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Abstract

Time-dependent scattering theory for a large class of translation invariant
models, including the Nelson and Polaron models, restricted to the vacuum
and one-particle sectors is studied. Asymptotic completeness of these Hamil-
tonians is shown. The translation invariance imply that the Hamiltonian
is fibered with respect to the total momentum. On the way to asymptotic
completeness we determine the spectral structure of the fiber Hamiltonians,
establish a Mourre estimate and derive a geometric asymptotic completeness
statement as an intermediate step.

1 Introduction and motivation

In this paper, we study the spectral and scattering theory of a class of Hamiltonians
that arise when one restricts e.g. the Nelson or Polaron model to the subspace of
at most one field particle. As our results are valid for both models, we will use the
term “field particles” rather than photons or phonons, and in the same spirit, we
will use the term “matter particle” rather than electron or positron.

In [14], two of the authors prove a Mourre estimate and C2 regularity for the full
model, with respect to a suitably chosen conjugate operator. The estimate holds
in the part of the energy-momentum spectrum lying between the bottom of the
essential energy-momentum spectrum and either the two-body threshold, if there
are no exited isolated mass shells, or the one-body threshold pertaining to the first
exited isolated mass shell, if it exists. This is a natural first step for scattering theory.
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As the full model in that energy-momentum regime is expected to resemble the model
with at most one field particle in many aspects, the scattering theory of the cut-off
model is of obvious interest. We note that in [10], the spectral and scattering theory
of the massless Nelson model is studied, and that the stationary methods used there
would to some extend also work on the class of models considered here. However,
the scattering theory in [10] is obtained via a Kato-Birman argument, a method one
cannot hope to work on the full model.

In recent years a lot of effort was put into investigating the spectral and scattering
theory of various models of quantum field theory (see among many other papers [1],
[3], [7], [8], [9], [11], [15], [19] and references therein). Substantial progress was made
by applying methods originally developed in the study of N -particle Schrödinger
operators namely the Mourre positive commutator method and the method of prop-
agation observables to study the behavior of the unitary group e−itH for large times.
Up to now, the most complete results on the scattering theory for these models have
only been available for models where the translation invariance is broken [1], [7],
[11], [15], [19], or for small coupling constants [8]. In fact the only asymptotic com-
pleteness result valid for arbitrary coupling strength, in time-dependent scattering
theory of translation invariant models known to us are variations of the N -body
problem, where the dispersion relations are of the non-relativistic form p2

M
. Our

results hold for a large class of dispersion relations, including a combination of the
relativistic and non-relativistic choices.

In order to appreciate the difficulties associated with proving asymptotic com-
pleteness for translation invariant models of QFT, we explain the structure of scat-
tering channels. If a system starts in a scattering state at total momentum ξ and
energy E, it will emit field particles with momenta k1, . . . , kn until the remaining
interacting system reaches a a total momentum ξ′ and an eigenvalue E ′(ξ′) for the
Hamiltonian at total momentum ξ′. In order to conserve energy and momentum we
must have ξ = ξ′ + k1 + · · · + kn and E = E ′(ξ′) + ω(k1) + · · · + ω(kn), where ω is
the dispersion relation for the field.

That is, the scattering channels are labeled by bound states at momenta ξ′ and
the number of emitted field particles n, under the constraint of conservation of energy
and total momentum. The resulting bound particle will not be at rest but rather
move according to a dispersion relation which is in fact the eigenvalue band, or mass
shell, to which it belongs. This band may a priori be an isolated mass shell or an
embedded one. If one wants to capture the behaviour of scattering states through a
Mourre estimate, then one needs to build into a conjugate operator the dynamics of
all the mass shells that appear in the available channels. This is a difficult task. The
thresholds at total momentum ξ are energies E that has a scattering channel with
the property that the bound state and the emitted field particles do not separate
over time.

When introducing a number cutoff in the model, one simplifies the situation in
that the scattering channels are now labeled by bound states of Hamiltonians with
strictly fewer field particles. In particular in our case, we can label the scattering
channels by mass shells of the Hamiltonian on the vacuum sector, which are easily
understood. Indeed, there is in fact only one mass shell and it is identical to the
matter dispersion relation Ω.

2



Finally, we will briefly outline the contents of this paper. In Section 2 we intro-
duce the model in details and state our main result, the asymptotic completeness.
In Section 3 we briefly go through the spectral theory for the fiber Hamiltonians, in
particular we prove an HVZ theorem, a Mourre estimate, absence of singular con-
tinuous spectrum and a semi-continuity statement about the Mourre estimate. In
Section 4 we prove the following propagation estimates: A large velocity estimate,
a phase-space propagation estimate, an improved phase-space propagation estimate
and a minimal velocity estimate. These form the technical foundation for Section 5,
where we introduce the asymptotic observable, the spaces of asymptotically bound
resp. free particles, the wave operators and prove asymptotic completeness via so-
called geometric asymptotic completeness.

2 The model and the result

The Hilbert space for the Hamiltonian is

H = L2(Rν , dy)⊗ (C⊕ L2(Rν , dx)) = L2(Rν , dy)⊕ L2(R2ν , dx dy),

where ν ∈ N. We write Dx = −i∇x, Dy = −i∇y for the respective momentum
operators. The Hamiltonian we wish to study the spectral and scattering theory of
is given by

H = H0 + V =

(
Ω(Dy) 0

0 Ω(Dy) + ω(Dx)

)
+

(
0 v∗

v 0

)
,

where

(vu0)(x, y) = ρ(x− y)u0(y) and (v∗u1)(x) =

∫
ρ(x− y)u1(x, y)dy

for some ρ ∈ L2(Rν). Here Ω is the dispersion relation for the matter particle, ω the
dispersion relation for the field particles and ρ a coupling function. One may view
it as the translation invariant Nelson or Polaron model restricted to the subspace
with at most one field particle, depending on the choice of dispersion relations.

The coupling function will be assumed to satisfy a short-range condition which
implies a UV-cutoff (see Condition 2.3). We work with more general dispersion
relations ω and Ω than ω(k) =

√
k2 +m2 or ω(k) = ω0 > 0 and Ω(η) = η2/2M

respectively (see Conditions 2.1 and 2.2 for details). As the infrared problem is not
present in this model due to the finite number of field particles, the mass of the field
particle is not important. However, the singular behavior of the dispersion relation
ω(k) = |k| at k = 0 makes this choice fall outside of what can be handled in this
treatment, although it seems likely that one with minor adjustments may include
this case in the same framework. For a treatment of the case where Ω(η) = 1

2
η2 and

ω(k) = |k|, see [10].
The operator H commutes with the operator of total momentum, P=

(
Dy 0
0 Dx+Dy

)
,

and hence H is fibered, H = U−1
∫ ⊕
Rν H(P ) dPU , where

U(u0, u1)(x, y) =
(
u0(y), u1(y, x+ y)

)
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and

H(P ) = H0(P ) + Ṽ =

(
Ω(P ) 0

0 Ω(P −Dx) + ω(Dx)

)
+

(
0 〈ρ|
|ρ〉 0

)
,

where 〈·| and |·〉 denote the Dirac brackets. The fiber Hamiltonians are operators
on the Hilbert space K = C⊕ L2(Rν).

