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Preface

This survey paper and the accompanying papers Mgller & Waagepetersen (1996),
Waagepetersen (1997b), Waagepetersen (1997a), and Mgller, Syversveen & Waa-
gepetersen (1996) constitute my Ph.D.-thesis in mathematical statistics.

The first part of the survey paper is mainly concerned with prior modelling
in Bayesian image analysis. The subject of the second part is modelling and
inference for spatial point patterns. Markov chain Monte Carlo (MCMC) has
been an indispensable tool in my work, and an account of some basic notions
and methods of MCMC 1is given in the final section of the survey paper. The
papers Mgller & Waagepetersen (1996) and Mgller et al. (1996) are extensive,
and I have therefore found it useful to let the survey paper contain sections with
brief presentations of the main results of these papers.

[ owe many thanks to my supervisor Jesper Mgller for his careful, inspiring and
enthusiastic guidance. I am also indebted to my wife Katrine for her patience and
encouragement, and to my colleagues at the Department of Theoretical Statistics
for stimulating discussions and helpful comments. Finally, I wish to thank Pro-
fessor Hans R. Kinsch and Professor Adrian Baddeley, and their colleagues at
the Seminar fur Statistik, ETH, and the Department of Mathematics, University
of Western Australia, for the hospitality which I enjoyed during my stays abroad.

The work which led to this thesis was funded by the Faculty of Science,
University of Aarhus.
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Summary

In statistical image analysis much attention is devoted to construction of penal-
ized likelihoods for point estimation of images. Parsimonious image parametriza-
tions are rarely applicable, and likelihood estimation is consequently often encum-
bered with problems like overfitting and nonuniqueness of estimates. A penalizing
term is therefore multiplied to the likelihood in order to move the maximum of
the penalized likelihood away from the highly variable and “rough” likelihood
estimates, towards more precise smoothed estimates.

For many commonly applied penalizing terms there are not both objective
and practically applicable methods for choosing the smoothing parameter in the
penalizing term. It is therefore relevant to analyze the residuals to check whether
a suitable degree of smoothing has been applied. Summary statistics and tests
to analyze residuals from penalized likelihood image segmentation are proposed
and tried out on synthetic data in Waagepetersen (1997a).

Apart from the problem of choosing the smoothing parameter, it is typically
difficult to assess uncertainty of penalized likelihood image estimates. These
problems can in principle be solved within the Bayesian framework if a realistic
prior modelling is available. The uncertainty is then given by the posterior, and
prior parameters may be estimated either from the actual recorded image data
by missing data methods, or from training data.

The construction of realistic prior image models is not straightforward. One
contribution to the solution of this problem is Mgller & Waagepetersen (1996)
which introduce a class of image models denoted Markov connected component
fields (MCCF’s). These models are discrete-valued random fields on a lattice, and
the probability of an image is proportional to a product of “interaction” func-
tions evaluated on the maximal connected components in the image. Markov
properties, extensions to infinite lattices, and other theoretical aspects are stud-
ied, and data examples demonstrate that a wide range of images can be modelled
by MCCF’s. The penalized Ising model is an example of a MCCF which is useful
for modelling of vague prior information. Phase transition and a new simulation
algorithm for this model is studied in Waagepetersen (19975).

Bayesian inference concerning the intensity surface of an inhomogeneous Pois-
son process resembles Bayesian image analysis since the intensity surface may be
regarded as a 2D image, and the observed point pattern as the noisy or trans-
formed image. The aims and means of statistics for point patterns are, however,
in general quite different from those of statistical image analysis. Interest is of-
ten focused on modelling of possible repulsion between points or clustering, and
inference is mainly based on nonparametric second order summary statistics or
parsimonious parametric models.

In Mgller et al. (1996) a new class of parametric models for clustered point
patterns is introduced. These models are Cox processes, where the random in-
tensity surface is given by a log Gaussian random field, and the models are hence
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denoted log Gaussian Cox processes (LGCP’s). LGCP’s provide a flexible class of
models for clustered point patterns, where the clustering is due to an environmen-
tal heterogeneity, and LGCP’s are furthermore appealing from a theoretical point
of view. The product densities are e.g. given by simple expressions related to the
mean and covariance of the Gaussian process, and this enables the construction
of a third order summary statistic, and simple estimation procedures.

Inference concerning the unobserved intensity surface of a LGCP is possi-
ble by application of Markov chain Monte Carlo (MCMC). A Metropolis ad-
justed Langevin algorithm (MALA) is used to generate conditional simulations
for Monte Carlo estimation of conditional means and variances of the Gaussian
field and the intensity surface, given an observed point pattern. Prediction of
unobserved parts of the point process is also possible, and the MALA can easily
be modified so that a geometrically ergodic Markov chain is obtained.

The literature on analysis of nonstationary point patterns with interaction
between points is not extensive. Ogata & Tanemura (1986) consider approximate
maximum likelihood estimation for inhomogeneous Gibbs processes, and use the
AIC criterion for comparison of fitted models. Baddeley, Mgller & Waagepetersen
(1997) study another class of models, where the observed point pattern is regarded
as a nonstationary thinning of a stationary Markov point process. It is discussed
how the K-function may be useful for analysis of such point patterns, and how
MCMC may be applied to perform semiparametric inference.



1 Statistics for image data

1.1 Introduction

Image data appear in a wide range of contexts, and on a large variety of scales.
Important sources of images are digitized photographs, electron microscopy, re-
mote sensing, and medical imaging. Images of human organs are in the last case
obtained by indirect methods such as ultrasound scanning, positron emission
tomography (PET), and magnetic resonance (MR) scanning.

An example of a simple model for image data is the linear regression

Y = h(0) +, (1.1)

where Y € R’ is the observed data, # € R’ is a parameter representing the
unobserved image, I is the index set of the digital image pixels, h is a linear
mapping representing blur, and € is 7td Gaussian noise. Another example is PET
imaging where 6 represents the intensity surface of an inhomogeneous Poisson
process, Y is a random field of Poisson variables, and E(Y) = h(f), where h
represents a complicated physical relation.

Image analysis tasks differ with respect to the amount of information which is
built into the image parametrization. Noise filtering is a low level task, where the
image parametrization is often based directly on the digital image representation,
as in the model (1.1). Image segmentation is an intermediate level task, where it
is desired to partition the image into a number of homogeneous regions belonging
to a finite set V' of region types. For this purpose one may e.g. in the model (1.1)
take # € V! instead of # € R!. In a high level task like object recognition, the
parametrization may represent type, outline, and position of the objects.

Images are usually very complex quantities for which simple and lowdimensi-
nal parametrizations are seldom applicable. The problem of solving z = h(f)
with respect to 8 for a given z, is furthermore often ill-posed (i.e. the mapping
h is either not injective, or a small change in z may lead to a very different
solution). Maximum likelihood estimation is therefore usually encumbered with
problems like overfitting, multimodality, and high variability of the estimates,
and pure likelihood methods are rarely encountered in statistical image analysis.
One of few exceptions is Rudemo & Stryhn (1994), where image segmentation is
considered as a two-dimensional change point problem, and asymptotic results
are established for the distribution of the maximum likelihood estimator. Strong
assumptions on the nature of the image are, however, required in order to obtain



a sufficiently simple parametrization. The usual approach in statistical image
analysis is to base inference on a penalized likelihood where a penalizing term is
added to the log-likelihood to stabilize the estimation procedure. This approach
is also known in physics and astronomy as regularized solutions to ill-posed in-
verse problems. Penalized likelihood is in the statistical image analysis literature
best known as maximum a posteriori (MAP) estimation since the penalizing term
is often interpreted as a prior model for the image 6.

If for example a quadratic penalizing term is used for estimation in the model

(1.1), the penalized log-likelihood
1
— ﬁuy — h(0)]|* + M0CO" (1.2)

is obtained, where o2 is the noise variance, A > 0 is the smoothing parameter,
and C' is a positive definite matrix. With an appropriate value of A, the penaliz-
ing term serves to bias the maximum of the penalized likelihood away from the
“rough” likelihood estimate, towards estimates which possess a suitable degree
of smoothness according either to prior expectations, or some more objective cri-
teria. A number of data driven methods like cross-validation and minimization
of mean square error for choosing the smoothing parameter are reviewed in e.g.
Thompson, Brown, Kay & Titterington (1991) and Kiinsch (1994). These meth-
ods are for computational reasons not practically applicable if e.g. 8 is discrete, or
a nonquadratic smoothing term is used, and for many commonly applied penal-
izing terms there do not exist both objective and practically applicable methods
for choosing the smoothing parameter, see e.g. the discussion in Dinten, Guyon
& Yao (1991). It therefore seems worthwhile to study the residuals from im-
age analyses in order to check whether a suitable degree of smoothing has been
applied. In Waagepetersen (1997a) (see also section 1.3) a rather simple image
segmentation problem is considered, and various methods for analysis of residuals
are proposed and tested on synthetic image data. Ad hoc criteria for choosing
the smoothing parameter are discussed in Ripley (1988), Kiinsch (1994), and
Waagepetersen (1997a).

Another problem related to penalized likelihood estimation of images is, apart
from the choice of smoothing parameter, assessment of uncertainty of the esti-
mates. Except for special cases like (1.2), the addition of the penalizing term to
the log-likelihood makes derivation of exact or asymptotic results very compli-
cated, and bootstrap methods may also be computationally prohibitive if exten-
sive computations are required to obtain the penalized likelihood estimate.

Penalized likehood utilize prior information in the sense that one may discard
values of the smoothing parameter which do not yield suitable smooth estimates,
according to prior belief. The smoothing parameter can, however, strictly speak-
ing, not be determined a priori since the appropriate value of the smoothing
parameter depends on the noise level of the data. If e.g. o* is large in (1.2), then
smaller values of )\ are needed to obtain the required smoothness, than if o2 is



small. The penalizing term is, regarded as a prior model, furthermore usually
a poor representation of prior knowledge in the sense that typical realizations
are far from realistic image scenes. In Tjelmeland & Besag (1996) and Mgller
& Waagepetersen (1996) it is exemplified that even though a satisfactory MAP-
estimate is obtained, it is not advisable to assess uncertainty by interpreting the
penalized likelihood as a posterior distribution.

An alternative to penalized likelihood is to consider the image a realization
of a stochastic process, and then assess uncertainty within a genuine Bayesian
framework. In order that the posterior provides a reliable representation of the
uncertainty, it is necessary that the prior model is realistic in the sense that
typical realizations of the prior may be considered as likely realizations of the
unobserved image. A realistic prior modelling also makes it meaningful to esti-
mate prior parameters either from training data, or from the actual image data
by using the EM algorithm (Quian & Titterington, 1991), or MCMC maximum
likelihood for missing data situations, see Gelfand & Carlin (1991), Geyer (1994),
and section 3.3.

In the last few years there has been a growing interest in creating realistic
prior models. For high level tasks, such as object recognition, a current trend
initiated by the group of Ulf Grenander is to use deformable template modelling,
see e.g. Grenander & Miller (1994) and Grenander (1993). The prior is then a
model for deformations and translations of the template which may be a simple
polygon representing the outline of a typical object. Baddeley & Van Lieshout
(1993) propose to use marked Markov point processes for prior modelling of the
mutual placement of objects. Hurn & Rue (1997) define a template for each
of a number of types of objects, and combine this with a Markov point process
to obtain a prior for identification and classification of objects in multitype ob-
ject scenes. Realistic Markov random field (MRF) models for images of objects
against a background are considered in Tjelmeland & Besag (1996), and Mgller &
Waagepetersen (1996) introduce a new class of models named Markov connected
component fields (MCCF’s), which facilitate prior modelling of homogeneous con-
nected regions in the image. It is demonstrated that a reasonable fit to real image
data can be obtained with simple MCCF models. A more detailed discussion of
MREF’s and MCCF’s is given in section 1.2. Kiinsch, Geman & Kehagias (1995)
establish that any stationary discrete random field can be approximated arbitrar-
ily close by hidden Markov random fields (HMRF’s) and furthermore establish
consistency of maximum likelihood estimation for HMRF’s. They apply HMRF’s
as models for binary images, but the results are, as the authors point out, not
very convincing.

It should be noted that the task of creating realistic prior models is much more
difficult than that of constructing satisfactory penalizing terms. For a penalized
likelihood estimate the large scale structures are determined by the data, and the
penalizing term usually just serves to smooth the images at a local scale.

