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Preface

Initially, stereology relied on manual observations in two-dimensional sections.
The stereological techniques have continuously evolved over time. The very recent
improvements in computerised image analysis allow for further development of
these methods and the progress to new methods that incorporate readily available
information obtained from e.g. a grayscale digital image of the two-dimensional
section under consideration.

This PhD thesis is a contribution to the field of stereology and stochastic
geometry. The focus is on the improvement of local stereological methods
by incorporating auxiliary information within a sound statistical framework.
Several issues relating to the precision of stereological estimators are dealt with.
Furthermore, a flexible modelling framework for three-dimensional objects is
developed under which distributional properties of local stereological estimators
are derived. The thesis, submitted to the Faculty of Science, Aarhus university,
consists of an introduction accompanied by four independently written papers.
The introduction provides a short presentation to selected relevant parts of
stereology and stochastic geometry.

My studies have been conducted under the careful supervision of Eva B.
Vedel Jensen at the Department of Mathematical Sciences, Aarhus University,
in collaboration with Jens R. Nyengaard at the Stereology and EM Research
Laboratory, Aarhus University.

First, I would like to acknowledge Eva B. Vedel Jensen for her excellent and
optimistic supervision and invaluable generous support on both the professional
and personal level. Her deep dedication and love for research has been a great
inspiration to me.

My co-supervisor Jens R. Nyengaard is acknowledged for his deep insight in
biology and his commitment to combine the worlds of theorists and practitioners
of statistics which has served as a great inspiration to me. At the Stereology
and EM Research Laboratory, I also wish to thank Johnnie B. Andersen for
introducing me to some sampling procedures concerning a joint project that
provided me with a deeper insight into the problems that might occur when
implementing theory in practice.

My PhD studies were carried out during Aug. 2007 – July 2011, with the
period Apr. 2010 – July 2010 spent at Heidelberg University, where I visited
Tilmann Gneiting, to whom I also owe many thanks – both for professional
collaboration and great hospitality.
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Furthermore, I would like to thank all my colleagues at the Department of
Mathematical Sciences for providing an excellent working environment. In that
regard, I would like to give a few people special acknowledgements. Concerning
the proof of Theorem 1.1 in the Introduction of this thesis, a special thank you
goes to Jens Ledet Jensen. Moreover, I especially wish thank Anders Rønn-
Nielsen and Emil Hedevang with whom I have had many fruitful discussions
during our time as office colleagues. I would also like to send a special acknowl-
edgement to Thordis L. Thorarinsdottir who has been both a good colleague,
collaborator and friend to me both during her time in Aarhus and my stay
abroad in Heidelberg where she offered her great hospitality. Also I wish to
extend my gratitude to Lars Madsen, who has been incredibly helpful with the
final layout of this thesis.

Finally, I extend my deepest gratitude to my family, my parents Edith &
Linding and my sister Anne. They have been very supportive and have always
believed in me both during my PhD and the period leading up till this point.

Aarhus, Juli 31, 2011. Linda Vadgård Hansen

ii



Summary – English

This thesis deals with several issues relating to the precision of stereological
estimators. Furthermore, a flexible modelling framework for three-dimensional
objects is developed under which distributional properties of local stereological
estimators can be derived.

Image-based empirical importance sampling is considered for estimation
of the intensity of point processes. Here, computerised image analysis is used
to redirect the sampling. Statistical tools for assessing the efficiency of image-
based empirical importance sampling are obtained. It is shown that this type
of importance sampling may provide a significant increase in the precision of
intensities estimators for inhomogeneous point processes. Furthermore, optimal
model-based estimators of intensities are constructed.

Mixing of two well-known local stereological volume estimators are studied
as a means to obtain a new local stereological volume estimator that increases
the efficiency of the stereological procedure. The starting point is the nucleator,
a well-established manual stereological method for estimating mean cell volume
from observations on random cell transects through reference points of the
cells. We consider an automated version of the nucleator using automatic
segmentation of the boundaries of the cell transects. If the segmentation is
judged satisfactory according to some criteria, an estimate of the cell volume
is calculated automatically on the basis of the whole cell transect; otherwise
the classical nucleator is used. The statistical properties of this new estimator
are considered. Formulae for the bias and mean square error are derived and
procedures for estimating bias and mean square error from a pilot study are
provided.

A flexible framework for modelling and simulating three-dimensional star-
shaped random sets is considered. The idea is to identify a star-shaped random
sets with its radial function and then model the radial function as a random
field over the unit sphere. The random field is given by a kernel smoothing of a
Lévy basis. Under such a model we demonstrate that one can obtain sets with
irregular surfaces, i.e. we can obtain sets where the surfaces have Hausdorff
(fractal) dimension greater than two. We present a simulation algorithm that
generates this type of star-shaped random sets.

If the model is generalised slightly, it becomes tractable for making statements
on the distribution of the volume of the random sets and for local stereological
volume estimators. What is needed is to make a power transformation of the
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Summary – English

original model for the radial function. Then, the volume distribution of the
random set is known and statements on the distribution of the local stereological
volume estimators can obtained.

The present thesis contains four scientific papers. The framework and main
results of each paper is presented in the introduction.
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Summary – Danish

Denne afhandling behandler spørgsmål vedrørende præcisionen af stereologiske
estimatorer. Endvidere betragtes en fleksibel ramme for modellering af tredi-
mensionelle objekter under hvilken fordelingsegenskaber af lokale stereologiske
estimatorer kan udledes.

Billedbaseret empirisk importance sampling studeres med henblik på es-
timering af intensiteten af punkt processer. Her udnyttes billedanalyse til at
omdirigere samplingen. Endvidere præsenteres statistiske redskaber til at vur-
dere effektiviteten af billedbaseret empiriske importance sampling. Det vises,
at denne form for importance sampling kan øge præcisionen af intensitets-
estimatorer for inhomogene punkt processer signifikant. Desuden konstrueres
optimale modelbaserede estimatorer for intensiteten af punktprocesser.

Kombinationen af to velkendte lokale stereologiske volumen estimatorer be-
tragtes som en metode til at opnå en ny lokal stereologisk volumen estimator, der
øger effektiviteten af den stereologiske procedure. Udgangspunktet er nucleator
estimatoren, en veletableret manuel stereologisk metode til estimation af cellevo-
lumen ud fra observationer på stokastiske plane snit gennem referencepunkter
knyttet til cellerne. Vi betragter en automatiseret version af nucleatoren, der
udnytter automatisk segmentering af randen for hvert af cellesnittene. Hvis
segmentering vurderes tilfredsstillende i henhold til nogle kriterier, beregnes
estimatet af cellevolumenet automatisk på grundlag af hele cellesnittet; ellers
benyttes den klassiske nucleator. Statistiske egenskaber for denne nye estimator
betragtes. Formler for bias og mean square error udledes og procedurer til
vurdering af bias og mean square error fra en pilotstudie præsenteres.

En fleksibel ramme for modellering og simulering af tredimensionelle stjerne-
formede stokastiske mængder betragtes. Idéen er at identificere en stjerneformet
stokastisk mængde med dens radialfunktion og derefter modellere radialfunk-
tionen som et stokastisk felt over enhedskuglen. Det stokastiske felt er givet
ved en kerne udglatning af en Lévy base. Under en sådan model kan opnås
mængder med irregulære overflader, dvs. vi kan opnå mængder, hvor over-
fladerne har Hausdorff (fraktal) dimension større end to. Endvidere, præsenterer
vi en simulationsalgoritme, der genererer denne type stjerneformede stokastiske
mængder.

Generaliseres modellen en smule, bliver det muligt at fremsætte udsagn
vedrørende fordelingen af den stokastiske mængde samt for lokale stereolo-
giske volumen estimatorer. Det, der kræves, er en potenstransformation af den
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Summary – Danish

oprindelige model for radialfunktionen. Herefter er volumenfordelingen af den
stokastiske mængde kendt og der kan gives udsagn omkring fordelingen af de
lokale stereologiske volumen estimatorer.

Denne afhandling indeholder fire videnskabelige artikler. Grundlaget og de
vigtigste resultater for hver af artiklerne præsenteres i introduktionen.
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Introduction

1.1 Stereology

Originally, stereology was defined as the spatial interpretation of sections (Weibel,
1979). This early description captures the essence of this interdisciplinary field
very well as stereological methods are designed to provide statistically sound
information on three-dimensional objects from observations made in two di-
mensional sections. The main practical purpose of stereology is to extract
quantitative information of three-dimensional objects from microscopic images.
A main advantage is that three-dimensional reconstruction of the object is not
necessary in order to do so which makes stereology a relatively cheap technique
and hence its practical appeal. Stereological methods can also be developed for
observations on a one-dimensional transect, a two-dimensional projection or a
three-dimensional volume image. The procedures are appreciated within many
fields such as life sciences, geology, soil science, material science and engineering.

Though, the introduction of the term stereology and the creation of The
International Society of Stereology (ISS) in 1963 are both rather recent events
the history of stereology dates back much further. Historical references often
mentioned are Cavalieri’s principle dating back to F. B. Cavalieri (1598–1647),
cf. e.g. Baddeley and Jensen (2005), and Buffon’s needle problem stated by
the count of Buffon, G. L. Leclerc (1701–1788), in 17771. One of the first
reports of stereological techniques used in combination with microscopes is given
by the young French mineralogist A.E. Delesse (1817–1881) in 1847 (Delesse,
1847, 1848). Modern stereology can be considered as spatial sampling theory
(Baddeley, 1993) and it has strong analogies within survey sampling (Cochran,
1977; Thompson, 1992).

A solid mathematical foundation for stereology was laid down only some
decades ago in a series of papers from the nineteen seventies by Roger Miles
and Pamela Davy (Davy and Miles, 1977; Miles and Davy, 1976, 1977; Miles,
1978a,b) where they also emphasised the connection to survey sampling. The
exposition of stereology made by Weibel (1979, 1980) celebrated the sampling
approach of Miles and Davy and presented sampling principles for many of the
standard stereological techniques. Yet new stereological principles keep occurring

1in Histoire Naturelle Générale et Particulière, Servant de Suite à l’Histoire Naturelle de
l’Homme, Supplements, Forth volume, XXIII, 1777, p 95–100
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and the field is in constant development. For review papers on stereology see e.g.
Baddeley (1993); Jensen et al. (1985); Stoyan (1990).

A fundamental property of the stereological procedures is that no model as-
sumptions on the object of interest are necessary (here disregarding assumptions
of compactness and so on) which makes techniques relevant for practitioners
in e.g. biomedicine where properties such as spatial homogeneity may not be
satisfied.

With a design based approach where the probe (e.g. a line, a line system, a
point grid, a plane etc.) providing the observations is randomised appropriately
one can obtain unbiased estimators of e.g. volume, surface area and length. In
the eyes of a practitioner unbiasedness is an important property of an estimator.
However, a statistician does not settle with unbiasedness, the precision of the
estimator is an equally important issue.

The present thesis contains four scientific papers, all dealing with issues
relating to the precision of the stereological estimators. In Paper A, image-based
empirical importance sampling is introduced as an efficient tool for improving the
precision of estimators of intensities. Paper B describes a new local stereological
estimator of volume, the semi-automatic nucleator, with higher precision than
the traditional nucleator estimator. The new estimator uses computerised image
analysis. In Paper C , a flexible model for star-shaped random sets is developed
where the radial function is modelled by a kernel smoothing of a Lévy basis. For
the resulting random sets, called Lévy particles, it is possible to derive formulae
for the precision of a number of local stereological estimators, see Paper D .

The main results of the four papers are described below.

1.2 Non-uniform sampling (Paper A)

In Paper A we assume that a realisation of a point process Φ is available for
observation in a bounded subset X of R2 of area A(X). The aim is to predict
the total number N(Φ ∩X) of points in X or equivalently the area weighted
total number NA = N(Φ ∩X)/A(X). In the applications we have in mind, the
points of Φ represent the positions of the objects in a digital or analog image.
In the example of Figure 1.1 (left), X corresponds to the region delineated
by blue at low magnification and Φ represents the green cells which are of
interest. Counting of the cells has to be performed at high magnification and it
is impracticable to count every single cell falling inside X.

Hence, the aim is to obtain N(Φ∩X) from observation in a randomly placed
window QU = Q+ U , hitting X. Here, Q ⊂ R2 is bounded and is assumed to
contain the origin O. The position of the window is determined by the random
vector U ∈ R2. For an illustration of the framework see Figure 1.1 (right).

Say, we are allowed to base our prediction of NA on the observations from N
windows QU1 , QU2 , . . . , QUN then, dependent on the distribution of the points Φ,
different strategies might preferred. First, the variables U1, U2, . . . , UN can be
chosen independent and uniformly within the set X̄ := {u ∈ R2 : X ∩Qu 6= ∅ }.

2
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X
Q

O

u
Qu

Figure 1.1: Left. In this microscopy image the green cells constitute a realisation
of Φ and the region X is delineated in blue. Right. The red dots show a realisation of
the point process Φ which is available for observation within the set X delineated by
the blue line. The window Q and the by u translated version thereof Qu are shown in
black.

This type is known as simple random sampling. Alternatively, U1, U2, . . . , UN
can be chosen in an equidistant systematic manor with uniform placement. This
approach is known as systematic uniform random sampling.

In the applications to microscopy, the points of Φ typically represent the
positions of the objects in a digital or analog image. As mentioned earlier,
examination of a window and counting the points can only be performed at high
magnification of the microscopic image and is therefore time consuming. Hence,
it is crucial to obtain as much information as possible from the time spent. Even
though systematic uniform random sampling introduce a significant increase in
efficiency compared to simple random sampling many windows might contain
very little information if the points are inhomogeneously distributed.

Recently non-uniform sampling has been introduced to stereology in the
biomedical literature under the name of the proportionator. This technique
utilise computerised analysis of microscopy images to redirect the sampling of
an inhomogeneous cell population (Gardi et al., 2008, 2007). The proportion-
ator proves to be of utmost relevance when dealing with inhomogeneous cell
population and it is found to outperform systematic uniform random sampling.

In Paper A, a solid mathematical foundation for the proportionator is pro-
vided by relating the proportionator to the well understood statistical concept
of importance sampling. The idea underlying importance sampling is to sample
from an alternative distribution than the one from which we want to perform
inference. A good alternative distribution is one that redirect the sampling to the
part of the state space which contributes the most to the parameter of interest
(Asmussen and Glynn, 2007). By redirecting the sampling according to com-
puterised analysis of microscopy images this is exactly what the proportionator
technique set out to exploit. We notice that, also the proportionator tech-
nique has an analogy within survey sampling known as the Horwitz–Thompson
estimator (Horvitz and Thompson, 1952).

3
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In applications, it might not always be straightforward how to choose the
alternative sampling distribution. If p is the traditional sampling distribution over
the region X, we study in Paper A the performance of a sampling distribution
of the form

Z( · )∫
Z

p( · |Z)

Here, Z denotes a random field (available on X̄) and
∫
Z denotes integration

of Z over its entire domain with respect to Lebesgue measure.
In applications, Z may be readily available for instance via colour proportions

in a grayscale image (Gardi et al., 2007, Fig. 3, Fig. 4 and Fig. 5). The gain
in efficiency obtained depend of course on the information contained in the
grayscale image. If the redirection of the sampling is done appropriately a gain
in efficiency without increasing the workload can be expected by using the
proportionator. Based on three biological examples Gardi et al. (2007) report
an 8–25 fold increase in efficiency and these findings are supported by substantial
simulation studies (Gardi et al., 2008).

In addition to laying out a sound mathematical foundation for this type
of empirical importance sampling Paper A provide statistical tools for assess-
ing its efficiency. Moreover, optimal model based estimators of intensities are
constructed under the assumption of a proportional regression. The proposed
optimal estimator and a corresponding estimator obtained from weighted ran-
dom sampling is studied in the light of the data example of Gardi et al. (2007,
Fig. 3). In that concrete example it is found that given the random field Z and
the sampling design, the variance of the traditional proportionator estimator is
about three times the variance of the optimal estimator.

For the proportionator method some additional readily available information
is required in order to establish the non-uniform sampling distribution. This
information can be available as a grayscale image of the object under study.
Due to the immense progress of computerised image analysis such auxiliary
information can be easily accessible without increasing the workload. The positive
results on non-uniform sampling reported above encouraged the implementation
to other stereological methods.

1.2.1 The nucleator and non-uniform sampling

A number of stereological volume estimators are available in the literature, cf. e.g.
Jensen (1998, Table 7.1). All of these estimators are unbiased and do not require
any specific shape assumptions. One, the nucleator (Gundersen, 1988) has
enjoyed repeated use in application. For recent applications to neuroscience and
biology, see Abrahão et al. (2009) and Melo et al. (2009). Below and in Paper B ,
we set out to improve the efficiency of the nucleator by incorporating auxiliary
information.

The nucleator belongs to a branch of stereology, called local stereology, where
the random section plane is restricted to pass through a fixed reference point

4
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(Jensen, 1998). In biological applications, such a reference point could typically
be the nucleus or nucleolus of a cell. If no obvious reference point is visible, then
the centre of mass might be used as the reference point.

Let Y denote a three-dimensional particle containing a fixed reference point o.
Following the notation of Paper B we let L2 denote an isotropic plane through o.
The normal vector of such a random plane is uniformly distributed on a unit
half-sphere. Furthermore, L1 is a line in L2 through o. Notice that, L1 can
be uniquely determined by the angle θ ∈ [0, π) it generates with a fixed axis
within L2. If needed, this specific line is denoted L1(θ).

Then the nucleator estimator of V (Y ) is given by

mcl1(Y ∩ L1) = 2π

∫
Y ∩L1

d(y, o)2 dy,

where L1 is uniformly oriented, that is θ is uniformly distributed on [0, π).
Here, d(y, x) denotes the Euclidean distance between the points x, y ∈ R3. In
the case where Y ∩ L1 forms a single line segment [y−, y+] the estimator takes
the simple form

mcl1(Y ∩ L1) = 2π
3

(
d(y−, o)

3 + d(y+, o)
3
)
.

The nucleator is an unbiased estimator of V (Y ), i.e. E(mcl1(Y ∩ L1)) = V (Y ).
To increase the precision of the nucleator estimator it is found useful to base

the estimator is based on a systematic set of lines within L2. In applications,
this systematic version of the nucleator is frequently used and systems of two
or four lines are often sufficient. We indicate the number of lines on which the
nucleator estimator is based by the lower index, e.g. mcl2 is the notation used
for a nucleator based on two systematic lines.

Setting out to combine non-uniform sampling and the nucleator principle
we need some auxiliary information to redirect the sampling. In the application
to microscopy, this additional information can be available from segmentation
of the microscopy image. Let Ỹ2 denote the segmented cell transect Y ∩ L2. If
the segmentation procedure is without error, Ỹ2 = Y ∩ L2; otherwise Ỹ2 may be
regarded as an estimate of Y ∩L2. The idea is then to reduce the within section
variance of the classical nucleator by changing the orientation distribution of θ
from uniform to a weighted distribution by using the information from Ỹ2. More
precisely, we considered lines L1 = L1(θ) with the following orientation density
distribution q, depending on the shape of Ỹ2

q(θ) ∝
∫
Ỹ2∩L1

d(y, o)2 dy, θ ∈ [0, π).

The new estimator is then given by

mprop(Y ∩ L1(θ)) = mcl1(Y ∩ L1(θ))
/

(π q(θ)),
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where θ is distributed according to q. Noticing that

E
(
mprop(Y ∩ L1)

∣∣ L2

)
=

1

π

∫ π

0

mcl1(Y ∩ L1(θ)) dθ

and utilising that the nucleator in an unbiased estimator of V (Y ) one finds that
also mprop(Y ∩ L1) is an unbiased estimator of V (Y ).

Statements concerning the variance ofmprop can be accessed from the variance
decomposition

Var(mprop(Y ∩ L1)) = Var(E[mprop(Y ∩ L1)|L2]) + E[Var(mprop(Y ∩ L1))|L2].

It is seen that the minimal within section variance is obtained when, for almost
all L2, Var(mprop(Y ∩ L1)|L2) = 0. This is achieved if mcl1(Ỹ2 ∩ L1(θ)) is
proportional to mcl1(Y ∩ L1(θ)). In applications, this implies that the gain in
efficiency from using mprop instead of mcl1 depends on the quality of Ỹ2.

This proportionator nucleator approach is an attempt to use more of the
observed information from the section plane L2 and incorporate this in the
estimation procedure in order to increase the efficiency in terms of within section
variance reduction and at the same time keep the workload at a minimum. A
simulation study in Jensen (2000) indicates that it can indeed be expected for
such a proportionator nucleator volume estimator to have a reduced within
section variability if there is an appropriate resemblance between the actual
transect of the object of interest and the rough estimate thereof.

In the neurone data set analysed in this thesis (see Paper B below) it
was found that the estimator variance of mprop is smaller that the estimator
variance of mcl1 but larger than the estimator variance of mcl2 . As stated in
the discussion of Paper B this result might be explained by the following: (i)
the estimator mcl2 has already a small within section variability due to the
antithetic effect of the two perpendicular lines and (ii) the true cell transects of
this particular data set are not very irregular in shape and hence the variance
reducing effect of weighted sampling cannot compensate for the effect that
some extra within section variability is introduced when mprop is used in case of
non-perfect segmentation.

In Paper B to be presented next, we use the information available in the
segmented cell transects Ỹ2 in a semi-automatic estimation procedure. Thereby,
an attractive new method for local stereological volume estimation, providing
an increase in efficiency compared to the classical nucleator, is achieved.

1.3 Semi-automatic procedures (Paper B)

The basic idea of Paper B is to combine the nucleator technique with the
so-called integrated nucleator. The integrated nucleator is a local estimator of
volume based on information from the entire transect Y ∩ L2. The estimator is
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given by (Jensen, 1998)

mint(Y ∩ L2) = 2

∫
Y ∩L2

d(y, o) dy2.

Here, dy2 denotes the element of the area measure on L2.
Even though, the integrated nucleator has zero within section variance, mint

has not been used much in practice. The explaining factor might be that mint

requires well-behaved automatic image segmentation.
In Paper B we propose a semi-automatic procedure that requires an expert

to judge whether the segmentation Ỹ2 is satisfactory (according to some criteria)
and then a semi-automatic estimation procedure is performed,

msemi(Y ∩ L2) =

{
mint(Ỹ2), if Ỹ2 is judged satisfactory,
mcl2(Y ∩ L1), otherwise

.

For an illustration see Figure 1.2. The resulting estimator is called the semi-
automatic nucleator.

integrated
nucleator

classical
nucleator

Figure 1.2: Illustration of the semi-automatic nucleator. The cell transect Y ∩ L2 is
shown as the green set while the segmented cell transect Ỹ2 is delineated by the dashed
red curve. The integrated nucleator is used if the segmentation is judged satisfactory,
otherwise the classical nucleator is used.

When Ỹ2 is judged satisfactory msemi benefits from the low variation prop-
erty of mint. Otherwise, the expert conducts a traditional nucleator procedure,
using mcl2 and disregarding Ỹ2. Hence, the workload of the semi-automatic
procedure is closely related to the segmentation quality and it will never be
larger than that associated with mcl2 .

It is not guarantied that msemi is unbiased but usually the bias will be
small. In Paper B the mean square error as well as variance relations for all
the above mentioned local stereological volume estimators are derived. It is
shown that msemi is likely to have smaller mean square error than mcl2 . The
magnitude of the gain in efficiency by using msemi instead of mcl2 will depend
on the shapes of the cells and, for a given cell population, on how large the
fraction of cells with satisfactory segmentation is. The semi-automatic estimator
is exemplified and compared to the various other estimators in a study of
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somatostatin positive inhibitory interneurons from mice hippocampi, observed
by optical fluorescent microscopy. In this example it is found that, in order to
obtain a relative error of the estimate of mean cell volume of 0.05, it is needed
to sample and analyze 134, 150 and 189 cells using the integrated nucleator,
semi-automatic nucleator and classical nucleator, respectively. Therefore, the
semi-automatic procedure introduce a significant reduction in workload in this
example.

For the general application to microscopy, it is required that the computerised
image segmentation is able to detect the transect boundary reasonably well in
order to obtain a significant gain in efficiency. Thus, the new semi-automatic
method presented in Paper B is mainly applicable in microscopes without
over-projection, such as confocal laser microscopes.

1.4 Particle models (Paper C and Paper D)

As pointed earlier out one of the major advances of stereology is that no specific
model assumptions are required for the construction of unbiased stereological
estimation of a number of quantitative properties of spatial structures. But
for the assessment of the precision of the estimators, a modelling approach is
required. This is the topic of Paper C and Paper D of the present thesis. Below,
we give a short summary of the results obtained. We refer to the objects under
study as particles but the concept is to be understood in a much broader context
as such a model can be used for modelling a wide range of objects such as
grains (Sato et al., 1996), cells (Wicksell, 1925, 1926) and asteroids and comets
(Muinonen, 1998).