The precise assumptions on Ω, ω and ρ are given below.

Condition 2.1 (Matter particle dispersion relation). Let Ω ∈ C∞(Rν) be a non-ne-
gative, real-analytic and rotation invariant1 function. There exists sΩ ∈ [0, 2] such
that Ω satisfies:

(i) There is a C > 0 such that Ω(η) ≥ C−1〈η〉sΩ − C.

(ii) For any multi-index α there is a Cα > 0 such that |∂αΩ(η)| ≤ Cα〈η〉sΩ−|α|.

Note that this assumption is satisfied by the standard non-relativistic and rela-
tivistic choices, Ω(η) = η2

2M
and Ω(η) =

√
η2 +M2.

Condition 2.2 (Field particle dispersion relation). Let ω ∈ C∞(Rν) be non-nega-
tive, real-analytic, rotation invariant and satisfy:

(i) For any multi-index α with |α| ≥ 1, we have supk∈Rν |∂αω(k)| <∞.

(ii) If sΩ = 0, then ω(k)→∞ as |k| → ∞.

This is satisfied e.g. for ω(k) =
√
k2 +m2, m 6= 0, and if sΩ 6= 0, also for the

Polaron2, ω(k) = ω0.

Condition 2.3 (Coupling function). Let ρ ∈ L2(Rν) be rotation invariant and
satisfy that

(i) ρ̂ ∈ C2(Rν).

(ii) 〈·〉|∇ρ̂|, ∂j ρ̂, 〈·〉‖∇2ρ̂‖ ∈ L2(Rν).

(iii) There exist constants C, µ > 0 such that |ρ(x)| ≤ C〈x〉−1− ν
2
−µ.

Condition 2.3 (iii) is the so-called short-range condition. Note that it implies
that for J ∈ C∞(Rν) with support away from 0, we have

|ρ(x)J(x
t
)| = O(t−1−µ). (1)

For the rest of this paper, Conditions 2.1, 2.2 and 2.3 will tacitly be assumed to be
fulfilled, and under this assumption, our main result will be the following

1By rotation invariance of a function f we mean that f(η) = f(Oη) a.e. for any O ∈ O(ν)
where O(ν) denotes the ν-dimensional orthogonal group.

2In fact the Fröhlich Polaron has Ω(η) = η2

2Meff
, so sΩ = 2 6= 0.
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Theorem 2.1 (Asymptotic completeness). The wave operator

W+ = s-lim
t→∞

eitHe−itH0P+(H0)

exists, where P+(H0) is the projection onto {0}⊕L2(R2ν), and the system is asymp-
totically complete:

RanW+ = H⊥bd,

where Hbd = U−1
∫ ⊕
Rν 1pp(H(P )) dPUH.

Remark 2.2. That P 7→ 1pp(H(P )) is weakly – and hence strongly – measurable
follows from an application of the RAGE theorem, [5, Theorem 5.8], see the proof
of [5, Theorem 9.4] for details.

3 Spectral analysis

We begin by recalling the following well-known properties of the fibered Hamiltonian.
The Hamiltonian H0(P ) is essentially self-adjoint on C ⊕ C∞0 (Rν) and the domain
D = D(H0(P )) is independent of P . As Ṽ is bounded, the Kato-Rellich theorem
implies that the same is true for H(P ) and that D(H(P )) = D.

The following threshold set will play an important role in our analysis:

ϑ(P ) = {λ ∈ R | ∃k ∈ Rν : λ = Σ(P − k) + ω(k),∇Ω(P − k) = ∇ω(k)}.

By rotation invariance and analyticity it is easy to see that ϑ(P ) is locally finite and
closed.

The following results, Theorems 3.1 to 3.4, correspond to completely analogous
statements for the full model, see [14].

Theorem 3.1. Assume that the vector field vP ∈ C∞(Rν ;Rν) satisfies that for any
multi-index α, |α| ∈ {0, 1, 2}, there is a constant Cα > 0 such that |∂αvP (η)| ≤
Cα〈η〉1−|α|. Then the operator aP = 1

2
(vP (Dx) · x + x · vP (Dx)) is essentially self-

adjoint on the Schwarz space S and H(P ) is of class C2(AP ), where AP = ( 0 0
0 aP ) is

self-adjoint on D(AP ). The first commutator is given by

[H(P ), iAP ]◦ =

(
0

〈
iaPρ

∣∣

|iaPρ〉 vP (Dx) · ∇(ω(Dx) + Ω(P −Dx))

)

as a form on D.

This can be seen either by direct computations or by following [14].
We now introduce the extended space Kext = K ⊕ L2(Rν) to be able to make a

geometric partition of unity in configuration space. The partition of unity is similar
to what is done in the analysis of the N -body Schrödinger operator (see e.g. [6]) and
in complete analogy with what is done in e.g. [7] and [13]. The partition of unity
used here may actually be seen as the partition of unity introduced in [7] restricted
to the subspace with at most 1 field particle.
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Let j0, j∞ ∈ C∞(Rν) be real, non-negative functions satisfying j0 = 1 on the set
{x | |x| ≤ 1}, j0 = 0 on {x | |x| > 2} and j2

0 + j2
∞ = 1. We now define

jR : K → Kext

jR(v0, v1) = (v0, j0( ·
R

)v1)⊕ (j∞( ·
R

)v1).

Clearly, jR is isometric.
We introduce two self-adjoint operators, the extended Hamiltonian, Hext(P ),

and the extended conjugate operator, Aext
P , acting in Kext,

Hext(P ) = H(P )⊕ FP (Dx) and

Aext
P = AP ⊕ aP ,

where FP (Dx) = ω(Dx)+Ω(P−Dx), with the obvious domains denoted by Dext and
D(Aext

p ). The extended Hamiltonian describes an interacting system and a system
with a free field particle. It is easy to see that Theorem 3.1 holds true with H(P )
and AP replaced by Hext(P ) and Aext

P , respectively, and the commutator equal to

[Hext(P ), iAext
p ]◦ = [H(P ), iAP ]◦ ⊕

(
vP (Dx) ·

(
∇ω(Dx)−∇Ω(P −Dx)

))
.

We have the following localisation error when applying jR.

Lemma 3.2. Let f ∈ C∞0 (R). Then

jRf(H(P )) = f(Hext(P ))jR + oR(1) and

jRf(H(P ))[H(P ), iAP ]◦f(H(P ))

= f(Hext(P ))[Hext(P ), iAext
P ]◦f(Hext(P ))jR + oR(1),

for R→∞.

This can be seen either by a direct computation or by applying [14, Corollary 5.3].
The following two results, an HVZ theorem and a Mourre estimate, are now almost
immediate.

Theorem 3.3. The spectrum of H(P ) below Σess(P ) = infk∈Rν{Ω(P − k) + ω(k)}
consists at most of eigenvalues of finite multiplicity and can only accumulate at
Σess(P ). The essential spectrum is given by σess(H(P )) = [Σess(P ),∞).