The Bayesian approach also has advantages when uncertainty of a functional



of the image is required. One example is related to exploration of oil reservoirs
which may be considered as 3D images consisting of different geological forma-
tions as e.g. chalk and shales. In this case direct well measurements are sparse
and indirect seismic observations encumbered with great uncertainty, so that
point estimation is often not meaningful. The real object of interest is moreover
complicated functionals of the reservoir like e.g. production profiles. Bayesian
modelling, combined with MCMC computation of posterior distributions, seems
a very appropriate approach to assessment of uncertainty in such situations, see

e.g. Omre & Tjelmeland (1996) and Syversveen & Omre (1996).

1.2 Markov connected component fields

1.2.1 Definitions

In practice images are represented digitally, i.e. as a matrix of pixel values indexed
by a set I. An image parametrization commonly applied for image segmentation
is based directly on the digital representation, so that the unobserved image
belongs to S = VI, where V is a finite set of colours or image labels for each
region type in the image. For specificity we let V = {0,... |k — 1} where k£ > 1.

Suppose that a symmetric and reflexive relation ~ on [ is given. A ~-connected
component K is a nonempty subset of I, so that for all 2,7 € K, there exists
1yeen iy € K withe =47 ~ -+ ~ 1, =3. We let K denote the set of connected
components. For each @ = (z;);e; € S, and any A C [, the connected component
relation I is defined by

Vi,gjgeAii~j&diy,.., €At i=py~--~i,=jand z;;, =+ =x,;,.
T A

The set of nonempty maximal cliques with respect to ~ is denoted K(z4), and
LA

K(x4) hence constitutes the set of maximal homogeneous connected components
of pixels in the image x4 = (;)ica. Let further ’C(l)(l‘A) ={K € K(z4)|Vy €
K : x; = 1} be the set of connected components of colour [ € V in the image

x4 € VA A random field X = (X;);cs is now a MCCF if the density of X is of

the form

p(z) < I i (i(zx)), z €8, (1.3)

KeK(z)

where [(zx ) is the common value of x; for ¢ € K, and ¥ is a nonnegative function
defined on K x V. If Uk(0) = 1 for all K € K(z), then X is a MCCF with
background colour () which is a special case of the nearest-neighbour Markov
point processes introduced in Baddeley & Mgller (1989).

Prior knowledge of image components concerning e.g. size, shape, boundary
complexity, or the Euler-Poincaré characteristic, can be incorporated in the model
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by choosing an appropriate function W. The product form of p further implies
that a MCCF possesses various interesting Markov properties.

Let for future use A°= I\ A, 0A={j € A°|Fie A:i~j},and A = JAUA.
Further, for K C T and A C I, we write K T Aif KNA# 0.

1.2.2 Comparison with Markov random fields

A random field X = (X;);e; is a MRF with respect to ~, if the conditional
distribution of X; given X_; = (Xj;)jenyi only depends on those X;, where
j ~ 1. That is,

P(X; = 2| X = 2_;) = pi(wile_;) = pi(wileagy), v € S, 1€ 1,
(1.4)

where 0{¢} is the ~-neighbourhood of 7. Suppose that p is hereditary, i.e.
p(z) >0 = p(z') >0foralli €[ and z € S, (1.5)

where z¢ is defined by z¢ = 0 and ”c; =x;, j € I\ {¢}. It is then implied by the
Hammersley-Clifford theorem (see the historical account in Clifford, 1991, and
the references therein) that the density of X is of the form

p(z) o< I ¢(zc), (1.6)

cecC

where C is the set of ~-cliques excluding the empty clique, and ¢ is a nonnegative
clique interaction function defined on UgecV°.

Examples in appendix A in Mgller & Waagepetersen (1996) show that neither
is the class of ~-MRF’s contained in the class of ~-MCCF’s or vice versa. The
intersection of the two model classes is characterized by Theorem 1 in Mgller &
Waagepetersen (1996). In this theorem it is under a positivity condition stated
that the density of a random field which is both a MRF and a MCCF is of the

form

p)oc II  TII  ve(l(ex)). (1.7)

KeK(z)CeC:CCK

where 1 is a positive function defined on C x V.

Consider the case I C Z? and ~ the second order neighbourhood relation
~g, where ¢ ~y j if and only if ||: — j|| < 2. If p is both a MCCF and a MRF
where the clique interaction function ¢ is motion invariant, then by the corollary
to Theorem 1,

p(z) o
H exp (Ozl(ﬁ{)a([() + ,Bl(ch)u([() -+ VZ(zK)k-I—([() + 51(”\,))(([&7) + él(ﬁ{)d([()? ,
1.8)

KeK(z)



where for K € K, a(K) = |K| is the area measured by the cardinality of K,
u(K) = [{(i,j) € K x Z*\ K|t ~q j}| is the ~;-perimeter, k, (K) is the num-
ber of concave corners, d(K') is the number of ~; discontinuities, and y(K) is
the Euler-Poincére characteristic (for further details see section 2.2 in Mgller &
Waagepetersen, 1996).

The Ising model is the special case of (1.8), where V. ={0,1}, i =p,1 €V,
and =y =6=¢=0,l€V.

1.2.3 Markov properties
Global Markov property

For a ~-MRF X, the conditional distribution of X4 given X 4. depends on X 4¢
only through Xj54. For the relation ~, the neighbourhood {5 € A°|de € A : i ~ 5}

of a set A C I depends on z, and for MCCF’s it is therefore required to condition

on more than for MRF’s, in order to obtain conditional independence results.
The spatial Markov property for MCCF’s is given in terms of certain ran-

dom partitions of I denoted random Markov partitions. A mapping M(:) =

(A(-), B(4), C()) defined on S and taking values in
A={(A,B,C)| A, B,C are disjoint sets with I = AU BUC'}

is said to be a Markov partition if the conditions (1.9)-(1.11) below are satisfied.
The two first conditions are

VeeS i€Ax), jeC(x):if] (1.9)
and
Vae,ye S: B(z)=Bly) < M(z) = M(y). (1.10)
Assuming (1.10), and defining for B C [ and 25 € V',

A(B,zg) = {ys € V*| Jyc € V° : B(ya, zB,y0) = B},
C(B,zp) ={yc € V| Jya € V* : B(ya,xB,yc) = B},
D(B,$B) = {(yA,yC) € VA X VC | B(’!/A7$B7’!/C) = B}7

the last condition is

Ve e S :D(B,zg) = A(B,zp) x C(B,zp) where B = B(z).
(1.11)

Here and elsewhere in the following we identify (y4, x5, yc) with the z = (2;)ier,
where z; = x;, ¢+ € B, and z;, = y;, ¢ € AU C. The condition (1.9) implies
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that a component K € K(x) can not intersect both A(z) and C(z), and B(x) is
hence denoted the splitting set. The Markov partition is by (1.10) determined
by B(:), and (1.11) implies that y4 and yc can be checked separately to see if
(ya,yc) € D(B,xp).

A random field X on S, and a Markov partition M(-) induce a random Markov
partition M = (A, B, C) = M(X) = (A(X), B(X),C(X)). The spatial Markoy
property for a MCCF is given in Theorem 2 in Mgller & Waagepetersen (1996)
as follows:

Theorem 2 For a Markov partition M(-) = (A(-),B(-),C(-)) and a MCCF
X, we have that Xs and X¢ are conditionally independent given B and Xg.

Suppose for B C I and zp € VZ that p(B = B, Xg = ) > 0 or equivalently,
I(ya,yc) € D(B,xB) : H Uy (l(yK)) > 0.
KeK((yawpwc))
Then the conditional distribution of Xa given that B = B and Xg = zp is

concentrated on the set A(B,zg), and its conditional density is

p(za | B,zg) = ¢(B,xp) II \I’K(Z(IK)), 4 € A(B,zB),
KeK(zaup):KTA (1.12)

where ¢(B, xg) is a normalizing constant. Similarly,
P(JUC | Bw"ﬂB) & H \Illx"(l(xl{))a Tc € C(B7$B)-
KeK(zpuc):K1C, K9 A (1.13)

O
Remark: The conditional densities (1.12) and (1.13) are slightly different due to
the asymmetry in (1.9).

For A C I we can e.g. consider the splitting set B(z) = Ugex(ope)riall
which depends only on xz4.. A Markov partition is then given by M(z) =
(A,B(xAc),AC \ B(:L‘Ac)),:c € S, and A(B,xp) is in this case V4 if there exists
ayae\B € VAN such that B(zp,yae\) = B, and A(B,zp) is empty otherwise.
Other Markov partitions, which may be useful for handling of edge effects, are
given in Mgller & Waagepetersen (1996).

Local Markov property

For a hereditary density p, the ratio of local characteristics given by
Ai(z) = pi(wi | w-i)/pi(0 [ 2) (1.14)
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is well-defined for all € S with p(z) > 0. If p is the density of a MCCF with
background colour 0, then

Ix"e}C(zé\,i(E))
which depends on z only through ) where Ki(z) € K(z) is determined by
i € Ki(z). In Theorem 3 in Mgller & Waagepetersen (1996) it is established using
Lemma 1 in Baddeley, Van Lieshout & Mgller (1995) that the class of hereditary
MCCF’s with background colour 0 is characterized by the local Markov property
(1.15).

If a MRF is specified in terms of local characteristics, the Hammersley-Clifford
theorem yields that the joint distribution of the MRF is of the form (1.6). One
can then apply the Brook expansion (see e.g. Besag, 1974) to calculate the clique
interaction functions and check whether the local specification is consistent. The
characterization result given by Theorem 3 in Mgller & Waagepetersen (1996) can
in principle be applied in a similar way to calculate ¥ from a local specification,
but things are more complicated than for MRF’s since K is typically of a very
high cardinality.

1.2.4 Existence of MCCPF’s on infinite lattices

The question of existence of stationary MCCF’s is important for establishment
of almost sure consistency of estimators, and it is also of interest to study when
extensions of finite lattice MCCF’s to infinite lattices are nonunique, i.e. when
phase transition occurs. Phase transition may have a dramatic effect also on
the properties of the finite lattice random fields, and is further discussed in sec-
tion 1.2.6.

For a symmetric and reflexive relation ~ defined on 7, and V a finite set of
colours/labels, the sets K and K(z,4) for € S = VI and A C I, are defined as
in section 1.2.1. Let further G = {A C I | |A| < oo} be the set of finite subsets of
I, and let {A,},>1 be an increasing sequence of subsets in G N K such that for all
A € G, there exists a A, k > 1, with A C A, \ 9(AY). It is assumed that ~ is of
finite range, so that A C G for all A € G, and we shall without loss of generality
assume, that I € K.

For a given function W defined on (K NG) x V and = € S, it is in section 4
of Mgller & Waagepetersen (1996) discussed how to define a family {pa }aeg of
functions py : VA x VA° — [0, 1], where pp(-|zac), z € S is a probability density
related to the conditional probabilities of a MCCF defined on a finite index set.
If {pa}reg satisfies the consistency condition

pi(zxleie) = palealeac) Y- pi(ya, eaalese), © € S,

Ya
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when A C A, it is a specification as defined in Preston (1976, p. 16-17). If
further X is a random field with values in S, where the conditional density of
X, given Xpe = xpc is given by pa(-|zac) for each A € G and xx. € VA with
P(Xpe = xpc) > 0, then X is specified by {pa}aecg, and will be considered as a
MCCF extended to the infinite lattice.

In Mgller & Waagepetersen (1996) the probability density pa(- | xac) is ob-
tained in a natural way as the limit of conditional densities of MCCF’s defined
on bounded observation windows A,,n > 1. More specifically (c.f. (1.12)), let

Pan(@a [ Za,\0) I v« (l(:cK)) (1.16)

KeK(zp,,):KTA

for all n such that A C A, and « € R, ,, where Ry, is the subset of S for which
the right hand side of (1.16) can be normalized, i.e.

Ryn={z€S|qye S ar =y and ]] \I}K(Z(yﬁ')) > 0}

I\"GK(yAn):
KTA

Let
Ry = Nus>na) Ban

where N(A) is defined in the proof of Lemma 1 in Mgller & Waagepetersen (1996).
Then py is defined as the limit

pa(zaleac) = lim pa, (24, [Tag), (1.17)

for all @ € Rjy. The condition (1.18) below ensures that this limit exists. Let ¢
be a strictly positive function defined on C x V. It is, informally, required that
Uk (l) can be approximated by the product [[oee.ccx ¥e(l) for large but finite
KeKandleV. B

More precisely,
VAeG,e>0dN >1:
Vn>N,leV,and K e KNG with K T A and K TAS :
Uk (1)
Hcec:ogK ’%ZJC(Z)
This condition also implies that p, is quasilocal, i.e. a uniform limit of local

functions (a function defined on S is local if there is an A € G, such that the
function depends on x only through x4 for @ € S). The condition is therefore

— 1| <e (1.18)

sufficient to use results in Preston (1976) to establish the existence of a random
field X specified by {pa }areg, where P(X € NacgRA) = 1.

