve with a
standard annulus. In order to simplify terminology and notation, we will
implicitly assume that these additional choices have been made whenever
we use a pants decomposition to give coordinates on S .

A pants decomposition gives rise to a map

m = mP : S →NP . (2.3)

The coordinates of this maps will be denoted by mγ : S → N for γ ∈ P .
For a multicurve κ, mγ(κ) is the geometric intersection number between γ
and κ.
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Remark 2.11. It is convenient to adopt the convention that mγ(κ) = 0 for
every boundary curve γ ∈ B; equivalently, we sometimes think of m as a
map into NP∪B with all B-coordinates identically 0.

There is also a map

t = tP : M→ ZP∪B , (2.4)

which is somewhat harder to describe, since it depends on the above-
mentioned additional choices. Essentially, t measures how much a given
multicurve »twists« with respect to a set of six model arcs connecting
the boundary components of the standard pair of pants. The coordinates
of (2.4) will be denoted by tγ.

Theorem 2.12 (Dehn). The map

(m, t) : S →NP ×ZP∪B (2.5)

is a bijection onto the subset DP ⊆NP ×ZP∪B satisfying:

(a) For each γ ∈ P ∪ B, if mγ = 0, then tγ ≥ 0.

(b) If γ1, γ2, γ3 are the three boundary curves of a pair of pants, then mγ1 +
mγ2 + mγ3 is even.

The subset D′P ⊆ DP corresponding to elements of S ′ are those parameters which
additionally satisfy

(c) For each γ ∈ B, tγ = 0.

Clearly, if a multicurve κ contains a parallel copy of a curve γ, the inter-
section number mγ(κ) is 0. In this case, the non-negative number tγ(κ) is
used to record the number of copies of γ occuring in κ.

2.3.2 Change of Coordinates

In order to define intrinsic properties of multicurves in terms of the Dehn-
Thurston coordinates, we will need to know to what extent these properties
depend on the chosen basis.

For a fixed pants decomposition, different choices of model arcs give
rise to twist coordinates differing by a linear map for each pants curve.
More precisely, if tγ and t′γ are the twist coordinates associated to the pants
curve γ and two different choices of model arcs in a pair of pants bounded
by γ, then there is a constant dγ such that

tγ = t′γ + dγmγ (2.6)

as maps S → Z.
As proved by Hatcher and Thurston [24], any two pants decompositions

of Σ differ by a finite sequence of so-called elementary moves.

Theorem 2.13. If P and P ′ are the pants decompositions underlying two bases
differing by an elementary move, the coordinate transformation

(mP
′
, tP

′
) ◦ (mP , tP )−1 : DP → S → DP ′ (2.7)
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is given by piecewise integral linear expressions. Consequently, for any two
given bases, the corresponding coordinate transformation is also given by such
expressions.

Proof. The first part of this theorem follows from the explicit piecewise
linear expressions given in [32]. Equation (2.6) shows that the coordinate
transformation from one basis to another with the same underlying pants
decomposition is given by piecewise integral linear maps. �

2.4 Actions on Geometric Objects

The action of the mapping class group on the first homology group
H1(Σ, Z) and on the set of multicurves will play a vital role in this thesis.
It is therefore convenient to give a description of the action of a Dehn twist
on these objects.

2.4.1 Homology

Lemma 2.14. Let γ be a simple closed curve on Σ, and let m be an element of
H1(Σ, Z). Then

τγm = m + ω(m, [γ̂])[γ̂], (2.8)

where γ̂ denotes any of the oriented versions of γ, [γ̂] the homology class it
represents in H1(Σ, Z) and ω(•, •) is the intersection pairing.

It is clear that the formula (2.8) is independent of the choice of γ̂.

Corollary 2.15. If τγ acts non-trivially on m, the orbit {τn
γ m | n ∈ Z} is

infinite.

For convenience, we recall this well-known fact.

Lemma 2.16. Let m ∈ H1(Σ, Z) be an element which is not divisible by any
positive integer. Then m is part of some symplectic basis for H1(Σ, Z).

Proof. Choose 2g oriented, simple closed curves αj, β j representing a sym-
plectic basis for H1(Σ), such that αj and β j intersect transversely in a single
point, j = 1, . . . , g. Let aj, bj be the coordinates of m with respect to this
basis. That m is indivisible precisely means that the greatest common
divisor of these 2g numbers is 1. Hence, there exists another 2g-tuple a′j, b′j
of integers such that

a1b′1 − b1a′1 + · · ·+ agb′g − bga′g = 1.

Let m′ denote the homology element whose coordinates are the a′j, b′j. Then
ω(m, m′) = 1, so W = spanZ(m, m′) is a symplectic subspace of H1(Σ, Z),
and the restriction of the intersection pairing ω(•, •) to the symplectic
complement

W⊥ = {x ∈ H1(Σ, Z) | ω(m, x) = ω(m′, x) = 0}

is non-degenerate. A symplectic basis for W⊥ together with (m, m′) consti-
tute a symplectic basis for the whole space. �



2.4 Actions on Geometric Objects 15

Corollary 2.17. Any element in H1(Σ, Z) can be represented by a cycle consist-
ing of parallel copies of a single simple, closed, oriented curve.

Proof. The element 0 is represented by the empty sum. If m is non-zero,
let d be the largest integer for which there exists md such that dmd = m.
Then md is indivisible, and hence part of some symplectic basis. Since
Sp(H1(Σ, Z)) acts transitively on the set of symplectic bases, and since Γ
surjects onto this group, there is an element ϕ ∈ Γ such that ϕ[α1] = md.
But then the oriented, simple closed curve ϕ(α1) represents md, and m is
represented by d parallel copies of this curve. �

Lemma 2.18. Let (α1, β1, . . . , αg, βg) be simple, closed, oriented curves represent-
ing a symplectic basis for H1(Σ). Given any any non-zero homology element m,
there exists a curve γ such that at least one of the sequences ‖τn

γ m‖, ‖τ−n
γ m‖,

n = 0, 1, 2, . . ., is strictly increasing.

Here and elsewhere, the norm ‖m‖ of a homology element m with respect to
a given symplectic basis is the sum of the absolute values of the coordinates
of m with respect to the basis, ie.

‖m‖ = |a1|+ |b1|+ · · ·+ |ag|+ |bg|. (2.9)

for m = a1[α1] + b1[β1] + · · ·+ ag[αg] + bg[βg].

Proof. At least one of the coordinates of m is non-zero. Assume without
loss of generality that a1 6= 0 and put γ = β1. Then, for any n ∈ Z, the
coordinates of τn

γ m are

(a1, b1 + na1, a2, b2, . . . , ag, bg)

by (2.8) above. Then clearly if a1 and b1 have the same sign, the sequence
‖τn

γ m‖ is increasing, while if a1 and b1 have opposite signs the sequence
‖τ−n

γ m‖ is increasing. In the case where b1 = 0 both sequences are increas-
ing. �

Note that we may in fact in all cases choose the Dehn twist from a finite
collection, namely, the twists in the curves representing the symplectic
basis.

2.4.2 Multicurves

A formula similar to (2.8) holds for the action of a Dehn twist on a multi-
curve, except in this case, only for twists in curves which are part of the
chosen pants decomposition.

Proposition 2.19. Let P be a pants decomposition of Σ, κ ∈ S a multicurve and
γ ∈ P a pants curve. Then the Dehn-Thurston coordinates (mP , tP )(τγκ) are
given by

tPγ (τγκ) = tPγ (κ) + mPγ (κ), (2.10)

with all other coordinates unchanged.
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Since the action of a twist in a boundary component on a multicurve is
trivial, the above formula also trivially holds for γ ∈ B, cf. Remark 2.11.

This proposition allows us to prove a number of important facts.

Proposition 2.20. Let γ be a simple closed curve and κ a multicurve. Then the
following are equivalent:

(1) The twist τγ acts trivially on κ.

(2) The twist τγ acts trivially on each component of κ.

(3) The geometric intersection number between γ and κ is zero.

(4) One may realize γ and κ disjointly.

Conversely, if τγ acts non-trivially on κ, the orbit {τn
γ κ | n ∈ Z} is infinite.

Proof. The equivalence of (3) and (4) follows from the definition of geomet-
ric intersection number. If γ is not parallel to a boundary component, it
is part of some pants decomposition P . Then the equivalence between (1)
and (3) follows from (2.10). Clearly (2) implies (1). Since the geometric
intersection number between γ and κ is the sum of the intersection numbers
between γ and the components of κ, we see that (3) implies (2).

If γ is parallel to a boundary component, (1)–(4) are trivially satisfied.
Finally, the last assertion follows from (2.10). �

Remark 2.21. Let S∂ ⊆ S denote the set of multicurves consisting entirely
of components parallel to boundary components of Σ. Then any multicurve
κ ∈ S admits a unique decomposition κ = κ′ ∪ κ∂ with κ′ ∈ S ′ and κ∂ ∈ S∂

(the empty multicurve is the sole element of S ′ ∩ S∂). The mapping class
group orbit of κ is infinite if and only if κ′ is not the empty multicurve;
otherwise the orbit is trivial.

To any pants decomposition P , we associate an integer-valued norm on
the set S by putting

‖κ‖P = ∑
γ∈P

mγ(κ) + ∑
γ∈P∪B

|tγ(κ)|. (2.11)

It is clear that the cardinalities of

{κ ∈ S | ‖κ‖P ≤ N} (2.12)
{κ ∈ S | ‖κ‖P = N} (2.13)

are bounded above by polynomials in N of degrees 2|P|+ |B| = 6g + 3r− 6
and 6g + 3r− 7, respectively. The multicurve analogue of Lemma 2.18 is:

Theorem 2.22. Given any pants decomposition P , there exists a finite set T of
Dehn twists with the following property: For any multicurve κ ∈ S with κ′ 6= ∅,
there exists an element τ ∈ T and a sign ε = ±1 such that the sequence

‖τεnκ‖P , n = 0, 1, 2, . . . (2.14)

is strictly increasing.
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Proof. Let T1 denote the set of twists in the pants curves P . Then if κ is
a multicurve for which at least one coordinate mγ(κ) is non-zero, let ε be
the sign of tγ(κ) (if tγ(κ) = 0, ε may be chosen arbitrarily). Then from the
formula (2.10) and the definition (2.11) we have

‖τεn
γ κ‖P = ‖κ‖P + nmγ(κ). (2.15)

Hence the set T1 suffices for all multicurves except those consisting entirely
of components parallel to the pants curves (and the boundary components).

For each pants curve γ, there are only two possible configurations of
the pants decomposition near γ. Either (a) the two sides of γ belong to
the same pair of pants, or (b) γ bounds two different pairs of pants; see
Figure 2.2. In 2.2(a), γ′ denotes the pants curve separating the torus from
the rest of the surface, whereas in 2.2(b) the neighbouring pants curves of
γ are denoted γj (some of these may actually be the same curve in Σ; this
is not important for us). For each pants curve γ, consider the twist in the
curve η shown in the relevant part of the figure, and let T2 be the set of
these twists. We put T = T1 ∪ T2.

γ η
γ′

(a) A one-holed torus.

γ

η

γ0

γ1 γ2

γ3

(b) A four-holed sphere.

Figure 2.2: Two local configurations of a pants decomposition.

Now, let κ be a multicurve with at least one component which is parallel
to some pants curve γ. Let η denote the curve corresponding to γ. It is
then clear that all coordinates of κ are invariant under τη except tγ and
mγ. Let c = tγ(κ) > 0 denote the number of parallel copies of γ occuring
in κ. We will derive formulas for mγ(τn

η κ) and tγ(τn
η κ). Let P ′ denote the

pants decomposition obtained by exchanging γ with η. Fortunately, this
precisely corresponds to one of the elementary moves, and the coordinate
transformations are easily computed using the formulas given in [32].

First consider case (a). In this case,

mP
′

η (κ) = c

tP
′

η (κ) = 0

so

tP
′

η (τn
η κ) = nc

by (2.10). Transforming back to the P-coordinates, we get

mPγ (τn
η κ) = |n|c (2.16)

tPγ (τn
η κ) = − sgn(n)c (2.17)
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with sgn(0) = −1. From (2.16) and (2.17), it follows that

‖τn
η κ‖P = ‖κ‖P − |tPγ (κ)|+ mPγ (τn

η κ) + |tPγ (τn
η κ)|

= ‖κ‖P + |n|c

so, in fact, both sequences ‖τ±n
η κ‖, n ≥ 0, are increasing.

The second case is treated similarly. We now have

mP
′

η (κ) = 2c

tP
′

η (κ) = −c.

From this we obtain tP
′

η (τn
η κ) = (2n− 1)c, and transforming back yields

mPγ (τn
η κ) = 4|n|c

tPγ (τn
η κ) = −4nc + sgn(n) · (2n− 1)c

again with sgn(0) = −1. From this we get for n ≥ 0 that

‖τn
η κ‖P = ‖κ‖P + 6nc. �

2.5 The Torelli Group

The mapping class group action on H1(Σ, Z) preserves the intersection
pairing on homology, so there is a homomorphism Γ→ Sp(H1(Σ, Z)). It is
well-known that this is a surjection, so we have a short exact sequence

1 // T // Γ // Sp(H1(Σ, Z)) // 1. (2.18)

The kernel T is known as the Torelli group of Σ. For later use, we record a
few facts about T .

It follows immediately from (2.8) that if γ is a separating curve, τγ ∈ T .
From the same equation, if γ and η are homologous curves, τγτ−1

η ∈ T .
This applies in particular to the situation where γ, η is a pair of non-
separating curves such that γ ∪ η separates the surface. If one of the
connected components of the cut surface Σγ∪η is a torus with two holes, we
call (γ, η) a genus 1 bounding pair, and the associated map τγτ−1

η a genus 1
bounding pair map.

Theorem 2.23 (Johnson [28]). When g ≥ 3, r ≤ 1, the Torelli group of Σg,r is
generated by genus 1 bounding pair maps.

Corollary 2.17 shows that an irreducible element of H1(Σ, Z) can be
represented by a single, oriented, simple closed curve. It is an interesting
and non-trivial fact that the Torelli group acts transitively on the set of
possible choices.

Lemma 2.24. Assume γ and δ are oriented, non-separating, simple closed curves
on Σ representing the same element in H1(Σ, Z). Then there is an element t ∈ T
such that t(γ) = δ.

This is a special case of Lemma 6.2 of [33].
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2.6 Unitary Representations

The purpose of this section is to prove a result which applies to any unitary
representation of the mapping class group, provided the genus of the
surface is at least 3. Throughout this section, let V be a real or complex
Hilbert space endowed with an action of Γ preserving the inner product.
For a simple closed curve γ, we let Vγ = Vτγ denote the set of vectors
fixed under the action of the twist τγ, and we let pγ : V → Vγ denote the
orthogonal projection onto the (obviously closed) subspace Vγ. The main
theorem of this section is

Theorem 2.25. Assume the genus of Σ is at least 3. For any cocycle u : Γ→ V
and any simple closed curve α we have pαu(τα) = 0.

The proof of this theorem only requires the simple relations in the mapping
class group mentioned in Section 2.2.

Throughout the rest of the section, let u denote a fixed cocycle Γ→ V.
The motivation for the above theorem comes from the following observation:
If u(ϕ) = (1− ϕ)v for some vector v ∈ V, it is clear that u(ϕ) is killed by
the projection onto the subspace Vϕ fixed by ϕ. Hence, vanishing of the
entity pαu(τα) for each simple closed curve α is a necessary condition for
the vanishing of the cohomology group H1(Γ, V).

If α and γ are disjoint simple closed curves, the unitary actions τα and
τγ on V commute. Hence the associated projections pα and pγ commute
with each other and with τα, τγ. If ϕτα ϕ−1 = τβ, then ϕpα ϕ−1 = pβ for
ϕ ∈ Γ.

We will use the shorthand notation sα for pαu(τα).

Lemma 2.26. The entity s is natural in the sense that sϕ(α) = ϕsα for ϕ ∈ Γ and
any simple closed curve α.

Proof. Since τϕ(α) = ϕτα ϕ−1, it is easy to see that pϕ(α) = ϕpα ϕ−1. Hence

sϕ(α) = pϕ(α)u(τϕ(α))

= ϕpα ϕ−1u(ϕτα ϕ−1)

= ϕpα ϕ−1((1− ϕτα ϕ−1)u(ϕ) + ϕu(τα)
)

= ϕpαu(τα)
= ϕsα

as claimed. �

Lemma 2.27. Let α be a simple closed curve, and let ϕ ∈ Γ be any element
commuting with τα. Then ϕsα = sα.

Proof. We have ϕτα = τα ϕ. Applying u and the cocycle condition we obtain
the equation u(ϕ) + ϕu(τα) = u(τα) + ταu(ϕ). Applying pα on both sides,
the terms involving u(ϕ) cancel (since obviously pατα = pα), so we obtain
pα ϕu(τα) = sα. The claim then follows from the fact that pα and ϕ also
commute. �
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Assume α and β are two non-separating simple closed curves such that
α ∪ β is non-separating, and consider the number cαβ = 〈sα, sβ〉.

Lemma 2.28. The number cαβ only depends on the cocycle u, not on the pair
(α, β) used to compute it.

Proof. Let (α′, β′) be any other pair such that α′ ∪ β′ does not separate Σ.
Then, by the classification of surfaces, there is a diffeomorphism ϕ ∈ Γ such
that ϕ(α) = α′ and ϕ(β) = β′. By the naturality from Lemma 2.26 we have

〈sα′ , sβ′〉 = 〈sϕ(α), sϕ(β)〉 = 〈ϕsα, ϕsβ〉 = 〈sα, sβ〉

since ϕ acts unitarily. �

The vector sα = pαu(τα) ∈ V obviously only depends on the cohomo-
logy class [u] ∈ H1(Γ, V) of u. Hence, we have essentially proved that there
exists a well-defined map c : H1(Γ, V) → C, whose value on [u] is given
by picking any two jointly non-separating simple closed curves α, β and
computing the number c([u]) = 〈pαu(τα), pβu(τβ)〉.

Lemma 2.29. When g ≥ 3, the map c is identically 0.

Proof. In any surface of genus at least 2, one may embed the two-holed
torus relation (Lemma 2.6) in such a way that δ and ε are non-separating
(the curves α, β, γ occuring in the two-holed torus relation are always non-
separating). If the genus of the surface is at least 3, the complement of the
two-holed torus is a surface of genus at least 1. Hence, in that subsurface
we may find a sixth non-separating curve η. Observe that η makes a
non-separating pair with each of the other five curves. See Figure 2.3.

α
β

γ

δ

ε η

Figure 2.3: A two-holed torus embedded in a surface of genus
at least 3.

Applying u and the cocycle condition repeatedly to the two-holed torus
relation yields the equation

u(τα) + ταu(τβ) + · · · = u(τδ) + τδu(τε). (2.19)

The dots on the left-hand side represent 10 terms involving various actions
of τα, τβ, τγ on the values of u on these twists. Since each of the five curves
is disjoint from η, we have τ±1

α sη = sη , and similarly for β, γ, δ, ε. Now we
take the inner product of (2.19) with sη to obtain

4〈u(τα), sη〉+ 4〈u(τβ), sη〉+ 4〈u(τγ), sη〉 = 〈u(τδ), sη〉+ 〈u(τε), sη〉 (2.20)
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using the fact that 〈ϕ•, •〉 = 〈•, ϕ−1•〉. But since ταsη = sη , we also have
pαsη = sη , and since the projection pα is self-adjoint, the first term in (2.20)
is equal to 4〈sα, sη〉 = 4c. Similar remarks apply to the other terms, so (2.20)
reduces to 12c = 2c, and c = 0. �

Now we are ready to prove the main result of this section.

Proof of Theorem 2.25. We first treat the case where α is non-separating. We
cannot simply put α = β in the computation of c, since (α, α) is not a non-
separating pair. But when the surface has genus at least 3, we may embed
the lantern relation (Lemma 2.7) in such a way that all seven curves are
non-separating. Furthermore, it can be done in such a way that γ0 makes a
non-separating pair with each of the other six curves. On Figure 2.4 this
is shown for a genus 3 surface; note that the shown surface has been cut
along γ0. The right-hand part of the cut surface (a sphere with four holes)
could be replaced by a surface with any genus and (at least) four boundary
components. Now the cocycle condition applied to the lantern relation
gives

u(τ0) + τ0u(τ1τ2τ3) = u(τ12τ13τ23). (2.21)

Finally, taking the inner product with sγ0 on both sides and applying
computations similar to those above, we get 〈sγ0 , sγ0〉 = 〈u(τ0), sγ0〉 = 0.
Hence sγ0 = 0, and by naturality (Lemma 2.26) this holds for any non-
separating curve.

γ0γ0

γ1

γ2

γ3

γ12

γ23

γ13

Figure 2.4: An embedding of the lantern relation such that
all seven curves are non-separating. The γ0 on the left is
identified with that on the right.

If α is separating, we use the fact that one of the sides of α has genus
at least 2 and Corollary 2.8 to write τα as a product of twists in six non-
separating curves. For some appropriate choice of signs ε j, we thus have

τα = ∏6
j=1 τ

ε j
j , where the τj are the twists in the appropriate non-separating

curves disjoint from α. Now apply the cocycle condition and take the inner
product with sα to obtain

〈sα, sα〉 = 〈u(τα), sα〉 = 〈u(τε1
1 ), sα〉+ · · ·+ 〈τε1

1 τε2
2 τε3

3 τε4
4 τε5

5 u(τε6
6 ), sα〉.
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By Lemma 2.27, τ±1
j sα = sα, so using the unitarity of the action this reduces

to

〈sα, sα〉 =
6

∑
j=1
〈u(τ

ε j
j ), sα〉.

