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Introduction

The modern interest in modular Lie algebras, i.e. Lie algebras over fields of
positive characteristic, began with Ernst Witt in the late thirties when he
found a non–classical simple Lie algebra which had not been known before.
The Witt algebra, as it has been named, was distinguished from the classi-
cal Lie algebras by the fact that it is not associated to a smooth algebraic
group. In subsequent years, yet more non–classical Lie algebras were dis-
covered, and a new class of restricted simple Lie algebras was established
and distinguished by the name of Cartan. These Lie algebras have been
classified into four categories: Contact Lie algebras K2n+1, Hamiltonian
Lie algebras H2n, special Lie algebras Sn and Witt–Jacobson Lie algebras
W n.

The interest in modular Lie algebras was motivated by the famous
Kostrikin–Shafarevich Conjecture which states that over an algebraically
closed field of characteristic p > 5 a finite dimensional restricted simple Lie
algebra is either classical or of Cartan type. The conjecture was proved for
p > 7 by Block and Wilson and for p = 7 by Premet and Strade. How-
ever, in characteristic 5, there exist finite dimensional restricted simple Lie
algebras which are neither classical nor of Cartan type. These Lie algebras
constitute a category called the Melikyan algebras.

Unlike the situation for classical Lie algebras, the representation theory
of the reduced enveloping algebra Uχ(g) of a restricted Lie algebra g of
Cartan type is not well–known. Several efforts have been effective among a
number of non–classical Lie algebras, but they have been far from successful
in general. As regards the Witt–Jacobson Lie algebras, there has been slow
but steady progress. In fact, the irreducible representations with characters
of height at most one were computed by Holmes in [10]. Furthermore, the
representation theory of Uχ(W 1) has been well understood for quite some
time. A classification of the irreducible representations of Uχ(W 1) was first
given by Chang in [4] and later simplified by Strade in [22].
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iv Introduction

Summary

This thesis contains two parts. The first part deals with the Witt–Jacobson
Lie algebra W 1 of rank 1. The main goal here is to obtain a classification of
the extensions of the simple Uχ(W 1)–modules having character χ of height
at most 1. The second part deals with the projective indecomposable mod-
ules of Uχ(W n) where n > 1. The main goal is to determine the Cartan
invariants of Uχ(W n). The setting is kept as general as possible, but some
of the results are only presented for n = 2.

Chapter 1. This first chapter serves as an easy start by recalling some
basic concepts that are necessary for understanding the thesis.

Part I Extensions of the Witt algebra

Chapter 2. We recall several well–known facts about the Witt algebra
W 1. A very brief description of the irreducible representations of W 1 will
be presented.

Chapter 3. In this chapter, we give a classification of the extensions of the
χ–reduced Verma modules having character χ of height at most 1. It turns
out that there are two cases to consider depending on the values of the
weights; each case will be examined separately. We conclude the chapter
with a section summarizing our results.

Chapter 4. This chapter deals with the extensions of the simple Uχ(W 1)–
modules. The work done in Chapter 3 will be useful here. For characters of
height 0 or 1, almost all the work has been done in Chapter 3 because the
simple Uχ(W 1)–modules are represented by reduced Verma modules. For
characters of height −1 we still need to determine the extensions involving
the trivial W 1–module and the (p − 1)–dimensional simple W 1–module.
Some of the techniques developed in Chapter 3 will be extended to the
current setting.

Chapter 5. The fifth chapter applies the results obtained in Chapter 4 to
give a simpler proof of the wildness of Uχ(W 1).

Part II The projective indecomposable modules

Chapter 6. This chapter lays the foundation for our study of the projective
indecomposable modules. We fix a character χ of height 0 and introduce a
new grading on W n that allows us to establish a one–to–one correspondence
between the irreducible representations of Uχ(W n) and Uχ(W n

(0)); here W n
(0)

is the degree zero part of the new grading.
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Chapter 7. The seventh chapter is devoted to studying the projective
indecomposable modules of Uχ(W n

(0)). The chapter consists of three main
parts. The first deals with the dimension of the projective indecomposable
modules. We prove that except for one case, all projective indecomposable
modules have the same dimension. The second part deals with the Cartan
invariants of Uχ(W n

(0)). We derive a formula that reduces the problem of
computing the Cartan invariants to a problem of the representation theory
of gln. In the third part, we prove an independence property for the Cartan
invariants. We conclude the chapter by considering the case n = 2, which,
in contrast to the general case, will be fully treated.

Chapter 8. The final chapter focuses on the Witt–Jacobson Lie algebra
W 2 of rank 2. We use the general theory from Chapter 7 together with
several techniques developed for n = 2 to compute the Cartan matrix of
Uχ(W 2).

Appendix A. This appendix is needed in Chapter 6 where we choose the
height 0 character χ in a specific way. In Appendix A, we prove that all
height 0 characters are conjugate to this χ. Since the representation theory
only depends on the conjugate classes of the characters, this reduces the
height 0 case to the study of χ.

Appendix B. In this appendix, we give a classification of the irreducible
representations of Uχ(W 2

0 ) which is needed in Chapter 8 in order to com-
pute the Cartan invariants of Uχ(W 2). To this end, we make use of the
isomorphism between W 2

0 and gl2.

Appendix C. This appendix is needed in Chapter 8 in order to establish
certain isomorphisms. We introduce the notion of inflation and provide
some of its properties.

Appendix D. The main purpose of this appendix is to generalize some
of the results obtained by Holmes in [10]. In this paper, Holmes assumes
that the characteristic p is larger than 3, but it turns out that some of the
results are also valid for p = 3.

Acknowledgment

I feel immense pleasure in thanking my advisor Prof. Jens Carsten Jantzen
for his guidance, encouragement and unwavering support. His expertise and
knowledge are inspiring and have proved invaluable throughout the process
of writing this thesis. I feel privileged to have met and worked with him.



vi Introduction

During the spring of 2010, I visited the Mathematisches Seminar in
Christian–Albrechts–Universität zu Kiel and I would like to thank Prof.
Rolf Farnsteiner for his great hospitality and many interesting discussions.
I also would like to thank Prof. Henning Haahr Andersen for his help in
providing financial support.

My deepest gratitude to Therese Søby Andersen. Without her support
and tireless proofreading, the last few months would have been much more
difficult. Finally, I would like to extend a special thanks to my parents and
brother for all they have done for me through the years.

Khalid Rian
Aarhus, July 2011



Dansk resumé

Hen mod slutningen af trediverne opfandt Ernst Witt en ikke-klassisk, sim-
pel Lie-algebra, dvs. en simpel Lie-algebra, som ikke er associeret til en glat
algebraisk gruppe. Dette dannede grundlag for teorien om modulære Lie-
algebraer. I de forløbne år er flere ikke-klassiske, simple Lie-algebraer blevet
fundet, og en ny type af simple, restringerede Lie-algebraer er blevet født
og døbt: Simple, restringerede Lie-algebraer af Cartan-type. Den er inddelt
i fire klasser: Witt-Jacobson Lie-algebraer W n, specielle Lie-algebraer Sn,
hamiltonske Lie-algebraer H2n og kontakt-Lie-algebraer K2n+1.

Vigtigheden af disse Lie-algebraer ligger i en formodning fra 1966, som
siger, at en simpel, restringeret, endeligt-dimensional Lie-algebra enten er
klassisk eller af Cartan-type. Formodningen er blevet bevist for p > 5, hvor
p er karakteristikken af grundlegemet.

Denne afhandling, som er delt op i en indledning og to hoveddele, har
til formål at studere Witt-Jacobson Lie-algebraer W n. Hovedform̊alet med
den første del er at bestemme udvidelserne for de simple moduler for den
reducerede indhyldningsalgebra Uχ(W n) relateret til W n. Her betegner χ
en p–karakter med højde mindre end eller lig med 1. Den anden hoveddel
har til formål at bestemme strukturen af de projektive, indekomposable
moduler for Uχ(W 2), n̊ar χ har højde lig med 0.

vii





1 Preliminaries

We introduce here the necessary background in order to make this thesis
self–contained. Since all of the results are well–known, we shall omit the
proofs and instead provide references where interested readers can find the
details. Unless otherwise stated, all Lie algebras, algebras and vector spaces
are considered over a fixed algebraically closed field K of positive charac-
teristic p > 0. The set of all natural numbers including zero is denoted by
N. Furthermore, Z and Fp = Z/pZ denote the ring of integers and the field
having p elements, respectively. Note that we have a natural inclusion of
Fp in K.

1.1 Restricted Lie algebras

1.1.1 Let L be a Lie algebra over K. Let gl(L) and ad : L → gl(L)
denote the general linear algebra and the adjoint representation of L, re-
spectively. A mapping [p] : L→ L, a 7→ a[p], is called a p–mapping if

1. ad a[p] = (ad a)p for all a ∈ L,

2. (αa)[p] = αpa[p] for all α ∈ K and a ∈ L,

3. (a+ b)[p] = a[p] + b[p] +
∑p−1

i=1 si(a, b),

where (ad(a⊗X + b⊗ 1))p−1(a⊗ 1) =
∑p−1

i=1 isi(a, b)⊗X i−1 in L⊗K[X]
for all a, b ∈ L; here K[X] is the polynomial ring over K in X. The pair
(L, [p]) is referred to as a restricted Lie algebra.

1.1.2 Every associative K–algebra R gives rise to a restricted Lie alge-
bra over K in a natural way; the Lie bracket is given by the commutator
[a, b] = ab− ba for all a, b ∈ R and the p–mapping is given by the Frobenius
mapping a→ ap, see [23, Sec. 2.1]. Any Lie algebra L ⊂ R satisfying ap ∈ L
for all a ∈ L is a restricted Lie algebra. In particular, the derivation algebra

1



2 Chapter 1. Preliminaries

DerK(L) ⊂ gl(L) of a Lie algebra L is restricted. This is a consequence of
Leibniz’s rule which states that for all a, b ∈ L and n > 0

Dn(ab) =
n∑
i=0

(
n

i

)
Di(a)Dn−i(b) for all D ∈ DerK(L).

We shall usually write D[p] instead of Dp.

1.1.3 Let L be a restricted Lie algebra and let U(L) denote its universal
enveloping algebra. If M is an L–module and χ ∈ L∗ is a functional then
we say M has p–character χ if and only if

(xp − x[p] − χ(x)p) ·M = 0 for all x ∈ L;

here xp denotes the pth power of x in U(L).

1.1.4 For each χ ∈ L∗ we define the reduced enveloping algebra Uχ(L)
of L

Uχ(L) = U(L)/(xp − x[p] − χ(x)p | x ∈ L).

The bijection

{L–modules} ←→ {U(L)–modules}

induces for each χ a bijection

{L–modules with p–character χ} ←→ {Uχ(L)–modules}.

The following proposition gives a basis of Uχ(L), cf. [13, Prop. 2.8].

Proposition. If u1, u2, . . . , un is a basis of L then Uχ(L) has basis

{uα1
1 u

α2
2 · · ·uαnn | 0 ≤ αi < p for all i}.

In particular, we have dimUχ(L) = pdimL.

1.1.5 Let M be an L–module with p–character χ. The dual vector space
M∗ becomes an L–module if we define for every x ∈ L, m ∈M , f ∈M∗

(x · f)(m) = −f(x ·m).

One can show that M∗ has p–character −χ. Thus, every Uχ(L)–module M
induces a U−χ(L)–module M∗ which we shall call the dual module of M .
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1.1.6 A restricted Lie algebra L with a p–mapping [p] is called unipotent
(or p–nilpotent) if, for all x ∈ L, there exists an r > 0 such that x[pr] = 0,
where x[pr] denotes the pth power map iterated r times. An ideal of L is
called unipotent if it is unipotent as a Lie algebra.

An element x in L is called toral if x[p] = x.

1.2 The Witt–Jacobson Lie algebras

In this section we define and describe several properties of the Witt–Jacobson
Lie algebras.

1.2.1 For any positive integer n > 0, let Bn be the truncated polynomial
algebra over K in n indeterminates

Bn = K[X1, X2, . . . , Xn]/(Xp
1 , X

p
2 , . . . , X

p
n);

here K[X1, X2, . . . , Xn] denotes the polynomial algebra in n indetermi-
nates X1, X2, . . . , Xn. Denote the image of Xi in Bn by xi. For each
α = (α1, α2, . . . , αn) ∈ Nn, set

xα = xα1
1 x

α2
2 · · ·xαnn ,

and
In = {α = (α1, α2, . . . , αn) ∈ Nn | 0 ≤ αi < p for all i}.

All xα with α ∈ In form a basis for Bn. In particular, we have dimBn = pn.
The algebra Bn has a grading Bn =

⊕
i≥0B

n
i such that xj is homogeneous

of degree 1. If we set for every (α1, α2, . . . , αn) ∈ Nn

|(α1, α2, . . . , αn)| = α1 + α2 + · · ·+ αn,

then the xα with α ∈ In and |α| = i is a basis for Bn
i ; we have Bn

i = 0
for i > n(p − 1). We define the Witt algebra W n = DerK(Bn) as the set
of all derivations of the K–algebra Bn. This is a restricted Lie subalgebra
and a Bn–submodule of EndK(Bn); here EndK(Bn) denotes the algebra of
K–endomorphisms of Bn.

1.2.2 The partial derivative ∂i = ∂/∂Xi is a derivation of K[X1, . . . , Xn]
satisfying ∂i(X

p
j ) = 0. It therefore preserves the ideal generated by all Xp

i

and induces a derivation of the factor algebra Bn. By a slight abuse of
notation, we denote the induced derivation by ∂i. Now, since D(1) = 0 for



4 Chapter 1. Preliminaries

D ∈ W n, every derivation D ∈ W n is uniquely determined by the values
D(x1), D(x2), . . . , D(xn). It follows that

D =
n∑
i=1

D(xi)∂i (1.1)

and thusW n is a free module overBn with basis ∂1, ∂2, . . . , ∂n. Furthermore,
the xα∂i with 1 ≤ i ≤ n and α ∈ In form a basis for W n over K; we have
dimW n = npn.

1.2.3 A simple computation shows for all α, β ∈ In and 1 ≤ i, j ≤ n
that

[xα∂i, x
β∂j] = βix

α+β−εi∂j − αjxα+β−εj∂i, (1.2)

where εi = (0, . . . , 0, 1, 0, . . . , 0) has a 1 in the ith position and zeros every-
where else. We interpret xγ as 0 if γ 6∈ Nn. The p–mapping on our basis
elements is given by

(xα∂i)
[p] =

{
xi∂i, if α = εi,

0, otherwise.
(1.3)

Indeed, since (xα∂i)
[p](xj) = (xα∂i)

p(xj) = 0 for i 6= j, it follows from (1.1)
that (xα∂i)

[p] = (xα∂i)
p(xi)∂i. If α = εi, we get (xα∂i)(xi) = xi∂i(xi) = xi

and thus (xα∂i)
p(xi) = xi. If α = 0, the claim follows since (xα∂i)

2(xi) =
∂2
i (xi) = 0. If αi > 1, then we have by induction that (xα∂i)

r(xi) is a mul-
tiple of xrα−(r−1)εi which, in particular, shows that (xα∂i)

p(xi) is a multiple

of x
p(αi−1)+1
i = 0. If αj > 0 for some j 6= i, then (xα∂i)

p(xi) is a multiple of
x
pαj
j = 0.

1.2.4 For every integer i ∈ Z, we define a subspace W n
i of W n by

W n
i = {D ∈ W n | D(Bn

j ) ⊂ Bn
i+j for all j}.

The sum of the W n
i is direct and we have [W n

i ,W
n
j ] ⊂ W n

i+j for all i and

j. Furthermore, D[p] ∈ W n
pi for all D ∈ W n

i . We have ∂i ∈ W n
−1 because

∂i(x
α) = αix

α−εi for all α ∈ In. More generally, we have xα∂i ∈ W n
|α|−1 for

all α ∈ In. It follows that

W n =

n(p−1)−1⊕
i=−1

W n
i
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is a graded restricted Lie algebra. For every −1 ≤ j ≤ n(p− 1)− 1, we set

W n
≥j =

n(p−1)−1⊕
i=j

W n
i .

Furthermore, we set W n
≥j = 0 for j > n(p− 1)− 1.

1.2.5 Of central importance in the representation theory of W n is the
notion of height. The height of a character χ ∈ (W n)∗ is given by

ht(χ) = min{i | −1 ≤ i ≤ n(p− 1) and χ|W≥i = 0},

Note that χ = 0 if and only if ht(χ) = −1; this is usually known as the
restricted case.

1.2.6 We state the following theorem without proof; a proof can be
found in [23, Thm. 2.4 Ch. 4].

Theorem. The Lie algebra W n is simple unless (p, n) = (2, 1).





Part I

Extensions of the Witt algebra

7





2 Irreducible representations of
the Witt algebra

2.1 Preliminaries

2.1.1 In this part, we focus on the Witt–Jacobson Lie algebra W 1 of
rank 1, or the Witt algebra as it is also called. We fix here some notation
and terminology which will be used later. Throughout this part, K denotes
an algebraically closed field of characteristic p > 3. Set

ei = xi+1
1 ∂1 for all i ≥ −1.

The ei with −1 ≤ i ≤ p − 2 form a basis for the Witt algebra. The Lie
bracket and the p–mapping are given by

[ei, ej] = (j − i)ei+j for all − 1 ≤ i, j ≤ p− 2,

and
e

[p]
i = δi0ei for all − 1 ≤ i ≤ p− 2.

2.1.2 For each χ ∈ (W 1)∗, consider the weights

Λ(χ) = {λ ∈ K | λp − λ = χ(e0)p}.

Observe that if ht(χ) ∈ {−1, 0}, then Λ(χ) coincides with the prime field
of K. For each λ ∈ Λ(χ), we define the χ–reduced Verma module Vχ(λ) by

Vχ(λ) = Uχ(W 1)⊗Uχ(W 1
≥0) Kλ,

where Kλ denotes K considered as a Uχ(W 1
≥0)–module via

ei · 1 =

{
λ · 1, if i = 0,

0, otherwise.

9



10 Chapter 2. Irreducible representations of the Witt algebra

The reduced Verma module Vχ(λ) has a basis v0, v1, . . . , vp−1 where vi =
ei−1 ⊗ 1 for all i. The action of W 1 is given by

e−1vi =

{
vi+1, if i < p− 1,

χ(e−1)pv0, if i = p− 1,
(2.1)

and for all j ≥ 0

ejvi =

{
(−1)j i!

(i−j)!((j + 1)λ− i+ j)vi−j, if j ≤ i,

0, otherwise.
(2.2)

Except for the case ht(χ) = −1, all reduced Verma modules are simple.

2.1.3 Let M be a Uχ(W 1)–module generated by a weight vector v ∈M
that is annihilated by the action of all ei with i > 0. If v has weight λ,
i.e., if e0v = λv, then there exists a unique surjective homomorphism of
Uχ(W 1)–modules Vχ(λ) → M which sends v0 to v. This is the universal
property of Verma modules.

2.2 Irreducible representations

We give a very brief review of Chang’s description of the simple Uχ(W 1)–
modules having character χ of height at most 1. Every simple Uχ(W 1)–
module is a homomorphic image of some reduced Verma module Vχ(λ).
With the exception of Vχ(0) ' Vχ(p− 1) for ht(χ) = 0, the reduced Verma
modules are isomorphic if and only if the corresponding weights coincide,
see [4, Hilfssatz 7]. Thus, unless ht(χ) = 0, the isomorphism classes of
simple Uχ(W 1)–modules are in 1–1 correspondence with Λ(χ).

2.2.1 Suppose ht(χ) = −1 and let v0, v1, . . . , vp−1 be a basis of Vχ(p−1)
as in Section 2.1.2. The socle SocUχ(W 1) Vχ(p − 1) of Vχ(p − 1) is one–
dimensional and spanned by vp−1. This fact induces a (p− 1)–dimensional
module

S = Vχ(p− 1)/ SocUχ(W 1) Vχ(p− 1)

with a basis v̄0, v̄1, . . . , v̄p−2 such that v̄i = vi + SocUχ(W 1) Vχ(p− 1) for all i.
We have for every i

e−1v̄i =

{
v̄i+1, if i < p− 2,

0, if i = p− 2.
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and every j ≥ 0

ej v̄i =

{
(−1)j+1 (i+1)!

(i−j)! v̄i−j, if j ≤ i,

0, otherwise.

Chang determined the simple Uχ(W 1)–modules by a direct computation.

Theorem. [4, Hauptsatz 2′]. If χ is of height −1, then there are p isomor-
phism classes of simple Uχ(W 1)–modules. These modules are represented
by the 1–dimensional trivial W 1–module K, the (p−1)–dimensional module
S and the p–dimensional modules Vχ(λ) for λ ∈ {1, 2, . . . , p− 2}.

2.2.2 If χ is of height 0 or 1, then the following two theorems due to
Chang give a classification of the isomorphism classes of simple Uχ(W 1)–
modules, see [22, Part II].

Theorem (A). [4, Hauptsatz 2′] If χ is of height 0, then there are p − 1
isomorphism classes of simple Uχ(W 1)–modules each of dimension p and
represented by Vχ(λ) for λ ∈ {0, 1, . . . , p− 2}.

Theorem (B). [4, Hauptsatz 2′] If χ is of height 1, then there are p iso-
morphism classes of simple Uχ(W 1)–modules each of dimension p and rep-
resented by Vχ(λ) for λ ∈ Λ(χ).

2.2.3 If χ is of height p− 1, then there are two cases depending on the
centralizer W 1

χ = {x ∈ W 1 | χ([x,W 1]) = 0} of W 1. If W 1
χ is a torus, then

every simple Uχ(W 1)–module is projective. If W 1
χ is unipotent, then with

one exception every simple Uχ(W 1)–module is projective. The remaining
simple module L has a projective cover with two composition factors both
isomorphic to L, see [7, Thm. 2.6].

Remark. If 1 < ht(χ) < p− 1, then there exists a unique simple Uχ(W 1)–
module up to isomorphism [4, Hauptsatz 1]. This module has a non–trivial
self–extension.

2.3 The restricted case

In this section, we derive some basic results which are necessary for the
proofs of the main results of Section 4.1. We assume that ht(χ) = −1, or
equivalently, that χ = 0.
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2.3.1 The kernel of the canonical surjection Vχ(p − 1) → S is one–
dimensional and thus isomorphic to the trivial module K. This gives rise
to the following short exact sequence

0→ K → Vχ(p− 1)→ S → 0. (2.3)

By the universal property of Verma modules one has the following short
exact sequence

0→ S → Vχ(0)→ K → 0. (2.4)

2.3.2 The dual Verma modules are given by the following proposition

Proposition (A). We have for every λ ∈ {0, 1, . . . , p− 1}

Vχ(λ)∗ ' V−χ(p− 1− λ).

Proof. We saw in Section 1.1.5 that Vχ(λ)∗ has a natural module structure
over U−χ(W 1). Let v0, v1, . . . , vp−1 be a basis of Vχ(λ) as in Section 2.1.2.
Define f0 ∈ Vχ(λ)∗ such that f0(vi) = δp−1,i and set fi = ei−1f0 for all
i = 1, 2, . . . , p− 1. Since for all i and j we have

fi(vj) = (−1)if0(ei−1vj) = (−1)iδp−1,i+j,

it follows that f0, f1, . . . , fp−1 are linearly independent and hence form a
basis of the dual module Vχ(λ)∗. We have for every j

(e0f0)(vj) = −f0(e0vj) = −(λ− j)f0(vj) = (p− 1− λ)δp−1,j.

Thus
e0f0 = (p− 1− λ)f0.

Furthermore, we have for every i > 0

(eif0)(vj) = −f0(eivj) = 0,

so
eif0 = 0 for all i > 0.

More generally, one can show that for every j ≥ 0 and i

ejfi =

{
(−1)j i!

(i−j)!((j + 1)(p− 1− λ)− i+ j)fi−j, if j ≤ i,

0, otherwise.

Now, let w0, w1, . . . , wp−1 be a basis of V−χ(p − 1 − λ) as in Section 2.1.2;
here w0 is the analogue to v0 and wi = ei−1w0 for all i. A very simple
computation shows that the mapping Vχ(λ)∗ → V−χ(p−1−λ) which sends
fi to wi is an isomorphism of W 1–modules.
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Evidently, K is a self–dual module in the sense that it is isomorphic to
its dual. Furthermore, we have

Proposition (B). The module S is self–dual.

Proof. We consider the basis v̄0, v̄1, . . . , v̄p−2 constructed in Section 2.2.1.
Define g0 ∈ S∗ such that g0(v̄i) = δp−2,i and set gi = ei−1g0 for all i =
1, 2, . . . , p− 2. Since for all i and j, we have

gi(v̄j) = (−1)ig0(ei−1v̄j) = (−1)iδp−2,i+j,

it follows that g0, g1, . . . , gp−2 are linearly independent and hence form a
basis of S∗. One can show that for every j ≥ 0 and i

ejgi =

{
(−1)j+1 (i+1)!

(i−j)!gi−j, if j ≤ i,

0, otherwise.

A very simple computation shows that the mapping S∗ → S that sends gi
to v̄i is an isomorphism of W 1–modules.

2.3.3 We denote the space of Uχ(W 1)–homomorphisms between two
modules M and N by HomUχ(W 1)(M,N). The following two lemmas are
needed later.

Lemma (A). If ht(χ) = −1, then

HomUχ(W 1)(Vχ(0), K) ' K.

Proof. It follows from (2.4) that there exists a surjective homomorphism
Vχ(0) → K and then that HomUχ(W 1)(Vχ(0), K) 6= 0. Let v0, v1, . . . , vp−1

be a basis of Vχ(λ) as in Section 2.1.2. Every nonzero homomorphism
ϕ ∈ HomUχ(W 1)(Vχ(0), K) is uniquely determined by the value of ϕ(v0)
because

ϕ(vi) = e−1ϕ(vi−1) = 0 for all i = 1, 2 . . . , p− 1.