The condition (1.18) e.g. holds for the penalized Ising model considered in
section 1.2.5. Other examples include cases where Ui (-) — 1 as |K| — oc.
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Figure 1.1: Data. Left: Rock sample image. Right: Handmade paper texture.

Assuming (1.18), it is in Lemma 1 in Mgller & Waagepetersen (1996) shown
that the limit in (1.17) exists, and in Lemma 2 that this limit is quasilocal.
Theorem 4 is the existence theorem in which it is established that if U satisfies
(1.18), then there exists a random field whose conditional probabilities are given
by the specification {ps }aeg corresponding to W.

Conditions for absence of phase transition may be established by using the
uniqueness criterion of Dobrushin (see e.g. Georgii, 1988, p. 142), but the question
of uniqueness is not addressed in Mgller & Waagepetersen (1996).

1.2.5 Examples and simulations

In this section we shall consider some specific examples of MCCF’s which will be
fitted to the binary image data shown in Figure 1.1.

(a) The penalized Ising model. This MCCF model appears as a modification
of the Ising model where realizations with presence of small connected regions of
constant colour are penalized. The model is given by

T
p(x) x exp (— (Kez:}qx) Bu(K) + a([&')))’ x €S, (1.19)

so that small components are penalized when 4 is positive. This model was
fitted to the rock sample image using MCMC maximum likelihood estimation
(see Geyer & Thompson, 1992 and section 3.3), whereby estimates 3 = 0.483
and 4 = 17 were obtained. Figure 1.2 shows simulations of the fitted model. The
large scale variability of the rock sample image is well reproduced by the penalized
Ising model, but the boundaries in the data image appear somewhat smoother
than the boundaries in the simulations. We shall return to the penalized Ising
model in section 1.2.6.
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Figure 1.2: Realizations of the fitted model (1.19)

(b) A MCCF model for black components on a white background. The number
and size of black components are important features of the handmade paper image
in Figure 1.1. In order to model this image we first tried a binary second order
MREF given in terms of the five geometric characteristics a, u, d, k;, and y. From
the corollary to Theorem 1 in Mgller & Waagepetersen (1996) it follows that this
is equivalent to using the general parametrization (1.6) of a binary second order
MRF with a motion invariant clique interaction function. This MRF model was
not able to capture the variability displayed by the data.

Instead we considered the MCCF with background colour 0 given by

p(z) xexp( > aa(K)+ Bu(K)+ e(x(K) —1) + ¢ +va(K)?), z € S.
KeK()(z) (1.20)

The parameter ~ controls the size of the components since the squared area of
the union of two components is greater than the sum of the squared areas of each
component. The size of the components is also influenced by the parameter o
together with the parameter ¢ which controls the number of components. The
parameter [ controls the perimeter of the black part of the image, and thereby
also the shape (compactness) of the components. The statistic 1 — x(K) counts
the number of holes in a component K.

The MCMC maximum likelihood estimates obtained from the data are & =
0.087, 3 = —0.834, ¢ = 1.550, qZ) = —1.045, and 4 = 1.923 x 10~*. Simulations (see
Figure 1.3) show that the variability of the number and size of the components
is quite well reproduced by the model, and the characteristic y — 1 turned out
to be very useful for modelling the number of holes in the components. The
model was also judged by comparison of the empirical distributions of the black

component characteristics a(K), u(K), and u(K)/\/a(K), K € K1) (data), with
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Figure 1.3: Realizations of the fitted model (1.20)

the distributions estimated from simulations of the fitted model, see Figure 8 in
Mogller & Waagepetersen (1996). Especially with respect to a(K) and u(K), the
fit of the estimated model seems quite good.

(c) An example of Bayesian image analysis. This example from Mgller & Waa,
gepetersen (1996) shows the importance of using a realistic prior model when the
full posterior distribution is required for the inference. Synthetic data obtained by
adding a Gaussian noise with variance 1.25 to the rock sample image was consid-
ered. With this high noise level it is not possible to obtain precise point estimates,
and an assessment of uncertainty is therefore relevant. The Ising model and the
penalized Ising model, respectively, were used as priors, and the prior parameters
were estimated from the rock sample image. This corresponds to estimation of
prior parameters from training data. MCMC was used to estimate the posterior
distributions of the number of black pixels, the number of components, and the
marginal posterior probabilities of observing a black pixel. The results obtained
with the two priors are shown in Figure 1.4, and the true numbers of components
and black pixels together with posterior means and standard deviations are given

in Table 1.1.

The posterior distribution obtained with the Ising prior is clearly a misleading
representation of the knowledge concerning the number of components in the true
image. This is not surprising since a large number of small components are present
in the realizations of this posterior, see Figure 9 in Mgller & Waagepetersen
(1996). The posterior distribution of the number of components is more correctly
centered around the true value when the penalized Ising prior is used, and this
is also the case for the posterior distribution of the number of black pixels. The
marginal posterior probabilities of observing a black pixel are furthermore in much
better accordance with the pixel values of the true image, when the penalized
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Figure 1.4: Upper row: posterior distribution with Ising prior of number of
black pixels (left), number of components (middle), and the marginal posterior
probabilities of observing a black pixel (where white in the gray level image
corresponds to zero probability). Lower row: same as upper row, but with the
penalized Ising prior.

Ising prior is used.

One may object that better results might be obtained with the Ising prior if
another prior parameter was used instead of the maximum likelihood estimate. It
is on the other hand not at all clear how to choose such an alternative parameter
value.

1.2.6 Phase transition

The Ising model was originally introduced as a model for ferromagnets, and it
is very interesting that this simple model is able to reproduce the phenomenon
of spontaneous magnetization which is one example of a phase transition, see
Kindermann & Snell (1980) or Georgii (1988). For Ising models defined on large
finite lattices with a periodic or free boundary condition, the phase transition be-
haviour can be observed as an abrupt change from unimodality to bimodality of
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True values 2157 11
Ising prior 2101.4 (51.8) | 86 (7.7)
Penalized Ising prior | 2153.1 (50.7) | 10.3 (1.6)

Table 1.1: True values, posterior means, and standard deviations (in parenthesis)
of number of black pixels and number of components.

the distribution of the number of black pixels. This change occurs when 3 exceeds
a certain critical value, and corresponds to a transition from short range corre-
lations to infinite range correlations for the infinite lattice Ising model. Mathe-
matically, phase transition is defined as nonuniqueness of extensions to infinite
lattices of finite lattice random fields. The set of infinite lattice Ising distributions
is given by convex combinations of two extremal states which may be considered
as perturbations of the point mass measures on the two modes (i.e. the constant
images), see Georgii (1988) p. 101.

The phase transition behaviour is not an important issue when the Ising model
is used as a penalizing term for MAP-estimation. In this case the Ising model,
roughly speaking, serves as a device to clean images by removing components
of pixels according to whether 3 is larger than a certain ratio between the log-
likelihood ratio for removing the component, and the length of the boundary of
the component, see the discussion in section 2 in Waagepetersen (1997a). Phase
transition on the other hand seems undesirable if a realistic prior modelling is
requested, since realizations of the subcritical Ising model has a rather chaotic
and “noisy” appearance, while the supercritical realizations are dominated by
one colour and contain no interesting structures.

It was therefore in Mgller & Waagepetersen (1996) interesting to note that
phase transition did not seem to occur for the fitted penalized Ising model de-
scribed in section 1.2.5, despite that B is supercritical for the Ising model. This
is investigated further in Waagepetersen (1997b), where it is demonstrated us-
ing the Peierls (1936) argument that phase transition actually does occur for the
penalized Ising model for any positive v and sufficiently large values of 3. The ap-
parent absence of phase transition behaviour for the penalized Ising model could
be due to nonconvergence of the single-site updating Metropolis algorithm used
for the simulations. When phase transition occurs one may expect that the model
is concentrated on and around the modes, which are the constant images. It is
in practice not possible for a single-site updating algorithm to move from typical
nonconstant realizations of the fitted penalized Ising model to the constant im-
ages, since the chain then needs to move through images of very low probability.
From the Monte Carlo estimate in Waagepetersen (19978) it turned out, how-
ever, that the probability of the modes is very small (~ 107'?), so it seems safe
to conclude that phase transition does not occur for the fitted penalized Ising
model.
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A natural approach to improve the single-site Metropolis algorithm is to in-
troduce transitions, where all pixels in a component are updated simultaneously
(whereby the component is removed from the image). A proposal mechanism for
such a transition is easy to construct, but in order to maintain reversibility, it is
also necessary to be able to make the reverse transition, i.e. to insert a component
which is a subset of another existing component in the image. It is not straight-
forward to construct a proposal mechanism for such a move since the mechanism
must generate components for which an insertion is likely to be accepted. For the
penalized Ising model this especially means that the generated components must
not contain small holes, since small holes occur with a very small probability
under the penalized Ising model. The mechanism for generating a component
must further be sufficiently simple, so that the probability of generating a given
component can be easily calculated. This problem is in principle solved in Waa-
gepetersen (1997b), but the constructed algorithm turned out to be useful only
for a rather restricted set of parameter values for the penalized Ising model. For
the Ising model the algorithm works for all values of 3, but is not as efficient as
the Swendsen & Wang (1987) algorithm.

The Ising model is an example of a pairwise interaction MRF. One approach to
obtain parametrizations of higher order MRF’s is to use morphological operations
as suggested in Chen & Kelly (1992), Carstensen (1992), and Sivakumar & Gout-
sias (1997). Let A(x) = {1 € I|xz; = 1} be the set of pixels of value one in a binary
image z, and let @ and o denote the morphological operations of closure and open-
ing (Serra, 1982), respectively. The result A(x) e B of the closure with a suitable
structure element B, is a smoothed version of A(z), where narrow “bays” and
“channels” are filled out, and the opening operation smoothes A(x) by removing
sharp “capes” and thin “isthmuses”. The inclusions A(z)o B C A(z) C A(z)e B
hold, and in Sivakumar & Goutsias (1997) it is showed that the random field
given by

p(z) x exp(—pB|A(xz)e B\ A(z)o B|) (1.21)

is a MRF with a local neighbourhood system. A class of MRF models may, as
suggested in Sivakumar & Goutsias (1997), be obtained by introducing structure
elements of different size and shape.

When > 0 the model (1.21) favour images which are morphologically
smooth, and the modes are given by those images @ € S for which A(z) e B =
A(z) o B. Such images may contain many interesting structures, and it is there-
fore, from an applied point of view, probably not so important whether phase
transition occurs for the model (1.21) (if one assumes that the extremal distribu-
tions are concentrated around the modes, when phase transition occurs). It is on
the other hand by no means necessary that the modes of an image model contain
interesting global structures. This is demonstrated by the penalized Ising model
(1.19), and the MRF-models in Tjelmeland & Besag (1996), for which the modes

are given by the constant images.
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1.2.7 A discussion concerning MCCF’s, MRF’s and inter-
mediate level priors

In the literature on MRF’s there has traditionally been much focus on pairwise
interaction MRF’s where ¢(z¢) =1 if |C'| > 3 in the product (1.6). Models with
a simple parametrization are thereby obtained, and pairwise interaction priors
usually work well for smoothing purposes in MAP-estimation. It is, however,
widely recognized that pairwise interaction models are not able to produce real-
izations which contain global structures of the kind that appear in real images
scenes. The results in Tjelmeland & Besag (1996) show that interesting spatial
scenes can be modelled by means of MRF’s when higher order interactions are
included. The number of parameters for the general parametrization of a MRF
grows rapidly as the neighbourhood size increases, and the choice of a parsi-
monious parametrization therefore becomes an important and difficult problem.
This highlights one of the attractive properties of MCCF’s: large scale structures
given by the connected components are modelled explicitly, and from Corollary
1 in Mgller & Waagepetersen (1996) a guideline can be derived which suggests
that one should use the five geometric component characteristics as a starting
point for the modelling. The simulations in section 1.2.5 show that models for
very different patterns can be obtained with this approach. Another problem
with MREF’s is related to change of resolution. If a MRF model has been chosen
for a given digitized image, it is not clear how this model should be modified if
a coarser or finer digitization is introduced. MCCF modelling based on the five
geometric characteristics may be less sensitive to this problem, since at least the
interpretation of the geometric characteristics is independent of scale.