Finally, we conclude that each term on the right-hand side vanishes by
writing sα as pjsα, moving the self-adjoint projection pj to u(τ

ε j
j ) and using

that sβ = 0 for non-separating curves β. �

Corollary 2.30. Assume Γ→ U(V) is a unitary representation of the mapping
class group which restricts to the trivial representation of the Torelli group. Then
any cocycle Γ→ V restricts to the zero map on T .

Proof. Let u : Γ → V be a cocycle. It suffices to prove the claim for a set
of generators of T . To this end, we use the fact that T is generated by
genus 1 bounding pair maps. Let t = τγτ−1

δ be such a generator. Obviously,
t = τγtτ−1

γ , so

u(t) = u(τγtτ−1
γ ) = (1− t)u(τγ) + τγu(t) = τγu(t)

since t acts trivially on V. From this, we infer that pγu(t) = u(t). On the
other hand, τγ = τδ as operators on V, so pγ = pδ. Hence,

pγu(t) = pγ(u(τγ)− τγτ−1
δ u(τδ)) = pγu(τγ)− tpδu(τδ) = 0

by Theorem 2.25. �

We note that this immediately proves

Theorem 2.31. Assume Γ → U(V) is a unitary representation of the mapping
class group which restricts to the trivial representation of the Torelli group. Then
H1(Γ, V) = 0.

Proof. Combine the previous corollary with the exact sequence (1.16) and
the fact that Sp(2g, Z) has Property (T) (Propositions 1.4 and 1.7). �



Chapter 3
Quantization

In this chapter we will introduce two notions of »quantization«, deforma-
tion quantization, also known as star products, and geometric quantization.
Under some general assumptions, one can obtain a star product on so-
called pre-quantizable compact Kähler manifolds using Berezin-Toeplitz
operators and geometric quantization.

3.1 Poisson Algebras and Manifolds

Let A be an algebra over R or C. A Poisson bracket on A is a linear
map {•, •} : A � A → A making A into a Lie algebra, with the further
requirement that the bracket is a derivation in the first variable (thus, by
antisymmetry, in both). This means that for x, y, z ∈ A we have {xy, z} =
x{y, z}+ {x, z}y along with the usual Lie algebra axioms. A Poisson algebra
is, of course, an algebra equipped with a Poisson bracket. A simple example
of a Poisson algebra is the usual way of turning an associative algebra into
a Lie algebra; one easily checks that the commutator [x, y] = xy− yx in
fact is a derivation in each variable. However, since the algebras we will
consider are commutative, this does not yield an interesting structure.

A special case is when A is the algebra C∞(M) of smooth functions on
a manifold M. A Poisson manifold is a smooth manifold M equipped with a
Poisson bracket on C∞(M). The most common source of Poisson manifolds
are symplectic manifolds. Recall that a symplectic form on a manifold
M is a closed, non-degenerate 2-form ω ∈ Ω2(M). Here non-degenerate
means that at each point p ∈ M, ωp is non-degenerate, and hence a
symplectic form ω defines an isomorphism ω̃ : TM → T∗M between the
tangent and cotangent bundles, given by X 7→ iXω. A manifold equipped
with a symplectic form is called a symplectic manifold. It is easy to see
that a manifold admitting a symplectic form is even-dimensional. Letting
dim M = 2m, one may show that ωm = ω∧m is an orientation form on M,
so symplectic manifolds are orientable.

For any smooth function f ∈ C∞(M), the differential d f is a smooth
section of the cotangent bundle, so the composition with the inverse of the
isomorphism ω̃ gives a smooth section of the tangent bundle, ie. a vector

23
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field. This vector field is denoted X f , and is called the Hamiltonian of f .
It is characterized by iX f ω = d f , or equivalently ω(X f , Y) = d f (Y) = Y f
for any smooth vector field Y on M. Conversely, if for a vector field X the
1-form iXω is exact, we call X a Hamiltonian vector field. If iXω is closed,
we call X a symplectic vector field. A symplectic vector field is characterized
by preserving the symplectic form; we have LXω = diXω since ω is closed,
so X is symplectic if and only if the Lie derivative of ω along X vanishes.
By the Poincaré lemma, a symplectic vector field is locally the Hamiltonian
vector field for some smooth function, so symplectic vector fields are also
called locally Hamiltonian.

We note that for symplectic vector fields X, Y, we have

i[X,Y]ω = LXiYω− iYLXω = iXdiYω + diXiYω = d(ω(Y, X)) (3.1)

showing that the Lie bracket of symplectic vector fields is Hamiltonian.
Given two smooth functions f , g, the pairing ω(X f , Xg) is a smooth

function on M.

Lemma 3.1. The assignment { f , g} = ω(X f , Xg) determines a Poisson structure
on C∞(M).

Proof. Clearly {•, •} is bilinear and anti-symmetric. To see that it is a
derivation, we use the interpretation of the Hamiltonian as a directional
derivative:

{ f g, h} = ω(X f g, Xh) = Xh( f g) = Xh( f ) · g + f · Xh(g)

= ω(X f , Xh) · g + f ·ω(Xg, Xh) = { f , h}g + f {g, h}.

Before proving that is satisifes the Jacobi identity, we first observe that for
two functions f , g we have

i[X f ,Xg ]ω = d(ω(Xg, X f )) = d{g, f }

by (3.1), since Hamiltonian vector fields are in particular symplectic. This
shows that the vector field [X f , Xg] is the Hamiltonian vector field asso-
ciated to {g, f }. Next, let Xj = X f j

be the Hamiltonians of the smooth
function f j, j = 1, 2, 3. Then

X1ω(X2, X3) = X1{ f2, f3} = ω(X{ f2, f3}, X1)

= {{ f2, f3}, f1} = ω([X3, X2], X1) = ω(X1, [X2, X3]). (3.2)

Since ω is closed, we have

0 = dω(X1, X2, X3)
= X1ω(X2, X3)− X2ω(X1, X3) + X3ω(X1, X2)
−ω([X1, X2], X3) + ω([X1, X3], X2)−ω([X2, X3], X1). (3.3)

Combining (3.2) and (3.3) (and cyclic permutations of the former) we obtain

{{ f2, f3}, f1}+ {{ f3, f1}, f2}+ {{ f1, f2}, f3} = 0,

which is exactly the Jacobi identity. �
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Note that the proof in particular shows that, up to a sign, the map f 7→ X f
is a homomorphism of Lie algebras C∞(M)→ X (M). The kernel consists
of the locally constant functions on M.

We used the closedness of the symplectic form to deduce the Jacobi
identity. One may in fact show that for any non-degenerate 2-form α, the
pairing ( f , g) = α(α̃−1d f , α̃−1dg) is a Lie bracket on C∞(M) if and only if
α is closed.

Remark 3.2. A Poisson structure on the algebra C∞(M, R) may be uniquely
extended to a Poisson structure on the algebra of complex-valued functions
C∞(M, C) ∼= C∞(M, R) �R C by complex linearity. Hence the above con-
struction of a Poisson structure via a symplectic structure also applies to
C∞(M, C). We shall primarily be interested in the complex valued func-
tions, but our Poisson brackets are usually a priori only defined on the
real functions. From this remark on, it is understood that such a Poisson
bracket is extended to the complex valued functions.

A Poisson bracket defined on C∞(M, C) need not in general restrict to a
Poisson bracket on C∞(M, R), since nothing in the axioms prevents the
bracket of two real-valued functions from taking non-real values.

3.2 Deformation Quantization

Given a commutative complex Poisson algebra A, one may wish to »deform«
the product in A to be »less commutative«. This is formalized by the notion
of a deformation quantization. We let Ch = C[[h]] denote the ring of
formal power series with complex coefficients, and similarly Ah = A[[h]]
the algebra of formal power series with coefficients in A. Clearly Ah is a
Ch-module and we think of Ah as a filtered module using the h-filtration
Ah ⊇ hAh ⊇ · · · . By extending the Poisson bracket on A Ch-linearly it also
becomes a Poisson algebra.

Definition 3.3. A deformation quantization of (or star product on) A is an
associative product ∗ : Ah �Ch Ah → Ah such that

a ∗ b = ab (mod h) and (3.4a)

a ∗ b− b ∗ a = {a, b}h (mod h2) (3.4b)

for all a, b ∈ A ⊆ Ah.

The condition (3.4a) states that the zeroth order term of the star product is
the usual product in A, whereas (3.4b) states that, to first order, the failure
of ∗ to be commutative is measured by the Poisson bracket. Often, for
normalization reasons, the right-hand side of (3.4b) is replaced by some
complex constant times {a, b}h such as i or ± 1

2 . If the algebra A has a unit,
this is usually also required to be a two-sided unit for ∗; whether or not it
is required, it will be the case in all of the examples we shall encounter.

A star product is uniquely determined by its coefficients, which are the
bilinear maps cr : A× A→ A defined by

a ∗ b =
∞

∑
r=0

cr(a, b)hr.
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In terms of the coefficients, the axioms (3.4) read

c0(a, b) = ab (3.5a)
c1(a, b)− c1(b, a) = {a, b} (3.5b)

along with a lot of relations arising from the associativity of ∗.

3.2.1 Equivalence of Star Products

Intuitively, an equivalence between two star products ∗, ∗′ on A should
be a vector space automorphism of Ah intertwining the two star products,
ie. a map (Ah, ∗) → (Ah, ∗′) which is an isomorphism of Ch-algebras.
Pursuing the idea that a star product is a deformation of the ordinary
product in A, it is natural to demand that this automorphism is the identity
on A. Using that for any two complex vector spaces V, W, there is an
isomorphism HomC(V, W)[[h]] ∼= HomCh(Vh, Wh) of Ch-modules, which is
even an isomorphism of Ch-algebras if V = W, we arrive at the following
definition.

Definition 3.4. Two star products ∗, ∗′ are said to be equivalent if there is a
sequence Tj ∈ HomC(A, A) of linear maps, j ∈N, such that T0 = idA and
such that the map T = ∑ Tjhj : Ah → Ah satisfies

T(x ∗ y) = T(x) ∗′ T(y) (3.6)

for all x, y ∈ Ah.

3.3 Star Products on Symplectic Manifolds

In the special case of a symplectic manifold (M, ω), we may impose further
conditions on star products. Throughout this section, A denotes the algebra
C∞(M) = C∞(M, C) equipped with the Poisson structure determined by
ω, and Ah = C∞(M)[[h]]. With a slight abuse of terminology, we will also
refer to a star product on A as a star product on M.

3.3.1 Differential Operators

Recall that on a manifold M, a differential operator D is a linear map from
the space of smooth functions to itself, such that in a chart (U, x), D may be
written as an element in C∞(U, R)[ ∂

∂x1
, . . . , ∂

∂xn
]. More precisely, the action

of D on a smooth function f can be written

D f|U = ∑
J

DJ
∂|J|

∂x J f

where the sum is over some finite set of multiindices J = (j1, . . . , jn), DJ are
smooth functions on U, |J| = j1 + · · ·+ jn and ∂|J|

∂x J = ∂j1

∂x
j1
1

· · · ∂jn

∂xjn
n

. The usual

notion of order of a differential operator on Rn as the maximal number of
partial derivatives occuring does not carry over directly to the manifold
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setting because a local chart is involved. Instead, we define the local order
of D at p ∈ M to be the minimal k ∈ N such that for all f ∈ C∞(M)
with f (p) = 0, we have D( f k+1)(p) = 0. The order of D is then defined
to be the maximum of the local orders over all p ∈ M. For non-compact
manifolds, this may be infinite. A differential operator of order 0 is simply
multiplication by a smooth function, and a differential operator of (constant)
order 1 is a vector field on M. A theorem of Peetre states that a differential
operator is the same as a local operator, ie. an operator such that for every
point p ∈ M, (D f )(p) only depends on the germ of f at p. The space of all
differential operators on M is denoted D(M).

3.3.2 Differential Star Products

Returning to deformation quantizations, a star product is said to be differ-
ential if the coefficients cr : C∞(M)× C∞(M) → C∞(M) are bidifferential
operators, meaning that for fixed f ∈ C∞(M), c( f , •) and c(•, f ) are dif-
ferential operators. In particular, a differential star product is computable
locally, which need not be the case for a general star product.

An equivalence T = id + ∑j≥1 Tjhj of star products is said to be a
differential equivalence if the Tj are differential operators. Fortunately, for
differential star products, there is no difference between being equivalent
and differentially equivalent:

Theorem 3.5. Assume that T is an equivalence between the differential star
products ∗ and ∗′. Then T is a differential equivalence.

This is Theorem 2.22 in [23]. In fact Gutt and Rawnsley gives a complete
classification of the equivalence classes of differential star products on a
symplectic manifold: It turns out that the equivalence classes of differential
star products are in bijective correspondence with the elements of the affine
vector space −[ω] · h−1 + H2(M, R)[[h]], so in particular if H2(M, R) = 0,
there is a unique differential star product up to equivalence. However, for
compact symplectic manifolds, H2(M, R) never vanishes (the symplectic
form represents a non-zero class), so informally speaking there are »many«
equivalence classes of differential star products.

We will need a few more results and definitions from [23]. First, the
associativity of a star product allows us to introduce the ∗-commutator,
[a, b]∗ = a ∗ b− b ∗ a for a, b ∈ Ah, making Ah into a Lie algebra. By (3.4b),
this Lie algebra structure is to first order h times the one obtained by
extending the Poisson bracket on A Ch-linearly to Ah. The same equation
shows that [a, b]∗ is a multiple of h, so that taking iterated ∗-brackets leads to
formal series with higher and higher initial terms. This we express by saying
that (Ah, [•, •]∗) is a pro-nilpotent Lie-algebra. The adjoint representation of
this Lie algebra on itself is denoted ad∗, so for any element a we have an
endomorphism ad∗ a of Ah defined by ad∗ a(b) = [a, b]∗ for b ∈ Ah. That
[•, •]∗ is pro-nilpotent implies that the exponential of ad∗ a is a well-defined
automorphism of Ah, given by the usual formula

exp(ad∗ a) =
∞

∑
j=0

1
j! (ad∗ a)◦j = id + ad∗ a + 1

2 ad∗ a ◦ ad∗ a + · · ·
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since applying this to any element b ∈ Ah yields an infinite (formal) series
with only finitely many terms in each degree.

Lemma 3.6. If M is connected, exp(ad∗ a) = id if and only if a = ∑j ajhj ∈
C[[h]], ie. each function aj is constant.

Another important fact is that the composition of two such automor-
phisms may be described as the exponential of another Lie algebra element.
Namely, define a ◦∗ b as the usual Baker-Campbell-Hausdorff composition

a ◦∗ b = a + b + 1
2 [a, b]∗ + 1

12 ([a, [a, b]∗]∗ + [b, [b, a]∗]∗) + · · · .

Again quoting from [23], we have

Lemma 3.7. The composition ◦∗ is associative and satisfies

exp ad∗(a ◦∗ b) = (exp ad∗ a) ◦ (exp ad∗ b) (3.7)
a ◦∗ b ◦∗ (−a) = exp(ad∗ a)(b). (3.8)

In studying the equivalence classes of differential star products, it is
useful to know the self-equivalences of a star product. For manifolds with
vanishing first de Rham cohomology, these are easy to describe.

Theorem 3.8. Let ∗ be a star product on the symplectic manifold (M, ω), and
assume H1(M, R) = 0. Then any automorphism T = id + ∑j≥1 Tjhj of ∗ is
inner, ie. of the form T = exp(ad∗ a) for some a ∈ Ah.

As we will need to know how this a looks like, we recall the proof from [23],
Proposition 3.3. However, we first need a lemma describing the derivations
of the Poisson bracket.

Lemma 3.9. Let X be a vector field on (M, ω) which is a derivation of the Poisson
bracket. Then X is a symplectic vector field. If in addition H1(M) = 0, X is an
inner derivation, meaning that X f = {a, f } for some smooth function a.

Proof. The derivation assumption means that X{ f , g} = {X f , g}+ { f , Xg}
for all f , g ∈ C∞(M). This may be rewritten ω(X{ f ,g}, X) = Xgω(X f , X)−
X f ω(Xg, X), which in turn can be written

d(iXω)(X f , Xg) = 0 (3.9)

for all f , g ∈ C∞(M). Now, for any given tangent vectors v, w ∈ Tp M one
may find smooth functions f , g such that (X f )p = v and (Xg)p = w, so (3.9)
implies that iXω is closed, so X is symplectic.

The assumption H1(M) = 0 then implies that iXω = d(−a) for some
smooth function a, so X is the Hamiltonian vector field associated to −a.
But then X f = X−a f = ω(X f , X−a) = {a, f }. �

Proof of Theorem 3.8. We will build a = ∑j≥0 ajhj recursively. Writing out
the assumption T( f ∗ g) = T( f ) ∗ T(g) and equating the coefficients of h
gives

c1( f , g) + T1( f g) = c1( f , g) + T1( f )g + f T1(g)
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implying that T1 is a vector field. Equating the coefficients of h2 we obtain
(omitting the term c2( f , g) on both sides)

T1(c1( f , g)) + T2( f g) = c1(T1( f ), g) + c1( f , T1(g)) + T2( f )g + f T2(g).

Skew-symmetrization of this relation (ie. subtracting the same formula with
f and g interchanged) combined with (3.5b) yields

T1({ f , g}) = {T1( f ), g}+ { f , T1(g)}

so we see that, by Lemma 3.9, T1 is a Hamiltonian vector field. Write T1 f =
{a0, f } for some smooth function a0. Then the composition exp(−ad∗ a0) ◦
T is of the form id + O(h2) as is easily seen by applying it to some smooth
function f and using that [a0, f ]∗ = {a0, f }h + O(h2).

These considerations both form the start of an induction and the idea
for the inductive step. Namely, assume that we have found a(k−1) =
a0 + a1h + · · ·+ ak−1hk−1 such that

T′ = exp(−ad∗ a(k−1)) ◦ T = id + hk+1T′k+1 + O(hk+2).

Then, since T′ is also an automorphism of ∗, we may repeat the above
argument: Taking the coefficient of hk+1 in the equation T′( f ∗ g) = T′( f ) ∗
T′(g) gives

ck+1( f , g) + T′k+1( f g) = ck+1( f , g) + T′k+1( f )g + f T′k+1(g)

showing that T′k+1 is a vector field. Similarly, skew-symmetrizing the
expressions for the coefficients of hk+2 we obtain

T′k+1({ f , g}) = {T′k+1( f ), g}+ { f , T′k+1(g)}

so T′k+1 is a Hamiltonian vector field. Choosing ak such that T′k+1 f = {ak, f },
we may put a(k) = a(k−1) + akhk. Then exp(−ad∗ a(k)) ◦ T = id + O(hk+2),
completing the inductive step, and a = limk→∞ a(k) is the desired a. �

3.3.3 Invariant Star Products

Assume a group Γ acts on the compact symplectic manifold (M, ω) via
symplectomorphisms, ie. γ : M → M is a diffeomorphism and γ∗ω =
ω for all γ ∈ Γ. This action clearly induces an action on C∞(M) by
(γ · f )(x) = f (γ−1x), which we may extend h-linearly to C∞(M)[[h]]. We
say that a star product ∗ is Γ-invariant if γ · ( f ∗ g) = (γ · f ) ∗ (γ · g) for all
f , g ∈ C∞(M).

Assume ∗ and ∗′ are equivalent differential Γ-invariant star products
on M. Thus, by Theorem 3.5, we have an equivalence T = id + ∑j≥1 Tjhj,
where Tj : C∞(M)→ C∞(M) are differential operators, such that

T( f ∗ g) = T( f ) ∗′ T(g) (3.10)

for all f , g ∈ C∞(M). We may now ask if we can find another equivalence T′

which is Γ-invariant, in the sense that γ ◦ T′ = T′ ◦ γ for all γ ∈ Γ. Under
certain cohomological assumptions, this is indeed the case. We quote
Proposition 6 from [1].
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Proposition 3.10 (Andersen). Assume that the group cohomology vector space
H1(Γ, C∞

0 (M)) and the first de Rham cohomology space H1
dR(M, R) both vanish.

Then there is a Γ-invariant equivalence between ∗ and ∗′.

Here C∞
0 (M) denotes the subspace of C∞(M) consisting of smooth func-

tions with mean value 0, ie. functions for which

1
m!

∫
M

f ωm = 0.

Since Γ acts by symplectomorphisms, the action on C∞(M) preserves this
subspace, so C∞

0 (M) is a Γ-module.

Proof. Let T be any equivalence. Then (3.10) implies that for f , g ∈ C∞(M)
we have f ∗ g = T−1(T( f ) ∗′ T(g)), and replacing f and g by T−1( f ) and
T−1(g), respectively, we obtain T−1( f ) ∗ T−1(g) = T−1( f ∗′ g) (that is, T−1

is an equivalence from ∗′ to ∗). Then using the Γ-invariance of ∗ and ∗′ we
have

T−1 ◦ γ ◦ T( f ∗ g) = T−1 ◦ γ
(
T( f ) ∗′ T(g)

)
= T−1(γT( f ) ∗′ γT(g)

)
= T−1γT( f ) ∗ T−1γT(g)

showing that T−1 ◦ γ ◦ T is an automorphism of ∗, except for the fact that it
is of the form γ + ∑∞

j=1 Sjhj. Precomposing with γ−1 we obtain a genuine
automorphism of ∗, so that, by Theorem 3.8, we have

T−1 ◦ γ ◦ T = exp(ad∗ aγ) ◦ γ (3.11)

for some aγ ∈ C∞(M)[[h]]. Writing aγ = ∑∞
j=0 a(j)

γ hj, we may without loss

of generality assume that each a(j)
γ ∈ C∞

0 (M), since by Lemma 3.6 we may

replace a(j)
γ by a(j)

γ − c(j)
γ , where c(j)

γ ∈ C is the mean value of a(j)
γ . By the

same lemma, aγ is then uniquely determined by (3.11). Clearly we have

a(0)
γ = 0 for all γ ∈ Γ.