This proves the lemma.

Lemma (B). If ht(χ) = −1, then

HomUχ(W 1)(Vχ(0), S) = 0.
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Proof. Every nonzero homomorphism ϕ : Vχ(0)→ S is surjective and thus
has a kernel of dimension 1; say kerϕ = Kx for some x ∈ Vχ(0). Evidently,
kerϕ is simple and hence isomorphic to the trivial module K. This implies
eix = 0 for all i and in particular e0x = 0. Since the 0 weight space in
Vχ(0) is one–dimensional, we may choose x such that x = v0; here we use
the notation introduced in Section 2.1.2. But this contradicts the fact that
e−1v0 6= 0.



3 Extensions of the Verma
modules

In this chapter, we shall determine the extensions of the reduced Verma
modules having character χ of height at most one. As noted in Chapter 2,
Λ(χ) coincides with the prime field of K for ht(χ) ∈ {−1, 0}. This is not
the case if the height is 1 because ht(χ) = 1 implies λp 6= λ for all λ ∈ Λ(χ).
Luckily, this is not as bad as it might seem at first because we always have
λ1−λ2 ∈ Fp for all λ1, λ2 ∈ Λ(χ). This fact turns out to be crucial to make
our arguments work in general. The proof is simple and follows immediately
from Freshman’s dream. Suppose, indeed, that λ1, λ2 ∈ Λ(χ). Then, by
definition, we have λp1 − λ1 = λp2 − λ2 which implies (λ1 − λ2)p = λ1 − λ2,
thereby the claim.

3.1 Preliminaries

3.1.1 It is sometimes useful to abuse the notation and view integers
as elements in Fp; this will be clear from the context and will cause no
confusion. For each µ ∈ Fp = Z/pZ, we let [µ] ∈ {0, 1, . . . , p − 1} denote
the unique representative of µ. We shall usually denote the inverse of µ 6= 0
by 1/µ. The following lemma will be used several times, often without any
reference.

Lemma. If i ∈ {1, 2, . . . , p}, then

(p− i)! =
(−1)i

(i− 1)!
in Fp.

Proof. The case i = 1 is an immediate consequence of Wilson’s theorem.
We proceed by induction on i; we assume that the assertion is true for
1 < i < p. Since

(p− i)! = (p− i)(p− (i+ 1))!,

15
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it follows that

(p− (i+ 1))! =
(−1)i

(p− i)(i− 1)!
=

(−1)i+1

i!
,

proving the lemma.

3.1.2 Let L be a Lie algebra over K and let χ ∈ L∗. Suppose that M
is a Uχ(L)–module. For each i ≥ 0, we define the ith right derived functor

ExtiUχ(L)(M,−) = Ri HomUχ(L)(M,−).

If M and N are Uχ(L)–modules, then Ext1
Uχ(L)(M,N) has an interpretation

as the group of extensions ExtUχ(L)(M,N) with elements

0→ N → E →M → 0,

see [20, Thm. 2.4]. We shall usually use the notation ExtUχ(L)(M,N) instead
of Ext1

Uχ(L)(M,N). There are similar “higher” extensions corresponding to

ExtiUχ(L)(M,N) for i > 1. For every short exact sequence of Uχ(L)–modules

0→ N ′ → N → N ′′ → 0,

we get a long exact sequence of K–vector spaces

0→ HomUχ(L)(M,N ′)→ HomUχ(L)(M,N)→ HomUχ(L)(M,N ′′)

→ ExtUχ(L)(M,N ′)→ ExtUχ(L)(M,N)→ ExtUχ(L)(M,N ′′)

→ Ext2
Uχ(L)(M,N ′)→ · · · .

Similarly, if we fix N then a short exact sequence

0→M ′ →M →M ′′ → 0

of Uχ(L)–modules leads to the long exact sequence

0→ HomUχ(L)(M
′′, N)→ HomUχ(L)(M,N)→ HomUχ(L)(M

′, N)

→ ExtUχ(L)(M
′′, N)→ ExtUχ(L)(M,N)→ ExtUχ(L)(M

′, N)

→ Ext2
Uχ(L)(M

′′, N)→ · · · .

We have for all finite dimensional Uχ(L)–modules M and N a natural iso-
morphism

HomUχ(L)(M,N) ' HomU−χ(L)(N
∗,M∗),

which gives rise to the isomorphism

ExtnUχ(L)(M,N) ' ExtnU−χ(L)
(N∗,M∗).

for all n ≥ 0.
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3.2 Setting

3.2.1 Except for Section 4.3.1, we will always assume that χ is a char-
acter of height at most 1. Now, classifying the extensions of the reduced
Verma modules can be quite complicated. The following lemma will, how-
ever, make it much easier to achieve our goal.

Lemma. Let χ ∈ (W 1)∗ and λ ∈ Λ(χ). If M is a Uχ(W 1)–module, then

ExtUχ(W 1)(Vχ(λ),M) ' ExtUχ(W 1
≥0)(Kλ,M).

Proof. We regard Uχ(W 1) as a free Uχ(W 1
≥0)–module in the natural way.

This implies [19, Prop. 7.2.1]

Tor
Uχ(W 1

≥0)
n (Uχ(W 1), Kλ) = 0 for all n > 0,

where TorUχ(L)
n (−,M) is the nth left derived functor of − ⊗Uχ(L) M . The

claim follows from [9, Prop. VI. 4.1.3].

As an immediate consequence, we obtain an isomorphism

ExtUχ(W 1)(Vχ(λ′), Vχ(λ)) ' ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)),

that reduces the problem of classifying the extensions of Verma modules to
that of classifying the extensions of Kλ′ by Vχ(λ).

3.2.2 Consider a short exact sequence of Uχ(W 1
≥0)–modules

0→ Vχ(λ)
f−→M

g−→ Kλ′ → 0. (3.1)

Let v0, v1, . . . , vp−1 be a basis for Vχ(λ) as in Section 2.1.2 and set wi = f(vi)
for all i. Since Uχ(W0) is a semisimple algebra, there exists w′ ∈ M such
that e0w

′ = λ′w′ and g(w′) = 1. Thus, we obtain a basis for M

w0, w1, . . . , wp−1, w
′, (3.2)

such that for all 0 ≤ j ≤ p− 2

ejwi =

{
(−1)j i!

(i−j)!((j + 1)λ− i+ j)wi−j, if j ≤ i,

0, otherwise.
(3.3)

Furthermore, if 1 ≤ j ≤ p− 2 then

e0ejw
′ = (eje0 + jej)w

′ = (λ′ + j)ejw
′,

hence ejw
′ belongs to the 1–dimensional weight space Mλ′+j spanned by

w[λ−λ′−j]. It follows that

ejw
′ = ajw[λ−λ′−j] for some aj ∈ K. (3.4)
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3.2.3 The w′ from the previous section is not unique. Since the λ′ weight
space in M is spanned by w′ and w[λ−λ′] any different choice for w′ has the
form w′ + bw[λ−λ′] for some b ∈ K. Obviously, this leads to the same ejw

′

if ejw[λ−λ′] = 0. Thus, if λ = λ′ then (a1, a2, . . . , ap−2) is determined by the
extension (3.1). Furthermore, we have

Lemma (A). Let λ, λ′ ∈ Λ(χ). If (λ, λ′) = (0, p− 1) or (λ, λ′) = (p− 1, 0),
then ejw[λ−λ′] = 0 for all j ≥ 1.

Proof. By use of (3.3), we obtain

e1w[λ−λ′] = −(λ− λ′)(λ+ λ′ + 1)w[λ−λ′−1],

which equals 0 for λ + λ′ = p − 1. If (λ, λ′) = (0, p − 1) then [λ − λ′] < 2
and thus ejw[λ−λ′] = 0 for all j ≥ 2. If (λ, λ′) = (p− 1, 0), we have for every
2 ≤ j ≤ p− 2

ejw[λ−λ′] = (−1)j
[λ− λ′]!

([λ− λ′]− j)!
(j(λ+ 1) + λ′)w[λ−λ′−j] = 0,

proving the lemma.

Note that the assumptions of the lemma imply ht(χ) < 1 as λ, λ′ 6∈ Fp
for ht(χ) = 1. We let Θ(χ) ⊂ Λ(χ)× Λ(χ) denote the subset given by

({(0, p− 1), (p− 1, 0)} ∩ Λ(χ)× Λ(χ)) ∪ {(µ, µ) | µ ∈ Λ(χ)}.

Lemma A and the discussion at the beginning of this section show that
all the aj are determined by M if (λ, λ′) ∈ Θ(χ). This is not the case for
(λ, λ′) 6∈ Θ(χ). However, we have

Lemma (B). Let λ, λ′ ∈ Λ(χ) such that (λ, λ′) 6∈ Θ(χ). If furthermore
λ + λ′ 6= p− 1 (resp. λ + λ′ = p− 1), then there is a unique choice for w′

such that e1w
′ = 0 (resp. e2w

′ = 0).

Proof. Suppose that (λ, λ′) 6∈ Θ(χ). Since

e1w[λ−λ′] = −(λ− λ′)(λ+ λ′ + 1)w[λ−λ′−1],

it follows that e1w[λ−λ′] 6= 0 for λ + λ′ 6= p − 1. The discussion at the
beginning of this section shows that in this case we can choose w′ uniquely
such that e1w

′ = 0. Assume next that λ+ λ′ = p− 1. We have λ− λ′ 6= 1
and 2λ+ λ′ + 2 6= 0 since otherwise this would imply (λ, λ′) = (0, p− 1) or
(λ, λ′) = (p− 1, 0), respectively. It follows that

e2w[λ−λ′] = (λ− λ′)(λ− λ′ − 1)(2λ+ λ′ + 2)w[λ−λ′−2] 6= 0,

so there is a unique choice for w′ such that e2w
′ = 0.
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Remark (A). For each pair (λ, λ′) 6∈ Θ(χ), we will always assume that
w′ is the unique choice from the lemma. It then follows that the tuple
(a1, a2, . . . , ap−2) determines the extension (3.1). We call this tuple the a–
datum of (3.1).

Remark (B). If χ is of height 1, then Θ(χ) = {(µ, µ) | µ ∈ Λ(χ)}. More-
over, the fact that λ − λ′ ∈ Fp implies λ + λ′ 6∈ Fp because λ, λ′ 6∈ Fp for
ht(χ) = 1. Therefore, Lemma B becomes: If λ 6= λ′, then there is a unique
choice for w′ such that e1w

′ = 0.

3.2.4 Consider now a second extension

0→ Vχ(λ)
f ′−→M ′ g′−→ Kλ′ → 0 (3.5)

of Uχ(W 1
≥0)–modules. If (3.1) and (3.5) are equivalent extensions then there

is an isomorphism h : M
∼−→M ′ compatible with the identities in both Vχ(λ)

and Kλ′

0 −−−→ Vχ(λ)
f−−−→ M

g−−−→ Kλ′ −−−→ 0∥∥∥ yh ∥∥∥
0 −−−→ Vχ(λ)

f ′−−−→ M ′ g′−−−→ Kλ′ −−−→ 0.

We can choose w′′ = h(w′) to be the analogue to w′. Then eiw
′′ = h(eiw

′) =
h(f(aiv[λ−λ′−i])) = f ′(aiv[λ−λ′−i]) for all 1 ≤ i ≤ p − 2. Hence f−1(eiw

′)
depends only on the class of the extension (3.1) and we obtain a well–
defined map

Φi
λ,λ′ : ExtUχ(W 1

≥0)(Kλ′ , Vχ(λ))→ K, (3.6)

that sends the class of (3.1) to ai. In Section 3.2.5 we prove that Φi
λ,λ′ is

linear and in Section 3.2.6 we show that every ai with i ≥ 3 can be expressed
as a linear combination of a1 and a2. It follows that Φλ,λ′ = (Φ1

λ,λ′ ,Φ
2
λ,λ′)

maps ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) injectively into K2.

Remark. If (λ, λ′) 6∈ Θ(χ) then dim ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) ≤ 1. This is a

consequence of Lemma 3.2.3 B.

3.2.5 We claim that Φi
λ,λ′ is a linear map. If we have extensions as in

(3.1) and (3.5), then the Baer sum is represented by

0→ Vχ(λ)
f̃−→ N/N ′

g̃−→ Kλ′ → 0,

where N ⊂ M ⊕M ′ is the submodule of all (m,m′) with g(m) = g′(m′)
and N ′ ⊂ N is the submodule of all (f(x),−f ′(x)) with x ∈ Vχ(λ). The
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homomorphisms f̃ and g̃ are given by f̃(x) = (f(x), 0)+N ′ = (0, f ′(x))+N ′

and g̃((m,m′)+N ′) = g(m) = g′(m′). We can choose (w′, w′′)+N ′ to be the
analogue to w′. Let f(x) = eiw

′ and f ′(x′) = eiw
′′ for suitable x, x′ ∈ Vχ(λ).

Then

ei((w
′, w′′) +N ′) = (f(x), f ′(x′)) +N ′ = f̃(x) + f̃(x′) = f̃(x+ x′),

hence φi is a group homomorphism. To prove that it is also closed under
scalar multiplication, let b ∈ K \ {0} and assume that the class of (3.5) is
b times the class of (3.1). Then there exists a commutative diagram

0 −−−→ Vχ(λ)
f−−−→ M

g−−−→ Kλ′ −−−→ 0yb·id yh ∥∥∥
0 −−−→ Vχ(λ)

f ′−−−→ M ′ g′−−−→ Kλ′ −−−→ 0.

If we again choose w′′ = h(w′) we get

(f ′)−1(eiw
′′) = (f ′)−1(h(eiw

′)) = bf−1(eiw
′),

thereby the claim.

3.2.6 In this section, we prove that every ai with i ≥ 3 can be expressed
as a linear combination of a1 and a2. Since M is a Uχ(W 1

≥0)–module, we
have

[ei, ej]w
′ = (eiej − ejei)w′ for all i and j.

We will need the full strength of this formula later but for now we are
content to remark that when i = 1 and 2 ≤ j ≤ p− 3, it yields

(j − 1)aj+1 = − (−1)j
( j∏
k=1

(λ− λ′ − k)

)
(j(λ+ 1) + λ′ + 1)a1

− (λ− λ′ − j)(λ+ λ′ + j + 1)aj,

or, equivalently, by induction

aj = Aja1 +Bja2 for all 3 ≤ j ≤ p− 2, (3.7)

where

Aj =
(−1)j

j − 2

(j−1∏
k=1

(λ− λ′ − k)

)(
(j − 1)λ+ λ′ + j +

j∑
k=4

(j − k)!

(j − 3)!

· ((j + 2− k)λ+ λ′ + (j + 3− k))
k−4∏
l=0

(λ+ λ′ + j − l)
)
,
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(the summation
∑j

k=4 is understood to be 0 when j = 3) and

Bj =
(−1)j

(j − 2)!

j−1∏
k=2

(λ− λ′ − k)(λ+ λ′ + k + 1).

Consequently, all the ai with i ≥ 3 are determined by a1 and a2.

3.3 The possible a–data

3.3.1 We have proved that Φλ,λ′ maps ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) injectively

into K2. In the following, we shall be concerned with the image of Φλ,λ′ . We
want to describe all possible a–data of extensions as in (3.1). To this end,
consider an arbitrary pair (a1, a2) ∈ K2 and use (3.7) to extend it to a tuple
a = (a1, a2, . . . , ap−2) in Kp−2. In order to simplify notation set ai = 0 for
all i > p− 2. Consider a vector space Ma with a basis w0, w1, . . . , wp−1, w

′

and define endomorphisms Ei of Ma acting as ei on the basis vectors. We
have on Ma a W 1

≥0–module structure if and only if

[Ei, Ej]w = (j − i)Ei+jw for all i, j ≥ 0 and w ∈Ma. (3.8)

It suffices to check this for all w in our basis. The linear map f : Vχ(λ)→Ma

with f(vi) = wi for all i satisfies Ejf(v) = f(Ejv) for all v ∈ Vχ(λ) and all
j. Consequently, (3.8) holds for all wi and Ma has the desired structure if
and only if

[Ei, Ej]w
′ = (j − i)Ei+jw′ for all i, j ≥ 0. (3.9)

3.3.2 One verifies easily that (3.9) holds for i = 0. It also holds for
i = j. For i = 1 and 2 ≤ j ≤ p− 3 it is equivalent to (3.7) which holds by
the definition of the aj (j ≥ 3). Furthermore, for every (i, j) in

{(1, p− 2), (p− 2, 1)} ∪ {(a, b) ∈ Z2 | a 6= b and 2 ≤ a, b ≤ p− 2},

formula (3.9) is equivalent to the following conditions

If i > [λ− λ′ − j] and j > [λ− λ′ − i], then

ai+j = 0. (3.10)

If i > [λ− λ′ − j] and j ≤ [λ− λ′ − i], then

(j − i)ai+j = (−1)j+1 [λ− λ′ − i]!
([λ− λ′ − i]− j)!

(j(λ+ 1) + λ′ + i)ai. (3.11)
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If i ≤ [λ− λ′ − j] and j ≤ [λ− λ′ − i], then

(j − i)ai+j = (−1)i
[λ− λ′ − j]!

([λ− λ′ − j]− i)!
(i(λ+ 1) + λ′ + j)aj (3.12)

− (−1)j
[λ− λ′ − i]!

([λ− λ′ − i]− j)!
(j(λ+ 1) + λ′ + i)ai.

It should be noted that there is no deep mathematics involved here; only
straightforward but tedious computations.

3.3.3 Suppose now that a satisfies (3.10)–(3.12) and hence that Ma is a
W 1
≥0–module with each ei acting as Ei. We have then a short exact sequence

0→ Vχ(λ)
f−→Ma

g−→ Kλ′ → 0. (3.13)

Evidently, Ma has p–character χ if and only if (epi − e
[p]
i − χ(ei)

p)w = 0
for all w in our basis. This is clearly true for all wi. Moreover, since
Λ(χ) = {µ ∈ K | µp − µ = χ(e0)p}, we have (ep0 − e

[p]
0 − χ(e0)p)w′ = 0.

Thus, to prove that χ is the p–character of Ma, it suffices to check that
epiw

′ = 0 for all i ≥ 1, or, equivalently, that aie
p−1
i w[λ−λ′−i] = 0 for all i ≥ 1.

Since this is trivial for i > 1, we conclude that Ma has p–character χ if and
only if ep1 annihilates w′. Now, a1e

p−1
1 w[λ−λ′−1] = 0 if λ 6= λ′, because the

subfix of w[λ−λ′−1] drops by 1 each time we apply e1. For λ = λ′, we have

a1e
p−1
1 wp−1 = −a1

(p−2∏
j=0

(2λ− j)
)
w0.

The term inside the bracket does not vanish if the height of χ is 1 because
λ 6∈ Fp in this case. We obtain the following lemma.

Lemma. Ma has p–character χ if and only if one of the following conditions
holds

1. If ht(χ) ∈ {−1, 0} and λ = λ′ and 2λ = p− 1, then a1 = 0.

2. If ht(χ) = 1 and λ = λ′, then a1 = 0.

3.4 Case (λ, λ′) ∈ Θ(χ)

3.4.1 We first look at the case where λ = λ′.
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Proposition. We have

ExtUχ(W 1
≥0)(Kλ, Vχ(λ)) '

{
K, if λ ∈ {0, p− 1},
0, otherwise.

It is convenient to break up the proof of the proposition into two lemmas.

Lemma (A). If ht(χ) = 1, then

ExtUχ(W 1
≥0)(Kλ, Vχ(λ)) = 0.

Proof. Every extension of Kλ by Vχ(λ) can be represented by a short exact
sequence of Uχ(W 1

≥0)–modules

0→ Vχ(λ)→Ma → Kλ → 0.

The claim to be proved amounts to saying that the above sequence splits,
or, equivalently, that a = 0. Since all the aj can be expressed as a linear
combination of a1 and a2, it suffices to prove that both a1 and a2 are 0.
Note that a1 = 0 follows from Lemma 3.3.3. Thus, by definition, we have

aj = (j − 1)

( j∏
k=3

(2λ+ k)

)
a2 for 3 ≤ j ≤ p− 2.

Since the height of χ is 1, it follows that 2λ+ k 6= 0 for all k. Therefore, in
order to prove a2 = 0 it suffices to show aj = 0 for any 2 ≤ j ≤ p− 2. Now,
if we insert (i, j) = (1, p− 2) into (3.12) and use the fact that (p− 1)! = −1
we get

−2(2λ− 1)ap−2 = 0,

proving the claim.

Lemma (B). If ht(χ) ∈ {−1, 0}, then

ExtUχ(W 1
≥0)(Kλ, Vχ(λ)) '

{
K, if λ ∈ {0, p− 1},
0, otherwise.

Proof. Let (a1, a2) be an arbitrary pair in K2 and consider the vector space
Ma constructed in Section 3.3.1. By definition, we have

aj = Aja1 +Bja2 for all 3 ≤ j ≤ p− 2, (3.14)
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where

Aj = −λ+ 1

j − 2

(
j! +

j∑
k=4

(k − 1)!

j∏
l=k

l − 1

l − 3
(2λ+ l)

)
,

(the summation
∑j

k=4 is understood to be 0 when j = 3) and

Bj = (j − 1)

j∏
k=3

(2λ+ k).

We rewrite (3.10)–(3.12) for the present case. First, note that (3.10) and
(3.11) hold trivially since [λ − λ − i] = p − i and [λ − λ − j] = p − j for
all 1 ≤ i, j ≤ p − 2. If we insert (i, j) = (1, p − 2) into (3.12) and use
(p− 1)! = −1, we see that

2(2λ− 1)ap−2 = (λ+ 1)a1. (3.15)

If 2 ≤ i, j ≤ p− 2 and i+ j ≤ p, the same formula yields

(j − i)ai+j =
(i+ j − 1)!

(j − 1)!
((i+ 1)λ+ i+ j)aj (3.16)

− (i+ j − 1)!

(i− 1)!
((j + 1)λ+ i+ j)ai.

We now proceed by showing how these formulas are related. Let us
begin by assuming that λ 6∈ {0, p− 1}. The claim to be proved amounts to
saying that a = 0, or, equivalently, that both a1 and a2 are 0. If 2λ = p− 1
then Lemma 3.3.3 implies a1 = 0, which together with (3.14) implies

aj = (j − 1)(j − 1)!a2 for all 3 ≤ j ≤ p− 2. (3.17)

It follows that a2 = 0 because otherwise this would mean that ap−2 6= 0 and
then by (3.15) that 2λ = 1 in contradiction with our assumption.

Suppose next that 2λ 6= p− 1. If we insert (i, j) = (2, p− 2) into (3.16),
we obtain

6ap−2 = a2. (3.18)

Assume first that 2λ = 1. Since λ 6= p− 1, eq. (3.15) implies a1 = 0 hence
(3.14) reduces to

aj =
1

6
(j − 1)(j + 1)!a2 for all 3 ≤ j ≤ p− 2.
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In particular, we have 2ap−2 = a2, which together with (3.18) implies a2 = 0,
as desired.

Assume next that 2λ 6= 1. Eq. (3.15) and (3.18) give the following relation

3(λ+ 1)a1 = (2λ− 1)a2, (3.19)

which means that a1 and a2 are either both 0 or both nonzero. We assume
the latter and derive a contradiction. By definition, we have a3 = −6(λ +
1)a1 + 2(2λ+ 3)a2. Hence it follows from (3.19) that a3 = 8a2. Thus, if we
insert (i, j) = (3, p− 3) into (3.16), we obtain

3ap−3 = −a2.

Likewise, if we insert (i, j) = (2, p− 3) into (3.16), we obtain

6(3λ− 1)ap−3 = −(2λ+ 1)a2.

Since 2λ + 1 6= 0, we can determine λ by eliminating a2 and ap−3. This
yields

4λ = 3.

Note that 3ap−3 = −a2 implies p > 5. If we insert (i, j) = (2, 3) into (3.16),
we see

a5 = (192λ+ 360)a2 = 504a2.

However, by definition we have

a5 =
1

3
(128λ2 + 656λ+ 1080)a2 = 548a2,

which implies first that p = 11 and then that λ = 9. If we put all this
together and use (3.14), we see a1 = a4. But inserting (i, j) = (4, 6) into
(3.16) implies a4 = 0 and thus a1 = 0. Contradiction!

We now move to the case where λ = 0. A necessary condition for Ma to
be a Uχ(W 1

≥0)–module is that 2ap−2 = −a1, cf. (3.15). Since by definition

ap−2 = 4a1 −
3

2
a2,

this implies a2 = 3a1. Now, the claim to be proved amounts to saying that
each pair (a1, a2) with a2 = 3a1 induces a Uχ(W 1

≥0)–module Ma in the way
described in Section 3.3.1. Using our previous notation, we have

Aj = −(j − 2)j! and Bj =
1

2
(j − 1)j!.
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Hence a2 = 3a1 implies

aj =
1

2
(j + 1)!a1 for all 1 ≤ j ≤ p− 2.

In particular, we have ap−2 = −1/2a1 in consistence with (3.15). A straight-
forward computation shows that

(j − i)Ai+j = (i+ j)!

(
Aj

(j − 1)!
− Ai

(i− 1)!

)
,

(j − i)Bi+j = (i+ j)!

(
Bj

(j − 1)!
− Bi

(i− 1)!

)
.

proving (3.16) for i+ j ≤ p− 2. Likewise, a simple computation shows

aj(p− j − 2)! = ap−j−1(j − 1)!,

proving (3.16) for i + j = p − 1. Since i + j = p gives 0 on both sides of
(3.16), the claim follows from Lemma 3.3.3.