MRF’s and MCCF’s are especially useful as intermediate level priors in sit-
uations where only vague prior information concerning spatial homogeneity, size
of connected components, and boundary smoothness is available. If the images
exhibit a high degree of regularity, so that one e.g. knows that ellipse shaped
objects appear on a background, then continuum high level image priors based
on deformable templates and marked Markov point processes are advantageous.
With such priors relatively low dimensional image parametrizations are used,
and rotations and translations can easily be applied to the image parameters. A
high level of image interpretation can furthermore be obtained from the poste-
rior distribution, and the image parametrization is independent of the choice of
discretization for the digitized image.

Coloured triangulation models

The pixel based representation is flexible in the sense that all kinds of scenes can
be represented, when the discretization is sufficiently fine. The drawback is the
high dimensionality. An interesting approach to reduce dimensionality and still
maintain flexibility is the coloured triangulation models in Nicholls (1996). In
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this paper D C R?is an open bounded continuous index set whose boundary
Dy is given by a simple polygon, and the space of images is V', where V is as
usual a finite set of colours. Let v. denote the set of corner vertices of Dy, and
let vy and v, be finite subsets of D and D4, respectively. The set of all possible
triangulations of D with vertices given by v. U vy U vy is denoted I'p(v., vy, vg).
The space of coloured triangulations is

T = Uvycoyy U vgen: Urelp (ve,vp,va) Yeeo(r) (Ta C):
|vp|<oo [vp|<oo
where C(7) is the set of all possible colourings of the triangulation 7, where
to each face in 7, one of the colours in V is assigned. An image x = (25)sen
corresponding to a triangulation (7,¢) is given by z, = I, s € D, if [ € V is the
colour of the face to which s belongs. A finite measure y) on 7' is defined by

00 0 )\Qn-l—k
Xa(A) =3 > k] /D" /(Dbd)k > > 1((7’, c) € A)dudv, AeT,

n=0 k=0 7€l p(ve,s(v),s(u)) c€C(7) (122)

where A > 0 is an intensity parameter, 7 is an appropriate o-algebra on 7', and
5((ul, e ,un)) = {uy,... ,u,}, n > 1. The prior model for coloured triangula-
tions is specified by a density with respect to y). The density may e.g. be similar
to an Ising model (V = {0,1}), so that

p(7,¢) x exp(—ﬂE(T, c)),

where > 0, and F(7,c) is the number of pairs of different coloured faces of 7
which have an edge in common. The advantage of the model in Nicholls (1996)
is that one need not settle for a fixed lattice. The posterior distribution is in-
stead concentrated on coloured triangulations, where the lattice corresponding
to the triangulation is “adapted” to the actual observed image data. The prior
parameter A controls the number of vertices in the triangulations and thereby the
coarseness of the lattice. A potential problem is parameter estimation. This is
a missing data problem since there to a given image correspond infinitely many
coloured triangulations. The approach in Nicholls (1996) is further discussed in
section 2.4.

Noninformative image priors

The notion of a noninformative image prior is not well understood. For a uni-
variate parameter in a finite parameter space, it is natural to choose the uniform
distribution as a noninformative prior since all parameter values may a priori be
equally plausible. For images the situation is different. Suppose that an image
belongs to the finite state space S = V. Then the uniform distribution is non-
informative in the sense that the MAP-estimate only depends on the likelihood.
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But all typical realizations of this prior clearly differ strongly from prior expecta-
tions of typical images since no spatial homogeneity is present. A model like e.g.
the penalized Ising model may seem a more reasonable choice as a noninforma-
tive or at least vague prior. Typical realizations of this model contain a suitable
degree of spatial homogeneity, and the model assigns probabilities of the same
order of magnitude to a very large variety of global structures.

1.3 Analysis of residuals from segmentation of
noisy images

For many penalizing terms used for MAP-estimation of images there are not
both objective and practically applicable methods for choosing the smoothing
parameter. The smoothing parameter is then chosen in an ad hoc manner, and
it is relevant to analyze residuals in order to check whether a suitable amount of
smoothing has been applied. If a precise estimate is obtained, then the residual
process is similar to the noise process. One may therefore investigate the residu-
als by comparing summary statistics of the residual process with the distribution
of the summary statistics, when they are evaluated on the noise process. In Waa-
gepetersen (1997a) three different methods for analyzing residuals are proposed
and applied to a simple case of image segmentation, where a binary image is
corrupted by an additive iid noise. Attention is especially focused on the case
of a binary white noise. MAP-estimates are obtained using an Ising penalizing
term, and simulated annealing is used to maximize the penalized likelihood.

If an oversmoothed estimate is obtained, one may expect clustering of pixels
in the residual image where components in the true image are smoothed away.
In the first approach considered in Waagepetersen (1997a) the distribution of the
residual process is approximated by an Ising model with an external field. This
model is fitted to the residual process, and a log-likelihood ratio test for absence
of interactions in the residuals is applied.

A computationally simpler method is obtained by considering statistics Uy
which for £ =0,... ,8, are given by the fraction of 1-pixels in the residual image
which have k neighbours of colour 0. The asymptotic distribution of these statis-
tics is Gaussian, under the assumption that the residual process is a version of
the noise process.

The third method is based on the empirical distribution of the boundary to
area ratios bd(K)/a(K), K € KM(r), for the 1-components in the residual image
r. This statistic is compared with envelopes calculated from simulations of the
noise process.

The experiments showed that there is scope for application of the second and
third method, while the first method is too sensitive to the fact that the residual
process is a perturbed version of the noise process, when very precise estimates
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can not be obtained.

For a noise process defined on an infinite lattice and for values of the noise
rate where site-percolation (see e.g. Kesten, 1982) does not occur, it is possible to
define the distribution of the boundary to area ratio of the “typical” 1-connected
component. This distribution can be estimated unbiasedly using Monte Carlo,
and it is discussed in section 2 of Waagepetersen (1997a) how this may be helpful
to provide guidelines for the choice of smoothing parameter.

In Rue (1996) the residuals are analyzed from a somewhat different perspec-
tive. A statistic which measures deviations of the sample correlation structure of
the residuals from the noise correlation structure is constructed, and this statistic
is included in the penalizing term in order to enhance the image restoration.

2 Modelling of point patterns

2.1 Introduction

Statistical models for point pattern data are given in terms of point processes,
where the points are usually locations in a subset S of R% Let B(S) and By(S)
denote the Borel sets and the bounded Borel sets of S, respectively, and let N(.5)
denote the set of integer-valued counting measures on (S,B(S)). Let further
N(S) denote the o-algebra on N(S) generated by the projections pa, A € B(S),
given by pa(c) = ¢(A),c € N(S). A measure ¢ € N(S) is locally finite if
¢(B) < oo for all B € By(5), and a point process ® on S is a locally finite integer-
valued random measure, i.e. a measurable mapping from a probability space into
(N(S), N(S’)) A point process may equivalently be considered an integer-valued
stochastic process {®p}pep(s), where the stochastic variables ®p satisfy certain
consistency conditions, see Proposition 7.1.X in Daley & Vere-Jones (1988). A
point process is simple if N({s}) € {0,1} for all s € S, and a simple point
process may therefore be identified with a random countable subset X of points
in S, where s € X if and only if N({s}) = 1. We shall restrict attention to simple
point processes. In the sequel vy denotes the Lebesgue measure on R? and |- |
as usual denotes the cardinality of a set.

The Poisson process corresponding to a locally finite mean measure m is the
fundamental point process characterized by

P1 |X N B| is Poisson distributed with mean m(B), B € By(5).

P2 | XNB;|,n>1,i=1,...,n, are independent whenever By,..., B, € By(S)
are disjoint.
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The distribution of the unit rate homogeneous Poisson process for which m = vy,
will be denoted pg.

The class of Cox processes is obtained by substituting m by a random mean
measure M which is often given in terms of a stochastic intensity process A =

{AS}SERd as
M(B) = /BAsds, B € By(S). (2.1)

If e.g. the Cox process is a model for stands of trees, then A may represent an
environmental heterogeneity related to for example soil fertility. For the log Gaus-
sian Cox processes studied in Mgller et al. (1996), see section 2.2, the intensity
process 1s a log Gaussian process.

The Neyman-Scott processes constitute another important class of point pro-
cesses. A Neyman-Scott process is generated by a three-step procedure: First, a
Poisson process Z of parents is generated. Secondly, conditional on 7 = z, uid
random integers .J(z;) are generated for each parent point z; € z. Thirdly, for each
parent z;, J(z;) iid offspring are generated according to a density ¢ for the posi-
tion of an offspring relative to the parent. The realization of the Neyman-Scott
process is finally given by the superposition of the offspring. A Neyman-Scott
process where the number of offspring is Poisson distributed is equivalent to a
Cox process with intensity surface given by

L/\S = Z g(S-Zi), S € S,

2, EL

see Bartlett (1964). There may for Neyman-Scott processes as for Cox processes
often be a natural interpretation as it is indicated by the terminology of “parents”
and “offspring”. Log Gaussian Cox processes and certain Neyman-Scott processes
are compared in section 4 of Mgller et al. (1996).

Clustering of points is for Cox processes due to peaks in the underlying in-
tensity process, while clusters of Neyman-Scott processes appear around the un-
observed parent points. The points are in both cases conditionally independent
given the underlying intensity or parent process. The class of Markov point pro-
cesses (Ripley & Kelly, 1977; Baddeley & Mgller, 1989) allows for modelling of
clustering or repulsion which arise from direct attractive or repulsive interactions
between the points. The definition of Markov point processes resembles that of
MRF’s. Suppose that a symmetric and reflexive relation ~ on R? is given, and
let C denote the set of cliques given by ~ (excluding the empty clique). For any
point configuration  C S, we let C(z) = {C € C|C C z}, i.e. C(x) is the set of
~-cliques contained in x. The density with respect to pg of a finite ~-Markov
point process on a bounded subset S C R, is of the form

fle)oc II ¢(C), e N(S),

CeC(x)
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where ¢ is a nonnegative clique interaction function. A Markov point process
X on S = R%is specified by a set of conditional densities {f5(-|-)}pes,(s) (see
Preston, 1976) in a similar way that infinite lattice MRF’s and MCCF’s are
specified, see section 1.2.4. For A € By(S), fa is the conditional density with
respect to pa of X N A given X \ A, and f4 is given in terms of the clique
interaction function ¢ as

faznAle\ Ao T 4(0). (2.2)

CeC(z):CNA#D

A standard example of a repulsive finite Markov point process is the Strauss
process for which s; ~ sy & ||s1 — s3] < 7, 51,52 € R where r > 0 is the
interaction radius. For parameters §; € R and 6; < 0, the clique interaction
function is given by ¢(s1) = exp(01), é({s1,s2}) = exp(62),{s1,s2} € C, and
#(C)=11if |C] > 2. The density is thus

flo) s exp(Blel 4% 3 X0 1 — 2yl < 7). (2.3

Ti€T z; cx\xz;

In section 3.4 we discuss simulation of the hard core process which is another
example of a repulsive Markov point process.

For Markov point processes there has, as for MRF’s, traditionally been much
focus on pairwise interaction models like the Strauss process. Such models are
useful for modelling of repulsive point patterns, but it is now generally believed
that pairwise interaction models are not adequate models for clustered point
patterns. More flexible models may be obtained by including higher-order inter-
actions. The area-interaction process (Baddeley & Lieshout, 1995) has interac-
tions of any order, and is in principle a model for both repulsive and clustered
point patterns. My experience is that it is difficult from this model to generate
point patterns which are clearly repulsive or clustered when judged visually, or
in terms of the K-function (the K-function is defined in section 2.2.3). Geyer
(1996) introduces two higher-order processes of which the first is the triplets
process which appears by extending the sufficient statistic of the Strauss pro-
cess (2.3) with the number of cliques of cardinality three. The second pro-
cess, named the saturation process, is a modification of the Strauss process

where the sum ) I(||]z; — x;]] < r) in the sufficient statistic is replaced

z;€x\z;
by min(c, >zea\a; L[z — 24 < r)) for a positive parameter ¢ > 0. The triplets
process and the saturation process are models both for clustering and repulsion,
and from these models it is easy to generate patterns which are clearly repulsive
or clustered. The continuum random cluster model (Mgller, 1996) is also a flexi-
ble model for clustered and repulsive point patterns. This model belongs to the
class of nearest neighbour Markov point processes (Baddeley & Mgller, 1989) for
which MCCF’s with a background colour (see section 1.2.1 and section 1.2.3) are
the discrete analogues.
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Markov point processes may e.g. be applied to investigate the hypothesis of
complete spatial randomness, i.e. whether data can be described by a homoge-
neous Poisson process. This hypothesis is traditionally investigated by consider-
ing various second order summary statistics like the K, F' and G functions, see
section 2.2.3. If the data is well described by a parametric model for a Markov
point process, the likelihood ratio test probably provides a stronger alternative.
A potential weakness of this approach is that parameters in models for Markov
point processes do not always have a natural interpretation. It is e.g. not clear
what to conclude from the triplets model if complete spatial randomness is re-
jected. This is, of course, of minor importance if it is just required to obtain
a flexible prior for some Bayesian prediction procedure, as in Bayesian image
analysis.