Assume inductively that T is an equivalence for which aγ, determined
by (3.11) and the requirement aγ ∈ C∞

0 (M)[[h]], vanishes modulo hk−1 for
all γ ∈ Γ. We observe that

exp(ad∗ aγη) ◦ γη = exp(ad∗ aγ) ◦ γ ◦ exp(ad∗ aη) ◦ η,

implying that

exp(ad∗ aγη) = exp(ad∗ aγ) ◦ exp(ad∗(γaη))

= exp(ad∗ aγ ◦∗ γ(aη)) (3.12)

for all γ, η ∈ Γ. Now since a(j)
γ = 0 for all j < k, we have by the properties

of ◦∗ that aγ ◦∗ γ(aη) = (a(k)
γ + γa(k)

η )hk + O(hk+1), so we see that (3.12)
implies

a(k)
γη = a(k)

γ + γa(k)
η
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for all γ, η ∈ Γ. But this precisely means that {a(k)
γ }γ∈Γ is a 1-cocycle

Γ → C∞
0 (M) (cf. (1.1)), so that by assumption it is a coboundary a(k)

γ =
f (k) − γ f (k) for some smooth function f (k) ∈ C∞

0 (M). Now replacing T by
T ◦ exp(ad∗ f (k)hk) in (3.11), we obtain

exp(− ad∗ f (k)hk) ◦ T−1 ◦ γ ◦ T ◦ exp(ad∗ f (k)hk)

= exp(−ad∗ f (k)hk) ◦ exp(ad∗ aγ) ◦ γ ◦ exp(ad∗ f (k)hk) ◦ γ−1 ◦ γ

= exp(−ad∗ f (k)hk) ◦ exp(ad∗ aγ) ◦ exp(ad∗ γ f (k)hk) ◦ γ

= exp(ad∗( f (k)hk ◦∗ aγ ◦∗ γ f (k)hk)) ◦ γ

so we see that T ◦ exp(ad∗ f (k)hk) is a new equivalence between ∗ and ∗′
whose corresponding »aγ« is f (k)hk ◦∗ aγ ◦∗ γ f (k)hk, which by construction
vanishes modulo hk.

Inductively, we obtain an equivalence T such that T−1 ◦ γ ◦ T = γ for
all γ ∈ Γ, ie. an invariant equivalence. �

3.4 Geometric Quantization

Until now we have only discussed abstract properties of star products on
symplectic manifolds. In this section we will present a general method
to obtain a star product on a compact symplectic manifold (M, ω). For
more details, see e.g. [34] and [29]. The method requires two additional
assumptions: The existence of a pre-quantum line bundle and a Kähler
structure on (M, ω). These concepts are the topics of the following two
subsections.

3.4.1 Pre-quantization

Definition 3.11. A prequantum line bundle over (M, ω) is a triple (L, (·, ·),∇)
consisting of a complex line bundle L over M, an Hermitian structure (·, ·)
on L and a compatible connection ∇ in L whose curvature F∇ is −iω.
If there exists a pre-quantum line bundle over (M, ω) we call (M, ω) pre-
quantizable.

That ∇ is compatible with the Hermitian structure means that for any vec-
tor field X on M and sections s1, s2 of L, we have X(s1, s2) = (∇Xs1, s2) +
(s1,∇Xs2) as complex-valued functions on M. The curvature of a connec-
tion in a line bundle (or more generally a vector bundle) is by definition the
2-form on M with values in the endomorphism bundle End(L) defined by
F∇(X, Y)s = ∇X∇Ys−∇Y∇Xs−∇[X,Y]s for vector fields X, Y on M and
a section s of L. In the case of a line bundle, the endomorphism bundle
is simply the trivial line bundle M×C, so we may identify the curvature
with a (complex-valued) 2-form on M.

It turns out that the existence of a pre-quantum line bundle depends
on the symplectic form ω. In fact, identifying de Rham cohomology with
Čech cohomology via the canonical isomorphism H∗dR(M) ∼= Ȟ∗(M, R),
(M, ω) is pre-quantizable if and only if [ ω

2π ] is an element of the image of



32 Chapter 3 · Quantization

Ȟ2(M, Z)→ Ȟ2(M, R). Also, the inequivalent choices of a pre-quantum
line bundle, when they exist, are parametrized by Ȟ1(M, R/Z) (see [42]
for details).

Assume (M, ω) is pre-quantizable and fix a pre-quantum line bundle
(L, (·, ·),∇). For any positive integer k, we denote by Lk the k’th iterated
tensor product of L with itself. It is again a complex line bundle over M
with a Hermitian structure (·, ·)k and connection ∇k, whose curvature is
−kiω. Thus Lk is a pre-quantum line bundle over the symplectic manifold
(M, kω). If f : U → L is a local orthonormal frame for L (ie. ( f , f ) = 1),
any section of L over U may be written s = σ f for a unique complex-
valued function σ on U. Then (s, t) = (σ f , τ f ) = στ, and given 2k sections
s1, . . . , sk, t1, . . . , tk of L over U, we may describe (·, ·)k and ∇k by

(s1 � · · · � sk, t1 � · · · � tk) = σ1 · · · σkτ1 · · · τk

∇X(s1 � · · · � sk) =
k

∑
j=1

s1 � · · · �∇Xsj � · · · � sk.

It is easy to see that the Hermitian structure is independent of the chosen
local frame, and that the connection is compatible with the Hermitian
structure.

3.4.2 Kähler Structure

In order to be able to make sense of »holomorphic sections« of a complex
vector bundle, the base space needs to have some sort of complex structure.
A particularly nice way of formalizing this is to choose an almost complex
structure J on M, making (M, ω, J, g) into an almost Kähler manifold. This
means that J ∈ C∞(M, End(TM)) is a smooth section of the endomorphism
bundle of TM such that J2 = −id, and such that the assignment g(X, Y) =
ω(X, JY) for X, Y vector fields on M is a Riemannian metric, called the
Kähler metric. The symmetry of g is equivalent to ω(X, Y) = ω(JX, JY) for
all vector fields X, Y.

Extending the almost complex structure J complex linearly to the com-
plexified tangent bundle TMC = TM � C = TM � iTM, we obtain a
splitting TMC = T′M � T′′M into the holomorphic and anti-holomorphic
parts, respectively, given by the i and −i eigenspaces

T′M = ker(J − iId) = im(Id− i J) (3.13a)

T′′M = ker(J + iId) = im(Id + i J). (3.13b)

For a tangent vector X, we denote by X = X′ + X′′ its splitting into its
holomorphic and antiholomorphic parts; it is easy to see that these are
given by X′ = 1

2 (X − i JX) and X′′ = 1
2 (X + i JX). Similarly, we let Λ1

CM
denote the complexified cotangent bundle, and define the subbundles

T(1,0)M = Λ1,0M = {ξ ∈ Λ1
CM | ξ(X) = 0 ∀X ∈ T′′M} (3.14a)

T(0,1)M = Λ0,1M = {ξ ∈ Λ1
CM | ξ(X) = 0 ∀X ∈ T′M}. (3.14b)

We let Λp,0M and Λ0,p M denote the p’th exterior power of Λ1,0M and
Λ0,1M, respectively, and Λp,q M = Λp,0M � Λ0,q M. Then we have a splitting
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of the bundle Λk
CM

Λk
CM =

⊕
p+q=k

Λp,q M. (3.15)

The sections of Λp,q M are called the forms of type (p, q), and are denoted
Ωp,q(M). Clearly (3.15) implies that Ωk(M, C) =

⊕
p+q=k Ωp,q(M). Let πp,q

denote the projection onto the forms of type (p, q). For a fixed (p, q), we
define the operators ∂, ∂̄ by ∂ = πp+1,q ◦ d and ∂̄ = πp,q+1 ◦ d. Restricting the
exterior derivative d to Ωp,q, we may write it as the sum ∑r+s=p+q+1 πr,s ◦
d = ∂ + ∂̄ + · · · .

Proposition 3.12. Let J be an almost complex structure on a manifold M. Then
the following are equivalent.

(1) The Lie bracket of two holomorphic vector fields is a holomorphic vector field.
(2) The exterior derivative of a form of type (p, q) only has components of type

(p + 1, q) and (p, q + 1), ie. d = ∂ + ∂̄.
(3) The Nijenhuis tensor, given by NJ(X, Y) = [X, Y] + J[JX, Y] + J[X, JY]−

[JX, JY] for smooth vector fields X, Y, vanishes identically.
(4) The almost complex structure is induced by a complex structure, ie. a holomor-

phic atlas making M a complex manifold.

If J satisfies any of these conditions, it is called integrable. All the almost
complex structures we shall consider are assumed to be integrable, so
that (M, ω, J, g) is a Kähler manifold. The symplectic form of a Kähler
manifold (or rather, its extension to the complexified tangent bundle) is
of type (1, 1), because if X and Y are both (anti-)holomorphic, we have
ω(X, Y) = ω(JX, JY) = ω(±iX,±iY) = (±i)2ω(X, Y) = −ω(X, Y).

The Riemannian metric g on a Kähler manifold gives rise to the Ricci
curvature R, which is a symmetric 2-tensor on the tangent bundle; as usual
we implicitly extend it to the complexified tangent bundle. The Ricci form of
the Kähler manifold is the (1, 1)-form Ric defined by Ric(X, Y) = R(JX, Y).
This is a closed form, and Hodge decomposition allows us to write it as
Ric = RicH +2i∂∂̄F where RicH is the harmonic part, and F is some smooth
function on M. The unique function satisfying this equation with average
zero over M, ie.

∫
M Fωm = 0, is called the Ricci potential.

3.4.3 Toeplitz Operators

We now fix the following data: A pre-quantizable symplectic manifold
(M, ω), a pre-quantum line bundle (L, (·, ·),∇) over M, and a Kähler
strucure J on M. Also, fix some integer k, and consider the line bundle
Lk with the Hermitian metric (·, ·)k and compatible connection ∇k. For
simplicity, we will denote these by (·, ·) and ∇, respectively. This should
not cause any confusion. We denote by H(k) the complex vector space
of smooth sections M → Lk. The connection ∇ (or rather its extension
to the complexified tangent bundle of M) splits into ∇1,0 +∇0,1, where
∇1,0

X = ∇X′ and ∇0,1
X = ∇X′′ , according to the splitting of tangent vectors

into holomorphic and antiholomorphic parts determined by J. So for a
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smooth section s of Lk, ∇1,0s (respectively ∇0,1s) measures the derivative of
s in the holomorphic (respectively, antiholomorphic) directions. We define

H(k) = {s ∈ H(k) | ∇0,1s = 0} (3.16)

and call H(k) the space of holomorphic sections of Lk. By the general theory
for elliptic operators, H(k) is a finite-dimensional subspace of H(k); see
e.g. [41].

There is a Hermitian inner product on H(k) defined by integrating the
fibre-wise inner product of two sections with respect to the volume form
determined by the symplectic form, ie.

〈s1, s2〉 =
1

m!

∫
M

(s1, s2)ωm

This is not a Hilbert space structure, since H(k) is not complete. However,
the subspace H(k) inherits this inner product and is, of course, both closed
and complete, since it is finite-dimensional. We also have an orthogonal
projection π(k) : H(k) → H(k), and the inner product induces an operator
norm ‖•‖ in End(H(k)).

In general, multiplying a holomorphic section of Lk by a smooth func-
tion does not give a holomorphic section. We may however project it back
to the holomorphic sections.

Definition 3.13. Let f ∈ C∞(M, C) be a smooth complex-valued function
on M. The Toeplitz operator T(k)

f is the map H(k) → H(k) defined by

T(k)
f (s) = π(k)( f s) (3.17)

for a smooth section s of Lk. Restricting it to H(k), we may also think of
T(k)

f as an endomorphism of H(k).

As an endomorphism of H(k), there is a simple expression, due to Borde-
mann, Meinrenken and Schlichenmaier [14], for the operator norm of T(k)

f
as k→ ∞.

Lemma 3.14. limk→∞‖T
(k)
f ‖ = supx∈M| f (x)|.

There is no reason to expect that the composition of two Toeplitz opera-
tors is again a Toeplitz operator. But by the results of Schlichenmaier [34],
there is an asymptotic expansion in terms of Toeplitz operators.

Theorem 3.15. Let f , g ∈ C∞(M, C). Then there is an asymptotic expansion

T(k)
f T(k)

g ∼
∞

∑
`=0

T(k)
c`( f ,g)k−` (3.18)

for uniquely determined c`( f , g) ∈ C∞(M, C). Moreover, c0( f , g) = f g.
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In the statement above, ∼ means that

‖T(k)
f T(k)

g −
L

∑
`=0

T(k)
c`( f ,g)k−`‖ ∈ O(k−(L+1)) (3.19)

for all positive integers L. The usefulness of this asymptotic expansion, for
our purposes, stems from the fact that these c` are actually (almost) the
coefficients of a differentiable star product on M, as proved by Karabegov
and Schlichenmaier [29].

Theorem 3.16. The product ? on C∞(M, C)[[h]] defined by

f ? g =
∞

∑
`=0

(−1)`c`( f , g)h`

for f , g ∈ C∞(M, C) is a differentiable star product on M.

We call ? the Berezin-Toeplitz star product on (M, ω).

3.5 The Formal Hitchin Connection

In the previous section, we saw how the choice of an integrable complex
structure on M and a pre-quantum line bundle induces a star product on
M. In the presence of a symmetry group Γ acting on M by symplecto-
morphisms, we have also discussed a group cohomological obstruction to
the uniqueness of a Γ-invariant star product. To show the existence of a
Γ-invariant star product, we could either try to single out a specific complex
structure with sufficiently nice properties, or we could consider a whole
family of complex structures and try to patch the corresponding family of
star products together to a single, Γ-invariant star product on M. The latter
strategy is used in [1], and we will recall the most important results.

Remark 3.17. For a smooth vector bundle W over M, a smooth map
f : N → C∞(M, W) from a smooth manifold N to the space of sections
of W is by definition a smooth section of the pullback bundle π∗MW over
N × M. This is motivated by observing that for x ∈ N, y ∈ M, f (x)(y)
should be an element of Wy, the fibre of W over y. Similarly, a k-form on N
with values in C∞(M, W) means a smooth section of π∗N(ΛkT∗N) � π∗MW
over N ×M.

We assume that T is a manifold which smoothly parametrizes Kähler
structures on (M, ω), which means that there is a smooth map J : T →
C∞(M, End(TM)) such that J(σ) = Jσ is an integrable complex structure
on M making (M, ω, Jσ, gσ) a Kähler manifold. We will impose further
assumptions along the way. The various constructions on M in Section 3.4
above which depend on the choice of almost complex structure now makes
sense for each σ ∈ T , and we will denote the dependence on σ by adding it
as a subscript. For example, the holomorphic tangent bundle with respect
to Jσ will be denoted T′σ M.

For each σ ∈ T the construction in section 3.4.3 gives a finite dimen-
sional vector space H(k)

σ ⊆ C∞(M,Lk). Considering the trivial bundle
Hk = T × C∞(M,Lk) over T , we shall assume that the H(k)

σ form a (finite
rank) subbundle of H(k), denoted H(k).
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3.5.1 The Hitchin Connection

We wish to find a connection in H(k) which preserves the subbundle H(k).
Denoting the trivial connection in H(k) by ∇̂t and the vector space of
differential operators in C∞(M,Lk) by D(M,Lk), it turns out that there is
a 1-form u on T with values in D(M,Lk), such that the connection ∇̂ in
H(k) defined by

∇̂V = ∇̂t
V − u(V)

preserves the subbundle H(k), provided J and M satisfy a few additional
conditions, one of which is that H1(M) = 0. Another assumption is that
the first Chern class of the symplectic manifold (M, ω) is n[ ω

2π ] ∈ H2(M, Z)
for some n ∈ Z. This connection is called the Hitchin connection. For details
we refer to [1] and [4].

3.5.2 Formal Connections and Formal Trivializations

The projections π
(k)
σ : C∞(M,Lk)→ H(k)

σ form a smooth map π(k) from T
to the space of bounded operators on (the L2-completion of) C∞(M,Lk).
The Toeplitz operator T(k)

f associated to a smooth function f on M is then
a section of the bundle Hom(H(k), H(k)), defined at σ ∈ T by

T(k)
f ,σ(s) = π

(k)
σ ( f s)

for s ∈ H(k)
σ . We may also regard these operators as sections of the bundle

End(H(k)).
Theorem 3.15 gives a sequence of coefficients cσ

` for each σ ∈ T . It may
be shown that the estimate (3.19) holds uniformly over compact subsets
of T . Hence we get a T -parametrized family ?σ of star products on M.

In order to glue these star products together to determine a single star
product on M, we consider the trivial bundle Ch = T × C∞(M)[[h]] over
T . The space of sections of this bundle carries a product ? defined by
( f ? g)σ = fσ ?σ gσ.

Definition 3.18. A formal connection D is a connection in Ch over T of the
form

DV f = V[ f ] + D̃(V)( f )

for smooth vector fields V on T and a smooth section f of Ch. Here D̃ is a
smooth 1-form on T with values in D(M)[[h]].

We may think of a formal connection as the trivial connection in the
bundle Ch, plus a correction term D̃, given by a formal series of differential
operators

D̃(V) =
∞

∑
`=0

D̃(`)(V)h`.

We wish to use a formal connection to connect the different fibres of Ch
and thus relate the different star products. Theorem 12 in [1] states that
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there is a unique formal connection which is well-suited for our purpose.
Before stating the theorem, note that the Hitchin connection ∇̂ in H(k)

induces a connection ∇̂e in the endomorphism bundle. Since the star
products are defined in terms of the Toeplitz operators, which are sections
of the bundle H(k), it is natural that the desired connection behaves nicely
with respect to the Toeplitz operators and the connection ∇̂e.

Theorem 3.19. There is a unique formal connection D which satisfies that

∇̂e
V T(k)

f ∼ T(k)
(DV f )(1/(2k+n))

for all smooth sections f of Ch and smooth vector fields V on T . Moreover,

D̃(0) = 0.

In the statement above, ∼ means that

∥∥∇̂e
V T(k)

f −
(
T(k)

V[ f ] +
L

∑
`=1

T(k)

D̃(`)
V f

1
(2k + n)`

)∥∥ = O(k−(L+1))

uniformly over compact subsets of T , for all smooth sections f of Ch. This
connection is called the formal Hitchin connection. One of the nice properties
of this connection is that it is a derivation of the product ? of sections:

Lemma 3.20. For any sections f , g of Ch and vector field V on T , we have

DV( f ? g) = DV( f ) ? g + f ? DV(g).

Another nice property is that D is flat if Hitchin’s connection ∇̂ is projec-
tively flat, and this is indeed the case in the moduli space setting, where
Hitchin originally constructed his connection.

The final ingredient we need to construct an invariant star product is
the notion of a formal trivialization of a formal connection.

Definition 3.21. A formal trivialization of a formal connection D is a
smooth map P : T → D(M)[[h]], written Pσ = ∑∞

`=0 P`
σh`, such that P0

σ
is an isomorphism C∞(M)→ C∞(M) for all σ ∈ T , and such that

DV(Pσ( f )) = 0

for all vector fields V on T and all f ∈ C∞(M)[[h]].

Under sufficiently strong assumptions, we may find a Γ-equivariant formal
trivialization.

Proposition 3.22. Assume the formal connection D is flat and that D̃(0) = 0.
Then locally there exists a formal trivialization of Ch. If H1(T , R) = 0, there
exists a globally defined formal trivialization. If, moreover, H1

Γ(T ,D(M)) = 0,
the formal trivialization can be chosen to be Γ-equivariant.

Here H1
Γ(T ,D(M)) denotes the first Γ-equivariant de Rham-cohomology

group of T with values in the real vector space of all differential operators
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on M. Using this proposition for the formal Hitchin connection from
Theorem 3.19, we may define a new star product ∗ on C∞(M)[[h]] by

f ∗ g = P−1
σ (Pσ( f ) ?σ Pσ(g)). (3.20)

On the left, f and g are simply formal functions on M, ie. elements of
C∞(M)[[h]], whereas on the right we consider them as (constant) sections
of the trivial bundle Ch, evaluated at σ ∈ T . This definition of ? is
actually independent of the σ ∈ T used to compute it, as can be seen by
differentiating the right-hand side along a vector field on T and using the
properties of the formal Hitchin connection and the formal trivialization
(see Proposition 5 of [1]). If P is Γ-equivariant, (3.20) defines a Γ-invariant
star product on M.

In [4], Andersen and Gammelgaard have proved that a mapping class
group equivariant trivialization exists to first order by giving an explicit
formula for it. Their construction does not use any of the cohomological
assumptions from Proposition 3.22.



Chapter 4
Moduli Spaces

The purpose of this chapter is to give an introduction to the moduli space
of flat connections over a surface, and the various structures it carries.

Let Σ be a compact surface and let p ∈ Σ be a fixed basepoint. If the
surface has boundary, we will assume that p ∈ ∂Σ. We let π1 = π1(Σ, p)
denote the fundamental group of Σ. Also, let G be a connected Lie group.

Definition 4.1. The moduli space of flat G-connections on Σ is the set

MG = Hom(π1, G)/G (4.1)

of G-valued representations of π1, modulo conjugation in G.

This will be our working definition ofMG.