Finally, we consider the case where λ = p− 1. Here we have Aj = 0 for
all j ≥ 3 and it follows from (3.15) that ap−2 = 0. Therefore, since

aj = (j − 1)!a2 for all 2 ≤ j ≤ p− 2,

this implies first a2 = 0 and then aj = 0 for all j ≥ 2. The rest of the proof
is straightforward.

3.4.2 Next, we address the cases where (λ, λ′) = (0, p− 1) and (λ, λ′) =
(p−1, 0). This can only occur if the height of χ is less than 1 because λ, λ′ 6∈
Fp for ht(χ) = 1. The arguments presented previously would apply equally
well to these cases, but we will give another, simpler, proof which relies on
the fact that ExtUχ(W 1

≥0)(K0, Vχ(0)) is 1–dimensional, cf. Proposition 3.4.1.

Proposition. If (λ, λ′) = (0, p− 1) or (λ, λ′) = (p− 1, 0), then

ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) ' K.

Proof. Let η ∈ (W 1)∗ be a character of height 0. We have

ExtUη(W 1)(Vη(0), Vη(0)) ' ExtUχ(W 1
≥0)(K0, Vχ(0)) ' K.

Since the reduced Verma modules Vη(0) and Vη(p − 1) are isomorphic [4,
Hilfssatz 7], we obtain

ExtUχ(W 1
≥0)(K0, Vχ(p− 1)) ' ExtUη(W 1)(Vη(0), Vη(p− 1)) ' K,

as claimed. The other case can be handled similarly.
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3.4.3 The results of the previous sections can be summarized into the
following proposition.

Proposition. If (λ, λ′) ∈ Θ(χ), then

ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) '


K, if λ = λ′ and λ ∈ {0, p− 1},
K, if (λ, λ′) ∈ {(0, p− 1), (p− 1, 0)},
0, otherwise.

3.5 Case (λ, λ′) 6∈ Θ(χ)

3.5.1 It is convenient to divide the case (λ, λ′) 6∈ Θ(χ) into two subcases
depending on whether or not λ+λ′ = p− 1. Recall that λ+λ′ = p− 1 can
only occur if ht(χ) < 1. The following lemma will be needed in the sequel.

Lemma. Let i and j be two integers with 2 ≤ i, j ≤ p− 2.

1. If i > [λ− λ′ − j] and i + j ≤ p, then [λ− λ′ − j] = [λ− λ′]− j and
i+ j > [λ− λ′].

2. If i > [λ− λ′ − j], then i+ j > [λ− λ′].

3. If j ≤ [λ− λ′ − i] and i+ j > [λ− λ′] then i > [λ− λ′].

Proof. (1) We have clearly [λ− λ′ − j] = [[λ− λ′]− j] and

−p < [λ− λ′]− j < p,

so if [λ− λ′ − j] 6= [λ− λ′]− j, this implies [λ− λ′ − j] = [λ− λ′]− j + p.
Since i > [λ − λ′ − j], it follows that i + j > [λ − λ′] + p, in contradiction
to our assumption that i + j ≤ p. (2) We may assume that i + j ≤ p
since [λ−λ′] < p. But then the assertion follows from the first claim. (3) If
i ≤ [λ−λ′], then [λ−λ′−i] = [λ−λ′]−i hence the assumption j ≤ [λ−λ′−i]
implies i+ j ≤ [λ− λ′].

3.5.2 Since K is algebraically closed every polynomial in K[x] of degree
≥ 1 has a root in K. We denote the roots of the polynomial x2 − a ∈ K[x]
by ±

√
a.
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Proposition. If (λ, λ′) 6∈ Θ(χ) and λ+ λ′ 6= p− 1, then

ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ))

'



K, if [λ− λ′] = 1 and λ ∈ {1, p− 1},
K, if [λ− λ′] ∈ {2, 3},
K, if [λ− λ′] = 4 and p > 5,

K, if [λ− λ′] = 4 and λ ∈ {0, 3},
K, if [λ− λ′] = 5 and λ ∈ {0, 4},
K, if [λ− λ′] = 6 and 2λ = 5±

√
19 and p > 7,

0, otherwise.

Proof. Every extension of Kλ′ by Vχ(λ) can be represented by a short exact
sequence of Uχ(W 1

≥0)–modules

0→ Vχ(λ)→Ma → Kλ′ → 0, (3.20)

where a1 = 0 (see Lemma 3.2.3 B and Remark 3.2.3 A) and

aj =
(−1)j

(j − 2)!

(j−1∏
k=2

(λ− λ′ − k)(λ+ λ′ + k + 1)

)
a2, 3 ≤ j ≤ p− 2. (3.21)

Note that aj = 0 for all j > [λ − λ′] if [λ − λ′] ≥ 2. This is a very useful
observation which we shall use several times, often without any reference.
We divide the proof into several steps depending on [λ− λ′].
Case 1. Suppose that [λ− λ′] = 1.

For the sake of simplicity, we assume that p > 5. (The case p = 5 is left to
the reader.) Eq. (3.21) becomes

aj =

(j−1∏
k=2

(2λ+ k)

)
a2 for all 3 ≤ j ≤ p− 2.

If we insert (i, j) = (2, 3) into (3.12) and then use the above formula to
express a3 as a scalar multiple a2 we obtain

a5 = (2λ+ 2)(18λ+ 12)a2.

A necessary condition for (3.20) to be non-split is that a 6= 0, or equivalently,
that a2 6= 0. If this is the case, then

4∏
k=2

(2λ+ k) = (2λ+ 2)(18λ+ 12),
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which implies λ ∈ {1, p−1}. (It should be noted that λ = 0 is a solution to
the above equation, but it has been deliberately omitted because otherwise
we would have λ′ = p− 1 and thus λ+ λ′ = p− 1.)

Conversely, suppose that λ = 1 or λ = p − 1. Since λ − λ′ = 1, this
implies λ′ = 0 or λ′ = p− 2, respectively. Let (a1, a2) be a pair in K2 such
that a1 = 0 and consider the corresponding vector space Ma. If λ = p− 1,
then λ+ λ′ = p− 3 hence by definition aj = 0 for all j 6= 2. It follows that
(3.10)−(3.12) hold trivially for all i, j 6= 2. That they hold for i = 2 follows
from

2 < [λ− λ′ − j] and j < [λ− λ′ − 2],

together with the fact that j(λ+ 1) + λ′+ 2 = 0, cf. (3.12). The case j = 2
is treated similarly. Suppose next that λ = 1. We have then

p− 2 > [λ− λ′ − 1] and 1 < [λ− λ′ − (p− 2)].

If we insert (i, j) = (p − 2, 1) into (3.11), we obtain zero on both sides
because (λ+ 1) + λ′ − 2 = 0 and ap−1 = 0. Furthermore, if 2 ≤ i, j ≤ p− 2
then

[λ− λ′ − i] = p+ 1− i and [λ− λ′ − j] = p+ 1− j.

Thus, we may assume that

i ≤ [λ− λ′ − j] and j ≤ [λ− λ′ − i],

or, equivalently, that i+ j ≤ p+ 1. We have

ak =
1

6
(k + 1)!a2 for all 2 ≤ k ≤ p− 2,

which, when inserted into (3.12), yields

(j − i)ai+j =
1

6
(i+ j − 2)!(2i+ j)(j − 1)j(j + 1)a2

− 1

6
(i+ j − 2)!(2j + i)(i− 1)i(i+ 1)a2.

(Here we have used Lemma 3.1.1.) Since

(j − i)ai+j =

{
1
6
(j − i)(i+ j + 1)!a2, if i+ j ≤ p− 2,

0, if i+ j ∈ {p, p± 1},

the claim follows from a straightforward computation.

Case 2. Suppose that [λ− λ′] ∈ {2, 3}.
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Let (a1, a2) be a pair in K2 such that a1 = 0 and consider the corresponding
vector space Ma. Together with the remark following eq. (3.21), Lemma
3.5.1(2) yields (3.10) for all distinct integers 2 ≤ i, j ≤ p − 2. Meanwhile,
(3.11) and (3.12) follow from Lemma 3.5.1(3) since i + j > [λ − λ′] for
2 ≤ i, j ≤ p − 2. We have p − 2 > [λ − λ′] for p > 5 which, together with
the remark following (3.21), implies ap−2 = 0. Since a1 = 0, this proves
(3.10)−(3.12) for {i, j} = {1, p− 2}. (Note that all of the above reasoning
works just as well in the case where λ− λ′ = 4.) Now, the same argument
can be repeated to prove (3.10) for p = 5 and λ − λ′ = 2. For p = 5 and
λ− λ′ = 3 we have

3 > [λ− λ′ − 1] and 1 > [λ− λ′ − 3],

which, since a4 = 0, implies (3.10).

Case 3. Suppose that [λ− λ′] = 4.

As noted above, we may assume p = 5 and (i, j) ∈ {(1, 3), (3, 1)}. We have

3 = [λ− λ′ − 1] and 1 = [λ− λ′ − 3].

Thus, if we insert (i, j) = (1, 3) into (3.12) and then use the definition of a3

to express it as a scalar multiple of a2, we obtain

2(λ+ λ′ + 3)(λ+ λ′ + 4)a2 = 0.

Now, every extension of Kλ′ by Vχ(λ) can be represented by a short exact
sequence as in (3.20) and such that a1 = 0. The above computation shows
that a necessary (and sufficient) condition for (3.20) to be non-split is that
λ+ λ′ ∈ {1, 2}, or equivalently, that λ ∈ {0, 3}.
Case 4. Suppose that [λ− λ′] = 5.

First, note that the assumption implies p > 5 since [λ − λ′] < p. We
consider a short exact sequence of Uχ(W 1

≥0)–modules as in (3.20). If we
insert (i, j) = (2, 3) into (3.12) and then use the definition of a5 to express
it as a scalar multiple a2, we get

1

6

( 5∏
k=3

(λ+ λ′ + k)

)
a2 = (2λ+ λ′ + 5)(λ+ λ′ + 3)a2 (3.22)

− (3λ+ λ′ + 5)a2,

Setting µ = λ+ λ′ in the above equation gives

1

6

( 5∏
k=3

(µ+ k)

)
a2 = ((µ+ 1)λ+ (µ+ 2)(µ+ 5))a2,
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which can be rewritten as

1

6
µ(µ+ 1)(µ+ 5)a2 = (µ+ 1)λa2. (3.23)

Since by assumption λ + λ′ 6= p − 1, we can reduce the above equation by
dividing both sides by µ+ 1

((λ+ λ′)(λ+ λ′ + 5)− 6λ)a2 = 0.

Thus, the term inside the parenthesis must equal 0 in order for (3.20) to
be non-split. Note that the above reasoning works just as well in the case
[λ− λ′] ≥ 5. We shall make use of this later, but for now we are content to
remark that in our present case this implies λ ∈ {0, 4}.

Conversely, suppose that λ ∈ {0, 4} and let (a1, a2) be a pair in K2 such
that a1 = 0. We extend (a1, a2) as usual to a tuple a ∈ Kp−2. Suppose that
2 ≤ i, j ≤ p − 2 are distinct. Eq. (3.10) follows immediately from Lemma
3.5.1(2). To prove (3.11) and (3.12), we may assume that i + j ≤ [λ− λ′],
see Lemma 3.5.1(3). It follows then that {i, j} = {2, 3} and since we have
chosen λ in such a way that (3.12) holds for (i, j) = (2, 3), the claim becomes
trivial. We move to the case where {i, j} = {1, p− 2}. If p = 7 then

p− 2 > [λ− λ′ − 1] and 1 > [λ− λ′ − (p− 2)].

Since by definition ap−1 = 0, this proves (3.10). If p > 7, then

p− 2 > [λ− λ′ − 1] and 1 < [λ− λ′ − (p− 2)].

The remark following eq. (3.21) implies ap−2 = 0 and thus (3.11), thereby
proving the claim.

Case 5. Suppose that [λ− λ′] = 6.

As previously noted, every nontrivial extension of Kλ′ by Vχ(λ) can be
represented by a sequence of Uχ(W 1

≥0)–modules as in (3.20) and such that
a1 = 0 and (λ+ λ′)(λ+ λ′ + 5) = 6λ. In our present case, this amounts to

λ =
1

2
(5±

√
19).

We claim that this implies p > 7. Indeed, for ht(χ) < 1 we have λ ∈ Fp and
since x2 − 19 does not split in F7[x], this shows that p > 7. For ht(χ) = 1
we have λ+ λ′ 6∈ Fp. If p = 7 then

p− 2 = [λ− λ′ − 1] and 1 = [λ− λ′ − (p− 2)].
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But if we insert (i, j) = (1, p − 2) into (3.12) and then express ap−2 as a
multiple of a2 we obtain

1

6
(λ+ λ′ − 1)

( 4∏
k=2

(λ− λ′ − k)(λ+ λ′ + k + 1)

)
a2 = 0.

This is only possible if a2 = 0, or, equivalently, if a = 0 contradicting the
fact that the sequence (3.20) does not split.

Conversely, assume that p > 7 and let λ be as above. Let (a1, a2) ∈ K2

be a pair such that a1 = 0 and consider the corresponding vector space Ma.
We have

p− 2 > [λ− λ′ − 1] and 1 < [λ− λ′ − (p− 2)].

The remark following eq. (3.21) gives ap−2 = 0, which, since ap−1 = 0,
implies (3.11) for {i, j} = {1, p − 2}. Suppose that 2 ≤ i, j ≤ p − 2
are distinct. Eq. (3.10) follows from Lemma 3.5.1(2). To prove (3.11)
and (3.12), we may assume that i + j ≤ [λ − λ′]. It then follows that
{i, j} = {2, 3} or {i, j} = {2, 4} and since we have chosen λ in such a
way that (3.12) holds for (i, j) = (2, 3), it suffices to consider the case
{i, j} = {2, 4}. We have

4 = [λ− λ′ − 2] and 2 = [λ− λ′ − 4].

If we insert (i, j) = (2, 4) into (3.12) and then use the definition of a4 to
express it as a scalar multiple of a2, we obtain

1

12

( 6∏
k=3

(λ+ λ′ + k)

)
a2 =

1

2
(2λ+ λ′ + 6)

( 4∏
k=3

(λ+ λ′ + k)

)
a2

− (4λ+ λ′ + 6)a2.

We set µ = λ+ λ′ so the above equation becomes

1

12

( 6∏
k=3

(µ+ k)

)
a2 =

1

2
(µ+ 2)(µ+ 5)(µ+ 6)a2

+
1

2
(µ+ 1)(µ+ 6)λa2,

which gives

1

6
µ(µ+ 1)(µ+ 5)(µ+ 6)a2 = (µ+ 1)(µ+ 6)λa2.
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Now, since λ − λ′ = 6, we have λ + λ′ 6= p − 6 since otherwise λ = 0 in
contradiction with our assumption that λ = (5±

√
19)/2. If we divide both

sides of the above equation by µ + 6, we get an equation similar to (3.23)
which holds by the definition of λ.

Case 6. Suppose that [λ− λ′] ≥ 7.

Every extension of Kλ′ by Vχ(λ) can be represented by a short exact se-
quence of Uχ(W 1

≥0)–modules as in (3.20) and such that a1 = 0. A necessary
condition for (3.20) to be non-split is that (λ+ λ′)(λ+ λ′ + 5) = 6λ which,
in our present case, implies

λ′ =
1

2
(−5±

√
24λ+ 25)− λ. (3.24)

The claim to be proved amounts to saying that a = 0, or, equivalently, that
a2 = 0. Assume towards contradiction that this is not the case. We have

5 ≤ [λ− λ′ − 2] and 2 ≤ [λ− λ′ − 5].

Thus, if we insert (i, j) = (2, 5) into (3.12) and then use the definition of a5

to write it as a scalar multiple of a2, we get

1

40

( 7∏
k=3

(λ+ λ′ + k)

)
a2 =

1

6
(2λ+ λ′ + 7)

( 5∏
k=3

(λ+ λ′ + k)

)
a2

− (5λ+ λ′ + 7)a2.

which, together with (3.24), yields

±(λ2 + 5λ+ 4)
√

24λ+ 25 = 15λ2 + 35λ+ 20.

(Here we have used the assumption that a2 6= 0.) Squaring both sides and
subtracting one from the other yields the equation

9

50
λ(λ− 1)(λ+ 1)2(3λ+ 2) = 0,

which in turn yields λ ∈ {0,±1,−2/3}. Now we can insert this back into
(3.24) to determine λ′. But first note that if

λ′ =
1

2
(−5−

√
24λ+ 25)− λ,

then λ = p− 1 because 0, 1,−2/3 are not solutions to

−(λ2 + 5λ+ 4)
√

24λ+ 25 = 15λ2 + 35λ+ 20.
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Putting all of this together, we obtain

(λ, λ′) ∈ {(p− 1, p− 1), (p− 1, p− 2), (1, 0), (0, 0), (−2/3,−1/3)}.

But none of these cases are possible since by assumption [λ − λ′] ≥ 7 and
λ + λ′ 6= p − 1; a contradiction which can only be avoided if a2 = 0. This
completes the proof of the proposition.

3.5.3 We are left with the case where (λ, λ′) 6∈ Θ(χ) and λ+λ′ = p− 1.
Note that this implies ht(χ) < 1.

Proposition. If (λ, λ′) 6∈ Θ(χ) and λ+ λ′ = p− 1, then

ExtUχ(W 1
≥0)(Kλ′ , Vχ(λ)) '


K, if [λ− λ′] ∈ {2, 3, 4},
K, if [λ− λ′] = 6 and p = 19,

0, otherwise.

Proof. Let (λ, λ′) 6∈ Θ(χ) such that λ+ λ′ = p− 1. Every extension of Kλ′

by Vχ(λ) can be represented by a short exact sequence of Uχ(W 1
≥0)–modules

as (3.20). The assumption λ + λ′ = p− 1 implies a2 = 0, see Lemma 3.2.3
B and Remark 3.2.3 A. Using the foregoing notation, we have

Aj =
(−1)j

j − 2

(j−2∏
k=0

(2λ− k)

)(
(j − 2)λ− 1 + j +

j∑
k=4

(j − k)!

(j − 3)!

· ((j + 1− k)λ+ (j + 2− k))
k−3∏
l=1

(j − l)
)
.

(The summation
∑j

k=4 is understood to be 0 when j = 3.) For our present
purpose it is not necessary to write down the explicit formula of Bj because
a2 = 0. Note that aj = 0 for all j > [λ − λ′]. This is a consequence of the
fact that λ+ λ′ = p− 1 which implies

j−2∏
k=0

(2λ− k) =

j−1∏
k=1

(λ− λ′ − k).

Furthermore, it should also be noted that λ − λ′ 6= 1 since otherwise we
would have (λ, λ′) = (0, p − 1) in contradiction to the assumption that
(λ, λ′) 6∈ Θ(χ).

Case 1. Suppose that [λ− λ′] ∈ {2, 3, 4}.
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Conversely, every pair (a1, a2) ∈ K2 with a2 = 0 gives rise to a module Ma

as described in Section 3.3.1. Lemma 3.5.1(2) yields (3.10) for all distinct
2 ≤ i, j ≤ p− 2. Meanwhile, (3.11) and (3.12) follow from Lemma 3.5.1(3)
since i + j > [λ− λ′] for all distinct integers 2 ≤ i, j ≤ p− 2. Let {i, j} =
{1, p − 2} and assume that p > 5. We have then p − 2 > [λ − λ′], which
implies ap−2 = 0. Since

p− 2 > [λ− λ′ − 1] and 1 < [λ− λ′ − (p− 2)],

this implies (3.11) for p > 5. Note that this completes the proof of the
claim for [λ − λ′] = 4 since in this case p > 5; otherwise we would have
(λ, λ′) = (4, 0) in contradiction with the assumption that (λ, λ′) 6∈ Θ(χ).
Now, the same argument can be repeated to prove (3.10) for p = 5 and
[λ− λ′] = 2. For p = 5 and [λ− λ′] = 3 we have

3 > [λ− λ′ − 1] and 1 > [λ− λ′ − 3],

which, since a4 = 0, implies the desired result.

Case 2. Suppose that [λ− λ′] = 5.

Consider a short exact sequence of Uχ(W 1
≥0)–modules as in (3.20). If we

insert (i, j) = (2, 3) into (3.12) and then insert the expressions a3 = A3a1

and a5 = A5a1 into the result we get

λ(λ+ 2)(λ+ 4)

( 3∏
k=1

(2λ− k)

)
a1 =

1

3
λ(13λ+ 22)

( 3∏
k=1

(2λ− k)

)
a1.

Now, the assumptions λ+λ′ = p−1 and (λ, λ′) 6∈ Θ(χ) imply λ 6= 0. Since,
in addition, [λ− λ′] = 5, the above equation reduces to

3(λ+ 2)(λ+ 4)a1 = (13λ+ 22)a1,

which, by subtracting the right-hand side from the left-hand side, gives

(3λ2 + 5λ+ 2)a1 = 0.

We get a quadratic equation which can be solved easily; the roots are p− 1
and −2/3. But, we can immediately exclude λ = p − 1 since this would
imply (λ, λ′) = (p − 1, 0). All the above reasoning works just as well in
the case where [λ − λ′] ≥ 5. We shall make use of this later, but for now
we are content to remark that in our present case λ + λ′ = p − 1 implies
(λ, λ′) = (−2/3,−1/3) contradicting the fact that λ− λ′ = 5.

Case 3. Suppose that [λ− λ′] = 6.
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As noted previously, a necessary condition for (3.20) to be non-split is that
λ = −2/3. The assumption λ + λ′ = p − 1 implies λ − λ′ = 2λ + 1
which, since λ − λ′ = 6, means λ = 5/2. But −2/3 = 5/2 if and only if
p = 19. Conversely, let p = 19 and (λ, λ′) = (12, 6). (Note that 12 = 5/2
in characteristic p = 19.) Let (a1, a2) be a pair in K2 such that a2 = 0
and consider the corresponding vector space Ma. Eq. (3.10)–(3.12) follow
immediately for {i, j} = {1, p− 2} since ap−2 = 0. For all distinct integers
2 ≤ i, j ≤ p − 2, eq. (3.10) follows from Lemma 3.5.1(2). Furthermore,
in order to prove (3.11) and (3.12), we may assume that i + j ≤ [λ − λ′],
see Lemma 3.5.1(3). But since we have chosen λ in such a way that (3.12)
holds for (i, j) = (2, 3), we shall only be concerned with {i, j} = {2, 4}. We
have

2 = [λ− λ′ − 4] and 4 = [λ− λ′ − 2].

If we insert (i, j) = (2, 4) into (3.12) and then insert the expressions a4 =
A4a1 and a6 = A6a1 into the result, we get

1

3
λ(77λ+ 125)

( 4∏
k=1

(2λ− k)

)
a1 = λ(λ+ 5)(5λ+ 9)

( 4∏
k=1

(2λ− k)

)
a1.

The assumptions λ + λ′ = p− 1 and (λ, λ′) 6∈ Θ(χ) imply λ 6= 0. Since, in
addition, [λ− λ′] = 6, the above equation reduces to

(77λ+ 125)a1 = 3(λ+ 5)(5λ+ 9)a1,

which, by subtracting the left-hand side from the right-hand side, gives

(15λ2 + 25λ+ 10)a1 = 0.

Keeping in mind that the characteristic is 19, a very simple computation
shows that the above equation holds for all a1.

Case 4. Suppose that [λ− λ′] ≥ 7.

Suppose we are given a short exact sequence of Uχ(W 1
≥0)–modules as in

(3.20) and such that a2 = 0 and λ = −2/3. We have

2 ≤ [λ− λ′ − 5] and 5 ≤ [λ− λ′ − 2].

If we insert (i, j) = (2, 5) into (3.12), we obtain

6

10
λ(87λ+ 137)

( 5∏
k=1

(2λ− k)

)
a1 =

2

3
λ(λ+ 6)(13λ+ 22)

·
( 5∏
k=1

(2λ− k)

)
a1.
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Since λ 6= 0 and [λ− λ′] ≥ 7, the above equation reduces to

9 (87λ+ 137) a1 = 10(λ+ 6)(13λ+ 22)a1,

which, by subtracting the left-hand side from the right-hand side, gives

(130λ2 + 217λ+ 87)a1 = 0.

The claim follows since −2/3 is not a root of the polynomial inside the
brackets.

3.6 Summary

3.6.1 We summarize the preceding results as a theorem as follows.

Theorem. We have the following three cases

1. If λ′ ∈ {0, p− 1}, then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ)) '

{
K, if λ ∈ {0, 1, 2, 3, 4, p− 1},
0, otherwise.

2. If λ ∈ {0, p− 1}, then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ)) '

{
K, if λ′ ∈ {0} ∪ {p− i | 1 ≤ i ≤ 5},
0, otherwise.

3. If λ, λ′ 6∈ {0, p− 1}, then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ))

'


K, if [λ− λ′] ∈ {2, 3},
K, if [λ− λ′] = 4 and p 6= 5,

K, if [λ− λ′] = 6 and 2λ = 5±
√

19 and p > 7,

0, otherwise.

Remark. The above results are consistent with those in [3] when χ has
height equal to or less than 0 or χ has height 1 and χ(e0) = 1. If ht(χ) ∈
{−1, 0}, then we need λ ∈ Fp; since 5±

√
19 6∈ F7, we could replace p > 7

by p ≥ 7 in the case where [λ − λ′] = 6, as in [3, Thm. 2.2] and [3, Thm.
4.1]. Furthermore, if 2λ = 5 ±

√
19 occurs for height 1 then one checks
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χ(e0)p = λp − λ 6= 1. This case does not appear in [3, Thm. 4.2] where it
is assumed that χ(e0) = 1. However, [3, Thm. 4.2] does not cover all χ of
height 1. At the beginning of Section 4.2 in [3], the authors claim that by
conjugation one may assume χ(e0) = 1. This is not true. The action of
the automorphism group AutW 1 of W 1 on a character θ of height 1 does
not change the value of θ(e0) because every automorphism of W 1 maps e0

to e0 + f for some f ∈ W 1
1 . The orbits of characters under the action of

AutW 1 were computed in [7] by Feldvoss and Nakano. However, [7, Thm.
3.1(a)] does not hold for height r = 1. In the proof, the authors claim that
every character θ of height r is conjugate under the action of a torus T to
a character ξ with ξ(er−1) = 1. This is false for r = 1.