Proof. Using Lemma 3.2 for an f ∈ C∞0 (R) supported in (−∞,Σess(P )) and letting
R tend to infinity shows that f(H(P )) is compact. This proves the first part.

To prove the last part, let λ ∈ [Σess(P ),∞) and note that there exists a k0 ∈ Rν

such that λ = Ω(P − k0) + ω(k0). Now choose un = (0, u1n) ∈ C ⊕ L2(Rν) with
û1n(·) = n

ν
2 f(n(· − k0)) for some f ∈ C∞0 (Rν) with f ≥ 0 and f(0) = 1. One may

now check that un is a Weyl sequence for the energy λ.

Theorem 3.4. Assume that λ 6∈ ϑ(P ). Let AP be given as in Theorem 3.1 with
vP (Dx) = ∇ω(Dx) − ∇Ω(P − Dx)). Then there exist constants κ, c > 0 and a
compact operator K such that

Eλ,κ(H(P ))[H(P ), iAP ]◦Eλ,κ(H(P )) ≥ cEλ,κ(H(P )) +K,

where Eλ,κ denotes the characteristic function of the interval [λ− κ, λ+ κ].
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Proof. We may find a κ such that [λ− 2κ, λ+ 2κ] ∩ ϑ(P ) = ∅. Choose f ∈ C∞0 (R)
with support in [λ− 2κ, λ+ 2κ] and equal to 1 on [λ− κ, λ+ κ]. Note that

f(H(P ))[H(P ), iAP ]◦f(H(P ))

= jR
∗
jRf(H(P ))[H(P ), iAP ]◦f(H(P ))

= jR
∗
f(Hext(P ))[Hext(P ), iAext

P ]◦f(Hext(P ))jR + oR(1),

by Lemma 3.2. Note that

f(Hext(P ))[Hext(P ), iAext
P ]◦f(Hext(P ))jR

= f(H(P ))[H(P ), iAP ]◦f(H(P ))

(
1

j0( ·
R

)

)
(2)

⊕ f(FP (Dx))|∇ω(Dx)−∇Ω(P −Dx)|2f(FP (Dx))j∞( ·
R

).

Taking the support of f into account, one finds that

f(FP (Dx))|∇ω(Dx)−∇Ω(P −Dx)|2f(FP (Dx)) ≥ 2cf 2(FP (Dx))

for some positive constant c > 0. It is easy to see that K(R) = f(H(P ))( 1
j0( ·

R
) ) is

compact. Let g ∈ C∞0 (R) equal 1 on the support of f . Then

B = f(H(P ))[H(P ), iAP ]◦g(H(P ))

is bounded and (2) equals BK(R). Hence by Lemma 3.2

f(H(P ))[H(P ), iAP ]◦f(H(P ))

≥ jR
∗
2cf 2(H(P ))

(
1

j0( ·
R

)

)
⊕ 2cf 2(FP (Dx))j∞( ·

R
)

+ jR
∗
(B − 2cf(H(P )))K(R)⊕ 0 + oR(1)

= 2cf 2(H(P )) +KR + oR(1),

for some compact operator KR depending on R. One may now choose R so large
that ‖oR(1)‖ ≤ c and sandwich the inequality with Eλ,κ(H(P )) on both sides to
arrive at the desired result.

We infer the following corollary of Theorems 3.1 and 3.4 by standard arguments
of regular Mourre theory.

Corollary 3.5. The essential spectrum of the fiber Hamiltonians is non-singular:

σsing(H(P )) = ∅.

Theorem 3.6. Let (P0, λ0) ∈ Rν+1. Assume that λ0 6∈ ϑ(P0)∪ σpp(P0). Then there
exists a constant C > 0, a neighbourhood O of P0 and a function f ∈ C∞0 (R) with
f = 1 in a neighbourhood of λ0 such that for all P ∈ O,

f(H(P ))[H(P ), iAP0 ]◦f(H(P )) ≥ Cf 2(H(P ))

where AP0 is given as in Theorem 3.4.
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Proof. We begin by noting that the object [H(P ), iAP0 ]◦ is well-defined by Theo-
rem 3.1. By standard arguments using the fact that λ0 6∈ σpp(P0) and Theorem 3.4,
there exist a function f̃ ∈ C∞0 (R) and a constant C̃ such that

f̃(H(P0))[H(P0), iAP0 ]◦f̃(H(P0)) ≥ C̃f̃ 2(H(P0)),

with f̃ = 1 on a neighbourhood of λ0. It is easy to see that (H(P )− z)−1(H0(0)− i)
and (H0(0)− i)−1[H(P ), iAP0 ]◦(H0(0)− i)−1 are norm continuous as functions of P ,
and hence it follows by an application of the functional calculus of almost analytic
extensions that f̃ 2(H(P )) and f̃(H(P ))[H(P ), iAP0 ]◦f̃(H(P )) are norm continuous
as functions of P .

Let O 3 P0 be a neighbourhood such that

‖f̃ 2(H(P ))− f̃ 2(H(P0))‖ ≤ C̃

3
and

∥∥f̃(H(P ))[H(P ), iAP0 ]◦f̃(H(P ))− f̃(H(P0))[H(P0), iAP0 ]◦f̃(H(P0))
∥∥ ≤ C̃

3

for all P ∈ O. Then

f̃(H(P ))[H(P ), iAP0 ]◦f̃(H(P )) ≥ −2C̃

3
I + C̃f̃ 2(H(P )). (3)

Choose now C = C̃
3

and f ∈ C∞0 (R) such that f = 1 on a neighbourhood of λ0

and f = ff̃ . The result is then obtained by multiplying (3) from both sides with
f(H(P )).

4 Propagation estimates

We will write D = [H, i · ] and d0 = [Ω(Dx + Dy) + ω(Dx), i · ] for the Heisenberg
derivatives. The following abbreviation will be used to ease the notation:

[B] := ( 0 0
0 B ).

Theorem 4.1 (Large velocity estimate). Let χ ∈ C∞0 (R). There exists a constant
C1 such that for R′ > R > C1, one has

∫ ∞

1

∥∥[1[R,R′]
( |x−y|

t

)]
e−itHχ(H)u

∥∥2 dt

t
≤ C‖u‖2

Proof. Let C1 be a constant to be specified later and R′ > R > C1. Let F ∈ C∞(R)
equal 0 near the origin and 1 near infinity such that F ′(s) ≥ c1[R,R′](s) for some
positive constant c > 0. Let

Φ(t) = −χ(H)
[
F
( |x−y|

t

)]
χ(H),

b(t) = −d0F
( |x−y|

t

)
.