In the beginning of the twentieth century, Wicksell proposed the corpuscle
problem in two consecutive papers Wicksell (1925, 1926) where the main task is
to recover the size distribution of spherical particles. This is now known as the
Wicksell problem and has been revisited numerous times (Mecke and Stoyan,
1980; Hoogendoorn, 1992) starting a line of papers in the literature. For reviews
on the subject see Ripley (1981); Stoyan et al. (1995); Weibel (1980). TheWicksell
problem still enjoys attention in the mathematical literature but for many
applications Wicksells spherical model is often too restrictive. In the nineteen
seventies, it was suggested to model a particle population by isotropically oriented
(prolate or oblate) ellipsoids positioned in space according to a Poisson point
process (Cruz-Orive, 1976, 1978). Later the isotropic orientation assumption
was relaxed (Girling, 1993). One pursued method for randomising the spherical
particle is to randomise its radius, e.g. using a lognormal distribution (Muinonen
et al., 1996).

As pointed out by Miller et al. (1994) most real-world shapes and images
are strongly structured but at the same time they are indeed highly variable
and not rigid, like crystals. Miller et al. (1994) consider modelling a spatial
particle with no obvious landmarks. They represent the particle by a global
translation and a normal deformation of a sphere where the normal deformation
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is defined using the orthonormal spherical harmonic basis, see also Grenander
(1993). The spherical deformation model is revisited in Hobolth (2003) where it
is employed to summarise the shape of star-shaped three-dimensional objects
using few parameters. See also the early paper Hobolth and Jensen (2000) where
they consider a two-dimensional particle modelling of similar type.

Common for the above models are that they assume a predetermined rigid
shape (spherical or ellipsoidal) or use a deformation of such. Over the last
decades, a new approach for particle modelling has been suggested. The idea is
to identify the particle Y with its radial function RY . This approach requires
that Y is compact and star-shaped with respect to some fixed point o inside Y .
Let S2 = {x ∈ R3 : ‖x‖ = 1 } denote the unit sphere. Then, the radial function
in direction u ∈ S2 is given by

RY (u) = max{ r ≥ 0 : o+ ru ∈ Y },

(Gardner, 2006). For an illustration of a two-dimensional particle Y and its
radial function in direction u, see Figure 1.4 (left).

The approach is now to assume a random field model for the radial function. In
Hobolth et al. (2003) they propose a parametric model for the normalised radial
function using polar Fourier expansion where the expected phase amplitudes
are modelled by a simple regression and the parameters of the regression have
nice geometric interpretations.

1.4.1 Lévy particles (Paper C and Paper D)

Both Paper C and Paper D consider three-dimensional particle models using a
random field model for the associated radial function. In Paper C the radial
function is modelled as a kernel smoothing of a Lévy basis of the form

RY (u) =

∫
S2
K(v, u) Γ(dv), u ∈ S2. (1.1)

Here, K denotes a deterministic kernel function and Γ is a Lévy basis on the
Borel subsets of S2. Figure 1.3 shows examples of simulated Lévy particles. The
examples are taken from Paper C which contains further examples of simulated
Lévy particles along with the simulation algorithm used.

A more general version of the model (1.1) is considered in Jónsdóttir et al.
(2008). In Paper D a power transformation of the model is considered.

In the following a short introduction to Lévy bases as considered in connection
with the model (1.1) is provided along with some nice properties thereof. For
further expositions of Lévy bases, cf. Hellmund et al. (2008); Jónsdóttir et al.
(2008); Barndorff-Nielsen and Schmiegel (2004).

A random measure Γ on the Borel subsets B(S2) of S2 is said to be a Lévy
basis (Barndorff-Nielsen and Schmiegel, 2004) if Γ is (i) an infinitely divisible
and (ii) independently scattered random measure, i.e. if Γ fulfils
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Figure 1.3: Examples of simulated Lévy particles under the model 1.1.

(i) for every A ∈ B(S2) and every n ∈ N there exist a sequence of indepen-
dent and identically distributed random variables Γ1,Γ2, . . . ,Γn such that∑n

i=1 Γi ∼ Γ(A).

(ii) for {An}n ⊆ B(S2) a sequence of disjoint Borel sets, then {Γ(An)}n are
independent random variables and

∑
n Γ(An) = Γ(∪nAn) almost surely.

Furthermore, Γ is called a non-negative Lévy basis if Γ(A) is positive for
all A ∈ B(S2). In Paper C and Paper D , three different Lévy bases are considered,
a Gaussian basis, a gamma basis and an inverse Gaussian basis, respectively,
see Table 1.1.

Table 1.1: The three Lévy bases considered in the thesis.

Lévy basis Γ(dv) parameters

Gaussian N (µdv, σ2 dv) µ ∈ R, σ2 > 0

gamma Ga(κdv, τ) κ > 0, τ > 0

inverse Gaussian IG(δdv, γ) δ > 0, γ > 0

For the gamma distribution Ga(κ, τ) and the inverse Gaussian distribu-
tion IG(δ, γ) the following parametrisation of the respective densities are used

τκ

Γ(κ)
yκ−1e−τy, y > 0. and

δeδγ√
2π
y3/2 exp

{
−1

2

(
δ2 1

y
+ γ2y

)}
, y > 0

An attractive property of a Lévy integral such as (1.1) is the tractability of
its cumulant function. Here, following (Barndorff-Nielsen and Schmiegel, 2004),
the cumulant function C( · ,W ) of a random variable W denotes the logarithm
of its characteristic function, i.e. C(t,W ) = log E(exp{itW}), for t ∈ R. The
tractability of the cumulant function of the integral (1.1) is a consequence of the
Lévy–Khintchine representation of C(t,Γ(A)), cf. e.g. Hellmund et al. (2008),

C(t,Γ(A)) = ita(A) + 1
2
t2b(A) +

∫
R

[
eitr − 1− itr1[−1,1](r)

]
U(dr, A).
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Here, a is a signed measure, b is a positive measure and, for fixed r, U(dr, · ) is a
measure on B(S2). Moreover, for fixed A then U( · , A) is a Lévy measure on the
Borel sets B(R) of R. Indeed, U if a measure on the product space B(R)⊗B(S2)
and the triplet(a, b, U) is known as the characteristic triplet of Γ.

In this thesis, only Lévy bases where the measures a and b are absolutely
continuous with respect to the element of Lebesgue measure on S2 are considered,
i.e. a(dv) = ã(v) dv and b(dv) = b̃(v) dv. Moreover, the considered Lévy bases
have the property that U( · , dv) = V ( · , v) dv, where V ( · , v) is a Lévy measure
for each fixed v ∈ S2. The cumulant function of Γ(A) has the representation

C(t,Γ(A)) =

∫
A

C(t,Γ′(v)) dv,

where Γ′(v) is the random variable with cumulant function

C(t,Γ′(v)) = itã(v) + 1
2
t2b̃(v) +

∫
R

[
eitr − 1− itr1[−1,1](r)

]
V (dr, v).

The so-called spot variable Γ′(v) characterises Γ at position v.
Integration of a measurable function f on (S2,B(S2)) with respect to a Lévy

basis
∫
S2 f(v) Γ(dv) obey an appealing cumulant function property (Hellmund

et al., 2008; Rajput and Rosinski, 1989),

C
(
t,

∫
S2
f(v) Γ(dv)

)
=

∫
S2
C
(
tf(v),Γ′(v)

)
dv.

Using this result, it is possible to obtain moment results for
∫
S2 f(v) Γ(dv). For

the first and second order moments one finds,

E
(∫

S2
f(v) Γ(dv)

)
=

∫
S2
f(v) Γ′(v) dv

and

Var
(∫

S2
f(v) Γ(dv)

)
=

∫
S2
f(v)2 Γ′(v) dv.

For two measurable functions f1, f2, the mutual covariance of the corresponding
Lévy integrals is given by

Cov
(∫

S2
f1(v) Γ(dv),

∫
S2
f2(v) Γ(dv)

)
=

∫
S2
f1(v)f2(v) Γ′(v) dv. (1.2)

Notice that, for each u, the right hand side of (1.1) is a Lévy integral and
hence the above moment relations apply for the model. For the Lévy bases of
Table 1.1 the function ã and b̃ and V (r, v), for every fixed r, are independent
of v and hence the Lévy basis Γ is homogeneous (Hellmund et al., 2008) and
the distribution of the Γ′(v) does not depend on v.

Lévy bases have also been used in point process modelling for driving the
random intensity of shot-noise Cox point processes (Wolpert and Ickstadt, 1998)
and of the more general Cox point processes (Hellmund et al., 2008).
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1.4.2 Stereology and Lévy particles (Paper D)

It is generally not possible to provide explicit expressions on the precision of a
design based estimator. Often, the precision is discussed in terms of asymptotic
variance results. The task is often simplified (or made possible) by assuming a
model for the object under study. Naturally, any model assumptions need to be
justifiable for the applications in mind and can therefore not be too restrictive.

With the earlier presented nucleator estimators in mind a model for a suitable
power transformation of the radial function seems attractable. This is exactly
what is considered in Paper D and this modelling approach goes well together
with local stereological methods. The considered model for the radial function is

RY (u) =
{∫

S2
K(v, u) Γ(dv)

}1/p

, u ∈ S2. (1.3)

Here, Γ is a nonnegative Lévy basis and p > 0. In Paper D the focus is on the case
where K is isotropic, in that, for points v, u ∈ S2, K(v, u) = k(ϑ(v, u)) depends
only on the great-circle distance between v and u only. It is shown that under
the model (1.3) with p = 3 and an arbitrary isotropic kernel, the distribution of
the volume of the random particle Y belongs to the same distributional family
as the Lévy basis itself. Moreover, the distribution of local stereological volume
estimators such as the nucleator and the integrated nucleator are considered
and their respective distributions are derived.

Local stereology goes particularly well together with a modelling approach
based on the radial function. The reason is that an observation of the radial
function in a planar section Y ∩ L2 in direction u coincides with the radial
function of Y for each u ∈ S2 ∩ L2, i.e. RY ∩L2(u) = RY (u), for u ∈ Y ∩ L2.
Here, L2 denotes a plane through o.

If instead observations are available from projections of the particle onto a
projection plane, then a different course of action might be desirable. In geometric
tomography where information is often available from particle projections the
support function plays an important role. The reason is that the support function
is an important tool when analysing particle projections, see Gardner (2006).
The support function is defined for convex sets and hence we now restrict Y to
be convex. The support function HY of Y is given by (Gardner, 2006),

HY (u) = max{u · v : v ∈ Y }, u ∈ S2.

The support function in direction u gives the distance from o to the supporting
hyperplane with normal vector u. For an illustration in a two-dimensional setting,
see Figure 1.4 (right).

Following (1.1) the support function HY (u) is modelled by

HY (u) =

∫
S2
h(v, u) Γ(dv), u ∈ S2. (1.4)

For the right hand side of (1.4) to be a support function it is required that Γ is
nonnegative and that for each v ∈ S2, the kernel function h(v, ·) is a support
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o

RY(u)

u
o

HY(u~)

u~

Figure 1.4: For the two-dimensional particles Y (grey), the radial function RY (u)
in direction u (left) and the support function HY (ũ) in direction ũ along with the
supporting hyperplane (dashed line) with normal vector ũ (right) are shown.

function. Then the linearity of integration with respect to Γ(dv) assure that the
right side of (1.4) becomes a support function (Schneider, 1993, Theorem 1.7.1).
Recall that a function is sub-linear if and only if it is both convex and homo-
geneous. Thus, as x 7→ x1/p is convex for p ≤ 1, we also have the more general
model

HY (u) =
{∫

S2
h(v, u) Γ(dv)

}1/p

, p ≤ 1.

An explicit relation between the radial function and the support function
might allow for a comparison of local and pivotal volume estimators under the
same Lévy particle model. Such a relation is at present unknown to us. Though,
for a strict convex set Y a more implicit relation do exist, as RY (∇HY (u)) = 1,
where ∇HY (u) denotes the gradient of HY at u (Schneider, 1993, Corollary
1.7.3).

We notice that the idea of leaving a strictly design based set-up and instead
use a combined design based and model based set-up was also used in Paper A
where it allowed us to obtain an optimal predictor for the total number of cells
in a cell population.

1.4.3 Surface behaviour of Lévy particles (Paper C)

Due to the freedom in the choice of both kernel and Lévy basis the Lévy particle
model (1.1) is very flexible. Thus, it is possible to model a rich class of particles.
Paper C studies some aspects of this model with focus on the surface behaviour
of Y considered in terms of the Hausdorff dimension.

The Hausdorff (fractal) dimension D(Z) of a set Z is a number quantifying
the roughness of the set Z when observed at infinitesimal scale. The Hausdorff
dimension of a random field is closely connected to the second order properties
of the random field (Adler, 1981). For stationary random fields, D is determined
by the behaviour of the covariance function near the origin.
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In Paper C the model (1.1) is studied for isotropic kernels. For such a
kernel, using (1.2), the correlation of RY (u), RY (u′) of points u, u′ at great-circle
distance θ ∈ [0, π], can be expressed as

C(θ) =
2

c2

∫ π

0

∫ π

0

k(λ)k(arccos(sinλ sin θ cosφ+ cosλ cos θ)) sinλ dλ dφ, (1.5)

where c2 = 2π
∫ π

0
k(λ)2 sinλ dλ.

Let Z = {(u,RY (u)) : u ∈ S2} denote the surface (shell) of Y and let
Zc = max{Z, c}, c > 0, denote a cut-off version thereof. If Γ is a Gaussian Lévy
basis then Paper C establish that the Hausdorff dimension of Zc, is determined
by the asymptotic behaviour of C(θ)− C(0) near zero. For different parametric
kernel families the asymptotic behaviour of C(θ)−C(0) near zero is determined
and the corresponding Hausdorff dimension of Zc is provided. For the von
Mises–Fisher kernel,

k(θ) = exp{a cos θ}, 0 ≤ θ ≤ π, a ∈ R,

and the uniform kernel

k(θ) = 1{θ<r}, 0 ≤ θ ≤ π, a ∈ R,

the particle surface Zc is shown to have Hausdorff dimension 2 and 2.5, respec-
tively. For the power kernel,

k(θ) = (θ/π)−q − 1, 0 < θ ≤ π, 0 < q < 1,

the asymptotic behaviour of C(θ) − C(0) near zero is conjectured to be pro-
portional to θ2(1−q) which leads to the corresponding particle surface having
Hausdorff dimension 2 + q.

In the process of determining the asymptotic behaviour of C(θ)− C(0) near
zero for the truncated kernel family, the scheme for a random field over R2 was
also considered. In the following the results found in this planar setting are
reported. These results do not appear in any of the four papers attached to the
present thesis.

1.5 Surface behaviour of a Lévy field on R2

Let X = {X(t) : t ∈ R2 } be the centred, real valued random field, given by

X(t) =

∫
R2

K(s, t) Γ(ds).

Here, K is a deterministic kernel function and Γ is the centred, homogeneous
Gaussian basis on the Borel subsets of R2 given by Γ(dv) ∼ N (0, σ2 dv),
for σ2 > 0. This model is a special case of the linear spatio-temporal Lévy model
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proposed in Jónsdóttir et al. (2008). We assume that K is isotropic, that is,
for t, s,∈ R2, K(v, u) = k(‖t−u‖) is a , i.e. k(s, t) is a function of the Euclidean
distance ‖t− s‖ between t and s only.

Let (t1, t2) ∈ R2 such that ‖t1 − t2‖ = h ∈ [0,∞). Then, using polar
decomposition and Jónsdóttir et al. (2008, Eq. (11)), we find

Cov(X(t1), X(t2)) = 2σ2

∫ ∞
0

r k(r)

∫ π

0

k
(√

r2 + h2 − 2rh cosφ
)

dφ dr. (1.6)

This shows that Cov(X(t1), X(t2)) only depends on ‖t1− t2‖, i.e. X is isotropic.
That is, the isotropic nature of the kernel function is carried over to the random
field. Let c2 =

∫∞
0
r k(r)2 dr. Then, the correlation function of X becomes

C(h) =
1

π c2

∫ ∞
0

r k(r)

∫ π

0

k
(√

r2 + h2 − 2rh cosφ
)

dφ dr.

The Gaussian distribution of the Lévy basis is carried over to the random field
such that X is again a centred Gaussian random field with covariance determined
by (1.6). The Hausdorff dimension of the graph Gr X = {(t,X(t)) : t ∈ R2}
of X is D(Gr X) = 3− α/2, where α is given by

α = sup
{
β > 0 : [C(0)− C(h)] = o(hβ), h ↓ 0

}
= inf

{
β > 0 : hβ = o([C(0)− C(h)]), h ↓ 0

}
,

(Adler, 1981). The number α is called the (fractal) index of X.
In the following, the behaviour of [C(0) − C(h)] is studied in this planar

setting under the assumption of the truncated power kernel. The truncated
power kernel is in this setting given by

k(r) =

{
r−q − 1, 0 < r ≤ 1

0, otherwise
, 0 < q < 1. (1.7)

Provided that the integral (1.8) is strictly positive the asymptotic behaviour
of C(0) − C(h) near 0 is given by Theorem 1.1 below. The Hausdorff dimen-
sion D(Gr X) = 2 + q is then a direct consequence thereof.

Theorem 1.1. Let 0 < q < 1 and

Aq =

∫ ∞
0

x1−q
∫ π

0

[
x−q − (x2 + 1− 2x cosφ)−q/2

]
dφ dx ∈ [0,∞). (1.8)

Let C be the covariance function (1.6) with k the power kernel (1.7). Provided
that Aq > 0, then[

C(0)− C(h)
]
∼ 2π c2Aq h

2(1−q), h→ 0.

If needed, the integral Aq can be found using numerical integration.
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Proof. Let h ≥ 0. For r ∈ (0, 1), let g(h, r, φ) =
√
r2 + h2 − 2rh cosφ andA(r) =

{φ ∈ [0, π] : g(h, r, φ) ∈ (0, 1] }. Then,

C(0)−C(h)

π c2

=

∫ 1

0

r[r−q − 1]
{∫ π

0

[r−q − 1] dφ−
∫
A(r)

[g(h, r, φ)−q − 1] dφ
}

dr.

For 0 < r < 1 − h, A(r) = [0, π], whereas A(r) ⊂ [0, π], for 1 − h < r < 1.
Hence, we conduct the integration with respect to r in a two-step procedure.
First, notice that a Taylor expansion around zero implies ((1−h)−q− 1) = O(h).
Furthermore, for h small enough, say h < h0, the integral difference within the
curly brackets is smaller than one. Now, for h < h0, an application of the first
mean value theorem for integration yield that there exists t ∈ (1− h, 1) such
that ∫ 1

1−h
r[r−q − 1]

{∫ π

0

[r−q − 1] dφ−
∫
A(r)

[g(h, r, φ)−q − 1] dφ
}

dr

= ht[t−q − 1]
{∫ π

0

[t−q − 1] dφ−
∫
A(t)

[g(h, t, φ)−q − 1] dφ
}

≤ h[(1− h)−q − 1]

= O(h2).

Applying the substitution r = hx yields for the remaining integral term∫ 1−h

0

r
[
r−q − 1

] ∫ π

0

[
r−q − g(h, r, φ)−q

]
dφ dr

= h2(1−q)
∫ 1−h

h

0

x
[
x−q − hq

] ∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ dx.

Notice that, for x→ 0,∫ π

0

[
x−q− g(1, x, φ)−q

]
dφ = πx−q−

∫ π

0

g(1, x, φ)−q dφ = πx−q +O(x0) ∼ πx−q.

Furthermore, for x→∞, a Taylor expansion of (1 + y)−q/2 around y = 0 yields,∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ = x−q

∫ π

0

[
1− g(1, x−1, φ)−q

]
dφ ∼ −π q2

4
x−q−2.

Thus, both integrals∫ ∞
0

x1−q
∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ dx

and ∫ ∞
0

x

∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ dx
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exist both at 0 and at ∞. Hence, we get the following limit result

∫ 1−h
h

0

x
[
x−q − hq

] ∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ dx

−−−−→
h→0

∫ ∞
0

x1−q
∫ π

0

[
x−q − g(1, x, φ)−q

]
dφ dx <∞.

which concludes the proof.

The literature contains a rich discussion of Hausdorff dimension and the
estimation thereof for Gaussian random fields over general Euclidean spaces,
cf. Adler (1981); Xue and Xiao (2009); Gneiting et al. (2011) and references
therein.

Bibliography
Abrahão, L. M., Nyengaard, J. R., Sasahara, T. H., Gomes, S. P., Oliveira Fda, R.,

Ladd, F. V., Ladd, A. A., Melo, M. P., Machado, M. R., Melo, S. R., and Ribeiro,
A. A. (2009). Asymmetric post-natal development of superior cervical ganglion of
paca (Agouti paca). International Journal of Developmental Neuroscience, 27:37–45.

Adler, R. J. (1981). The Geometry of Random Fields. John Wiley and Sons, Chichester.

Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation. Springer Sci-
ence+Business Media, LLC.

Baddeley, A. and Jensen, E. B. V. (2005). Stereology for statisticians. Chapman &
Hall, Boca Raton.

Baddeley, A. J. (1993). Stereology and survey sampling theory. In Proceedings of the
49th Session of the International Statistical Institute, volume 2, pages 435–449.

Barndorff-Nielsen, O. E. and Schmiegel, J. (2004). Lévy-based tempo-spatial modelling;
with applications to turbulence. Uspekhi Matematicheskikh Nauk, 159:63–90.

Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons, New York.

Cruz-Orive, L. M. (1976). Particle size-shape distributions: the generel spheroid
problem. I. Mathematical model. Journal of Microscopy, 107:235–253.

Cruz-Orive, L. M. (1978). Particle size-shape distributions: the generel spheroid
problem. II. Stochastic model and particle guide. Journal of Microscop, 112:153–
167.

Davy, P. J. and Miles, R. E. (1977). Sampling theory for opaque spatial specimens.
Journal of the Royal Statistical Society. Series B (Methodological), 39(1):56–65.

Delesse, A. E. O. J. (1847). Procédé mécanique pour déterminer la composition des
roches. Comptes Rendues de l’Académie des Sciences, 25:544–545.

Delesse, A. E. O. J. (1848). Procédé mécanique pour déterminer la composition des
roches. Anales des Mines, 13:379–388. Quatrième série.

17



Bibliography

Gardi, J., Nyengaard, J., and Gundersen, H. (2008). The proportionator: Unbiased
stereological estimation using biased automatic image analysis and non-uniform
probability proportional to size sampling. Computers in Biology and Medicine,
38(3):313–328.

Gardi, J. E., Nyengaard, J. R., and Gundersen, H. J. G. (2007). Automatic sampling for
unbiased and efficient stereological estimation using the proportionator in biological
studies. Journal of Microscopy, 230:108–120.

Gardner, R. J. (2006). Geometric tomography. Cambridge University Press, New York.

Girling, A. J. (1993). Shape analysis for the anisotropic corpuscle problem. Journal of
the Royal Statistical Society. Series B (Methodological), 55(3):675–686.

Gneiting, T., Sevcikova, H., and Percival, D. B. (2011). Estimators of Fractal Dimension:
Assessing the Roughness of Time Series and Spatial Data. http://adsabs.harvard.
edu/abs/2011arXiv1101.1444G.

Grenander, U. (1993). General pattern theory. Oxford University Press, Oxford.

Gundersen, H. J. G. (1988). The nucleator. Journal of Microscopy, 151:3–21.

Hellmund, G., Prokešová, M., and Jensen, E. B. V. (2008). Lévy based cox point
processes. Advances in Applied Probability, 40:603–629.

Hobolth, A. (2003). The spherical deformation model. Biostatistics, 4(4):583–595.

Hobolth, A. and Jensen, E. B. V. (2000). Modelling stochastic changes in curve
shape, with an application to cancer diagnostics. Advances in Applied Probability,
32(2):344–362.

Hobolth, A., Pedersen, J., and Jensen, E. (2003). A continuous parametric shape
model. Annals of the Institute of Statistical Mathematics, 55:227–242.

Hoogendoorn, A. (1992). Estimating the weight undersize distribution for the wicksell
problem. Statistica Neerlandica, 46(4):259–282.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical Association,
47:663–685.

Jensen, E. B., Baddeley, A. J., Gundersen, H. J. G., and Sundberg, R. (1985). Recent
trends in stereology. International Statistical Review, 53(1):99–108.

Jensen, E. B. V. (1998). Local Stereology. World Scientific Publishing, Singapore.

Jensen, E. B. V. (2000). On the variance of local stereological volume estimators.
Image Analysis and Stereology, 19:15–18.

Jónsdóttir, K. Y., Schmiegel, J., and Jensen, E. B. V. (2008). Lévy based growth
models. Bernoulli, 14:62–90.