4.1 Gauge Theoretic Definition

The name comes from the well-known fact thatMG may also be defined
as follows: One considers the class F of pairs (P, A) where P is a principal
G-bundle over Σ, and A is a flat connection in P. Two such pairs (Pj, Aj),
j = 1, 2, are equivalent if there exists a bundle isomorphism ψ : P1 → P2
such that ψ∗A2 = A1. In particular, (P, A) and (P, A′) are equivalent if
and only if A and A′ are gauge equivalent connections in P. One may
then define the moduli space of flat connections to be the set F/∼ of
equivalence classes of flat G-bundles.

If G is simply-connected, there is only one isomorphism class of prin-
cipal G-bundles over a 2-manifold, the trivializable bundles. In this case
we would obtain the same space by only considering the space of flat
connections in a fixed principal bundle, which we might as well choose to
be the trivial bundle Σ× G.

Let us briefly recall why these definitions agree. Let P be a principal
bundle over Σ, and A a flat connection in P. Trivializing P over p ∈ Σ
induces a homomorphism π1(Σ, p) → G by taking the holonomy with
respect to A along loops based at p. The conjugacy class of this homomor-
phism is independent of the chosen trivialization, so we have a well-defined

39
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map

Hol : F/∼ →MG. (4.2)

Conversely, if ρ : π1 → G is a given homomorphism, one considers
the trivial G-bundle P̃ = Σ̃× G over the universal covering space Σ̃ of Σ.
The fundamental group acts on the right on this space: For γ ∈ π1 and
(y, g) ∈ P̃, let (y, g) · γ = (y · γ, ρ(γ)−1g), where y · γ denotes the natural
action of π1(Σ) on the covering space. This action is free, and it is easy to
see that the quotient P = P̃/π1 is a principal G-bundle over Σ. The trivial
connection on P̃, which is the pull-back of the Maurer-Cartan form on G, is
invariant under the action of π1, so it descends to a flat connection on P.
This gives a well-defined mapMG → F/∼, which is the inverse of Hol.

Henceforth,MG may denote either model for the moduli space; which
model we have in mind will be clear from the context.

4.2 Mapping Class Group Action

Let ϕ be a diffeomorphism of Σ. Clearly ϕ induces an isomorphism
ϕ∗ : π1(Σ, p)→ π1(Σ, ϕ(p)). Postcomposing with the »lasso isomorphism«
induced by any path from p to ϕ(p), we obtain an automorphism of
π1(Σ, p). Different choices of path from p to ϕ(p) gives rise to conjugate
automorphisms of π1(Σ, p), as does isotopic diffeomorphisms. These facts
show that there is a well-defined action of the mapping class group on
MG.

In case Σ has boundary, this discussion becomes somewhat simpler
because of our assumption that p ∈ ∂Σ. In fact, a diffeomorphism fixing
the boundary induces an automorphism of π1(Σ, p) which only depends
on the isotopy class of the diffeomorphism. Hence, the mapping class
group acts on Hom(π1(Σ, p), G) itself, and this action commutes with the
conjugation action of G.

Given any flat bundle (P, A) and diffeomorphism ϕ of Σ, one gets
another flat bundle (ϕ∗P, ϕ∗A) by the usual pull-back of bundles and
connections. The proof that isotopic diffeomorphisms produces isomorphic
bundles can easily be extended to produce an isomorphism of bundles-
with-connection. Hence the mapping class group acts on F/∼, and clearly
the map (4.2) is equivariant with respect to these actions.

The various structures on the moduli space described in the following
sections are all preserved by the action of the mapping class group.

4.3 Algebraic Structure

Assume G is a linear algebraic group over the complex numbers. If
P = 〈gλ, λ ∈ Λ | rµ, µ ∈ M〉 is a presentation of π1(Σ), one may iden-
tify Hom(π1, G) with the closed subset VP of GΛ consisting of elements
(Aλ)λ∈Λ satisfying

rµ(Aλ) = 1 (4.3)
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for each µ ∈ M, where rµ is considered as a word in the Aλ. Clearly the
equations (4.3) are polynomial, so VP has the structure of an affine algebraic
set.

Given any other presentation P′, one obtains an isomorphism of affine
algebraic sets VP → VP′ by simply writing the generators from P′ in terms
of the generators from P. This implies that Hom(π1, G) itself has a well-
defined structure as an affine algebraic set, and we can make sense of the
space

O(Hom(π1, G)) (4.4)

of regular functions on Hom(π1, G). Since the diagonal action of G is
algebraic, this action preserves the property of being a regular function.
We define the space of regular functions on the moduli space by

O(MG) = O(Hom(π1, G))G, (4.5)

the space of regular functions on Hom(π1, G) invariant under G. It is not
claimed thatMG itself has the structure of an affine algebraic set.

4.4 Smoothness

When trying to endowMG with a smooth structure, one encounters two
problems. If Σ is a closed surface, π1(Σ) has the well-known presentation

π1(Σ) ∼= 〈αj, β j |
g

∏
j=1

[αj, β j] = 1〉. (4.6)

Letting Q : G2g → G denote the map

Q(A1, B1, . . . , Ag, Bg) =
g

∏
j=1

[Aj, Bj], (4.7)

we may identify Hom(π1(Σ), G) with Q−1(1). The first problem is that this
set is in general singular since 1 is (in general) not a regular value of Q.

Even when dealing with a surface with boundary, so that π1(Σ) is a free
group and Hom(π1, G) is identified with a product of copies of G, there
are points at which the conjugation action is not principal. These problems
can be handled by only considering the irreducible representations.

To be concrete, we will consider the case G = SU(n). If ρ : π1 → G is an
irreducible representation, the stabilizer Gρ = Z(im ρ) of ρ coincides with
the center of G. This follows from the simple observation that a non-central
element of G has at least two distinct eigenvalues. More precisely, if A ∈ Gρ

has eigenvalue λ, it is clear that the λ-eigenspace of A is preserved by ρ(x)
for each x ∈ π1. If A is not central, the λ-eigenspace is a proper subspace
and ρ is reducible. Conversely, if ρ is reducible, there are non-central
elements of G commuting with ρ.

By Proposition I.2.5 of [10], we have proved
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Lemma 4.2. Let G = SU(n). The set Homirr(π1, G) of irreducible representa-
tions is dense and open, and the quotient

M◦
G = Homirr(π1, G)/G ⊆MG (4.8)

is a smooth manifold.

If Σ has a single boundary component, one obtains a smooth compact
manifold by fixing the holonomy along the boundary to be a central
element: Let d ∈ Z/nZ be relatively prime to n, and let D = e2πid/n I be
the corresponding central element of SU(n). The element γ = ∏

g
j=1[αj, β j]

corresponds to a loop going once around the boundary. Let

Homd(π1, SU(n)) = {ρ ∈ Hom(π1, SU(n)) | ρ(γ) = D}. (4.9)

Theorem 4.3. The elements of Homd(π1, SU(n)) are irreducible, so that

Md
SU(n) = Homd(π1, SU(n))/SU(n) (4.10)

is a smooth, compact manifold.

Proof. If ρ can be decomposed as a sum of representations of dimensions k
and n− k for some 1 ≤ k < n, the matrices Aj = ρ(αj), Bj = ρ(β j) may be
assumed (possibly after conjugation) to be block diagonal,

Aj =

(
A′j 0
0 A′′j

)
Bj =

(
B′j 0
0 B′′j

)

for some matrices A′j, B′j ∈ SU(k), A′′j , B′′j ∈ SU(n− k). Both matrices

D′ =
g

∏
j=1

[A′j, B′j] D′′ =
g

∏
j=1

[A′′j , B′′j ]

are then diagonal matrices with e2πid/n on the diagonal. On the one hand,
the determinant of D′ is clearly 1 since it is a product of commutators, but
on the other hand it is also equal to e2πidk/n, which can not equal 1 since d
and n are relatively prime. This proves that ρ is irreducible. �

There is no problem in defining the space of smooth functions onM◦
G

orMd
SU(n). When Hom(π1, G) is smooth (that is, when Σ has boundary),

we let

C∞(MG) = C∞(Hom(π1, G))G, (4.11)

the space of smooth G-invariant functions. In the case where Σ is closed,
we define C∞(Hom(π1, G)) to be the space of all smooth functions on G2g

modulo the ideal of functions vanishing on Q−1(1), and then again define
C∞(MG) by (4.11).
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4.5 Tangent Spaces

The tangent space toMG at a conjugacy class [ρ] can naturally be identified
with the the tangent space of Hom(π1, G) at ρ, modulo the tangent space
to the G-orbit through ρ. Following Goldman [21] we will now see how
this gives rise to a group cohomology description of the tangent space.
Let ρt be a smooth one-parameter family of representations with ρ0 = ρ.
Then ρt(x) = At(x)ρ(x) for some smooth family At : π1 → G satisfying
A0(x) = 1 for all x ∈ π1. Let u : π1 → g denote the map from π1 to
the Lie algebra of G obtained by differenting At and evaluating at t = 0.
Differentiating the homomorphism condition

ρt(xy) = ρt(x)ρt(y) = At(xy)ρ(xy) = At(x)ρ(x)At(y)ρ(y)

and evalutating at t = 0 then yields

u(xy)ρ(xy) = u(x)ρ(x)ρ(y) + ρ(x)u(y)ρ(y)

which can be written as

u(xy) = u(x) + Ad(ρ(x))(u(y)).

This equation precisely means that u is a cocycle when the Lie algebra g is
considered as a π1-module via the composition Ad ◦ ρ. As such, we denote
it by gρ. Since any such cocycle gives rise to a one-parameter family of
homomorphisms, we have the identification

Tρ Hom(π1, G) ∼= Z1(π1, gρ).

Next, let ρt(x) = atρ(x)a−1
t be a deformation of ρ along the orbit

through ρ, where at is a curve through 1 ∈ G. Let X ∈ g be the derivative
of this family at t = 0. Writing At(x) = ρt(x)ρ(x)−1 = atρ(x)a−1

t ρ(x)−1,
we see that the tangent vector represented be the family ρt is the cocycle
uX given by

uX(x) = X− ρ(x)Xρ(x)−1 = X−Ad(ρ(x))X,

that is, precisely the coboundary of X.

Proposition 4.4. The tangent space T[ρ]MG is the cohomology group

H1(π1, gρ). (4.12)

This description is of course only valid at the smooth points.

Remark 4.5. Differentiating the equation (4.9) defining the elements of
Homd(π1, SU(n)), we see that the tangent space to Md

SU(n) at [ρ] is the
subspace of (4.12) represented by cocycles satisfying u(γ) = 0.

It is also possible to give a description of the tangent space in the gauge
theoretic setting in terms of de Rham-cohomology of Σ. Let A ∈ F be a
flat connection in a fixed principal G-bundle P over Σ. By Remark A.7,
the tangent space to the space of all connections at A is identified with
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the space Ω1(Σ, Ad P) of Ad P-valued 1-forms on Σ. In order to determine
TAF , we will derive a condition for a ∈ Ω1(Σ, Ad P) to be tangent to F .
Differentiating the equation FA+ta = 0 with respect to t gives

d
dt

FA+ta =
d
dt
(
d(A + ta) + 1

2 [(A + ta) ∧ (A + ta)]
)

=
d
dt
(

FA + tda + t2

2 [a ∧ a] + t[A ∧ a]
)

= da + [A ∧ a] + t[a ∧ a]
= 0,

and evaluting at t = 0 gives the condition da + [A ∧ a] = dAa = 0 for a to
be tangent to F at A. Thus we identify the tangent space TAF with the
vector space of closed 1-forms on Σ with values in the adjoint bundle Ad P,
with respect to the differential dA:

TAF = Z1(Σ, Ad P; dA) ⊆ Ω1(Σ, Ad P) (4.13)

Now we have to determine the subspace tangent to the action of the gauge
group. Let ϕt be a one-parameter family of gauge transformations with
ϕ0 = id, and let gt : P→ G be the corresponding family of G-equivariant
maps (ie. maps satisfying (A.8)) where g0 = e. For a fixed p ∈ P, gt(p) is a

curve through e ∈ G, and hence d
dt

∣∣
t=0 gt is a map f : P→ g. We note that

the G-equivariance of each gt implies that f is G-equivariant:

f (pg) =
d
dt

∣∣∣
t=0

gt(pg) =
d
dt

∣∣∣
t=0

g−1gt(p)g

=
d
dt

∣∣∣
t=0

(c(g−1) ◦ gt)(p) = Ad(g−1)( f (p)),

so f is in fact an element of Ω0(Σ, Ad P) = Ω0
b(P, g).

We have ϕ∗t A = Ad(g−1
t ) ◦ A + g∗t θ by (A.9), and if we differentiate this

equation with respect to t we obtain

d
dt

∣∣∣
t=0

ϕ∗t A =
d
dt

∣∣∣
t=0

Ad(g−1
t ) ◦ A +

d
dt

∣∣∣
t=0

g∗t θ

= ad(− f ) ◦ A +
d
dt

∣∣∣
t=0

g∗t θ (4.14)

The last term is in fact equal to d f ∈ Ω1(P, g), but it takes some effort to
see this. Let α be a curve in P with α(0) = p and α′(0) = X ∈ TpP. Then

g∗t θ(X) = θgt(p)(Dpgt(X))

= θ
( d

ds

∣∣∣
s=0

gt(α(s))
)

= Dgt(p)Lgt(p)−1

( d
ds

∣∣∣
s=0

gt(α(s))
)

=
d
ds

∣∣∣
s=0

(
gt(p)−1 · gt(α(s))

)
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so that

d
dt

∣∣∣
t=0

g∗t θ(X) =
d
dt

∣∣∣
t=0

d
ds

∣∣∣
s=0

(
gt(p)−1 · gt(α(s))

)
=

d
ds

∣∣∣
s=0

d
dt

∣∣∣
t=0

(
gt(p)−1 · gt(α(s))

)
=

d
ds

∣∣∣
s=0

(
− f (p) + f (α(s))

)
= d f (X).

Now continuing (4.14), we have

d
dt

∣∣∣
t=0

ϕ∗t A = [A ∧ f ] + d f = dA f

so we see that a vector tangent to the gauge group action at A is an exact 1-
form in Ω1(Σ, Ad P; dA). On the other hand, given any G-equivariant
map f : G → P, gt(p) = exp(t f (p)) defines a 1-parameter family of
gauge transformations which induces the tangent vector dA f at A. Thus
TA(AG) = B1(Σ, Ad P; dA), and we obtain the important identification of
the tangent space to the moduli space with a twisted cohomology group
of Σ.

Theorem 4.6. Let A be a flat connection in a principal G-bundle P→ Σ. Then

T[A]MG ∼= H1(Σ, Ad P; dA). (4.15)

That is, the tangent space T[A]MG at the gauge equivalence class [A] of the moduli
space of flat connections is identified with the first (de Rham) cohomology group of
Σ, with coefficients in the adjoint bundle Ad P and differential dA induced by A.

4.6 Symplectic Structure

Assume that the Lie algebra g admits a non-degenerate, symmetric, bilinear
form B : g× g→ R invariant under the adjoint action of G. For example,
if G is compact we may find an invariant inner product on g. An explicit
example for G = U(n) (or G = SU(n)) is given by B(X, Y) = tr(X∗Y) =
− tr(XY) for skew-hermitian (and trace-less) matrices X, Y.

Under this fairly general assumptions on the group G, Goldman [21]
observed that (the smooth part of) the moduli space over a closed surface
admits a symplectic structure.

The pairing B induces a map B∗ from the tensor bundle B∗ : Ad P � Ad P
to the trivial R-bundle over Σ. For dA-closed 1-forms ϕ, ψ ∈ Ω1(Σ, Ad P; dA)
representing tangent vectors at a point [A] ∈ MG, we see that B∗(ϕ ∧ ψ) is
an ordinary 2-form on Σ, and we put

ω([ϕ], [ψ]) =
∫

Σ
B∗(ϕ ∧ ψ). (4.16)

That this does in fact define a symplectic form on M◦
G is, in the case

G = U(n), originally due to Atiyah and Bott [9].
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The corresponding form in the algebraic setting is defined using cup
product in group cohomology and the π1-homomorphism B∗ : gρ � gρ → R

to obtain a map

H1(π1, gρ)× H1(π1, gρ)
B∗−→ H2(π1, R), (4.17)

and then composing with a canonical isomorphism from the latter vector
space to R. In [30], Karshon showed in a purely algebraic way that this
form is closed.

For a surface with boundary, the fundamental group is free, so Hk(π1, •)
and Hk(π1, •) vanish for any k ≥ 2, since π1 admits a 1-dimensional CW-
complex as an Eilenberg-MacLane space K(π1, 1). Hence we can not directly
use (4.17) to define a symplectic pairing. However, one may still use (4.16)
in order to obtain a Poisson structure, the symplectic leaves of which are
obtained by fixing the holonomy along the boundary components of Σ. For
details, see [10].

In the case of our favorite example, Md
SU(n), a simple modification

of (4.17) does provide a group cohomological description of the symplectic
form. Letting G = SU(n) and G′ = G/Z(G), the adjoint representation
Ad: G → Aut(g) factors through G′. Let ρ : π1 → G be a homomorphism
representing an element ofMd

G, and let ρ′ denote the induced representa-
tion π1 → G′. The condition (4.9) defining the spaceMd

G then implies that
ρ′ induces a representation ρ : π1 → G′ of the fundamental group of the
closed surface obtained by gluing a disc to the boundary component.

The groups G and G′ both has g as Lie algebra. Now, the π1-module
obtained from gρ via the surjection π1 → π1 is the same as the π1-module
gρ itself. This means we have an induced map

H1(π1, gρ)→ H1(π1, gρ). (4.18)

It is easy to see that this map is injective, and the image is precisely the
elements represented by cocycles u satisfying u(γ) = 0, which we recognize
as the tangent space T[ρ]Md

G, cf. Remark 4.5. This allows us to identify
this tangent space with H1(π1, gρ), and we can use (4.17) to define a non-
degenerate pairing on this space.

A much more general treatment is given by Biswas and Guruprasad [13].
For a surface with n boundary circles γ1, . . . , γn, they consider n conjugacy
classes C1, . . . , Cn in G. The moduli space P of representation ρ : π1 → G
satisfying ρ(γj) ∈ Cj is called the space of parabolic representations. The
condition for a cocycle u : π1 → g to be tangent to P is that there exists
elements µj ∈ g such that

u(γj) = µj −Ad ρ(γj)µj.

Such cocycles are called parabolic, and the tangent space to P at ρ is thus
identified with the parabolic group cohomology H1

par(π1, gρ). This identifica-
tion is used to define a symplectic structure on P .

4.7 Holonomy Functions

A rich source of functions on the moduli space is the notion of holonomy
functions. Let h : G → C be a class function, a function invariant under
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conjugation. An oriented closed curve γ determines a conjugacy class in π1,
so for any [ρ] ∈ MG we have that ρ(γ) is a well-defined conjugacy class in
G. This allows us to define a function hγ : MG → C by hγ([ρ]) = h(ρ(γ)).
It is clear that this only depends on the free homotopy class of γ.

Note that the mapping class group acts on the set of free homotopy
classes of oriented loops, which may be identified with the set π̂1 of
conjugacy classes in π1.

Lemma 4.7. The association γ 7→ hγ is equivariant with respect to the mapping
class group actions on π̂1 and Fun(MG).

Proof. Let ϕ ∈ Γ, γ a closed curve on Σ and [ρ] ∈ MG. Then

(ϕ · hγ)([ρ]) = hγ(ϕ−1[ρ]) = hγ([ρ ◦ ϕ]) = h(ρ(ϕ(γ))) = hϕ(γ)([ρ]). �

In the case where h is the trace functional and G is a classical ma-
trix group, Goldman [22] has computed formulas for the Poisson bracket
{hα, hβ} of two holonomy functions (see [22] for the list of Lie groups). For
example, if G = GLn(R) or G = GLn(C), the formula is

{hα, hβ} = ∑
p∈α#β

ε(p; α, β)hαp βp . (4.19)

Here α and β are assumed to be in general position; ie. the images are
disjoint except for a finite number of transverse intersection points α#β. At
such an intersection point p, ε(p; α, β) = ±1 is the oriented intersection
number (defined in terms of the orientation of Σ), and αpβp denotes the
curve obtained by starting at p and traversing α followed by β. For other
groups, similar (but different) formulae were obtained.

This leads one to consider the free module Zπ̂1 on the set of free
homotopy classes of loops in Σ. Equipping this module with the bracket
determined by

[α, β] = ∑
p∈α#β

ε(p; α, β)αpβp, (4.20)

for (homotopy classes of) loops α, β, the equation (4.19) shows that the map
α 7→ fα induces a homomorphism of Lie algebras Zπ̂1 → O(MG) if G is
GLn(R) or GLn(C). It is also clearly equivariant with respect to the action
of the mapping class group. However, the map is not injective, and the
discussion in [22] shows that it is hard to give a nice description of the
kernel. Moreover, it would be nice to have a geometrically defined (that
is, in terms of loops on the surface) Γ-module with a Lie algebra structure
defined without reference to the particular Lie group in question.

4.7.1 Chord Diagrams

Following the same idea of assigning functions on the moduli space to
loops on the surface, Andersen, Mattes and Reshetikhin [5] generalized
Goldman’s approach by introducing the algebra of chord diagrams on
a surface. This algebra carries a Poisson bracket defined by a formula
similar to (4.20) above. Coloring the chord diagrams by finite-dimensional
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representations of G, one obtains a Poisson algebra which in many cases
maps surjectively toO(MG), the space of algebraic functions on the moduli
space. We recall the definitions and main results.

A chord diagram is a finite collection of oriented circles and a finite
collection of chords (unoriented line segments) whose endpoints lie on
the circles. The chords are assumed to be disjoint, and in particular no
two endpoints coincide. The circles of a chord diagram are called the core
components, and together they constitute the skeleton of the diagram.

