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Abstract

In this paper we continue the study of the energy-momentum spectrum of a
class of translation invariant, linearly coupled, and massive Hamiltonians from
non-relativistic quantum field theory. The class contains the Hamiltonians of
E. Nelson [42] and H. Fröhlich [14]. In [38, 40] one of us previously investigated
the structure of the ground state mass shell and the bottom of the continuous
energy-momentum spectrum. Here we study the continuous energy-momentum
spectrum itself up to the two-boson threshold, the threshold for energetic
support of two-boson scattering states. We prove that non-threshold embedded
mass shells have finite multiplicity and can accumulate only at thresholds.
We furthermore establish the non-existence of singular continuous energy-
momentum spectrum. Our results hold true for all values of the particle-field
coupling strength but only below the two-boson threshold. The proof revolves
around the construction of a certain relative velocity vector field used to
construct a conjugate operator in the sense of Mourre.
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1 Introduction and Results
The present paper is a sequel to [38], where the ground state mass shell and the
bottom of the continuous energy-momentum spectrum of the translation invariant
massive Nelson model was studied. The massive Nelson model was introduced in [42]
as a toy model for nucleon-meson interactions. It is similar in structure to the large
polaron model of H. Fröhlich [14], describing electrons in polar crystals, interacting
with longitudinal optical phonons. In [40], the results of [38] were in fact extended
to cover a larger class of models encompassing both the massive Nelson model and
the large polaron model.

With the pioneering works of Hübner-Spohn [32, 33] and Bach-Fröhlich-Sigal
[5, 6] in the mid 90’s, it became apparent that many of the techniques developed
to deal with spectral and scattering problems for many-body quantum mechanics
were in fact also applicable to models of quantized matter interacting with second
quantized fields, sometimes called non-relativistic QFT. These models range from
finite level systems interacting with scalar fields, e.g. the spin-boson model, to models
of atoms and molecules minimally coupled to a second quantized Maxwell field.
They include models from solid state physics describing electrons interacting with
vibrational modes of crystals, i.e. phonons. We recall that acoustic phonons are
modeled by massless fields, and optical phonons by massive fields.

The purpose of this sequel to [38, 40] is to study the structure of the continuous
energy-momentum regime. More precisely the region supporting at most one asymp-
totic boson, i.e. the region below the threshold for energetic support of states with
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two (or more) asymptotic bosons. This is what is meant with ‘two-boson threshold’
in the title. In particular we prove that fiber Hamiltonians in this energy regime have
isolated thresholds, non-threshold eigenvalues have finite multiplicity and can only
accumulate at thresholds, and there is no singular continuous spectrum. Our results
do not depend on the strength of the particle-field coupling. The main tool is the
construction of an energy-momentum dependent relative velocity field, describing at
fixed total momentum the difference of velocities of a single asymptotically free boson
and an interacting effective particle (e.g. polaron). This velocity field goes into the
construction of a modified generator of dilation, which induces a second quantized
conjugate operator in the sense of Mourre, admitting a positive commutator with the
fiber Hamiltonian. Our work can be seen as a fusion of the spectral theory part of
[11] by Dereziński-Gérard and the paper [25] by Gérard-Nier on analytically fibered
operators. A simpler version of the construction and results of this paper formed a
part of the Ph.D. thesis of the second author [44].

We distinguish between the bare particle entering into the model via its dispersion
relation Ω: Rν → [0,∞), and the effective particles described by the interacting
model. In the polaron model, this is even hammered home by the word ‘polaron’
used to refer to the effective particle associated with the ground state, and the word
‘electron’ reserved for the (bare) band electron entering into the Fröhlich Hamiltonian.
While only the bare quantities enter into the construction of the Hamiltonian, for an
observer the bare particle is a mythical entity which never appears in a scattering
experiment. Only effective particles are manifest as identifiable quantities.

In relativistically invariant field theories, the particle content of a theory is
determined by eigenvalues of the mass operator. That only the mass characterizes
the effective particles is due to Poincaré invariance, which ensures that the dispersion
relations of the effective particles are forced to be of the form

√
k2 +M2, where M

is an eigenvalue of the mass operator. In our setup, the model is non-relativistic and
only invariance under translations and spatial rotations remains. This means that the
dispersion relations of the effective particles are not determined by a single number,
but a priori by a function on (a subinterval of) the half-line. Very little is known about
the general structure of the effective dispersion relations, or mass shells, even for the
ground state. This is a source of complications since we have to take into account the
following features: (A) There may be multiple species of effective particles, i.e. mass
shells. (B) The effective dispersions may not be convex, nor are they a priori forced
to be radially increasing. (C) Excited mass shells may cross making it ambiguous
how to assign velocity to a state constructed by energy-momentum localizations.