By using e.g. Theorem B.3 or pseudo-differential calculus one sees that

b(t) =
1

t

(
|x−y|
t
− (∇Ω(Dy)−∇ω(Dx))

x−y
|x−y|

)
F ′
( |x−y|

t

)
+O(t−2).
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Hence for any χ̃ ∈ C∞0 (R) such that χ = χχ̃ one finds that

− χ(H)[b(t)]χ(H)

= 1
t
χ(H)

(
|x−y|
t
− (∇Ω(Dy)−∇ω(Dx))

x−y
|x−y|

)
F ′
( |x−y|

t

)
χ(H) +O(t−2)

= 1
t
χ(H)

(
|x−y|
t
− χ̃(H)(∇Ω(Dy)−∇ω(Dx))

x−y
|x−y|

)
1[C1,∞)(

|x−y|
t

)

× F ′
( |x−y|

t

)
χ(H) +O(t−2)

≥ C0

t
χ(H)F ′( |x−y|

t
)χ+O(t−2)

for some C0 > 0 if one chooses C1 > ‖χ̃(H)(∇Ω(Dy)−∇ω(Dx))
x−y
|x−y|‖.

It follows from Condition 2.3 (iii) that

[
V, i[F

( |x−y|
t

)
]
]

= O(t−1−µ),

cf. (1). Putting this together, we get

DΦ(t) ≥ C0

t
χ(H)[F ′( |x−y|

t
)]χ(H) +O(t−1−µ),

which combined with Lemma A.1 implies the result.

Theorem 4.2 (Phase-space propagation estimate). Let χ ∈ C∞0 (R), 0 < c0 < c1.
Write

Θ[c0,c1](t) =
[〈

x−y
t
−∇ω(Dx) +∇Ω(Dy),1[c0,c1]

( |x−y|
t

)(
x−y
t
−∇ω(Dx) +∇Ω(Dy)

)〉]
.

Then ∫ ∞

1

‖Θ[c0,c1](t)
1
2 e−itHχ(H)u‖2 dt

t
≤ C‖u‖2. (4)

Proof. The following construction is taken from [7] but ultimately goes back to a
construction of Graf, see e.g. [12]. There exists a function R0 ∈ C∞(Rν) such that

R0(x) = 0 for |x| ≤ c0
2
,

R0(x) = 1
2
x2 + c for |x| ≥ 2c1,

∇2R0(x) ≥ 1[c0,c1](|x|).

Without loss of generality, we may assume that c1 > C1 +1, where C1 is the constant
whose existence is ensured by Theorem 4.1. Choose a constant c2 > c1 + 1 and a
smooth function F such that F (s) = 1 for s < c1 and F (s) = 0 for s ≥ c2. Let

R(x) = F (|x|)R0(x).

Then R satisfies

∇2R(x) ≥ 1[c0,c1](|x|)− C1[C1+1,c2](|x|), (5)

|∂αR(x)| ≤ Cα.
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Write X = x−y
t
−∇ω(Dx) +∇Ω(Dy) and let

Φ(t) = χ(H)[b(t)]χ(H),

where
b(t) = R(x−y

t
)− 1

2

(
〈∇R(x−y

t
), X〉+ h. c.

)
.

By using Condition 2.3 (iii) and pseudo-differential calculus, one sees that
∥∥∥∥χ(H)

(
0 0

−ib(t)ρ(x− · ) 0

)
χ(H)

∥∥∥∥ ∈ O(t−1−µ)

and hence
χ(H)[V, i[b(t)]]χ(H) ∈ O(t−1−µ).

Compute

d
dt
b(t) = − 1

t
〈x−y

t
,∇R(x−y

t
)〉

+ 1
2

1
t

(
〈x−y

t
,∇2R(x−y

t
)X〉+ h. c.

)

+ 1
t
〈∇R(x−y

t
), x−y

t
〉

= 1
2

1
t

(
〈x−y

t
,∇2R(x−y

t
)X〉+ h. c.

)
,

and by pseudo-differential calculus one sees that

[ω(Dx) + Ω(Dy), ib(t)] = 1
2

1
t

(
〈∇ω(Dx)−∇Ω(Dy),∇R(x−y

t
)〉+ h. c.

)

− 1
2

1
t

(
〈∇ω(Dx)−∇Ω(Dy),∇2R(x−y

t
)X〉+ h. c.

)

− 1
2

1
t

(
〈∇R(x−y

t
),∇ω(Dx)−∇Ω(Dy)〉+ h. c.

)

+O(t−2)

= − 1
2

1
t

(
〈∇ω(Dx)−∇Ω(Dy),∇2R(x−y

t
)X〉+ h. c.

)

+O(t−2),

hence by using (5), it follows that

χ(H)[d0b(t)]χ(H)

= 1
t
χ(H)[〈X,∇2R(x−y

t
)X〉]χ(H) +O(t−2)

≥ 1
t
χ(H)

[〈
X,1[c0,c1]

( |x−y|
t

)
X
〉]
χ(H)

− C
t
χ(H)

[〈
X,1[C1+1,c2]

( |x−y|
t

)
X
〉]
χ(H) +O(t−2)

By introducing J ∈ C∞0 (R; [0, 1]) supported above C1 with J1[C1+1,c2] = 1[C1+1,c2]

and χ̃ ∈ C∞0 (R) with χ̃χ = χ and using pseudo-differential calculus, the functional
calculus of almost analytic extensions and Condition 2.3 (iii) again, one gets that

C
t
χ(H)

[
Xi1[C1+1,c2]

( |x−y|
t

)
Xi

]
χ(H)

≤ C
t
χχ̃(H)

[
XiJ

3
( |x−y|

t

)
Xi

]
χ̃χ(H)

= C
t
χ(H)

[
J
( |x−y|

t

)]
χ̃(H)

[
XiJ

( |x−y|
t

)
Xi

]
χ̃(H)

[
J
( |x−y|

t

)]
χ(H) +O(t−2)

≤ C′
t
χ(H)

[
J2
( |x−y|

t

)]
χ(H) + Ct−2,
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where we estimated χ̃(H)
[
XiJ

( |x−y|
t

)
Xi

]
χ̃(H) by a constant. Putting it all together

yields

DΦ(t) ≥ 1
t
χ(H)Θ[c0,c1](t)χ(H)− C

t
χ(H)[J2( |x−y|

t
)]χ(H) +O(t−1−µ),

where the second term is integrable along the evolution by Theorem 4.1, so the
result now follows from Lemma A.1.

Theorem 4.3 (Improved phase-space propagation estimate). Let 0 < c0 < c1,
J ∈ C∞0 (c0 < |x| < c1), χ ∈ C∞0 (R). Then for 1 ≤ i ≤ ν

∫ ∞

1

∥∥[∣∣J(x−y
t

)
(
xi−yi
t
− ∂iω(Dx) + ∂iΩ(Dy)

)
+ h. c.

∣∣] 1
2 e−itHχ(H)u

∥∥2 dt

t
≤ C‖u‖2

Proof. For brevity, we write X = x−y
t
− ∇ω(Dx) +∇Ω(Dy) and R0 = (H0 − λ)−1

for some real λ ∈ ρ(H0). Let
A = X2 + t−δ,

δ > 0. Note that [J(x−y
t

)A
1
2 ]R0 is uniformly bounded in t ≥ 1.