Mecke, J. and Stoyan, D. (1980). Stereological problems for spherical particles.
Mathematische Nachrichten, 96(1):311–317.

Melo, S. R., Nyengaard, J. R., da Roza Oliveira, F., Ladd, F. V. L., Abrahão, L. M. B.,
Machado, M. R., Sasahara, T. H., de Melo, M. P., and Ribeiro, A. A. C. (2009). The
developing left superior cervical ganglion of pacas (agouti paca). The Anatomical
Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(7):966–975.

18



Bibliography

Miles, R. E. (1978a). The importance of proper model specification in stereology, pages
115–136. Springer.

Miles, R. E. (1978b). The sampling, by quadrats, of planar aggregates. Journal of
Microscopy, 113:257–267.

Miles, R. E. and Davy, P. J. (1976). Precise and general conditions for the validity of
a comprehensive set of stereological fundamental formulae. Journal of Microscopy,
107:211–226.

Miles, R. E. and Davy, P. J. (1977). On the choice of quadrats in stereology. Journal
of Microscopy, 110:27–44.

Miller, M. I., Joshi, S., Maffitt, D. R., Mcnally, J. G., and Grenander, U. (1994).
Membranes, mitochondria and amoebae: shape models. Journal of Applied Statistics,
21(1):141–163.

Muinonen, K. (1998). Introducing the Gaussian shape hypothesis for asteroids and
comets. Astronomy and Astrophysics, 332:1087–1098.

Muinonen, K., Nousiainen, T., Fast, P., Lumme, K., and Peltoniemi, J. I. (1996).
Light scattering by Gaussian random particles: ray optics approximation. Journal
of Quantitative Spectroscopy and Radiative Transfer, 55(5):577–601.

Rajput, B. S. and Rosinski, J. (1989). Spectral representations of infinitely divisible
processes. Probability Theory and Related Fields, 82:451–487.

Ripley, B. D. (1981). Spatial statistics. John Wiley & Sons, Inc., Hoboken, New Jersey.

Sato, E., Kondo, N., and Wakai, F. (1996). Particle size, shape and orientation distribu-
tions: Aeneral spheroid problem and application to deformed si3n4microstructures.
Philosophical Magazine A, 74(1):215–228.

Schneider, R. (1993). Convex bodies: the Brunn-Minkowski theory. University Press.

Stoyan, D. (1990). Stereology and stochastic geometry. International Statistical Review,
58(3):227–242.

Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic Geometry and Its
Applications. Akademie-Verlag, 2nd edition.

Thompson, S. (1992). Sampling. John Wiley & Sons.

Weibel, E. R. (1979). Stereological methods, 1. Practical methods for biological mor-
phometry. Academic Press, London.

Weibel, E. R. (1980). Stereological methods, 2. Theoretical foundations. Academic
Press, London.

Wicksell, S. D. (1925). The corpuscle problem. A mathematical study of a biometric
problem. Biometrika, 17:84–89.

Wicksell, S. D. (1926). The corpuscle problem. Second memoir. Case of ellipsoidal
corpuscles. Biometrika, 18:152–172.

Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for
spatial statistics. Biometrika, 85(2):251–267.

Xue, Y. and Xiao, Y. (2009). Fractal and Smoothness Properties of Space-Time
Gaussian Models. http://adsabs.harvard.edu/abs/2009arXiv0912.0285X.

19





P
a
p
e
r

A
Image-based empirical importance
sampling: an efficient way of
estimating intensities

Linda V. Hansen, Markus Kiderlen and Eva B. Vedel Jensen

Centre for Stochastic Geometry and Advanced Bioimaging, Department of
Mathematical Sciences, Aarhus University

Abstract: Very recently, it has been suggested in the biomedical literature to
combine computerised image analysis with non-uniform sampling in order to increase
the efficiency of estimators of intensities of biological cell populations. We give this
ingenious idea of empirical importance sampling a stochastic formulation, using point
process theory and modern sampling theory. We develop statistical tools for assessing
its efficiency and construct optimal model-based estimators of intensities. Examples of
applications of empirical importance sampling in microscopy are provided.

Key words: image analysis, importance sampling, probability proportional to size,
proportionator, stereology.
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A.1. Introduction

A.1 Introduction

Importance sampling is a general statistical technique for estimating properties
of a particular distribution, based on samples from a different distribution
than the one of interest, cf. Asmussen and Glynn (2007) and references therein.
Depending on the application, the term may refer to the process of sampling
from this alternative distribution, the process of inference, or both. By choosing
the alternative distribution appropriately, importance sampling may result in a
marked increase in estimator efficiency. The basic idea is to choose an alternative
sampling distribution in such a way that most of the sampling is done in the
part of the state space that contributes the most to the parameter of interest.

This type of sampling technique has recently been introduced in computerised
analysis of microscopy images under the name of the proportionator, Gardi
et al. (2008, 2007a), see also the early paper Dorph-Petersen et al. (2000).
This technique addresses the essential problem in the biomedical sciences that
cell populations often show pronounced inhomogeneity, being present only in
structured layers or showing marked gradients. Observing such a cell population,
using a systematic set of fields of view, will be highly inefficient because most
fields will contain no or very few cells.

An example of application of the technique suggested in Gardi et al. (2008,
2007a) is shown in Figure A.1. The aim is here to estimate the total number
of green GFP-expressing neurones, see panel B. Under low magnification, the
complete region (panel A) of interest is delineated, and by automatic image
analysis every field of view inside this region is given a weight proportional to
the amount of green colour observed under fluorescence illumination. A field
of view is automatically sampled with a probability proportional to its weight
and the number of neurones seen in the sampled field is determined under high
magnification by an expert, see panels C and D. Further examples of computer-
assisted spatial sampling may be found in Gardi et al. (2006, 2007b); Gundersen
(2002).

If the weight assigned to a field of view is positively correlated with the
number of cells seen in the field, the sampling is directed towards fields of view
with high number of cells and an increase in efficiency is expected. In Gardi
et al. (2007a), increase in efficiency ranging from 8× to 25× was indeed observed
in three biological examples without increasing the workload. This finding was
supported by extensive simulation studies Gardi et al. (2008), demonstrating
the beneficial effect of this type of empirical importance sampling.

A number of important aspects of the statistical inference for this type of
data has, however, not been addressed in Gardi et al. (2008, 2007a). The present
paper fills this gap. We provide statistical methods of judging from a pilot
experiment whether the estimator based on weighted sampling suggested in
Gardi et al. (2007a) will indeed have an increased efficiency. Such knowledge is
important for the practitioner before conducting a large-scale time-consuming
microscopy study with a particular choice of weight. Furthermore, after the
weighted sampling has been performed, an important issue is to construct
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Figure A.1: Estimating total number of GFP-expressing neurones in transgenic mice
brain. Panels A and B show the same region of interest at 10× magnification in bright
field (panel A) and during colour identification, using fluorescence light (panel B).
Counting is performed by an expert using a 60× magnification, as shown in panels C
and D. The small inserts indicate the positions of the sampled windows. For more
details, see Gardi et al. (2007a).

optimal estimators of intensities based on the available data. Such methods will
also be developed in the present paper. Compared to the standard estimator
based on weighted sampling given in Gardi et al. (2007a), the optimal estimator
may have a considerably lower variance, as will be shown in the present paper
by a concrete example.

The paper is organised as follows. In Section A.2, we summarise the concepts
needed from point process theory and sampling theory. For more detailed
accounts on these fields, cf. Møller and Waagepetersen (2004) and Thompson
(1992). Section A.3 gives a condition under which the standard estimator based
on weighted sampling will have an increased efficiency. In Section A.4, the gain
in efficiency is assessed for homogeneous point processes, including processes
from the class of Lévy driven Cox processes. Design-based inference based
on systematic weighted sampling is discussed in Section A.5. Construction
of optimal model-based estimators of intensities based on a specific choice of
weighting is developed and exemplified by the estimation of granule cell number
in Section A.6. Section A.7 contains concluding remarks. Technical details are
deferred to three appendices.
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A.2 The set-up
Throughout the paper, we will assume that a realisation of a point process Φ is
available for observation in a bounded subset X of R2 of area A(X). In addition,
a non-negative random field

Z = {Z(u) : u ∈ X },

associated with Φ, is observed in X. In the applications we have in mind, the
points of Φ represent the positions of the objects in a digital or analog image.
In the example of Figure A.1, X corresponds to the region delineated at low
magnification. Determination of the total number N(Φ ∩X) of points in X can
only be performed at high magnification of the image and is impracticable. In
contrast, the random field Z is readily available, e.g. from observation of colour
proportions at low magnification by automatic image analysis.

Our aim is to predict N(Φ ∩X) or equivalently N = N(Φ ∩X)/A(X) from
observation in a randomly placed window QU = Q+U , hitting X. Here, Q ⊂ R2

is bounded and is assumed to contain the origin o, cf. Figure A.2. The position
of the window is determined by the random vector U ∈ R2.

X
Q

O

u
Qu

Figure A.2: Illustration of the stochastic set-up.

In Gardi et al. (2008, 2007a), Φ and Z are regarded as non-random and
focus is on design-unbiased predictors N̂ of N . A predictor N̂ of N is said to be
design-unbiased if

E(N̂ |Φ, Z) = N. (A.1)

The conditional mean value in (A.1) is calculated with respect to the conditional
distribution of U given Φ, Z. When N̂ is design-unbiased,

E(N̂) = E(E(N̂ |Φ, Z)) = E(N), (A.2)

and N̂ is therefore an (unconditionally) unbiased estimator of E(N).
In the present paper, we will make statements about the quality of a predictor

across different realisations of Φ and Z. For this purpose, we will consider the
prediction error E(N̂−N)2. A predictor N̂ (1) is said to be more efficient than N̂ (2)
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if N̂ (1) has smaller prediction error than N̂ (2). For a design-unbiased predictor,
we have E(N̂) = E(N) and the prediction error can be expressed as

E(N̂ −N)2 = E
([
N̂ − E(N̂)

]
−
[
N − E(N)

])2

= Var
(
N̂
)

+ Var
(
N
)
− 2 Cov

(
N̂ ,N

)
= Var

(
N̂
)
− Var

(
N
)
. (A.3)

A.3 A simple condition for gain in efficiency
The standard predictor based on weighted sampling suggested in Gardi et al.
(2007a) will not always result in a gain in efficiency. In this section, we will give
a simple condition on Φ and Z under which the predictor based on weighted
sampling is more efficient than the one based on standard uniform random
sampling. We first present the two different types of sampling considered in
Gardi et al. (2008, 2007a).

In traditional sampling, the position u of the window is selected uniform
randomly without any reference to the random field Z. In empirical importance
sampling, the position u of the window is selected with a probability proportional
to Z(u). The two types of random windows are denoted uniform random (UR)
and proportional random (PR) windows, respectively.

A UR window is distributed as QU = Q+U where U is independent of Φ, Z
and uniform in the set X̄ for which the corresponding window hits X,

X̄ = {u ∈ R2 : X ∩Qu 6= ∅ }.

Let
C = A(X̄)

/
(A(X)A(Q)). (A.4)

The predictor
N̂UR
A = C N(Φ ∩X ∩QU) (A.5)

is a design-unbiased predictor of N . To see this, note that for any x ∈ Φ∩X we
have ∫

X̄

1Q+u(x) du =

∫
R2

1Q+u(x) du = A(Q).

Therefore,

E
[
N̂UR
A |Φ, Z

]
= E

[
N̂UR
A |Φ

]
= C

∫
X̄

N(Φ ∩X ∩ (Q+ u)) du
A(X̄)

= 1
A(X)A(Q)

∑
x∈Φ∩X

∫
X̄

1Q+u(x) du

=
N(Φ ∩X)

A(X)
= N.
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We now consider PR windows QU . In order to avoid problems with edge-
effects, we assume that Z(u) is defined for all u ∈ X̄. A PR window is distributed
as QU where U is a stochastic vector with density p(u|Z) proportional to Z(u)

p(u|Z) =


Z(u)∫

X̄
Z(u) du

, if u ∈ X̄,

0, otherwise.
(A.6)

Here and in the following, we assume that
∫
X̄
Z(u) du > 0 and that

Z(u) = 0 ⇒ N(Φ ∩X ∩Qu) = 0. (A.7)

The predictor suggested in Gardi et al. (2008, 2007a) takes the form

N̂PR
A =

∫
X̄
Z(u) du

A(X)A(Q)

N(Φ ∩X ∩QU)

Z(U)
(A.8)

The predictor N̂PR
A is of Horvitz–Thompson type, cf. Horvitz and Thompson

(1952); Thompson (1992), since N(Φ ∩X ∩ QU) is weighted with the inverse
sampling probability p(U |Z)−1. The predictor N̂PR

A is design-unbiased for N , as
can easily be seen, using the same type of reasoning as for N̂UR

A . The assump-
tion (A.7) is appropriate for the applications we have in mind, cf. Gardi et al.
(2007a). In the case where (A.7) does not quite hold, one may simply replace Z
by Z + c where c is a small positive constant. The relative bias of N̂PR

A[
E
(
N̂PR
A |Φ, Z

)
−N

]/
N

is bounded by the (small) fraction of points x ∈ Φ ∩X for which there exists u
such that Z(u) = 0 and x ∈ Qu.

The predictor N̂PR
A is not in general more efficient than N̂UR

A . Using that
N̂UR
A and N̂PR

A are both design-unbiased and that (A.2) and (A.3) hold for any
design-unbiased predictor, it is seen that N̂PR

A is more efficient than N̂UR
A if and

only if
E
(
(N̂PR

A )2
)
≤ E

(
(N̂UR

A )2
)
.

Using that E
(
(N̂PR

A )2
)

= E
(
E
(
(N̂PR

A )2|Φ, Z
))

and likewise for N̂UR
A , we find

that N̂PR
A is more efficient than N̂UR

A if and only if

E Cov
(
N(Φ ∩X ∩QU)2

/
Z(U), Z(U)

∣∣Φ, Z) ≥ 0 (A.9)

for U uniform in X̄.
Before conducting a large-scale time-consuming microscopy study or other

type of study, involving weighted sampling of windows, it will be a good idea to
perform a pilot study to investigate whether (A.9) is satisfied. Such a study will
involve replicated observation of (Z(U), N(Φ ∩X ∩QU)) in windows QU with
uniform random position U in X̄. A statistical judgement of whether (A.9) is
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satisfied can be performed from a plot of
(
Z(U), N(Φ ∩X ∩QU)2

/
Z(U)

)
and

an empirical estimate of the covariance in (A.9).
It is also possible to develop a model-based criterion for gain in efficiency. If

the counts satisfy the following proportional regression model

E
(
N(Φ ∩X ∩QU)

∣∣U,Z) = aZ(U), (A.10)
Var
(
N(Φ ∩X ∩QU)

∣∣U,Z) = bZ(U)p, p ≥ 1, (A.11)

then N̂PR
A is more efficient than N̂UR

A . The proof of this result is deferred to
Appendix 1.

A.4 Efficiency for homogeneous point processes
Since PR windows use the inhomogeneity of the realised point pattern, a gain in
efficiency may be obtained even for homogeneous point processes. In this section,
we provide theoretical examples of how much the efficiency can be improved.
We calculate the actual gain in efficiency

E(N̂UR
A −N)2

/
E(N̂PR

A −N)2

for various homogeneous but clustered point processes and various window sizes.
The aim is to give an impression of how the magnitude of the gain in efficiency
depends on the degree of inhomogeneity in the realised point pattern.

Throughout this section, Φ will be a homogeneous point process with in-
tensity λ. Then, EN(Φ ∩ X) = λA(X) and its pair correlation function is
translation invariant. For homogeneous Φ, we have, cf. (Stoyan et al., 1995,
(4.5.3)),

Var(N(Φ ∩X)) = λ2

∫
R2

γX(y)g(y) dy + λA(X)− λ2A2(X), (A.12)

where g is the pair correlation function of Φ and

γX(y) = A
(
X ∩ (X + y)

)
is the set covariogram of X. In the following, we will, in particular, consider
Cox processes. Recall that Φ is a Cox process with driving field

Λ = {Λ(u) : u ∈ R2 }

if, conditionally on Λ, Φ is a Poisson point process with intensity function Λ.
In order to assess the relative efficiency of N̂PR

A to N̂UR
A we need to express the

variances in terms of second-order properties of the point process. Using (A.12)
and the identity ∫

R2

A(X ∩Qu) du = A(X)A(Q), (A.13)
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we get

Var(N̂UR
A ) = C2

(
Var
(
E[N(Φ ∩X ∩QU)|U ]

)
+ E

(
Var[N(Φ ∩X ∩QU)|U ]

))
= C2λ2

∫
R2

E[γX∩QU (y)]g(y) dy + λC − λ2

= A(X̄)
A(Q)2

λ2

A(X)2

∫
R2

γX(y)γQ(y)g(y) dy + λC − λ2. (A.14)

The last equality sign follows from (A.13) with X and Q replaced by X∩ (X+y)
and Q∩ (Q+y), respectively, and the definition of C, cf. (A.4). Since, cf. (A.12),

Var(N) = λ2

A(X)2

∫
R2

γX(y)g(y) dy + λ
A(X)

− λ2, (A.15)

the prediction error of N̂UR
A is easily obtained, using (A.3),

E(N̂UR
A −N)2

= λ2

A(X)2

∫
R2

γX(y)g(y)
[ A(X̄)
A(Q)2

γQ(y)− 1
]
dy + λ

A(X)

[A(X̄)
A(Q)
− 1
]
. (A.16)

The variance of N̂PR
A depends on the random field Z and its interplay with Φ.

When Φ is a Cox process with driving field Λ such that Z is the cumulated
intensity in Qu,

Z(u) =

∫
X∩Qu

Λ(v) dv,

then, cf. Appendix 2,

Var(N̂PR
A ) = λ2

A(X)2

∫
R2

γX(y)g(y) dy + λC − λ2. (A.17)

Combining with (A.15), we find, using (A.3),

E(N̂PR
A −N)2 = λ

A(X)

[
A(X̄)
A(Q)
− 1
]
. (A.18)

Note that in this case the prediction error of N̂PR
A only depends on λ.

Using (A.16) and (A.18), we have calculated the ratio

E(N̂UR
A −N)2

/
E(N̂PR

A −N)2

for three types of Lévy driven Cox processes (Hellmund et al. (2008)). For these
processes, the intensity and the pair correlation function can be determined
explicitly, see (Hellmund et al., 2008, Corollary 2). Figure A.3 shows simulations
in a [0, 10] × [0, 10] window of the processes considered. Note the increasing
heterogeneity in the realised point patterns. (The [0, 10]× [0, 10] windows are
just used to show realisations of the point processes and should not be confused
with X.)
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Figure A.3: Examples of realisations in a [0, 10]× [0, 10] window of homogeneous Lévy
driven Cox processes with Poisson (left), compound gamma (middle) and compound
inverse Gaussian (right) Lévy bases. The driving field of the Cox processes is a kernel
smoothing of the Lévy bases with a Gaussian kernel with σ = 0.4. Furthermore, c = 3
and EL′ = 2. For the definition of these parameters and further details, see Appendix 3
and (Hellmund et al., 2008, Section 4.2). The intensity λ is 6 in all three cases.

We have calculated the prediction error of N̂UR
A and N̂PR

A for the case where Q
is a square with unit side length while X is a square with side length D ≥ 1. For
some technical details, see Appendix 3. In Figure A.4, we have plotted the ratio
E(N̂UR

A −N)2/E(N̂PR
A −N)2 as a function of D ∈ [1, 10] for Lévy driven Cox

processes with Poisson, compound gamma and compound inverse Gaussian Lévy
bases and λ = 1, 10, 25. The gain in efficiency is largest for the most pronounced
clustered point patterns. The efficiency also increases with increasing intensity
of the point process. The gain in efficiency is at least a factor 2 in the majority
of cases studied. Note that, for a specific point process model and intensity, the
gain is largest when the size of X is small because in this case the windows Qu

more often only partly hits X and, accordingly, the parts of Φ ∩X seen in the
windows appear more inhomogeneous.

2 4 6 8 10

0

2

4

6

8

10

Figure A.4: The ratio E(N̂UR
A −N)2/E(N̂PR

A −N)2 as a function of the side length D
of X for the Poisson (red), compound gamma (green) and compound inverse Gaussian
(blue) cases, respectively. The window Q is a square of unit length. The intensities
are λ = 1 (full-drawn), λ = 10 (· · ·) and λ = 25 (– – –), respectively.

30



A.5. Design-based inference

A.5 Design-based inference
Replicated generation of PR windows in a systematic set-up has in Gardi et al.
(2008, 2007a) been implemented for the analysis of microscopy sections as the one
shown in Figure A.1. The sampling is denoted systematic proportional random
sampling (SPRS). Below, we give SPRS sampling a probabilistic description
and present the standard design-unbiased predictor suggested in Gardi et al.
(2007a) based on SPRS sampling. Taking a model-based approach, predictors
with considerably lower variance may be constructed, as we shall see in the
section to follow.

The window Q = [0, l1)× [0, l2) is a rectangle. The region X is covered by
rectangles

G =
⋃

(s1,s2)∈S

{
Q+ (s1l1, s2l2)

}
,

where S ⊂ Z2. The windows in G are ordered lexicographically Q1, . . . , QN ,
where N is the number of windows in G. The windows Q1, . . . , QN are transla-
tions of Q by u1, . . . uN , say, see Figure A.5. The weight Z(ui) is assigned to Qi,
for i = 1, . . . , N .

In the applications, we have in mind, Z(ui) is a total quantity for the
window Qi(= Qui). For instance, for the example illustrated in Figure A.1 where
the number of green GFP-expressing neurones is to be estimated, Z(ui) is the
total amount of green colour observed in Qi under fluorescence illumination.

Q 1
u1

Q 2
u2

Q 3
u3

Q 4
u4

Q 5
u5

Q 6
u6

Q 7
u7

Q 8
u8

Q 9
u9

Q10
u10

Q11
u11

Q12
u12

Q13
u13

Q14
u14

Q15
u15

Q16
u16

Q17
u17

Q18
u18

Q19
u19

Q20
u20

Q21
u21

Q
O

l1

l2

Figure A.5: The set-up for systematic proportional random sampling (SPRS). The
point pattern Φ (red dots) is available for observation in X (delineated by blue lines).
The setX is covered by a family of lexicographically ordered non-overlapping rectangles.
These rectangles are translations of the given rectangle Q.

Sampling in a systematic Z−weighted fashion is performed as follows.
Let Wj =

∑j
i=1 Z(ui) denote the cumulated weight, with the convention

that W0 = 0, and let S =
∑N

i=1 Z(ui). A sample of n ∈ {1, . . . , N} windows is
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selected by choosing V1 uniformly in [0, S/n], independently of Φ and Z, and
let Vj = V1 + (j − 1)S/n for j = 2, 3, . . . , n. The sampled windows are those
with index in

J =
⋃

i:Vi∈[Wji−1,Wji
]

{ ji },

see also Figure A.6. A window may be sampled more than once. Notice that
ordinary systematic uniform random sampling (SURS) is a special case of SPRS
where Z is a constant field.

Z1 Z2 Z3 ZN

W0 W1 W2 W3 WN−1 WN

Figure A.6: Illustration of SPRS sampling. The 1st and 3rd window are not sampled,
the Nth window is sampled exactly once while the 2nd window is sampled twice. We
use the abbreviation Zj = Z(uj).

In Gardi et al. (2007a), it is suggested to use the following predictor of N

N̂SPRS
A =

S

nA(X)

N∑
j=1

#
{
i
∣∣ Vi ∈ [Wj−1, Wj]

}N(Φ ∩X ∩Qj)

Z(uj)
.

This predictor is design-unbiased. In fact, since Vi ∼ U
(
[(i− 1)S/n, iS/n]

)
,

E
[
#
{
i
∣∣ Vi ∈ [Wj−1,Wj]

} ∣∣ Φ, Z
]

=
n∑
i=1

P
(
Vi ∈ [Wj−1,Wj]

∣∣ Φ, Z
)

= n
S

n∑
i=1

∫ iS
n

(i−1)S
n

1[Wj−1,Wj ](v) dv

= n
S

(Wj −Wj−1)

= n
S
Z(uj),

which gives us

E
[
N̂SPRS
A

∣∣ Φ, Z
]

= A(X)−1

N∑
j=1

N(Φ ∩X ∩Qj) = N(Φ ∩X)
/
A(X).

A.6 Model-based inference
After having performed SPRS sampling with a particular choice of weight, an
important issue is to construct optimal model-based predictors of N based on
the available data (

Z(uj), N(Φ ∩X ∩Qj)
)
, j ∈ J.
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For an introduction to model-based sampling theory, cf. e.g. (Thompson, 1992,
Section 2.7 and Chapter 8).