Maximum likelihood estimation for Markov point processes was once consid-
ered a difficult problem due to the unknown normalizing constant, but is now in
general quite straightforward since the normalizing constant can be estimated ac-
curately by MCMC. The likelihood for a Neyman-Scott process or a Cox process
is given in terms of a mean value with respect to the distribution of the underlying
parent or intensity process, and is in general analytically intractable. Also in this
case MCMC may be used to estimate the likelihood as explained in Gelfand &
Carlin (1991) and Geyer (1994), see also section 3.3. MCMC methods are in this
case required to obtain conditional simulations of the intensity/parent process,
given the data. It is not clear when likelihoods for Cox processes and Neyman-
Scott processes are unimodal and free of local maxima, and maximization of
the likelihood may therefore be difficult in practice. Minimum contrast methods
based on the K-function have been the usual approach to fitting of Neyman-
Scott processes, see Diggle (1983). In Mgller et al. (1996) (see section 2.2.2) a
minimum contrast method based on the covariance function of the Gaussian field
yields a useful and computationally simple method to fit parametric models for
log Gaussian Cox processes.

Nonparametric statistical methods based on summary statistics for point
processes in general require stationarity, and nonstationary point patterns have
mainly been analyzed as realizations of inhomogeneous Poisson processes, see e.g.
Cressie (1991), and the references therein (Bayesian inference for the intensity
surface of an inhomogeneous Poisson process is also discussed in section 2.2.5).
It may also be of interest to investigate possible interactions between the points.
Ogata & Tanemura (1986) consider approximate maximum likelihood estimation
for inhomogeneous Gibbs processes, and use the AIC criterion for comparison of
fitted models. Baddeley et al. (1997) study another class of models where the
observed point pattern is assumed to be a nonstationary thinning of a station-
ary Markov point process. It is discussed how the K-function may be useful
for analysis of such point patterns, and how MCMC may be used to perform
semiparametric inference, see also section 2.3.
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2.2 Log Gaussian Cox processes

Log Gaussian Cox processes (Mgller et al., 1996) provide a flexible and tractable
class of models for clustered point patterns, where the clustering of points is due
to underlying spatial heterogeneity. The intensity surface A of a log Gaussian
Cox process (LGCP) is given by A, = exp(Y;), s € R% where Y = {Y,},cpa is a
Gaussian random field. To ensure that the random mean measure M given by
(2.1) is well-defined, it is assumed that A is given in terms of a continuous modi-
fication of Y. A condition on the covariance of ¥ which ensures the existence of a
continuous modification is given in Lemma 1 in Mgller et al. (1996). Multivariate
LGCP’s are straightforwardly defined when Y is a multivariate Gaussian field,
see section 5 in Mgller et al. (1996).

We shall restrict attention to stationary LGCP’s. By Theorem 1 in Mgller
et al. (1996), stationarity of a LGCP implies stationarity of the corresponding
Gaussian field Y, and the distribution of a stationary LGCP is thus uniquely
determined by the mean p € R, the variance 0 > 0, and the correlation function
r:R{—S Rof Y.

In applications, a parametric correlation model is used. Table 2.1 contains
examples of isotropic correlation models for which the condition in Lemma 1 in
Mogller et al. (1996) holds. The simulations in Figure 2 in Mgller et al. (1996)
show that a wide range of clustered point patterns can be generated from LGCP’s
when the correlation models in Table 2.1 and varying values of the parameters
@, 0% and 3 > 0, are used.

Gaussian: exp(—(a/B)?) | Exponential: exp(—a/p)
Cardinal sine: sin(a/3)/(a/f) | Stable: eXp(—\/a/ﬁ)

Table 2.1: Examples of correlation models.

2.2.1 Product densities and ergodicity

The n’th order product density p™ : (RY)" — Ry, n = 1,2,... of a point
process X determines the n’th order moments of the random variables | X N
B|, B € By(S), and intuitively, p™(s1,... ,s,)ds; - - - ds, is the probability that
the point process has precisely one point in each of n disjoint and infinitesimally
small regions of volume dsy, ... ,ds,. The first order product density p(*)(s) =
p(s), s € R% is the intensity, and the pair correlation function g is given by
9(s1,52) = pI(s1,52)/(p*(51)p*(s2)), 51,52 € R
For a Cox process, the product densities are given by

p(”)(sl, ceySy)=FE H A,
1=1
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for distinct sy,...,s, € R% For a stationary LGCP the following results (Theo-
rem | in Mgller et al., 1996) are easily obtained:

p=exp(p+0°/2), (2.4)

g(s1 — s3) = exp (027"(51 — 32)), (2.5)

and

p(”)(sl, ceeySp) = exp(ny + o (% + > r(si— sj)))

1<i<j<n

=p" Il g(si—s;). n>2. (2.6)

1<i<g<n

From (2.4) and (2.5) it follows that the distribution of a stationary log Gaussian
Cox process is uniquely determined by the intensity and the pair correlation func-
tion. This becomes useful for construction of methods for parameter estimation
in section 2.2.2. The expression (2.6) is used to construct a third order summary
statistic in section 2.2.3.

Theorem 3 in Mgller et al. (1996) relates ergodicity of a Cox process with
ergodicity of the intensity process. A sufficient condition for ergodicity of a

LGCP is

g(s) — 1 as ||s|| — oc. (2.7)

2.2.2 Parameter estimation

Suppose that a realization © = {z1,... ,z,} of X N W is observed, where X is a
stationary and isotropic LGCP, and W C R?is a bounded observation window.
Suppose further that a parametric model r(-;3) is chosen for the correlation

function of the Gaussian field. The likelihood of § = (u, o2, 8) is then

L(0) = Eq <exp </W (1 — exp()@))ds) i:f[lexp (le)) (2.8)

This likelihood is in general analytically intractable. MCMC may be used to
estimate the likelihood, see section 3.3, but this approach is computationally
demanding since MCMC samples are required for a range of values of 6. This
problem is especially prominent if a grid search is required to find the estimate.

Since the distribution of a LGCP is completely determined by the intensity
and the pair correlation function, we instead propose to base inference on these
summary statistics. Let p = |z|/vq(W) be the natural estimate of the intensity,
and let § be a nonparametric kernel estimate of ¢, see e.g. Stoyan & Stoyan
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(1994). A nonparametric estimate of the covariance function of Y is given by
log g(a), a > 0, and estimates of 6 and /3 are obtained by minimization of

/an ((log fl(a))a — (O'QTQ(CL))Q)QCZG7 (2.9)

where € > 0, @ > 0, and ag > 0 are user specified parameters. The parameters
a and ag are determined by the shape of log ¢ and rg, while € is usually taken to
be min;z; ||z; — z;||. For fixed 3, (2.9) is minimized at

62 = (%)l/a with B(8) = /ao (é(a)rs(a)) da, A(B) = /an (rﬁ(a))Qada7

€

provided B(/3) > 0. By inserting these expressions into (2.9) and using (2.4), the

estimates B(ﬁ)Q
3 = arg max , 6% =63, i =log(p) — 6%/2,
A(B) g #)

are obtained. In our examples, the function B(/3)?/A(/3) was unimodal and easy
to maximize, so the minimum contrast method appears to be a computationally
feasible alternative to maximum likelihood estimation.

2.2.3 Model checking

The usual second order summary statistics for point processes is the empty space
statistic /', the nearest neighbour distribution function (¢, and the reduced second
moment measure K, given by

F(a) = P(XNb(0,a) #0), Gla) = Py(X N b0,a) #0),
and K(a) = %E(') (#X N b((),a)) =27 /Oa bg(b)db, a > 0.

(P} denotes the reduced Palm distribution at 0, and E} is expectation with respect

to Pj, see Stoyan, Kendall & Mecke, 1995).
In Moller et al. (1996) a third order summary statistic z is introduced. This
summary statistic is given by

# -1
0= th S (otestedste ) <

llz1lI<a,llz2]|<a

®)(0,¢,7) dedn. o
7r2a4p3 /|£||<a/|77||<a g(n)g(& —n) iy, > 0. (2.10)

From (2.6) it follows that

z(a) =1, a >0, for a log Gaussian Cox process.
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For a realization = of a stationary point process X and some observation
window W, the sum

7 -1

(922 — 21)g(5 — 21)g(22 — 7))
z1,22,23 €X w1 €W, ||z2—21]|<0a, |23 —21|<a (2.11)

is an unbiased estimate of v4(W)n2a*p®z(a). This estimate is, however, not useful

in practice since it includes unobserved points in  \ W. One solution is minus
sampling where W in (2.11) is replaced by W, = {s € W|s+ue WVu e R*:
|u|]| < a}, so that the sum only includes z;’s for which all neighbouring points
within the distance a are observed. The unbiased estimate of v4(Ws,)m?a*p®z(a)
thus obtained is especially for large a quite inefficient since not all triplets of
points in & N W contribute to the estimate. A more efficient estimate is proposed
in Mgller et al. (1996) in the case where X is a stationary and isotropic point
process on R% This estimate makes use of all observed triplets of points, but
introduces an edge correction factor to account for possibly unobserved triplets
which intersect W. For given x4 € W, a >0, b > 0, and 0 < ¢ < 27, let

Usyapw = {6 € 0,27 |214a(cos 6,sin ¢) € W, 21+b(cos(g+), sin(¢+1)) € W}
The edge correction factor is

27
Vl(Uml,a,b,w) ’

where v1(Uy, app) is the length of Uy, 444, and Theorem 2 in Mgller et al. (1996)
states that

‘LUI:I 7a7b7'¢) =

9 Z i Way ||zo—z1||,|lza —1[,%(z1,22,23)
21 €EXNW  {=z2,23}CXOW\ {21 }: g(w2 — x1)g(x3 — 21)g(72 — T3) (2.12)
llz2 —z1 ||<a,]|z3 —21 ||<a '

is an unbiased estimate of vo(W)r2a*p®z(a). Here ¥)(z1, x2, x3) denotes the angle

(anticlockwise) between x5 — 21 and 3 — x1. In practice, p and g are substituted
with nonparametric estimates.

In Example 1 in Mgller et al. (1996) a LGCP is fitted to the locations of
126 scots pine saplings, and the summary statistics F', GG, z, and L (given by
L(a) = y/K(a)/x) were used to check the model assumption. The left plot in
Figure 2.1 shows the estimated z for the data, and two sets of envelopes based
on 20 unconditional simulations of the fitted log Gaussian Cox process and 20
simulations conditional on the observed number of points. The plot gives no
reason to doubt the model assumption no matter whether the ‘unconditional’ or
‘conditional’ envelopes are considered.

In Penttinen, Stoyan & Henttonen (1992) and Stoyan & Stoyan (1994), a
Matérn cluster process is applied as a model for the scots pines data. To check
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Figure 2.1: Example 1. Estimate of z based on the data (solid line) and ‘con-
ditional” envelopes (- — —) and ‘unconditional” envelopes (- - - - - ) based on 20
simulations. Left: Log Gaussian Cox process. Right: Matérn cluster process.

the discriminatory power of z we also calculated envelopes for the Matérn cluster
process fitted by Stoyan & Stoyan (1994), see the right plot in Figure 2.1. The
estimated z-function based on the data crosses the envelopes in an interval of
t-values, so the plot raises serious doubt concerning the appropriateness of the
Matérn cluster process as a model for the data.