The following identities hold as forms on C∞0 (Rν).

eit(ω(Dx)+Ω(Dy))Xe−it(ω(Dx)+Ω(Dy)) = x−y
t
,

eit(ω(Dx)+Ω(Dy))A
1
2 e−it(ω(Dx)+Ω(Dy)) = ((x−y

t
)2 + t−δ)

1
2 := A

1
2
0 (6)

and
eit(ω(Dx)+Ω(Dy))J(X)e−it(ω(Dx)+Ω(Dy)) = J(x−y

t
). (7)

That the following commutator, viewed as a form on C∞0 (Rν), extends by conti-
nuity to a bounded form on L2(Rν) can be seen using pseudo-differential calculus:

[X,A
1
2
0 ] = [∇ω(Dx), A

1
2
0 ]− [∇Ω(Dy), A

1
2
0 ] = O(t−min{1,2− δ

2
}).

Together with the functional calculus of almost analytic extensions this implies that

[J(X), A
1
2
0 ] = O(t−min{1,2− δ

2
}),

and hence using (6) and (7) that

[J(x−y
t

), A
1
2 ] = O(t−ε), (8)

where ε = min{1, 2− δ
2
}. Write h = Ω(Dy) + ω(Dx). Note that

eithd0A
1
2 e−ith = eith[h, iA

1
2 ]e−ith + eith( d

dt
A

1
2 )e−ith

= d
dt

(
eithA

1
2 e−ith

)
= d

dt
A

1
2
0

= −1
t
A

1
2
0 − (2−δ)t−δ−1

2((x−y
t

)2+t−δ)
1
2
,

so

d0A
1
2 = −1

t
A

1
2 +O(t−1− δ

2 ). (9)
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In addition
[R0, [Xi]] = R

1
2

+ρ1

0 O(t−1)R1−ρ1

0 (10)

for any ρ1, 0 < ρ1 <
1
2

and that

[R0, [A
1
2 ]] = Rρ2

0 O(t
δ
2
−1)R1−ρ2

0 (11)

for any ρ2, 0 < ρ2 < 1. The identity (11) can be seen e.g. by using (10) and the
representation formula

s−
1
2 =

1

π

∫ ∞

0

(s+ y)−1y−
1
2 dy,

which can be verified for t > 0 by direct computations.
Let J1, J2 ∈ C∞0 (c0 < |x| < c1) such that JJ1 = J and J1J2 = J1 and write for

i = 1, . . . , ν:
B0,i = R0[J(x−y

t
)Xi]R0 + h. c.

and
B1 = R0[J1(x−y

t
)A

1
2J1(x−y

t
)]R0. (12)

We compute using (8), (10) and (11):

B2
0,i = 4R0[XiJ(x−y

t
)]R2

0[J(x−y
t

)Xi]R0 +O(t−1)

= 4R2
0[XiJ

2(x−y
t

)Xi]R
2
0 +O(t−1)

≤ CR2
0[XiJ

4
1 (x−y

t
)Xi]R

2
0 + Ct−1

= CR2
0[J2

1 (x−y
t

)X2
i J

2
1 (x−y

t
)]R2

0 +O(t−1)

≤ CR2
0[J2

1 (x−y
t

)AJ2
1 (x−y

t
)]R2

0 +O(t−δ)

= CR0[J2
1 (x−y

t
)A

1
2 ]R2

0[A
1
2J2

1 (x−y
t

)]R0 +O(t−min{1− δ
2
,δ})

= CR0[J1(x−y
t

)A
1
2J1(x−y

t
)]R2

0[J1(x−y
t

)A
1
2J1(x−y

t
)]R0 +O(t−min{1− δ

2
,δ})

= CB2
1 +O(t−κ),

where κ = min{1− δ
2
, δ}. By the matrix monotonicity of λ 7→ λ

1
2 [4, Sec. 2.2.2], we

deduce that
|B0,i| ≤ CB1 + Ct−

κ
2 . (13)

Now let
Φ(t) = −χ(H)

[
J(x−y

t
)A

1
2J(x−y

t
)
]
χ(H) (14)

It follows from (8) that

Φ(t) = −χ(H)
[
J(x−y

t
)2A

1
2

]
χ(H) +O(t−ε) (15)

is uniformly bounded for t > 1.
We compute

−DΦ(t) = χ(H)[V, i[J(x−y
t

)A
1
2J(x−y

t
)]]χ(H) + χ(H)

[
d0

(
J(x−y

t
)A

1
2J(x−y

t
)
)]
χ(H)

(16)
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Using Condition 2.3(iii) we see that

χ(H)[V, i
[
J(x−y

t
)A

1
2J(x−y

t
)]
]
χ(H) = O(t−1−µ).

Indeed,

χ(H)
[
V, i[J(x−y

t
)A

1
2J(x−y

t
)]
]
χ(H)

= χ(H)
(

0 0

−iJ(
x−y
t

)A
1
2 J(

x−y
t

)v 0

)
χ(H) + h. c.

= χ(H)(H0 − λ)R0

(
0 0

−i
(
A

1
2 J(

x−y
t

)+O(t−ε)
)
J(
x−y
t

)v 0

)
χ(H) + h. c.

Now by Condition 2.3 (iii) we have that ‖J(x−y
t

)v‖ = O(t−1−µ) and hence we also

have that R0

(
0 0

−i
(
A

1
2 J(

x−y
t

)+O(t−ε)
)
J(
x−y
t

)v 0

)
= O(t−1−µ).

Note that
d0J(x−y

t
) = −1

t
∇J(x−y

t
) · v +O(t−2) (17)

and using (9) and (13) (cf. (12)),

− χ(H)[J(x−y
t

)(d0A
1
2 )J(x−y

t
)]χ(H)

≥ C0

t
χ(H)[|J(x−y

t
)Xi + h. c.|]χ(H)− Ct−1−κ

2 .

Again we compute using (8):

R0[∇J(x−y
t

) ·XA 1
2J(x−y

t
)]R0 + h. c.

= R0[J2(x−y
t

)X · ∇J(x−y
t

)J(x−y
t

)A
1
2J2(x−y

t
)]R0 + h. c.+O(t−1)

=
ν∑

i=1

R0[J2(x−y
t

)A
1
2XiA

− 1
2∂iJ(x−y

t
)J(x−y

t
)A

1
2J2(x−y

t
)]R0 + h. c.+O(t−1)

≤ CR0[J2(x−y
t

)AJ2(x−y
t

)]R0 + Ct−1

≤ CR0[J2(x−y
t

)X2J2(x−y
t

)]R0 +O(t−min{1,δ})

≤ CR0[〈X, J2
2 (x−y

t
)X〉]R0 + Ct−min{1,ε}.

Hence (cf. (17))

− χ(H)
[
d0

(
J(x−y

t
)A

1
2J(x−y

t
)
)]
χ(H)

= χ(H)[(d0J(x−y
t

))A
1
2J(x−y

t
)]χ(H) + h. c.