Under a proportional regression model

E(N(Φ ∩X ∩Qj)|J, Z) = aZ(uj), (A.19)
Var(N(Φ ∩X ∩Qj)|J, Z) = bZ(uj)

p, (A.20)

j ∈ J , we will construct a predictor with minimal model-variance among
predictors of the form

N̂ =
S

A(X)

∑
j∈J

αj(J, Z)
N(Φ ∩X ∩Qj)

Z(uj)
, (A.21)

where αj(J, Z) ≥ 0 and
∑

j∈J αj(J, Z) = 1, provided that the counts

N(Φ ∩X ∩Qj), j ∈ J,

can be regarded as uncorrelated, given J and Z. This assumption may be checked
empirically by analysing the spatial correlation of the residuals.

First, notice that for a predictor of the form (A.21)

E(N̂ |J) =
a

A(X)
E(S).

Furthermore, because of (A.19),

E(N) = A(X)−1 EN(Φ ∩X) = A(X)−1

N∑
j=1

EN(Φ ∩X ∩Qj) =
a

A(X)
E(S).

It follows that E(N̂ |J) = E(N), so any predictor of the form (A.21) is indeed
model-unbiased. Using the assumption of uncorrelatedness, the model-variance
becomes

Var(N̂ |J) = E
(
Var(N̂ |J, Z)

)
+ Var

(
E(N̂ |J, Z)

)
=

b

A(X)2
E
(
S2
∑
j∈J

αj(J, Z)2Z(uj)
p−2
)

+
a2

A(X)2
Var(S).

Using Cauchy–Schwartz’ inequality it follows that Var(N̂ |J) is minimised for

αj(J, Z) = Z(uj)
2−p
/∑

j∈J

Z(uj)
2−p.

The minimal variance becomes

Var(N̂ |J) =
b

A(X)2
E

(
S2∑

j∈J Z(uj)2−p

)
+

a2

A(X)2
Var(S).
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If p = 2 and the sampling is performed such that a window is only sampled
once, then the minimal model-variance predictor of the form (A.21) coincides
with N̂SPRS

A . In other cases, the minimal model-variance predictor will be superior
to N̂SPRS

A in terms of increased efficiency.
We have applied this type of model-based inference on data collected by SPRS

sampling for the estimation of the intensity of granule cells in rat cerebellum.
SPRS sampling of the granule cell layer (blue) is shown in Figure A.7 (left)
where almost all selected sampling windows (small yellow rectangles) lie in the
granule layer. For comparison, Figure A.7 (right) shows traditional systematic
uniform random sampling where many of the sampling windows fall outside the
blue region of interest. A total of 124 windows was selected by SPRS sampling
on 14 sections, as the one shown in Figure A.7. For more details, see Gardi et al.
(2007a).

6                                      Proportionator Sampling and Estimation 

 
Figure 3. Estimating total number of granule cells in rat cerebellum. The blue granule cell layer is clearly visible 

at 1.25X (upper left panel). The area of interest is delineated coarsely and partitioned into fields of view. The upper 

right panel shows the fields of view with their assigned weight on a grey-scale. Middle left panel shows the distribution 

of sampled fields (yellow rectangles) for the proportionator, the selected fields of view are almost surely in the granule 

cell layer. As shown in the middle right panel!sampling with the traditional SURS!such fields of view may or may not 

hit the blue region. The lower two panels are examples of counting at 100X magnification (oil lens).  

 

Total number of GFP orexin neurons in mice brain 

Two brains were studied from mature transgenic mice, where orexin neurons in lateral hypothalamus and 

adjacent perifornical area could be visualized in situ by expression of enhanced green fluorescent protein 

(Burdakov et al. 2006). Brains had been immersion fixed in 4% phosphate-buffered formaldehyde for a 

few hours, cryo-protected and frozen in liquid nitrogen. The brains were cut exhaustively using a 

Figure A.7: Left: A systematic proportional random sample (SPRS) of the granule
cell layer (blue). The selected sampling windows are shown as small yellow rectangles.
Right: A systematic uniform random sample (SURS).

A plot of the observed counts versus weights shows that a proportional
regression model is not appropriate. Mean counts are shown in Figure A.8 as a
function of grouped weights. A relationship of the type

E(N(Φ ∩X ∩Qj)|J, Z) = a1 Z(uj)
a2

with a2 6= 1 is more appropriate. The fitted curve in Figure A.8 (left) has
parameters a1 = 1 and a2 = 0.595. We therefore transform the weights

Z̃(uj) = Z(uj)
a2 ,

such that the proportional regression is fulfilled for the transformed weights.
Figure A.8 (right) shows the empirical variances of the counts as a function of
the transformed weights. A relationship of the type (A.20) with p = 0 seems to
be appropriate. Under this type of model, the optimal predictor takes the form

N̂opt
A =

∑N
i=1 Z̃(ui)

A(X)

∑
j∈J Z̃(uj)N(Φ ∩X ∩Qj)∑

j∈J Z̃(uj)2
,
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while the predictor suggested in Gardi et al. (2007a) based on the transformed
weights becomes (assuming no window is sampled more than once)

N̂SPRS
A =

∑N
i=1 Z̃(ui)

nA(X)

∑
j∈J

N(Φ ∩X ∩Qj)/Z̃(uj).

The ratio between the conditional variances is for p = 0

Var(N̂SPRS
A |J, Z)

Var(N̂opt
A |J, Z)

=
(

1
n

∑
j∈J

Z̃(uj)
2
)(

1
n

∑
j∈J

Z̃(uj)
−2
)
.

In the concrete example, this ratio takes the value 2.90 and the optimal model-
based predictor N̂opt

A represents an increase in efficiency of a factor 3 compared
to the standard predictor N̂SPRS

A suggested in Gardi et al. (2007a).
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Figure A.8: Left: Mean counts as a function of grouped weights together with the
fitted relationship. Right: Empirical variances of counts as a function of grouped
transformed weights Z̃. For details, see text.

In the example discussed in this section, the proportional regression model
(A.19)–(A.20) was satisfied after a transformation of the weights. Likewise,
a fulfilment of the criterion (A.9) presented in Section A.3 may require a
transformation of the weights.

A.7 Concluding remarks
In this paper, we have studied how computerised image analysis can be combined
with non-uniform sampling in order to increase the efficiency of estimators of
intensities of biological cell populations. We have provided conditions under
which the proposed non-uniform sampling results in a gain in efficiency and
constructed optimal model-based estimators of intensities.

We believe that the principle of empirical importance sampling has a much
wider range of applications than in microscopy. It is likely to be useful in other
areas of spatial sampling where point patterns show realised inhomogeneity, e.g.

35



Paper A

in precision farming and satellite image analysis. It might also be the solution
to the problem of low resolution in modern MR and PET scanners. An initial
complete scan at low resolution may be used to direct the sampling towards the
region of interest which is subsequently scanned at a high resolution.
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Appendix 1

Appendix 1

In this appendix, we show that N̂PR
A is more efficient than N̂UR

A if the proportional
regression model given by (A.10) and (A.11) is satisfied. Since N̂UR

A and N̂PR
A

are both design-unbiased, it suffices to show that

Var
(
N̂PR
A

)
≤ Var

(
N̂UR
A

)
. (A.22)

Throughout this appendix, U will denote a uniform random vector on X̄
and W a random vector with density (A.6). We show (A.22) by showing the
following two relations

Var
(
E
(
N̂PR
A

∣∣ W,Z)) ≤ Var
(
E
(
N̂UR
A

∣∣ U,Z)) (A.23)

E
(
Var
(
N̂PR
A

∣∣ W,Z)) ≤ E
(
Var
(
N̂UR
A

∣∣ U,Z)). (A.24)

First we show (A.23). Since N̂UR
A and N̂PR

A are both design-unbiased, it
suffices to show that

E
(
E2
(
N̂PR
A

∣∣ W,Z)) ≤ E
(
E2
(
N̂UR
A

∣∣ U,Z)).
We find

E
(
N̂PR
A

∣∣ W,Z) = Ca

∫
X̄

Z(u) du
A(X̄)

= Ca E(Z(U)|Z),

and
E
(
N̂UR
A

∣∣ U,Z) = CaZ(U).

Since
E
(
E2(Z(U)|Z)

)
≤ E

(
E(Z(U)2|Z)

)
inequality (A.23) follows.

In order to show (A.24), we use (A.11) and find

Var
(
N̂UR
A

∣∣ U,Z) = C2b Z(U)p,

Var
(
N̂PR
A

∣∣ W,Z) =

(∫
X̄
Z(u) du

A(X)A(Q)

)2

b Z(W )p−2.

Using that
E
(
Y p
)
≥ E

(
Y
)

E
(
Y p−1

)
, p ≥ 1, (A.25)

we finally get

E
(
Var
(
N̂PR
A

∣∣ W,Z)) = E
[(∫

X̄

Z(u) du
/

(A(X)A(Q))
)2

bE(Z(W )p−2|Z)
]

= C2bE
[(∫

X̄

Z(u) du
A(X̄)

)2
∫
X̄

[
Z(u)p−1

/ ∫
X̄

Z(u) du
]
du
]

= C2bE
[
E(Z(U)|Z) E(Z(U)p−1|Z)

]
≤ C2bE

[
E(Z(U)p|Z)

]
= E

(
Var
(
N̂UR
A |U,Z

))
.
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The relation (A.25) can be shown as follows. For p, q ≥ 0, we have

E(Y q) E(Y p) =
((

E(Y q)
)1/q)q((

E(Y p)
)1/p)p

≤
(
E(Y p+q)

)q/(p+q)(
E(Y p+q)

)p/(p+q)
= E(Y p+q),

using that p 7→
(
E(Y )p

)1/p is increasing for p ≥ 0, due to Jensen’s inequality.
Replacing q and p by 1 and p− 1, respectively, we have shown (A.25).

Appendix 2
In this appendix, we show (A.17). Note that, given U and Λ, N(Φ∩X ∩QU ) is
Poisson distributed with mean

Z(U) =

∫
X∩QU

Λ(v) dv.

It follows that

E
(
N̂PR
A

∣∣ U,Λ) =

∫
X̄

Z(u) du
/ (

A(X)A(Q)
)

=

∫
X

Λ(v) dv
A(X)

and

Var
(
N̂PR
A

∣∣ U,Λ) =
(∫

X

Λ(v) dv
A(X)

)2
1

Z(U)
.

Therefore, since E Λ(v) = λ,

E
(
Var
(
N̂PR
A

∣∣ U,Λ)) =
A(X̄)

A(X)2A(Q)
E
(∫

X

Λ(v) dv
)

= Cλ. (A.26)

Furthermore, since E
(
Λ(v1)Λ(v2)

)
= g(v1 − v2)λ2,

Var
(
E
(
N̂PR
A

∣∣ U,Λ)) = E
(

1
A(X)2

∫
X

∫
X

Λ(v1)Λ(v2) dv1 dv2

)
− λ2

= λ2

A(X)2

∫
X

∫
X−v

g(u) du dv − λ2

= λ2

A(X)2

∫
R2

γX(u)g(u) du− λ2. (A.27)

Combining (A.26) and (A.27), we finally get (A.17).

Appendix 3

In this appendix, we will derive an explicit expression for E
(
N̂UR
A −N

)2 for the
Lévy driven Cox processes in Figure A.3.
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By (Hellmund et al., 2008, Corollary 2), one can associate a random vari-
able L′, the so-called spot-variable, to a Lévy driven Cox process such that

λ = c EL′,

g(y) = 1 +
Var(L′)

(EL′)2

Ik(y)

c
,

where Ik(y) =
∫
R2 k(y + n)k(n) dn and c > 0 is an explicitly known constant.

For a Gaussian kernel

k(y) =
1

2πσ2
exp
(
−‖y‖2/(2σ2)

)
, y ∈ R2, (A.28)

we get

g(y) = 1 +
Var(L′)

EL′
exp
(
−‖y‖2/(4σ2)

)
4πσ2λ

, y ∈ R2. (A.29)

Throughout this appendix, D ≥ 1. For Q = [0, 1]2 and X = [0, D]2, we have

A(Q) = 1, A(X) = D2, A(X̄) = (D + 1)2.

Furthermore,

γX(y1, y2) =

{
(D − |y1|)(D − |y2|) if (y1, y2) ∈ [−D,D]2

0 otherwise,
and

γQ(y1, y2) =

{
(1− |y1|)(1− |y2|) if (y1, y2) ∈ [−1, 1]2

0 otherwise.

For the calculation of the prediction error of N̂UR
A we use that∫

R2

γX(y)γQ(y) dy =
(∫ 1

−1

(D − |y1|)(1− |y1|) dy1

)2

=
(
D − 1

3

)2
,

∫
R2

γX(y)γQ(y) exp
{
−‖y‖2/(4σ2)

}
dy

=
(∫ 1

−1

(D − |y1|)(1− |y1|) exp
{
−y2

1/(4σ
2)
}

dy1

)2

= 4
(
D
√
πσ2
[
2Φ
(

1√
2σ2

)
− 1
]

+ 2σ2(D + 1)
[
e(4σ2)−1 − 1

]
+

∫ 1

0

y2e
−y2

4σ2 dy
)2

.

Furthermore, ∫
R2

γX(y) dy =
(∫ D

−D
(D − |y1|) dy1

)2

= D4,
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∫
R2

γX(y) exp
{−‖y‖2

4σ2

}
dy =

(∫ D

−D
(D − |y1|) exp

{−y21
4σ2

}
dy1

)2

= 4
(
D
√
πσ2
[
2Φ
(

D√
2σ2

)
− 1
]

+ 2σ2
[
exp
{−D2

4σ2

}
− 1
])2

.

Using (A.16) and (A.29), we finally get

E
(
N̂UR
A − N̂

)2

= λ
(
1 + 2/D

)
− λ2 + λ2

(
(D + 1)2

(
D − 1/3

)2) /
D4

− λ Var(L′)

D4 π σ2 EL′

(
D
√
πσ2
[
2Φ
(

D√
2σ2

)
− 1
]

+ 2σ2
[
exp
{−D2

4σ2

}
− 1
])2

+ λ
(D + 1)2 Var(L′)

D4 π σ2 EL′

(
D
√
πσ2
[
2Φ
(

1√
2σ2

)
− 1
]

+ 2σ2(D + 1)
[
e
−1
4σ2 − 1

]
+

∫ 1

0

y2 exp
{−y2

4σ2

}
dy

)2

.
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Linda Vadgård Hansen1, Jens R. Nyengaard2,3, Johnnie Bremholm Andersen3

and Eva B. Vedel Jensen1,2

1Department of Mathematical Sciences, Aarhus University; 2Centre for Stochastic
Geometry and Advanced Bioimaging, Aarhus University; 3Stereology and EM
Laboratory, Aarhus University

Abstract: The nucleator is a well-established manual stereological method of esti-
mating mean cell volume from observations on random cell transects through reference
points of the cells. In this paper, we present an automated version of the nucleator
that uses automatic segmentation of the boundaries of the cell transects. An expert
supervises the process. If the segmentation is judged to be satisfactory, an estimate
of the cell volume is calculated automatically on the basis of the whole cell transect.
In the remaining cases, the expert intervenes and uses the classical nucleator. The
resulting estimator is called the semi-automatic nucleator. In the present paper, we
study the statistical properties of the semi-automatic nucleator. Formulae for the bias
and mean square error are derived. The semi-automatic nucleator may have a small
bias but will still in most cases be more efficient than the classical nucleator. Proce-
dures for estimating bias and mean square error from a pilot study are provided. The
application of the semi-automatic nucleator is illustrated in a study of somatostatin
positive inhibitory interneurons which were genetically labelled with green fluorescent
protein (GFP). The cells were sampled with an optical disector. The centre of mass in
a central cell transect was used as reference point. It is found in this study that the
number of cells needed for obtaining, for instance, a 5% precision of the estimate of
mean cell volume is 150 and 189 for the semi-automatic and the classical nucleator,
respectively. Taking into account that the time spent analysing one cell is shorter
for the semi-automatic nucleator than for the classical nucleator, the semi-automatic
nucleator is superior to the classical nucleator.

Key words: computerised image analysis, local stereology, nucleator, volume.
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B.1 Introduction

By means of local stereology, it is possible to determine the size of an object from
random sections through a reference point (Jensen, 1998). Local stereological
techniques can be applied without specific assumptions about the shape of the
object, which is an important advantage compared to earlier methods, depending
on shape assumptions such as spherical or ellipsoidal shape (Wicksell, 1925,
1926; Cruz-Orive, 1976, 1978). The local stereological methods do not have
these severe shape restrictions, but local stereological estimators may have a
high variability if the object is far from being spherical and/or the reference
point is not centrally positioned within the object. In case the reference point
is very far from being centrally positioned, the recent pivotal estimators based
on the invariator principle are to be preferred, see Cruz-Orive (2005) and the
accompanying papers Cruz-Orive (2008) and Cruz-Orive et al. (2010).

The nucleator in its original form, the ’classical’ nucleator (Gundersen, 1988),
is used for estimating cell volumes from observations in thick transparent sections.
Cells are sampled when their reference point comes into focus. In the case of
isotropic sections, two perpendicular lines are normally used on a sampled cell
transect and the expert indicates by the computer mouse the four (or perhaps
more) intersection points between the lines and the cell transect boundary,
see the lower right illustration of Figure B.1. It is the expert that decides the
position of the intersection points.

If it is possible by automatic image analysis to identify the boundaries of the
cell transects, it is more powerful to use the information available in the whole
cell transect than the information from two lines. There exists such an estimator
of cell volume that uses the whole cell transect. The theory of this estimator has
been known for quite long, see Jensen (2000) and references therein, but the
estimator has not been in common use because automatic identification of the
transect boundaries has not earlier appeared to be a realistic possibility. It can
be shown that if the classical nucleator estimate is calculated on the basis of an
increasing number of lines, then the estimate will come closer and closer to the
value obtained when the whole cell transect is used directly. A natural name
for the estimator that uses the whole cell transect is, therefore, the integrated
nucleator.

It is important to know how much more precise the integrated nucleator
is compared to the classical nucleator based on measurements along two lines.
In fact, the classical nucleator is already quite precise if the reference point is
centrally positioned because of the antithetic effect of the two perpendicular
lines. The gain in precision by using the integrated nucleator depends on the
shape of the cells. If the cells are of perfect spherical shape with the centres as
reference points, there is no gain. A simulation study in Jensen (2000) showed
that if the cells are prolate ellipsoids with centres as reference points and ratio
between major and minor axis equal to 2, then the CE of the integrated nucleator
will be 83% of that of the classical nucleator. If the cells are prolate ellipsoids
with ratio equal to 4, then the percent will be 64. Furthermore, using the
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integrated nucleator, it is not needed to spend time indicating the position of
the intersection points between the lines and the cell boundary. All this is under
the assumption that the automatic identification of the cell transect boundaries
is correct.

integrated
nucleator

classical
nucleator

Figure B.1: Illustration of the semi-automatic nucleator. The true cell transect is
shown as the green set while the segmented cell transect is delineated by the red
broken curve. The integrated nucleator is used if the segmentation is judged to be
satisfactory, otherwise the classical nucleator is used.

In the present paper, we study the performance of an intermediate option
between the classical and the integrated nucleator: the semi-automatic nucleator
where the expert supervises the process, see Figure B.1. The first step of the
semi-automatic nucleator is an automatic identification of the cell transect
boundary but it is not a requirement that the identification is correct. If the
expert judges that the identification of the cell transect boundary is satisfactory,
then the integrated nucleator based on the automatically segmented cell transect
is used. If instead the identification of the cell transect boundary is judged
unsatisfactory, the expert intervenes and indicates by the mouse the four (or
more) intersection points between the lines and the real cell transect boundary.
The semi-automatic nucleator may have a small bias but will, as we shall see,
still in most cases be more efficient than the classical nucleator.

In Section B.2 we introduce the various estimators of volume mentioned
above. As not all estimators are guaranteed unbiased we discuss mean square
error as well as variance relations. In Section B.3 we compare the various
estimators in a study of somatostatin positive inhibitory interneurons from mice
hippocampi, observed by optical fluorescent microscopy. Further aspects are
discussed in Section B.4. Some mathematical derivations are deferred to an
Appendix.

B.2 Theoretical background

In the following we describe various procedures for estimating mean particle
volume. They all consist of a sampling step followed by a measurement step and
use a reference point associated with each particle in the sample.
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Throughout this paper, Y will denote a random particle with the origin o
as reference point, i.e. Y is a compact subset of R3 containing o. The aim is
to estimate the mean particle volume µ = EV (Y ). For example, if the particle
population under study consists of N particles, Y1, Y2, . . . , YN , and Y is selected
uniform randomly among the N particles, then

µ = EV (Y ) = 1
N

N∑
n=1

V (Yn).

The estimators to be considered use an isotropic plane L2 through o. The normal
vector of such a random plane is uniformly distributed on a unit half-sphere.
Furthermore, we will let L1 be a line in L2 through o. Every such line can
be uniquely determined by the angle θ ∈ [0, π) it generates with a fixed axis
within L2. When we need to be specific this line is denoted L1(θ).

B.2.1 The estimators

Several estimators of volume will be introduced below. For easy reference they
are all listed in Table B.1.

Table B.1: List of volume estimators (notation and name).

mint integrated nucleator
maut automatic nucleator
mcl1 classical nucleator using one line
mcl2 classical nucleator using two lines
msemi semi-automatic nucleator

B.2.1.1 The classical nucleator

The classical nucleator mcl1 uses measurements along one isotropic line L1 in L2

and the unbiased estimator is given by, see e.g. Jensen (1998),

mcl1 = mcl1(Y ∩ L1) = 2π

∫
Y∩L1

d(y, o)2 dy.

Here, d( ·, · ) is the Euclidean distance. If Y ∩L1 consists of a single line segment
[y−, y+], then mcl1 takes the simple form

mcl1 = 2π
3

(
d(y−, o)

3 + d(y+, o)
3
)
.

If Y ∩ L1 is a union of such line segments, mcl1 involves the measurements of
distances from o to the endpoints of all line segments. In practice, usually an
expert decides where the intersection points between the line and the boundary
of Y are positioned.
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In Gundersen (1988), it was suggested to use measurements along more than
one line to increase the efficiency of the estimator. The resulting estimator mcl2 is
based on measurements along two perpendicular lines. This unbiased estimator
is given by

mcl2 = 1
2

(
mcl1

(
Y ∩ L1(Θ)

)
+mcl1

(
Y ∩ L1(Θ + π/2)

))
,

where Θ is uniform on [0, π/2). Introducing a perpendicular line implies a
significant reduction in estimator variance if a large intersection with the cell
at one of the lines typically is accompanied by a relatively small intersection
at the perpendicular line (antithetic effect) and mcl2 is much used in practice
today. Recent references are Abrahão et al. (2009) and Melo et al. (2009).

B.2.1.2 The integrated nucleator

The integrated nucleator is an unbiased estimator of particle volume based on
the whole transect Y ∩ L2, see e.g. Jensen (1998) and references therein. The
estimator takes the following form

mint = mint(Y ∩ L2) = 2

∫
Y∩L2

d(y, o) dy2.

Here, dy2 denotes the element of the area measure on L2. This estimator has not
been in common use in the study of biological cell populations because accurate
recognition of Y ∩ L2 has not appeared to be a realistic possibility. Today, due
to improved labelling techniques, automatic identification of Y ∩L2 is no longer
unrealistic.

Using polar decomposition in L2, we find that

mint = 2

∫ π

0

∫
Y ∩L1(θ)

d(y, o)2 dy1 dθ =

∫ π

0

mcl1(Y ∩ L1(θ)) dθ
π
. (B.1)

It follows that

E(mcl1|Y, L2) = E(mcl2|Y, L2) = mint(Y ∩ L2). (B.2)

Equation (B.1) also shows that the integrated nucleator can be regarded as a
classical nucleator based on an infinite number of lines.

B.2.1.3 The automatic nucleator

If it is possible by automatic image analysis to recognise the cell transect Y ∩L2,
it appears natural to use this information in connection with the integrated
nucleator. Let Ỹ2 be the readily available estimate of the cell transect Y ∩ L2

obtained using computerised image analysis and assume that Ỹ2 contain o.
Furthermore, let

maut = mint(Ỹ2).

If the segmentation is perfect, i.e. Ỹ2 = Y ∩L2, then the automatic nucleatormaut

provides an unbiased estimator of the volume of Y . If, on the other hand, the
segmentation is of poor quality, then maut may be heavily biased.
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B.2.1.4 The semi-automatic nucleator

As mentioned above, the advantages of the automatic nucleator depend on
a satisfactory automatic identification of the cell transect boundaries. Below
we present an intermediate possibility between the classical nucleator and the
automatic nucleator where the expert supervises the measurement process
performed using the automatic nucleator and only interferes if the recognition
of the cell transect boundaries is not satisfactory. In such cases, the expert will
perform the measurements needed for the classical nucleator. We will refer to
this estimator as the semi-automatic nucleator msemi.