Let us give a heuristic explanation for the role of the effective dispersions in the
analysis of the continuous energy-momentum spectrum. The continuous spectrum
pertains to scattering states of the Hamiltonian, and scattering states should at
large times look like (superpositions of) an interacting bound effective particle plus
a number of free asymptotic bosons, with the sum of momenta and energies of the
constituents summing up to the total momentum and energy of the initial state. The
dynamics for such compound asymptotic systems at total momentum ξ is governed
by a kinetic energy of the form

S(n)(ξ; k1, . . . , kn) := S(ξ − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn),

where S is the dispersion relation for an effective particle, ω is that of the bosons,
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and k1, · · · , kn labels the momenta of n asymptotic bosons. We observe from this
expression that we get thresholds at energies where (k1, . . . , kn)→ S(n)(ξ; k1, . . . , kn)
has critical points. Computing the gradient we see that this happens when ∇S(ξ −
k1 − · · · − kn) = ∇ω(kj) for all j, i.e. when all the asymptotic bosons has velocity
equal to the velocity of the effective particle. As a first step we ensure that the
threshold set is small. Secondly starting from a given total momentum and energy
(ξ, E) below the two-boson threshold, we ensure that we can unambiguously assign
a non-vanishing relative velocity field to the scattering states sitting in a small
energy-momentum region near (ξ, E). To translate non-vanishing of the relative
velocity field into a positive commutator estimate, we develop a method to extract
from the Hamiltonian, expressed in terms of the bare particle dispersion only, the
effective dispersions used to construct the relative velocity field.

We remark that in the weak coupling regime there are results in the literature
about the structure of the continuous energy-momentum spectrum both for massive
and massless bosons. Angelescu-Minlos-Zagrebnov and Minlos [4, 37] studies polaron
type models and proves absence of embedded mass shells below the two-boson
threshold at small coupling using a Feshbach reduction to a (generalized) Friedrichs
model also studied in [1]. For what appears to be technical reasons only, the papers
[1, 4, 37] cover neither the Nelson nor the polaron model, due to field energy and
form factor restrictions respectively. The Friedrichs model itself, corresponding to
cutting the Fock space down to the vacuum and one-particle sectors, was studied
for all couplings in [19, 27]. For massless bosons (photons) De Roeck-Fröhlich-Pizzo
[9] shows that in the weak coupling regime, (necessarily) interacting ‘large and
regular’ embedded mass shells must lie close to the bottom of the continuous energy-
momentum spectrum, and outside a natural cylinder around zero total momentum. In
a narrower cylinder Chen-Faupin-Fröhlich-Sigal proves in [8] the absence of singular
continuous spectrum. For sufficiently small energies and momenta, these results were
previously established in [17] under the additional assumption that soft bosons are
non-interacting.

We stress that our results are valid also outside a weak coupling regime, which
necessitates – to put it in somewhat poetic terms – a final goodbye to the electron
and a full embrace of the polaron.

Together with Wojciech Dybalski, the authors are currently working on applying
the constructions of this paper to prove asymptotic completeness below the two-boson
threshold for models of the type considered in this paper.

In the remaining part of Chapter 1 we introduce the Hamiltonian and its energy-
momentum spectrum, formulate our main results, and at the end we give a geometric
picture describing our central construction in a nutshell. In Chapter 2 we introduce the
Ck(A) classes of self-adjoint operators, cf [3], and prove that the fiber Hamiltonians
of our model is of class C2(A), whenever A is a second quantized (modified) generator
of dilation. In Chapter 3 we prove our main theorems. We begin with an analysis of
the threshold set, followed by a geometric analysis of level crossings needed to patch
together the relative velocity fields of potentially several effective particle species.
Finally we prove a Mourre estimate for fiber Hamiltonians, first for a comparison
Hamiltonian describing an interacting system plus a free boson, and subsequently
for the Hamiltonian itself.
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1.1 The Hamiltonian and its Energy-Momentum Spectrum

We consider a bare quantum particle, moving in Rν and linearly coupled to a scalar
field of massive bosons. The particle Hilbert space is

K := L2(Rν
y)

where y is the particle position. The bare particle Hamiltonian is Ω(Dy), where
Dy := −i∇y.

The one-boson Hilbert space is

hph := L2(Rν
k)

where k is the photon momentum, and the one-photon dispersion relation is ω(k).
See Condition 1.2 below for the conditions we impose on the dispersion relations Ω
and ω.