A geometric chord diagram on Σ is a smooth map from a chord diagram
to Σ, mapping chords to points. When drawing (parts of) geometric chord
diagrams, images of chords will be drawn as fat dots. A chord diagram
on Σ is a homotopy class of geometric chord diagrams. Every chord
diagram contains a generic chord diagram: a geometric chord diagram
whose skeleton is immersed in Σ and which has only transverse double
points.

We denote by D(Σ) the complex vector space with basis the set of chord
diagrams on Σ. This vector space is graded by the number of chords, and
union of diagrams makes D(Σ) a commutative graded algebra with unit
the empty diagram.

Consider the (local) relation

− = − (4.21)

as well as the relations obtained from this one by reversing orientation
of core components and changing the sign according to the rule: For
every chord intersecting a core component with reversed orientation, the
diagram is multiplied by −1. These relations are called the 4T-relations,
and the subspace spanned by them is denoted 4T(Σ). This is an ideal and
homogenous, so the quotient

C(Σ) = D(Σ)/4T(Σ) (4.22)

is also a commutative, graded algebra. Furthermore, there is a Poisson
structure on C(Σ) defined as follows: Given two chord diagrams on Σ,
choose geometric chord diagram ij : Dj → Σ, j = 1, 2 representing them
such that their product is a generic chord diagram. For p ∈ D1#D2 we
define D1 ∪p D2 to be the chord diagram on Σ obtained by joining i−1

1 (p)
and i−1

2 (p) by a chord mapped to p.

Proposition 4.8 (Andersen, Mattes, Reshetikhin). The bracket

{[D1], [D2]} = ∑
p∈D1#D2

ε(p; D1, D2)[D1 ∪p D2] (4.23)

is well-defined and determines a Poisson structure on C(Σ).

The algebra C(Σ) equipped with the bracket (4.23) is called the Poisson
algebra of chord diagrams on Σ. Requiring that every core component of a
diagram be colored by a finite dimensional representation of a Lie group
G yields the Poisson algebra C(Σ; G). In [5], the authors also construct a
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Poisson homomorphism Ψ : C(Σ; G)→ O(MG). If G is a matrix group, we
may color all core components by the standard representation, and hence
Ψ defines a Poisson homomorphism

Ψ : C(Σ)→ O(MG). (4.24)

This map is surjective for the groups GLn(C), SLn(C), On(C) and Sp2n(C).
Furthermore, a diffeomorphism of Σ clearly preserves the 4T-relations,
hence gives an action of the mapping class group on C(Σ), and an easy
computation similar to Lemma 4.7 shows that Ψ is Γ-equivariant (see e.g.
Theorem 2.22 of [36]).

Understanding the kernel of Ψ thus provides one with a »geometric«
model for O(MG), where the action of the mapping class group is simply
given by its action on chord diagrams (modulo ker Ψ). In the special case
G = SL2(C), there is a particularly simple geometric model, which we will
present in the next chapter.

4.8 Quantizing the Moduli Space

Let us briefly review how the contents of Chapter 3, and in particular
Section 3.4, apply to the moduli space M = Md

SU(n). The symplectic
structure onM is given by combining (4.17) and (4.18) as explained above.
The line bundle L together with the Hermitian structure and compatible
connection ∇ was constructed in [19]. Freed also proves that the curvature
of ∇ satisfies the prequantum condition. Atiyah and Bott [9] have proved
that the moduli space is simply connected and that H2(M, Z) ∼= Z. For
n = 2, d = 1, Thaddeus [38] gives an elementary proof that the holonomy
function associated to a simple closed curve is a perfect Bott-Morse func-
tion. Using this fact, he finds the Poincaré polynomial and thus the Betti
numbers.

The Teichmüller space T parametrizes, by definition, complex structures
on Σ. A point σ ∈ T induces a Hodge star operator on (Ad P-valued) 1-
forms on Σ, and this can be used to obtain the identification

T[A]M = H1(Σ, Ad P) ∼= ker(dA) ∩ ker(∗dA∗) (4.25)

of the tangent space to M with the harmonic Ad P-valued forms. The
square of ∗ : H1(Σ, Ad P)→ H1(Σ, Ad P) is −1, so we get an almost com-
plex structure onM by putting Jσ = −∗. Narasimhan and Seshadri [31]
have proved that this almost complex structure is integrable, so that
(M, ω, Jσ) is a smooth, compact Kähler manifold, which is denotedMσ.
This also gives L the structure of a holomorphic line bundle. The (0, 1)-part
of the connection ∇ allows us to define a section s ∈ C∞(M,Lk) to be
holomorphic if ∇0,1s = 0.

For each integer k, one gets a vector bundle Vk over T , whose fibre at
σ is the space H0(Mσ,Lk

σ) of holomorphic sections of Lk. This bundle is
usually called the Verlinde bundle (at level k), and is the original setting
for the Hitchin connection [25].





Chapter 5
Regular Functions on the SL2(C)

Moduli Space

In this chapter, our primary object of study is the moduli space M =
MSL2(C) of flat SL2(C)-connections over Σ. Most of the material has been
published in [8], and before that it appeared in two separate papers on the
arXiv, [39] and [6].

Throughout the chapter, we assume that Σ is a surface of genus at least
2, with any number of boundary components. Let O = O(M) denote
the space of regular functions on M. For the precise definition of these,
see Section 4.3.

Theorem 5.1. The cohomology group H1(Γ,O) vanishes.

The proof of this theorem is the main goal of the chapter. Along the way
we will introduce ideas which happen to be useful for the computation of
the cohomology with coefficients in other modules of functions on other
moduli spaces.

5.1 Multicurves as Functions

A matrix A ∈ SL2(C) has the property that tr A = tr(A−1). Letting h
denote the trace function SL2(C) → C, we may thus associate a function
hγ onM to any unoriented closed curve γ by orienting γ arbitrarily. For a
multicurve κ on Σ with components κj, we associate a function νκ onM by

νκ = ∏
j

(−hκj). (5.1)

Let CS denote the complex vector space freely spanned by the set of
multicurves on Σ.

Theorem 5.2. The linear map CS → Fun(M) given by κ 7→ νκ is a mapping
class group equivariant isomorphism onto the space of regular functions onM.

This theorem is due to Bullock, Frohman, and Kania-Bartoszyńska [16]. In
fact, one may define a natural algebra structure on CS making the above
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map an isomorphism of algebras. The multiplication of two multicurves
is defined by taking their disjoint union and then applying the Kauffman
bracket procedure: Remove all crossings via the rule

= − − (5.2)

and, for each resulting multicurve, remove trivial loops at the cost of a
factor of −2 to the multicurve (corresponding to minus the trace of the
holonomy along the trivial loop, viz. the identity matrix). See [16] and [36]
for details.

5.2 Splitting the Cohomology

Theorem 5.2 suggests that a proof of Theorem 5.1 can be obtained by
studying the action of the mapping class group on the set of multicurves,
and this is indeed our strategy. Let us partition S into mapping class group
orbits

S =
⊔
α

Sα.

Lemma 5.3. There is an isomorphism of Γ-modules

CS ∼=
⊕

α

CSα (5.3)

which induces an isomorphism on cohomology

H1(Γ,O) ∼= H1(Γ, CS) ∼=
⊕

α

H1(Γ, CSα). (5.4)

Proof. The isomorphism (5.3) is clear since each CSα is obviously a Γ-
invariant subspace of CS . The first isomorphism in (5.4) is due to The-
orem 5.2, whereas the second comes from (1.8), using the fact that the
mapping class group is finitely generated. �

To prove Theorem 5.1 it suffices to consider each summand on the right-
hand side of (5.4). By Remark 2.21, each orbit Sα is either infinite or consists
of a single point. In the latter case, CSα is simply a copy of C with trivial
Γ-action, so in this case

H1(Γ, CSα) = H1(Γ, C) = Hom(Γ, C) = 0 (5.5)

by (1.5) and (2.2). Henceforth we assume that the orbit Sα under considera-
tion is infinite.

Proposition 5.4. Let u : Γ→ CSα be a cocycle and ε a simple closed curve on Σ.
For any multicurve κ ∈ Sα with τεκ = κ, the coefficient of κ in u(τε) is 0.
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Proof. Let κ be a multicurve fixed by τε. First assume that κ contains at
least one component which is not parallel to a boundary component of Σ
nor to ε. In this case, one may find a simple closed curve α disjoint from ε
such that τα acts non-trivially on κ. Hence, since τα and τε commute, we
get

(1− τα)u(τε) = (1− τε)u(τα). (5.6)

Since τεκ = κ, the coefficient of κ on the right-hand side of (5.6) is 0. But
then the coefficients of κ and τ−1

α κ in u(τε) are identical. This argument can
be repeated with τ−1

α κ instead of κ, and this way we see that the coefficients
of all multicurves τ−n

α κ, n ≥ 0, are identical. Since these multicurves are all
distinct, and since u(τε) contains at most finitely many non-zero terms, the
common coefficient must be 0.

Since we are assuming that the orbit Sα is infinite, the only remaining
case is when ε is not boundary parallel and κ consists of parallel copies of ε
(and possibly some boundary parallel components). In this case, we embed
the chain relation (Lemma 2.6) in such a way that our ε is the ε occuring in
the chain relation. The cocycle condition then yields

u((τατβτγ)4) = u(τδ) + τδu(τε).

Clearly all four curves α, β, γ, δ are disjoint from κ, so the first case con-
sidered shows that the coefficient of κ in all terms but the last are 0. This
concludes the proof. �

When g ≥ 3, this proof can be reduced to Theorem 2.25 as follows: The
space CS is a subspace of the unitary representation `2(S). In the language
from Section 2.6, τεκ = κ implies pεκ = κ, so

〈u(τε), κ〉 = 〈u(τε), pεκ〉 = 〈pεu(τε), κ〉 = 0.

5.3 The Dual Module

The algebraic dual (CSα)∗ = Hom(CSα, C) may be naturally identified
with the space Map(Sα, C) of all maps from Sα to C. Since CSα can be
thought of as the space of finitely supported functions Sα → C, there is a
mapping class group equivariant inclusion

CSα ↪→ Map(Sα, C). (5.7)

Proposition 5.5. The induced map

H1(Γ, CSα)→ H1(Γ, Map(Sα, C)) (5.8)

is identically 0.

Proof. Pick any representative κ ∈ Sα for the orbit. Then by Theorem 1.2
the right-hand side of (5.8) is isomorphic to

Hom(Γκ , C)
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where Γκ is the stabilizer of κ in Γ.
Let u : Γ→ CSα be a cocycle and ϕ ∈ Γκ . By the formula (1.14), we must

prove that u(ϕ)(κ) = 0, but since u(•)(κ) : Γκ → C is a homomorphism,
it suffices to consider any positive power of ϕ. Hence we may without
loss of generality assume that ϕ fixes each component and each side of the
components of κ. This means that ϕ can be written as a product τ±1

k · · · τ
±1
1

of twists in curves not intersecting κ. By Proposition 5.4, u(τ±1
j )(κ) = 0 for

each j, which clearly implies that u(ϕ)(κ) = 0. �

5.4 Almost Invariant Colorings

Let us summarize what we know by now. Any cocycle u : Γ→ CS splits as
a sum of (finitely many) cocycles uα : Γ→ CSα. For each of these cocycles,
there exists a map Uα : Sα → C such that

u( f ) = (1− f )Uα (5.9)

for each f ∈ Γ. The proof of Theorem 5.1 is complete if we can prove that
Uα can be modified in such a way that (5.9) still holds, and such that Uα

has finite support. It turns out that a nice way to handle this problem is by
introducing a little terminology.

Let G be a group and X a set on which G acts. We define a coloring (or
C-coloring) of X to be any map c : X → C into some set C of »colors«. We
will use the following terminology:

B A coloring c is invariant if c(gx) = c(x) for each g ∈ G and x ∈ X.
B A coloring is almost invariant if, for each g ∈ G, the identity c(gx) =

c(x) fails for only finitely many x ∈ X.
B Two colorings are equivalent if they assign different colors to only

finitely many elements of X; this is clearly an equivalence relation on
the set of C-colorings.

B A coloring is trivial if it is equivalent to a coloring which is constant
on each orbit of X, that is, an invariant coloring.

Notice that an almost invariant coloring is not the same as a trivial coloring.
For example, in the simple case of Z acting on itself, c(n) = 1 for n ≥ 0
and c(n) = 0 for n < 0 defines an almost invariant {0, 1}-coloring, but this
coloring is not equivalent to a constant coloring.

If two colorings are equivalent and one is almost invariant, so is the
other.

A simplification of a coloring c is a coloring obtained by post-composing
c with some map i : C → C′ (one »identifies« some of the colors). Clearly a
simplification of an almost invariant coloring is almost invariant.

Remark 5.6. If there exists an almost invariant, non-trivial C-coloring c,
there also exists an almost invariant coloring where exactly two colors
are used. To see this, partition C into C0 t C1 such that c−1(Ck), k = 0, 1,
are both infinite, and define a {0, 1}-coloring by composing c with the
map i : C → {0, 1} determined by z ∈ Ci(z). Hence, if one wants to prove
the non-existence of almost invariant, non-trivial colorings, it suffices to
consider colorings where two colors are used.
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5.4.1 Finitely Generated Groups

If S ⊂ G is a set of generators for G, a coloring is almost invariant if
and only if for each g ∈ S we have c(gx) = c(x) for all but finitely many
x ∈ X. This observation is of course particularly useful when G is finitely
generated.

In this case, we also observe that any almost invariant coloring is
actually invariant on all but finitely many orbits. To see this, choose a finite
generating set S. Partition X into the G-orbits X =

⊔
α Xα. For each index

α corresponding to an orbit with non-constant coloring, we may choose
an element s(α) ∈ S such that there exists at least one element x ∈ Xα

for which the colors of x and s(α)x differ. Since each element in S can be
chosen at most a finite number of times, there are only finitely many orbits
where the coloring is not constant.

Conversely, given G-sets Xα together with almost invariant colorings
cα, all but finitely many of which are constant, we get an almost invariant
coloring on X =

⊔
α Xα by putting c(x) = cα(x) for x ∈ Xα. These obser-

vations suggest that for finitely generated groups, it suffices to consider
almost invariant colorings of orbits.

5.4.2 The Orbit of a Multicurve

Let X = Sα be the mapping class group orbit of some multicurve.

Theorem 5.7. When g ≥ 2, r arbitrary, there are no non-trivial almost invariant
colorings of X.

Any coloring of a finite set is trivial, so this theorem is only interesting
when X is infinite. Let c be some fixed, almost invariant coloring of X.

The proof of Theorem 5.7 consists of a series of relatively simple obser-
vations. The key notion is that of an interesting pair, which is a pair (τγ, κ)
consisting of a Dehn twist τγ and a multicurve κ ∈ X such that τγκ 6= κ.

Since τγ changes the color of only finitely many multicurves, the ele-
ments τn

γ κ all have the same color for all sufficiently large values of n. This
color is called the future of the interesting pair (τγ, κ), denoted fut(τγ, κ).
Similarly, we may consider the past pas(τγ, κ) of an interesting pair; the
common color of all multicurves τ−n

γ κ for sufficiently large n. We will also
need to consider pairs of the form (τ−1

γ , κ); the same definition of future
and past applies to these, and clearly fut(τ±1

γ , κ) = pas(τ∓1
γ , κ).

Lemma 5.8. For any interesting pair (τα, κ), we have

pas(τ−1
α , κ) = fut(τα, κ) = pas(τα, κ) = fut(τ−1

α , κ).

Proof. It suffices to prove the middle identity. We may find a non-separating
simple closed curve β different and disjoint from α such that (τβ, κ) is also
interesting. To see this, let δ be a component of κ for which ταδ 6= δ, and
assume that α and δ are represented by geodesics with respect to some
choice of hyperbolic metric. Cutting Σ along α then yields a (possibly
non-connected) surface with geodesic boundary, in which δ is a number
of properly embedded hyperbolic arcs. At least one of the connected
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components of the cut surface has genus at least 1, so in this component
we may find a closed geodesic β, not parallel to a boundary component,
intersecting one of the δ-arcs. In the original surface, β is still a geodesic
intersecting the geodesic δ; hence τβδ 6= δ and (τβ, κ) is interesting.

Next, since τα and τβ commute, we see that τn
α τm

β κ is an Z×Z-indexed
family of distinct multicurves. By assumption, both τα and τβ change the
color of finitely many multicurves. Hence, outside some bounded region
in Z×Z, moving from one diagram to a neighbour does not change the
color, and since we can connect the future of (τα, κ) to its past using such
moves, the claim follows. �

From now on, we will only consider the future.

Lemma 5.9. Assume that α and β are simple closed curves with i(α, β) ≤ 1,
and that κ is a multicurve such that (τα, κ), (τβ, κ) are interesting pairs. Then
fut(τα, κ) = fut(τβ, κ).

Proof. If i(α, β) = 0 the result follows from the proof of Lemma 5.8.
Now assume i(α, β) = 1. Then α ∪ β is contained in a subsurface Σ′

of genus 1 with one boundary component γ. If κ can not be isotoped
to be contained entirely in Σ′, either some component of κ intersects γ
essentially, or some component of κ lives in the complement of Σ′. In the
former case, it is clear that (τγ, κ) is interesting, so the i = 0 case implies
fut(τα, κ) = fut(τγ, κ) = fut(τβ, κ). In the latter case, use the fact that
the complement of Σ′ has genus at least 1 to find a simple closed curve
intersecting κ essentially.

Otherwise, κ lives entirely in Σ′. Let κ0 denote any component of κ on
which τα acts non-trivially. Then κ0 is a simple closed curve in a torus with
one boundary component. Since κ0 is not a parallel copy of the boundary
component, it must be a non-separating curve not parallel to α. Choose
orientations of α, β and κ0. Then, with respect to the basis for H1(Σ′)
represented by α and β, κ0 must have coordinates (p, q) with gcd(p, q) = 1
and (p, q) 6= ±(1, 0). Any other component of κ is forced to be either
parallel to the boundary component of Σ′ or to κ0. The only way that
τβ can act on some component of κ is then that τβ acts on κ0; hence also
(p, q) 6= ±(0, 1).

Consider the schematic picture of Σ′ on Figure 5.1 on the facing page,
where the boundary component is the circle in the center and α and β are
the sides of the square. We construct two disjoint simple closed curves
γ1, γ2 as follows: Draw two essential, disjoint arcs in Σ′ with the endpoints
on the boundary component, and use the fact that the complement of Σ′

has genus at least 1 to close them up in such a way that they are disjoint
and not homotopic to a curve contained in Σ′. By the above description of
κ0, (τγj , κ) are both interesting pairs. Now the i = 0 case implies that

fut(τα, κ) = fut(τγ1 , κ) = fut(τγ2 , κ) = fut(τβ, κ). �

The next proposition extends the above lemma to i(α, β) ≤ 2, but its
proof is rather technical. Also, as explained in the comments following the
proof, it is in fact not needed when one is only interested in surfaces with
at most one boundary component.
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αα

β

β

Σ′
γ1

γ2

Figure 5.1: A torus with one boundary component.

Proposition 5.10. Assume that α and β are simple closed curves with i(α, β) = 2,
and that κ is a multicurve such that (τα, κ) and (τβ, κ) are interesting. Then
fut(τα, κ) = fut(τβ, κ).

Proof. Let N be a regular neighbourhood of α ∪ β. We distinguish these
four cases.

(1) At least one of α and β is non-separating in N.

(2) Both α and β are separating in N, but non-separating in Σ.

(3) Both α and β are separating in N, but one is non-separating in Σ.

(4) Both α and β are separating in Σ.

In case (1), assume without loss of generality that α is non-separating.
This means that when cutting N along α, there is at least one arc b of
β connecting the two sides of α. Now construct two curves γ1, γ2 as
follows: Make two parallel copies of b and close them up using arcs going
in opposite directions along α. Applying small isotopies in a tubular
neighbourhood of α we obtain a situation as depicted in Figure 5.2. We
observe that each γj intersects α in exactly one point, and also they intersect
each other in exactly one point p. Furthermore, since i(α, β) = 2, the arc b
does not start and end at the same point of α, so we have i(γj, β) = 1 for
j = 1, 2.

α

β

bγ1

γ2

p

Figure 5.2: When α is non-separating in N, the two sides of α
are connected by an arc of β.

Now let κ0 be some component of κ on which τα acts non-trivially.
We claim that at least one of γ1 and γ2 intersects κ0 essentially. Assume
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the contrary, and orient γ1 and γ2 oppositely along b. Choose geodesic
representatives γ′1, γ′2 and κ′0 of these three curves. Then γ′j is disjoint from
κ′0, and necessarily γ′1 and γ′2 intersect transversally in a single point p′.
But then (γ′1γ′2)p′ ∈ π1(Σ, p′) is a representative of the free homotopy class
of (an oriented version of) α which does not intersect κ′0, implying that
i(κ0, α) = 0. This contradicts the choice of κ0.

So one of the pairs (τγj , κ) is interesting, and by Lemma 5.9 we have

fut(τα, κ) = fut(τγj , κ) = fut(τβ, κ).

This ends case (1).
In cases (2)–(4), notice that N is necessarily a sphere with four holes,

and α and β divide N into two pairs of pants in two different ways. Denote
the boundary components of N by γj, j = 0, 1, 2, 3, such that γ1, γ2 are on
one side of α and γ0, γ3 on the other, and such that γ0, γ1 are on one side
of β and γ2, γ3 on the other. Schematically we have Figure 5.3(a) on the
facing page.