4 Extensions of the simple
modules

4.1 Height −1

Throughout this section we will assume that ht(χ) = −1, or, equivalently,
that χ = 0. Furthermore, we let as usual λ and λ′ be elements in Λ(0) ' Fp.

4.1.1 Vχ(λ) and Vχ(λ′) This is fully described in Theorem 3.6.1.

4.1.2 Vχ(λ) and K Our approach will follow the one taken earlier
in Chapter 3. We have an isomorphism of vector spaces

ExtUχ(W 1)(Vχ(λ), K) ' ExtUχ(W 1
≥0)(Kλ, K),

where K denotes the trivial W 1–module. Suppose that we have a short
exact sequence of Uχ(W 1

≥0)–modules

0 −→ K
f−−→M

g−−→ Kλ −→ 0, (4.1)

and fix bases v and v′ for K and Kλ, respectively. Let {w,w′} be a basis
for M such that f(v) = w and g(w′) = v′. Since Uχ(W 1

0 ) is semisimple, we
may choose w′ such that e0w

′ = λw′. Note that the λ weight space in M is
one dimensional so w′ is unique with these properties. Now, we have clearly
eiw = 0 for all i. Furthermore, if e1w

′ and e2w
′ are both 0, then eiw

′ = 0
for all i > 0. This can be seen by a simple induction argument since

(i− 1)ei+1w
′ = (e1ei − eie1)w′.

Therefore, a necessary condition for (4.1) to be non-split is e1w
′ 6= 0 or

e2w
′ 6= 0. We can interpret this condition in terms of λ. Indeed, since eiw

′

belongs to the weight space Mλ+i, we have eiw
′ = 0 if λ+ i 6= 0 and i > 0.

Thus e1w
′ = 0 and e2w

′ = 0 for λ 6∈ {p − 1, p − 2}. This leads to the
following lemma

39
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Lemma (A). If λ 6∈ {p− 1, p− 2} then

ExtUχ(W 1
≥0)(Kλ, K) = 0.

We consider the cases λ ∈ {p− 1, p− 2} separately. Note that λ = p− 1
is not interesting for our purpose because Vχ(p− 1) is not simple; we shall,
nevertheless, include it in our study for the sake of completeness. Fix
λ = p− k for k ∈ {1, 2}. There exists a ∈ K such that for every i > 0

eiw
′ =

{
aw, if i = k,

0, otherwise.

As in Chapter 3, we construct a well–defined injective homomorphism

ExtUχ(W 1
≥0)(Kλ, K)→ K,

which sends the class of (4.1) to a. Conversely, for each a ∈ K, consider a
short exact sequence of vector spaces

0 −→ K
f−−→Ma

g−−→ Kλ −→ 0,

and choose a basis {w,w′} for Ma such that f(v) = w and g(w′) = v′

where, as before, v and v′ are bases for K and Kλ, respectively. For each
0 ≤ i ≤ p − 2 define an endomorphism Ei ∈ EndK(Ma) of Ma such that
Eiw = 0 for all i and

Eiw
′ =


λw′, if i = 0,

aw, if i = k,

0, otherwise.

Furthermore, set E
[p]
i = δi0Ei for all i = 0, 1, . . . , p − 2 and Ei = 0 for

i 6= 0, 1, . . . , p− 2. We claim that

(Ep
i − E

[p]
i )w′ = 0 for all 0 ≤ i ≤ p− 2.

Indeed, that Ep
0 − E0 annihilates w′ follows from the fact that λp = λ. If

i = k, we have Ep
kw
′ = aEp−1

k w which is 0 since Eiw = 0 for all i. If
i 6∈ {0, k} then already Eiw

′ = 0 and hence also Ep
i w
′ = 0.

Lemma (B). If λ = p− 1 or λ = p− 2, then

ExtUχ(W 1
≥0)(Kλ, K) ' K.
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Proof. Keeping the notation introduced above, we only have to show

[Ei, Ej]w
′ = (j − i)Ei+jw′ for all i and j,

We may assume that i ∈ {0, k} and that i 6= j since otherwise we would
obtain 0 on both sides of the equation. If i = 0, the left-hand side becomes
(E0Ej −EjE0)w′ which equals 0 if j 6= k and −λaw = kaw otherwise. The
equality holds since the right-hand side is jEjw

′. Using the same argument
as above we may assume that j 6= 0. But then i = k implies Ek+jw

′ = 0
and (EkEj − EjEk)w′ = 0, proving the lemma.

We summarize the results in this section into the following proposition

Proposition. We have

ExtUχ(W 1)(Vχ(λ), K) '

{
K, if λ ∈ {p− 1, p− 2},
0, otherwise.

Evidently, K is self–dual in the sense that it is isomorphic to its dual.
Since Vχ(λ)∗ and Vχ(p− 1− λ) are isomorphic we obtain

Corollary. We have

ExtUχ(W 1)(K,Vχ(λ)) '

{
K, if λ = {0, 1},
0, otherwise.

4.1.3 Vχ(λ) and S We proceed to describe ExtUχ(W 1)(Vχ(λ), S)
where S denotes the (p− 1)–dimensional simple Uχ(W 1)–module. We have
an isomorphism

ExtUχ(W 1)(Vχ(λ), S) ' ExtUχ(W 1
≥0)(Kλ, S).

Thus, classifying the extensions of Vχ(λ) by S reduces to classifying the
extensions of Kλ by S. Suppose that we have a short exact sequence of
Uχ(W 1

≥0)–modules

0 −→ S
f−−→M

g−−→ Kλ −→ 0, (4.2)

and fix bases v0, v1, . . . , vp−2 and v′ of S and Kλ, respectively. Let

w0, . . . , wp−2, w
′ (4.3)
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be a basis of M such that f(vi) = wi for all i and g(w′) = v′; we may choose
w′ such that e0w

′ = λw′. We have

ejwi =

{
(−1)j+1 (i+1)!

(i−j)!wi−j, if j ≤ i,

0, otherwise.

By weight considerations there exists aj ∈ K (j > 0) such that

ejw
′ =

{
ajw[−λ−j−1], if λ+ j 6= 0,

0, otherwise.

Furthermore, we set

aj = 0 if λ+ j = 0 or j 6∈ {1, 2, . . . , p− 2}. (4.4)

For λ 6= 0 the λ weight space in M is two–dimensional; it is generated by
w′ and w[−λ−1] so any different choice for w′ has the form w′ + bw[−λ−1] for
some b ∈ K. Obviously, this leads to the same ejw

′ if ejw[−λ−1] = 0. In
particular, we see that all the aj are determined by M if λ = p − 1. The
same holds for λ = 0 since w′ is unique in this case; we have M0 = Kw′.

Lemma (A). If λ ∈ {0, p− 1} then all the aj are determined by M .

For λ 6∈ {0, p−1} we have e1w[−λ−1] 6= 0. Thus, the discussion preceding
Lemma A shows that we can choose w′ uniquely such that e1w

′ = 0.

Lemma (B). If λ 6∈ {0, p − 1} then there is a unique choice for w′ such
that e1w

′ = 0.

We will henceforth always assume that w′ is the unique choice from
Lemma B if λ 6∈ {0, p − 1}. As in Chapter 3 we obtain an injective ho-
momorphism ExtUχ(W 1

≥0)(Kλ, S) → K2 which sends the class of (4.2) to

(a1, a2) ∈ K2 and such that a1 = 0 for λ 6∈ {0, p − 1}. A simple induction
shows that e1w

′ = 0 and e2w
′ = 0 imply eiw

′ = 0 for all i > 0. More
precisely, we have

(j − i)ei+jw′ = (eiej − eiei)w′ for all i and j,

which for i = 1 and 2 ≤ j ≤ p− 3 yields

(j − 1)aj+1 = −
(j+1∏
k=1

(λ+ k)

)
a1 + (λ+ j)(λ+ j + 1)aj,
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or, equivalently, by induction

aj = Aja1 +Bja2 for all 3 ≤ j ≤ p− 2, (4.5)

where

Aj = − 1

j − 2

( j∏
k=1

(λ+ k)

)(
1 +

j∑
k=4

(j − k)!

(j − 3)!

k−3∏
l=1

(λ+ j − l)
)
,

(the summation
∑j

k=4 is understood to be 0 when j = 3) and

Bj =
(−1)j

(j − 2)!

j−1∏
k=2

(−λ− 1− k)(λ+ k).

Conversely, let (a1, a2) be a pair in K2 such that (see (4.4))

a1 = 0 if λ = p− 1,

a2 = 0 if λ = p− 2.

We extend (a1, a2) to a tuple a = (a1, a2, . . . , ap−2) ∈ Kp−2 by using (4.5)
and consider a short exact sequence

0 −→ S
f−−→Ma

g−−→ Kλ −→ 0, (4.6)

where Ma is a vector space with a basis as in (4.3). For each 0 ≤ j ≤ p− 2
we define an endomorphism Ej ∈ EndK(Ma) such that

Ejwi =

{
(−1)j+1 (i+1)!

(i−j)!wi−j, if j ≤ i,

0, otherwise,

and E0w
′ = λw′ and for every 1 ≤ j ≤ p− 2

Ejw
′ =

{
ajw[−λ−j−1], if λ+ j 6= 0,

0, otherwise.

Furthermore, we set E
[p]
j = δj0Ej for all j and Ej = 0 for j 6∈ {0, 1, . . . , p−2}.

We claim that
(Ep

j − E
[p]
j )w′ = 0 for all j.

Indeed, that Ep
0 − E0 annihilates w′ follows from the fact that λp = λ. For

j > 0 we have Ep
jw
′ = ajE

p−1
j w[−λ−j−1] if λ + j 6= 0 and 0 otherwise. But
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since [−λ− j− 1] < p− 1 for λ+ j 6= 0 then Ep
jw
′ = 0 for all j > 0, thereby

proving the claim.

Except for the change in notation, the formula [Ei, Ej]w
′ = (j−i)Ei+jw′

leads to the same equations as in Section 3.3.2; we include them here for
completeness:

If i > [−1− λ− j] and j > [−1− λ− i], then

ai+j = 0. (4.7)

If i > [−1− λ− j] and j ≤ [−1− λ− i], then

(j − i)ai+j = (−1)j+1 [−1− λ− i]!
([−1− λ− i]− j)!

(λ+ i)ai. (4.8)

If i ≤ [−1− λ− j] and j ≤ [−1− λ− i], then

(j − i)ai+j = (−1)i
[−1− λ− j]!

([−1− λ− j]− i)!
(λ+ j)aj (4.9)

− (−1)j
[−1− λ− i]!

([−1− λ− i]− j)!
(λ+ i)ai.

Proposition. We have

ExtUχ(W 1)(Vχ(λ), S) '

{
K, if λ ∈ {0} ∪ {p− i | 3 ≤ i ≤ 5},
0, otherwise.

Proof. The short exact sequence

0 −→ S −→ Vχ(0)
π−−→ K −→ 0 (4.10)

induces the long exact sequence of vector spaces

0→ HomUχ(W 1)(Vχ(λ), S)→ HomUχ(W 1)(Vχ(λ), Vχ(0)) (4.11)

→ HomUχ(W 1)(Vχ(λ), K)→ ExtUχ(W 1)(Vχ(λ), S)

→ ExtUχ(W 1)(Vχ(λ), Vχ(0))→ ExtUχ(W 1)(Vχ(λ), K)→ · · · .

Due to Schur’s Lemma, we have HomUχ(W 1)(Vχ(λ), K) = 0 for λ 6∈ {0, p−1}.
We obtain, in these cases, the exact sequence

0→ ExtUχ(W 1)(Vχ(λ), S)→ ExtUχ(W 1)(Vχ(λ), Vχ(0)) (4.12)

→ ExtUχ(W 1)(Vχ(λ), K)→ · · · .
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Lemma 2.3.3 A shows that HomUχ(W )(Vχ(0), K) is 1–dimensional; it is gen-
erated by the surjection π in (4.10). The map HomUχ(W 1)(Vχ(0), Vχ(0)) →
HomUχ(W 1)(Vχ(0), K) appearing in (4.11) is surjective because it maps the
identity idUχ(W 1) on Uχ(W 1) to π. Thus, we obtain an exact sequence as in
(4.12)

0→ ExtUχ(W 1)(Vχ(0), S)→ ExtUχ(W 1)(Vχ(0), Vχ(0))

→ ExtUχ(W 1)(Vχ(0), K)→ · · · .

Consequently, we have for every λ 6= p− 1, p− 2

ExtUχ(W 1)(Vχ(λ), S) ' ExtUχ(W 1)(Vχ(λ), Vχ(0)),

which, by Proposition 3.6.1, implies

ExtUχ(W 1)(Vχ(λ), S) '

{
K, if λ ∈ {0} ∪ {p− i | 3 ≤ i ≤ 5},
0, if λ 6∈ {0} ∪ {p− i | 1 ≤ i ≤ 5}.

Next, suppose that λ ∈ {p − 1, p − 2}. We prove that every short exact
sequence of Uχ(W 1)–modules as in (4.6) splits, or, equivalently, that a1 = 0
and a2 = 0. The case λ = p−2 comes almost at once from the observations
preceding the proposition; indeed a1 = 0 because of Lemma B and a2 = 0
by definition, see (4.4). For λ = p− 1 it follows from (4.4) that a1 = 0. To
prove a2 = 0, note first that (4.5) implies a2 = −2ap−2. However, since

1 ≤ [−1− λ− (p− 2)] and p− 2 ≤ [−1− λ− 1],

we see by inserting (i, j) = (1, p− 2) into (4.9) that ap−2 = 0. This is only
possible if a2 = 0 so the proposition is proved.

The module S is self–dual. Since Vχ(λ)∗ ' Vχ(p− 1− λ), we obtain

Corollary. We have

ExtUχ(W 1)(S, Vχ(λ)) '

{
K, if λ ∈ {2, 3, 4, p− 1},
0, otherwise.

4.1.4 Self–extensions of K There are no nontrivial self–extensions
of the trivial module K.

Proposition. We have

ExtUχ(W 1)(K,K) = 0
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Proof. Suppose we have a short exact sequence of Uχ(W 1)–modules

0 −→ K
f−−→M

g−−−→ K −→ 0, (4.13)

and let {w,w′} be a basis of M such that Kw = im f . We clearly have
W 1w = 0. Furthermore, W 1w′ ⊂ Kw since W 1w′ ⊂ ker g. Thus, every
x ∈ W 1 acting on M can be represented by a matrix[

0 φ(x)
0 0

]
,

where φ : W 1 → K is a homomorphism of Lie algebras. That φ preserves
the Lie algebra structure follows from the fact that M is a W 1–module and
hence that W 1 → gl(M) ' gl(2, K) is a homomorphism of Lie algebras.
Now, if (4.13) is non-split, then φ(x) 6= 0 for some x ∈ W 1. The kernel of
φ is then an ideal of codimension 1, in apparent contradiction with the fact
that W 1 is simple.

4.1.5 Self–extensions of S

Proposition. We have

ExtUχ(W 1)(S, S) = 0.

Proof. The short exact sequence

0 −→ S −→ Vχ(0) −→ K −→ 0

induces the long exact sequence

0→ HomUχ(W 1)(S, S)→ HomUχ(W 1)(S, Vχ(0))

→ HomUχ(W 1)(S,K)→ ExtUχ(W 1)(S, S)

→ ExtUχ(W 1)(S, Vχ(0))→ · · · ,

which, by Corollary 4.1.3 and Schur’s lemma, implies the claim.

4.1.6 S and K The proof of the next proposition makes use of the
fact that HomUχ(W 1)(Vχ(0), S) = 0, see Lemma 2.3.3 B.

Proposition. We have

ExtUχ(W 1)(S,K) ' ExtUχ(W 1)(K,S) ' K2.
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Proof. The first isomorphism follows from the fact that S and K are self–
dual. The short exact sequence

0 −→ S −→ Vχ(0) −→ K −→ 0

induces the long exact sequence

0→ HomUχ(W 1)(K,S)→ HomUχ(W 1)(Vχ(0), S)

→ HomUχ(W 1)(S, S)→ ExtUχ(W 1)(K,S)

→ ExtUχ(W 1)(Vχ(0), S)→ ExtUχ(W 1)(S, S)→ · · · ,

which in turn induces the exact sequence

0→ HomUχ(W 1)(S, S)→ ExtUχ(W 1)(K,S)→ ExtUχ(W 1)(Vχ(0), S)→ 0.

The claim follows from Schur’s lemma and Proposition 4.1.3.

4.1.7 We summarize the results on the extensions between all restricted
simple modules as follows.

Theorem. Let λ, λ′ ∈ {1, 2, . . . , p− 2}. Then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ))

'


K, if [λ− λ′] ∈ {2, 3},
K, if [λ− λ′] = 4 and p 6= 5,

K, if [λ− λ′] = 6 and 2λ = 5±
√

19 and p > 7,

0, otherwise.

The only non–trivial extensions including K and Vχ(λ) are

ExtUχ(W 1)(K,Vχ(1)) ' ExtUχ(W 1)(Vχ(p− 2), K) ' K.

We have

ExtUχ(W 1)(Vχ(λ), S) '

{
K, if λ ∈ {p− i | 3 ≤ i ≤ 5},
0, otherwise.

ExtUχ(W 1)(S, Vχ(λ)) '

{
K, if λ ∈ {2, 3, 4},
0, otherwise.

Furthermore, we have

ExtUχ(W 1)(K,S) ' ExtUχ(W 1)(S,K) ' K2,

ExtUχ(W 1)(K,K) ' ExtUχ(W 1)(S, S) ' 0.
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Remark. There are no non–trivial self–extensions between simple modules
over Uχ(W 1). This is proved more generally for every Lie algebra of Cartan
type W or CS by Lin and Nakano in [16].

4.2 Height 0 and 1

All the work has been done in Chapter 3; Theorem 3.6.1 gives a complete
classification of the χ–reduced Verma modules having character χ at most 1.
Nevertheless, we state the theorem here again for the sake of completeness.

4.2.1 Height 0 The χ–reduced Verma modules Vχ(0) and Vχ(p− 1)
are isomorphic for ht(χ) = 0. Therefore

Proposition. If ht(χ) = 0 and λ, λ′ ∈ {0, 1, . . . , p− 2}, then

ExtUχ(W 1)(Vχ(0), Vχ(λ)) '

{
K, if λ ∈ {0, 1, 2, 3, 4},
0, otherwise,

and

ExtUχ(W 1)(Vχ(λ′), Vχ(0)) '

{
K, if λ′ ∈ {0} ∪ {p− i | 2 ≤ i ≤ 5},
0, otherwise.

Furthermore, if λ, λ′ 66= 0 then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ)) '


K, if [λ− λ′] ∈ {2, 3},
K, if [λ− λ′] = 4 and p 6= 5,

K, if [λ− λ′] = 6 and 2λ = 5±
√

19,

0, otherwise.

Remark. We have removed the condition p > 7 for [λ − λ′] = 6 because
x2 − 19 does not split in F7[x].

4.2.2 Height 1 Since Λ(χ) ∩ Fp = ∅ for ht(χ) = 1, Theorem 3.6.1
becomes

Proposition. If ht(χ) = 1, then

ExtUχ(W 1)(Vχ(λ′), Vχ(λ))

'


K, if [λ− λ′] ∈ {2, 3},
K, if [λ− λ′] = 4 and p 6= 5,

K, if [λ− λ′] = 6 and 2λ = 5±
√

19 and p > 7,

0, otherwise.



4.3. Height p− 1 49

Remark. There are no non–trivial self–extensions between simple modules
for all small heights with exactly one exception occurring in height 0, namely
Vχ(0) which seems to come from the anomaly that it is isomorphic to Vχ(p−
1).

4.3 Height p− 1

4.3.1 Recall that if the centralizer (W 1)χ of W 1 is a torus, then Uχ(W 1)
is semisimple. If (W 1)χ is unipotent then every simple Uχ(W 1)–module
with one exception is projective. The remaining simple module L has a
projective cover with two composition factors both isomorphic to L. We
have a short exact sequence

0 −→ L −→ P −→ L −→ 0,

where P is a projective module. This induces the long exact sequence

0→ HomUχ(W 1)(L,L)→ HomUχ(W 1)(P,L)

→ HomUχ(W 1)(L,L)→ ExtUχ(W 1)(L,L)

→ ExtUχ(W 1)(P,L)→ · · · ,

which in turn implies ExtUχ(W 1)(L,L) ' K. We have therefore

Proposition. Let M and N be two simple Uχ(W 1)–modules. If (W 1)χ is
a torus then

ExtUχ(W 1)(M,N) ' 0.

If (W 1)χ is unipotent, then

ExtUχ(W 1)(M,N) '

{
K, if N = M = L,

0, otherwise.





5 Wildness of the Witt algebra

5.1 Representation types of algebras

This section is based on Section 4.4 in [2]. We shall introduce the notion
of the representation type of a finite dimensional algebra and present a
fundamental result due to Drozd.

5.1.1 Let R be a finite dimensional algebra over a field k. By the Krull-
Schmidt Theorem, every finite dimensional R–module decomposes uniquely
as a direct sum of indecomposable R–modules. Thus, the representation
theory of R reduces naturally to the study of the representations of the
indecomposables. We say that R is of finite representation type if there are
only finitely many indecomposables; otherwise it is of infinite representation
type. In infinite type we distinguish between algebras of tame representation
type (or, equivalently, tame algebras) and algebras of wild representation
type (or, equivalently, wild algebras). We say that R is tame if the indecom-
posables in each dimension come in finitely many one–parameter families
with finitely many exceptions. Tameness, in other words, suggests that we
can classify all the isomorphism classes of the indecomposable R–modules of
each dimension. On the other hand, we say R is wild if the category modR
of finite dimensional R–modules contains a copy of the category modk〈X,Y 〉
of finite dimensional modules over the free algebra k〈X, Y 〉 in two vari-
ables. The latter “includes” the representation theory of an arbitrary finite
dimensional algebra and the consensus feeling is that wild algebras are not
“well–behaved” because their representations are not classifiable.

5.1.2 We gather our discussion into a formal definition

Definition. Let R be a finite dimensional associative algebra.

• R is of finite representation type if there are only finitely many inde-
composable R–modules; otherwise it is of infinite representation type.
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• R is of tame representation type if it is of infinite type and if for every
dimension d there exists a finite set of R–k[X]–bimodules Mi such
that

∗ the Mi are free as right k[X]–modules,

∗ all but finitely many indecomposable R–modules of dimension d
can be expressed as Mi ⊗k[X] M for some i and some indecom-
posable k[X]–module M .

• R is of wild representation type if it is of infinite type and if there is
a finitely generated R–k〈X, Y 〉–bimodule M such that

∗ M is free as a right k〈X, Y 〉–module,

∗ the functorM⊗k〈X,Y 〉− from finite dimensional k〈X, Y 〉–modules
to finite dimensionalR–modules preserves indecomposability and
isomorphism classes.

The following theorem due to Drozd is a fundamental result on the
representation type.

Theorem. Over an algebraically closed field, every finite dimensional al-
gebra is either of finite, tame or wild representation type.

5.2 Quivers

5.2.1 A quiver is an oriented graph, possibly with multiple arrows and
loops. Quivers play an important role in the representation theory of finite
dimensional algebras over an algebraically closed fields.

•

• •

•

Suppose R is a finite dimensional algebra over (the algebraically closed
field) K. Let E1, E2, . . . , En denote the isomorphism classes of simple R–
modules. The Ext–quiver QR of R is a quiver with n vertices v1, v2, . . . , vn
such that the number of arrows from vi to vj is the dimension of ExtR(Ei, Ej).
(In some literature this is called the Gabriel quiver of R.)
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Definition. Suppose Q is a quiver with n vertices v1, v2, . . . , vn. We attach
to Q a quiver Qs with 2n vertices v1, , . . . , vn, v

′
1, . . . , v

′
n and an arrow vi → v′j

for every arrow vi → vj in Q. We call Qs the separated quiver of Q.

5.2.2 Let J denote the Jacobson radical of R. If the factor algebra
R′ = R/J2 is of wild representation type, then R is of wild representation
type. The algebra R′ has Jacobson radical J ′ = J/J2 and Ext–quiver
QR′ = QR. Furthermore, the triangular matrix algebra

T =

(
R′/J 0
J R′/J

)
is hereditary with quiver QT = (QR′)s, see [1, Thm. 2.4 X.2]. There is a
well–known functor modR′ → modT which reflects isomorphisms and inde-
composability. This functor reaches all but finitely many indecomposables
in modT . Hence if R′ is of finite or tame representation type, then T is of
finite or tame representation type. Gabriel determined the hereditary alge-
bras of finite representation type in [8] whereas the tame hereditary algebras
were classified independently by Donovan–Freislich in [5] and Nazarova in
[18]. Putting all this together, we get the following theorem

Theorem. Let R be a finite dimensional associative algebra. If the factor
algebra R/J2 is of finite or tame representation type, then the separated
quiver of the Ext–quiver of R/J2 is (when the directions of the arrows are
ignored) a union of Dynkin diagrams of types A, D, E or Euclidean dia-
grams of types Ã, D̃, Ẽ.