The Hilbert space for the field is the bosonic Fock space

F = Γ(hph) :=
∞⊕

n=0
F (n), (1.1)

where F (n) = Γ(n)(hph) := hph
⊗sn. (1.2)

Here hph
⊗sn is the symmetric tensor product of n copies of hph. We write |0〉 =

(1, 0, 0, . . . ) for the vacuum state. The creation and annihilation operators a∗(k)
and a(k) satisfy the following distributional form identities, known as the canonical
commutation relations.

[a∗(k), a∗(k′)] = [a(k), a(k′)] = 0,
[a(k), a∗(k′)] = δ(k − k′) and

(1.3)

a(k)|0〉 = 0.

The free field energy is the second quantization of the one-boson dispersion relation,

dΓ(ω) =
∫

Rν
ω(k)a∗(k)a(k) dk. (1.4)

The Hilbert space of the combined system is

H := K ⊗F . (1.5)

The free and coupled Hamiltonians for the combined system are

H0 := Ω(Dy)⊗ 1F +1K ⊗ dΓ(ω) and (1.6)
H := H0 + V (1.7)
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where the interaction V is given by

V :=
∫

Rν

(
e−ik·y g(k)1K ⊗ a∗(k) + eik·y g(k)1K ⊗ a(k)

)
dk. (1.8)

Here g ∈ hph = L2(Rν) is a coupling function.
The total momentum of the combined system is given by

P = Dy ⊗ 1F + 1K ⊗ dΓ(k). (1.9)

The operators H0 and H commute with P , i.e. H0 and H are translation invariant.
This implies that H0 and H are fibered operators. Using the unitary transform ILLP
first introduced by Lee-Low-Pines in [35] and given by

ILLP := (F ⊗ 1F) ◦ Γ(e−ik·y) (1.10)

we can identify the fibers of H0 respectively H. Here F is the Fourier transform and
Γ the second quantization functor. We get

ILLP H0 I
∗
LLP =

∫ ⊕

Rν
H0(ξ) dξ and

ILLPH I∗LLP =
∫ ⊕

Rν
H(ξ) dξ,

where H0(ξ) and H(ξ) are operators on F and given by

H0(ξ) = dΓ(ω) + Ω(ξ − dΓ(k)) and
H(ξ) = H0(ξ) + φ(g).

Here φ(g) is the field operator evaluated at y = 0

φ(g) =
∫

Rν

(
g(k) a∗(k) + g(k) a(k)

)
dk.

See also [46, 47] and [11] for general constructions related to bosonic Fock space.

Remark 1.1. Above we introduced the unitary operator Γ(e−ik·y) on H. This is in
fact a slight abuse of notation since the functor Γ a priori only maps contractions on
h to contractions on F . Here q = e−ik·y is a contraction on K ⊗ h.

Suppose now that q is a contraction on K ⊗ h. Introduce for each n ≥ 2 and
j = 1, . . . , n a unitary operator E (n)

j on G(n) := K ⊗ h⊗n (full n-fold tensor product)
by the following prescription on simple tensors

E (n)
j

(
f ⊗ u1 ⊗ · · · ⊗ uj ⊗ · · · ⊗ un

)
= f ⊗ uj ⊗ u1 ⊗ · · · ⊗ uj−1 ⊗ uj+1 · · · ⊗ un.

Note that E (n)
1 = 1G(n) . We extend q to contractions on G(n) setting qj = E (n)∗

j q ⊗
1h⊗n−1 E (n)

j . Using this construction we can define a contraction G(n)(q) = q1 · · · qn on
G(n). LetG(0)(q) = 1K,G(1)(q) = q, and construct the direct sumG(q) = ⊕∞

n=0G
(n)(q)

to get a contraction on G = K⊗⊕∞n=0 h
⊗n. If q is unitary, the contraction G(q) is in

fact unitary on G.
Letting Ps denote the projection onto the symmetric Fock space F inside ⊕∞n=0h

⊗n

we can now define Γ(q) = (1K⊗Ps)G(q)(1K⊗Ps) as a contraction on H. We warn
the reader that for unitary q, if qi and qj do not commute, the contraction Γ(q) may
not be unitary! �
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The following minimal conditions will be imposed on the dispersion relations and
coupling function throughout the paper, and often without explicit reference. We
will in particular formulate and use results from the literature under these minimal
conditions although they may in fact hold true under weaker assumptions. The
reader is asked to consult the literature for optimal formulations of known results.
The notation 〈k〉 is an abbreviation of the function

√
1 + |k|2. We will use the same

notation for numbers, vectors, and self-adjoint operators.