If the segmentation is judged satisfactory, then msemi = maut, otherwise
msemi = mcl2 . In contrast to the classical and integrated nucleator, the semi-
automatic nucleator may have a small bias. Let A be the event that the segmen-
tation is accepted, i.e. judged satisfactory. It can be shown, see the Appendix,
that

bias(msemi) := E(msemi)− µ = p E(maut −mint|A),

where p = P(A) is the probability that the segmentation is accepted and
E(maut −mint|A) is the mean difference between the automatic and integrated
nucleator among cells for which the segmentation is accepted. The bias will be
small because maut −mint is small for a cell with accepted segmentation.

B.2.2 Variance and mean square error relations

If m denotes either mcl1 or mcl2 , then we have the following equation and lower
bound for the variance of the estimator

Var(m) = Var(E(m|Y, L2)) + E Var(m|Y, L2)

= Var(mint) + E Var(m|Y, L2)

≥ Var(mint). (B.3)

At the second equality sign, we have used (B.2).
To compare estimators that are not necessarily unbiased the mean square

error (MSE) is a more appropriate measure of variability. The MSE of an
estimator m of µ is given by, see e.g. Cochran (1977),

MSE(m) = E(m− µ)2 = Var(m) + bias(m)2.

As mint is unbiased we have that

bias(m) = Em− Emint.

If m is unbiased then MSE(m) = Var(m). Therefore the variance relations
in (B.3) also holds for the corresponding MSEs, when m is unbiased.

For msemi, we find, see the Appendix,

MSE(msemi) = pMSE(maut|A) + (1− p) MSE(mcl2|Ac), (B.4)

47



Paper B

where MSE(maut|A) is the mean square error of the automatic nucleator among
cells for which a satisfactory segmentation is obtained. Likewise, MSE(mcl2|Ac)
is the mean square error of mcl2 among cells for which the segmentation is not
satisfactory. The semi-automatic nucleator msemi will be more precise than the
classical nucleator mcl2 if

MSE(msemi) ≤ Var(mcl2) = MSE(mcl2). (B.5)

Using (B.4), it follows that (B.5) is equivalent to

MSE(maut|A) ≤ MSE(mcl2|A). (B.6)

The inequality (B.6) is satisfied if maut is replaced by mint, see the Appendix,
and is therefore likely to hold since MSE(maut|A) is calculated for cells with
satisfactory segmentation. The magnitude of the gain in efficiency by using msemi

instead of mcl2 will depend on the shapes of the cells and, for a given cell
population, on how large the fraction p of cells with satisfactory segmentation
is. Note also that the workload associated with determining msemi will not be
larger than that associated with mcl2 .

B.2.3 Estimation of bias and MSE

In order to determine which one of the estimators will be the most efficient one
in an actual study, it is advisable to perform a pilot study.

Let Y1, . . . , YM denote the sample of cells in such a study. For all estima-
tors m except msemi, we imagine that we perform N replicated determinations
mi1, . . . ,miN of the estimator for each cell Yi, i = 1, . . . ,M . The MSE of m can
then be estimated by

M̂SE(m) = 1
MN

M∑
i=1

N∑
j=1

(mij − µ̂)2. (B.7)

In (B.7) and the following, we use µ̂ = m̄int·, but an estimate of µ based on one
of the other unbiased estimators might be used as well.

Since mint and maut depend on the cell transect as a whole, we will typically
have N = 1 for these estimators. For mcl1 and mcl2 , we may be interested in
estimating the within section variance due to the random positioning of the lines
inside the cell transects and in this case N > 1. The within section variance can
be estimated by

1
M(N−1)

M∑
i=1

N∑
j=1

(mij − m̄i·)
2.

For msemi, we let I(|I|) denote the (number of cells in the) sub-population
of the sampled cells that are judged to have a satisfactory segmentation. The
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probability of a satisfactory segmentation is estimated by p̂ = |I|/M . Then, an
estimate of MSE(msemi) is, cf. (B.4),

M̂SE(msemi) = p̂ M̂SE(maut|A) + (1− p̂) M̂SE(mcl2 |Ac)

= |I|
M

1
|I|

∑
i∈I

(maut,i − µ̂)2 +
(
1− |I|

M

)
1

(M−|I|)N

∑
i/∈I

N∑
j=1

(mcl2,ij − µ̂)2

= 1
M

(∑
i∈I

(maut,i − µ̂)2 + 1
N

∑
i/∈I

N∑
j=1

(mcl2,ij − µ̂)2
)
.

Among the estimators considered, only maut and msemi may be biased.
For m = maut, the bias is estimated by

b̂ias(maut) = m̄aut· − µ̂,

while the bias of msemi can be estimated by

b̂ias(msemi) = 1
M

∑
i∈I

(maut,i −mint,i).

B.2.4 Discrimination between estimators

A yardstick for the precision of an estimator of the mean cell volume µ is the
number n of cells needed to obtain a given precision. The estimator

m̂ =
1

n

n∑
i=1

m(Yi)

of mean cell volume has MSE of the form

MSE(m̂) = 1
n

Var(m) + bias(m)2.

It is seen that in order to obtain a relative error ρ =
√

MSE(m̂)/µ of the
estimate m̂ of mean cell volume, we need to sample

n =
MSE(m)− bias(m)2

ρ2µ2 − bias(m)2
(B.8)

cells. If we let

Relative bias (m) = bias(m)
/
µ

and
Relative error (m) =

√
MSE(m)

/
µ,

then (B.8) reduces to

n =
Relative error2(m)− Relative bias2(m)

ρ2 − Relative bias2(m)
. (B.9)

Estimates of µ, bias(m) and MSE(m) are available from the pilot study, cf.
Section B.2.3.
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B.3 A comparative study
In this section we will compare the described estimators in a study of so-
matostatin positive inhibitory interneurons from transgenic GFP-GAD mice
hippocampi, observed by optical fluorescent microscopy.

B.3.1 Materials and preparation methods

The animal study was approved by the Danish Animal Experiments Inspectorate.
Two GFP-GAD (FVB-TgN (GadGFP) 45704Swn) mice were anaesthetised by
sodium pentobarbital (50mg/kg i.p.) and transcardially perfused with phosphate-
buffered 4% paraformaldehyde. Following post-fixation in 4% paraformaldehyde
overnight at 4 ◦C, the brains were removed, and the hippocampi were cut out
and embedded in 5% agar in the isector (Nyengaard and Gundersen, 1992) to
generate isotropic sections. Using a Vibratome (Vibratome, St. Louis, USA), the
brains were sectioned exhaustively at 65 µm. Every sixth section was selected for
sampling. For counterstaining, these sections were transferred into DAPI (Sigma,
St. Louis, USA) solution. Each section was wet mounted on a super frost slide
and was dried at room temperature for only 10min. An aqueous mounting media
was used to adhere the cover-glass and care was taken to remove the excess
mounting media. Z - stacks were recorded at a confocal microscope (Zeiss LSM
510 META system), using a 40× NA 1.2 C-Apochromat objective and systematic
sampling. The laser line used was 488 nm, image size 225 µm× 225 µm and voxel
size 0.44 µm× 0.44 µm× 0.44 µm (undersampling in the XY plane with respect
to the optimum resolution which is 0.1 µm× 0.1 µm at this wavelength and NA).

B.3.2 Sampling and segmentation

Figure B.2 shows examples of somatostatin positive inhibitory interneurons
(green) in an optical section of tissue as seen under a confocal microscope. A
characteristic of these cells is the dendrites/axons which are also visible in
Figure B.2. The dendrites will not be regarded as part of the actual cell body
and, accordingly, they do not contribute to the cell volume.

A total of 91 cells were sampled using an optical disector within an isotropic
thick section and an unbiased counting frame. For each sampled cell a segmenta-
tion of the boundary of the central cell transect was performed using the max-vol
function in Visiomorph (Visiopharm, Hørsholm, Denmark). The segmentation
results in a set of xy-coordinates on the segmentation boundary. These 91 sets
of xy-coordinates constitute the data to be used in the following analysis.

B.3.3 Constructing the true cell transect

In order to study the performance of the different types of estimators, we fitted
for each sampled cell transect a cubic smoothing spline to those xy-coordinates
not originating from the dendrites or from other cells visible from other layers

50



B.3. A comparative study

Figure B.2: Somatostatin positive inhibitory interneurons in mice hippocampi have
been genetically labelled with green fluorescent protein (GFP) and observed under a
confocal microscope. The optical disector with the unbiased counting frame is used to
sample the interneurons.

of the thick section. Subsequently, the spline curve representing Y ∩ L2 was
approved by an expert and used in the following as the true cell transect. In
the succeeding analysis mint was calculated by numerical integration using (B.1)
with Y replaced by the set delineated by the spline curve.

:
Figure B.3: A somatostatin positive inhibitory interneuron as observed under the
confocal laser microscope. The observed xy-coordinates on the segmentation boundary
are shown (red crosses) along with the calculated spline (blue line) and the centre of
mass relative to the spline (white dot).

Figure B.3 shows an example of a sampled cell (green) as seen under the
confocal laser microscope. The observed xy-coordinates (red crosses) are super-
imposed along with the calculated spline (blue line) and the centre of mass of
the spline (white dot). As these cells do not have a natural reference point we
will use the centre of mass for this purpose. This centre of mass in the central
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section of the cell may be regarded as an approximation to the centre of mass
in 3D. This approximation may result in a small bias for all the estimators
considered in the present paper.

Figure B.4: The ’true’ cell transect (green) and the boundary of the segmented
cell (red broken line) for each of the 91 sampled somatostatin positive inhibitory
interneurons. The dot indicates the reference point of the cell. The cell transects above
the horizontal line have satisfactory segmentation.

Figure B.4 shows for each cell the true cell transect (green) and the boundary
of the segmented cell (red broken line). The dot indicates the centre of mass
according to the true cell transect. The cell transects above the horizontal line of
Figure B.4 have satisfactory segmentation while for those below the segmented
cell transects are too large, either because parts of the dendrites are included or
neighbouring cells interfere.
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B.3.4 Comparison of estimators

These visual observations are reflected in the histograms in Figure B.5 dis-
playing the estimates of mint (left) and maut (right), respectively. Further-
more, the histograms indicate a right skewed distribution, especially for maut,
with means E(mint) and E(maut) estimated by 1446 µm3 and 1904 µm3, respec-
tively. Furthermore, the estimates of Var(mint) and Var(maut) are 706 620 µm6

and 1 944 011 µm6, respectively. The estimate of the bias of maut is 458 µm3

resulting in an estimated MSE of maut of 2 132 314 µm6. The estimated relative
bias of maut is quite large, i.e. (m̄aut·− µ̂)/µ̂ = 0.32. It is therefore not advisable
to use the automatic nucleator in this study.
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Figure B.5: Histograms of the estimated volumes (µm3) based on the integrated
nucleator (left) and the automatic nucleator (right).

For the implementation of the semi-automatic nucleator, we used a distance
in the judgement of the discrepancy between the true cell transect Y ∩L2 and the
automatically segmented cell transect called Ỹ2. The segmentation was judged
satisfactory if

d(Y ∩ L2, Ỹ2) < ε

where ε ≥ 0 and d denotes a distance on the set of subsets of L2. Two examples
of distances were considered

d1(B1, B2) =
|A(B1)− A(B2) |

A(B1)
and d2(B1, B2) =

|mint(B1)−mint(B2) |
mint(B1)

.

Here, A denotes area and B1, B2 ⊂ L2. In practice, the distance d1 seems straight-
forward for an expert to evaluate since the distance only involves differences
in area between the true cell transect and the segmentation. But as it is the
difference in estimated volume that is important d2 seems more appropriate.
Figure B.6 shows d2(Y ∩ L2, Ỹ2) plotted against d1(Y ∩ L2, Ỹ2) in a double
logarithmic scale along with a fitted log-linear regression d2 = 1.46 d 0.91

1 . It is
seen from this plot, that the two distances provide quite similar results.

In the analysis below we used d2 and ε = 0.15. A total of 66 cells had a
satisfactory segmentation according to this criterion. They are shown above the
horizontal line of Figure B.4. The probability p is estimated by 66/91 = 0.73.
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Figure B.6: Plot of d2(Y ∩ L2, Ỹ2) against d1(Y ∩ L2, Ỹ2) in a double logarithmic
scale.

Using the empirical relationship between d1 and d2, d2(Y ∩ L2, Ỹ2) = 0.15
corresponds to d1(Y ∩ L2, Ỹ2) = 0.08.

For each sampled cell, Figure B.7 shows the volume estimatesmaut,mcl1 ,mcl2
andmsemi plotted againstmint, respectively. The scale is µm3. The upper left plot
indicates that maut is quite heavily biased while the remaining three plots are
in accordance with the theoretical result that mint, mcl1 and mcl2 are unbiased.
Also, msemi appears virtually unbiased and somewhat more precise than mcl2
which again is more precise than mcl1 . In the upper left plot of Figure B.7, the
points with large distance to the identity line come from cells with unsatisfactory
segmentation.

Table B.2 shows, for each estimator considered, the relative bias and the
relative error of the estimated cell volume, when analysing one cell. For mcl1
and mcl2 , we also estimated the within section variance which was found to
constitute 89% and 29% of the total variance, respectively. Still msemi is more
precise than mcl2 , see Table B.2.

Table B.2: For each of the estimators considered, the relative bias and the relative
error of the estimated cell volume, when analysing one cell, are shown. Note that msemi
is virtually unbiased.

mint maut mcl1 mcl2 msemi

Relative bias — 0.32 — — 0.004
Relative error 0.58 1.01 1.79 0.69 0.61

Using (B.9) and the results shown in Table (B.2), we can estimate the
number of cells needed to analyse in order to obtain a given relative error ρ of
the estimated mean cell volume. Figure B.8 shows the number of cells needed
to be analysed for mint (full), msemi (dashed) and mcl2 (dotted), respectively, to
obtain a given relative error of the estimated mean cell volume between 0.02
and 0.10. For a given relative error in this interval it is seen that we always
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Figure B.7: Volume estimates m̂aut, m̂cl1 , m̂cl2 and m̂semi plotted against m̂int in a
double logarithmic scale. The scale is µm3.

need to include less cells for msemi than for mcl2 . As an example, in order to
obtain a relative error of the estimate of mean cell volume of 0.05, it is needed
to sample and analyse 134, 150 and 189 cells using the integrated nucleator,
semi-automatic nucleator and classical nucleator, respectively. The use of mint

is not feasible in this study because it requires the correct segmentation of all
cell transects. The semi-automatic nucleator is more efficient than the classical
nucleator, since the same precision can be obtained by sampling fewer cells in the
case of the semi-automatic nucleator and in addition the time spent analysing
one cell is shorter.

B.4 Discussion

In the present paper, we have proposed a new method of estimating mean
cell volume, the semi-automatic nucleator. The method uses sections through
reference points of the cells. Automatic segmentation of the cell transects is an
integral part of the method. A gain in efficiency compared to the classical nucle-
ator can generally be expected. The magnitude of the gain in efficiency increases
with the fraction of analysed cell transects with satisfactory segmentation.

An expert supervises the process and interferes if the segmentation of a
particular cell transect is judged unsatisfactory. It is important that the expert
is trained in using an appropriate threshold for deciding whether a segmentation
is satisfactory.
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Figure B.8: The number of cells n needed to be analysed for mint (full), msemi
(dashed) and mcl2 (dotted), respectively, as a function of the relative error ρ of the
estimate of the mean cell volume.

The efficiency of nucleator type estimators depends on the positioning of
the reference point inside the cell. If the reference point is very far from being
centrally positioned, we advice to use the pivotal estimators suggested in Cruz-
Orive (2005, 2008) and Cruz-Orive et al. (2010) instead.

Recently, weighted sampling has been introduced in stereology under the
name of the proportionator, as a successful method of reducing variance in the
stereological estimation of number (Gardi et al., 2007, 2008). During the research
work reported in the present paper, we also considered to reduce the within
section variance of the classical nucleator by changing the distribution of the
lines in the section from uniform to a weighted orientation distribution, using
the information available in the segmented cell transect Ỹ2.

More specifically, we considered lines L1 = L1(θ) with the following orienta-
tion density distribution q, depending on the shape of Ỹ2,

q(θ) ∝
∫
Ỹ2∩L1(θ)

d(y, o)2 dy,

for θ ∈ [0, π). This density favours lines with a large intersection with the cell.
The following estimator

mcl1(Y ∩ L1(Θ))

π q(Θ)
, (B.10)

where Θ has density q, is an unbiased estimator of V (Y ). To see this note that

E
(
mcl1

(
Y ∩ L1(Θ)

)/
(πq(Θ)

)∣∣Y, L2

)
=

∫ π

0

mcl1(Y ∩ L1(θ)) dθ
π

= E(mcl1|Y, L2).

In the case of a perfect segmentation, i.e. Ỹ2 = Y ∩L2, the values of this estimator
will not depend on Θ and therefore its within section variability will be zero.

When comparing the estimator in (B.10) to the classical nucleator estimators,
using the data analysed in Section B.3, we found that the estimator in (B.10)
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had smaller variance than mcl1 but larger variance than mcl2 . Two reasons that
the estimator (B.10) failed to outperform mcl2 might be: i) the estimator mcl2
has already a small within section variability due to the antithetic effect of the
two perpendicular lines and ii) the true cell transects are not very irregular in
shape and the variance reducing effect of weighted sampling cannot compensate
for the effect that some extra within section variability is introduced when (B.10)
is used in case of non-perfect segmentation.

Current developments in computerised image analysis make it possible to
produce a rough voxel image of a sampled cell in which virtual central sections
can be generated (Allan Rasmusson, personal communication). This feature is
not yet an integrated part of any available computer software but it might be
used in future applications of stereology in the following manner. If a rough
voxel image of a sampled cell is available, we may use a distribution of the
orientation of the section plane L2 that depends on this rough voxel image.
Implementation of weighted sampling in this connection may lead to a further
reduction in estimator variance that will affect all the estimators presented in
this paper.

B.5 Acknowledgements
This project has been supported by the Danish Council for Strategic Research
and by Centre for Stochastic Geometry and Advanced Bioimaging, funded by a
grant from The Villum Foundation.

Bibliography
Abrahão, L. M., Nyengaard, J. R., Sasahara, T. H., Gomes, S. P., Oliveira Fda, R.,

Ladd, F. V., Ladd, A. A., Melo, M. P., Machado, M. R., Melo, S. R., and Ribeiro,
A. A. (2009). Asymmetric post-natal development of superior cervical ganglion of
paca (Agouti paca). International Journal of Developmental Neuroscience, 27:37–45.

Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons, New York.

Cruz-Orive, L. M. (1976). Particle size-shape distributions: the generel spheroid
problem. I. Mathematical model. Journal of Microscopy, 107:235–253.

Cruz-Orive, L. M. (1978). Particle size-shape distributions: the generel spheroid
problem. II. Stochastic model and particle guide. Journal of Microscop, 112:153–
167.

Cruz-Orive, L. M. (2005). A new stereological principle for test lines in three dimen-
sional space. Journal of Microscopy, 219:18–28.

Cruz-Orive, L. M. (2008). Comparative precision of the pivotal estimators of particle
size. Image Analysis and Stereology, 27:17–22.

Cruz-Orive, L. M., Ramos-Herrera, M. L., and Artacho-Pérula, E. (2010). Stereology
of isolated objects with the invariator. Journal of Microscopy, 240(2):94–110.

57



Paper B

Gardi, J., Nyengaard, J., and Gundersen, H. (2008). The proportionator: Unbiased
stereological estimation using biased automatic image analysis and non-uniform
probability proportional to size sampling. Computers in Biology and Medicine,
38(3):313–328.

Gardi, J. E., Wulfsohn, D., and Nyengaard, J. R. (2007). A handheld support to
facilitate stereological measurements and mapping of branching structures. Journal
of Microscopy, 227:127–139.

Gundersen, H. J. G. (1988). The nucleator. Journal of Microscopy, 151:3–21.

Jensen, E. B. V. (1998). Local Stereology. World Scientific Publishing, Singapore.

Jensen, E. B. V. (2000). On the variance of local stereological volume estimators.
Image Analysis and Stereology, 19:15–18.

Melo, S. R., Nyengaard, J. R., da Roza Oliveira, F., Ladd, F. V. L., Abrahão, L. M. B.,
Machado, M. R., Sasahara, T. H., de Melo, M. P., and Ribeiro, A. A. C. (2009). The
developing left superior cervical ganglion of pacas (agouti paca). The Anatomical
Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(7):966–975.

Nyengaard, J. R. and Gundersen, H. J. G. (1992). The isector: a simple and direct
method for generating isotropic, uniform random sections from small specimens.
Journal of Microscopy, 165:427–431.

Wicksell, S. D. (1925). The corpuscle problem. A mathematical study of a biometric
problem. Biometrika, 17:84–89.

Wicksell, S. D. (1926). The corpuscle problem. Second memoir. Case of ellipsoidal
corpuscles. Biometrika, 18:152–172.

Appendix
In this Appendix, we will derive the results on bias and MSE of msemi presented
in Section B.2.1.4 and Section B.2.2 of the main text.

Let Aε = { d(Y ∩L2, Ỹ2) < ε }. Then, the semi-automatic nucleator is given
by

msemi = 1Aεmaut + 1Acεmcl2 ,

where 1A is the indicator function of A. Given Y and L2, the distribution of mcl2
depends only on the lines L1(Θ) and L1(Θ+π/2) where Θ is uniform on [0, π/2).
It follows that mcl2 and Aε are conditional independent given Y and L2 and we
find, using (B.2),

E
(
msemi

∣∣Y, L2

)
= E

(
1Aεmaut

∣∣Y, L2

)
+ E

(
1Acε

∣∣Y, L2

)
E
(
mcl2

∣∣Y, L2

)
= E

(
1Aεmaut

∣∣Y, L2

)
+ E

(
1Acε

∣∣Y, L2

)
mint

= E
(
1Aεmaut + 1Acεmint

∣∣Y, L2

)
.

Thereby,
E
(
msemi

)
= E

(
1Aεmaut + 1Acεmint

)
.
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It follows that

bias
(
msemi

)
= E

(
msemi

)
− E

(
mint

)
= E

(
1Aεmaut + 1Acεmint

)
− E

(
1Aεmint + 1Acεmint

)
= E

(
1Aε(maut −mint)

)
= p E

(
maut −mint

∣∣ Aε).
Using the distance d2, we have the following inequality between estimators

1Aε(1− ε)mint < 1Aεmaut < 1Aε(1 + ε)mint.

Therefore,

E(msemi) < (1 + ε) E
(
1Aεmint

)
+ E

(
1Acεmint

)
= εE

(
1Aεmint

)
+ E

(
mint

)
= ε pE

(
mint

∣∣Aε)+ µ.

Likewise, E(msemi) > −ε pE(mint|Aε) + µ and we get a bound for the relative
bias

|E(msemi)− µ|
µ

≤ ε p
E(mint|Aε)

µ
.

The results on the MSE of msemi is derived as follows

MSE(msemi) = E
(
1Aε [maut − µ]2 + 1Acε [mcl2 − µ]2

)
= pMSE

(
maut

∣∣Aε)+ (1− p) MSE
(
mcl2

∣∣Acε).
Finally, we show that (B.6) is satisfied when maut is replaced by mint, i.e.

MSE
(
mint

∣∣Aε) ≤ MSE
(
mcl2

∣∣Aε).
Utilising that mcl2 and Aε are conditionally independent given Y and L2, we
find

E
(
mcl2

∣∣Aε) = E
(
E
(
mcl2

∣∣Aε, Y, L2

) ∣∣ Aε) = E
(
mint

∣∣Aε)
and

E
(
m2

cl2

∣∣Aε) = Var
(
mcl2

∣∣Aε)+
(
E
(
mcl2

∣∣Aε))2

≥ Var
(
E
(
mcl2

∣∣Aε, Y, L2

) ∣∣ Aε)+
(
E
(
mint

∣∣Aε))2

= Var
(
mint

∣∣Aε)+
(
E
(
mint

∣∣Aε))2

= E
(
m2

int

∣∣Aε).
Therefore,

MSE
(
mcl2

∣∣Aε) = E
(
(mcl2 − µ)2

∣∣Aε)
= E

(
m2

cl2

∣∣Aε)− 2µE
(
mcl2

∣∣Aε)+ µ2

≥ E
(
m2

int

∣∣Aε)− 2µE
(
mint

∣∣Aε)+ µ2

= MSE
(
mint

∣∣Aε).
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Abstract: Lévy particles provide a flexible framework for modelling and simulating
three-dimensional star-shaped random sets. The radial function of a Lévy particle
arises from a kernel smoothing of a Lévy basis, and is associated with an isotropic
random field on the sphere. If the kernel is proportional to a von Mises–Fisher density,
or uniform on a spherical cap, the correlation function of the associated random field
admits a closed form expression. Using a Gaussian basis, the fractal or Hausdorff
dimension of the surface of the Lévy particle reflects the decay of the correlation
function at the origin, as quantified by the fractal index. Power kernels are conjectured
to yield particles with boundaries of any Hausdorff dimension between 2 and 3.