5.3 Wildness of the Witt algebra

5.3.1 The determination of the representation type of the reduced en-
veloping algebra Uχ(W 1) of W 1 has been (partially) determined for quite
some time. It is now well–known that in the case where the characteristic
of the ground field is larger than 7 then

Uχ(W 1) is wild if and only if ht(χ) ≤ p− 4.

This can be proved, for example, by using support varieties, see [6, Thm.
5.2]. Our goal is to improve this statement in some special cases and to
present a more elementary approach than the one referred to above. To
this end, let Jχ denote the Jacobson radical of Uχ(W 1). From now on, we
will restrict ourselves to the case where ht(χ) ≤ 1. We claim that

Uχ(W 1)/J2
χ is wild if (ht(χ), p) 6= (1, 5).
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Observe that this implies the wildness of Uχ(W 1) since the category of
finite dimensional Uχ(W 1)/J2

χ–modules is included in the category of finite
dimensional Uχ(W 1)–modules.

Proposition. We have J2
χ 6= 0 for all χ ∈ (W 1)∗.

Proof. Let P be a projective and indecomposable Uχ(W 1)–module which
is not simple. If J2

χ = 0 then J2
χP = 0 and hence JχP ⊂ P is a nonzero

semisimple submodule. This shows JχP ⊂ SocUχ(W 1) P . But the socle of
P is simple since Uχ(W 1) is Frobenius so P has length 2 in contradiction
with [7, Sec. 2].

Theorem. Suppose that χ ∈ (W 1)∗ is of height at most 1. Then, the
algebra Uχ(W 1)/J2

χ is of wild representation type if (ht(χ), p) 6= (1, 5).

Proof. Suppose (ht(χ), p) 6= (1, 5). We shall show that the separated quiver
(QW 1)s of the Ext–quiver of Uχ(W 1) is not a union of diagrams of types
A, D, E, Ã, D̃, Ẽ. The wildness of Uχ(W 1) will then follow from Theo-
rem 5.2.2. We begin by considering the case ht(χ) = −1 where we have
isomorphisms

ExtUχ(W 1)(K,S) ' K2,

ExtUχ(W 1)(Vχ(p− 3), S) ' K,

ExtUχ(W 1)(Vχ(p− 4), S) ' K.

This yields a subquiver of the Ext–quiver of the form

Vχ(p− 3)

K S

Vχ(p− 4)

To construct the corresponding separated quiver, we merely need to switch
S to S ′. (We ignore the vertices K ′, Vχ(p− 3)′ and Vχ(p− 4)′.) If, further-
more, we ignore the directions of the arrows, we obtain

Vχ(p− 3)

K S ′

Vχ(p− 4)
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which is clearly not a union of diagrams of types A, D, E, Ã, D̃, Ẽ. We
now move to the case ht(χ) = 0 where we have the following isomorphisms

ExtUχ(W 1)(Vχ(0), Vχ(0)) ' K,

ExtUχ(W 1)(Vχ(p− 2), Vχ(0)) ' K,

ExtUχ(W 1)(Vχ(p− 3), Vχ(0)) ' K,

ExtUχ(W 1)(Vχ(p− 4), Vχ(0)) ' K,

and

ExtUχ(W 1)(Vχ(0), Vχ(1)) ' K,

ExtUχ(W 1)(Vχ(0), Vχ(2)) ' K,

ExtUχ(W 1)(Vχ(0), Vχ(3)) ' K.

This yields a subquiver of the separated quiver of the form (the directions
of the arrows are ignored)

Vχ(p− 2) Vχ(1)′

Vχ(p− 3) Vχ(0)′ Vχ(0) Vχ(2)′

Vχ(p− 4) Vχ(3)′.

Again, this is not a union of diagrams of types A, D, E, Ã, D̃, Ẽ. Assume,
next, that ht(χ) = 1. The isomorphism

ExtUχ(W 1)(Vχ(λ′), Vχ(λ)) ' K if [λ− λ′] = 2, 3

yields a subquiver of the form Ã2p. If p > 5, we have additional extensions
between Verma modules with [λ− λ′] = 4. This proves the claim.





Part II

The projective indecomposable
modules
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6 Representations of the
Witt–Jacobson Lie algebras

6.1 Preliminaries

From now on we will focus more on the restricted Witt–Jacobson Lie alge-
bras W n of rank n > 1. We will keep the setting as general as possible, but
some of the results are presented only for n = 2. Again, the ground field K
is taken to be algebraically closed and of positive characteristic. However,
unlike before where the characteristic p was assumed to be strictly greater
than 3 (the Witt algebra W 1 is isomorphic to sl2 when p = 3), we will, as
far as possible, cover all cases p > 0.

6.1.1 We introduce the notion of the character of a module. Let T be
a torus in a restricted Lie algebra L. Let M be a finite dimensional module
over T and let Z[T ∗] be the group algebra of T ∗ with basis elements e(ν)
for ν ∈ T ∗. We set

chM =
∑
ν∈T ∗

dimMνe(ν) ∈ Z[T ∗],

where Mν = {m ∈ M | hm = ν(h)m for all h ∈ T}. This is called the
formal character of M or, more commonly, the character of M . Note that
the e(ν) are multiplied according to the rule

e(ν1)e(ν2) = e(ν1 + ν2). (6.1)

In particular, we have e(ν)p = 1 for all ν ∈ T ∗. One can prove that given a
short exact sequence

0→M ′ →M →M ′′ → 0,

then chM = chM ′+chM ′′. Thus, any chM is determined uniquely by the
formal characters of the composition factors of M , taken with multiplicity.
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Furthermore, if M = M ′ ⊗M ′′, then one can prove that

chM = chM ′ chM ′′.

We say that the character of a tensor product is the product of the charac-
ters.

6.1.2 Let h be a restricted Lie subalgebra in a restricted Lie algebra L.
Suppose χ ∈ L∗. Then χ ∈ h∗ by restriction. The induction functor

Uχ(L)⊗Uχ(h) − : modUχ(h)→ modUχ(L)

which takes a Uχ(h)–module M to the induced Uχ(L)–module Uχ(L)⊗Uχ(h)

M will be denoted by ind
Uχ(L)

Uχ(h) −. This is an exact functor.

If also χ′ ∈ L∗ and M and M ′ are modules over Uχ(L) and Uχ′(L),
respectively, then M ⊗M ′ is a module over Uχ+χ′(L). This also applies for
h instead of L. Suppose that N is a module over Uχ′(h). Then there is an
isomorphism of Uχ+χ′(L)–modules

M ⊗ ind
Uχ′ (L)

Uχ′ (h) N ' ind
Uχ+χ′ (L)

Uχ+χ′ (h) (M ⊗N).

This is called the tensor identity, see e.g. [14, Sec. 1.12].

6.1.3 The following lemma is a well–known result that will be used
several times, often without any reference. See e.g. [21, Lem. 6.3.1].

Lemma. Let L be a restricted Lie algebra with a p–mapping [p] and let
I ⊂ L be a unipotent ideal such that x[p] ∈ I for all x ∈ I. If V is a simple
module over L with p–character χ such that χ(I) = 0, then IV = 0.

6.1.4 Let L be a graded restricted Lie algebra

L = L−s ⊕ · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ · · · ⊕ Lt.

Suppose that

N+ =
⊕
i>0

Li and N− =
⊕
i<0

Li

are unipotent subalgebras of L and set

B+ = L0 ⊕N+ and B− = L0 ⊕N−.



6.2. New grading 61

Every L0–module can be extended to B± by letting N± act trivially. On the
other hand, the simple modules over B± are just the simple modules over L0

with N± acting trivially. Now, suppose that χ ∈ L∗ with χ(N±) = 0. Then
again, we can extend any Uχ(L0)–module to Uχ(B±) by letting Uχ(N±)
act trivially. Furthermore, the simple Uχ(B±)–modules correspond to the
simple modules over Uχ(L0) with Uχ(N±) acting trivially.

6.2 New grading

6.2.1 From now on, we fix a character χ ∈ (W n)∗ of height 0. According
to Appendix A, we may assume that χ(∂1) 6= 0 and χ(∂i) = 0 for all i > 1.
In light of the observations made in Section 6.1.4, we introduce a new
grading on W n

W n =

(n−1)(p−1)⊕
i=−1

W n
(i),

such that χ(W n
(>0)) = 0 and χ(W n

(<0)) = 0. Indeed, the truncated poly-

nomial algebra Bn = K[X1, X2, . . . , Xn]/(Xp
1 , X

p
2 , . . . , X

p
n) has a grading

Bn =
⊕

i∈ZB
n
(i) which assigns degree 0 to X1 and degree 1 to Xi for i > 1.

This induces a grading on W n = DerK B
n in the following way: For all

i ∈ Z, set

W n
(i) = {D ∈ W n | D(Bn

(m)) ⊂ Bn
(m+i) for all m}.

Then W n
(i) is a subspace of W n and the sum of the W n

(i) is direct. We

also have [W n
(i),W

n
(j)] ⊂ W n

(i+j) for all i, j and the grading is restricted: If

D ∈ W n
(i) then D[p] ∈ W n

(pi). Using the notation introduced in Section 1.2.1,
we have

deg(xi11 x
i2
2 · · · xinn ∂k) =

{
i2 + i3 + · · ·+ in, if k = 1,

i2 + i3 + · · ·+ in − 1, if k 6= 1.

For all i > (n− 1)(p− 1) and all i < −1, we have W n
(i) = 0. Furthermore,

W n
(−1) =

⊕
0≤r<p
2≤i≤n

Kxr1∂i,

and
W n

(0) =
⊕

0≤r<p

Kxr1∂1 ⊕
⊕
0≤r<p
2≤i,j≤n

Kxr1xi∂j.
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From now on, set

N+ = W n
(>0) and N− = W n

(<0),

B+ = W n
(≥0) and B− = W n

(≤0).

The subalgebras N± are unipotent because D ∈ W n
(i) implies D[p] ∈ W n

(pi)

and thus D[pr] ∈ W n
(pri) which is zero for r large enough. Furthermore,

observe that χ(N±) = 0. In fact, we have χ(W n
(i)) = 0 for all i 6= 0.

Remark. There is a natural inclusion W 1 ⊂ W n
(0) which maps xr1∂1 in W 1

to xr1∂1 in W n
(0).

6.3 Irreducible representations

6.3.1 This section is devoted to classifying the irreducible representa-
tions of Uχ(W n). Thanks to Proposition 1.2.4 in Nakano’s paper [17], this
query amounts to classifying the irreducible representations of the subalge-
bra Uχ(W n

(0)).

Theorem. There is a one–to–one correspondence between the irreducible
representations of Uχ(W n) and Uχ(W n

(0)).

If, indeed, L is a simple module over Uχ(W n
(0)), then the induced module

Uχ(W n)⊗Uχ(B+)L has a unique maximal submodule and the set of heads of
all Uχ(W n) ⊗Uχ(B+) L is a complete set of pairwise non–isomorphic simple
modules over Uχ(W n).

6.3.2 To classify the irreducible representations of Uχ(W n
(0)) we consider

the restricted Lie subalgebras A,B ⊂ W n
(0) defined by

A =
⊕

2≤i,j≤n

Kxi∂j and B =
⊕

0≤r<p

Kxr1∂1.

Observe that B is isomorphic to W 1. Furthermore, A is isomorphic to gln−1

via the map that sends xi∂j to the (n − 1) × (n − 1) matrix Eij with 1 in
the (i, j)th position and 0 elsewhere. This isomorphism defines a triangular
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decomposition of A = A− ⊕ A0 ⊕ A+ where

A− =
⊕

2≤j<i≤n

Kxi∂j,

A0 =
⊕

2≤i≤n

Kxi∂i,

A+ =
⊕

2≤i<j≤n

Kxi∂j.

For every 2 ≤ j ≤ n, we define a linear map εj : A0 → K such that
εj(
∑n

i=2 αixi∂i) = αj. Consider the weights

Λ = {
n∑
i=2

αiεi | αi ∈ Fp} ⊂ (A0)∗.

Every λ ∈ Λ defines a 1–dimensional A0–module Kλ such that every x ∈ A0

acts as multiplication by λ(x). This module can be extended to a module
over A0 ⊕ A+ by letting A+ act trivially. The induced module

Z(λ) = Uχ(A)⊗Uχ(A0⊕A+) Kλ,

has a unique maximal submodule. See e.g. [11, Prop. 1.2], but as mentioned
in [11], this result goes back to Braden. (Note that [11] deals with Lie
algebras of semisimple algebraic groups, but the arguments work just as well
for A.) If E(λ) denotes the simple module that corresponds to Z(λ), then
the set of all E(λ) forms a complete set of pairwise non–isomorphic simple
modules of Uχ(A), see e.g. [17, Prop. 1.2.3 & Prop. 1.2.4]. In particular,
Uχ(A) has pn−1 isomorphism classes of simple modules. We will denote the
trivial module by K.

Remark. If n = 2, then A = A0 and A+ = A− = 0. Moreover, we have
Z(λ) = E(λ) = Kλ.

6.3.3 We consider the subsets J ⊂ H in W n
(0) defined by

H =
⊕

1≤r<p

Kxr1∂1 ⊕
⊕
0≤r<p
2≤i,j≤n

Kxr1xi∂j,

J =
⊕

2≤r<p

Kxr1∂1 ⊕
⊕
1≤r<p
2≤i,j≤n

Kxr1xi∂j.
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We have the following commutator formulas

[xr1∂1, x
s
1∂1] = (s− r)xr+s−1

1 ∂1, (6.2)

[xr1∂1, x
s
1xi∂j] = sxr+s−1

1 xi∂j, (6.3)

[xr1xi∂j, x
s
1xk∂l] = δjkx

r+s
1 xi∂l − δilxr+s1 xk∂j, (6.4)

which first imply that H and J are (restricted) Lie subalgebras in W n
(0) and

then that J is an ideal in H. Furthermore, J is unipotent as it is contained
in W n

>0. We have χ(J) = 0 since ∂1 6∈ J . It follows from Lemma 6.1.3
that every Uχ(H)–module is a Uχ(H/J)–module. In particular, the simple
modules over Uχ(H) are exactly the simple modules over Uχ(H/J). Now,
since A and Kx1∂1 commute, the Lie algebra H/J ' Kx1∂1⊕A is the direct
product of Kx1∂1 and A. Therefore, the set of tensor products E1 ⊗ E2

where E1 and E2 are simple over Uχ(Kx1∂1) and Uχ(A), respectively, is a
complete set of simple Uχ(H/J)–modules.

Lemma. The induced module ind
Uχ(Wn

(0)
)

Uχ(H) (E1 ⊗ E2) is simple for all sim-

ple modules E1 and E2 over Uχ(Kx1∂1) and Uχ(A), respectively. In fact,

ind
Uχ(Wn

(0)
)

Uχ(H) (E1 ⊗ E2) is simple over the subalgebra Uχ(B × A).

Proof. It suffices to prove that ind
Uχ(Wn

(0)
)

Uχ(H) (E1 ⊗ E2) is simple over B ⊕ A.
The assertion will then follow because B ⊕A is a subalgebra of W n

(0). Note
that B and A commute so B ⊕ A is the direct product of B and A. Thus,
if we can prove

ind
Uχ(Wn

(0)
)

Uχ(H) (E1 ⊗ E2) ' (ind
Uχ(B)

Uχ(B∩H) E1)⊗ E2,

then the assertion follows since ind
Uχ(B)

Uχ(B∩H) E1 ' ind
Uχ(W 1)

Uχ(W 1
≥0)

E1 is simple

over Uχ(B) ' Uχ(W 1). The desired isomorphism can be obtained from the
map that sends every ∂r1 ⊗ (e1 ⊗ e2) into (∂r1 ⊗ e1) ⊗ e2 where e1 and e2

are basis elements in E1 and E2, respectively. Indeed, this is clearly an
isomorphism of vector spaces. It is invariant under the action of A since
A commutes with ∂r1. If x ∈ B, then the product x∂r1 can be written as
x∂r1 =

∑
i∈I ∂

i
1ui for some ui ∈ Uχ(

⊕p−1
i=1 Kx

i
1∂1). (This is a consequence of

the PBW theorem and the fact that B has a basis consisting of the elements
xi1∂1 where i = 0, 1, . . . , p− 1.) Thus,

x∂r1 ⊗ (e1 ⊗ e2) =
∑
i∈I

∂i1ui ⊗ (e1 ⊗ e2)

=
∑
i∈I

∂i1 ⊗ (uie1 ⊗ e2).



6.3. Irreducible representations 65

This proves that the map is invariant under the action of B and hence the
lemma.

Remark. Let V be a simple Uχ(Kx1∂1)–module. Since K is algebraically
closed, x1∂1 has an eigenvalue µ ∈ K for some nonzero v ∈ V . It follows
that V is 1–dimensional. Since, furthermore, x1∂1 is toral and χ(x1∂1) = 0,
we deduce that µ ∈ Fp. Conversely, every µ ∈ Fp gives rise to a simple
1–dimensional module Kµ via x1∂1 · 1 = µ · 1. Therefore, there are exactly
p isomorphism classes of simple Uχ(Kx1∂1)–modules.

For every simple Uχ(Kx1∂1)–moduleKµ and every simple Uχ(A)–module
E, we set

L(µ,E) = ind
Uχ(Wn

(0)
)

Uχ(H) (Kµ ⊗ E).

For convenience, we change the notation from Part I and let L(µ) = Vχ(µ)
denote the simple modules of W 1. Note that in the proof of the lemma we
have established the following isomorphism L(µ,E) ' L(µ)⊗ E.

In the subsequent theorem, the notation (µ,E) 6= (p−1, K) means that
µ 6= p− 1 and E 6' K.

Theorem. The set of all L(µ,E) with (µ,E) 6= (p−1, K) forms a complete
set of pairwise non–isomorphic simple modules over Uχ(W n

(0)). In partic-

ular, there exist exactly pn − 1 isomorphism classes of simple Uχ(W n
(0))–

modules.

Proof. Let V be a simple module over Uχ(W n
(0)). For some Kµ and E there

exists a monomorphism of Uχ(H)–modules

κ : Kµ ⊗ E → V.

It follows that κ extends to a homomorphism of Uχ(W n
(0))–modules from

L(µ,E) to V and therefore L(µ,E) ' V .

Next, we prove that with the exception of L(0, K) ' L(p − 1, K), two
modules L(µ,E) and L(µ′, E ′) are isomorphic if and only if µ = µ′ and
E ' E ′. Suppose we have an isomorphism φ : L(µ,E) → L(µ′, E ′). Then,
by restriction, we get an isomorphism L(µ)⊗E ' L(µ′)⊗E ′ of Uχ(B×A)–
modules which, obviously, implies L(µ) ' L(µ′) and E ' E ′. Thus, µ = µ′

or {µ, µ′} = {0, p − 1} so without loss of generality we may assume that
µ = p − 1 and µ′ = 0 and E = E ′. The isomorphism L(p − 1) → L(0)

which maps ∂r1 ⊗ 1 into ∂
[r+1]
1 ⊗ 1 can be extended to an isomorphism

ϕ : L(p − 1) ⊗ E → L(0) ⊗ E. (Here we use the notation introduced in
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Section 3.1.1.) It follows from Schur’s Lemma that we may assume that
φ = ϕ hence

φ(∂r1 ⊗ (1⊗ e)) = ∂
[r+1]
1 ⊗ (1⊗ e).

For i, j ≥ 2, we have

φ(x1xi∂j(1⊗ (1⊗ e))) = x1xi∂j(∂1 ⊗ (1⊗ e).

The left-hand side is equal to 0 as x1xi∂j ∈ J annihilates 1⊗ e. The right-
hand side is equal to ∂1⊗(x1xi∂j(1⊗e))−1⊗(1⊗xi∂je) = −1⊗(1⊗xi∂je).
It follows that xi∂je = 0 and since i and j and e are arbitrarily chosen, we
deduce E = K. What remains to prove is that L(0, K) and L(p − 1, K)
are, in fact, isomorphic or, equivalently, that the map constructed above is
invariant under the action of xr1xi∂j for r > 0 and i, j ≥ 2. To this end,
note that xr1xi∂j(1⊗ (1⊗ e)) = 0 for all r > 0. If s > 0, then we have

xr1xi∂j(∂
s
1 ⊗ (1⊗ e)) = ∂1x

r
1xi∂j(∂

s−1
1 ⊗ (1⊗ e))

− rxr−1
1 xi∂j(∂

s−1
1 ⊗ (1⊗ e)).

Thus, by induction, we conclude that xr1xi∂j annihilates all ∂s1 ⊗ (1 ⊗ e)
hence the theorem.



7 Projective indecomposable
modules of Wn

(0)

7.1 Preliminaries

This section is devoted to studying the projective indecomposable modules
of the algebra Uχ(W n

(0)). We will keep the setting as general as possible, but
the general case is very difficult to describe completely. The main results
are Theorem 7.3.1 together with Proposition 7.2.2 and 7.4.3. For n = 2, we
will give a complete classification of all projective indecomposable modules
and we will compute the Cartan invariants of Uχ(W 2

(0)), see Corollary 7.4.3.

7.1.1 Let R be a finite dimensional K–algebra. If P is a finite dimen-
sional, projective indecomposable R–module, then the radical radP of P is
a maximal submodule of P . It follows that P/ radP is a simple R–module.
The map that sends the isomorphism class of P to that of P/ radP is a
bijection from the set of isomorphism classes of finite dimensional, indecom-
posable projective R–modules to the set of isomorphism classes of simple
R–modules. Suppose E is a simple module isomorphic to P/ radP , then
one calls P the projective cover of E. Furthermore, if M is a finite dimen-
sional R–module then dim HomR(P,M) = [M : E] where [M : E] denotes
the multiplicity of E as a composition factor of M . We let [M ] denote the
class of M in the Grothendieck group. Furthermore, if E1, E2, . . . , Er is
a system of representatives for the isomorphism classes of simple modules
and PE1 , PE2 , . . . , PEr are the corresponding projective modules then there
is an isomorphism

R ' P dimE1
E1

⊕ · · · ⊕ P dimEr
Er

of R–modules. The elements cij = [PEi : Ej] are called Cartan invariants
and the matrix (cij) is called the Cartan martix of R.

67
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7.1.2 Let L be a finite dimensional restricted Lie algebra and let δL : L→
K be the map that sends every x in L into tr(adx) in K. We have for
x, y ∈ L

δL([x, y]) = tr(ad[x, y]) = tr(ad x ◦ ad y − ad y ◦ adx) = 0.

Thus, δL defines a 1–dimensional L–module KδL where every x ∈ L acts as
multiplication by δL(x). Furthermore, we have

δL(x[p]) = tr((ad x)p) = (tr adx)p = δL(x)p.

Hence, the module structure of KδL can be extended to give KδL the struc-
ture of a U0(L)–module. These observations carry over to the map −δL and
in a similar way we obtain a U0(L)–module K−δL . Now, let ϕ ∈ L∗ and
let E be a simple module over Uϕ(L). It is well–known that if PE is the
projective cover of E, then

SocUϕ(L) PE ' E ⊗K−δL .

See e.g. [14, Prop. 1.9 & Formula 1.9(4)]. Furthermore, if E and E ′ are
simple modules over Uϕ(L) with corresponding projective covers PE and
PE′ , then

HomUϕ(L)(E,PE′) '

{
K, if E ' E ′ ⊗K−δL ,
0, otherwise.

(7.1)

Furthermore, every finite dimensional projective module P decomposes into
a direct sum of projective indecomposable modules PE1 , PE2 , . . . , PEr

P ' P
m(E1)
E1

⊕ Pm(E2)
E2

⊕ · · · ⊕ Pm(Er)
Er

,

where m(Ei) = dim HomUϕ(L)(Ei ⊗K−δL , P ).

7.1.3 The dimensions of the projective indecomposable modules and
the Cartan invariants of Uχ(W 1) were computed for p > 3 by Nakano and
Feldvoss in [7, Thm. 2.3]. The case p = 3 is easy to handle since W 1 is
isomorphic to sl2, cf. [13, Prop. 10.10]. In the following, we let P (µ) denote
the projective cover of the simple Uχ(W 1)–module L(µ).

Theorem. If p > 2, then dimP (0) = 2pp−2 and dimP (µ) = pp−2 for µ 6= 0.
Furthermore, we have for p > 3

1. [P (0)] = 4pp−4[L(0)] +
∑p−2

µ′=1 2pp−4[L(µ′)],

2. [P (µ)] = 2pp−4[L(0)] +
∑p−2

µ′=1 p
p−4[L(µ′)] for µ 6= 0.

For p = 3, we have [P (0)] = 2[L(0)] and [P (1)] = [L(1)].
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7.1.4 It is well–known that every projective indecomposable module PE
of Uχ(A) has a filtration with factors Z(λ) each occuring with multiplicity
[Z(λ) : E]

[PE] =
∑
λ∈Λ

[Z(λ) : E][Z(λ)].

(Here E is the simple Uχ(A)–module corresponding to PE.) This is proved
for reductive groups in [15, Prop. II. 11.4] (see also Formula II. 11.3(3),
Prop. II. 9.5(e) and Formula II. 11.5(4)), but for Lie algebras it goes back
to [12, Satz 4.3] and [11, Thm. 4.5].

7.2 Dimension

7.2.1 The projective indecomposable modules of Uχ(A) will be denoted
by PE, where E is the corresponding simple module. The set of all P (µ)⊗PE
forms a complete set of projective indecomposable modules of Uχ(B × A).
We consider the module

Q(µ,E) = Uχ(W n
(0))⊗Uχ(B×A) (P (µ)⊗ PE).

Since P (µ) ⊗ PE is projective over Uχ(B × A), it follows that Q(µ,E) is
projective over W n

(0). Furthermore, we have

HomUχ(Wn
(0)

)(Q(µ,E), L(µ′, E ′) ' HomUχ(B×A)(P (µ)⊗ PE, L(µ′)⊗ E ′)

'


K, if µ = µ′ and E ' E ′,

K, if {µ, µ′} = {0, p− 1} and E ' E ′,

0, otherwise.