2.2.4 Prediction and Bayesian inference

Suppose that z is an observation of a LGCP X within a bounded observation
window W. Apart from estimation of the parameters u, o2, and 3, it may also be
of interest to make inference about the unobserved intensity surface or Gaussian
field. For this purpose it is natural to consider the conditional distribution of A
or Y given XNW = z. This conditional distribution is not analytically tractable,
but is well suited for evaluation by MCMC. Conditional simulations of A are also
useful in connection with prediction of unobserved parts of the point process.
Suppose for specificity that W = [0,1[?, and approximate Yy = {Y;};ew
by the field Y given by Y, s,) = Yy if i/l < s1 < (i + 1)/l and j/l <
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s < (J+ 1)/I, 1,5 € I, where I = {0,1/l... (I —1)/{}* and | > 1 is a
suitable value for the discretization. The random field (Y/(s))sel is extended
to a larger random field ffem (see section 6 of Mgller et al., 1996) defined on
I, ={0,1/1...,(2(I-1)—1)/1}* where the marginal distribution of (Yfem(s))se[
is identical to the distribution of (17(5))561, and the covariance matrix K of Y,,; is
a circulant matrix. This is advantageous since a circulant matrix is easy to diago-
nalize by means of the FFT. From the diagonalization we get that Y, 2 IFQ+pes
where T' ~ Ni(0, 1), k is the rank of K, @ is a certain k x (2(I — 1))* matrix of
rank k, and prezt = (¢)ser.,,. The random field T' is easily transformed into Y.,
by using the FFT, and we actually choose to obtain conditional simulations of Y
from conditional simulations of I given X N W = .

The log conditional density of I' is

1 exp(ys
log f(7]z) = const(x) = l]I* + 3 (30 — I;gy ))7

s€1ext

where n(s, 5,y = [2N[s1, 51+1/1[X[s2, 524+ 1/1[|, (51, 52) € Leat and Jezr = yQ+pct.
The gradient of the log conditional density is

exp(ys .
V) ==+ (e~ SR o

and it is easy to see that 0 <7 (v)/0v* is strictly negative definite so that the
conditional distribution is strictly log-concave. This is a nice property since
multimodal target distributions are a major worry in applications of MCMC.

The conditional simulations are generated by a Metropolis adjusted Langevin
algorithm (MALA) as suggested by Besag (1994) and further studied in Roberts
& Tweedie (1997). This is a Metropolis-Hastings algorithm (see section 3.2)
inspired by the Langevin diffusion, and the proposal kernel for the algorithm is
given by Ny(7) + (h/2) 7 (7"™), h1) where h > 0 is a user specified parameter,
and 7™ is the current state of the chain. The use of the gradient in the mean
of the proposal kernel in general leads to faster convergence than when e.g. a
random walk chain is used (Roberts & Rosenthal, 1995). Note that the MALA
is different from typical MCMC algorithms in that all components in 4™ are
updated simultaneously.

The MALA is not geometrically ergodic (see section 3.1), but by replacing
/(7) in the proposal kernel with a truncated version

(woewins)
[2 s€lext ’

V)T = =y (s

a geometrically ergodic chain is obtained whenever 0 < h < 2 and 0 < H < o0
(Theorem 4 in Mgller et al., 1996).

From conditional simulations of the model fitted in Example 1 in Mgller et al.
(1996) we estimated the posterior mean and variance of the Gaussian field, and
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the posterior mean of the intensity surface, see Figure 2.2 and Figure 2.3. For
comparison also a nonparametric kernel estimate (Diggle, 1985) is shown. The
band width of the kernel was chosen by minimizing an estimate of the mean square
error. Diggle (1985)’s expression for the mean square error is derived for the kernel
given by the uniform density on a disk, but can straightforwardly be generalized to
arbitrary kernels by application of the Campbell formula. Maximum a posteriori
estimates of the Gaussian field and the intensity surface are also calculated in
Mgller et al. (1996).

The conditional mean and the nonparametric estimate of the intensity surface
for the scots pine data are quite different, since the conditional mean is much more
peaked than the nonparametric estimate. In a simulation experiment in Mgller
et al. (1996) where the intensity surface was known, the conditional intensity was
the best estimate, but further research is required to draw definite conclusions.

2.2.5 Bayesian estimation of the intensity surface of an
inhomogeneous Poisson process

Heikkinen & Arjas (1996) propose a Bayesian method for estimation of the inten-
sity surface of an inhomogeneous Poisson process. The realizations of the prior
for the intensity surface are constant within Voronoi cells generated by a homo-
geneous Poisson process, and conditional on the Voronoi cells, the log intensity
levels in each cell are modelled by a conditional autoregression (CAR) (Besag,
1974), i.e. a Gaussian MRF. MCMC is used to estimate posterior means and
variances.

The individual step function realizations of the prior and the posterior are
considered as rather crude approximations of realistic intensity surfaces, but
Heikkinen & Arjas (1996) argue that this is not crucial in Bayesian inference
where emphasis is on posterior probabilities and means. The authors e.g. point
out that the posterior mean of the intensity surface is smoothly varying despite
of the discontinuities of the individual posterior surfaces. One drawback of the
method in Heikkinen & Arjas (1996) is that there does not seem to be a feasible
method to choose the prior parameters on a data-driven basis. Estimation of
prior parameters from data does not, strictly speaking, even make sense when
the “true” intensity surface is not considered as a realization of the prior.

If the Gaussian field of a LGCP is considered as a prior model for Bayesian
estimation of the intensity surface, then this prior has several advantages. First,
there is a simple method for estimation of the prior parameters from the data,
and secondly, the prior modelling can be checked by using the second and third
order summary statistics described in section 2.2.3. This is valid only if a fine
discretization of the Gaussian field is used, and the high dimensionality of the
Gaussian field is for computational reasons a disadvantage when compared to

Heikkinen & Arjas (1996)’s approach.
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Figure 2.2: Scots pines data. Upper left plot: Monte Carlo posterior mean of the
Gaussian field. Upper right plot: Monte Carlo posterior mean of the intensity

surface. Lower left plot: Logarithm to the upper right plot. Lower right plot:
The nonparametric kernel estimate of the intensity surface.

A third Bayesian approach is suggested in Wolpert & Ickstadt (1995). In this
paper the random mean measure of the Cox process is given by a convolution
of a smoothing kernel and a Gamma random field with independent increments.
The smoothing kernel is needed in order to introduce spatial correlation. A prior
is specified for the kernel and Gamma field parameters, and a Bayesian inference
is carried out by MCMC. The prior parameters have an interpretation in relation
to the data and this is a helpful support for the subjective choice of the prior
parameters. The specification of the model and the MCMC scheme in Wolpert &
Ickstadt (1995) is involved, and it is not clear whether their model is advantageous
in terms of flexibility compared to a LGCP.
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Figure 2.3: Left: Monte Carlo posterior variance of the Gaussian field on the
original lattice. Right: Monte Carlo posterior mean of the Gaussian field on the
extended lattice.

2.3 Thinned Markov point processes

Common hypotheses in statistics for spatial point patterns concern presence or
absence of interaction between neighbouring points. Most methods of statistics
for spatial point patterns assume stationarity, but it may also be of interest to
be able to account for nonstationary variations in the point pattern.

One example is environmental epidemiology (see Diggle, 1993) where one is
interested in possible spatial clustering of locations of disease cases, but where
e.g. spatial fluctuations in population density also influence the incidence of dis-
ease cases. When the hypothesized source of variation is known, Diggle (1993)
suggests applying a parametric model for an inhomogeneous Poisson process. In
e.g. Diggle (1990) the intensity surface A(-) of the Poisson process is given by a
semiparametric model

A(s) = YAo(s)w(s — s;0), s € 5,

where ¥ and 6 are parameters, Ay is a model for the underlying spatial hetero-
geneity, and w(-) models a possible raised incidence of disease cases near a source
of pollution located at sg. The surface A\g is in the likelihood replaced by a ker-
nel estimate obtained from a point pattern of control locations. If the source of
spatial variation is unknown or unobservable, Diggle (1993) suggests modelling
the data by a stationary Cox process whereby the K-function can be used in the
inference as in Diggle & Chetwynd (1991).

There are situations where the approaches proposed by Diggle (1993) are
not applicable. Consider the point pattern in Figure 2.4 of “adult” longleaf-pines
from the longleaf-pines data (Platt, Evans & Rathbun, 1988). The nonparametric
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Figure 2.4: Left: the locations of the 271 adult longleaf pines. Right: nonpara-
metric kernel estimate of the intensity surface.

estimate of the intensity surface in Figure 2.4 clearly exhibits a decreasing trend
in the east-west direction. In the longleaf-pine data set there are no explanatory
variables for this trend. The point pattern may, of course, in principle be regarded
as a part of a realization of a stationary process, but this is not helpful since the
observation window is too small, compared to the scale on which stationarity
provides the replication needed for inference. The stands of the adult longleaf
pines could possibly be modelled by an inhomogenous Poisson process with a log
intensity surface given e.g. by a polynomial model

L K

log )\((51,52)) = E E aest'sy”, (s1,82) € S, (2.13)

{=0 k=0

where L, K > 0, and aj; € R, but this does not allow for modelling of interaction
like e.g. repulsion due to competition among the trees.

One approach to modelling of nonstationary point patterns with interactions
at a local scale is to use inhomogeneous Markov point processes or inhomogeneous
Gibbs processes as in Ogata & Tanemura (1986). We restrict here attention to in-
homogeneous Markov point processes which are specified by conditional densities
of the following form:

fa(@n Az \ A;0) < [] a(zi;0) 11 6(C;0), A€ By(RY).
zi€A cec(z) (2.14)

|C|>1 and CNA#0

Here 6 is the unknown model parameter, the large scale variability is modelled
by the activity field a = (a(s; 0))56R2’ and the interaction functions ¢(-; ) are
typically assumed to be translation and rotation invariant. Ogata & Tanemura
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(1986) actually apply a parametric model similar to (2.13) for the log activity
field.

Another approach suggested in Baddeley et al. (1997) is to model a nonsta-
tionary point pattern as a realization of a thinned Markov point process X. Let
p = (p(s)) e be the deterministic “thinning surface”, where p(-) € [0,1] is a
measurable function. This is used for independent p(-)-thinning of X: for a given
realization x of X, a point x; in x is removed with probability 1 — p(z;) and
retained with probablhty p(z;) independently of the other points in z. Let W be
a bounded observation window. Then the density of the observed thinned point
pattern Y N W given X = x 1s

flep =1y Ca) [T pz)  TI  (1—px). (2.15)

;€Y z;€(zNW)\y

The intensity surface Ay of Y is given by
Ay (s) = pp(s), s € RY, (2.16)

where p is the intensity of X. The reduced second order measure (see e.g. Stoyan
et al., 1995) of Y is further absolutely continuous with respect to v4 X v4 and
its density is p?g(s; — s2)p(s1)p(s2) (see Cressie, 1991, section 8.5.6), where g is
the pair correlation function of X. Thus, ¢ is the pair correlation function of Y
too. This becomes useful for development of summary statistics and methods for
model checking, see section 2.3.1. Inference for a thinned Markov point process
is discussed in section 2.3.2.

2.3.1 Model checking

Suppose that y = {y1,... ,y,} is a realization of ¥ N W, and that X is isotropic
and second order stationary so that the pair correlation function g = p(?/p?
invariant under rigid motions in R i.e. g(s1,s2) = ¢(||s1 — s2||). For all ¢+ > 0
with

va({s € W |0b(s,r)NW #£ 0}) > 0 for all r < ¢,

it is easily verified that an unbiased estimator of the K-function (see section 2.2.3)
is given by

wyu:‘/] ||y2 y]|| S t)
s pp(y:)pp(y;)

(2.17)

where w;, 5,, $1,82 € W, is the Ripley (1977) edge correction factor given by
27 U,

L5y Where

Us s, = 1({v € [0;27[: 51+ ||s2 — s1]|(cosv,sinv) € W}).
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In practice, pp(-) must be replaced by an estimate of the intensity surface. From
the Campbell formulait is straightforward to obtain an expression for the variance
of K, see Baddeley et al. (1997).

It is also possible to define analogues to the empty space distribution function
and the nearest-neighbour distribution function. Assume for simplicity that the
intensity surface Ay (-) > 0 of Y is positive, and let for any ¢ > 0 and s € R?, the
number r(s,t) be determined by

t:/ Ay (s')ds'.
b(s,r(s,t)) Y( )

The analogue of the empty space distribution function is
Fu(t) = P(Y 0b(s,7(s, 1)) £ 0), >0,
and the “nearest-neighbour” distribution function is
Go(t) = P (Y 0b(s,7(s,1)) #0), s >0,

where P, denotes the Palm-distribution of ¥ with respect to s. When Y is a
Poisson process, Fs(t) and G5(t) do not depend on s, and they are both equal to
1 —exp(—t).