Condition 1.2 (Minimal Conditions). There exist sΩ ∈ [0, 2] and C > 0 such
that the dispersion relations and coupling satisfy:

(MC1) ω ∈ C(Rν), Ω ∈ C2(Rν) and g ∈ L2(Rν).
(MC2) m := infk∈Rν ω(k) > 0.
(MC3) ∀k ∈ Rν we have ω(k) ≤ C〈k〉, Ω(k) ≥ C−1〈k〉sΩ − C.
(MC4) |∂αη Ω(η)| ≤ C〈k〉sΩ−|α|, for all multi-indicies α with 0 ≤ |α| ≤ 2.
(MC5) ∀k1, k2 ∈ Rν we have ω(k1 + k2) < ω(k1) + ω(k2).
(MC6) Either lim|k|→∞ ω(k) =∞ or: supk∈Rν ω(k) <∞ and lim|k|→∞Ω(k) =∞.

We remark that the translation invariant massive Nelson model as well as Fröh-
lich’s polaron model satisfies the above conditions, both with non-relativistic and
relativistic electron dispersion relation. For both models we are required to impose a
UV cutoff on the physical interaction. However there does not seem to be a funda-
mental obstacle to consider also the UV-renormalized models (if Ω(η) = η2) as in [2].
We recall that the physical interactions g, up to a constant multiple, are 1/

√
ω(k),

with ω(k) =
√
k2 +m2, for the Nelson model, and 1/|k| for the polaron model in

three dimensions. The phonon dispersion relation in the polaron model is taken to
be a positive (material dependent) constant function.

In the remaining part of this section we list a number of known properties of H
and its energy-momentum spectrum

Σ =
{

(ξ, E) ∈ Rν × R
∣∣∣E ∈ σ(H(ξ))

}
. (1.11)

These properties have a long history, see e.g. [7, 15, 26, 36, 38, 40, 42, 49], with
the most complete results in [40], where the reader can also find a comprehensive
discussion of the literature on the subject.

Let
C := Γfin(C∞0 (Rν)) ⊂ F , (1.12)

where Γfin(V) denotes the algebraic direct sum of the algebraic tensor products
V⊗sn, where V ⊂ h. In fact, when tensor products appear between spaces not all
of which are complete (as Hilbert spaces) an algebraic tensor product is implicitly
understood. The operator H0 is essentially self-adjoint on C∞0 (Rν) ⊗ C, and V is
an infinitesimally small perturbation in the sense of Kato-Rellich. Hence H is also
essentially self-adjoint on C∞0 (Rν)⊗ C, and the domain of the closures, which we as
usual denote by the same symbols, coincide.

Similarly H0(ξ) is essentially self-adjoint on C and φ(g) is an infinitesimally small
perturbation, hence H(ξ) is also essentially self-adjoint on C. Not only do their
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domains coincide, they are independent of total momentum ξ, and we denote the
common domain of self-adjointness by

D := D(H0(ξ)) = D(H(ξ)). (1.13)

One can easily verify that ξ → (H(ξ)− i)−1 is norm continuous, and hence we
observe by a norm resolvent convergence argument, cf [46, Theorem VIII.23], that Σ
is a closed set.

We pause to introduce some notation. We denote the bottom of the spectrum of
the fiber Hamiltonians by

Σ0(ξ) := inf σ(H(ξ)), (1.14)
and the bottom of the spectrum of the full operator by

Σ0 := inf
ξ∈Rν

Σ0(ξ) > −∞. (1.15)

Let n ∈ N be some positive integer and k = (k1, . . . , kn) ∈ Rnν . We introduce the
least energy of a composite system consisting of a copy of an interacting system at
momentum ξ −∑n

j=1 kj and n non-interacting photons with momenta kj

Σ(n)
0 (ξ; k) := Σ0(ξ −∑n

j=1 kj) +∑n
j=1 ω(kj). (1.16)

The following functions are the so called n-boson thresholds, i.e. the least energy
needed to support an interacting state and n free bosons at a given total momentum

Σ(n)
0 (ξ) := inf

k∈Rnν
Σ(n)

0 (ξ; k). (1.17)

Abusing notation, we write Σ(n)
0 both for the function and for its graph. We should

warn the reader that the terminology ‘threshold’ carries a dual meaning. The use of
‘the n-boson threshold’ to describe Σ(n)

0 (ξ) refers to its literal meaning as the lowest
energy supporting an interacting system and n free bosons. It is in fact also ‘an
n-boson threshold’ in the physical sense of the word threshold as an energy at which
the system can form an interacting bound state plus n free bosons, with zero break
up velocity. We stress that these are in general not the only (physical) thresholds of
the system.