We let P (µ,E) denote the projective cover of L(µ,E) as a Uχ(W n
0 )–module.

The above discussion yields the following Lemma.

Lemma. We have

1. Q(0, K) ' P (0, K),

2. Q(µ,E) ' P (µ,E) if µ 6= 0, p− 1,

3. Q(0, E) ' P (0, E)⊕ P (p− 1, E) if E 6' K.
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7.2.2 The main goal of this section is to prove the following proposition.

Proposition. We have dimP (µ,E) = dimP (0, E) if E 6' K. Further-
more, dimP (0, K) = 2 dimP (µ,K) for all µ 6= 0, p− 1.

We set a = δWn
(0)

(x1∂1), where δWn
(0)

is the map introduced in Section

7.1.2. A very simple calculation shows that a = 0 for p > 2 and a = n2 for
p = 2. Furthermore, we have δH(x1δ1) = a + 1. For the remaining basis
elements xα∂i, we have δWn

(0)
(xα∂i) = 0 and δH(xα∂i) = 0. (Here we are

using the notation introduced in Section 1.2.1.)

We let PH(µ,E) denote the projective cover of the simple Uχ(H)–module
Kµ ⊗ E. Together with the discussion in Section 7.1.2, the isomorphism
(Kµ ⊗ E)⊗K−δH ' Kµ−(a+1) ⊗ E implies

SocUχ(H) PH(µ,E) ' Kµ−(a+1) ⊗ E.

Similarly, together with the tensor identity, the isomorphism (Kµ ⊗ E) ⊗
K−δWn

0
' Kµ−a⊗E implies L(µ,E)⊗K−δWn

(0)
' L(µ−a,E) which, in turn,

yields

SocUχ(Wn
(0)

) P (µ,E) ' L(µ− a,E).

The module P (µ,E) is projective over Uχ(H) because it is projective over
Uχ(W n

(0)) and Uχ(W n
(0)) is free over Uχ(H). Thus, P (µ,E) decomposes into

a direct sum of PH(µ′, E ′) each with multiplicity

m(Kµ′ ⊗ E ′) = dim HomUχ(H)(Kµ′−(a+1) ⊗ E ′, P (µ,E))

= dim HomUχ(Wn
(0)

)(L(µ′ − (a+ 1), E ′), P (µ,E))

=

{
1, if L(µ′ − (a+ 1), E ′) ' L(µ− a,E),

0, otherwise,

where the last equality follows from (7.1). We will write P (µ,E)|H instead
of P (µ,E) when we consider P (µ,E) as a module over Uχ(H). Now, the
proposition follows from the following two lemmas.

Lemma (A). We have

1. P (µ,E)|H ' PH(µ+ 1, E) for E 6' K.

2. P (µ,K)|H ' PH(µ+ 1, K) for µ 6= 0, p− 1.

3. P (0, K)|H ' PH(0, K)⊕ PH(1, K).
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Proof. In light of Theorem 6.3.3, we see that if E 6' K then the isomorphism
L(µ′ − (a + 1), E ′) ' L(µ − a,E) amounts to µ′ = µ + 1 and E ' E ′.
Therefore, the discussion preceding the lemma implies (1). If E ' K, we
may assume that µ 6= p − 1. If, furthermore, µ 6= 0 then p > 2 which in
turn implies a = 0. Thus, L(µ′ − 1, K) ' L(µ,K) if and only if µ′ = µ+ 1.
This proves (2). The last assertion is clear for p = 2 because all L(µ,K) are
isomorphic in this case. If p > 2, then a = 0 and L(µ′ − 1, K) ' L(0, K) is
equivalent to µ′ = 1 or µ′ = 0.

Lemma (B). We have PH(µ,E) ' (Kµ⊗K)⊗PH(0, E) for any µ ∈ Fp and
any simple Uχ(A)–module E. In particular, dimPH(µ,E) = dimPH(0, E).

Proof. The module (Kµ ⊗ K) ⊗ PH(0, E) is projective because the tensor
product of a projective module with a finite dimensional module is projec-
tive. The module (Kµ⊗K)⊗PH(0, E) is indecomposable because tensoring
with a 1–dimensional module sends indecomposables to indecomposables.
The claim follows as (Kµ ⊗K)⊗ PH(0, E) has a submodule isomorphic to
(Kµ ⊗K)⊗ (K−(a+1) ⊗ E) ' Kµ−(a+1) ⊗ E.

7.3 Cartan invariants

Our goal is to describe the projective indecomposable modules P (µ,E) of
Uχ(W n

(0)). With the exception of the cases where µ ∈ {0, p − 1} and E '
K, Lemma 7.2.1 reduces this problem to that of describing the projective
modules Q(µ,E). Later, we will prove that the formal sum of composition
factors of P (µ,E) in the Grothendieck group does not depend on µ, see
Proposition 7.4.3. Thus, together with Theorem 7.3.1, this will allow us, at
least for n = 2, to determine the Cartan invariants of Uχ(W n

(0)). For general

n it is not known how to compute the multiplicities [Z(λ′) : E] in Theorem
7.3.1. The case n = 2 will be treated fully in Corollary 7.3.2 and 7.4.3.

7.3.1 We consider the subset

g =
⊕
1≤r<p
2≤i,j≤n

Kxr1xi∂j.

The commutator formulas (6.3)–(6.4) show that g is an ideal in H. We
can therefore consider Uχ(g) as a Uχ(Kx1∂1 × A)–module via the adjoint
representation. As a module over Uχ(Kx1∂1 × A), we have

[Uχ(g)] =
∑
i∈X

[Kµi ⊗ Ei], (7.2)
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for some index set X ⊂ N. (Here Kµi ⊗Ei is simple over Uχ(Kx1∂1 ×A).)
Now, Ei and Uχ(g) admit weight space decompositions with respect to A0

and Kx1∂1 × A0, respectively

Ei =
⊕
λ∈Λ

(Ei)λ and Uχ(g) =
⊕
µ∈Fp

⊕
λ∈Λ

Uχ(g)µ,λ. (7.3)

Lemma (A). We have

dimUχ(g)µ,λ =

{
dim(Ei)λ, if there exists i ∈ X such that µ = µi,

0, otherwise.

Proof. We have

chUχ(g) =
∑
µ∈Fp

∑
λ∈Λ

dimUχ(g)µ,λe(µ, λ).

On the other hand, the character of Uχ(g) is determined by the characters
of the composition factors of Uχ(g)

chUχ(g) =
∑
i∈X

ch(Kµi ⊗ Ei)

=
∑
i∈X

∑
λ∈Λ

dim(Ei)λe(µi, λ).

This proves the lemma.

We let Λ̃ ⊂ Λ be the subspace generated by all εi − εj. Then

Λ̃ =

{
n∑
i=2

aiεi | ai ∈ Fp and
n∑
i=2

ai = 0

}
.

Lemma (B). We have

chUχ(g) = p(p−1)(n−1)2−(n−1)
∑
µ∈Fp

∑
λ∈Λ̃

e(µ, λ).

Proof. The Lie algebra g has a basis consisting of elements xr1xi∂j of weights
(r, εi − εj). Thus, every (xr1xi∂j)

s is of weight (sr, s(εi − εj)). Since the
character of a tensor product is the product of the characters and since
Uχ(g) is the tensor product of all ⊕p−1

s=0K(xr1xi∂j)
s with 1 ≤ r < p and

2 ≤ i, j ≤ n, it follows that

chUχ(g) =

p−1∏
r=1

n∏
i=2

n∏
j=2

(
p−1∑
s=0

e(r, εi − εj)s
)
.



7.3. Cartan invariants 73

Note that all the weights of Uχ(g) belong to Fp × Λ̃. Since e(µ, λ)p = 1
for all µ ∈ Fp and λ ∈ Λ̃ the formula 0 = 1 − e(µ, λ)p = (1 − e(µ, λ))(1 +
e(µ, λ) + · · · + e(µ, λ)p−1) implies (1 − e(r, εi − εj)) chUχ(g) = 0. Now,
suppose that

chUχ(g) =
∑
µ∈Fp

∑
λ∈Λ̃

cµ,λe(µ, λ).

By multiplying both sides by 1− e(r, εi − εj) we obtain∑
µ∈Fp

∑
λ∈Λ̃

(cµ,λ − cµ−r,λ−(εi−εj))e(µ, λ) = 0.

which implies cµ,λ = cµ−r,λ−(εi−εj) for all 1 ≤ r < p and 2 ≤ i, j ≤ n. In
particular, we have cµ,λ = cµ−r,λ which means that the coefficients having
the same second index are equal. We have cµ,λ = cµ−r,λ−(εi−εj) = cµ,λ−(εi−εj)
hence by using cµ,λ = cµ,λ−(εi−εj) sufficiently many times we conclude that all
the coefficients are equal. Now, a dimension argument yields the claim.

Theorem. We have for every µ ∈ Fp and every simple Uχ(A)–module E

[Q(µ,E)] = p(p−1)(n−1)2−(n−1)
∑
µ′∈Fp
µ′ 6=p−1

∑
λ′∈Λ

∑
µ′′∈Fp

∑
λ′′∈λ′+Λ̃

[P (µ) : L(µ′)]

· [Z(λ′) : E][Uχ(W n
(0))⊗Uχ(H) (Kµ′′ ⊗ Z(λ′′))].

Proof. It follows from Section 7.1.4 that the projective cover PE of E has
a filtration with factors Z(λ′) each occuring with multiplicity [Z(λ′) : E].
Since, furthermore, the composition factor multiplicity of L(µ′) in P (µ) is
[P (µ) : L(µ′)], we have

[P (µ)⊗ PE] =
∑
µ′∈Fp
µ′ 6=p−1

∑
λ′∈Λ

[P (µ) : L(µ′)][Z(λ′) : E][L(µ′)⊗ Z(λ′)].

Inducing to Uχ(W n
(0))–modules, we get

[Q(µ,E)] =
∑
µ′∈Fp
µ′ 6=p−1

∑
λ′∈Λ

[P (µ) : L(µ′)][Z(λ′) : E]

· [Uχ(W n
(0))⊗Uχ(B×A) (L(µ′)⊗ Z(λ′))].

For every µ′ ∈ Fp and λ′ ∈ Λ, set

Ṽ (µ′, λ′) = Uχ(W n
(0))⊗Uχ(B×A) (L(µ′)⊗ Z(λ′)).
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Since L(µ′) = Uχ(B)⊗Uχ(B∩H) Kµ′ , we obtain an isomorphism

L(µ′)⊗ Z(λ′) ' Uχ(B × A)⊗Uχ((B∩H)×A) (Kµ′ ⊗ Z(λ′)),

which implies

Ṽ (µ′, λ′) ' Uχ(W n
(0))⊗Uχ((B∩H)×A) (Kµ′ ⊗ Z(λ′)).

If we set V (µ′, λ′) = Uχ(H)⊗Uχ((B∩H)×A) (Kµ′ ⊗ Z(λ′)), then

Ṽ (µ′, λ′) ' Uχ(W n
(0))⊗Uχ(H) V (µ′, λ′).

By Lemma 6.3.3, we see that induction takes simple Uχ(H)–modules to
simple Uχ(W n

(0))–modules. Thus, it suffices to determine the composition

factors of V (µ′, λ′) as a Uχ(H)–module. In fact, since the simple Uχ(H)–
modules are exactly the simple modules over Uχ(H/J) ' Uχ(Kx1∂1×A), it
is enough to determine the composition factors of V (µ′, λ′) as a module over
Uχ(Kx1∂1×A). Now, we have an isomorphism of Uχ(Kx1∂1×A)–modules

V (µ′, λ′) ' Uχ(g)⊗ (Kµ′ ⊗ Z(λ′)).

It follows from (7.2) that V (µ′, λ′) has a filtration with factors (Kµi⊗Ei)⊗
(Kµ′ ⊗ Z(λ′)) ' Kµ′+µi ⊗ (Ei ⊗ Z(λ′))

[V (µ′, λ′)] =
∑
i∈X

[Kµ′+µi ⊗ (Ei ⊗ Z(λ′))].

Recall that Ei can be expressed as a direct sum of weight spaces (Ei)λ′′
with respect to A0. Together with the tensor identity

Ei ⊗ (Uχ(A)⊗Uχ(A0⊕A+) Kλ′) ' Uχ(A)⊗Uχ(A0⊕A+) (Ei ⊗Kλ′),

this implies that Ei ⊗ Z(λ′) has a filtration with factors Z(λ′ + λ′′) each
occuring with multiplicity dim(Ei)λ′′

[Ei ⊗ Z(λ′)] =
∑
λ′′∈Λ

dim(Ei)λ′′ [Z(λ′ + λ′′)].

Going back to V (µ′, λ′), all this means

[V (µ′, λ′)] =
∑
i∈X

∑
λ′′∈Λ

dim(Ei)λ′′ [Kµ′+µi ⊗ Z(λ′ + λ′′)]

=
∑
µ′′∈Fp

∑
λ′′∈Λ

dimUχ(g)µ′′,λ′′ [Kµ′+µ′′ ⊗ Z(λ′ + λ′′)],
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where the last equality follows from Lemma A. Together with Lemma B,
this implies

[V (µ′, λ′)] = p(p−1)(n−1)2−(n−1)
∑
µ′′∈Fp

∑
λ′′∈Λ̃

[Kµ′+µ′′ ⊗ Z(λ′ + λ′′)]

= p(p−1)(n−1)2−(n−1)
∑
µ′′∈Fp

∑
λ′′∈λ′+Λ̃

[Kµ′′ ⊗ Z(λ′′)],

proving the theorem.

7.3.2 As an example of how Theorem 7.3.1 may be applied, we consider
the case n = 2. According to Theorem 6.3.3, the simple W 2

(0)–modules are

given by the set of all L(µ,E), where E is simple over Uχ(A). Obviously,
in the present setting, we have A = Kx2∂2, cf. Remark 6.3.2. This Lie
algebra has p isomorphism classes of simple modules each represented by a
1–dimensional module Kλ where λ ∈ Λ ' Fp. Note that K0 is the trivial
module over Uχ(A). The projective indecomposable modules of Uχ(A) are
all 1–dimensional PKλ ' Kλ. When n = 2, we let

L(µ, λ) = Uχ(W 2
(0))⊗Uχ(H) Kµ,λ

denote the simple Uχ(W 2
(0))–modules. Note that L(µ, λ) ' L(µ′, λ′) if and

only if (µ, λ) = (µ′, λ′) or {µ, µ′} = {0, p − 1} and λ = λ′. Furthermore,
we let P (µ, λ) = P (µ,Kλ) denote the projective cover of L(µ, λ) and we let
Q(µ, λ) = Q(µ,Kλ).

Corollary. If n = 2 and p > 2, then

1. [P (0, 0)] = 4p2p−5[L(0, 0)] + 2p2p−5
∑p−2

µ′=1[L(µ′, 0)],

2. [P (µ, 0)] = 2p2p−5[L(0, 0)] + p2p−5
∑p−2

µ′=1[L(µ′, 0)] for µ 6= 0,

3. [P (µ, λ)] = p2p−5
∑p−1

µ′=0[L(µ′, λ)] for µ 6= 0, p− 1 and λ 6= 0.

Proof. If n = 2, then Λ̃ = 0 and Theorem 7.3.1 becomes

[Q(µ, λ)] = pp−2
∑
µ′∈Fp
µ′ 6=p−1

∑
µ′′∈Fp

[P (µ) : L(µ′)][L(µ′′, λ)].

The multiplicities of L(µ′) in P (µ) are computed in Theorem 7.1.3. If
µ 6= 0, p− 1, we have

[Q(µ, λ)] = p2p−5

p−1∑
µ′′=0

[L(µ′′, λ)].
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If, furthermore, λ 6= 0, then all L(µ′′, λ) are pairwise non–isomorphic so
(3) follows from Lemma 7.2.1. If, on the other hand, λ = 0, we have an
isomorphism L(0, 0) ' L(p− 1, 0) so

[Q(µ, 0)] = 2p2p−5[L(0, 0)] + p2p−5

p−2∑
µ′′=1

[L(µ′′, 0)],

which together with Lemma 7.2.1 yields (2). The proof of (1) is omitted as
it uses exactly the same argument as in the proof of (2).

Remark. The results of the corollary will be generalized later to include
the cases µ = 0, p− 1 for λ 6= 0, see Corollary 7.4.3.

7.4 Independence property

7.4.1 The main goal of this section is Proposition 7.4.3 which proves
that the formal sum of composition factors of P (µ,E) in the Grothendieck
group does not depend on µ. Together with Theorem 7.3.1 and Lemma
7.2.1, this is needed in order to give a complete description of the projective
indecomposable modules of Uχ(W n

(0)).

We consider the restricted Lie subalgebra C ⊂ B given by

C = K∂1 +Kx1∂1.

Lemma. The simple Uχ(B)–modules are simple over Uχ(C). Furthermore,
all these modules are isomorphic over Uχ(C).

Proof. Every L(µ) has a basis consisting of elements ∂r1⊗ 1 with 0 ≤ r < p.
We have

x1∂1(∂r1 ⊗ 1) = (µ− r)(∂r1 ⊗ 1).

Thus, the set of all ∂r1 ⊗ 1 is a basis consisting of eigenvectors of x1∂1. It
follows that x1∂1 acts diagonally on L(µ) and on every Uχ(C)–submodule
M . If M 6= 0, then it must contain some eigenvector of x1∂1. Thus, there
exists an s such that ∂s1 ⊗ 1 ∈ M . By applying ∂1 sufficiently many times,
we deduce that ∂r1 ⊗ 1 ∈ M for all r and thus M = L(µ). The second
assertion follows from the isomorphism L(µ)→ L(µ+ i) that maps ∂r1 ⊗ 1

into ∂
[r+i]
1 ⊗ 1. This proves that L(µ) ' L(µ′) for all µ and µ′.

We consider the elements

h =
n∑
i=2

xi∂i and y =
n∑
i=2

x1xi∂i,
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and the commutators

[∂1, y] = h and [x1∂1, y] = y and [xi∂j, y] = 0,

where i, j ≥ 2. Since y[p] = 0, this induces the following restricted Lie
subalgebras F0 ⊂ F1,

F0 = Kx1∂1 ⊕ A⊕Ky and F1 = C ⊕ A⊕Ky.

Now, every simple Uχ(Kx1∂1 × A)–module Kµ ⊗ E can be extended to a
module over Uχ(F0) by letting y act trivially. In fact, the set of all Kµ ⊗E
forms a complete set of isomorphism classes of simple Uχ(F0)–modules. The
module Uχ(F1) ⊗Uχ(F0) (Kµ ⊗ E) has a basis consisting of all ∂r1 ⊗ (1 ⊗ e)
where the e are basis elements in E. We consider Uχ(F1)⊗Uχ(F0) (Kµ ⊗E)
as the restriction of L(µ,E) = Uχ(W n

(0)) ⊗Uχ(H) (Kµ ⊗ E) to Uχ(F1). It

follows from the lemma that L(µ,E) is simple over Uχ(C × A) and hence
over Uχ(F1). On the other hand, it is clear that any simple Uχ(F1)–module
is isomorphic to some L(µ,E). We now proceed to determine when two
modules L(µ,E) and L(µ′, E ′) are isomorphic over Uχ(F1). Clearly, such
an isomorphism gives rise to an isomorphism E ' E ′ of Uχ(A)–modules.
Now, being central in A, the element h acts as multiplication with a scalar
aE on every simple Uχ(A)–module E.

Proposition. The set of all L(µ,E) where µ ∈ Fp and E is a simple
module over Uχ(A) forms a complete set of isomorphism classes of simple
Uχ(F1)–modules. If L(µ,E) ' L(µ′, E ′), then E ' E ′. Furthermore,

1. If aE = 0, then L(µ,E) ' L(µ′, E) for all µ and µ′.

2. If aE 6= 0, then L(µ,E) ' L(µ′, E) if and only if µ = µ′.

Proof. We have an isomorphism L(µ,E) ' L(µ′, E) of Uχ(C×A)–modules.
This isomorphism extends to an isomorphism of Uχ(F1)–modules if aE = 0.
Indeed, the commutators [∂1, y] = h and [∂1, h] = 0 imply for every r > 0

y∂r1 = ∂r1y − r∂r−1
1 h.

Thus, for every e ∈ E, we have

y(∂r1 ⊗ (1⊗ e)) =

{
−r∂r−1

1 ⊗ (1⊗ he), if r > 0,

0, otherwise.

It follows that if aE = 0, then he = 0 and therefore y(L(µ)⊗E) = 0 proving
the claim. If, on the other hand, aE 6= 0, then y(∂r1⊗ (1⊗ e)) 6= 0 for r > 0.
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The isomorphism L(µ)→ L(µ+ r) of Uχ(C)–modules that sends ∂i1 ⊗ 1 to

∂
[i+r]
1 ⊗ 1 can be extended to an isomorphism of Uχ(F1)–modules by letting
∂i1 ⊗ (1 ⊗ e) be mapped to ∂i+r1 ⊗ (1 ⊗ e). Thus, it follows from Schur’s
lemma that given an isomorphism ϕ : L(µ,E) → L(µ + r, E) of Uχ(F1)–
modules, we may assume that ϕ(∂i1 ⊗ (1 ⊗ e)) = ∂i+r1 ⊗ (1 ⊗ e). However,
y(1⊗ (1⊗ e)) = 0 implies ϕ(y(1⊗ (1⊗ e))) = 0. Hence yϕ(1⊗ (1⊗ e)) = 0
which can only be possible if r = 0.

7.4.2 Let PF1(µ,E) be the projective cover of L(µ,E) as a Uχ(F1)–
module and consider the module P̃F1(µ,E) = Uχ(W n

(0)) ⊗Uχ(F1) PF1(µ,E).

Since PF1(µ,E) is projective over Uχ(F1), it follows that P̃F1(µ,E) is pro-
jective over Uχ(W n

(0)). For aE 6= 0, we have

HomUχ(Wn
(0)

)(P̃F1(µ,E), L(µ′, E ′)) ' HomUχ(F1)(PF1(µ,E), L(µ′, E ′))

'

{
K, if µ = µ′ and E ' E ′,

0, otherwise.

Thus, P̃F1(µ,E) ' P (µ,E) is the projective cover of L(µ,E) as a Uχ(W n
(0))–

module.

Proposition. We have PF1(µ,E) ' Uχ(F1)⊗Uχ(F0) (Kµ ⊗ PE) if aE 6= 0.

Proof. For notational convenience we set Q = Uχ(F1) ⊗Uχ(F0) (Kµ ⊗ PE).
Since A commutes with ∂1, we see that Q decomposes as a Uχ(A)–module
into a direct sum of all ∂r1 ⊗ (Kµ ⊗ PE). It follows that Q is isomorphic
to (PE)p as a Uχ(A)–module. Thus, the radical radAQ of Q as a Uχ(A)–
module is isomorphic to (radPE)p and hence to Uχ(F1)⊗Uχ(F0)(Kµ⊗radPE).
In particular, radAQ is a Uχ(F1)–submodule of Q. We have

Q/ radAQ ' Uχ(F1)⊗Uχ(F0) (Kµ ⊗ (PE/ radPE))

' Uχ(F1)⊗Uχ(F0) (Kµ ⊗ E)

' L(µ,E).

Thus, radAQ is a maximal Uχ(F1)–submodule. Note that every simple
Uχ(F1)–module V decomposes as a Uχ(A)–module into a direct sum of sim-
ple Uχ(A)–modules. Indeed, if V = L(µ′) ⊗ E ′, then V ' (E ′)dimL(µ′) as
Uχ(A)–modules. It follows that simple modules over Uχ(F1) are semisimple
over Uχ(A). Furthermore, every homomorphism φ : Q → V of Uχ(F1)–
modules may be considered as a homomorphism of Uχ(A)–modules and
hence radAQ ⊂ kerφ. Thus, the module radAQ is contained in the inter-
section

⋂
φ,V kerφ of all kerφ. Since radAQ is a maximal Uχ(F1)–module, we
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have radQ ⊂ radAQ. But then
⋂
φ,V kerφ ⊂ radQ implies radAQ = radQ.

Consequently, radQ is maximal and Uχ(F1) has a unique maximal submod-
ule. We have a commutative diagram of Uχ(F1)–modules

PF1(µ,E)

��

ϕ

zzv
v

v
v

v

Q π
// L(µ,E)

where π is surjective and π◦ϕ is the canonical homomorphism from PF1(µ,E)
to L(µ,E). It follows that ϕ is surjective because otherwise the image
of ϕ would be contained in some maximal submodule of Q. This means
that imϕ ⊂ radQ and thus π ◦ ϕ = 0 which is a contradiction to the
fact that π ◦ ϕ is surjective. Now, the fact that ϕ is surjective implies
dimPF1(µ,E) ≥ dimQ = p dimPE. Hence by the discussion before the
proposition, we have

dimP (µ,E) ≥ pdimWn
(0)
−dimF1+1 dimPE. (7.4)

On the other hand, Theorem 7.1.3 implies that the projective Uχ(B × A)–
module P (µ)⊗ PE is of dimension (1 + δ0µ)pp−2 dimPE for µ 6= p− 1. The
induced module Q(µ,E) is, therefore, of dimension

dimQ(µ,E) = (1 + δµ0)pdimWn
(0)
−dim(B×A)+p−2 dimPE

= (1 + δµ0)pdimWn
(0)
−dimF1+1 dimPE.