2.3.2 Semiparametric inference for a thinned Markov point
process
Suppose to begin with that parametric models depending on parameters § and

have been chosen for the Markov point process X and the thinning field p. The
likelihood of 6 and % is given by the following result in Baddeley et al. (1997):

Proposition 1 Let y be an observation of the thinned process Y N W. The
likelihood of the parameters 6 and ) given y is

L0.¢) =TI po(w)Bsl TT (1= puled)) Myl X;0)] (2.18)

Yi €Y r;€EXNW

Here A(-|-) is the Papangelou conditional intensity which for disjoint point pat-
terns y and z is given by

Myla; 0) = 11 $(C;0), (2.19)

CeC(yuz;0):Cny#d

where ¢ is the interaction function of X. The question of asymptotic normality is
difficult to address for the likelihood (2.18), and bootstrap methods may therefore
be required for inference concerning 6 and .
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In practice, the mean value in (2.18) may be approximated by the mean value
with respect to the finite point process X given by the density

f(x;G)oc H #(C;0) (2.20)

CeC(x)

on an extended rectangular window W where W C W. When a toroidal edgecor-
rection is used, i.e. W is wrapped on a torus, the mean value with respect to X
is hopefully well approximated by the mean value with respect to (2.20), when
W is chosen sufficiently large. The approximate likelihood is then

pr (:) / [T (1= pul20)) f(y Uz 0)ug(dz) =

z; €E2NW

(T potwe) / [T (1= puw) fCa: Oy ) (220

Yi €Y Wﬂz‘

where g5 is the unit rate Poisson process on W, and [ty ,, 1s the Palm distribution
of py at y which is given by Z Uy ~ py, when Z ~ py.

The integral in (2.21) is not known in closed form, but may be estimated by
MCMC methods as described in Gelfand & Carlin (1991) and Geyer (1994), see
section 3.3.

In some situations it is difficult to suggest a suitable parsimonious parametric
model for p, and it may then be desirable to estimate p nonparametrically while
maximum likelihood estimation is used for §. According to (2.16), p may be
estimated up to the constant 1/p by an estimate of the intensity surface of Y.
Suppose that j\y() is a nonparametric kernel estimate of the intensity surface for
Y, and that p(0) is the intensity of X for a given 6. Following standard practice
in semiparametric statistics, the corresponding estimate of p given by

B(s) = Ay (s)/p(6), s € W,

may then be plugged into the likelihood in order to obtain a profile likelihood
from which an estimate of # can be obtained. One may run into problems of
identifiability with this approach since the conditional density of X will typically
contain an “activity” parameter which controls the intensity of X, and whose
effect may in practice be difficult to distinguish from the effect of the thinning
field: a model with a large value of p combined with small values of p(-) may
produce similar realizations as a model with a small p but large p(-).

To solve the identifiability problem one may restrict p to the set {¢ : W —
[0,1]] sup,q(s) = 1}. When interest is focused on the local interactions this
assumption should not affect the flexibility of the model seriously. A pragmatic
estimate of p is then

p(s) = Ay(s)/ sup Ay (s) (2.22)

SES
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which does not depend on 6. One thereby also avoids Monte Carlo estimation of
p(6) which is in general not known in closed form for a Markov point process. If
py is replaced by the nonparametric estimate (2.22), the approximate likelihood
simplifies to

w=[ 11 ) (1= p(x)) F(z; D)y, (da) (2.23)

z; €(Wnz)\y

which is easier to handle than (2.21) since the maximization is now only with
respect to f which is typically just two or threedimensional. The semiparametric
approach is probably most useful if X is repulsive since variability due to clus-
tering may be captured by small peaks in j\y, unless some smoothness constraint
is imposed on Ay

2.3.3 Discussion

In practice, realizations of an inhomogeneous Markov point process and a thinned
stationary Markov point process may be impossible to distinguish. There are,
however, several advantages in using the thinned Markov point process setup.
Summary statistics may be defined and estimated, and there is a simple corre-
spondence between the intensity surface of the thinned point process, and the
thinning surface. The model thereby gives a clear distinction between the non-
stationary large scale variation and the homogeneous local interactions. This is
in contrast to the inhomogeneous Markov point process setup where summary
statistics are usually not available, and there is not a simple correspondence be-
tween the intensity surface and the “activity” field. This for example means that
a nonparametric estimate for the activity field is not available.

One drawback of using the thinned point process compared to the inhomo-
geneous Markov point process is that maximum likelihood estimation becomes
computationally demanding, especially when a parametric model is chosen for
the thinning surface.

The K-function has been fitted to the japanese black pine data (Numata,
1964) and the adult longleaf pines in Figure 2.4 as proposed in section 2.3.1. It
turns out that the nonparametric kernel estimate of the intensity surface is not
useful in this context due to overfitting. Better results can be obtained when a
parametric model like (2.13) is fitted to the data under the Poisson assumption.
We have not yet applied the semiparametric method suggested in section 2.3.2 to
real data, and further research is needed in order to judge the usefulness of both
the estimate (2.17) and the semiparametric approach.
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2.4 An alternative to hierarchical Bayesian mod-
elling

Heikkinen & Arjas (1996)’s approach to modelling of intensity surfaces (see sec-
tion 2.2.5) is similar to the image models introduced in Nicholls (1996) (sec-
tion 1.2.7) in that tesselations of a subset D of R? are generated from a random set
of points. In Heikkinen & Arjas (1996) the model is specified hierarchically. The
points which generate the Voronoi tesselation are given by a homogeneous Poisson
process of intensity A > 0, and conditional on a point pattern z = {z1,... ,z,},
the log intensity levels [ = ([1,... ,[,) for each cell given by x are modelled by a
CAR. The observed data is finally an inhomogeneous Poisson process where the
intensities A(s), s € D, are given by A(s) = [; if s belongs to the ¢’th cell.

Let g(x) oc A”l be the density of the Poisson process with intensity A, and
let f(l|z) = c(x)h(l;x) be the conditional density of the levels, where ¢(z) is
the normalizing constant. When a state (I, 2') is proposed given a current state
(I,2) during the MCMC-sampling, the ratio c(a')h(l'; 2")g(z")/(c(x)h(l; x)g(z))
appears in the Metropolis-Hastings ratio. This is problematic when = # z’ since
the normalizing constants ¢(z’) and ¢(x) are in general not available in closed
form. Heikkinen & Arjas (1996) apply a local approximation to ¢(z’)/c(z), but
it is not clear how serious bias this approximation introduces.

Alternatively, one may proceed as in Nicholls (1996) and start by specifying a
joint distribution for points and levels with respect to a measure defined similarly
to (1.22), so that there is just one unknown normalizing constant which cancels
out in the Metropolis-Hastings ratio. Specifically, one might for subsets A of the
space of point configurations and levels, define a measure by

=1
V(A) = exp(—(D)) 3 —,/nd;ﬁ /'n1(({x1,... Jea},1) € A)dl,
n=0 " (2.24)
and model the joint distribution of points and levels by the density
g(z,l)= c)\|z|h(l; ) (2.25)

with respect to xy. A sufficient condition for this density to be well-defined is
c(z)™" < Kl for some constant K, and all finite  C D. Under the model (2.25)
the conditional density of the levels is again f(I|z) while the marginal distribution
of the points is a point process with density

el
g\ = c(x)

(2.26)

with respect to up.
A similar approach is used in Melas & Wilson (1997) for modelling of multi-
type textured images. Suppose that p(z) = ¢ exp(—U(l‘)), z € VI, is a model
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for the labelling of the image pixels ¢ € [ into different texture types in V, and
that for a given labelling z, the observed image y € R! is modelled by an inho-
mogeneous CAR with density f(y|3:) = c(x) exp(—V('y;x)). The joint density
of the observed image and the underlying labelling process is then

f(:c, y) = crez(x) exp(—U(:c) - V{y; ;17))

Also in this case the unknown normalizing constants cy(x), € V!, cause prob-
lems when the label process is updated in the MCMC algorithm. In Melas &
Wilson (1997), U(-) is the potential of a MRF, and the joint distribution of the
observed image and the labelling process is modelled by a bivariate MRF given
by the density

i(,y) = csexp(~U(z) — Va(y)),
where the unknown normalizing constant ¢; cancels out in the MCMC calcula-
tions. The marginal density

g(z) = csexp(—U(z))/ea(x) (2.27)

of the labelling process under this model is different from p(z) and is in particular
not a MRF, while the conditional densities g(y|z) = §(z,y)/g(z) and f(y|1:) are
identical.

I think that it would be quite interesting to further compare the two ap-
proaches to Bayesian modelling. It might for example be of interest to study the
prior models ¢(-) and g(-) given by (2.26) and (2.27) in more detail. Simulations
of these models can easily be obtained from simulations of the joint distributions.

3 Markov chain Monte Carlo

Probability distributions which are intractable analytically occur frequently in
spatial and Bayesian statistics. Also direct simulation is often not possible, but
it 1s typically quite easy to simulate an ergodic Markov chain whose stationary dis-
tribution is the distribution of interest, and samples required e.g. for Monte Carlo
approximations can thereby be obtained. Markov chain Monte Carlo (MCMC)
is used in Mgller & Waagepetersen (1996) to obtain MCMC maximum likelihood
estimates, in Waagepetersen (1997b) for estimation of normalizing constants, and
in Mgller et al. (1996) for calculation of posterior means and variances. In Mase,
Mgller, Stoyan & Waagepetersen (1997) the MCMC method of simulated tem-
pering (Marinari & Parisi, 1992; Geyer & Thompson, 1995) is combined with
the Geyer & Mgller (1994) algorithm to simulate hard core processes with high
packing densities, see section 3.4.
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An overview of basic notions of MCMC is given in section 3.1, and section 3.2
gives an account of the Metropolis-Hastings (Hastings, 1971; Green, 1995) algo-
rithm. MCMC maximum likelihood is briefly described in section 3.3. Instructive
references of Markov chain Monte Carlo are Tierney (1994), Besag, Green, Higdon
& Mengersen (1995), and Geyer (1992).

3.1 Basic notions of Markov chain Monte Carlo

Consider a target distribution 7 defined on a measure space (£, ), and a Markov
chain X = (X, )nen given by an initial distribution 7o and m-step transition
kernels

P"(z,A)=P(X,, € A| Xo=2) (3.1)
form>1, A€ € and z € E. Then

e 7 is an tnvariant measure for X if VA € £,
/P(:c, A)r(dz) = 7(A).
o X is aperiodic if there does not exist a disjoint subdivision of £ into subsets
Agy ... yAy_1, d > 2, such that

V& € Az . P(x7A(i—|—1)mod d) =1.

o X is w-irreducible if for all x € £ and all A € £ with 7(A) > 0 there exist
an m > 1 such that P"(x, A) > 0.

e X is Harris recurrent if
PEAm: X, eA|Xo=2)=1
for all z € £ and A € &€ with n(A) > 0.

Define f, = 1/n3", f(X;) for any function f € Li(7). Suppose that X is
irreducible and that 7 is an invariant measure for X. Then # is the unique
stationary distribution of X (Tierney, 1994, Theorem 1) and conditional on X; =

T,

]En—>E7T(f) :/fdw for r-ra.ax € F

(Geyer, 1995, Theorem 2). If X is Harris recurrent then by Theorem 17.1.7 in
Meyn & Tweedie (1993) this law of large numbers holds for any initial condition
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x € K. If further X is aperiodic, then X becomes Harris ergodic and then by
Theorem 1 in Tierney (1994),

lim ||P™(x,-) — || = 0 for all initial conditions = € F, (3.2)
where || - || is the total variation norm which for a (signed) measure A on (F,£)

is defined by
IAIl = sup [ACA)] = ind IACA)]-

Some simple conditions for Harris recurrence are given by Corollary 1 and 2
in Tierney (1994), and Theorem 1 in Chan & Geyer (1994). If the chain is

geometrically ergodic, i.e.
|P"™(x,-) — 7| < M(x)p™ Ve € E (3.3)

for some measurable function M : £ — [0;00[ in Li(x) and 0 < p < 1, then a
central limit theorem

Vi (fu = E-(f)) = N(0,0°(f))

holds for all f which are in Ly (7) for some € > 0 (Chan & Geyer, 1994, Theorem
2), and if the chain is uniformly ergodic, i.e. M(-) is less or equal to a positive
constant M, then the central limit theorem holds for all f € Ly(7) (Theorem 5,
Tierney, 1994). The variance o*(f) is given by

o*(f) = Var(f(X1)) + zicov(xh)@)

1=2

for the stationary chain X, i.e. where 7y = =.