Throughout the rest of the proof, we assume that α, β, γj, j = 0, 1, 2, 3,
denote geodesic representatives for their isotopy classes. Also, we let δ
be the geodesic representative of some component of κ on which τα acts
non-trivially. If δ does not live entirely in N, a twist in one of the boundary
components acts non-trivially on δ, and since this boundary component
is disjoint from α and β we are done by Lemma 5.9. Otherwise, δ is a
separating curve in N which is not parallel to a boundary component.
Clearly δ can not be parallel to β, since in that case κ could not consist of
any component on which τβ acts non-trivially. Hence δ is different from
both α and β.

In case (2), it is not hard to see that at least one of the »opposite« pairs
γ1, γ3 and γ0, γ2 can be connected by an arc in the complement of N. Take
two parallel copies of this arc, and close them up by arcs intersecting each
other, α and β exactly once as in Figure 5.3(b) on the next page (the two
connecting arcs shown are related by a twist in γ3). We may then argue
exactly as in case (1) to see that the twist in at least one of these simple
closed curves acts non-trivially on the multicurve in question.

In case (3), assume without loss of generality that β is separating and
α is nonseparating. This means that it is impossible to connect any of
γ0 and γ1 to any of γ2 and γ3 in the complement of N. But then, since
α is non-separating, one may connect either γ0 to γ1 or γ2 to γ3 in the
complement of N. Assume without loss of generality that the latter is the
case, and construct a simple closed curve γ disjoint from β intersecting γ2,
α and γ3 exactly once each by composing the arc in the complement of
N with an arc in N, as in Figure 5.3(c) on the facing page. Observe that
the geodesic representative of γ necessarily intersects γ2, α and γ3 exactly
once and is disjoint from β, so this representative contains a subarc in N
starting at γ2 and ending at γ3. We now claim that this arc intersects δ
(recall that δ has been chosen to be a geodesic). Assume the contrary. Then
δ is a simple closed curve in the surface obtained by cutting N along this
arc, which is a pair of pants. The »legs« are γ0 and γ1, whereas the »waist«
is composed of four segments; two copies of the connecting arc and the
remaining boundary components (cut open). Since δ is simple, it is parallel
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γ0

γ1

γ2

γ3

α

β

(a) N is a sphere with four holes.

γ0

γ1

γ2

γ3

α

β

(b) In case (2), two opposite boundary
components are connected in the
complement of N.

γ0

γ1

γ2

γ3

α

β

(c) In case (3), two »neighbouring«
boundary components are connected
in the complement of N.

γ0

γ1

γ2

γ3

α

β

(d) In case (4), there exists an essential
arc in the complement of N starting
and ending at the same boundary
component.

Figure 5.3: There are four different topological cases when two
curves intersect in two points.

to one of the boundary components of the pair of pants. But δ is certainly
not parallel to any of the original boundary components, nor is it parallel to
the »waist«, since the latter is parallel to β. This contradiction implies that
(τγ, κ) is an interesting pair, and since γ is disjoint from β and intersects α
in a single point, Lemma 5.9 yields the desired result,

fut(τα, κ) = fut(τγ, κ) = fut(τβ, κ).

Finally, in case (4), none of the four boundary components of N can
be connected in the complement of N. This means that at least one of
the connected components of Σ− N must have positive genus. Assume
without loss of generality that the component Σ0 bounded by γ0 has
positive genus. Now take some non-separating, essential arc in Σ0 with
its endpoints on γ0 and compose it with some essential arc in N disjoint
from β and intersecting α in exactly two points (cf. Figure 5.3(d)) to obtain
a non-separating curve γ in Σ. We claim that τγ acts non-trivially on δ, ie.
that the arc in N intersects δ essentially. To see this, we argue as in case (3)
above. Observe that γ has geometric intersection number 2 with α and γ0.
Hence, the geodesic representative of γ intersects α and γ0 exactly twice,
so this geodesic contains a subarc in N looking like the one depicted in
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Figure 5.3(d). We claim that this arc intersects δ. If this were not the case,
we may cut N along this arc to obtain a cylinder (bounded by one of the
original boundary components and a curve coming from the cut) and a
pair of pants (bounded by two of the original boundary components and
a curve from the cut), and δ lives completely in one of these. Since δ is
not parallel to any of the boundary components of N, we conclude that δ
is parallel to the third boundary component of the pair of pants. But this
third boundary component is clearly parallel to β, which contradicts the
fact that κ does not contain any component parallel to β. Hence (τγ, κ) is
interesting, and since γ is non-separating and intersects α in two points, by
case (3) and Lemma 5.9 we have

fut(τα, κ) = fut(τγ, κ) = fut(τβ, κ),

which finishes the last case. �

Now we turn to the (finite) presentation of the mapping class group
given by Gervais in [20], where the generators are twists in certain curves.
A key property of this presentation is that any two curves involved intersect
each other in at most two points. It should be pointed out, however, that if
one is only interested in surfaces with at most one boundary component, a
much earlier result by Wajnryb [40] yields a presentation where each pair
of curves intersect in at most one point. In this case, one does not need the
rather technical Proposition 5.10 above in the following (simply replace all
references to [20] by [40] and all occurences of »at most two points« by »at
most one point«).

Proposition 5.11. Let C denote the set of curves from [20] such that {τη | η ∈ C}
generate Γ. Let α, β ∈ C be two of these curves, and let κ1, κ2 ∈ X be multicurves
such that (τα, κ1) and (τβ, κ2) are interesting. Then

fut(τα, κ1) = fut(τβ, κ2).

Proof. We may find a sequence of curves η1, η2, . . . , ηn ∈ C and exponents
ε j = ±1 such that, writing τj = τ

ε j
ηj , τn · · · τ2τ1κ1 = κ2. For each 1 ≤

j ≤ n we may assume that (τj, τj−1 · · · τ1κ1) is interesting; otherwise we
may simply omit the corresponding τj. Now using alternately the fact
that ηj and ηj+1 intersect in at most two points and the obvious fact
that fut(τγ, κ) = fut(τγ, τγκ) for any interesting pair (τγ, κ), we obtain a
sequence of identities

fut(τ1, κ1) = fut(τ1, τ1κ1) = fut(τ2, τ1κ1)
= fut(τ2, τ2τ1κ1) = fut(τ3, τ2τ1κ1)
...
= fut(τn−1, τn−1 · · · τ2τ1κ1) = fut(τn, τn−1 · · · τ2τ1κ1)
= fut(τn, τn · · · τ2τ1κ1) = fut(τn, κ2)

which may be augmented by the identities fut(τα, κ1) = fut(τ1, κ1) and
fut(τn, κ2) = fut(τβ, κ2) to obtain the desired result. �
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Lemma 5.12. Let ϕ ∈ Γ be any diffeomorphism, and (τα, κ) an interesting pair.
Then (τϕ(α), ϕκ) is also interesting and fut(τα, κ) = fut(τϕ(α), ϕκ).

Proof. Recall that ϕ ◦ τα ◦ ϕ−1 = τϕ(α). Hence τϕ(α)(ϕκ) = ϕ(τακ) 6= ϕκ, so
(τϕ(α), ϕκ) is interesting. Also we have

τn
ϕ(α) = ϕ ◦ τn

α ◦ ϕ−1,

so τn
ϕ(α)(ϕκ) = ϕ(τn

α κ). Since the different multicurves τn
α κ have the same

color for all sufficiently large n, and since ϕ changes the color of only
finitely many multicurves, the result follows. �

Proposition 5.13. All interesting pairs (τγ, κ) where γ is a non-separating curve,
have the same future.

Proof. Let τα be a twist on a non-separating curve which is part of the
generating set for Γ from [20]. Then Proposition 5.11, with α = β, implies
that the future is a property of τα alone, and not of the particular multicurve
on which τα acts. If γ is any non-separating curve, choose a diffeomorphism
of Σ carrying γ to α and apply Lemma 5.12. �

We are now ready to prove the non-existence of almost invariant colorings.

Proof of Theorem 5.7. By Remark 5.6, it suffices to consider a {0, 1}-coloring
of X. Assume that c : X → {0, 1} is almost invariant. Choose a finite set
α1, . . . , αN of non-separating curves such that the twists in these curves
generate Γ (we do not require that these intersect pairwise in at most
two points). To be concrete, assume that the common future (cf. Proposi-
tion 5.13) of all interesting pairs (τγ, κ) with γ non-separating is 0. We must
then prove that the set B = c−1(1) ⊂ X is finite. For each element κ ∈ B,
choose a generator ταj such that (ταj , κ) is interesting (this must be possible
since the action is transitive and the ταj generate Γ). This defines a map
f : B→ {1, 2, . . . , N}. We claim that for each j ∈ {1, . . . , N}, the preimage
f−1(j) is finite.

To see this, for each κ ∈ f−1(j) consider the ταj -orbit through κ, ie. the
set Sj(κ) = {τn

αj
κ | n ∈ Z}. Let Bj be the union of the 1-colored multicurves

occuring in these orbits, ie.

Bj =
⋃

κ∈ f−1(j)

(Sj(κ) ∩ B),

so that f−1(j) ⊆ Bj. There are only finitely many 1-colored multicurves in
each Sj(κ) by Proposition 5.13 and Lemma 5.8. Since ταj changes the color
of at least one multicurve in each Sj(κ), namely κ, there can be only finitely
many distinct sets by the almost invariance of the coloring. This proves
that Bj is finite for each j, so also B =

⋃
j Bj is finite. �
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5.5 Injectivity

Proposition 5.14. The map (5.8) is injective.

Proof. Let u : Γ → CSα be a cocycle mapping to 0 under (5.8). This
means there exists U : Sα → C such that u( f )(κ) = (1 − f )U(κ) =
U(κ) − U( f−1κ) for each f ∈ Γ and κ ∈ Sα. Since u( f ) is a finitely
supported map, this means that U is an almost invariant C-coloring of Sα.
By Theorem 5.7 we then get that there is a number z such that U(κ) = z
for all but finitely many κ. Putting U′(κ) = U(κ)− z, we get an element
U′ ∈ CSα such that u is the coboundary of U′. �

This is the last piece of the puzzle.

Proof of Theorem 5.1. Combining Theorem 5.2 with the isomorphisms (5.4),
it suffices to prove the vanishing of H1(Γ, CSα) for each mapping class
group orbit Sα. This follows from Propositions 5.5 and 5.14. �



Chapter 6
Smooth Functions on the

Abelian Moduli Space

In this chapter, we assume that the genus of Σ is at least 3 and that Σ has
at most one boundary component. Consider the abelian moduli space

M =MU(1) = Hom(π1(Σ), U(1)) = Hom(H1(Σ), U(1)).

As a smooth manifold,M is diffeomorphic to a 2g-torus U(1)2g; an explicit
diffeomorphism is given by choosing a symplectic basis (x1, y1, . . . , xg, yg)
for H1(Σ, Z) and mapping ρ ∈ M to

(ρ(x1), ρ(y1), . . . , ρ(xg), ρ(yg)) ∈ U(1)2g. (6.1)

The usual symplectic structure on U(1)2g induces a well-defined symplectic
structure on M, since any two identifications differ by an element of
Sp(2g, Z). HenceM is a smooth symplectic manifold. The mapping class
group acts by symplectomorphisms, so both L2(M) and C∞(M) are Γ-
modules. The subspaces consisting of functions with mean value 0, which
is the same as the orthogonal complement of the constant functions, are
denoted by L2

0(M) and C∞
0 (M), respectively.

In [7], Andersen and the author proved the following two theorems.

Theorem 6.1. The cohomology group H1(Γ, L2(M)) vanishes.

Theorem 6.2. The cohomology group H1(Γ, C∞(M)) vanishes.

The proof of Theorem 6.1 given in [7] relies on the fact that for g ≥ 2, the
integral symplectic group Sp(2g, Z) has Kazhdan’s Property (T), along
with applying the Hochschild-Serre spectral sequence to the exact se-
quence (2.18). In fact, we have already explained how to prove Theo-
rem 6.1, since it is obviously a special case of Theorem 2.31. The proof of
Theorem 6.2 in [7] in turn relies on Theorem 6.1.

Presently, we will give an alternative proof of Theorem 6.2 which does
not use »expensive« tools such as Property (T) and spectral sequences.
Instead, the proof is inspired by the ideas underlying the proof of Theo-
rem 5.1.
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6.1 Pure Phase Functions

There is a natural orthonormal basis for L2(M) parametrized by H1(Σ),
which can be described in several different ways.

The intrinsic definition is rather simple. To a homology element m ∈
H1(Σ), we associate the function m̃ onM given by evaluation in m, ie. we
put

m̃(ρ) = ρ(m) ∈ U(1) ⊂ C

for ρ ∈ M = Hom(H1(Σ), U(1)).
Under the identification (6.1), the function corresponding to the homo-

logy element m = a1x1 + b1y1 + · · · agxg + bgyg is simply the trigonometric
monomial

(z1, w1, . . . , zg, wg) 7→ za1
1 wb1

1 · · · z
ag
g w

bg
g

on U(1)2g. From this description, it is clear that the family {m̃ | m ∈ H1(Σ)}
constitutes an orthonormal basis for L2(M).

Lemma 6.3. There is a mapping class group equivariant isomorphism

L2(M) ∼= `2(H1(Σ)) (6.2)

where H1(Σ) is considered as a discrete set.

Recall from (1.19) that `2(H1(Σ)) denotes the set of all maps f : H1(Σ)→ C

such that ∑m∈H1(Σ)| f (m)|2 < ∞.

Proof. We compute

(ϕ · m̃)(ρ) = m̃(ϕ−1 · ρ) = (ϕ−1 · ρ)(m) = ρ(ϕ ·m) = ϕ̃ ·m(ρ),

proving the equivariance claim. �

Since the element 0 ∈ H1(Σ) clearly corresponds to the constant function 1
onM, we immediately obtain

Lemma 6.4. Put H′ = H1(Σ)− {0}, considered as a discrete set. Then there is
a mapping class group equivariant isomorphism

L2
0(M) ∼= `2(H′). (6.3)

It is very convenient that the action of the mapping class group can be
described by a permutation action on an orthonormal basis.

6.2 Smooth Functions

Elements of L2
0(M) can be thought of as formal linear combinations

∑m∈H′ fmm with ∑m∈H′ | fm|2 < ∞. We will also need to know under
which conditions a collection of coefficients ( fm) defines a smooth function.
Choose a basis for H1(Σ), and define the norm of a homology element as
in equation (2.9). A classical result from harmonic analysis (see [37]) on
U(1) gives the following characterization of the smooth functions.
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Proposition 6.5. The formal sum ∑m∈H1(Σ) fmm defines a smooth function on

M if and only if | fm| approaches 0 faster than any polynomial in ‖m‖−1, or
equivalently, if and only if for each k ∈N, there is a constant Fk such that

‖m‖k| fm| ≤ Fk (6.4)

for all m ∈ H1(Σ).

These conditions are independent of the chosen basis for H1(Σ). A map
f : H1(Σ)→ C satisfying the above condition is called rapidly decreasing.

6.3 Proof of Theorem 6.2

There is a mapping class group equivariant inclusion of C∞
0 (M) into the set

Map(H′, C) of all maps from H′ to C. Note that this map factors through
the unitary representation `2(H′).

Lemma 6.6. The induced map

H1(Γ, C∞
0 (M))→ H1(Γ, Map(H′, C)) (6.5)

is identically 0.

Proof. Fix some oriented, non-separating, simple closed curve µ in Σ, and
let m = [µ] denote its homology class. Put mn = nm ∈ H′ for n ∈ Z+.
Then by Theorem 2.17 {mn} is a set of representatives of the Γ-orbits in
H′. Hence, by Theorem 1.2, the right-hand side of (6.5) decomposes as a
countable direct product

∏
n∈Z+

Hom(Γmn , C).

Clearly, all the stabilizer subgroups are equal to Γm. Now let [u] ∈
H1(Γ, C∞

0 (M)) and let f ∈ Γm. We must prove that the coefficient of
mn in u( f ) is equal to zero. Note that f (µ) is some simple closed curve rep-
resenting the same element in H1(Σ) as µ, so by Lemma 2.24 there exists an
element t ∈ T such that t f (µ) = µ. We have u(t f ) = u(t) + tu( f ) = u( f )
by Corollary 2.30. Since t f preserves the homotopy class of µ, t f is induced
by an element of the surface obtained by cutting Σ along µ; this implies that
t f can be written as a product τ±1

k · · · τ
±1
2 τ±1

1 of Dehn twists commuting
with τµ. Each of these twists fixes µ and hence mn, but this implies that

〈u(t f ), mn〉 =
k

∑
j=1
〈u(τ±1

j ), mn〉 =
k

∑
j=1
〈u(τ±1

j ), pjmn〉 = 0

by Theorem 2.25. �

The above lemma implies that for any cocycle u : Γ → C∞
0 (M), there

exists a map F : H′ → C such that for each g ∈ Γ, the map (1− g)F : H′ →
C given by (1− g)F(m) = F(m) − F(g−1m) corresponds to the smooth
function u(g). We must prove that F may be modified in such a way that it
itself represents a smooth function onM, ie., is rapidly decreasing.
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For this, we adapt the notions of almost invariant colorings and future
and past of interesting pairs from Chapter 5 to this setting. By an interesting
pair, we now mean a pair (τ, m) consisting of a left or right Dehn twist
τ and a homology element m such that τm 6= m (necessarily the twist is
on a non-separating curve). From now on, assume that F : H′ → C is a
map satisfying that for each g ∈ Γ, the map (1− g)F : H′ → C is rapidly
decreasing. Also, fix some symplectic basis (x1, y1, . . . , xg, yg) for H1(Σ),
and let ‖•‖ denote the associated norm on H1(Σ) as in (2.9).

Lemma 6.7. For each interesting pair (τ, m), both limits

fut(τ, m) = lim
n→∞

F(τnm) pas(τ, m) = lim
n→∞

F(τ−nm)

exist.

Proof. The collection F(τnm)− F(τn−1m), n ∈ Z is absolutely summable,
since (1− τ)F is rapidly decreasing. In particular, both sums

∞

∑
n=1

(
F(τnm)− F(τn−1m)

)
∞

∑
n=1

(
F(τ−nm)− F(τ−(n−1)m)

)
exist. But this precisely means that the expressions

F(τNm) = F(m) +
N

∑
n=1

(
F(τnm)− F(τn−1m)

)
F(τ−Nm) = F(m) +

N

∑
n=1

(
F(τ−nm)− F(τ−(n−1)m)

)
have limits as N → ∞. �

The identity

fut(τ, m) = pas(τ−1, m) (6.6)

follows directly from the definition.
In order to compare the futures of commuting Dehn twists, we need a

little technical result. In this lemma, the norm refers to the usual Euclidean
structure on Rn.

Lemma 6.8. Let a, b, c ∈ Rn with ‖a‖ = ‖c‖ = 1, a and c not parallel. For each
t ∈ R, let L(t) be the line through ta + b in the direction of c. Let P(t) denote the
point on L(t) closest to the origin. Then there exists a constant k > 0 such that
for all |t| large enough, we have ‖P(t)‖ ≥ k|t|.

Proof. The line L(t) is parametrized by ta + b + sc, s ∈ R. It is easy to
obtain an expression for the value of s for which ‖ta + b + sc‖ attains its
minimum. We have

d
ds
‖ta + b + sc‖2 = 2s + 2t〈a, c〉+ 2〈b, c〉
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so the minimum is attained for s = −t〈a, c〉 − 〈b, c〉. The value of ‖P(t)‖2

is then

‖b‖2 − 〈b, c〉2 + 2t(〈a, b〉 − 〈a, c〉〈b, c〉) + t2(1− 〈a, c〉2).

Since a and c are non-parallel unit vectors, the coefficient of t2 in this
expression is positive. Letting 0 < θ < π denote the angle between a and c,
we have 1− 〈a, c〉2 = sin2 θ, so ‖P(t)‖ is asymptotically equal to |t| sin θ.�

Remark 6.9. Although the above lemma is formulated and proved in terms
of the ordinary Euclidean distance, the fact that all norms on Rn are
equivalent immediately shows that the same conclusion holds (with another
constant) for any other norm. The assumption that a and c are unit vectors
is of course not important; it is only important that they are non-zero and
non-parallel.

Lemma 6.10. Let α and β be distinct and disjoint simple closed curves, such that
both (τα, m) and (τβ, m) are interesting pairs. Then

fut(τα, m) = fut(τβ, m). (6.7)

Proof. It is convenient to orient α and β in such a way that ω(m, [α]) and
ω(m, [β]) are positive. If α and β are homologous, τα and τβ act identically
on H1(Σ), in which case the claim is trivial.

Let ε > 0. We may find an N ∈ Z+ so large that both F(τn
α m) and

F(τn
β m) differ from the respective futures by at most ε/3 for all n ≥ N. We

wish to find an, if necessary, even larger N so that these two numbers differ
by at most ε/3 for n ≥ N. To this end, use the fact that (1− τ−1

α τβ)F is
rapidly decreasing to find a constant C2, such that

|(1− τ−1
α τβ)F(x)| ≤ C2‖x‖−2 (6.8)

for each x ∈ H′. Applying Lemma 6.8 with a = [α], b = m and c = [β]− [α],
we find a constant k and an N so that for all n ≥ N, all homology elements
(τ−1

α τβ)rτn
α m, r ∈ Z, have norm at least kn. Since

F(τn
β m)− F(τn

α m) =
n

∑
r=1

(
F((τ−1

α τβ)rτn
α m)− F((τ−1

α τβ)r−1τn
α m)

)
(6.9)

we may estimate

|F(τn
β m)− F(τn

α m)| ≤
n

∑
r=1
|F((τ−1

α τβ)rτn
α m)− F((τ−1

α τβ)r−1τn
α m)|

=
n

∑
r=1
|(1− τ−1

α τβ)F(τn−r
α τr

βm)|

≤
n

∑
r=1

C2‖τn−r
α τr

βm‖−2

≤
n

∑
r=1

C2(kn)−2

≤ C2

k2n
.
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By choosing n sufficiently large, this quantity can be made smaller than ε/3.
Hence fut(τα, m) and fut(τβ, m) differ by at most ε, and since this holds for
any ε > 0, they are equal. �

Corollary 6.11. The future is equal to the past.