Note that the assumption aE 6= 0 implies E 6' K. By Lemma 7.2.1, we see
that the inequality in (7.4) is actually an equality for µ 6= 0, p− 1 because
in this case Q(µ,E) ' P (µ,E). Furthermore, we have an isomorphism
Q(0, E) ' P (0, E) ⊕ P (p − 1, E). Hence we always have equality in (7.4).
But then dimPF1(µ,E) = p dimPE = dimQ and hence PF1(µ,E) ' Q.

Remark. Since h ∈ W n
(0) is toral, it follows that every Uχ(W n

(0))–module
decomposes into a direct sum of weight spaces relative to the action of h.
These weight spaces are Uχ(W n

(0))–modules because h is central in W n
(0).

Thus, h acts via scalar multiplication on every indecomposable Uχ(W n
(0))–

module. In particular, h acts on P (µ,E) via multiplication by aE. This
means that the composition factors of P (µ,E) are of the form L(µ′, E ′)
with aE = a′E. For n = 2, this amounts to saying that the composition
factors of P (µ, λ) are of the form L(µ′, λ), cf. Corollary 7.3.2.
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7.4.3 With the commutators (6.2)–(6.4) in mind, we proceed by con-
sidering the following restricted Lie subalgebra

F2 = F0 ⊕
⊕

2≤r<p

⊕
2≤i,j≤n

Kxr1xi∂j if p > 2,

F2 = Kx1∂1 ⊕ A⊕
⊕

2≤i,j≤n

Kx1xi∂j if p = 2 and n > 2.

The condition n > 2 for p = 2 is imposed in order to avoid F2 = F0. Now,
we want to express F2 as a direct sum of F0 and a unipotent ideal f ⊂ F2

such that χ(f) = 0,
F2 = F0 ⊕ f.

This is easy for p > 2. Set

f =
⊕

2≤r<p

⊕
2≤i,j≤n

Kxr1xi∂j if p > 2.

Suppose that p = 2. The subspace generated by all x1xi∂j with i, j ≥ 2 is
isomorphic to gln−1 via the map that sends x1xi∂j in Eij. If 2 - n − 1 (i.e.
2 does not divide n − 1), then gln−1 ' sln−1 ⊕ KIn−1, where In−1 is the
identity matrix of size n− 1. This suggests

f =

{ ∑
2≤i,j≤n

aijx1xi∂j |
n∑
i=2

aii = 0

}
if p = 2, n > 2 and 2 - n− 1.

By (6.2)–(6.4), one sees that f is an ideal in F2. (For p = 2, it is not obvious
that [xi∂j,

∑
k,l aklx1xk∂l] belongs to f for

∑
k akk = 0, but it can be verified

by carefully considering all the cases arising from (6.4).) Now, since f is
unipotent and χ(f) = 0, it follows that the simple modules of Uχ(F2) are
just the simple modules of Uχ(F0) with f acting trivially.

Lemma. The weights of Uχ(f) with respect to Kx1∂1×A0 belong to Fp×Λ̃.
Furthermore, the dimension of the weight space Uχ(f)µ,λ does not depend
on µ ∈ Fp and λ ∈ Λ̃.

Proof. We consider Uχ(f) as a Uχ(F0)–module via the adjoint represen-
tation and we wish to compute the character of Uχ(f) with respect to
Kx1∂1 ×A0. By using similar arguments as those in the proof of Theorem
7.3.1, we see that

chUχ(f) =

p−1∏
r=2

n∏
i=2

n∏
j=2

p−1∑
s=0

e(r, εi − εj)s if p > 2.
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To handle the case where p = 2, n > 2 and 2 - n−1, we shall first determine
a basis for f . Observe that if

∑
i aii = 0, then

n∑
i=2

aiix1xi∂i =
n−1∑
i=2

aii(x1xi∂i − x1xn∂n) +

(
n−1∑
i=2

aii + ann

)
x1xn∂n

=
n−1∑
i=2

aii(x1xi∂i − x1xn∂n).

Thus, we obtain a basis consisting of all x1xi∂i−x1xn∂n with 2 ≤ i ≤ n−1
together with all x1xi∂j with i 6= j. This implies

chUχ(f) =

(∏
i 6=j

1∑
s=0

e(1, εi − εj)s
)

1∑
s=0

e(1, 0)s if p = 2, n > 2, - n− 1.

In all cases, we see that the weights of Uχ(f) belong to Fp × Λ̃. Next,
suppose that

chUχ(f) =
∑
µ∈Fp

∑
λ∈Λ̃

cµ,λe(µ, λ). (7.5)

If p > 2, then by using similar arguments as those in the proof of Theorem
7.3.1, we obtain by multiplying both sides of (7.5) by 1− e(r, εi − εj)∑

µ∈Fp

∑
λ∈Λ̃

(cµ,λ − cµ−r,λ−(εi−εj))e(µ, λ) = 0,

for all r > 1 and i, j ≥ 2. In particular, we have cµ,λ = cµ+1,λ. (Choose
r = p − 1 and i = j.) Thus, the coefficients having the same second index
are equal. We have cµ,λ = cµ−r,λ−(εi−εj) = cµ,λ−(εi−εj) hence by using cµ,λ =
cµ,λ−(εi−εj) sufficiently many times we conclude that all the coefficients are
equal. Similarly, if p = 2, n > 2 and 2 - n−1, then we obtain by multiplying
both sides of (7.5) by 1− e(r, εi − εj) and 1− e(1, 0)∑

µ∈Fp

∑
λ∈Λ̃

(cµ,λ − cµ−1,λ−(εi−εj))e(µ, λ) = 0,

∑
µ∈Fp

∑
λ∈Λ̃

(cµ,λ − cµ−1,λ)e(µ, λ) = 0.

Here, it should be noted that i 6= j. The last equation implies that the co-
efficients having the same second index are equal whereas the first equation
implies that all the coefficients are equal. This proves the lemma. (The
character of Uχ(f) can be computed by using dimension arguments.)
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Proposition. Let µ ∈ Fp and let E be a simple Uχ(A)–module such that
aE 6= 0. Then, [P (µ,E)] = [P (0, E)] if (1) p > 2 or (2) p = 2 and n > 2
and 2 - n− 1.

Proof. It follows from Proposition 7.4.2 and the discussion preceding it that

P (µ,E) ' Uχ(W n
(0))⊗Uχ(F0) (Kµ ⊗ PE).

Since [PE] =
∑

ν∈Λ[Z(ν) : E][Z(ν)], this implies

[P (µ,E)] =
∑
ν∈Λ

[Z(ν) : E][Uχ(W n
(0))⊗Uχ(F0) (Kµ ⊗ Z(ν))].

The claim to be proved amounts to saying that the right-hand side is inde-
pendent of µ. Set

W̃ (µ, ν) = Uχ(W n
(0))⊗Uχ(F0) (Kµ ⊗ Z(ν)).

If W (µ, ν) = Uχ(F2)⊗Uχ(F0) (Kµ ⊗ Z(ν)), then

W̃ (µ, ν) = Uχ(W n
(0))⊗Uχ(F2) W (µ,E).

The induction takes simple Uχ(F0)–modules to simple Uχ(F2)–modules.
Thus, it suffices to prove that [W (µ, ν)] is independent of µ as a Uχ(F0)–
module. We have an isomorphism of Uχ(F0)–modules

W (µ, ν) ' Uχ(f)⊗ (Kµ ⊗ Z(ν)),

where Uχ(f) is a Uχ(F0)–module via the adjoint representation. The very
same arguments used in the proof of Theorem 7.3.1 imply that

[W (µ, ν)] =
∑
µ′∈Fp

∑
λ′∈Λ̃

dimUχ(f)µ′,λ′ [Kµ+µ′ ⊗ Z(ν + λ′)],

which together with Lemma 7.4.3 proves the proposition.

As an immediate consequence of the above proposition, we obtain a
generalization of Corollary 7.3.2.

Corollary. If n = 2 and p > 2, then

1. [P (0, 0)] = 4p2p−5[L(0, 0)] + 2p2p−5
∑p−2

µ′=1[L(µ′, 0)],

2. [P (µ, 0)] = 2p2p−5[L(0, 0)] + p2p−5
∑p−2

µ′=1[L(µ′, 0)] for µ 6= 0,

3. [P (µ, λ)] = p2p−5
∑p−1

µ′=0[L(µ′, λ)] for λ 6= 0.

Remark. We have dimP (0, 0) = 2p2p−3 and dimP (µ, λ) = p2p−3 if (µ, λ) 6=
(0, 0) and (µ, λ) 6= (p− 1, 0) which is consistent with Proposition 7.2.2.



8 The Witt–Jacobson Lie
algebra of rank 2

8.1 Notation

8.1.1 From now on, we will focus on the Witt–Jacobson Lie algebra W 2

of rank 2. If 0 ≤ i, j ≤ p− 1 and k = 1, 2, we set

eijk = xi1x
j
2∂k,

and we let eijk = 0 otherwise. We use (1.2) to obtain

[ers1, eij1] = (i− r)ei+r−1,j+s,1, (8.1)

[ers1, eij2] = −sei+r,j+s−1,1 + iei+r−1,j+s,2, (8.2)

[ers2, eij1] = jei+r,j+s−1,1 − rei+r−1,j+s,2, (8.3)

[ers2, eij2] = (j − s)ei+r,j+s−1,2. (8.4)

The p–mapping is given by (1.3)

e
[p]
ijk =


e012, if (i, j, k) = (0, 1, 2),

e101, if (i, j, k) = (1, 0, 1),

0, otherwise.

In addition to the grading from Section 1.2.4, we have a new grading

W 2 =

p−1⊕
i=−1

W 2
(i),

where

W 2
(−1) =

p−1⊕
r=0

Ker02 and W 2
(0) =

p−1⊕
r=0

Ker01 ⊕
p−1⊕
r=0

Ker12.

83
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As before, we set

N+ = W 2
(>0) and N− = W 2

(<0),

B+ = W 2
(≥0) and B− = W 2

(≤0).

8.2 Induction

8.2.1 We keep the notation introduced in Section 7.3.2: The set of
all L(λ, µ) with (λ, µ) 6= (p − 1, 0) forms a complete set of pairwise non–
isomorphic simple modules of Uχ(W 2

(0)). The composition factors of the

corresponding projective covers P (λ, µ) are determined in Corollary 7.4.3.
For every (λ, µ) ∈ F2

p, we consider the induced module

Virr(λ, µ) = Uχ(W 2)⊗Uχ(B+) L(λ, µ).

As mentioned in Section 6.3.1, Virr(λ, µ) has a unique maximal submodule
and the set of heads L(λ, µ) of Virr(λ, µ) forms a complete set of pairwise
non–isomorphic simple modules of Uχ(W 2). The main goal of this section
is Theorem 8.2.5 which determines the composition factors of Virr(λ, µ).

8.2.2 For every (λ, µ) ∈ F2
p, we let y(λ, µ) denote the restricted simple

W 2
0 –module having maximal vector of weight (λ, µ) with respect to e011. In

Appendix B, we show that for every (λ, µ) ∈ F2
p with µ − λ 6= p − 1 there

exists a p–dimensional W 2
0 –module x(λ, µ) such that the sequence

0→ y(µ+ 1, λ− 1)→ x(λ, µ)→ y(λ, µ)→ 0 (8.5)

is short exact. Set

Y (λ, µ) = Uχ(W 2)⊗Uχ(W≥0) y(λ, µ),

X(λ, µ) = Uχ(W 2)⊗Uχ(W≥0) x(λ, µ).

Theorem. If p > 2, then Y (λ, µ) ' L(λ, µ) if and only if (λ, µ) 6= (p−1, 0).
Furthermore, we have [Y (p− 1, 0)] = [L(0, 0)] + [L(p− 1, p− 1)].

Proof. The first assertion is due to Holmes, see [10, Thm. 4.3]. See also
Remark 8.2.2 below. The second assertion is a consequence of [10, Prop.
3.8] and [10, Prop. 3.10] which yield a short exact sequence

0→ Y (p− 1, p− 1)→ Y (p− 1, 0)→ Y (0, 0)→ 0.

Here the two outer modules are simple which proves the theorem.
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Remark. (1) Holmes’ paper assumes that the characteristic is larger than
3. However, the results referred to in the proof of the theorem can be
generalized to include the case p = 3, see Appendix D. (2) The maximal
vectors in Holmes’ paper are taken with respect to e012. In order to transfer
the results of [10] into our setting, one should note that, in the notation of
[10], we have Y (λ, µ) ' Zχ(µ, λ).

Lemma. If µ− λ = p− 1, then

[X(λ, µ)] = [Y (λ, µ)].

If µ− λ 6= p− 1, then

[X(λ, µ)] = [Y (λ, µ)] + [Y (µ+ 1, λ− 1)].

Proof. The first assertion follows from the construction of X(λ, µ), see Ap-
pendix B. The second assertion follows from sequence (8.5) and the fact
that the induction functor is exact.

8.2.3 We consider the restricted Lie subalgebra W 2
+ ⊂ W 2 given by

W 2
+ = W 2

>0 ⊕Ke101 ⊕Ke011 ⊕Ke012.

The simple modules of Uχ(Ke101 ⊕Ke012) are 1–dimensional and given by
Kλ,µ. Since W 2

>0 and Ke011 are unipotent and satisfy χ(W 2
>0) = χ(Ke011) =

0, it follows from Lemma 6.1.3 that they annihilate every simple module
over W 2

+. Thus, the set of all Kλ,µ forms a complete set of isomorphism
classes of simple Uχ(W+)–modules.

8.2.4 We have an isomorphism

Virr(λ, µ) ' Uχ(W 2)⊗Uχ(H⊕W 2
(>0)

) Kλ,µ.

(This follows from Appendix C. Indeed, set L = W 2, V = W 2
(0), U = H

and I = W 2
(>0) and use the proposition in Appendix C.) The transitivity

property implies

Virr(λ, µ) ' Uχ(W 2)⊗Uχ(W 2
+) (Uχ(W 2

+)⊗Uχ(H⊕W 2
(>0)

) Kλ,µ).

If we let M(λ, µ) denote the term inside the parenthesis, then Virr(λ, µ) '
ind

Uχ(W 2)

Uχ(W 2
+)
M(λ, µ). We consider a composition series of M(λ, µ)

0 = M0 ⊂M1 ⊂ · · · ⊂MN = M(λ, µ).
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In view of Section 8.2.3, there exists for every i an isomorphism Mi/Mi−1 '
Kλi,µi where λi, µi ∈ Fp. By inducing, we get a filtration of Virr(λ, µ) with
factors isomorphic to the p3–dimensional modules

X̃(λi, µi) = ind
Uχ(W 2)

Uχ(W 2
+)
Mi/ ind

Uχ(W 2)

Uχ(W 2
+)
Mi−1

' ind
Uχ(W 2)

Uχ(W 2
+)
Kλi,µi ,

where the isomorphism follows from the fact that the induction functor is
exact.

Lemma (A). We have X̃(λi, µi) ' X(λi, µi) for every λi and µi.

Proof. This follows from the proposition in Appendix C. In the notation of
the proposition, we have L = W 2, V = W 2

0 , U = W 2
+∩W 2

0 and I = W 2
>0.

The module M(λ, µ) has a weight space decomposition with respect to
Ke101⊕Ke012. (The weights of M(λ, µ) belong to F2

p, see e.g. Lemma 8.2.5.)

Lemma (B). If the formal character of M(λ, µ) is given by chM(λ, µ) =∑
δ,γ∈Fpmδγe(δ, γ), then [Virr(λ, µ)] =

∑
δ,γ∈Fpmδγ[X(δ, γ)].

Proof. On one side, we have chM(λ, µ) =
∑

δ,γ∈Fpmδγe(δ, γ). On the other
side, we have

chM(λ, µ) =
N∑
i=1

chMi/Mi−1 =
N∑
i=1

e(λi, µi).

It follows that mδγ is the number of times that (δ, γ) is equal to a (λi, µi).
Therefore, we have

[Virr(λ, µ)] =
N∑
i=1

[X(λi, µi)] =
∑
δ,γ∈Fp

mδγ[X(δ, γ)],

which completes the proof.

8.2.5 With Lemma 8.2.4 B in mind, we proceed to determine the char-
acter of M(λ, µ). If p > 2, then M(λ, µ) has a basis consisting of all

er2202e
r3
302 · · · e

rp−1

p−1,0,2 ⊗ 1, 0 ≤ ri ≤ p− 1.

Thus
chM(λ, µ) =

∑
0≤ri<p
for all i

chKer2202e
r3
302 · · · e

rp−1

p−1,0,2 ⊗ 1,

where each summand is determined by the following lemma
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Lemma. For every tuple (r2, r3, . . . , rp−1) with 0 ≤ ri < p, we have

chKer2202e
r3
302 · · · e

rp−1

p−1,0,2 ⊗ 1 = e(λ+

p−1∑
ν=2

rνν, µ+

p−1∑
ν=2

rν(p− 1)).

Proof. We set vr = er2202e
r3
302 · · · e

rp−1

p−1,0,2⊗1 for each r = (r2, r3, . . . , rp−1) with
0 ≤ ri < p. Now, if M is a Uχ(W 2)–module and v ∈ M has weight (ξ, ζ),
then eν02v has weight (ξ + ν, ζ + (p− 1)). In our case, this implies

e101v
r = (λ+

p−1∑
ν=2

rνν)vr and e012v
r = (µ+

p−1∑
ν=2

rν(p− 1))vr.

Hence the claim.

Theorem. Let (λ, µ) ∈ F2
p.

1. If p > 3, then

[Virr(λ, µ)] = 4pp−4[L(0, 0)] + 4pp−4[L(p− 1, p− 1)]

+ 2pp−4
∑

(σ,τ)∈Ω

[L(σ, τ)] + pp−4
∑

τ−σ=p−1

[L(σ, τ)],

where Ω is the set of all (σ, τ) ∈ F2
p with τ − σ 6= p − 1 and (σ, τ) 6∈

{(0, 0), (p− 1, p− 1), (p− 1, 0)}.

2. If p = 3 and µ− λ = p− 1, then

[Virr(λ, µ)] = [L(1, 0)] + [L(2, 1)] + [L(0, 2)].

3. If p = 3 and µ− λ 6= p− 1, then

[Virr(λ, µ)] = 2[L(0, 0)] + 2[L(2, 2)] + [L(1, 1)] + [L(0, 1)] + [L(1, 2)].

Proof. It follows from Lemma 8.2.5 that

chM(λ, µ) =
∑

0≤ri<p
for all i

e(λ+

p−1∑
ν=2

rνν, µ+

p−1∑
ν=2

rν(p− 1))

= e(λ, µ)

p−1∏
ν=2

p−1∑
rν=0

e(ν, p− 1)rν ,
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where in the second equality we used the multiplication rule in (6.1). Since
e(η)p = 1 for all η ∈ F2

p the formula 0 = 1−e(η)p = (1−e(η))(1+e(η)+· · ·+
e(η)p−1) implies (1 − e(ν, p − 1)) chM(λ, µ) = 0 for all ν = 2, 3, . . . , p − 1.
Now, suppose that

chM(λ, µ) =
∑
σ,τ∈Fp

cσ,τe(σ, τ).

By multiplying both sides by 1− e(ν, p− 1), we obtain∑
σ,τ∈Fp

(cσ,τ − cσ−ν,τ+1)e(σ, τ) = 0,

which means cσ,τ = cσ−ν,τ+1 for all σ, τ and ν = 2, 3, . . . , p−1. In particular,
we have cσ,τ = cσ−2,τ+1 for ν = 2 and cσ,τ = cσ+1,τ+1 for ν = p − 1.
Furthermore, if the characteristic is greater than 3 then cσ−2,τ+1 = cσ+1,τ+2.
(Set ν = p − 3 and replace σ and τ by σ − 2 and τ + 1, respectively.) It
follows that cσ+1,τ+1 = cσ+1,τ+2 for all σ and τ . Thus, the coefficients having
the same first index σ are equal. By using cσ,τ = cσ+1,τ+1 sufficiently many
times, we conclude that all the coefficients are equal. Now, a dimension
argument yields that

chM(λ, µ) = pp−4
∑
σ,τ∈Fp

e(σ, τ),

which together with Lemma 8.2.4 B yields

[Virr(λ, µ)] = pp−4
∑
σ,τ∈Fp

[X(σ, τ)].

By Lemma 8.2.2 and Theorem 8.2.2, we have

[Virr(λ, µ)] = pp−4
∑

τ−σ 6=p−1

[X(σ, τ)] + pp−4
∑

τ−σ=p−1

[X(σ, τ)]

= pp−4
∑

τ−σ 6=p−1

([Y (σ, τ)] + [Y (τ + 1, σ − 1)])

+ pp−4
∑

τ−σ=p−1

[L(σ, τ)].

Since τ − σ 6= p− 1 if and only if (σ − 1)− (τ + 1) 6= p− 1, we have

[Virr(λ, µ)] = 2pp−4
∑

τ−σ 6=p−1

[Y (σ, τ)] + pp−4
∑

τ−σ=p−1

[L(σ, τ)].
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The assertion follows from Theorem 8.2.2.

If the characteristic is 3 then M(λ, µ) is 3–dimensional. The weight
space M(λ, µ)(λ,µ) is nonzero, in fact we have M(λ, µ)(λ,µ) = K(1 ⊗ 1).
Therefore, cλ,µ = 1 and it follows from the formula cσ,τ = cσ+1,τ+1 that
cλ+1,µ+1 and cλ+2,µ+2 are both equal to 1. We conclude that

chM(λ, µ) =
2∑

σ=0

e(λ+ σ, µ+ σ),

and thus

[Virr(λ, µ)] =
2∑

σ=0

[X(λ+ σ, µ+ σ)].

If µ − λ = p − 1 then (λ, µ) ∈ {(1, 0), (2, 1), (0, 2)} and it follows from
Lemma 8.2.2 and Theorem 8.2.2 that

[Virr(λ, µ)] =
2∑

σ=0

[Y (λ+ σ, µ+ σ)]

= [L(1, 0)] + [L(2, 1)] + [L(0, 2)].

If µ − λ 6= p − 1 then (λ, µ) ∈ {(0, 0), (1, 1), (2, 2), (2, 0), (0, 1), (1, 2)} and
we have

[Virr(λ, µ)] =
2∑

σ=0

([Y (λ+ σ, µ+ σ)] + [Y (µ+ σ + 1, λ+ σ − 1)])

= [Y (0, 0)] + [Y (1, 1)] + [Y (2, 2)] + [Y (2, 0)]

+ [Y (0, 1)] + [Y (1, 2)].

Thus, by Theorem 8.2.2, we get

[Virr(λ, µ)] = 2[L(0, 0)] + 2[L(2, 2)] + [L(1, 1)] + [L(0, 1)] + [L(1, 2)].

This completes the proof of the theorem.

8.2.6 In this section, we describe the head of Virr(λ, µ). Note that
X(λ, µ) has a basis consisting of elements of the form es1001e

s2
002e

s3
102 ⊗ 1.

Lemma. The map φ : L(λ, µ)→ X(λ, µ) that sends ei001 ⊗ 1 to ei001 ⊗ 1 is
a homomorphism of Uχ(B+)–modules.
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Proof. The element ers1e
i
001 acts on a Uχ(B+)–module as

min(i,r)∑
k=0

(−1)k
(
r

k

)
i!

(i− k)!
ei−k001 er−k,s,1.

This can easily be seen by using induction on i. Thus, in order to prove
the compatibility of φ with the action of ers1 it suffices to consider how ers1
acts on 1⊗1 in L(λ, µ) and X(λ, µ), respectively. But ers1 acts by the same
scalar on these elements; λ if (r, s) = (1, 0) and 0 otherwise.

Similarly, the element ers2e
i
001 acts on a Uχ(B+)–module as

min(i,r)∑
k=0

(−1)k
(
r

k

)
i!

(i− k)!
ei−k001 er−k,s,2.

The claim follows since ers2 annihilates 1⊗ 1 for s 6= 0.

The isomorphism

HomUχ(B+)(L(λ, µ), X(λ, µ)) ' HomUχ(W 2)(Virr(λ, µ), X(λ, µ))

induces a homomorphism φ̃ that maps every er0002e
r1
102 · · · e

rp−1

p−1,0,2e
s
001 ⊗ 1 in

Virr(λ, µ) to er0002e
r1
102 · · · e

rp−1

p−1,0,2e
s
001 ⊗ 1 in X(λ, µ). Since by the PBW theo-

rem, every ea0002e
a1
102e

b
001e

a2
202 · · · e

ap−1

p−1,0,2 can be written as a linear combination
of monomials of the form er0002e

r1
102 · · · e

rp−1

p−1,0,2e
s
001 we have

φ̃(ea0002e
a1
102e

b
001e

a2
202 · · · e

ap−1

p−1,0,2 ⊗ 1) = ea0002e
a1
102e

b
001e

a2
202 · · · e

ap−1

p−1,0,2 ⊗ 1.

This is clearly a surjection. Furthermore, since all er02 commute, the kernel
of φ̃ consists exactly of those elements with ai > 0 for some 2 ≤ i ≤ p− 1;
in particular we have dim(ker φ̃) = p3(pp−2 − 1) = pp+1 − p3.

Remark. The existence of the homomorphism Virr(λ, µ)→ X(λ, µ) means
that the head of Virr(λ, µ) is the head of X(λ, µ).

8.3 Projective indecomposable modules of

W 2

8.3.1 This section is devoted to determining the projective indecompos-
able modules and to computing their composition factors for the algebras
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Uχ(W 2). For every λ, µ ∈ Fp with (λ, µ) 6= (p− 1, 0), we let P(λ, µ) denote
the projective cover of L(λ, µ). Moreover, we set

V +
proj(λ, µ) = Uχ(W 2)⊗Uχ(B+) P (λ, µ),

V −proj(λ, µ) = Uχ(W 2)⊗Uχ(B−) P (λ, µ).