With the above notation the HVZ Theorem takes the form

σess(H(ξ)) = [Σ(1)
0 (ξ),∞), (1.18)

and below Σ(1)
0 (ξ) the spectrum of H(ξ) consists of locally finitely many eigenvalues

all of finite multiplicity, that may only accumulate at Σ(1)
0 (ξ). We will often write

Σess(ξ) = Σ(1)
0 (ξ) to emphasize the role of the one-boson threshold as the bottom of

the essential energy-momentum spectrum. We remark that the assumption (MC6)
ensures that the essential energy-momentum spectrum does not have holes.

Due to the subadditivity assumption (MC5) on ω, the n-boson thresholds are
increasing in n, i.e.

∀n > m : Σ(n)
0 (ξ) ≥ Σ(m)

0 (ξ). (1.19)
If lim|k|→∞ ω(k) = ∞ the inequality is strict. If M = supk∈Rν ω(k) < ∞, then
the inequality remains strict under the extra assumption 2 lim inf |k|→∞ ω(k) > M ,
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satisfied obviously by the constant polaron dispersion, cf. [40]. This can be considered
a remark on non-triviality of our results, since we work in the energy-momentum
region between the graphs of Σ(1)

0 and Σ(2)
0 .

Finally we remark that isolated ground states of H(ξ) are non-degenerate, in
particular the ground state mass shell does not cross any possibly existing isolated
excited mass shells. Very little is known about the structure of the discrete spectrum
when we are away from a weak coupling regime. In fact, we rely only on some
symmetry observations and Kato’s general analytic perturbation theory, which
applies to the family {H(ξ)}ξ∈Rν . In the weak coupling regime one can compare with
the uncoupled model and derive stronger results [4]. We identify distinct mass shells,
as functions of total momentum ξ → S(ξ), with effective particles, with dispersion
relation given by S. In the case of the polaron model, it is the ground state which in
the literature is referred to as the Fröhlich polaron.

1.2 Extended Objects
In this section we introduce a new Hamiltonian which plays the role of the generator
of the dynamics for a system of one interacting particle and a number of free bosons.
The interacting particle and the free bosons are not coupled. Operators of this type
were also used in [2, 11, 12, 16, 17, 38, 40]. This is a natural object in the context
of scattering theory, where one expects scattering states to decay into interacting
bound states under emission of asymptotically free bosons.

We abbreviate

Fx = F ⊗ F and Hx = H⊗F = K ⊗Fx.

For a self-adjoint operator a on h, we extend the second quantization operation to
Fx by the construction

dΓx(a) = dΓ(a)⊗ 1F +1F ⊗ dΓ(a).

Note that dΓ(a) is essentially self-adjoint on Γx
fin(D) = Γfin(D)⊗Γfin(D), if D ⊂ h is a

domain of essential self-adjointness for a, cf. [46]. We can now define the Hamiltonian
describing an interacting system together with free (asymptotic) bosons. It is given
by

Hx = H ⊗ 1F +1H⊗ dΓ(ω) = Ω(Dy)⊗ 1Fx +1K⊗ dΓx(ω) + V ⊗ 1F (1.20)

as an operator on the Hilbert space Hx. The free operator, with g = 0, is essentially
self-adjoint on

Cx = C ⊗ Γfin
(
C∞0 (Rν)

)
, (1.21)

and so is Hx by a Kato-Rellich argument.
We adopt the terminology from [11] and call Hx the extended Hamiltonian and

Hx the extended Hilbert space. We remark that Hx commutes with the extended
total momentum operator

P x = P ⊗ 1F +1H⊗ dΓ(k) = Dy ⊗ 1Fx +1K⊗ dΓx(k). (1.22)
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We extend the functor Γ from Remark 1.1 as follows. Denote by E the exchange
involution on Hx defined on simple tensors as E(f ⊗ ψ ⊗ ϕ) = f ⊗ ϕ ⊗ ψ, where
f ∈ K and ψ, ϕ ∈ F . For a contraction q on K ⊗ h we define

Γx(q) =
(
Γ(q)⊗ 1F

)
E
(
Γ(q)⊗ 1F

)
E .

This is only a good definition if the qi’s commute, cf. Remark 1.1. Denote by P (n) the
projection of Hx onto H⊗F (n) and observe that P (n)Γx(q) = Γx(q)P (n). Abbreviate
Γ(n)(q) = P (n)Γx(q)P (n) as a contraction on H⊗F (n).