Key words: celestial body, correlation function, fractal index, Hausdorff dimension,
Lévy basis, random field on a sphere, simulation of star-shaped random sets
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C.1. Introduction

C.1 Introduction
Mathematical models for three-dimensional particles have received great interest
in astronomy, botany, geology, material science and zoology, among many other
disciplines. Early approaches include that of Wicksell (1925, 1926), who addressed
the estimation of the number and the size distribution of three-dimensional
corpuscles in biological tissue from planar sections. He proposed both a spherical
model and a more flexible ellipsoidal model. Wicksells’s ideas were elaborated
half a century later by Cruz-Orive (1976, 1978), who studied more general
particle size-shape distributions in both continuous and discrete settings.

While some particles such as crystals have a rigid shape, many real-world
objects are star-shaped, highly structured and stochastically varying. As a result,
flexible yet parsimonious models for star-shaped random sets have been in high
demand. Grenander and Miller (1994) proposed a model for two-dimensional
featureless objects with no obvious landmarks, which are represented by a
deformed polygon along with a Gaussian shape model. This was investigated
further in Kent et al. (2000) and Hobolth et al. (2002), and a non-Gaussian
extension was suggested by Hobolth et al. (2003). Miller et al. (1994) proposed
an isotropic deformation model that relies on spherical harmonics and was
studied by Hobolth (2003), where it was applied to monitor tumour growth. A
related Gaussian random shape model was studied by Muinonen et al. (1996)
and used by Muñoz et al. (2007) to represent Saharan desert dust particles.

In this paper we propose a flexible framework for modelling three-dimensional
star-shaped particles, where the radial function is a random field on the sphere
that arises through a kernel smoothing of a Lévy basis. Specifically, let Y ⊂ R3

be a three-dimensional compact set, which is star-shaped with respect to an
interior point o. Then there is a one-to-one correspondence between the set Y
and its radial function X = {X(u) : u ∈ S2 }, where

X(u) = max{ r ≥ 0 : o+ ru ∈ Y }, u ∈ S2,

with S2 = {x ∈ R3 : ‖x‖ = 1} denoting the unit sphere in R3. We model X as a
real-valued random field on S2 via a kernel smoothing of a Lévy basis, in that

X(u) =

∫
S2
K(v, u) Γ(dv), u ∈ S2, (C.1)

where K : S2×S2 → R̄ is a suitable kernel function, and Γ is a Lévy basis on the
Borel subsets of S2, that is, an infinitely divisible and independently scattered
random measure. If X is a nonnegative process, the random particle can then
be described as the set

Y =
⋃
u∈S2

{
o+ ru : 0 ≤ r ≤ X(u)

}
⊂ R3, (C.2)

so that the particle contains the centre o, which without loss of generality can be
assumed to be the origin, and the distance in direction u from o to the particle
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Figure C.1: Lévy particles with mean µX = 100 and variance σ2
X = 10, using a

Gaussian Lévy basis and the power kernel (C.14) with q = 0.05 (left), q = 0.25 (middle)
and q = 0.5 (right).

boundary is given by X(u). A potentially modified particle Yc arises in the case
of a general, not necessarily nonnegative process, where we replace X(u) by
Xc(u) = max{c,X(u)} for some c > 0. We call Y or Yc a Lévy particle, with
realisations being illustrated in Figure C.1. The Lévy particle framework is a
special case of the linear spatio-temporal Lévy model proposed by Jónsdóttir
et al. (2008) in the context of tumour growth, and allows for flexible shape and
scale. Alternatively, it can be seen as a generalisation and a three-dimensional
extension of the model proposed in Hobolth et al. (2003), while also being a
generalisation of the Gaussian random shape models of Miller et al. (1994) and
Muinonen et al. (1996).

The realisations in Figure C.1 demonstrate that the boundary or surface of
a Lévy particle allows for regular as well as irregular behaviour. The roughness
or smoothness of the surface in the limit as the observational scale becomes
infinitesimally fine can be quantified by the fractal or Hausdorff dimension, which
for a surface in R3 varies between 2 and 3, with the lower limit corresponding
to a smooth, differentiable surface, and the upper limit corresponding to an
excessively rough, space-filling surface (Falconer, 1990). The concept dates
back to Hausdorff (1918) and has attracted much attention due to the work
of Mandelbrot, who argued that fractal objects and surfaces are ubiquitous
in nature (Mandelbrot, 1982). Under a Gaussian Lévy basis, the Hausdorff
dimension of the surface of an isotropic Lévy particle is determined solely by
the behaviour of the correlation function of the associated random field on
the sphere. We investigate the properties of Lévy particles under parametric
families of isotropic kernel functions, including power kernels, and kernels that
are proportional to von Mises–Fisher densities, or uniform on spherical caps. Von
Mises–Fisher and uniform kernels generate Gaussian particles with boundaries
of Hausdorff dimension 2 and 2.5, respectively. Power kernels generate Gaussian
Lévy particles which surface we conjecture to attain any Hausdorff dimension
between 2 and 3.

The remainder of the paper is organised as follows. Section C.2 recalls
basic properties of Lévy bases and of the radial function in the Lévy particle
model (C.1). In Section C.3 we show how to derive the Hausdorff dimension
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of an isotropic Gaussian Lévy particle from the infinitesimal behaviour of the
correlation function of the underlying random field at the origin. Section C.4
introduces the aforementioned families of isotropic kernels and discusses the
properties of the associated correlation functions and Lévy particles. Section C.5
presents a simulation algorithm and simulation examples, including a case study
on celestial bodies and a discussion of planar Lévy particles. The paper ends
with a discussion in Section C.6.

C.2 Preliminaries
The properties of the random function (C.1) that characterises a Lévy particle
process depend both on the kernel function K and the Lévy basis Γ. For the Lévy
basis, we use two of the types considered by Jónsdóttir et al. (2008). Specifically,
we assume Γ to be either a Gaussian Lévy basis with parameters µ ∈ R and
σ2 > 0, so that

Γ(A) ∼ N
(
µλ(A), σ2λ(A)

)
, (C.3)

or a gamma Lévy basis with shape κ > 0 and rate τ > 0, so that

Γ(A) ∼ Ga
(
κλ(A), τ

)
, (C.4)

where λ(A) denotes the surface measure of a Borel set A ⊆ S2, with λ(S2) = 4π.
We assume that the kernel function K is isotropic, in that K(v, u) = k(ϑ(v, u))
depends on the points v, u ∈ S2 through their great circle distance ϑ(v, u) ∈ [0, π]
only. As cosϑ(v, u) = u ·v, this is equivalent to assuming that the kernel depends
on the inner product u ·v only. Jónsdóttir et al. (2008) show that in the isotropic
case the mean function E(X(u)) and the variance function Var(X(u)) are
constant, that is,

µX = E(X(u)) = µΓ c1 and σ2
X = Var(X(u)) = σ2

Γ c2,

for u ∈ S2, where we assume that

cn =

∫
S2
k(ϑ(v, u))n dv

is finite for n = 1, 2. The values of the mean and variance parameters µΓ and σ2
Γ

depend on the Lévy basis, as summarised in Table C.1. Depending on the choice
of the Lévy basis, X(u) might not be positive and thus may not be usable for
determining distances. We then use the cut-off version Xc(u) = max{ c,X(u) }
for c > 0, which generates the random particle Yc. For further discussion of the
relevant properties of Lévy bases see Hellmund et al. (2008).

Note that X can be interpreted as a stochastic process on the sphere (Jones,
1963), whose covariance function is given by

Cov(X(u1), X(u2)) = σ2
Γ

∫
S2
k(ϑ(v, u1)) k(ϑ(v, u2)) dv, u1, u2 ∈ S2,
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Table C.1: Mean and variance parameters for Gaussian and gamma bases for the
Lévy particle process.

Lévy basis Γ µΓ σ2
Γ

Normal µ σ2

Gamma κ/τ κ/τ 2

Under an isotropic kernel, the random field X is stationary and isotropic, and it
is readily seen that Cor(X(u1), X(u2)) = C(ϑ(u1, u2)), where

C(θ) = 2
c2

∫ π

0

∫ π

0

k(θ) k(arccos(sin θ sin η cosφ+ cos θ cos η)) dφ sin η dη,

(C.5)
for 0 ≤ θ ≤ π, is the correlation function of the random field X. In particular,
the correlation structure does not depend on the choice of the Lévy basis.

C.3 Hausdorff dimension
The Hausdorff dimension of a set Z ⊂ Rd is defined as follows (Hausdorff,
1918; Falconer, 1990). For ε > 0, an ε-cover of Z is a finite or countable
collection {Bi : i = 1, 2, . . . } of balls Bi ⊂ Rd of diameter |Bi| less than or equal
to ε that covers Z. With

Hδ(Z) = lim
ε→0

inf
{∑
|Bi|δ : {Bi : i = 1, 2, . . .} is an ε-cover of Z

}
denoting the δ-dimensional Hausdorff measure of Z, there exists a unique
nonnegative number δ0 such that Hδ(Z) =∞ if δ < δ0 and Hδ(Z) = 0 if δ > δ0.
This number δ0 is the Hausdorff dimension of the set Z.

For the remainder of the section, we assume that the Lévy basis Γ is the
Gaussian basis (C.3). Then X has Gaussian finite dimensional distributions and
thus is a Gaussian process. While there is a wealth of results on the Hausdorff
dimension of the graphs of stationary Gaussian random fields on Euclidean
spaces, which is determined by the infinitesimal behaviour of the correlation
function at the origin, as formalised by the fractal index (Hall and Roy, 1994;
Adler, 1981), we are unaware of any extant results for the graphs of random
fields on spheres, or for the surfaces of star-shaped random particles.

We now state and prove such a result. Toward this end, we define the fractal
index of an isotropic random field X on the sphere with associated correlation
function (C.5) as the number

α = sup
{
β > 0 : C(0)− C(θ) = o(θβ), θ ↓ 0

}
= inf

{
β > 0 : θβ = o(C(0)− C(θ)), θ ↓ 0

}
. (C.6)

The fractal index exists for essentially all correlation functions of practical
interest, and it is always true that α ∈ (0, 2]. The following theorem relates the
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Hausdorff dimension of the graph of an isotropic Gaussian random field X on
the sphere S2 to its fractal index. The proof employs stereographic projections
that allow us to draw on classical results in the Euclidean case.

Theorem C.1. Let X be an isotropic Gaussian random field on S2 with fractal
index α ∈ (0, 2]. Consider the random surface

Zc =
{

(u,Xc(u)) : u ∈ S2
}
,

where Xc(u) = max{c,X(u)} with c > 0. Then with probability one either of
the following alternatives holds:

(a) If maxu∈S2 X(u) ≤ c, the realisation of Zc is the sphere with radius c and
so its Hausdorff dimension is 2.

(b) If maxu∈S2 X(u) > c, the realisation of Zc has Hausdorff dimension 3− α
2
.

Proof. The claim in alternative (a) is trivial. To prove the statement in alterna-
tive (b), we assume without loss of generality thatX(u0) > c, where u0 = (0, 0, 1).
The sample paths of X are continuous almost surely according to Gangolli
(1967, Theorem 7.2). Thus, there exists ε ∈ (0, 1) such that X(u) > c for u
in the spherical cap S2

ε = {u ∈ S2 : ϑ(u, u0) ≤ ε} of radius ε centred at u0.
Let Π : S2

ε → Bε denote a stereographic projection that maps (0, 0, 1) to (0, 0),
where Bε = {x = (x1, x2) ∈ R2 : x2

1 + x2
2 ≤ ε2}. A stereographic projection is a

local diffeomorphism, Π is thus differentiable and has a differentiable inverse Π−1,
which is locally bi-Lipschitz (do Carmo, 1976). We may therefore assume that ε
is small enough so that for all x, x′ ∈ Bε there exists a constant A ≥ 1 with

1
A
‖x− x′‖ ≤ ‖Π−1(x)− Π−1(x′)‖ ≤ A‖x− x′‖, (C.7)

where ‖ · ‖ denotes the Euclidean norm on R2 or R3, respectively. Let the
Gaussian random field W on Bε ⊂ R2 be given by W (x) = X(Π−1(x)). From
Xue and Xiao (2009, Theorem 5.1) we get that the graph GrW = {(x,W (x)) :
x ∈ Bε} has Hausdorff dimension 3 − α

2
almost surely if there exists positive

constants δ0,M0 ≥ 1 such that for all x, x′ ∈ Bε with ‖x− x′‖ ≤ δ0

1
M0

2∑
j=1

|xj − x′j|α ≤ E(W (x)−W (x′))2 ≤M0

2∑
j=1

|xj − x′j|α. (C.8)

Let x, x′ ∈ Bε be such that x 6= x′, and let ϑ(x, x′) = ϑ(Π−1(x),Π−1(x′)). Then
it holds that E |W (x)−W (x′)|2 = 2σ2c2 [C(0)− C(ϑ(x, x′))]. As chord length
and great circle distance are bi-Lipschitz equivalent metrics, there exists a
constant c ≥ 1 such that

1
c
‖Π−1(x)− Π−1(x′)‖ ≤ ϑ(x, x′) ≤ c ‖Π−1(x)− Π−1(x′)‖. (C.9)

Let ε̃ > 0 be given, and let β < α and τ > α be such that α + ε̃ > τ
and α− ε̃ < β. As X is of fractal index α, there exists for every K > 0 a δ > 0
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such that ϑ(x, x′) < δ implies C(0) − C(ϑ(x, x′)) ≤ Kϑ(x, x′)β for β < α,
and ϑ(x, x′)τ ≤ K[C(0)− C(ϑ(x, x′))] for τ > α. As the mapping x 7→ xα/2 is
concave, we may apply Jensen’s inequality, equations (C.7) and (C.9) and the
considerations above to show that

2∑
j=1

|xj − x′j|α ≤ 21−α/2σ2c2A
αCαKϑ(x, x′)−ε̃

[
C(0)− C(ϑ(x, x′))

]
.

Let M0 = 2−α/2AαCαK. For ε̃→ 0, we further obtain

1
M0

2∑
j=1

|xj − x′j|α ≤ 2σ2c2

[
C(0)− C(ϑ(x, x′))

]
,

where we assume that ϑ(x, x′) ≤ 1, which can be guaranteed by selecting S2
ε

sufficiently small. Similarly,

2σ2c2

[
C(0)− C(ϑ(x, x′))

]
≤ M0

2∑
j=1

|xj − x′j|α,

which concludes the proof of the inequalities in (C.8).
Now, consider the mapping ζ from Bε × R to S2

ε × R defined by ζ(x, r) =
(Π−1(x), r), so that ζ(GrW ) = { (u,X(u) : u ∈ S2

ε }. The identity

‖ζ(x, r)− ζ(x′, r′)‖2 = ‖Π−1(x)− Π−1(x′)‖2 + |r − r′|2.

along with (C.7) implies ζ to be bi-Lipschitz. Therefore by Corollary 2.4 of
Falconer (1990), the partial surface { (u,X(u)) : u ∈ S2

ε } has Hausdorff di-
mension 3 − α/2 almost surely. Invoking the countable stability property of
the Hausdorff dimension (Falconer, 1990, p. 29), we see that the full sur-
face Zc = {(u,Xc(u)) : u ∈ S2

ε} also has Hausdorff dimension 3 − α/2 almost
surely.

C.4 Isotropic kernels

It is often important that the surface of the particle process possesses the
same Hausdorff dimension as that of the real-world particles to be emulated
(Mandelbrot, 1982; Orford and Whalley, 1983). With this in mind, we introduce
and study three one-parameter families of isotropic kernels for the Lévy particle
process (C.1). The families yield interesting second order structures, and we
derive the asymptotic behaviour of their correlation functions at zero, which
determines the Hausdorff dimension of the Gaussian particle surface.
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C.4.1 Von Mises–Fisher kernel

Here, we consider k to be the unnormalised von Mises–Fisher density,

k(θ) = exp{ a cos θ }, 0 ≤ θ ≤ π, (C.10)

with parameter a ∈ R. The von Mises–Fisher density with parameter a > 0 is
widely used in the analysis of spherical data (Fisher et al., 1987), and in this
context a is called the precision.

To obtain a closed form expression for the correlation function, we consider
an alternative to the representation in equation (C.5). For θ ∈ [0, π] let uθ =
(sin θ, 0, cos θ) ∈ S2. Then

C(θ) =
2

c2

∫
S2
k(ϑ(v, u0))k(ϑ(v, uθ)) dv

=
2

c2

∫
S2

exp
{
a ‖u0 + uθ‖

(
v · u0 + uθ
‖u0 + uθ‖

)}
dv

=
4

c2π

∫ π

0

exp
{
a ‖u0 + uθ‖ cos θ

}
sin θ dθ

=
8π

c2

sinh(a‖u0 + uθ‖)
a‖u0 + uθ‖

.

As ‖u1 + u2‖2 = 2 [1 + cosϑ(u1, u2)] for u1, u2 ∈ S2, we get

C(θ) =
2

sinh(2a)

sinh
(
a
√

2(1 + cos θ)
)√

2(1 + cos θ)
, 0 ≤ θ ≤ π, (C.11)

from which it is readily seen that the fractal index is α = 2. The surfaces
of the corresponding Gaussian Lévy particles are smooth and have Hausdorff
dimension 2, independently of the value of the parameter a ∈ R, as illustrated
in Figure C.2.
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101

106

111

Figure C.2: Lévy particles with mean µX = 100 and variance σ2
X = 10, using a

gamma Lévy basis and the von Mises–Fisher kernel (C.10) with a = 3 (left), a = 30
(middle) and a = 300 (right).

Perhaps surprisingly, the von Mises–Fisher correlation function (C.11) can
be extended to a stationary and isotropic correlation function on the Euclidean
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space Rd for any d ≥ 3. To see this, we define the function

ϕ(t) =
1F1

(
1, 3

2
, a2
(
1− t

4

))
1F1

(
1, 3

2
, a2
) , t ≥ 0,

in terms of the classical confluent hypergeometric function. Using well-known
results (Abramowitz and Stegun, 1965, pp. 505 and 507), we see that

(−1)n
∂n

∂tn
ϕ(t) =

a2n

4n

(
1
)
n(

3
2

)
n

1F1

(
n+ 1, n+ 3

2
, a2
(
1− t

4

))
1F1

(
1, 3

2
, a2
) ≥ 0, t ≥ 0,

where (x)n = x(x + 1) · · · (x + n), whence ϕ is completely monotone. By the
key result of Schoenberg (1938), the function ψ(x) = ϕ(‖x‖2), x ∈ Rd is a
correlation function in any dimension d ≥ 1. Restricting ψ to S2 and substituting
spherical distance for Euclidean distance yields the von Mises–Fisher correlation
function (C.11) with parameter a ∈ R, thereby proving the claim.

C.4.2 Uniform kernel

We now let the kernel k be uniform, in that

k(θ) = 1{θ≤r}, 0 ≤ θ ≤ π, (C.12)

with cut-off parameter r ∈ (0, π/2). As shown in the appendix of Tovchigrechko
and Vakser (2001), the associated correlation function is

C(θ) =
1

π (1− cos r)

(
π − arccos

(
cos θ csc2 r − cot2 r

)
(C.13)

− 2 cos r arccos
(
csc θ cos r csc r − cot θ cot r

))
1{θ≤2r}, 0 ≤ θ ≤ π.

In particular, if r = π/2 then C(θ) = 1 − θ/π decays linearly throughout.
Taylor expansions imply that the correlation function has fractal index α = 1
for all r ∈ (0, π/2), so that the corresponding Gaussian Lévy particles have
non-smooth boundaries of Hausdorff dimension 5/2. Examples of Gaussian Lévy
particles under this kernel are shown in Figure C.3.

C.4.3 Power kernel

We now introduce the power kernel, which allows for Lévy particles with bound-
aries of any desired Hausdorff dimension. Specifically, let the isotropic kernel k
be defined as

k(θ) =
(
θ/π
)−q − 1, 0 < θ ≤ π, (C.14)

with power parameter q ∈ (0, 1). The associated correlation function (C.5) takes
the form

C(θ) =
1

c2

∫ π

0

(πqλ−q − 1) sinλ

∫
A(λ)

(πqa(θ, λ, φ)−q − 1)dφ dλ, (C.15)
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89
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109

Figure C.3: Lévy particles with mean µX = 100 and variance σ2
X = 10, using

a Gaussian Lévy basis and the uniform kernel (C.12) with r = 1.5 (left), r = 1.0
(middle) and r = 0.5 (right). The fractal or Hausdorff dimension of the particle surfaces
equals 2.5.

where
a(θ, λ, φ) = arccos(sin θ sinλ cosφ+ cos θ cosλ) (C.16)

and
A(λ) = {φ ∈ [0, π] : 0 < a(θ, λ, φ) ≤ π }. (C.17)

Figures C.1 and C.4 show Lévy particles under the power kernel using Gaussian
and gamma bases, respectively. The surface structure for the different bases
resemble each other, even though the particles exhibit more pronounced spikes
under the gamma basis.

Our next result shows the asymptotic behaviour of the correlation func-
tion in (C.15). Provided that the integral Aq in (C.18) is strictly positive, the
correlation function has fractal index α = 2 − 2q, so that the corresponding
Gaussian Lévy particles illustrated in Figure C.1 have surfaces with Hausdorff
dimension 2 + q.
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127

Figure C.4: Lévy particles with mean µX = 100 and variance σ2
X = 10, using a

gamma Lévy basis and the power kernel (C.14) with q = 0.05 (left), q = 0.25 (middle)
and q = 0.5 (right).

Theorem C.2. Let 0 < q < 1 and

Aq = 2π2q

∫ ∞
0

x1−q
∫ π

0

(
x−q − (x2 + 1− 2x cosφ)−q/2

)
dφ dx ∈ [0,∞). (C.18)
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Provided that Aq > 0, the correlation function (C.15) admits the expansion

C(0)− C(θ) ∼ Aq θ
2−2q as θ ↓ 0. (C.19)

In particular, the correlation function has fractal index α = 2− 2q.

Proof. Let 0 ≤ θ ≤ π, and let the functions a and A be defined in (C.16)
and (C.17). From (C.5), we get

1
2

[
C(0)− C(θ)

]
=

∫ π

0

(πqλ−q − 1) sinλ

×
{∫ π

0

(πqλ−q − 1)dφ−
∫
A(λ)

(πqa(θ, λ, φ)−q − 1) dφ
}

dλ.

Since A(λ) = [0, π] for λ ∈ (0, π − θ] and A(λ) ⊂ [0, π] for λ ∈ (π − θ, π), we
decompose the integral on the right-hand side as I1q(θ) + I2q(θ), where I1q(θ)
and I2q(θ) correspond to the integral with respect to λ over (0, π−θ) and (π−θ, π),
respectively.

As for the first term, substituting λ = θx yields

I1q(θ) = π2q

∫ π−θ

0

(λ−q − π−q) sinλ

×
{∫ π

0

(λ−q − π−q)dφ−
∫ π

0

(a(θ, λ, φ)−q − π−q)dφ
}

dλ

= θ2−2q π2q

∫ π−θ
θ

0

sin(θx)
θ

(x−q − π−qθq)
∫ π

0

(x−q − a(θ, θx, φ)−qθq)dφ dx.

Noting that
arccos(t)

θ
=

arccos (1− y2)

y

y

θ

∣∣∣∣
y=(1−t)1/2

for t ∈ (0, 1), we find from (C.16) that

lim
θ↓0

a(θ, θx, φ)

θ
= lim

θ↓0

arccos(sin θ sin(θx) cosφ+ cos θ cos(θx))

θ

=
d

dy
arccos

(
1− y2

)∣∣∣
y=0

lim
θ↓0

(1− cos θ cos(θx)

θ2
− sin θ sin(θx)

θ2
cosφ

)1/2

=
√

2
(1 + x2

2
− x cosφ

)1/2

= (x2 + 1− 2x cosφ)1/2.

An application of the Lebesgue Dominated Convergence Theorem with the
dominating function

h(φ, x) =


x1−q(x−q + 1)

(( x

1− x

)q
+ 1
)
, 0 < x < 1,

x1−q(x−q + 1)
(( x

x− 1

)q
− 1
)
, x > 1,
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now shows that

I1q(θ) = θ2−2q π2q

∫ π−θ
θ

0

sin(θx)
θ

(x−q − π−qθq)
∫ π

0

(x−q − a(θ, θx, φ)−qθq)dφ dx

∼ θ2−2q π2q

∫ ∞
0

x1−q
∫ π

0

(x−q − (x2 + 1− 2x cosφ)−q/2)dφ dx = Aq θ
2−2q

as θ ↓ 0, with the constant Aq of equation (C.18), provided that Aq > 0.
As regards the second term, the first mean value theorem for integration

implies that there exists a t ∈ (π − θ, π) such that

I2q(θ) =

∫ π

π−θ
(πqλ−q − 1) sinλ

×
{∫ π

0

(πqλ−q − 1)dφ−
∫
A(λ)

(πqa(θ, λ, φ)−q − 1)dφ
}

dλ

= θ(πqt−q − 1) sin t
{∫ π

0

(πqt−q − 1) dφ−
∫
A(t)

(πqa(θ, t, φ)−q − 1) dφ
}
.