The dimension of V ±proj(λ, µ) can be computed by use of Remark 7.4.3. We

have dimV −proj(0, 0) = 2p2p2−p−3 and dimV −proj(λ, µ) = p2p2−p−3 otherwise.
Likewise, dimV +

proj(0, 0) = 2p3p−3 and dimV +
proj(λ, µ) = p3p−3 for (λ, µ) 6=

(0, 0). If s ⊂ W 2 is a restricted Lie subalgebra of W 2 and V is a module
over s, we set

D(Uχ(W 2)⊗Uχ(s) V ) = (U−χ(W 2)⊗U−χ(s) V
∗)∗.

Nakano shows in [17, Thm. 1.3.5] that the projective modules P(λ, µ) admit
V ±proj(λ, µ) filtrations. The following theorem is due to Nakano, see [17,
Thm. 1.3.6].

Theorem (Reciprocity Theorem). Let λ, µ, λ′, µ′ ∈ Fp such that (λ, µ) 6=
(p− 1, 0) and (λ′, µ′) 6= (p− 1, 0). Then

[P(λ, µ) : V −proj(λ
′, µ′)] = [DVirr(λ

′, µ′) : L(λ, µ)].

The following lemma allows us to compute DVirr(λ, µ).

Lemma. We have for every λ, µ ∈ Fp with (λ, µ) 6= (p− 1, 0)

DVirr(λ, µ) = Virr(λ, µ).

Proof. The dual of an induced module is an induced module. In fact, we
have

DVirr(λ, µ) ' Uχ(W 2)⊗Uχ(B+) (L(λ, µ)⊗KδW2−δB+ );

here (δW 2 − δB+)(x) = tr(adW 2 x − adB+ x) for all x ∈ B+ and KδW2−δB+

is the vector space K endowed with the twisted action δW 2 − δB+ , see [14,
Sec. 1.5]. Now, if x[p] = 0 then (adW 2 x)p = 0 and hence tr(adW 2 x) = 0. It
follows that tr(adW 2 x) = 0 for all x 6= e101 and x 6= e012. (The same applies
for B+ instead of W 2.) Now, the commutators

[e101, eij1] = (i− 1)eij1,

[e101, eij2] = ieij2,

[e012, eij1] = jeij1,

[e012, eij2] = (j − 1)eij2
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show that tr(adW 2 x) = 0 for x = e101, e012. Hence, adW 2 x is traceless for
all x ∈ W 2. Similarly, the commutators above show that tr(adB+ x) = 0 for
x = e101, e012. Thus, adB+ x is traceless for all x ∈ B+ and

DVirr(λ, µ) ' Uχ(W 2)⊗Uχ(B+) (L(λ, µ)⊗K0)

' Uχ(W 2)⊗Uχ(B+) L(λ, µ).

This completes the proof.

Proposition. If p > 2 and (λ, µ) ∈ F2
p with (λ, µ) 6= (p− 1, 0), then

1. dimP(λ, µ) = 4p2p2−5 for (λ, µ) ∈ {(0, 0), (p− 1, p− 1)}.

2. dimP(λ, µ) = p2p2−5 for µ− λ = p− 1.

3. dimP(λ, µ) = 2p2p2−5 otherwise.

Proof. We have

[P(λ, µ)] =
∑

(λ′,µ′)6=(p−1,0)

[P(λ, µ) : V −proj(λ
′, µ′)][V −proj(λ

′, µ′)]

=
∑

(λ′,µ′) 6=(p−1,0)

[DVirr(λ
′, µ′) : L(λ, µ)][V −proj(λ

′, µ′)]

=
∑

(λ′,µ′) 6=(p−1,0)

[Virr(λ
′, µ′) : L(λ, µ)][V −proj(λ

′, µ′)].

Therefore, we get

dimP(λ, µ) =
∑

(λ′,µ′)6=(p−1,0)

[Virr(λ
′, µ′) : L(λ, µ)] dimV −proj(λ

′, µ′).

The claim follows from Theorem 8.2.5.

8.3.2 In this section, we will compute the Cartan invariants of Uχ(W 2).
As in Theorem 8.2.5, we let Ω denote the set of all (σ, τ) in F2

p with τ −σ 6=
p− 1 and (σ, τ) 6∈ {(0, 0), (p− 1, p− 1), (p− 1, 0)}.

Theorem. Let p > 2 and let (λ, µ) ∈ F2
p such that (λ, µ) 6= (p−1, 0). Then

1. If (λ, µ) ∈ {(0, 0), (p− 1, p− 1)}, then

[P(λ, µ)] = 16p2p2−10[L(0, 0)] + 16p2p2−10[L(p− 1, p− 1)]

+ 8p2p2−10
∑

(σ,τ)∈Ω

[L(σ, τ)] + 4p2p2−10
∑

τ−σ=p−1

[L(σ, τ)].



8.3. Projective indecomposable modules of W 2 93

2. If µ− λ = p− 1, then

[P(λ, µ)] = 4p2p2−10[L(0, 0)] + 4p2p2−10[L(p− 1, p− 1)]

+ 2p2p2−10
∑

(σ,τ)∈Ω

[L(σ, τ)] + p2p2−10
∑

τ−σ=p−1

[L(σ, τ)].

3. Otherwise, we have

[P(λ, µ)] = 8p2p2−10[L(0, 0)] + 8p2p2−10[L(p− 1, p− 1)]

+ 4p2p2−10
∑

(σ,τ)∈Ω

[L(σ, τ)] + 2p2p2−10
∑

τ−σ=p−1

[L(σ, τ)].

Proof. Suppose that p > 3. Then, by Theorem 8.2.5, the composition
factors of Virr(λ, µ) do not depend on λ and µ. Thus [Virr(λ, µ)] = [Virr(0, 0)]
for all λ, µ ∈ Fp with (λ, µ) 6= (p− 1, 0). We have

[P(λ, µ)] =
∑

(λ′,µ′)6=(p−1,0)

[P(λ, µ) : Virr(λ
′, µ′)][Virr(λ

′, µ′)]

=
∑

(λ′,µ′)6=(p−1,0)

[P(λ, µ) : Virr(λ
′, µ′)][Virr(0, 0)],

which implies first∑
(λ′,µ′) 6=(p−1,0)

[P(λ, µ) : Virr(λ
′, µ′)] =

dimP(λ, µ)

dimVirr(0, 0)
,

and then

[P(λ, µ)] =
dimP(λ, µ)

dimVirr(0, 0)
[Virr(0, 0)].

Together with Theorem 8.2.5 and Proposition 8.3.1, this yields the claim
for p > 3. Now, suppose that p = 3. Corollary 7.4.3 determines the
composition factores of P (λ, µ). By inducing over Uχ(B+), we obtain

[V +
proj(0, 0)] = 12[Virr(0, 0)] + 6[Virr(1, 0)],

[V +
proj(1, 0)] = 6[Virr(0, 0)] + 3[Virr(1, 0)],

[V +
proj(λ, µ)] = 3[Virr(0, µ)] + 3[Virr(1, µ)] + 3[Virr(2, µ)] for µ 6= 0.

The crucial observation now is that [V +
proj(λ, µ)] = [V +

proj(1, 0)] if µ 6= 0. This
is a consequence of Theorem 8.2.5 which implies that exactly one of the
terms [Virr(0, µ)], [Virr(1, µ)] and [Virr(2, µ)] is equal to [Virr(1, 0)] while the
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remaining terms are equal to [Virr(0, 0)]. Thus, [V +
proj(0, 0)] = 2[V +

proj(λ, µ)]
for every pair (λ, µ) 6= (0, 0). We will use this observation in a moment, but
first, we have

[V +
proj(1, 0)] = 12[L(0, 0)] + 12[L(2, 2)] + 6[L(1, 1)] + 6[L(0, 1)]

+ 6[L(1, 2)] + 3[L(1, 0)] + 3[L(2, 1)] + 3[L(0, 2)].

Now, for each pair (λ′, µ′) 6= (p− 1, 0) we set aλ′,µ′ = [P(λ, µ) : Virr(λ
′, µ′)].

Then

[P(λ, µ)] = a0,0[V +
proj(0, 0)] +

∑
(λ′,µ′)6=(p−1,0)

(λ′,µ′)6=(0,0)

aλ′,µ′ [V
+
proj(λ

′, µ′)]

= 2a0,0[V +
proj(1, 0)] +

∑
(λ′,µ′)6=(p−1,0)

(λ′,µ′)6=(0,0)

aλ′,µ′ [V
+
proj(1, 0)].

This implies first ∑
(λ′,µ′)6=(p−1,0)

(λ′,µ′) 6=(0,0)

aλ′,µ′ + 2a0,0 =
dimP(λ, µ)

dimV +
proj(1, 0)

,

and then

[P(λ, µ)] =
dimP(λ, µ)

dimV +
proj(1, 0)

[V +
proj(1, 0)].

The claim follows from Proposition 8.3.1 and the discussion above.



A Orbits of height 0 characters

There is a natural action of the general linear group GLn on the truncated
polynomial algebra

Bn = K[X1, X2, . . . , Xn]/(Xp
1 , X

p
2 , . . . , X

p
n).

This action is given by

gxi =
n∑
j=1

gjixj,

for every g = (gij) in GLn. (Here xi denotes the image of Xi in Bn.)
Furthermore, GLn acts on the set of derivations W n of Bn and the set of
all characters of W n. These actions are given by

(gD)(x) = D(g−1x),

(gϕ)(D) = ϕ(g−1D),

for all D ∈ W n, ϕ ∈ (W n)∗ and x ∈ Bn. The formula D =
∑n

i=1D(xi)∂i
implies, in particular,

g−1∂i =
n∑
j=1

(g−1∂i)(xj)∂j

=
n∑
j=1

∂i(gxj)∂j

=
n∑
j=1

n∑
k=1

∂i(gkjxk)∂j

=
n∑
j=1

gij∂j.

Next, let ϕ1, ϕ2, . . . , ϕn denote the dual basis of W n
−1 with respect to the

basis ∂1, ∂2, . . . , ∂n; that is ϕi(∂j) = δij, where δij denotes Kronecker’s delta.
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It follows from the above computation that

gϕi =
n∑
j=1

(gϕi)(∂i)ϕj

=
n∑
j=1

ϕi(g
−1∂j)ϕj

=
n∑
j=1

n∑
k=1

ϕi(gjk∂k)ϕj

=
n∑
j=1

gjiϕj.

Thus, g acts on the space (W n
−1)∗ precisely as it acts on Kn. Now, any

g ∈ GLn induces an isomorphism of the Lie algebra W n in the following
way:

g(D) = g ◦D ◦ g−1 for all D ∈ W n.

This induces a natural inclusion of GLn into Aut(W n), see e.g. [21, Sec.
2.3]. Thus, we obtain the following proposition.

Proposition. Under the automorphism group of W n, all height 0 charac-
ters are conjugate to a character ϕ of height 0 such that ϕ(∂1) 6= 0 and
ϕ(∂i) = 0 for all i > 1.



B Irreducible representations of
W 2

0

We use the setting described in Part II. In particular, we have a character
χ ∈ (W n)∗ of height 0 such that χ(∂1) 6= 0 and χ(∂i) = 0 for all i 6= 1.
There is an isomorphism of Lie algebras W n

0 ' gln that sends xi∂j into
the n × n matrix Eij with 1 in the (i, j)th position and 0 elsewhere. In
particular, this defines for n = 2 a triangular decomposition

W 2
0 = Ke011 ⊕ (Ke101 ⊕Ke012)⊕Ke102.

Each (λ, µ) ∈ F2
p defines a 1–dimensinal moduleKλ,µ over Uχ(Ke101⊕Ke012)

such that e101 and e012 act by multiplication by λ and µ, respectively. Since
Ke011 is unipotent and χ(e011) = 0, this module can be extended to a
module over Uχ(Y ) = Uχ(Ke101 ⊕Ke012 ⊕Ke011) by letting e011 act triv-
ially. Now, the set of all Kλ,µ is a complete set of pairwise non–isomorphic
simple modules of Uχ(Y ). The simple modules of Uχ(W 2

0 ) are, therefore,
homomorphic images of the p–dimensional induced module

x(λ, µ) = Uχ(W 2
0 )⊗Uχ(Y ) Kλ,µ.

Set x0 = 1 ⊗ 1 and xi+1 = e102x
i for every i = 0, 1, . . . , p − 1. Then

x0, x1, . . . , xp−1 form a basis for x(λ, µ). We have

e101x
i = (λ+ i)xi and e012x

i = (µ− i)xi.

Furthermore, for every i > 0

e011x
i = i(µ− λ− i+ 1)xi−1.

It follows that x(λ, µ) is simple if µ−λ = p− 1. If µ−λ 6= p− 1, we obtain
a maximal submodule generated by x[µ−λ]+1, x[µ−λ]+2, . . . , xp−1. (Here we
use the notation introduced in Section 3.1.1.) For every λ, µ ∈ Fp, we let
y(λ, µ) denote the head of x(λ, µ).
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Theorem. There are p2 distinct (up to isomorphism) simple Uχ(W 2
0 )–

modules. They are represented by {y(λ, µ) | λ, µ ∈ Fp}. We have y(λ, µ) '
x(λ, µ) if and only if µ − λ = p − 1. Furthermore, we have dim y(λ, µ) =
[µ− λ] + 1.

Remark (A). If µ − λ = p − 1, then by using weight considerations, we
have a short exact sequence

0→ y(µ+ 1, λ− 1)→ x(λ, µ)→ y(λ, µ)→ 0.

Remark (B). Since W>0 is a unipotent ideal in W≥0, any Uχ(W0)–module
can be extended to Uχ(W≥0) by letting Uχ(W>0) act trivially. Furthermore,
the simple modules for Uχ(W≥0) are just the simple modules for Uχ(W0)
with Uχ(W>0) acting trivially. In particular, this induces a Uχ(W≥0)–
module structure on x(λ, µ) and y(λ, µ).



C Induction and inflation

Let L be a restricted Lie algebra with a p–mapping [p] and let ϕ ∈ L∗.
Furthermore, let I ⊂ L be an ideal such that ϕ(I) = 0 and x[p] ∈ I for all
x ∈ I. It follows that L/I is a restricted Lie algebra with ϕ̄ ∈ (L/I)∗

ϕ̄(x+ I) = ϕ(x) for all x ∈ L.

Every Uϕ̄(L/I)–module M becomes a Uϕ(L)–module via x · v = (x+ I) · v
for all x ∈ L and v ∈ M . If M is simple over Uϕ̄(L/I), then it is simple
over Uϕ(L). Furthermore, two modules are isomorphic over Uϕ̄(L/I) if and
only if they are isomorphic over Uϕ(L). If I is unipotent, then it follows
from Lemma 6.1.3 that I annihilates every simple Uϕ(L)–module. We then
obtain a one–to–one correspondence between the set of isomorphism classes
of simple Uϕ̄(L/I)–modules and the set of isomorphism classes of simple
Uϕ(L)–modules. Suppose that L has a restricted Lie subalgebra U such
that

L = U ⊕ I as vector spaces.

Forget for a moment that I is unipotent. If we identify L/I with U and ϕ̄
with ϕ|U , we get an embedding of the set of isomorphism classes of Uϕ(U)–
modules in the set of isomorphism classes of Uϕ(L)–modules. If M is a

Uϕ(U)–module, we let inf
Uϕ(L)

Uϕ(U) M denote a representative of M as a Uϕ(L)–
module. Note that I acts as 0 on this module. Now, if I is unipotent,

then inf
Uϕ(L)

Uϕ(U) defines a one–to–one correspondence between the isomorphism

classes of simple Uϕ(U)–modules and the isomorphism classes of simple
Uϕ(L)–modules.

Proposition. Let L be a restricted Lie algebra and let ϕ ∈ L∗. Further-
more, let U ⊂ V and I be restricted Lie subalgebras such that ϕ(I) = 0,
[V, I] ⊂ I and V ∩I = 0. Then, we have an isomorphism of Uϕ(L)–modules

ind
Uϕ(L)

Uϕ(U⊕I) inf
Uϕ(U⊕I)
Uϕ(U) M ' ind

Uϕ(L)

Uϕ(V⊕I) inf
Uϕ(V⊕I)
Uϕ(V ) ind

Uϕ(V )

Uϕ(U) M,

for every Uϕ(U)–module M .
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Proof. The homomorphism M → Uϕ(V )⊗Uϕ(U) M of Uϕ(U)–modules that
maps x into 1 ⊗ x can be considered as a homomorphism of Uϕ(U ⊕ I)–
modules

inf
Uϕ(U⊕I)
Uϕ(U) M → inf

Uϕ(V⊕I)
Uϕ(V ) ind

Uϕ(V )

Uϕ(U) M,

since I acts as 0 on both sides. We also have a homomorphism

Uϕ(V )⊗Uϕ(U) M → Uϕ(L)⊗Uϕ(V⊕I) (Uϕ(V )⊗Uϕ(U) M)

of Uϕ(U ⊕ I)–modules that maps v ⊗ x into 1 ⊗ v ⊗ x. The composite of
these two homomorphisms gives a homomorphism

M → Uϕ(L)⊗Uϕ(V⊕I) (Uϕ(V )⊗Uϕ(U) M)

of Uϕ(U ⊕ I)–modules which maps x into 1 ⊗ 1 ⊗ x and which extends to
a homomorphism of Uϕ(L)–modules

Uϕ(L)⊗Uϕ(U⊕I) M → Uϕ(L)⊗Uϕ(V⊕I) (Uϕ(V )⊗Uϕ(U) M).

This homomorphism is, in fact, an isomorphism because it sends a PBW
basis to a PBW basis.



D Irreducible representations of
W 2

The simple W n–modules with height at most 1 were computed by Holmes
in [10]. Holmes’ paper assumes, however, that the characteristic p of the
ground field is larger than 3. The main purpose of this section is to gener-
alize some of these results to include the case p = 3.

We use the setting described in Part II. In particular, we have a char-
acter χ ∈ (W 2)∗ of height 0 such that χ(e001) 6= 0 and χ(eijk) = 0 for all
(i, j, k) 6= (0, 0, 1). We assume that p = 3. Since all simple Uχ(W 2

(≥0))–

modules are 3–dimensional, any finite dimensional Uχ(W 2)–module has di-
mension equal to a multiple of 3. There are, however, no Uχ(W 2)–modules
of dimension 3 because a 3–dimensional Uχ(W 2)–module M would induce
a homomorphism ρ : W 2 → gl(M) from an 18–dimensional Lie algebra to
a 9–dimensional Lie algebra. This is impossible because the kernel of ρ
would be the entire Lie algebra W 2 (as ker ρ 6= 0 is an ideal in the sim-
ple Lie algebra W 2) which is clearly in contradiction with the fact that
e001M 6= 0. (Recall that e3

001x = χ(e001)3x = x for all x ∈ M .) It follows
that all Uχ(W 2)–modules of dimension 9 are simple since otherwise there
would exist a composition factor of dimension 3.

For every (λ, µ) ∈ F2
p, we let y(λ, µ) denote the simple Uχ(W 2

≥0)–modules
introduced in Appendix B and we consider the 9([µ− λ] + 1)–dimensional
module

Y (λ, µ) = Uχ(W 2)⊗Uχ(W 2
≥0) y(λ, µ).

The foregoing discussion leads to the following lemma.

Lemma. Y (λ, λ) is simple for all λ ∈ F3.

It follows from Appendix B that we have a basis for y(λ, µ) consisting of
the cosets represented by x0, x1, . . . , x[µ−λ]. For the sake of clarity, this basis
will be denoted by x0

λ,µ, x
1
λ,µ, . . . , x

[µ−λ]
λ,µ . The next proposition is proved for

p > 5 by Holmes, see [10, Prop. 3.10(1) & Prop. 3.8].
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Proposition. We have the following short exact sequence

0→ Y (2, 2)→ Y (2, 0)→ Y (0, 0)→ 0.

Proof. The map ϕ : y(2, 0)→ Y (0, 0) that sends x0
2,0 to e001⊗x0

0,0 is a homo-
morphism of Uχ(W 2

≥0). It induces a Uχ(W 2)–homomorphism ϕ̃ : Y (2, 0)→
Y (0, 0) such that ϕ̃(1 ⊗ x0

2,0) = ϕ(x0
2,0). This homomorphism is surjec-

tive as Y (0, 0) is simple and ϕ̃ 6= 0. Likewise, we have a homomor-
phism ψ : y(2, 2) → Y (2, 0) that sends x0

2,2 to e002 ⊗ x0
2,0 + e001 ⊗ x1

2,0

and which extends to a Uχ(W 2)–homomorphism ψ̃ : Y (2, 2) → Y (2, 0) by
ψ̃(1⊗ x0

2,2) = ψ(x0
2,2). We have

ϕ̃ ◦ ψ̃(1⊗ x0
2,0) = ϕ̃(e002 ⊗ x0

2,0 + e001 ⊗ x1
2,0)

= e002e001 ⊗ x0
0,0 + e001e102e001 ⊗ x0

0,0

= e002e001 ⊗ x0
0,0 + e2

001 ⊗ e102x
0
0,0 − e001e002 ⊗ x0

0,0

= 0.

Thus, im ψ̃ ⊂ ker ϕ̃ and by dimension arguments one sees that the inclusion
is actually an equality. This proves the proposition.

Theorem. The set of all Y (λ, µ) with (λ, µ) ∈ F2
3 and (λ, µ) 6= (2, 0) forms

a complete set of pairwise non–isomorphic simple modules of Uχ(W 2).

Proof. Let E be a simple module over Uχ(W 2). For some λ, µ ∈ F3 there
exists a monomorphism

κ : y(λ, µ)→ E|Uχ(W 2
0 )

of Uχ(W 2
0 )–modules. It follows that κ will extend to a homomorphism of

Uχ(W 2)–modules from Y (λ, µ) to E. In other words, every simple Uχ(W 2)–
module is a homomorphic image of some Y (λ, µ). Since there are exactly
eight isomorphism classes of simple Uχ(W 2)–modules, it suffices to prove
that all Y (λ, µ) are simple, cf. Theorem 6.3.3 and 6.3.1.

Set r = [µ−λ]. We may assume that λ 6= µ so that 1 ≤ r ≤ 2. Further-
more, we assume that (λ, µ) 6= (2, 0). Since χ(e002) = 0 and χ(e102) = 0,
it follows that the trivial module is the only simple module (up to isomor-
phism) over the unipotent subalgebra Ke002⊕Ke102, see [13, Prop. 3.2]. In
particular, every nonzero submodule V of Y (λ, µ) contains a nonzero vector
annihilated by e002 and e102. Since e3

002 annihilates Y (λ, µ), we have

{x ∈ Y (λ, µ) | e002x = 0} =
⊕
0≤i≤2
0≤j≤r

Ke2
002e

i
001 ⊗ x

j
λ,µ.
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A straightforward computation shows that

e102(e2
002e

i
001 ⊗ x

j
λ,µ) = e2

002e
i
001 ⊗ x

j+1
λ,µ .

Thus,

{x ∈ Y (λ, µ) | e002x = 0 and e102x = 0} =
⊕

0≤i≤2

Ke2
002e

i
001 ⊗ xrλ,µ.

Now, V contains a nonzero vector which is annihilated by both e002 and e102.
Since, in addition, V is a direct sum of weight spaces with respect to e101 and
e012 this implies that V contains an element of the form e2

002e
i
001⊗xrλ,µ. Recall

that e3
001 acts as identity on every Uχ(W 2)–module. Thus, by applying e001

sufficiently many times, we see that e2
002 ⊗ xrλ,µ ∈ V . We compute

e022(e2
002 ⊗ xrλ,µ) = (e002e022 − 2e012)e002 ⊗ xrλ,µ

= (e2
002e022 + 2e002(1− 2e012))⊗ xrλ,µ

= 2e002 ⊗ (1− 2e012)xrλ,µ

= 2e002 ⊗ (1− 2λ)xrλ,µ,

where, in the last equality, we used the fact that xrλ,µ has weight (µ, λ). It
follows that if λ 6= 2, then e002 ⊗ xrλ,µ ∈ V . Furthermore, we have

e021(e002 ⊗ xrλ,µ) = (e002e021 − 2e011)⊗ xrλ,µ
= −2⊗ e011x

r
λ,µ

= −2r(µ− λ− r + 1)⊗ xr−1
λ,µ

= −2r ⊗ xr−1
λ,µ .

Hence 1 ⊗ xr−1
λ,µ ∈ V if λ 6= 2. Since y(λ, µ) is simple, the submodule

generated by 1 ⊗ xr−1
λ,µ must contain 1 ⊗ y(λ, µ). But then V = Y (λ, µ),

proving the irreducibility of Y (λ, µ) for λ 6= 2. It only remains to consider
the module Y (2, 1), but we shall prove that Y (λ, µ) is simple for all (λ, µ)
with r = 2. To this end, assume that r = 2 and recall that e2

002 ⊗ x2
λ,µ ∈ V .

We have in Uχ(W 2)

e021e
2
002 = (e002e021 − 2e011)e002

= e2
002e021 − 2e002e011 − 2e002e011 + 2e001

= e2
002e021 − 4e002e011 + 2e001,

which first implies

e021(e2
002 ⊗ x2

λ,µ) = −4e002 ⊗ e011x
2
λ,µ + 2e001 ⊗ x2

λ,µ,
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and then

e2
021(e2

002 ⊗ x2
λ,µ) = 8(1⊗ e2

011x
2
λ,µ).

An easy computation shows that e011x
i
λ,µ = i(µ−λ− i+ 1)⊗xi−1

λ,µ for i > 0.
This implies e2

011x
2
λ,µ = 4x0

λ,µ. But then 1⊗ x0
λ,µ ∈ V and therefore Y (λ, µ)

is simple for r = 2. In particular, we conclude that Y (2, 1).
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