We now build the extended Hamiltonian Hx, cf. (1.20), from the inside out as
an explicitly fibered operator. Recall that Hx commutes with the extended total
momentum P x, cf. (1.22). First we introduce fiber Hamiltonians for an interacting
system at total momentum ξ, and n asymptotic free bosons with momenta k =
(k1, . . . , kn). These are self-adjoint operators on F given by

H(n)(ξ; k) = H(ξ −∑n
j=1 kj) +

(∑n
j=1 ω(kj)

)
1F .

From these operators we construct self-adjoint fiber operators on L2
sym(Rnν ;F) '

F ⊗F (n) by the direct integral construction

H(n)(ξ) =
∫ ⊕

Rnν
H(n)(ξ; k) dk.

Here the subscript ‘sym’ indicates that the functions are symmetric under permutation
of the n variables, reflecting Bose statistics. Finally, by another direct integral
construction and an application of an extended version of ILLP, cf. (1.10), we can
define

H(n) = I
(n)∗
LLP

(∫ ⊕

Rν
H(n)(ξ) dξ

)
I(n)

LLP,

as an operator on the Hilbert spaceH(n) = H⊗F (n). Here, as operators fromH⊗F (n)

to L2(R;F ⊗ F (n)), I(n)
LLP = (F ⊗ 1F⊗F(n))Γ(n)(eik·y). The full extended Hamiltonian

can now be expressed as a direct sum

Hx = H ⊕
( ∞⊕

n=1
H(n)

)

as an operator on the extended Hilbert space Hx = H ⊗ F = H ⊕ (⊕∞n=1H(n)).
Similarly we can introduce fiber operators

Hx(ξ) = H(ξ)⊕
( ∞⊕

n=1
H(n)(ξ)

)

as an operator on Fx. From this construction we can directly identify Hx(ξ) as the
fiber operators of Hx and we have the fibration

Hx = Ix∗
LLP

(∫ ⊕

Rν
Hx(ξ) dξ

)
Ix

LLP,

where Ix
LLP = (F ⊗ 1Fx)Γx(eik·y) = ILLP ⊕ (⊕∞n=1I

(n)
LLP).

Note that these constructions tie in well with the notion of thresholds for sup-
porting states with free bosons, i.e. the functions Σ(n)

0 (ξ; k) and Σ(n)
0 (ξ) introduced

in (1.16) and (1.17). More precisely we have

inf σ
(
H(n)(ξ; k)

)
= Σ(n)

0 (ξ; k) and inf σ
(
H(n)(ξ)

)
= Σ(n)

0 (ξ). (1.23)
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1.3 The Results
To formulate our main results on the structure of the energy-momentum spectrum
below the two-boson threshold we need an extra set of assumptions. The condition
below depends on a natural number n0 encoding the amount of control required. The
condition will be used with n0 = 0 for our result on the structure of the threshold
set, with n0 = 1 for our result on the structure of embedded point spectrum, and
with n0 = 2 for our result on absence of singular continuous spectrum.

Condition 1.3 (Spectral Theory). Let n0 ∈ N. We impose

(ST1) ω and Ω are real analytic functions.
(ST2) g admits n0 distributional derivatives with ∂αk g ∈ L2

loc(Rν\{0}), for all 1 ≤
|α| ≤ n0.

(ST3) For all orthogonal matrices O ∈ O(ν) and all k ∈ Rν we have ω(Ok) = ω(k),
Ω(Ok) = Ω(k) and g(Ok) = g(k) almost everywhere.

(ST4) supk∈Rν |∂αω(k)| <∞ for |α| ≥ 1 and supη∈Rν |∂βΩ(η)| <∞ for |β| ≥ 2.

Remark 1.4. The assumptions of real analyticity (ST1) and rotation invariance
(ST3) serve a combined purpose. The rotation invariance ensures that the energy-
momentum spectrum Σ (and all its components, i.e. pure point, absolutely and
singular continuous spectrum), are rotation invariant, i.e. (ξ, E) ∈ Σ and O ∈ O(ν)
implies (Oξ,E) ∈ Σ. In particular, the n-boson thresholds Σ(n)

0 are rotation invariant,
cf. (1.17). The functions Σ(n)

0 (ξ; k), cf. (1.16), however only retain invariance under
simultaneous rotation of all kj’s around the ξ axis.