Proof. If (τα, m) is an interesting pair, it is always possible to find another
simple closed curve β such that (τβ, m) is also interesting, and such that
[β] 6= ±[α]. Then Lemma 6.10 yields fut(τα, m) = fut(τβ, m), and a com-
pletely similar proof shows that fut(τβ, m) = pas(τα, m). �

The next result is analogous to Lemma 5.9.

Lemma 6.12. Assume that α and β are simple closed curves intersecting in
exactly one point, and that m is a homology element such that (τα, m), (τβ, m) are
interesting pairs. Then fut(τα, m) = fut(τβ, m).

Proof. Let Σ′ denote a regular neighbourhood of α ∪ β. If m lies in the
image of H1(Σ′) → H1(Σ), it can be represented by (parallel copies of) a
simple closed curve in Σ′, and the coordinates of m with respect to the basis
for H1(Σ′) represented by (oriented versions of) α and β is a pair (p, q)
with p 6= 0 and q 6= 0. Hence, we may find simple closed curves γj, j = 1, 2,
exactly as in the proof of Lemma 5.9 disjoint from each other and from α
and β such that (τγj , m) are interesting. Then by Lemma 6.10 we have

fut(τα, m) = fut(τγ1 , m) = fut(τγ2 , m) = fut(τβ, m).

If m does not lie in the image of H1(Σ′)→ H1(Σ), choose 2g− 2 simple
closed curves α2, β2, . . . , αg, βg in the complemt Σ− Σ′ extending (α, β) to a
symplectic basis for H1(Σ). Since at least one of the coordinates of m with
respect to these 2g− 2 curves is non-zero, m makes an interesting pair with
some αj or β j; again the claim follows from Lemma 6.10. �

Since we assume that the surface Σ has at most one boundary component,
we do not need an equivalent of the technical Proposition 5.10. Instead, we
proceed to the equivalent of Proposition 5.11.

Proposition 6.13. Let C denote the set of curves from [40] such that {τη | η ∈ C}
generate Γ. Let α, β ∈ C be two of these curves, and let m1, m2 ∈ H′ be homology
elements in the same mapping class group orbit, such that (τα, m1) and (τβ, m2)
are interesting. Then

fut(τα, m1) = fut(τβ, m2).

The proof of Proposition 5.11 can be repeated almost verbatim.

Lemma 6.14. Let ϕ ∈ Γ be a diffeomorphism and (τγ, m) an interesting pair.
Then (τϕ(γ), ϕm) is also interesting, and fut(τγ, m) = fut(τϕ(γ), ϕm).
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Proof. For any ε > 0 there are only finitely many elements x ∈ H′ such
that |F(x)− F(ϕx)| > ε, since (1− ϕ−1)F : H′ → C is rapidly decreasing,
Hence we may choose an n so large that all three inequalities

|F(τn
γ m)− fut(τγ, m)| < ε

|F(τn
ϕ(γ)(ϕm))− fut(τϕ(γ), ϕm)| < ε

|F(τn
γ m)− (Fϕτn

γ m)| < ε

are satisfied. Since this holds for any ε > 0 and τn
ϕ(γ)(ϕm) = ϕτn

γ m the
claim follows. �

Proposition 6.15. The future of an interesting pair (τγ, m) only depends on the
mapping class group orbit of m.

The proof of Proposition 5.13 applies verbatim.

Theorem 6.16. Let F : H′ → C be any map such that u(ϕ) = (1− ϕ)F : H′ →
C is rapidly decreasing for every ϕ ∈ Γ. Then there exists a rapidly decreasing
map f : H′ → C such that u(ϕ) = (1− ϕ) f .

Proof. Proposition 6.15 shows that we may modify F by a constant on each
mapping class group orbit in H′ such that the future (and past) of any
interesting pair is 0. Let f be the result of this modification. Hence for any
x ∈ H′ and any twist τγ such that τγx 6= x we have

lim
n→∞

f (τn
γ x) = lim

n→∞
f (τ−n

γ x) = 0. (6.10)

We claim that f is rapidly decreasing, so we must prove that the condition
from Proposition 6.5 is satisfied. Fix 2g simple closed curves αj, β j, j =
1, . . . , g, representing a symplectic basis for H1(Σ), and let k ≥ 2 be given.
Write τj = ταj and τg+j = τβ j for 1 ≤ j ≤ g. We must find a constant ck

such that | f (m)|‖m‖k ≤ ck for all m ∈ H′.
By assumption, (1 − τ±1

j )F = (1 − τ±1
j ) f is rapidly decreasing for

j = 1, . . . , 2g. Hence there are constants Cj,±
k+1 such that

| f (x)− f (τ∓1
j x)|‖x‖k+1 ≤ Cj,±

k+1 ≤ Ck+1 (6.11)

for all x ∈ H′. Here Ck+1 denotes the largest of the 4g numbers Cj,±
k+1. We

now claim that we may put ck = Ck+1/k.
Let m ∈ H′ be any given element. In order to estimate | f (m)|‖m‖k,

choose by Lemma 2.18 an index 1 ≤ j ≤ 2g and a sign ε = ±1 such that
‖τεn

j m‖, n = 0, 1, 2 . . ., is strictly increasing. Assume ε = +1. For each
R ≥ 1, we have the telescoping sum

f (τR
j m)− f (m) =

R

∑
r=1

f (τr
j m)− f (τr−1

j m)
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and hence, since f (τR
j m)→ 0 for R→ ∞, we obtain

| f (m)| =
∣∣ ∞

∑
r=1

( f (τr
j m)− f (τr−1

j m))
∣∣

≤
∞

∑
r=1
| f (τr

j m)− f (τr−1
j m)|.

Each term in this sum can be estimated using (6.11) (with x = τr
j m), so we

obtain

| f (m)| ≤ Ck+1

∞

∑
r=1

1

‖τr
j m‖k+1

≤ Ck+1

∞

∑
r=‖m‖+1

1
rk+1

< Ck+1

∫ ∞

‖m‖

1
rk+1 dr

=
Ck+1

k‖m‖k

using the fact that ‖τr
j m‖ is a strictly increasing sequence of integers and

elementary estimates. �



Chapter 7
Ideas and Conjectures

The contents of this chapter are of a more speculative nature than the rest of
the thesis. We begin by combining the ideas from the previous two chapters
in order to prove a theorem about the cohomology of Γ with coefficients
in a certain (formal) space of linear combinations of multicurves. We then
explain how these linear combinations give rise to continuous functions
on the SU(2) moduli space, though not necessarily faithfully. In the last
section, we present a few conjectures, whose solution seem within reach,
and also a few more vaguely phrased problems.

7.1 Rapidly Decreasing Coefficients

Let P be a pants decomposition of Σ and consider the associated norm
‖•‖P on S . We shall call a function f : S → C rapidly decreasing (with
respect to P) if f satisfies the equivalent of (6.4), that is, for each k ∈ N

there exists a constant Fk such that for all κ ∈ S we have

| f (κ)|‖κ‖k ≤ Fk. (7.1)

Lemma 7.1. The property of being rapidly decreasing does not depend on the
chosen pants decomposition.

Proof. The norms ‖•‖, ‖•‖′ associated to two different pants decomposition
are equivalent in the usual sense that there exists constants c, C > 0 such
that

c‖•‖ ≤ ‖•‖′ ≤ C‖•‖, (7.2)

since by Theorem 2.13, the norms are related via piecewise integral linear
expressions. �

We denote the space of all rapidly decreasing functions S → C by R.

Lemma 7.2. The mapping class group action on Map(S , C) preserves the subset
R.

71
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Proof. It suffices to prove that every Dehn twist preserves R. Let f ∈ R,
and let γ be a simple closed curve on Σ. Choose a pants decomposition
of Σ containing γ. Since f is rapidly decreasing, there are constants Fk
satisfying (7.1).

The estimate

‖τ±1
γ κ‖ = ‖κ‖ − |tγ(κ)|+ |tγ(κ)±mγ(κ)|

≤ ‖κ‖+ |tγ(κ)|+ mγ(κ)
≤ 2‖κ‖

shows that 1
2‖κ‖ ≤ ‖τ±1

γ κ‖ ≤ 2‖κ‖ for any multicurve κ. Hence

|(τγ · f )(κ)|‖κ‖k = | f (τ−1
γ κ)|‖κ‖k

≤ Fk‖τ−1
γ κ‖−k‖κ‖k

≤ 2kFk

for any k ∈N and any multicurve κ. �

7.2 Cohomology

The next result, and its proof, can be seen as a hybrid of Theorem 5.1 and
Theorem 6.2.

Theorem 7.3. The cohomology group H1(Γ,R) vanishes.

We state the necessary adaptations of the results from Chapters 5 and 6.

Lemma 7.4. The map H1(Γ,R)→ H1(Γ, Map(S , C)) is zero.

Proof. The target is the direct product

∏
α

H1(Γ, Map(Sα, C)),

where S =
⊔ Sα is the splitting of S into mapping class group orbits.

Choosing a representative κα for each S and letting Γα = Γκα denote the
stabilizer of κα, we obtain an isomorphism

H1(Γ, Map(Sα, C))→ Hom(Γα, C).

The proof of Proposition 5.5 shows that the restriction of a cocycle u : Γ→ R
to Γα followed by evaluation in κα is identically 0. �

This theorem can be rephrased as follows: For any cocycle u : Γ→ R, there
exists an map U : R → C such that u(ϕ) = (1− ϕ)U for every ϕ ∈ Γ. The
proof of Theorem 7.3 is complete once we prove:

Theorem 7.5. Let U : S → C be a map such that (1− ϕ)U is rapidly decreasing
for each ϕ ∈ Γ. Then there exists a mapping class group invariant map C : S → C

such that U − C is rapidly decreasing.
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Let U be a map satisfying the above hypothesis. By an interesting pair we
now (again) mean a pair (τ, κ) consisting of a right or left Dehn twist τ
and a multicurve κ such that τκ 6= κ.

Lemma 7.6. For each interesting pair (τ, κ), both limits

fut(τ, m) = lim
n→∞

F(τnm) pas(τ, m) = lim
n→∞

F(τ−nm) (7.3)

exist.

The proof of Lemma 6.7 can be used verbatim. Also, since the Dehn-
Thurston coordinates parametrize S as a subset of Euclidean space (but
equipped with a norm which is easier to work with), Lemma 6.8 can be
used to rephrase Lemma 6.10 and Corollary 6.11:

Lemma 7.7. Let α and β be distinct and disjoint simple closed curves, such that
both (τα, κ) and (τβ, κ) are interesting pairs. Then

fut(τα, κ) = fut(τβ, κ). (7.4)

Lemma 7.8. For any interesting pair (τ, κ), fut(τ, κ) = pas(τ, κ).

The statements and proofs of Lemma 5.9, Proposition 5.10 and Proposi-
tion 5.11 need not be modified to hold in this new context.

Lemma 7.9. Let ϕ ∈ Γ be any diffeomorphism, and (τα, κ) an interesting pair.
Then (τϕ(α), ϕκ) is also interesting and fut(τα, κ) = fut(τϕ(α), ϕκ).

Proof. Use the idea from the proof of Lemma 6.14. �

Proposition 7.10. The future of an interesting pair (τγ, κ) depends only on the
mapping class group the orbit of κ, and is independent of the twist τγ used to
compute it.

Proof. Let α be a non-separating curve which is part of the generating set
from [20]. Then Proposition 5.13 with α = β shows that fut(τα, κ) only
depends on the mapping class group orbit of κ. But then, for any interesting
pair (τγ, κ) with γ non-separating, we may find a diffeomorphism ϕ ∈ Γ
taking γ to α and apply Lemma 7.9. Finally, if γ is a separating curve,
we may find a non-separating curve β disjoint from γ such that (τβ, κ) is
interesting. Then Lemma 7.7 shows that fut(τγ, κ) = fut(τβ, κ). �

Proof of Theorem 7.5. We define the map C : S → C as follows: If the map-
ping class group orbit of κ is trivial, put C(κ) = U(κ). Otherwise, choose a
Dehn twist τ acting non-trivially on κ, and put C(κ) = fut(τ, κ). Proposi-
tion 7.10 shows that this gives a well-defined, mapping class group invariant
map. Let V = U − C. Clearly (1− ϕ)V = (1− ϕ)U, so (1− ϕ)V is rapidly
decreasing for every ϕ ∈ Γ.

To see that V is rapidly decreasing, we proceed as in the proof of
Theorem 6.16. Let k ∈ N. Fix some pants decomposion P of Σ, and let
T denote the corresponding set of Dehn twists from Theorem 2.22. Since
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(1− τ)V is rapidly decreasing for each of the finitely many τ ∈ T, we may
find a constant Kk+1 such that

|V(κ)−V(τ±1κ)|‖κ‖k+1 ≤ Kk+1 (7.5)

for all τ ∈ T and all κ ∈ S .
We now wish to estimate |V(κ)|‖κ‖k for any κ ∈ S . By construction,

V(κ) = 0 for boundary parallel multicurves κ. Assume κ′ 6= ∅ and choose
an element τ ∈ T and an exponent ε = ±1 such that ‖τεnκ‖, n ≥ 0, is
strictly increasing. Assume ε = −1. Then

V(τ−Rκ)−V(κ) =
R

∑
r=1

V(τ−rκ)−V(τ−r+1κ)

implies that

|V(κ)| ≤
∣∣∣ R

∑
r=1

V(τ−rκ)−V(τ−r+1κ)
∣∣∣+ |V(τ−Rκ)| (7.6)

for all R > 0. By construction, |V(τ−Rκ)| → 0 as R→ ∞, and the terms in
the sum can be estimated using (7.5), so we get

|V(κ)| ≤
∞

∑
r=1

Kk+1

‖τ−rκ‖k+1

≤
∞

∑
r=‖κ‖+1

Kk+1

rk+1

≤ Kk+1

∫ ∞

‖κ‖

1
rk+1 dr

=
Kk+1

k‖κ‖k .

This shows that a constant satisfying the requirement (7.1) is Kk+1/k. �

7.3 Normalized Holonomy Functions

The inclusion SU(2) ↪→ SL2(C) induces an embedding

Hom(π1, SU(2)) ↪→ Hom(π1, SL2(C)) (7.7)

which in turn induces a map

j : M =MSU(2) →MSL2(C).

Since (7.7) is an embedding of a real slice, the restriction of regular
functions

O(Hom(π1, SL2(C)))→ Fun(Hom(π1, SU(2)))

is injective. The regular functions onMSL2(C) are by definition a subset of
O(Hom(π1, SL2(C))), so we get that the restriction map

j∗ : O(MSL2(C))→ Fun(MSU(2)) (7.8)
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is also injective.
Compactness ofM allows us to equip the space C(M) of continuous

functions with the uniform norm ‖•‖∞. It is obvious that the regular
functions are continuous. We normalize the multicurve functions from
Chapter 5 by putting

hκ =
νκ

‖νκ‖∞
.

Incidentally, ‖νκ‖∞ is a power of 2, since |νκ(ρ)| attains its maximal value
at the trivial representation, and the maximum is 2 to the number of
components of κ.

Theorem 7.11. For any element f ∈ R, the sum

∑
κ∈S

f (κ)hκ (7.9)

defines a continuous function onM.

Proof. Fix some pants decomposition of Σ, and consider the associated
norm on S . There is a constant C such that

|{κ ∈ S | ‖κ‖ = n}| ≤ Cn6g+3r−7.

Now choose a constant K such that

| f (κ)|‖κ‖6g+3r−5 ≤ K

for all κ ∈ S . Then for any x ∈ M we have

∑
κ∈S
κ 6=∅

| f (κ)hκ(x)| = ∑
n∈Z+

∑
‖κ‖=n

| f (κ)hκ(x)|

≤ ∑
n∈Z+

∑
‖κ‖=n

K
n6g+3r−5

≤ ∑
n∈Z+

CK
n2 < ∞

since |hκ(x)| ≤ 1. Thus (7.9) is absolutely and uniformly convergent onM,
and the limit is a continuous function. �

A slight variation of the above theme is to consider other notions
of »rapidly decreasing« linear combinations. For example, exponentially
decaying functions S → C give rise to functions onMSU(2) which may be
extended to an open neighbourhood inMSL2(C).

7.4 Faithfulness

Injectivity of (7.8) clearly implies that the normalized holonomy functions
hκ , κ ∈ S , are linearly independent as functions on M. However, this
does not automatically imply that the map Φ : R → C(M) given by (7.9)
is injective. It is at present unknown to the author whether or not Φ is
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injective, but if it is, Theorem 7.3 of course translates into a statement about
some subspace of the set of continuous functions onMSU(2).

When we restrict further to the compact manifold M1
SU(2), the space

of SU(2)-valued representations with holonomy −I around the single
boundary component, it is no longer true that the holonomy functions
{νκ | κ ∈ S} are linearly independent: Each boundary parallel component
contributes a factor of 2 to the holonomy function. That is, if we write a
multicurve κ as κ∂ ∪ κ′ (cf. Remark 2.21), we have

νκ = 2|π0κ∂ |νκ′

as functions onM1
SU(2), where |π0κ∂| is the number of components of κ∂.

This relation is, however, the only additional relation needed [3], so if we
only allow multicurves without boundary parallel components we do get
that CS ′ injects into C(M1

SU(2)). Letting R′ denote the space of rapidly
decreasing functions on S ′ it is clear that we also have

Theorem 7.12. The cohomology group H1(Γ,R′) vanishes.

By normalizing the holonomy functions νκ , κ ∈ S ′, overM1
SU(2) we clearly

obtain a map

Φ′ : R′ → C(M1
SU(2)). (7.10)

7.5 Open Questions

We end the dissertation with stating a few problems which may be seen as
natural continuations of the work presented.

The first question is whether the maps Φ and Φ′ are injective. It is
also an interesting problem to try to describe which continuous functions
one can obtain as rapidly decreasing linear combinations of holonomy
functions.

Conjecture 7.13. The map Φ′ is injective, and it takes values in the smooth
functions onM1

SU(2).

The author and Andersen are currently working on a proof of this conjec-
ture. Our approach uses Fourier analysis along a torus fibration; a strategy
which was recently used by Charles and Marche [17] to give an alternative
proof of the linear independence of the holonomy functions associated to
multicurves when considered as functions on the SU(2) moduli space.

A proof of the above conjecture would be a major step towards answer-
ing the question initiating the project. With Theorems 5.1 and 6.2 (and
also 7.3 and 7.12) as motivation, I claim:

Conjecture 7.14. The cohomology group

H1(Γ, C∞(M1
SU(2)))

vanishes.
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It is obvious to ask if H1(Γ,O(MG)) vanishes for algebraic groups other
SL2(C). For G = SLn(C), Sikora [35] has constructed a geometric model:
He defines the n’th skein algebra An of Σ to be the algebra generated by
so-called n-graphs on Σ modulo certain simple local relations. He then
proves that O(MSLn(C)) is isomorphic to An modulo its nilradical. The SLn

case is of particular interest because of the inclusionMd
SU(n) ⊆MSLn(C).

Problem 7.15. Find a relationship between the regular functions on the
SL2(C) moduli space and the smooth functions onMd

SU(n).

Adapting Sikora’s methods, Skovborg [36] shows how to presentO(MG) as
an explicit quotient of the algebra C(Σ) of chords diagrams, for G = GLn(C)
and G = SLn(C). Despite of these results, a calculation of H1(Γ,O(MG))
seems rather hard, since the most obvious way to compute a cohomo-
logy group H1(G, M/N) is to compute the adjacent terms H1(G, M) and
H2(G, N) in the long exact cohomology sequence. Regarding the former
of these, understanding the cohomology with coefficients in the algebra of
chord diagrams may also be interesting in itself.

Problem 7.16. Compute H1(Γ, C(Σ)).

However, C(Σ) is itself a quotient (4.22).
Although the inspiration for considering the cohomology of the map-

ping class group with various twisted coefficients came from the study of
moduli spaces and their quantization, the topology and geometry of these
spaces did not appear at all in the proofs of Theorems 5.1, 6.2 and 7.3.

Problem 7.17. Let G be a group acting on a (discrete) set X, and consider
some class V of functions on X preserved by the G-action. Formulate
conditions on G, X and V which are sufficient to deduce H1(G,V) = 0.

Some of the key ingredients in the proofs seem to be that G is generated
by a single conjugacy class (that of a twist in a non-separating curve), that
the orbit under such a generator is either trivial or infinite, the existence of
sufficiently many free abelian subgroups of G of rank 2, and, of course, the
particular nature of the class of functions considered. Without additional
structure on X it seems hard to think of other classes of functions than the
permutation modules `p(X), CX and Map(X, C). In our cases we used an
embedding of X into Euclidean space to obtain a norm, which had certain
good properties with respect to the group action.





Appendix A
Principal Bundles and

Connections

Let G be a Lie group and B a manifold. Recall that a principal G-bundle
over B consists of a smooth map π : P→ B, where P is a smooth manifold
equipped with a smooth right action of G, such that the G-orbits are
exactly the fibres of π. Moreover, P is locally trivial in the sense that there
exists an open covering {Uα} of B and G-equivariant diffeomorphisms
ϕα : π−1(Uα)→ Uα ×G mapping the fibre over x to {x} ×G for all x ∈ Uα.