The state space of the models considered in Mgller & Waagepetersen (1996) is
finite, and the Markov chains used for the simulations are then uniformly ergodic
by Proposition 2 in Tierney (1994). In Mgller et al. (1996) a chain for simulation
of a posterior on R is constructed, and geometrical ergodicity is established using
results in Roberts & Tweedie (1997) which are again based on a certain general

drift condition (Theorem 15.0.1 in Meyn & Tweedie, 1993).

3.2 The Metropolis-Hastings kernel

This description of the Metropolis-Hastings kernel is based on Green (1995) where
the original Metropolis-Hastings algorithm is generalized to state spaces of vary-
ing dimension.

The basic ingredients in the Metropolis-Hastings algorithm are a proposal
kernel @) : E x € — [0,1], and a set of acceptance probabilities given by a
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function a(-,-) defined on E*. Suppose that there is a symmetric measure ¢ on

(Ex E,£®E) such that VA, B € £,

Q(x, B)r(d ——/ ,y)é(dz, dy), 3.4
/A (z, B)x(dx) flz,y)é(de, dy) (3.4)
where f is a finite density for which

a(z,y)f(z,y) = aly,z)f(y,z), for é-a.a (x,y) € F x E. (3.5)

It is then easy to check that the transition kernel P given by
Pla,A) = [ ale,y)Qa.dy) + 1z € 4) [(1— a(a,y)Q(a.dy), 2 € B, A €&,
is reversible, i.e.

/AP(:ﬁ,B)W(dx) - /BP(x,A)w(dx)VA,B ¢,
whereby it follows that = is the invariant measure of P.

Given an © € FE, a value Z is sampled from P(z,-) by first generating a
proposal Y from Q(z,-). With probability a(z,Y’) the proposal Y is accepted so
that Z = Y, and otherwise Z = z. Under the condition (3.5), the acceptance
probabilities are usually chosen to be maximal, so that

fY,z)
f(z,Y)

Note that f(x,Y) > 0 for 7-a.a. = by definition of f.

The advantage of the Metropolis-Hastings algorithm is that we are free to
choose a proposal kernel which is easy to sample from, as long as the resulting
chain becomes irreducible and aperiodic. In the simplest cases 7 and Q(z,-), x €
E, are absolutely continuous with respect to the same reference measure on F.
In section 8 of Mgller & Waagepetersen (1996), 7 is e.g. a posterior on R¥, and

a(z,Y) = min{l, }.

Q(z,-) is a certain nondegenerate Gaussian distribution on R* for each z € R¥,
see also section 2.2.4. In this case ¢ = v ® v, where v, i1s the Lebesgue measure
on R*, and f(z,y) = g(x)q(z,y) where g and ¢q denotes the densities of 7 and
Q(z,-), respectively.

In many applications, () and 7 are actually singular. Such cases are discussed
in the next two sections.

3.2.1 Combinations of Metropolis-Hastings kernels

Proposal kernels ) are often constructed so that Q(z,-) and 7 are singular for
each x € FE. The corresponding kernel P is therefore not w-irreducible, but
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Metropolis-Hastings kernels corresponding to different proposal kernels can be
combined to obtain an irreducible chain.

Consider for example the case where F is a product space, £ = x;_; F;, s > 1,
and assume that 7 has a density g with respect to p = ®7_,p;, where pu; is a
measure on F;. Let for 1 = 1,...s, the proposal kernel (); be defined by

Qi(z, A) = / gi(x, z)pi(dz), Ve e E, A€ €,

{z€8i|(z,x_i)€A}

where for each © € F, ¢;(z,-) is a density with respect to g;. Then for each
i=1,...,8, (3.4) and (3.5) holds with ¢; defined on sets A x B € £€ x € by

(A% B) = [z € 4, (z,2) € Bluildz)ua (der) - py(day),

and f; given by
filw,y) = 9(@)qi(x, yi), Y,y € .

For a given # € E the measure Q);(z,-) is concentrated on {y € F | y_; =

z_;}, so the corresponding transition kernels P;, i = 1,... ,s, are in general not
irreducible. Irreducibility may be obtained by systematic or random combination
of the kernels Py, ..., P;. A systematic combination is

Psys :Pl"'Psa

and a random combination is
Pran = S 80P,
i=1
where }°7_ 6, =1and 6; >0, : =1,...,s. Here
PPz, A) = /PQ(Z,A)Pl(x,dz)

The well-known Gibbs-sampler appears as the special case where ¢;(z,z) =
gi(z|x—;) is the conditional density for the ¢’th component given the rest. For
the simulations in section 6 of Mgller & Waagepetersen (1996) the proposal den-
sity was ¢;(z,2) =1/2, 2 € {0,1}, 2 € {0,1}, 1 € I.

3.2.2 An algorithm for simulation of finite point processes

The Geyer & Mgller (1994) algorithm used in Baddeley et al. (1997) and Mase
et al. (1997) for simulation of finite point processes falls into the framework of
Green (1995). Let S be a bounded subset of R% and define N(S) and N(S) as

in section 2.1. The distribution ps of the unit rate Poisson process on S is given

by
ps(F) =S L [ (e ) € Fde, FEN(S). (36)
= nl Jsn
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Suppose that x = {xq,...,2,} is the current point configuration and that the
target point process 7 is given by a density ¢ with respect to pg. The simplest
version of the Geyer & Moller (1994) proposal kernel is given as follows: With
probability 1/2 it is proposed to delete a point sampled from the uniform distri-
bution on z (unless x = ), in which case nothing happens), and with probability
1/2 it is proposed to add a point sampled from the uniform distribution on S.
The proposal kernel is thus @ = (Qremove + Qinsert)/2 where

Quuar(a, ) = | !

neSwuneF} vq(.S)

dn,

and

1
QremovexF Zl \T]EF_

nex | |

The measure ¢ is for F,G € N'(S) given by

eF )= [ [ o dstda)+ [ 571G\ g € Gs(de),

new

Let F,={z € F:|z|=n}and G,_1 = {z € G :|z| =n —1}. Then

E(Fy x Gry) = evals n'/n21 ¢ € Fpa\n € Guy)de =

new

1
e_”d(s)—'/ nl({z1,...,an} € Fo,{1,... , 201} € Gy )da =
n! Jsn

e /s » /Sl(y € Gyo1,y Un € Fr)dydn = {(Gror X Fr),

(n—1)!

whereby it follows that ¢ is symmetric. The density f is given by

flz,zUn) = ch(l:;) and f(xUn,x):%,xeN, n € S.

3.3 MCMC maximum likelihood

Suppose that z is an observation of Z ~ fy(-) = ¢(0)hgy(-), where f5, 0 € O, is
a parametric family of densities, and ¢(#) is an unknown normalizing constant.

If (Z;)i>1 is an ergodic MCMC sample from an importance sampling density
f(-) = ch(-) where hg(z') > 0= h(z') >0, 2’ € F, then
¢ he(2') ., 1 & ho(Z5)
— ds = lim —
c(0) n(eny /) = Jim 2 h(Z;:)

=1

so that the log-likelihood may be approximated by

1(0) = log(ho(2)) — log(—)) log(hg(z))—log(—i h(ZZ-))
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for some large n. MCMC maximum likelihood is treated in detail in Geyer &
Thompson (1992) and Geyer (1994).

MCMC may also be useful in missing data situations, i.e. where 7 = (X,Y),
but only an observation = of X is available. Let gy denote the marginal density
of X, and let g(z) = [ f(z,y)dy be the marginal density of the first component
of the importance sampling distribution. The log-likelihood may then (Gelfand
& Carlin, 1991; Geyer, 1994) be approximated by

o(x) 1o folz,y) f(z,y) ) —
o) =l oy e )

10g("(;
tog ([ 2420 5y 1)) ~ 1oy

e "0
1 & ho(z,YF 1 & holZ; .
s i v s, K ) 89

where (Y;%);>1 is an ergodic sample from the conditional density f(-|z).

In order to obtain precise Monte Carlo estimates it is required that the impor-
tance sampling distribution places appreciable mass on the support of fs. The
importance sampling distribution can e.g. be obtained as a mixture of fy’s for a
suitable range of 0’s, as suggested in Geyer (1991).

3.4 Simulated tempering

Suppose that densities fi,... , f,, and corresponding Metropolis-Hastings kernels
Py, ..., P, are given, where the Markov chain for simulation of f; mixes well,
while the chains become highly autocorrelated when 2 increases.

The idea of simulated tempering (Marinari & Parisi, 1992; Geyer & Thomp-
son, 1995) is to sample efficiently a mixture of fi,... , f, by combining the kernels
Py, ..., P, to obtain a chain which inherits the good mixing properties of the
chains given by F; for small ¢. Specifically, simulated tempering is Metropolis-
Hastings simulation of the pair (X, I) distributed according to the density

F(z,i) = fix)6i, € E, i € {1,...n}.

Here [ is a so-called auxiliary variable where P(I = i) = é; > 0, the marginal
distribution of X is the mixture > ; fi6;, and f; is the conditional density of
X|I =1.

A proposal kernel @ on {1,...,n} is defined by Q(¢,¢ + 1) = Q(¢,0 — 1) =
1/2 for 1 <@ < n, and Q(1,2) = Q(n,n — 1) = 1, and given a current state
(z,%), the two components are updated in turn using first the proposal kernel
Q); corresponding to P;, and secondly (). The Metropolis-Hastings ratio for the
update (z,¢) — (2',¢) is identical to the ratio for the update + — 2’ for the chain
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given by P;. The Metropolis-Hastings ratio for the update (z',2) — (2/,¢') is

fu(@")éuQ(i', 1)
fi(")é:Q(i,7)

which depends on the normalizing constants ¢; and ¢; of f; and f;;. Estimates

(3.9)

¢i,1 € {l,... ,n} can up to a constant of proportionality be obtained by stochastic
approximation as described in Geyer & Thompson (1995), or by reverse logistic
regression (Geyer, 1991). By choosing 6; « ¢;/c; we get an approximate uniform
mixture and the ratio (3.9) can be evaluated.

Suppose e.g. that f, is multimodal, and that the chain given by P, gets stuck
around the modes. One may then for 77 > 15 > ... > T, =1 take

filz) x (fn(x))l/Ti, i=1,...,n—1,

to be “flattened” versions of f,, so that the first component (X;);>1 of the sim-
ulated tempering chain (Xj, [;);>1 moves quickly through the state space of X
when [; is small. If the pairs T;,T;41, 2 = 1,... ,n — 1, are sufficiently close so
that reasonable acceptance rates (20%-40%) for transitions (z,¢) < (2,71 £ 1) are
obtained, the chain (X;);>1.,=» yields a well-mixed sample from f,.

In Mase et al. (1997) simulated tempering is used for simulation of the hard
core point process given by the density

f(z) o< N (Vg x5 € a2 ||ag — 2] > 1), (3.10)

where r > 0 is the hard core parameter, and « is the activity parameter. In
Mase et al. (1997) it is shown that the hard core process converges to a uniform
distribution on the set of point patterns with maximal packing density as & — oo.
The properties of the model for high packing densities (i.e. when « is large)
is further studied through simulations. The hard core process can in principle
be simulated by using the Geyer & Moller (1994) algorithm directly, but this
algorithm mixes very slowly when « and the packing density becomes high. The
algorithm gets stuck when a highly packed point pattern is reached, since a new
point can basically only be inserted where another point has just been removed.

Simulated tempering is used to obtain an algorithm with better mixing prop-
erties as follows: Let

filz) al-z|D($,’yi,r), i=1,...,n,

where D is a penalizing term such that D(z,~v,r) is 1 if y = 1 or z is a hard
core point pattern, D(x,v,r) — 0 if x is not a hard core point pattern and
v — 0, and D(z,0,r) = I(||z; — z;|| > r for all z;,2; € z). Decreasing values
1>~ > > 91> 7, = 0 are chosen so that f; is close to the Poisson density
and easy to simulate when 7 is small, f; approaches the hard core density when
¢ increases, and f, is the hard core density.
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In Mase et al. (1997) the Geyer & Mgller (1994) proposal kernels Q;, ¢ =
1,...,n, for simulation of f;, 2 = 1,...,n, are given by Q; = a1,Qinsert +
02, Qremove + 31 Qmove, Where ag; > 0 and ay; + aa; + as; = 1. The kernel
(Qmove,i pProposes to move a randomly chosen point to a new position which is
chosen according to the uniform distribution on a square ¢; x ¢;-neighbourhood
centered in the old position.
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