From the point of view of the models discussed so far, these are reasonable
assumptions. However, one should keep in mind that dispersion relations in solid
state physics are material dependent functions and more realistic ones are not likely
to carry any more symmetry than discrete symmetries of an underlying lattice. We do
not consider (ST3) to be an essential assumption, cf. the discussion in Section 1.4. �

The above remark, together with Kato’s analytic perturbation theory [34], enables
a precise description of the isolated part of the energy momentum spectrum

Σiso =
{

(ξ, E) ∈ Σ
∣∣∣E < Σess(ξ)

}
, (1.24)

as a collection of real analytic mass shells and level crossings. The set Σiso forms a
subset of the full pure-point energy-momentum spectrum

Σpp =
{

(ξ, E) ∈ Σ
∣∣∣E ∈ σpp(H(ξ))

}
. (1.25)

While the general analytic structure of Σiso is understood, the only thing we can a
priori say about Σpp is that it is a Borel subset of Rν+1, cf. Appendix A.

We introduce the set of level crossings for isolated mass shells:

X := {(ξ, E) ∈ Σiso | ∀n ∈ N : Σiso ∩B((ξ, E); 1/n) is not a graph} . (1.26)

The connected components of X are Sν−1-spheres of the form ∂B(0;R)× {E}, or as
a possibly degenerate case, of the form {0}×{E}. The spheres forming the connected
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components of X will also be called level crossings. They are isolated Sν−1-spheres,
possibly accumulating either at infinity or at the bottom of the essential energy-
momentum spectrum Σess. In particular, elements (ξ, E) ∈ X represent eigenvalues
E of H(ξ) with a given finite multiplicity. The connected components of X are
connected in Σiso by real analytic manifolds, each carrying a finite multiplicity, in
such a way that the sum of the multiplicities of shells emanating from the same
crossing, should equal the multiplicity of the crossing. We denote the collection of
such real analytic manifolds by S. To be more precise, by a shell we understand a
pair (A, S) ∈ S, where A is an open annulus {ξ ∈ Rν | r < |ξ| < R}, with 0 ≤ r < R,
or an open ball centered at 0. The function S : A → R is real analytic and rotation
invariant, with Σ0(ξ) ≤ S(ξ) < Σess(ξ) and such that the graphs of the shells together
with the level crossings cover the entire isolated spectrum in energy-momentum space.
For (A, S) ∈ S, denote by

GS =
{

(ξ, S(ξ))
∣∣∣ ξ ∈ A

}
(1.27)

its graph in energy-momentum space. We have GS ∩ GS′ = ∅, for all distinct shells
(A, S) 6= (A′, S ′), and GS ∩ X = ∅ for all (A, S) ∈ S. In addition, to ensure we have
all shells covered, we demand that

Σiso = X ∪
( ⋃

(A,S)∈S
GS
)
.

We remark that due to rotation invariance, the mass shells continue analytically
through level crossings. The reader can consult [34] for the analytic structure of
isolated eigenvalues of holomorphic families of self-adjoint operators. We remark that
for a fixed unit vector u ∈ Rν , the map κ → H(κu) defines a ‘Type A’ family of
operators. See [15].

For a given element (A, S) ∈ S, the graph GS may have 0, 1 or 2 finite boundaries
that are Sν−1-spheres (perhaps of radius 0). The case of no boundary, indicates a
mass shell that without crossings extends to infinity in total momentum. An example
of such a shell would be the ground state mass shell in dimensions one and two,
cf. [38, 40, 49]. A boundary Sν−1-sphere can be one of two things. Either it is a
connected component of X , i.e. a level crossing, or it is a subset of Σess = Σ(1)

0 , the
boundary of the continuous energy-momentum spectrum.

Unless a mass shell (A, S) is constant, its gradient ∇S can at most vanish on
isolated Sν−1-spheres that can only accumulate at infinity. We remark that we do
not know the manner in which mass shells, ground state or excited, dip into the
continuous spectrum. One could speculate that it does so at worst as a branch of a
Puiseaux series, something which may have useful consequences. See [39].

Having discussed the structure of the isolated spectrum, we now turn to the
subset of the continuous energy-momentum spectrum below the two-boson threshold

E (1) =
{

(ξ, λ) ∈ Rν × R
∣∣∣Σ(1)

0 (ξ) ≤ λ < Σ(2)
0 (ξ)

}
. (1.28)

Write E (1)(ξ) = [Σ(1)
0 (ξ),Σ(2)

0 (ξ)) such that E (1) = {(ξ, λ) ∈ Rν × R |λ ∈ E (1)(ξ)}.
Our first result is concerned with the structure of possibly embedded point

spectrum inside E (1). To formulate the theorem, we need to carefully formalize the
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notion of thresholds. We should identify energy-momenta inside E (1) where emitted
bosons fail to break free from the remaining interacting system with a non-zero
relative velocity, thus preventing them from becoming asymptotic field particles. The
threshold set pertaining to one-boson emission processes T (1) has three components
which we now discuss.