Fixing a point p ∈ P, the differential of the right action g 7→ p · g at
the identity in G is a linear map vp : g → TpP. It is easy to see that the
sequence

0 // g
vp

// TpP
π∗ // Tπ(p)B // 0 (A.1)

is exact. Vectors in the subspace Vp = vp(g) are called the vertical vectors
at p. A connection in P is a 1-form A ∈ Ω1(P, g) on P with values in
the vector space g, such that Ap ◦ vp = idg for all p ∈ P, and such that
R∗g A = Ad(g−1) ◦ A, where Rg denotes the right multiplication by g ∈ G
on P, and Ad(g−1) is the adjoint action of g−1 on g. The latter requirement
implies (and is in fact equivalent to) that the horizontal subspaces Hp =
ker Ap are permuted by the right action, ie. Rg∗Hp = Hpg. An element
a ∈ g gives rise to a vectorfield a∗ on P given by a∗p = vp(a), called the
fundamental vector field associated to a. The fundamental vector fields
satisfy [a∗, b∗] = [a, b]∗, where the left-hand side is the bracket of vector
fields on P, and the right-hand side is the Lie bracket in g. Thus the vertical
bundle VP ⊆ TP is integrable in the Frobenius sense. A connection can also
be specified by a giving a complementary subbundle HP ⊆ TP invariant
under the right action of G; ie. a smooth distribution such that at each point
p ∈ P, TpP = VpP � HpP and Hpg = Rg∗(Hp). For a vector field Z on P,
let Z = X + Y be the decomposition in horizontal and vertical vector fields
determined by HP. Then the form A is reconstructed as Ap(Z) = v−1

p (Yp).
The form θ ∈ Ω1(G, g) defined by θg = (Lg−1)∗ is called the Maurer-

Cartan form on G. In a trivial bundle P = B× G, there is a connection
defined by A = π∗2 θ, where π2 : B× G → G is projection on the second

79
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factor. The horizontal bundle is simply the tangent spaces TxB ⊆ T(x,g)(B×
G). Thus connections always exist locally, and since the two defining
conditions are affine, we see that we may use a partition of unity to
glue local connections together to obtain a global connection. Hence
any principal G-bundle admits a connection. We denote the set of all
connections by A.

Given a connection A, the wedge product A ∧ A ∈ Ω2(P, g � g) is a
2-form on P with values in the vector space g � g. The Lie bracket [•, •]
is a linear map from g � g to g, and we denote by [A ∧ A] ∈ Ω2(P, g) the
composition of A ∧ A with this linear map. For tangent vectors X, Y ∈ TpP,
we have [A ∧ A](X, Y) = [A(X) � A(Y)− A(Y) � A(X)] = 2[A(X), A(Y)].

The curvature form of A is the g-valued 2-form FA defined by

FA = dA + 1
2 [A ∧ A]. (A.2)

If the form FA is identically 0, A is called a flat connection. We denote the
subspace of A consisting of flat connections by F .

A.1 Associated Bundles

Given a representation ρ : G → Aut(V) of the Lie group G on a vector space
V, we may construct a vector bundle E = Eρ = ρP over B with standard
fibre V as follows: As a set, put E = P ×G V, where G acts diagonally,
(p, v) · g = (pg, ρ(g−1)v). Clearly the map π induces a map πE : E →
B. A local trivialization ϕ : π−1(U) → U × G induces a trivialization
ϕ̃ : π−1

E (U)→ U ×V given by

ϕ̃([p, v]) = (π(p), ρ(π2 ϕ(p))v) (A.3)

where π2 : U × G → G is the projection on the second factor. This is
well-defined, because if [p, v] = [q, w], we have q = pg for some (uniquely
determined) g ∈ G, and then w = ρ(g−1)v, whence

ϕ̃([q, w]) = (π(pg), ρ(π2 ϕ(pg))w = (π(p), ρ(π2 ϕ(p)g)ρ(g−1)v = ϕ̃([p, v]).

A V-valued form α ∈ Ωk(P, V) is called ρ-equivariant, if R∗gα = ρ(g−1) ◦
α for all g ∈ G. In this language, a connection on P is Ad-equivariant.
Furthermore, α is called horizontal, if the contraction iYα of α with any
vertical vector Y vanishes. A form on P with values in V which is both
horizontal and equivariant is called basic. We denote the space of basic
k-forms by Ωk

b(P, V).

Lemma A.1. There is an isomorphism between the space of basic k-forms on P
and the space of Eρ-valued k-forms on the base B.

Proof. Given a basic k-form α ∈ Ωk
b(P, V), a point x ∈ B and k tangent

vektors X1, . . . , Xk ∈ TxB, choose a point p ∈ π−1(x), and lifts X̃i of Xi
(ie., π∗X̃i = Xi). Then define α#(X1, . . . , Xk) to be the equivalence class of
the point (p, α(X̃1, . . . , X̃k)) in E. This is independent of the choice of lifts
X̃i because α is horizontal (and any two lifts differ by a vertical vector), and
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it is independent of the choice of p because of ρ-equivariance. Using a local
trivialization of P, smooth vector fields on B lift to smooth vector fields on
P, so α# is a smooth k-form on B with values in E.

Conversely, given such a form β, we simply proceed as above and
let p ∈ P be some point, and X1, . . . , Xk tangent vectors at p. Then
β(π∗X1, . . . , π∗Xk) is a point in the fibre of E over π(p), so it has a unique
representative of the form (p, v). Put β#(X1, . . . , Xk) = v. Clearly β# is
horizontal, because π∗ maps vertical vectors to 0. It is also equivariant,
because π∗(Rg∗Xi) = π∗(Xi), and the representative of (p, v) with first
coordinate pg is (pg, ρ(g−1)v).

The two operations just described are easily seen to be inverse to each
other. �

A.2 Covariant Derivatives

The ordinary exterior differential d : Ω∗(P, V)→ Ω∗+1(P, V) restricts to a
map on the equivariant forms, because d commutes with pull-back and
linear maps. However, the exterior differential of a horizontal form need not
be horizontal, so d does not restrict to a map on the basic forms. But given
a connection A in P, we may consider the projection operator h : TP→ HP
which to a tangent vector X associates the horizontal part hX of X (with
respect to A). Then define h∗ : Ωk(P, V)→ Ωk(P, V) by the formula

h∗α(X1, . . . , Xk) = α(hX1, . . . , hXk).

Evidently h∗ is a projection onto the horizontal forms on P. Define the
operator dA as h∗ ◦ d, ie. dAα(X0, . . . , Xk) = (dα)(hX0, . . . , hXk).

Theorem A.2. The operator dA maps equivariant forms to equivariant forms, and
hence basic forms to basic forms.

Proof. If α is equivariant, the equivariance of dAα follows basically because
the horizontal subspaces are permuted by Rg∗: It is easy to see that Rg∗
commutes with h, so R∗g commutes with h∗. Then an easy calculation shows
that R∗gdAα = R∗gh∗dα = h∗dR∗gα = h∗d(Ad(g−1) ◦ A) = Ad(g−1) ◦ dAα. �

On the basic forms, we have another expression for dA.

Lemma A.3. For a basic form α, the operator dA is given by

dAα = dα + ρ̇(A) ∧ α. (A.4)

This requires an explanation: The representation ρ induces a linear map
ρ̇ : g→ End(V), and ρ̇(A) is a 1-form on P with values in the vector space
End(V). Then ρ̇(A)∧ α is a k + 1-form on P with values in the vector space
End(V) � V, and we apply the canonical contraction to obtain a k + 1-form
with values in V, still denoted ρ̇(A) ∧ α. Before we can prove Lemma A.3,
we need to linearize the equivariance condition on forms.

Lemma A.4. For a fundamental vector field a∗ on P, the Lie derivative La∗α of
an equivariant form α is given by

La∗α = ρ̇(−a) ◦ α.



82 Appendix A · Principal Bundles and Connections

Proof. Putting gt = exp(ta), Rgt is precisely the flow of a∗ at time t. So by
definition of the Lie derivative

La∗α = d
dt

∣∣
t=0 R∗gt α = d

dt

∣∣
t=0 ρ(exp(−ta)) ◦ α = ρ̇(−a) ◦ α. �

Proof (of Lemma A.3). Clearly the left-hand side of (A.4) is a horizontal form.
To show that the right-hand side is horizontal, it is clearly enough to show
that the contraction with a fundamental vector field is 0. So let a ∈ g, and
then by the properties of insertion and Lie derivative, we obtain

ia∗dα + ia∗(ρ̇(A) ∧ α) = La∗α− dia∗α + ia∗ ρ̇(A) ∧ α− ρ̇(A) ∧ ia∗α

The second and last term vanish because α is horizontal. Now,

ia∗ ρ̇(A) ∧ α = ρ̇(A(a∗)) ∧ α = ρ̇(a) ◦ α,

so the remaining two terms cancel by Lemma A.4. Hence the right-hand
side of (A.4) is also horizontal.

Now let X0, . . . , Xk be k + 1 horizontal vector fields on P. Then the
left-hand side of (A.4) is

dAα(X0, . . . , Xk) = (h∗dα)(X0, . . . , Xk) = dα(X0, . . . , Xk)

whereas the right-hand side is

(dα + ρ̇(A) ∧ α)(X0, . . . , Xk) = dα(X0, . . . , Xk) + (ρ̇(A) ∧ α)(X0, . . . , Xk).

Expanding the wedge product as a sum over permutations, we see that
each term is 0, since A(Xi) = 0 by definition of horizontal vectors. �

Although dA can now be viewed as a map Ω∗b(P, V)→ Ω∗+1
b (P, V), it

is not necessarily a differential, ie. d2
A need not be 0. In fact, the curvature

of A is an obstruction to d2
A = 0:

Theorem A.5. For α ∈ Ωk
b(P, V), we have d2

Aα = ρ̇(FA) ∧ α.

Proof. We calculate (using Lemma A.3)

dAdAα = dA(dα + ρ̇(A) ∧ α)
= ddα + ρ̇(dA) ∧ α− ρ̇(A) ∧ dα + ρ̇(A) ∧ dα + ρ̇(A) ∧ (ρ̇(A) ∧ α)
= ρ̇(dA) ∧ α + (ρ̇(A) ∧ ρ̇(A)) ∧ α.

Comparing this with the definition of the curvature FA = dA + 1
2 [A ∧ A],

we need to prove that

1
2 ρ̇[A ∧ A] = ρ̇(A) ∧ ρ̇(A). (A.5)

Locally, we may write A = ∑ dxi � ai, where (xi) is a local coordinate
system on P, and ai are elements in g. Then ρ̇(A) = ∑ dxi � ρ̇(ai), so the
right-hand side of (A.5) may be written

ρ̇(A) ∧ ρ̇(A) = ∑ dxi ∧ dxj � ρ̇(ai)ρ̇(aj)

= ∑
i<j

dxi ∧ dxj � (ρ̇(ai)ρ̇(aj)− ρ̇(aj)ρ̇(ai))

= ∑
i<j

dxi ∧ dxj � ρ̇[ai, aj] (A.6)
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since ρ̇ is a Lie algebra homomorphism. Turning to the left-hand side of
(A.5), we have A ∧ A = ∑ dxi ∧ dxj � ai � aj, so [A ∧ A] = ∑ dxi ∧ dxj �

[ai, aj]. Thus

ρ̇[A ∧ A] = ∑ dxi ∧ dxj � ρ̇[ai, aj] = 2 ∑
i<j

dxi ∧ dxj � ρ̇[ai, aj] (A.7)

since dxi ∧ dxj = −dxj ∧ dxi and [ai, aj] = −[aj, ai]. Comparing (A.6) and
(A.7) with (A.5), this proves the theorem. �

We note that this in particular implies that d2
A = 0 if A is flat.

A.3 The Adjoint Bundle

An important example of an associated bundle is the adjoint bundle Ad P =
EAd defined via the adjoint representation Ad: G → Aut(g) of G on its
Lie algebra. Until now we have only shown that there exists at least one
connection, but they are in fact in rich supply.

Theorem A.6. The set of connections is an affine space for the space Ω1
b(P, g) of

basic 1-forms on P: Given any connection A and basic 1-form α, A + α is also a
connection, and all connections are obtained this way.

Proof. Since both A and α are Ad-equivariant, so is A + α. Since α is hori-
zontal, (A + α)p ◦ vp = Ap ◦ vp = id, so A + α is a connection. Conversely,
given two connections A0, A1, their difference is clearly Ad-equivariant,
and since A0 and A1 agree on vertical vectors, A0 − A1 is horizontal. �

Remark A.7. Using the identification given in Lemma A.1 of the Ad P-
valued 1-forms on B and the basic 1-forms on P, the tangent space TAA to
the space of all connections is naturally identified with Ω1(B, Ad P).

The sections of Ad P are, again by Lemma A.1, the same as the Ad-
equivariant maps P → g, ie. maps f satisfying f (pg) = Ad(g−1) f (p) for
all p ∈ P, g ∈ G. Since Ad acts on g by Lie automorphisms, the point-wise
bracket of two such functions is again Ad-equivariant. Hence Ad P is a
bundle of Lie algebras over B.

We have already seen a couple of interpretations of the curvature of a
connection. Here are some more useful properties:

Theorem A.8. Let A be a connection in P, and FA its curvature form.

(1) The form FA ∈ Ω2(P, g) is horizontal and Ad-equivariant, thus basic, and
hence defines a 2-form also denoted FA ∈ Ω2(B, Ad P).

(2) We have dA A = FA.
(3) The covariant derivative of FA vanishes, dAFA = 0 (Bianchi’s identity).

Proof. We first prove that the curvature is horizontal, then we use this to
prove (2), from which it follows from Theorem A.2 that FA is Ad-equivariant
(since the connection is). Now, to prove that FA is horizontal, we proceed
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as in the proof of Lemma A.3. Let a ∈ g, and consider the contraction of FA
with a∗:

ia∗FA = ia∗dA + 1
2 ia∗ [A ∧ A]

= La∗A− dia∗A + 1
2 ia∗ [A ∧ A]

= ad(−a) ◦ A + 1
2 ia∗ [A ∧ A]

by Lemma A.4 and the fact that A(a∗) = a is constant. Now it is easy to
see that the remaining two terms cancel (for instance by contracting with
an arbitrary vector field).

Now, both sides of the equation in (2) are horizontal forms, so let X, Y
be arbitrary horizontal vector fields. Then dA A(X, Y) = dA(hX, hY) =
dA(X, Y). On the other hand, FA(X, Y) = dA(X, Y) + 1

2 [A ∧ A](X, Y) =
dA(X, Y). This proves (2) and (1).

Finally, to prove (3), we calculate

dAFA = h∗dFA = h∗ddA + 1
2 h∗d[A ∧ A]

= 1
2 h∗([dA ∧ A]− [A ∧ dA]) = h∗[dA ∧ A] = [h∗dA ∧ h∗A] = 0

since h∗A = 0. �

Note that by (1) and Lemma A.3, the Bianchi identity may also be written
dFA + ad(A)∧ FA = 0, or equivalently dFA = [FA ∧ A]. Yet another interpre-
tation of the curvature is this: From the proof, for horizontal vector fields
X, Y, we have FA(X, Y) = dA(X, Y) = XA(Y) − YA(X) − A([X, Y]) =
−A([X, Y]). From this equation and the fact that FA is horizontal, we see
that the connection A is flat if and only if the horizontal bundle HP is
integrable.

A.4 Gauge Transformations

A gauge transformation of P is a bundle automorphism of P, ie. a G-
equivariant bundle map ϕ : P→ P covering the identity on B. Because of
the G-equivariance, a gauge transformation is completely determined by
its action on one point in each fibre. In fact, we may identify the group of
gauge transformations G with the set of maps g : P→ G satisfying

g(ph) = h−1g(p)h. (A.8)

To a gauge transformation ϕ, we associate the map gϕ defined by the
equation ϕ(p) = pgϕ(p). Then for h ∈ G, we have ϕ(ph) = phgϕ(ph),
but on the other hand ϕ(ph) = ϕ(p)h = pgϕ(p)h. This implies that
hgϕ(ph) = gϕ(p)h, so gϕ satisfies the condition (A.8). On the other hand,
given any such map, it is easy to see that the map p 7→ pg(p) is a gauge
transformation of P.

Letting c(h) denote the conjugation by h, c(h)(a) = hah−1 for a ∈ G, the
set of maps satisfying (A.8) can also be described as the set of c-equivariant
maps P→ G, analogous to the case of associated vector bundles. Following
this analogy further, we obtain a bijection between G and the set of sections
of the fibre bundle Pc = (P× G)/G over B with standard fiber G, where
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the action of g on P×G is given by (p, a) · g = (pg, g−1ag). The fibre over a
point x of this bundle may be described as the Lie group of diffeomorphisms
of the fibre π−1(x) that commute with the action of G on π−1(x), so Pc is a
bundle of Lie groups over B.

In general, the right multiplication Rg : P→ P by an element g ∈ G is
not a gauge transformation; in fact, this is the case if and only if g is central
in G. However, in case P = B× G is the trivial bundle, left multiplication
Lg : P → P does commute with the right action of G on P. So in this
case we may also view the gauge group as the group of smooth maps
f : B → G under point-wise multiplication, where the associated gauge
transformation is given by (x, g) 7→ (x, f (x)g)

The pull-back of a connection under a gauge transformation is again a
connection, and we denote ϕ∗A by Aϕ. Clearly this defines a right action
of G on A. A gauge transformation ϕ may be written as the composition

P
∆ // P× P

id×gϕ
// P× G

µ
//// P

where ∆ is the diagonal and µ is the action of G on P. One may calculate
that the differential of µ at a point (p, g) is given by

µ∗(X, Y) = Rg∗X + vpgθY ∈ TpgP

for X ∈ TpP, Y ∈ TgG, where vpg is the injection of vertical vectors g →
TpgP and θ is the Maurer-Cartan form on G. Using this, we may calculate
the pull-back Aϕ of a connection under a gauge transformation:

(Aϕ)p(X) = Aϕ(p)(ϕ∗X)

= Aϕ(p)
(

Rgϕ(p)∗
X + vϕ(p)(θgϕ∗X)

)
= (R∗gϕ(p)A)p(X) + θ(gϕ∗X)

= (Ad(gϕ(p)−1) ◦ A)p(X) + g∗ϕθ(X)

from which we deduce that

Aϕ = Ad(g−1
ϕ ) ◦ A + g∗ϕθ. (A.9)

Since pull-back commutes with the various operations involved in the
definition (A.2) of the curvature (exterior differentiation, wedge product
and the linear map induced by the Lie bracket), the action of G on A
restricts to an action on F . In fact, a formula similar to (A.9) reads

ϕ∗FA = Ad(g−1
ϕ ) ◦ FA, (A.10)

and clearly ϕ∗FA is the curvature FAϕ associated to the connection Aϕ.





Bibliography

[1] J. E. Andersen. Hitchin’s connection, Toeplitz operators and symmetry
invariant deformation quantization. arXiv:math.DG/0611126.

[2] J. E. Andersen. Mapping class groups do not have Kazhdan’s property
(T). arXiv:math.QA/0706.2184.

[3] J. E. Andersen. The Nielsen-Thurston classification of mapping classes
is determined by TQFT. J. Math. Kyoto Univ. 48, 2 (2008), 323–338.

[4] J. E. Andersen and N. L. Gammelgaard. Hitchin’s projectively flat
connection, Toeplitz operators and the asymptotic expansion of TQFT
curve operators. arXiv:0903.4091.

[5] J. E. Andersen, J. Mattes, and N. Reshetikhin. The Poisson structure
on the moduli space of flat connections and chord diagrams. Topology
35, 4 (1996), 1069–1083.

[6] J. E. Andersen and R. Villemoes. The first cohomology of the
mapping class group with coefficients in algebraic functions on the
SL2(C) moduli space. arXiv:0802.4372.

[7] J. E. Andersen and R. Villemoes. Cohomology of mapping class
groups and the abelian moduli space. arXiv:0903.4045.

[8] J. E. Andersen and R. Villemoes. The first cohomology of the
mapping class group with coefficients in algebraic functions on the
SL2(C) moduli space. Algebr. Geom. Topol. 9 (2009), 1177–1199.

[9] M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann
surfaces. Philos. Trans. Roy. Soc. London Ser. A 308, 1505 (1983), 523–615.

[10] M. Audin. Torus actions on symplectic manifolds, revised ed., vol. 93 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 2004.

[11] B. Bekka, P. de la Harpe, and A. Valette. Kazhdan’s property (T),
vol. 11 of New Mathematical Monographs. Cambridge University Press,
Cambridge, 2008.

[12] J. S. Birman and B. Wajnryb. Presentations of the mapping class
group. Israel J. Math. 88, 1-3 (1994), 425–427.

[13] I. Biswas and K. Guruprasad. Principal bundles on open surfaces
and invariant functions on Lie groups. Internat. J. Math. 4, 4 (1993),
535–544.

[14] M. Bordemann, E. Meinrenken, and M. Schlichenmaier. Toeplitz
quantization of Kähler manifolds and gl(N), N → ∞ limits. Comm.
Math. Phys. 165, 2 (1994), 281–296.

87

http://arxiv.org/abs/math.DG/0611126
http://arxiv.org/abs/math.QA/0706.2184
http://arxiv.org/abs/0903.4091
http://arxiv.org/abs/0802.4372
http://arxiv.org/abs/0903.4045


88 Bibliography

[15] K. S. Brown. Cohomology of groups, vol. 87 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1982.

[16] D. Bullock, C. Frohman, and J. Kania-Bartoszyńska. Understand-
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