+ χ(H)[J(x−y
t

)(d0A
1
2 )J(x−y

t
)]χ(H)

≥ C0

t
χ(H)[|J(x−y

t
)Xi + h. c.|]χ(H)

− C
t
χ(H)[〈X, J2

2 (x−y
t

)X〉]χ(H) +O(t−1−γ)
(18)

for some γ > 0. Since by Theorem 4.2 the second term in the r.h.s. of (18) is
integrable along the evolution, the theorem follows from Lemma A.1.
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Theorem 4.4 (Minimal velocity estimate). Assume that (P0, λ0) ∈ Rν+1 satisfies
that λ0 ∈ R \ (ϑ(P0) ∪ σpp(P0)). Then there exists an ε > 0, a neighbourhood N of
(P0, λ0) and a function χ ∈ C∞0 (Rν+1) such that χ = 1 on N and

∫ ∞

1

∥∥∥[1[0,ε]](
|x|
t

)

∫ ⊕
e−itH(P )χ(P,H(P )) dPu

∥∥∥
2 dt

t
≤ C‖u‖2

Proof. By Theorem 3.6, it follows that there exists a neighbourhood O of P0 and a
function f with f = 1 in a neighbourhood of λ0 such that

f(H(P ))[H(P ), iAP0 ]f(H(P )) ≥ Cf 2(H(P )) (19)

for all P in O. Let χ ∈ C∞0 (Rν+1; [0, 1]) be supported in O × {λ | f(λ) = 1} and
χ = 1 in a neighbourhood N of (P0, λ0). It follows that

χ(P,H(P ))[H(P ), iAP0 ]χ(P,H(P )) ≥ C
2
χ2(P,H(P )). (20)

Let q ∈ C∞0 ({|x| ≤ 2ε}) satisfy 0 ≤ q ≤ 1, q = 1 in a neighbourhood of {|x| ≤ ε}
for some ε > 0 to be specified later on. Write

Q(t) =

(
1 0
0 q(x

t
).

)

Let

Φ(t) =

∫ ⊕
χ(P,H(P ))Q(t)

AP0

t
Q(t)χ(P,H(P )) dP.

Taking into account the support of q and that vP0 is ω-bounded, and using pseudo-
differential calculus, it is easy to see that Φ(t) is uniformly bounded.

We compute the Heisenberg derivative:

DΦ(t) =

∫ ⊕
χ(P,H(P ))[d0q(

x
t
)]
AP0

t
Q(t)χ(P,H(P )) dP + h. c.

+

∫ ⊕
χ(P,H(P ))[V, iQ(t)]

AP0

t
Q(t)χ(P,H(P )) dP + h. c.

+
1

t

∫ ⊕
χ(P,H(P ))Q(t)[H(P ), iAP0 ]Q(t)χ(P,H(P )) dP

− 1

t

∫ ⊕
χ(P,H(P ))Q(t)

AP0

t
Q(t)χ(P,H(P )) dP

= R1 +R2 +R3 +R4.

By the same arguments as before it follows that
AP0

t
Q(t)χ(P,H(P )) is uniformly

bounded. Using pseudo-differential calculus gives

R1 =
1

t

∫ ⊕
χ(P,H(P ))

[
〈x
t
−∇ω(Dx) +∇Ω(Dy),∇q(xt )〉

]AP0

t
Q(t)χ(P,H(P )) dP

+ h. c.+O(t−2).

Let

B1 =

∫ ⊕
χ(P,H(P ))[〈x

t
−∇ω(Dx) +∇Ω(Dy),∇q(xt )〉] dP
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and

B2 =

∫ ⊕
χ(P,H(P ))Q(t)

AP0

t
dP.

Then
R1 = 1

t
B1B

∗
2 + 1

t
B2B

∗
1 ≥ −ε−1

0
1
t
B1B

∗
1 − ε0

1
t
B2B

∗
2 .

Now by Theorem 4.2, we get that 1
t
B1B

∗
1 is integrable along the evolution. Using

pseudo-differential calculus and functional calculus of almost analytic extensions one
can verify that

[χ(P,H(P )), Q(t)] = (H0(P )−R)−1+ρO(t−1)(H0(P )−R)−
1
2
−ρ (21)

for any R ∈ R \ σ(H0(P )) and any ρ, 0 ≤ ρ ≤ 1
2
. Hence it follows by introducing

cutoff functions χ̃ ∈ C∞0 (Rν+1) and q̃ ∈ C∞0 (Rν) with χ̃χ = χ and q̃q = q that

−1
t
B2B

∗
2 = − 1

t

∫ ⊕
Q(t)χχ̃(P,H(P ))[q̃(x

t
)]
A2
P0

t2
[q̃(x

t
)]χ̃χ(P,H(P ))Q(t) dP

+O(t−2)

≥ − C1

t

∫ ⊕
Q(t)χ2(P,H(P ))Q(t) dP +O(t−2)

= − C1

t

∫ ⊕
χ(P,H(P ))Q2(t)χ(P,H(P )) dP +O(t−2) (22)

By Condition 2.3(iii) it follows that
(

0 0
i(1−q(x

t
))|ρ〉 0

)
∈ O(t−1−µ) and hence

R2 ∈ O(t−1−µ) (23)

Using (20) and (21) twice, we see that

R3 =
1

t

∫ ⊕
Q(t)χ(P,H(P ))[H(P ), iAP0 ]χ(P,H(P ))Q(t) dP +O(t−2)

≥ C2

t

∫ ⊕
Q(t)χ2(P,H(P ))Q(t) dP +O(t−2)

≥ C2

t

∫ ⊕
χ(P,H(P ))Q(t)2χ(P,H(P )) dP +O(t−2). (24)

Again using the cutoff functions and pseudo-differential calculus and taking into
account the support of q, we see that

± χ(P,H(P ))Q(t)
AP0

t
Q(t)χ(P,H(P ))

= ±Q(t)χχ̃(P,H(P ))[q̃(x
t
)]
AP0

t
[q̃(x

t
)]χ̃χ(P,H(P ))Q(t)±O(t−1)

≤ εC3Q(t)χ2(P,H(P ))Q(t) +O(t−1)

= εC3χ(P,H(P ))Q(t)2χ(P,H(P )) +O(t−1)
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so

R4 ≥ −
C3ε

t

∫ ⊕
χ(P,H(P ))Q(t)2χ(P,H(P )) dP +O(t−2). (25)

Putting (22), (23), (24) and (25) together, we see that

DΦ(t) ≥ −ε0C1 + C2 − εC3

t

∫ ⊕
χ(P,H(P ))Q(t)2χ(P,H(P )) dP

− 1

εt
B1B

∗
1 +O(t−1−µ).

Now choosing ε and ε0 so small that −ε0C1 +C2−εC3 > 0 together with Lemma A.1
yields the result.

5 The asymptotic observable and asymptotic

completeness

Theorem 5.1 (Asymptotic observable). Let p ∈ C∞(Rν) satisfy that p(x) ≤ p(y)
for |x| ≤ |y|, p(x) = 0 for |x| ≤ 1

2
and p(x) = 1 for |x| ≥ 1. Define pδ(x) = p(x

δ
).