Hence, I2q(θ) decays faster than O(θ2) as θ ↓ 0, which completes the proof of
the asymptotic expansion (C.19). The claim about the fractal index then is
immediate from Theorem C.1.

The power kernel (C.14) has a negative exponent and thus is unbounded.
While positive exponents are feasible, they are of less interest, as the associated
correlation functions have fractal index α = 2, thereby generating smooth
particles only.

C.5 Examples

Here, we demonstrate the flexibility of the Lévy particle framework in simulation
examples. First, we introduce a simulation algorithm. Then we simulate celestial
bodies whose surface properties resemble those of Earth, Moon, Mars and Venus,
as reported in the planetary physics literature. Furthermore, we study and
simulate the planar Lévy particles that arise from the two-dimensional version
of the three-dimensional Lévy particle model (C.1).

C.5.1 Simulation algorithm

To sample from the Lévy particle model (C.1), we utilise the property that a Lévy
basis is independently scattered. Specifically, for every sequence (An) of disjoint
Borel subsets of S2, the random variables Γ(An), n = 1, 2, . . . , are independent
and Γ(∪An) =

∑
Γ(An) almost surely (Jónsdóttir et al., 2008). Let (An)Nn=1

denote an equal area partition of S2, so that λ(An) = 4π/N for n = 1, · · · , N .
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The random field X in (C.1) can then be decomposed into a sum of integrals
over the disjoint setsAn, in that

X(u) =
N∑
n=1

∫
An

k(v, u) Γ(dv), u ∈ S2.

For n = 1, . . . , N fix any point vn ∈ An. We can then approximate the random
field X by setting

x(u) =
N∑
n=1

k(vn, u) Γ(An), u ∈ S2.

Let us denote the common distribution of Γ(A1), . . . ,Γ(AN), which derives
either (C.3) or (C.4), depending on the choice of the Lévy basis, by FN . To
simulate a realisation y of the Lévy particle Y in (C.2), we use the following
algorithm.

Algorithm C.1.

1. Set M = m1m2, where m1 and m2 are positive integers, and construct
a grid u1, . . . , uM on S2. Using spherical coordinates, let um = (θm, φm)
and put θm = iπ/m1 and φm = 2πj/m2, where m = im2 + j for i =
0, 1, . . . ,m1 − 1 and j = 1, . . . ,m2.

2. Apply the method of Leopardi (2006) to construct an equal area partition
A1, . . . , AN of S2.

3. For n = 1, . . . , N , let vn have spherical coordinates equal to the mid range
of the latitudes and longitudes within An.

4. For n = 1, . . . , N , generate independent random variables Γn from FN .
5. For m = 1, . . . ,M , set x(um) =

∑N
n=1 k(vn, um) Γn.

6. Set y to be the convex hull of {(um, x(um)) : m = 1, . . . ,M}.

When a Gaussian Lévy basis is used, we use the aforementioned modification,
in which x(um) is replaced by max{c, x(um)} for some c > 0. This simulation
procedure has been implemented in R (R Development Core Team, 2009), and
code is available from the authors upon request. It can be considered an analogue
of the moving average method (Oliver, 1995; Cressie and Pavlicová, 2002) for
simulating Gaussian random fields on Euclidean spaces. The quality of the
realisations depends on the choice of M and N , and the usual trade-off applies,
in that large values of M and N result in accurate simulations, at the expense
of prolonged computation times.

For the simulations in Figure 1–4, we used m1 = 200, m2 = 400 and N = 105.

C.5.2 Celestial bodies

In the literature, there are several articles concerning the Hausdorff dimension
of the surface of the Earth and the other celestial bodies in our solar system,
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see e.g. Mandelbrot (1982), Turcotte (1987) and Kucinskas et al. (1992). Here,
we provide simulated version of the planets Earth, Venus, Mars, and of the
Moon. According to Turcotte (1987) the Hausdorff dimension of the surface of
these bodies is 2.5. We will assume the model (C.1) with k being the uniform
kernel (C.12) and Γ being the Gaussian basis (C.3). We set r = π/3 which
gives the desired theoretical Hausdorff dimension 2.5. For this value of r we
get cn = 2π(1− cos(π/3)) = π, for n = 1, 2.

Further, we attempt to fix the parameter values of the Lévy basis such that
the mean radius and the variation thereof is in accordance with reality. For
this we use the information listed in Table C.2 obtained from Seidelmann et al.
(2007), Wieczorek et al. (2006), Wikipedia1, The Mariana Trench2, Price (1988),
Taylor (1998), Wikipedia3, geology.com4, Jones and Stofan (2008), Infoplease5.
For each celestial body, we aim to have EX(u) = r0. Hence, we fix the mean
value parameter of the Lévy basis as µΓ = r0/c1. As a heuristic measure of the
deviation in the radius of a body we fix the variance parameter of the basis
at σ2

Γ = (d+ − d−)/c2.
Note that the values concerning Earth describe the ’Dry Earth’; that is,

they do not take the oceans into account. From information on The Science
Forum6 we calculate the mean radius of Dry Earth from the radius of Earth
with water (6371 km), the volume of water on Earth (1.3× 109 km3), and the
average ocean depth (3.79 km). To simulate Earth with water we first simulate
the radial function for the Dry Earth. Then, we make a cut-off such that the
oceans constitute 70.8% of the surface of Earth (Pidwirny, 2006). Corresponds
to Yc with c = 6371.

We let m1 = 200 and m2 = 400 so that M = 80 000, and the equal area
partition used for the simulation has N = 106. The resulting celestial bodies are
shown in Figure C.5, and the corresponding radial functions along the equator
are displayed in Figure C.6.

C.5.3 Planar Lévy particles

For ease of comparison, we reduce the dimension of the Lévy particle process (C.1)
to two. This allows us to better assess the influence of the kernel and the basis
choice on the resulting particles. Thus, we consider the planar random particle

Yc =
⋃
u∈S1

{
o+ ru : 0 ≤ r ≤ max(X(u), c)

}
⊂ R2,

1 http://en.wikipedia.org/wiki/Mount_Everest#cite_note-tas1982-8
2 http://www.marianatrench.com/mariana_trench-oceanography.htm
3 http://en.wikipedia.org/wiki/Geology_of_Mars#cite_note-100
4 http://geology.com/articles/highest-point-on-mars.shtml#mars-low-point
5 http://www.infoplease.com/ipa/A0004448.html
6 http://www.thescienceforum.com/viewtopic.php?p=232069
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Table C.2: Mean radius r0, difference d+ between maximal and mean radius, and
difference d− between minimal and mean radius, for Venus, Dry Earth, Moon and
Mars, in kilometres.

Body Venus Dry Earth Moon Mars

r0 6051.8 6727.2 1737.1 3389.5
d+ 11.0 8.8 5.5 21.2
d− −3.0 −11.0 −12.0 −8.2

Figure C.5: Simulations of Venus, Earth, Moon and Mars in true relative size.
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Figure C.6: Radial function along the equator for the simulated bodies in Figure C.5
in kilometres. Clockwise from upper left: Venus, Earth with ocean level at the blue
line, Mars, and Moon.
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where c > 0 and o ∈ R2 is an arbitrary centre, and the radial function X(u) is
modelled as

X(u) =

∫
S1
K(v, u) Γ(dv), u ∈ S1,

with a suitable kernel function K : S1×S1 → R̄ and a Lévy basis Γ on the Borel
subsets of the unit sphere S1 := {x ∈ R2 : ‖x‖ = 1}. As previously, we assume
that the kernel function K is isotropic, in that K(v, u) = k(ϑ(v, u)) depends on
the points v, u ∈ S1 through their angular or circular distance ϑ(v, u) ∈ [0, π]
only. Table C.3 lists circular analogues of von Mises–Fisher, uniform and power
kernels along with analytic expressions for the integrals

cn =

∫
S1
k(ϑ(v, u))n dv = 2

∫ π

0

k(η)n dη,

where n = 1, 2, and the fractal index α, as defined in (C.6), of the associated
correlation function, namely

C(θ) =
1

c2

(∫ π

π−θ
k(φ)k(2π − φ− θ) dφ+

∫ π−θ

0

k(φ)k(θ + φ) dφ

+

∫ θ

0

k(φ)k(θ − φ) dφ+

∫ π

θ

k(φ)k(φ− θ) dφ
)
, 0 ≤ θ ≤ π.

For the von Mises–Fisher kernel with parameter a, the correlation functions
admits the closed form

C(θ) = I0

(
a
√

2(1 + cos θ)
) /

I0(2a), 0 ≤ θ ≤ π,

where I0 denotes a Bessel function. For the uniform kernel with cut-off parame-
ter r ∈ (0, π/2], the correlation functions admits the closed form

C(θ) = (1− θ/(2r))1{θ≤2r}, 0 ≤ θ ≤ π.

For the power kernel with parameter q ∈ (0, 1/2) we find,

C(θ) =
πq

c2

1

1− q

[
(2π − θ)−q

{
π2F1

(
1− q, q; 2− q; π/(2π − θ)

)
− πq(π − θ)1−q

2F1

(
1− q, q; 2− q; (π − θ)/(2π − θ)

)}
+ πqθ−q(π − θ)1−q

2F1

(
1− q, q; 2− q;−(π − θ)/θ

)
+ π(π − θ)−q2F1

(
1, q; 2− q; π/(π − θ)

)]
− 2π

c2

1 + q

1− q
.

If maxu∈S1 X(u) > c, the boundary of the Gaussian Lévy particle Yc has
Hausdorff dimension D = 2− α/2 almost surely. We omit the proofs of these
results, as they are analogous to those of the respective results for S2.
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Table C.3: Analytic form, parameter range, constants and fractal index associated
with for parametric families of isotropic kernels k : [0, 2π) → R̄ on the circle S1.
Here, I0 denotes a modified Bessel function of the first kind of order zero.

Kernel von Mises–Fisher Uniform Power

Analytic Form k(θ) = exp(a cos θ) k(θ) = 1{θ≤r} k(θ) = (θ/π)−q − 1

Parameter a > 0 r ∈ (0, π/2) q ∈ (0, 1/2)

c1 2πI0(a) 2r 2π
q

1− q

c2 2πI0(2 a) 2r 4π
q2

1− 3q + 2q2

Fractal Index 2 1 1− 2q

Figure C.7 shows simulated planar Lévy particles using Gaussian and gamma
Lévy bases with von Mises–Fisher and power kernels, with parameters as listed in
Table C.4. For the Gaussian basis, we further use a cut-off at zero. The simulation
algorithm of Section C.5.1 continues to apply with natural adaptions, such as
using a simulation grid um = 2πm/M for m = 1, . . . ,M . We used M = 5000
and N = 105.

Table C.4: Values of the parameter a for the von Mises–Fisher kernel and the
parameter q for the power kernel used to generate the planar particles in Figure C.7.

Row a r q

1 3 1.5 0.05
2 30 1.0 0.25
3 300 0.5 0.45

We see that the von Mises–Fisher kernel generates particles with a smooth,
differentiable boundary of Hausdorff dimension 1, independently of the parame-
ter a > 0. In contrast, the power kernel results in rough particles whose boundary
is non-differentiable with Hausdorff dimension 1.5 + q. Also, judging by the
last row, it appears that the global particle shape under the von Mises–Fisher
kernel and the uniform kernel can deviate more from a spherical shape than
the global particle shape under the power kernel which seems to generate fairly
spherical shapes regardless of the choice of Lévy basis. Furthermore, the plots
indicate more pronounced oscillation of the radial function for the power kernel
as the kernel parameter value increases and this seems to be independent of the
choice of the Lévy basis. The gamma particles also appear more spiky than the
Gaussian particles.
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Figure C.7: Planar Lévy particles with mean µX = 25 and variance σ2
X = 10.

Columns 1 and 2 show particles generated using a von Mises–Fisher kernel, columns 3
and 4 particles generated using a uniform kernel, and columns 5 and 6 particles
generated using a power kernel with parameters varying by row as described in
Table C.4. The particles in columns 1, 3, and 5 are generated under a Gaussian basis,
those in columns 2, 4, and 6 under a gamma basis.

C.6 Discussion

In this paper, we propose a flexible modelling framework for three-dimensional
star-shaped particles. The particles are represented by their radial function which
we model through a kernel smoothing of a Lévy basis on the sphere. We simulate
particles under the model using both a gamma basis and a Gaussian basis. For
the Gaussian particles, we show that a kernel function given by the unnormalised
von Mises–Fisher density yields smooth particles with the Hausdorff dimension
of the surface equal to that of the topological space. For the family of power
kernels, on the other hand, we conjecture that we can obtain particles with
boundaries of any Hausdorff dimension between 2 and 3.

The Hausdorff dimension of the surface is a function of the fractal index α
of the corresponding random field and α can, in turn, be obtained from the
asymptotic behaviour of the correlation function. Under the proposed model
in (C.1) with an isotropic kernel function, the correlation function is a function
of the great circle distance only and it does not depend on the choice of the
Lévy base. Based on this and our simulation results which show only minor
difference between the Gaussian particles and particles with a corresponding
gamma base, we conjecture that results similar to Theorem C.1 will hold for a
gamma Lévy base. However, such results are very difficult to obtain due to the
lack of general theory on the Hausdorff dimension for non-Gaussian processes.

Could use non-isotropic kernels to get non-isotropic, and/or multi-fractal,
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particles with spatially varying surface roughness and Hausdorff dimension.
Gagnon et al. (2006) have argued that Earth is multi-fractal, with simulations
on Planar Earth. Our work provides an avenue to multi-fractal simulations of
Spherical Earth.

Our focus was on S2. Case of S1 has been discussed in Section C.5.3, and a
generalisation to Sd−1 for d ≥ 2 is possible. In this context, Estrade and Istas
(2010) derive a recursive formula for the isotropic correlation function on Sd−1

that arises under a uniform kernel. In analogy to the terminology on Euclidean
spaces (Gneiting, 1999), we might call this correlation function the spherical
hat function with cut-off parameter r ∈ (0, π/2). It has a linear behaviour at
the origin and thus fractal index α = 1. Estrade and Istas (2010) also show that
scale mixtures of the spherical hat function provide correlation functions of any
fractal index α ∈ (0, 1], similarly to the corresponding results of (Hammersley
and Nelder, 1955) and (Gneiting, 1999) on Euclidean spaces.

We have not discussed inference under our modelling framework and consider
this out of the scope of the present paper. In a Bayesian setting, inference could
be performed in similar manner to the procedures proposed in Wolpert and
Ickstadt (1998). Wolpert and Ickstadt model the intensity measure of a spatial
point process using a construction similar to our random field model in (C.1).
The observed data are then point counts which distribution is a function of the
underlying intensity measure. They propose a simulated inference framework
where the model parameters, the underlying random field, and the point process
are updated in turn conditional on the current state of the other variables. A
similar approach should be suitable here, where the observation is seen as a
noisy version of the underlying radial function X.
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Abstract: Identifying a particle via its radial function and then modelling the radial
function by a kernel smoothing of a Lévy basis provide a flexible parametric model of
three-dimensional particles. Under this particle model the particle volume distribution
is known and statements on the distribution of the local stereological volume estimators
are obtained.
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D.1 Introduction

An advantage of local stereological techniques is that they can be applied
without specific assumptions on the shape of the object under study (Jensen,
1998). This is a very important step forward compared to earlier methods
that relied on restrictive shape assumptions such as spherical or ellipsoidal
shape (Wicksell, 1925, 1926; Cruz-Orive, 1976, 1978). Local stereology allows
the unbiased estimation of the mean particle size, such as volume and surface
area, without specific shape assumptions on the particles belonging to the
particle population under study. Unfortunately, these relaxed shape assumptions
has the consequence that only very weak statements can be made about the
distributional properties of the estimators. Since it is difficult to separate the
variance due to estimation of the size of each sampled particle from the variance
in the true particle size distribution, it is not possible to obtain an estimate of
the true particle size distribution.

In this paper we propose a flexible parametric model of three-dimensional
particles under which the particle volume distribution can be estimated. Also,
stronger statements about the distribution of the local volume estimators can
be provided under this model. Each particle is modelled as a compact and star-
shaped random set via its corresponding radial function. The radial function
is a random field on the unit sphere and it is modelled as the p’th power of a
kernel smoothing of a Lévy basis, defined on the unit sphere. We refer to this
as the power p Lévy based model and to the random sets obtained under this
model as Lévy particles. We note that for p = 1 this purely spatial model is
a special case of the spatio-temporal Lévy based growth model suggested in
Jónsdóttir et al. (2008) for modelling particle growth over time. In a simulation
study, Jónsdóttir et al. (2008) investigates the effect of the choice of Lévy basis
on the shape of the particle. Furthermore, for p = 1, the model has been studied
in Hansen et al. (2011b). They consider the fractal properties of the surface of
the Lévy particle along with simulation examples.

As opposed to the earlier models suffering from severe shape restrictions
the Lévy particle model proposed in this paper is very flexible concerning
shape but yet it is statistically tractable. Performing parameter estimation is
straightforward using e.g. the method of moments or maximum likelihood theory.

It is indeed very attractable to have such flexibility in a model. Though,
for certain modelling purposes it might be desirable to favour specific shape
characteristics. For instance fairly symmetric and possibly elongated shapes,
without being perfect ellipsoids, say, often occur in studies of cell populations.
We consider a class of isotropic kernels on the interval [0, π] that concentrate
their mass around the end points 0 and π. This kernel type favours the above
mentioned shape characteristics.

In this paper, we explore the advantages of the power p Lévy based models in
connection with local stereological volume estimation. Under the power 3 Lévy
based model a simple parametric form of the distribution of particle volume is
derived. Furthermore, the considered local stereological volume predictors are
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presented in a form such that their respective distributions are straightforward
to simulate. If, in addition, we assume a certain simple choice of kernel (the
antipodal uniform kernel) we obtain distributional results for the respective
predictors.

The paper is organised as follows. Firstly, the model along with some theory
is presented in Section D.2. Section D.3 concerns kernels of antipodal type
and include a presentation of the two kernels to be considered in detail along
with explicit expressions for the correlation functions they induce. Furthermore,
examples of simulated particles are provided. Section D.4 presents the local
stereological volume predictors to be considered and how their performance
can be evaluated in term of mean square error. In Section D.5, the distribution
of the volume predictors are derived under the power 3 Lévy based model. A
discussion can be found in Section D.6 and, finally, some theoretical derivations
are deferred to an Appendix.

D.2 The model and theoretical background
Let Y be a random particle. We will model Y as a random compact subset
of R3 which is star-shaped at an interior point. Without loss of generalisation
we assume this point to be the origin. Denote by RY the radial function of Y
which is given by

RY (u) = max{ r : ru ∈ Y }, u ∈ S2.

There is a 1–1 correspondence between Y and its radial function RY . The set Y
can be obtained from RY in the following way

Y =
⋃
u∈S2
{ ru : 0 ≤ r ≤ RY (u) }.

Here, S2 denotes the unit sphere in R3, i.e. S2 = {x ∈ R3 : ‖x‖ = 1 }. The radial
function RY is modelled as the non-negative random field on S2 given by

RY (u) =
{∫

S2
K(v, u) Γ(dv)

}1/p

, for u ∈ S2, p > 0. (D.1)

Here Γ is a positive Lévy basis on the Borel subsets of S2 andK is a positive deter-
ministic kernel function on S2×S2, that integrates to one, i.e.

∫
S2 K(v, u) dv = 1.

Let c1 denote the normalising constant. We refer to the model (D.1) as the
power p Lévy based model. If p = 1 this purely spatial model is a special case
of the linear spatio-temporal Lévy model presented in Jónsdóttir et al. (2008).
We refer to this paper, and references therein, for a further description of Lévy
bases.

In the following, we focus on two types of Lévy bases, a gamma basis and
an inverse Gaussian basis, respectively. Furthermore, we assume the Lévy basis
to be homogeneous, hence we have

Γ(dv)∼Ga(α dv, β), α, β > 0, and Γ(dv)∼ IG(δ dv, γ), δ, γ > 0, (D.2)
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in case of a gamma basis and an inverse Gaussian basis, respectively. There are
several known parametrisations for both the gamma distribution and the inverse
Gaussian distribution. We follow Jónsdóttir et al. (2008), that is Ga(α, β) has
density

βα

Γ(α)
xα−1e−βx, x > 0,

and IG(δ, γ) has density
δeδγ√

2π
x−3/2 exp

{
−1

2

(
δ2 1

x
+ γ2x

)}
, x > 0,

respectively. Here, Γ denotes the gamma function. The gamma and inverse
Gaussian Lévy bases are examples of the more general G-measures presented in
Brix (1999).

In order to utilise the moment result on linear spatio-temporal Lévy models
presented in Jónsdóttir et al. (2008, (9), (10) and (11)), we often consider the
power transformed random field X given by X(u) = RY (u)p, for u ∈ S2. Then,
we have the following first and second order results for X,

E(X(u)) = µΓ,

Var(X(u)) = σ2
Γ

∫
S2
K(v, u)2 dv, (D.3)

Cov(X(u1), X(u2)) = σ2
Γ

∫
S2
K(v, u1)K(v, u2) dv, (D.4)

where dv denotes the element of the Lebesgue measure on S2. The parameters µΓ

and σ2
Γ depend on the choice of Lévy basis as described in Table D.1.

Table D.1: The table shows µΓ and σ2
Γ expressed in terms of the parameters for each

of the Lévy bases under consideration.

µΓ σ2
Γ

Ga(α dv, β) α/β α/β2

IG(δ dv, γ) δ/γ δ/γ3

D.3 Isotropic kernels
Now, and throughout, we assume thatK is isotropic, in thatK(v, u) = k(ϑ(v, u))
depends on the points v, u ∈ S2 through the great-circle distance ϑ(v, u) ∈ [0, π]
only (or equivalently on the inner product v ·u ∈ [−1, 1]). This restriction on the
kernel and the fact that dv is rotation invariant imply that the integral in (D.3)
does not depend on u. Therefore, the mean function and variance function are
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both constant and we refer to them as µX and σ2
X , i.e. µX = µΓ and σ2

X = σ2
Γ c2.

Here, c2 denotes the integral over S2 of the squared isotropic kernel, i.e.

c2 =

∫
S2
k(ϑ(v, u0))2 dv = 2π

∫ π

0

k(θ)2 sin θ dθ.

Moreover, the covariance (D.4) only depends on ϑ(u1, u2). We let C(η) denote
the correlation of the random field at two points on S2 a distance η apart, i.e.

C(η) =
1

c2

∫
S2
k(ϑ(v, u0))k(ϑ(v, uη)) dv,

for 0 ≤ η ≤ π. Here,uη = (sin η, 0, cos η) for η ∈ [0, π].
Below, we will in detail study two isotropic kernels. Both these kernels

concentrate their mass at pairs of directions with mutual angle either around 0
or π. At first thought, the most natural thing would be to concentrate the mass
of the kernel around 0. For many modelling purposes this would be completely
reasonable. But because of the application we have in mind, modelling cells, we
would like to have a model that produces sets that, on a global scale, are fairly
symmetric and possibly elongated. We obtain this using such kernels that more
or less equally distribute their mass around 0 and π. Such kernels are called
antipodal.

D.3.1 The antipodal uniform kernel

In this section we let k be the normalised sum of two indicator functions

k(ϑ(v, u)) = c−1
1

(
1{ϑ(v,u)≤r1} + 1{ϑ(v,−u)≤r2}

)
, r1, r2 ∈ (0, π/2). (D.5)

For a fixed u ∈ S2, then k(ϑ(v, u)) = 1/c1 if v ∈ Br1(u) or v ∈ Br2(−u),
where Br(u) = { v ∈ S2 : ϑ(v, u) ≤ r } denotes the spherical cap on S2 of
radius r ∈ [0, π] centred at u. We will refer to the kernel (D.5) as the antipodal
uniform kernel.

The kernel k given by (D.5) is itself the radial function of a set, say Ar1,r2 .
Moreover, as both r1 and r2 are less than π/2 the Lebesgue measure of the
intersection Br1 ∩Br2 is zero, and therefore k(ϑ(v, u))p = c1−p

1 k(ϑ(v, u)). Thus,
up to the constant c p−1

1 , RY (u) denotes the quantity known within the field of
stochastic geometry as the p’th radial mean body of Ar1,r2 (Gardner and Zhang,
1998).

Recall that the area of a spherical cap Br(u) is 2π(1− cos r). Therefore,we
get c1 = 4π[1− (cos r1 + cos r2)/2] and c2 = 4πc−2

1 [1− (cos r1 + cos r2)/2].
Let A(d, r1, r2) denote the area of the intersection of two spherical caps

a distance d apart and of radius r1 and r2, respectively. A formula for the
computation of A(d, r1, r2) is given by

A(d, r1, r2) =


2π(1− cos(r1 ∧ r2)), if r1 ∧ r2 ≤ (r1 ∨ r2)− d,
0, if r1 + r2 ≤ d,

L(d, r1, r2), otherwise.
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Here, x∧y and x∨y denote the minimum and maximum of x and y, respectively.
The function L that determines A in the case of partial intersection is given by

L(d, r1, r2)=2
[
π(1− cos r1 − cos r2)−arccos

(
cos d−cos r1 cos r2

sin r1 sin r2

)
+ cos r1 arccos

(− cos r2+cos d cos r1
sin d sin r1

)
+cos r2 arccos

(− cos r1+cos d cos r2
sin d sin r2

)]
,

see e.g. Tovchigrechko and Vakser (2001) or Sander (2007) for a simplified version.
Because A is symmetric in the second and third argument, that is A(d, r1, r2) =
A(d, r2, r1), the correlation function can be expressed as

C(η) =
[
A(η, r1, r1) + 2A(π − η, r1, r2) + A(η, r2, r2)

] /
c2.

As we shall see later, the antipodal uniform kernel imply nice distributional
results for the volume of a particle with radial function RY and for the volume
predictors. A simulation study reveals that the antipodal uniform kernel produces
particles with non-smooth boundary.

D.3.2 The antipodal exponential kernel

For real valued shape parameters a1, a2, we consider the kernel given by

k(ϑ(v, u)) =
(
ea1(v·u) + e−a2(v·u)

) /
c1. (D.6)

This kernel is called the antipodal exponential kernel. Figure D.1 (left) shows
the kernel graph for parameter values are a1 = 5 and a2 = 3.5. The antipodal
nature of the kernel is evident from this plot.
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Figure D.1: Left. The antipodal exponential kernel k(ϑ(v, u)) (D.6) as a function of
the angle between v and u. Right. The correlation function C(η) D.7. For both plots
the kernel parameters are a1 = 5 and a2 = 3.5.

Using polar decomposition we find

c1 = 2π

∫ π

0

(
ea1 cos θ + e−a2 cos θ

)
sin θ dθ = 4π

(
sinhc(a1) + sinhc(a2)

)
.

Here, sinhc(z) = sinh(z)/z for z 6= 0 and sinhc(0) = 1. Notice that

c2 =
2π

c2
1

∫ π

0

(
ea1 cos θ + e−a2 cos θ

)2
sin θ dθ

=
4π

c2
1

(
sinhc(2a1) + sinhc(2a2) + 2 sinhc(a1 − a2)

)
.
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Before deducing an expression for the correlation function, we make some
initial observations. First notice that

c2
1

∫
S2
k(ϑ(v, u0))k(ϑ(v, uη))dv

=

∫
S2

(
ea1(v·u0) + e−a2(v·u0)

)(
ea1(v·uη) + e−a2(v·uη)

)
dv

= f(a1(u0 + uη)) + f(a1u0 − a2uη) + f(a1uη − a2u0) + f(−a2(u0 + uη))

where f(w) =
∫
S2 e

v·w dv, for w ∈ S2. We get,

f(w) =

∫
S2
ev·w dv =

∫
S2

exp
{
‖w‖

(
v · w
‖w‖

)}
dv = 4π sinhc(‖w‖).

Furthermore, ‖au0 + a′uη‖ =
√
a2 + a′2 + 2aa′ cos η , for a, a′ ∈ R. Thereby,

c2
1

4π

∫
S2
k(ϑ(v, u0))k(ϑ(v, uη)) dv

= sinhc
(
a1

√
2(1 + cos η)

)
+ 2 sinhc

(√
a2

1 + a2
2 − 2a1a2 cos η

)
+ sinhc

(
a2

√
2(1 + cos η)

)
.

Thus, we have for the correlation function,

C(η) =
4π

c2

{
sinhc

(
a1

√
2(1 + cos η)

)
+ sinhc

(
a2

√
2(1 + cos η)

)
+ 2 sinhc

(√
a2

1 + a2
2 − 2a1a2 cos η

)}
. (D.7)

For an illustrative plot of the correlation function we refer to Figure D.1 (right).
Here, the kernel parameters are a1 = 5 and a2 = 3.5. We see that the antipodal
property of the kernel function in preserved by the correlation function.

Figure D.2 shows independent realisations of Lévy particles under the power 3
Lévy based model with the kernel function shown in Figure D.1 and a gamma
basis (rows 1 and 2) and inverse Gaussian (rows 3 and 4), respectively. The pa-
rameter values of the Lévy basis are α = 0.3, β = 9× 10−4 and δ = 10, γ = 0.03
for the gamma and inverse Gaussian basis, respectively. These basis parameter
values assures that µΓ and σ2

Γ are the same under both choices Lévy bases. Based
on Figure D.2 there are no obvious difference in the appearance of the particles
in the four rows. Notice that, as suspected, the particles do not have a preferred
orientation. Furthermore, some of the particles have a peanut-like shape due to
the antipodal structure of the kernel function.

For the simulations we used the simulation algorithm proposed in Hansen et al.
(2011b) but we raise the simulated values of the radial function to power 1/p
to fit our modelling set-up. The realisations in Figure D.2 were conducted
for m1 = 301, m2 = 300 and N = 105. The small dark dots appearing on some

92



D.4. Volume prediction

3

6

9

12

15

Figure D.2: Independent realisations of Lévy particles under the gamma basis (rows
1 and 2) and inverse Gaussian basis (rows 3 and 4), respectively. The kernel parameters
are as in Figure D.1. The basis parameter values are α = 0.3, β = 9× 10−4 for the
gamma basis and δ = 10, γ = 0.03 for the inverse Gaussian basis, respectively. For
each particles the length of the radial function is given by the colour according to the
chart on the left.

of the particles are all artificial features due to the discretisation algorithm used
for the simulations.

In Hansen et al. (2011b) the model (D.1) is considered in the special case
where p = 1. In that context the unnormalised version of (D.6) with a1 > 0
and a2 = 0 is considered. The resulting kernel is the unnormalised von Mises–
Fisher density often used in directional statistics. It is shown that under such
assumptions the correlation function has the particularly nice form

sinhc
(
a1

√
2(1 + cos η)

) /
sinhc(2 a1), 0 ≤ η ≤ π.

D.4 Volume prediction
Since Y is star-shaped at the origin, its volume V (Y ) can be expressed in terms
of an integral of the radial function RY of Y ,

V (Y ) =
1

3

∫
S2
RY (u)3 du,

see e.g. Baddeley and Jensen (2005, (8.25)). In the literature, there are several
well-known estimators of V (Y ), see e.g. Jensen (2000). In the following we
consider three such local stereological volume estimators, two of which are based
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on line information and one on planar information. With the above integral
expression of V (Y ) in mind it is easily seen, that

V̂1 = 4πRY (U)3
/

3,

where U is a uniform direction on S2, is a conditional unbiased estimator of V (Y ),
i.e. E(V̂1|Y ) = V (Y ). This type of estimator is often referred to as the nucleator
(based on one ray), cf. Gundersen (1988). In order to reduce variability it has
been suggested to replace U by a systematically set of directions, yielding the
following conditionally unbiased estimator

V̂1,N = 4π
N∑
i=1

RY (Ui)
3
/

(3N),

where U1 is uniform on S2 ∩ E and Ui is a 2π(i− 1)/N anticlockwise rotation
of U1 within S2 ∩E. Throughout the paper we denote by E an isotropic random
plane through the origin, i.e E is a two dimensional subspace with normal vector
that is uniformly distributed on the hemisphere S2

+, cf. Baddeley and Jensen
(2005, p. 124). We will refer to V̂1,N as the N -ray nucleator. If we imagine using
an infinite number of rays we obtain an estimator that utilises all the information
in the section Y ∩ E,

V̂2 = 2
3

∫
S2∩E

RY (u)3 du.

This estimator can also be derived from Baddeley and Jensen (2005, (8.41)).
Following Hansen et al. (2011a) we refer to V̂2 as the integrated nucleator.

We notice that, for V̂ any of the three estimators mentioned above we
have E(V̂ |Y ) = V (Y ), i.e. V̂ is a conditional unbiased estimator of V (Y )

given Y . Since V (Y ) is a random variable we will from now on refer to V̂1, V̂1,N

and V̂2 as design unbiased predictors of V (Y ).
Often the variance is used as a measure of the precision of an estimator.

When dealing with predictors a more suitable performance measure is the mean
square error (MSE). The MSE of a predictor V̂ for V (Y ) is given by

MSE
(
V̂
)

= E
(
V̂ − V (Y )

)2
.

If V̂ is design unbiased, then

MSE
(
V̂
)

= E
(
V̂ 2
)
− E

(
V (Y )2

)
= Var

(
V̂
)
− Var

(
V (Y )

)
.

For the calculation of the MSE later on the following observation, regarding
conditioning, becomes useful. We have MSE

(
V̂
)

= E
(
MSE(V̂ |Y )

)
, where

MSE
(
V̂ |Y

)
:= E

(
(V̂ − V (Y ))2

∣∣Y ) = E
(
V̂ 2
∣∣Y )−2V (Y ) E

(
V̂
∣∣Y )+ V (Y )2.

If V̂ is design unbiased, then

MSE
(
V̂
∣∣Y ) = E

(
V̂ 2
∣∣Y )− E

(
V̂
∣∣Y )2

= Var
(
V̂
∣∣Y ), (D.8)

and thereby MSE
(
V̂
)

= E Var
(
V̂
∣∣Y ), cf. Hobolth and Jensen (2002).
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D.5 Volume prediction under the power 3 Lévy
model

In this section, we will derive the distribution of V (Y ) and the three predic-
tors V̂1, V̂1,N and V̂2 under the model (D.1) with p = 3. In this case,

V (Y ) =
1

3

∫
S2

∫
S2
k(ϑ(v, u)) duΓ(dv) = Γ(S2)

/
3.

This shows that V (Y ) follows the same distribution as the Lévy basis, indepen-
dent of the choice of kernel. In particular, we have for the variance

Var(V (Y )) = 4πσ2
Γ

/
9.

If Γ is a gamma basis as in (D.2) then

V (Y ) ∼ Ga(4πα, β)
/

3 = Ga(4πα, 3β).

If, on the other hand, Γ is an inverse Gaussian basis as in (D.2) then

V (Y ) ∼ IG(4πδ, γ)
/

3 = IG
(

4π√
3
δ,
√

3 γ
)
.

Furthermore, the predictors take the form

V̂1 = 4π
3

∫
S2
k(ϑ(v, U)) Γ(dv),

V̂1,N = 4π
3

1
N

N∑
i=1

∫
S2
k(ϑ(v, Ui)) Γ(dv),

V̂2 = 2
3

∫
S2

∫
S2∩E

k(ϑ(v, u)) duΓ(dv).

Recall that, for the considered Lévy bases the distribution of Γ(A) only depends
on A via its Lebesgue measure. Thus, as k is isotropic and the Lebesgue measure
is rotation invariant, the distribution of the estimator V̂1 is independent of U .
An equivalent distributional independence statement holds for the pairs V̂N,1
and {U1, . . . , UN} and V̂2 and E, respectively.

The MSE of V̂1, V̂1,N and V̂2, respectively, is of the following form

MSE(V̂1) = σ2
Γ

4π
9

(
4πc2 − 1

)
(D.9)

MSE(V̂1,N) = σ2
Γ

4π
9

(
4πc2
N

[
C(0) + 2

dN/2e∑
j=1

C(π j
N

) + C(π)1{N even}
]
− 1
)

(D.10)

MSE(V̂2) = σ2
Γ

4π
9

(
4c2

∫ π

0

C(η) dη − 1
)
. (D.11)

The proof of these results can be found in the Appendix.
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In the theorem below, we present distributional results on the volume predic-
tors V̂1, V̂1,N and V̂2 for the antipodal uniform kernel (D.5) and an arbitrary Lévy
basis. For the formulation of the results we need some notation. Let Bandr(C)
denote the great-circle band of radius r around the great-circle C,

Bandr(C) :=
{
v ∈ S2

∣∣ there exists u ∈ C : ϑ(v, u) ≤ r
}
, for r > 0.

In particular, let Bandr denote the equatorial band of radius r.

Theorem D.1. Assume the power 3 Lévy model with the antipodal uniform
kernel (D.5) and an arbitrary Lévy basis. Then, V̂1, V̂1,N and V̂2 can be expressed
as linear combinations of random variables following the same distribution as
the Lévy basis,

(i) V̂1 =
4π

3c1

[
Γ(Br1(u0)) + Γ(Br2(−u0))

]
,

(ii) V̂1,N =
4π

3c1

1

N

N∑
i=1

[
Γ(Br1(ui)) + Γ(Br2(−ui))

]
,

(iii) V̂2 =
2

3c1

[
2 Γ(Bandr1∧r2) + Γ(Bandr1∨r2 \ Bandr1∧r2)

]
.

Here, u0 = (0, 0, 1) and ui = (sin( i−1
N

2π), 0, cos( i−1
N

2π)), for i = 1, . . . , N .
Furthermore, the summands in (i) and (iii), respectively, are independent random
variables. In (ii), for i = 1, . . . , N , the pair Γ(Br1(ui)) and Γ(Br2(−ui)) are
independent.

Proof. As (i) is the special case of (ii) where N = 1 we simply consider this
more general case. We find,

V̂1,N =
4π

3c1

1

N

N∑
i=1

∫
S2

(
1{ϑ(v,Ui)<r1} + 1{ϑ(v,−Ui)<r2}

)
Γ(dv)

=
4π

3c1

1

N

N∑
i=1

∫
S2

(
1{ϑ(v,ui)<r1} + 1{ϑ(v,−ui)<r2}

)
Γ(dv)

=
4π

3c1

1

N

N∑
i=1

[
Γ(Br1(ui)) + Γ(Br2(−ui))

]
.

For the second equality we utilised that

For any Borel subset A ⊆ S2, the distribution of Γ(A)
only depend on the area of A and not on its position.

(D.12)

Both r1 and r2 are less than π/2. Thus, for fixed i, Br1(ui) ∩Br2(−ui) = ∅ and
therefore Γ(Br1(ui)) and Γ(Br2(−ui)) are independent.

For i 6= j, the intersection Bri′
(ui) ∩ Brj′

(−uj) might be non-empty in
which case the corresponding variables Γ(Bri′

(ui)) and Γ(Brj′
(−uj)) might be

correlated.
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To show (iii) notice that

V̂2 = 2
3c1

∫
S2

∫
S2∩E

[
1Br1 (u)(v) + 1Br2 (−u)(v)

]
duΓ(dv)

= 2
3c1

∫
S2

[
1Bandr1 (E)(v) + 1Bandr2 (E)(v)

]
Γ(dv)

= 2
3c1

∫
S2

[
1Bandr1

(v) + 1Bandr2
(v)
]

Γ(dv)

= 2
3c1

∫
S2

[
21Bandr1∧r2

(v) + 1Bandr1∨r2\Bandr1∧r2
(v)
]

Γ(dv)

= 2
3c1

[
2 Γ(Bandr1∧r2) + Γ(Bandr1∨r2 \ Bandr1∧r2)

]
.

Again, for the third equality, we utilised (D.12). To conclude, we notice that
Bandr1∧r2 and Bandr1∨r2\Bandr1∧r2 are non-overlapping thus we have that V̂2

can be written as a sum of two independent variables.

Depending on the choice of Lévy basis we get as a corollary to Theorem D.1
the explicit distribution of the predictors V̂1 and V̂2.

Corollary D.1. Let the model be as in Theorem D.1. Then,

(i) If Γ(dv) ∼ Ga(αdv, β) then

V̂1 ∼ Ga
(
c1α,

3c1
4π
β
)

V̂2 ∼ Ga
(
4π cos(π

2
− r1 ∧ r2)α, 3c1

4
β
)

+ Ga
(
4π(cos(π

2
− r1 ∨ r2)− cos(π

2
− r1 ∧ r2))α, 3c1

2
β
)

(ii) If Γ(dv) ∼ IG(δdv, γ) then

V̂1 ∼ IG
(√

4πc1
3
δ,
√

3c1
4π
γ
)

V̂2 ∼ IG
(
4π cos(π

2
− r1 ∧ r2) 2√

3c1
δ,
√

3c1
2
γ
)

+IG
(

4π
(
cos(π

2
− r1∨r2) + cos(π

2
− r1 ∧ r2)

)√
2/(3c1) δ,

√
3c1/2 γ

)
.

Before conducting the proof, we notice that the area of a great-circle band
of radius r is 4π minus two times the area of a spherical cap of radius π/2− r.
Thus,

area(Bandr) = 4π − 2[2π(1− cos(π
2
− r))] = 4π cos(π

2
− r), r ≤ π/2. (D.13)

Proof. First, we consider the distribution of V̂1. The proof follows directly from
summation and scaling properties of independent gamma and independent
inverse Gaussian random variables, respectively.

To show the distribution of V̂2 we utilise the observation (D.13) and the
scaling properties of the respective distributions.
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As a special case of Corollary D.1 we obtain the following result for the
distribution of V̂2.

Corollary D.2. Let the model be as in Theorem D.1 and assuming that r =
r1 = r2. Then,

V̂2 ∼ Ga
(
4π cos(π/2− r)α, 3c1/4 β

)
and V̂2 ∼ IG

(
8π√
3c1

cos(π
2
− r) δ,

√
3c1
2
γ
)
,

if Γ(dv) ∼ Ga(αdv, β) and Γ(dv) ∼ IG(δdv, γ), respectively.

D.6 Discussion
In the proposed model (D.1), we restrict ourselves to positive Lévy bases in
order to assure that the process RY is non-negative. An alternative is to consider
instead a power p log-linear Lévy model of RY , i.e. for u ∈ S2,

RY (u) =
(

exp
{∫

S2
K(v, u) Γ(dv)

})1/p

= exp
{1

p

∫
S2
K(v, u) Γ(dv)

}
. (D.14)

A disadvantage of the model (D.14) is that the nice distributional results on
the volume and the volume predictors do not seem to be obtainable as under
the model (D.1). The reason is that we no longer are able to interchange the
order of integration during the calculations of volume and volume predictors
when RY (u) is modelled according to (D.14).

We have considered antipodal kernels to obtain fairly symmetric and possibly
elongated particles. An alternative idea for obtaining such shape characteristics
might be to introduce shape via a deterministic function f : S2 7→ [0,∞) added
directly to the kernel function in (D.1). Then, the kernel becomes f(u) +K(v, u)
and for the model we have

RY (u) =
(
f(u)Γ(S2) +

∫
S2
K(v, u) Γ(dv)

)1/p

. (D.15)

For p = 1 this model provides particles that are random scalings (by Γ(S2)) of the
deterministic shape f with some added noise from the kernel smoothing integral
term. The amount of noise is of course dependent on the kernel and the Lévy
basis. As under the model (D.1) this model imply that the one-ray nucleator,
the N -ray nucleator and the integrated nucleator are design unbiased predictors
of V (Y ). The distribution of V (Y ) again follows the same distribution as the
Lévy basis but the distribution of the predictors V̂1, V̂1,N and V̂2 will now longer
be independent of U , {U1, U2, . . . , UN} and E, respectively. The simulation
example of Figure D.2 illustrates that the power p Lévy based model does not
favour any certain spatial orientation of the Lévy particle. This isotropic property
will not be present for the model (D.16) unless the function f is independent of
the direction u.
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A slightly different way of incorporating the deterministic shape function f
would be to add it directly to the integral in the model (D.1). Then,

RY (u) =
{
f(u) +

∫
S2
K(v, u) Γ(dv)

}1/p

. (D.16)

This model only differs from the above model (D.15) by the feature that the
deterministic shape f is no longer scaled. The induced predictors again become
design unbiased. The distributional results are slightly different. For instance
consider the distribution of V (Y ) for p = 3. We have

V (Y ) = 1
3

∫
S2
f(u) du+ 1

3
Γ(S2).

Therefore, V (Y ) does not follow the same distribution as the Lévy basis but a
shifted (by 1

3

∫
S2 f(u) du) version thereof.

In this paper we identify Y by its radial function. This choice was inspired
by the possible application within local stereology due to the following neat
property of the radial function. Let E be an isotropic random plane. Then

RY ∩E(u) = RY (u), for u ∈ E.

As a consequence, we can make inference under the model (D.1) based on
observations within one or more central sections.

If, in addition, Y is assumed convex then another approach might be worth
pursuing. In this case Y can also be identified by its support function HY

(Gardner, 2006). Then we might model HY (u) by the random field

HY (u) =
{∫

S2
h(v, u) Γ(dv)

}1/p

, (D.17)

for a kernel function h. Here, it is required that, for each v ∈ S2, h(v, ·) is
a support function. Then the positivity of Γ together with the linearity of
integration with respect to Γ(dv) assure that the right side of D.17 becomes
a support function for p = 1 (Schneider, 1993, Theorem 1.7.1). Recall that, a
function is sub-linear if and only if it is both convex and homogeneous. Thus,
as x 7→ x1/p is convex for p ≤ 1, the right hand side of (D.17) is a support
function for p ≤ 1 Let Eu denote a plane parallel to a plane through the origin
containing u. Furthermore, let projY (u) denote the projection of Y onto Eu.
Then HY (u) = HprojY (u)(u). Thus, the model (D.17) might be of particular
interest if observations are available on projection of the particle and not from
central sections.

Moreover, an explicit relation between the radial function and the support
function might allow for a comparison of local and pivotal volume estimators
under the same Lévy particle model. Such a relation is at present unknown
to us. Though, for a strict convex set Y a more implicit relation do exist,
as RY (∇HY (u)) = 1, where ∇HY (u) denotes the gradient if HY at u (Schneider,
1993, Corollary 1.7.3.).
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The results of Theorem D.1 and its corollaries can be used for model checking.
Say, we have performed measurements and obtained estimates V̂ 1

1 , V̂
2

1 , . . . , V̂
n

1 ,
based on the one-ray nucleator for each particle in a sample of n of cells from
a cell population. Then one way to check the plausibility of the model would
be to compare the empirical distribution of V̂ 1

1 , V̂
2

1 , . . . , V̂
n

1 to the distribution
determined by simulating variables according to (i) in Theorem D.1 with pa-
rameter values estimated under the model. Similar model checking can of course
be conducted based on measurement from either the N -ray nucleator or the
integrator nucleator simply by applying the relevant parts of Theorem D.1.
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Appendix
In the following we prove the explicit expressions (D.9), (D.10) and (D.11) for
the MSE of V̂1, V̂1,N and V̂2 under the power p Lévy based model with an
isotropic kernel. For this we utilise equations (D.3) and (D.8).

For the proof, we only consider V̂1,N and V̂2 as V̂1 is a special case of the first.
For the N -ray nucleator we find for the conditional expectation given (E,U1)
that

E
(
(V̂1,N − V (Y ))2

∣∣ U) = Var
(∫

S2
4π
3

1
N

N∑
i=1

k(ϑ(v, Ui))− 1
3

Γ(dv)
∣∣∣ E,U1

)
= σ2

Γ
1
9

∫
S2

(
4π 1

N

N∑
i=1

k(ϑ(v, Ui))− 1
)2

dv

= σ2
Γ

4π
9

(
4π
N2

∫
S2

( N∑
i=1

k(ϑ(v, Ui))
)2

dv − 1
)
.

This is independent of (E,U1), as∫
S2

( N∑
i=1

k(ϑ(v, Ui))
)2

dv = c2N
(
C(0) + 2

dN/2e∑
j=1

C(π j
N

) + C(π)1{N even}

)
,

thereby justifying the result for the N -ray nucleator. Here, dxe denote the
smallest integer not less than x.

Now consider the conditional expectation of V̂2 given E,

E
(
(V̂2 − V (Y ))2

∣∣ E) = Var
(∫

S2
2
3

∫
S2∩E

k(ϑ(v, u)) du− 1
3

Γ(dv)
∣∣∣ E)

= σ2
Γ

1
9

∫
S2

(
2

∫
S2∩E

k(ϑ(v, u)) du− 1
)2

dv

= σ2
Γ

4
9

(∫
S2

(∫
S2∩E

k(ϑ(v, u)) du
)2

dv − π
)
.

Straight forward calculations show that the remaining integral can be reduced
to an integral of the correlation function,∫

S2

(∫
S2∩E

k(ϑ(v, u)) du
)2

dv = 4πc2

∫ π

0

C(η) dη,

which concludes the argument.
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