Then the limits

P+
δ (H) = s-lim

t→∞
eitH [pδ(

x−y
t

)]e−itH , (26)

P+
0 (H) = s-lim

δ→0
P+
δ (H), (27)

P+
0 (H0, H) = s-lim

δ→0
s-lim
t→∞

eitH [pδ(
x−y
t

)]e−itH0 ,

P+
0 (H,H0) = s-lim

δ→0
s-lim
t→∞

eitH0 [pδ(
x−y
t

)]e−itH

exist and P+
0 (H) is a projection.

Remark 5.2. Note that δ 7→ P+
δ (H) is increasing in the sense that P+

δ (H) ≤ P+
δ′ (H)

for 0 < δ′ < δ. We leave it to the reader to verify that the definition of P+
0 (H) is

independent of the choice of p, and that one in fact could have chosen any family
of functions {pδ} satisfying pδ(x) ≤ pδ(y) for |x| ≤ |y|, pδ(x) = 0 for |x| ≤ δ

2
and

pδ(x) = 1 for |x| ≥ δ.

Proof. We will prove the statements about P+
δ (H) and P+

0 (H). The statements
about P+

0 (H0, H) and P+
0 (H,H0) are proved completely analogously.

Let
Φ(t) = −χ(H)[pδ(

x−y
t

)]χ(H),

and calculate using pseudo-differential calculus

d0pδ(
x−y
t

) = −1
2

1
t

((
x−y
t
−∇ω(Dx) +∇Ω(Dy)

)
· ∇pδ(x−yt ) + h. c.

)
+O(t−2).

This in combination with Condition 2.3(iii) gives

DΦ(t) = 1
t
χ(H)

[
1
2
X · ∇pδ(x−yt ) + h. c.

]
χ(H) +O(t−min{1+µ,2}),
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whereX = x−y
t
−∇ω(Dx)+∇Ω(Dy), so Theorem 4.3 in combination with Lemma A.2

gives the existence of the limit (26).
The existence of the weak limit w-P+

0 (H) = w-limδ→0 P
+
δ (H) is obvious. More-

over, for every δ > 0, it is clear from Lemma A.3 that the strong limit s-lim
n→∞

P+
δ

2n
(H)

exists, is a projection and equals w-P+
0 (H). The inequality P+

δ (H)2 ≤ P+
δ (H) im-

plies

lim
δ→0
‖(w-P+

0 (H)− P+
δ (H))u‖2 = lim

δ→0
〈(w-P+

0 (H) + P+
δ (H)2 − 2P+

δ (H))u, u〉
≤ lim

δ→0
〈(w-P+

0 (H)− P+
δ (H))u, u〉 = 0.

This finishes the argument.

Proposition 5.3. Let Σ = {(P, λ) ∈ Rν+1 |λ ∈ σpp(H(P ))} denote the set in
energy-momentum space consisting of eigenvalues for the fibered Hamiltonian and
Θ = {(P, λ) ∈ Rν+1 |λ ∈ ϑ(P )} the corresponding set of thresholds. Then Σ ∪ Θ is
a closed set of Lebesgue measure 0. Moreover, (Σ ∪ Θ)(P ) = σpp(P ) ∪ ϑ(P ) is at
most countable.

Proof. By the usual arguments, Theorems 3.1 and 3.4 imply that eigenvalues of
H(P ) can only accumulate at thresholds (see e.g. [2] for details), and by analyticity,
the threshold set ϑ(P ) is at most countable. Hence, if Σ ∪ Θ is closed, it is in
particular of measure 0.

Let (P0, λ0) 6∈ Σ ∪ Θ. Then by Theorem 3.6, there are neighbourhoods O of P0

and I of λ0 such that for all P ∈ O, a strict Mourre estimate holds for H(P ) on the
energy interval I with conjugate operator AP0 given as in Theorem 3.4 and H(P ) is
of class C2(AP0) by Theorem 3.1, which by the Virial Theorem implies that there
are no eigenvalues for H(P ) in I for any P ∈ O. Clearly,

Θ = {(P, λ) ∈ Rν+1 | ∃k ∈ Rν : λ = Ω(P − k) + ω(k),∇ω(k)−∇Ω(P − k) = 0}

is a closed set. Hence, possibly after chosing smaller O and I, O× I is a neighbour-
hood of (P0, λ0) which does not intersect Σ ∪Θ.

Let Hbd = EΣ∪Θ((P, H))H and similarly H0,bd = EΣ0∪Θ((P, H0))H. We remark
that if we for a fixed P take the fiber (Σ ∪ Θ)(P ) = {λ | (λ, P ) ∈ Σ ∪ Θ}, then we
have E(Σ∪Θ)(P )(H(P )) = 1pp(H(P )).

Theorem 5.4. With Hbd and P+
0 (H) given as above, we have Hbd = (1−P+

0 (H))H.

Proof. Let (λ0, P0) ∈ Rν+1 \ (Σ ∪Θ). Let the neighbourhood N and ε > 0 be those
of Theorem 4.4 corresponding to the point (λ0, P0). Let ψ ∈ EN(P, H)H. Then by
Theorem 4.4, there exists a sequence tn →∞ such that

ψ = eitnHpε(
x−y
tn

)e−itnHψ + eitnH(1− pε(x−ytn ))e−itnHψ → P+
ε (H)ψ + 0,

which implies that ψ ∈ P+
0 (H)H. As the span of such ψ is dense in H⊥bd and

P+
0 (H)H is closed, this implies that Hbd ⊃ (1− P+

0 (H))H.
By Proposition 5.3, Σ∪Θ may be written as an at most countable union of graphs

Σi of Borel functions from (subsets of) Rν to R (see [17, Théorème 21, p. 226]).
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Let ϕ = U
∫ ⊕

ϕP dP ∈ H. Then ψ = EΣj(P, H)ϕ = U
∫ ⊕

EΣj(P )(H)ϕP dP . This
implies that ψ can be written as

ψ = U

∫ ⊕
ψP dP,

where ψP is an eigenvector for H(P ) with eigenvalue Σj(P ). Note that this ensures
that ψP is Borel as a function of P . Now

P+
δ (H)ψ = s-lim

t→∞
eitH [pδ(

x−y
t

)]e−itHψ

= s-lim
t→∞

U

∫ ⊕
eitH(P )[pδ(

x
t
)]e−itH(P )ψP dP

= s-lim
t→∞

eitHU

∫ ⊕
[pδ(

x
t
)]e−itΣj(P )ψP dP,

where the last integrand goes pointwise to 0 and hence by the dominated convergence
theorem, the limit is 0. As δ was arbitrary, this shows that P+

0 (H)ψ = 0.
Since the span of the set of ψ we have covered is dense in Hbd and P+

0 (H) is
closed, we conclude that Hbd ⊂ (1− P+

0 (H))H.

Theorem 5.5 (Existence of wave operators). The wave operator W+ : H 7→ H given
by

W+u = s-lim
t→∞

eitHe−itH0P+
0 (H0)u,

where P+
0 (H0) is the projection onto {0} ⊕ L2(R2ν) = H⊥0,bd, exists.

Proof. From Theorem 5.1 and Theorem 5.4 with H = H0 it follows that P+
0 (H0)

can be given as in Theorem 5.1, and by passing to the fibered representation, it is
easy to see that the assumptions on Ω and ω imply that H0,bd = L2(Rν)⊕ {0}.

By Theorem 5.1,

eitH [pδ(
x−y
t

)]e−itH0 = eitHe−itH0eitH0 [pδ(
x−y
t

)]e−itH0

tends strongly to P+
0 (H0, H) when t→∞ and δ → 0 (in that order). On the other

hand,
eitH0 [pδ(

x−y
t

)]e−itH0

tends strongly to P+
0 (H0) in the same limit. This implies that

P+
0 (H0, H) = s-lim

t→∞
(eitHe−itH0)P+

0 (H0)

exists.

Theorem 5.6 (Geometric asymptotic completeness). With W+ as in Theorem 5.5,
RanW+ = P+

0 (H)H.
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Proof. Consider

W+ = s-lim
t→∞

eitHe−itH0P+
0 (H0)2

= P+
0 (H0, H)P+

0 (H0)

= s-lim
δ→0

s-lim
t→∞

eitH [pδ(
x−y
t

)]e−itH0P+(H0)

= s-lim
δ→0

s-lim
t→∞

(
eitH [pδ(

x−y
t

)]e−itH
)

s-lim
δ→0

s-lim
t→∞

(
e−itHe−itH0

)
P+

0 (H0)

= P+
0 (H)W+,

which proves that RanW+ ⊂ P+
0 (H)H. For the other inclusion, we similarly calcu-

late

P+
0 (H) = s-lim

δ→0
s-lim
t→∞

eitH [pδ(
x−y
t

)]e−itHP+
0 (H)

= s-lim
δ→0

s-lim
t→∞

eitHe−itH0eitH0 [pδ(
x−y
t

)]e−itHP+
0 (H)

= s-lim
δ→0

s-lim
t→∞

eitHe−itH0P+
0 (H,H0)P+

0 (H)

= s-lim
δ→0

s-lim
t→∞

eitHe−itH0P+
0 (H0)P+

0 (H,H0)

= W+P+
0 (H,H0),

which proves RanP+
0 (H) ⊂ RanW+.

Theorem 2.1 now follows from Proposition 5.3, Theorem 5.4 and Theorem 5.6.
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Appendix A

For easy reference, we list the following lemmata, which are taken from the appendix
of [DG]. The first lemma which is used to prove the propagation estimates, is a
version of the Putnam-Kato theorem developed by Sigal–Soffer [18].

Lemma A.1. Let H be a self-adjoint operator and D the corresponding Heisenberg
derivative

D =
d

dt
+ [H, i · ].

Suppose that Φ(t) is a uniformly bounded family of self-adjoint operators. Suppose
that there exist C0 > 0 and operator valued functions B(t) and Bi(t), i = 1, . . . , n,
such that

DΦ(t) ≥ C0B
∗(t)B(t)−

n∑

i=1

B∗i (t)Bi(t),
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∫ ∞

1

‖Bi(t)e
−itHϕ‖2 dt ≤ C‖ϕ‖2, i = 1, . . . , n.

Then there exists C1 such that
∫ ∞

1

‖B(t)e−itHϕ‖2 dt ≤ C1‖ϕ‖2.

The next lemma shows how to use propagation estimates to prove the existence
of asymptotic observables and is a version of Cook’s method due to Kato.

Lemma A.2. Let H1 and H2 be two self-adjoint operators. Let 2D1 be the corre-
sponding asymmetric Heisenberg derivative:

2D1Φ(t) =
d

dt
Φ(t) + iH2Φ(t)− iΦ(t)H1.

Suppose that Φ(t) is a uniformly bounded function with values in self-adjoint oper-
ators. Let D1 ⊂ H be a dense subspace. Assume that

|〈ψ2, 2D1Φ(t)ψ1〉| ≤
n∑

i=1

‖B2i(t)ψ2‖‖B1i(t)ψ1‖,
∫ ∞

1

‖B2i(t)e
−itH2ϕ‖2 dt ≤ ‖ϕ‖2, ϕ ∈ H, i = 1, . . . , n,

∫ ∞

1

‖B1i(t)e
−itH1ϕ‖2 dt ≤ C‖ϕ‖2, ϕ ∈ D1, i = 1, . . . , n.

Then the limit
s-lim
t→∞

eitH2Φ(t)e−itH1

exists.

The final lemma gives us the actual asymptotic observable.

Lemma A.3. Let Qn be a commuting sequence of self-adjoint operators such that:

0 ≤ Qn ≤ 1, Qn ≤ Qn+1, Qn+1Qn = Qn.

Then the limit
Q = s-lim

n→∞
Qn

exists and is a projection.

Appendix B

In this section, we recall a result from [16].
In the following, A = (A1, . . . , Aν) is a vector of self-adjoint, pairwise commuting

operators acting on a Hilbert space H, and B ∈ B(H) is a bounded operator on H.
We shall use the notion of B being of class Cn0(A) introduced in [2]. For notational
convenience, we adopt the following convention: If 0 ≤ j ≤ ν, then δj denotes the
multi-index (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the j’th entry.
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Definition B.1. Let n0 ∈ N ∪ {∞}. Assume that the multi-commutator form

defined iteratively by ad0
A(B) = B and adαA(B) = [ad

α−δj
A (B), Aj] as a form on

D(Aj), where α ≥ δj is a multi-index and 1 ≤ j ≤ ν, can be represented by a
bounded operator also denoted by adαA(B), for all multi-indices α, |α| < n0 + 1.
Then B is said to be of class Cn0(A) and we write B ∈ Cn0(A).

Remark B.2. The definition of adαA(B) does not depend on the order of the iteration
since the Aj are pairwise commuting. We call |α| the degree of adαA(B).

In the following, Hs
A := D(|A|s) for s ≥ 0 will be used to denote the scale of

spaces associated to A. For negative s, we define Hs
A := H−sA

∗
.

Theorem B.3. Assume that B ∈ Cn0(A) for some n0 ≥ n + 1 ≥ 1, 0 ≤ t1, t2,
t1 + t2 ≤ n+ 2 and that {fλ}λ∈I satisfies

∀α ∃Cα : |∂αfλ(x)| ≤ Cα〈x〉s−|α|

uniformly in λ for some s ∈ R such that t1 + t2 + s < n+ 1. Then

[B, fλ(A)] =
n∑

|α|=1

1

α!
∂αfλ(A) adαA(B) +Rλ,n(A,B)

as an identity on D(〈A〉s), where Rλ,n(A,B) ∈ B(H−t2A ,Ht1
A ) and there exist a con-

stant C independent of A, B and λ such that

‖Rλ,n(A,B)‖B(H−t2A ,Ht1A )
≤ C

∑

|α|=n+1

‖adαA(B)‖.
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