The first, and perhaps most obvious, is the set of one-boson thresholds where the
remaining interacting system after boson emission ends up inside an isolated mass
shell (A, S) ∈ S. We define S(1)(ξ; ·) : A+ ξ → R by

S(1)(ξ; k) = S(ξ − k) + ω(k). (1.29)

This extends the construction (1.16) to (possibly existing) excited mass shells, and
is the post-emission effective dispersion relation governing the composite interacting
system plus emitted boson. The mass shell contribution to one-boson thresholds is

T (1)
S =

{
(ξ, E) ∈ Rν+1

∣∣∣E ∈ T (1)
S (ξ)

}
, (1.30)

T (1)
S (ξ) =

{
E ∈ R

∣∣∣∃(A, S) ∈ S, k ∈ A+ ξ : E = S(1)(ξ; k),∇kS
(1)(ξ; k) = 0

}
.

We emphasize that ∇kS
(1)(ξ; k) = 0 is the same as ∇S(ξ − k) = ∇ω(k), i.e. the

asymptotic boson and the remaining interacting system have identical velocities.
This defines one contribution to the one-boson threshold set. One can similarly define
n-body thresholds, which however will sit above the (lowest) two-boson threshold
Σ(2)

0 and therefore we disregard them here, cf. (1.19).
To understand the next two contributions to the threshold set we need to explain

the dynamics at level crossings. Suppose we are at an energy E and total momentum
ξ, with one free boson at momentum k such that (ξ − k,E − ω(k)) ∈ χ. The only
direction in momentum space we can control is where (ξ − k,E − ω(k)) moves
inside level crossings, which form Sν−1-spheres. Inside such spheres the energy of
the bound system stays constant, due to being constrained to a crossing, so the
effective dispersion only varies through the contribution from k → ω(k). The effective
dispersion therefore have critical momenta where the tangential derivative of ω, with
respect to the Sν−1-sphere, vanishes. Since ω is rotation invariant this can happen in
two ways. Either k is parallel to ξ in which case ∇ω(k) is normal to the sphere, or it
can happen if ∇ω(k) = 0.

The next contribution comes from the need to avoid landing on a level crossing
with k parallel to ξ after emission of one boson with momentum k. Given ξ ∈ Rν , let
u ∈ Rν be a unit vector such that ξ = su for some s ∈ R. We introduce the set

T (1)
‖ (ξ) :=

{
E ∈ R

∣∣∣ ∃r ∈ R :
(
ξ − ru, E − ω(ru)

)
∈ X

}
. (1.31)

If ξ = 0, the unit vector u can be chosen arbitrarily and we observe, since ω and the
set X are rotation invariant, that

T (1)
‖ (0) =

{
E ∈ R

∣∣∣∃k ∈ Rν :
(
k,E − ω(k)

)
∈ X

}
. (1.32)

The final contribution to the threshold set consists of energies at which it is
possible to emit a boson of momentum k with ∇ω(k) = 0 and the remaining
interacting system at a level crossing.

T (1)
∦ (ξ) :=

{
E ∈ R

∣∣∣∃k ∈ Rν :
(
ξ − k,E − ω(k)

)
∈ X and ∇ω(k) = 0

}
. (1.33)
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The reader can safely on a first reading disregard this contribution since in typical
models T (1)

∦ (ξ) will be a subset of T (1)
‖ (ξ). This happens of course in dimension 1,

if ∇ω(k) 6= 0 for k 6= 0, and finally in the case of the polaron model. Note that we
always have T (1)

∦ (0) ⊂ T (1)
‖ (0), cf. (1.32).

The total threshold set can now be defined to be

T (1) = T (1)
S ∪ T (1)

‖ ∪ T (1)
∦ ,

where T (1)
‖ = {(ξ, E) |E ∈ T (1)

‖ (ξ)} and T (1)
∦ = {(ξ, E) |E ∈ T (1)

∦ (ξ)}.
The first theorem we present establishes the structure of the threshold set below

the two-boson threshold.

Theorem 1.5. Assume Conditions 1.2 and 1.3, with n0 = 0. Let ξ ∈ Rν. The
following holds

(i) T (1) ∩ E (1) is a relatively closed subset of E (1).
(ii) The set T (1)(ξ)∩E (1)(ξ) is a discrete subset of E (1)(ξ), i.e. it is at most countable

and can accumulate only at Σ(2)
0 (ξ).

In fact Theorem 1.5 holds for each of the three types of thresholds sets individually.
This is obvious for (ii), and follows for (i) from its proof.

The final energy-momenta we need to avoid come from our desire to handle
the infrared singular interaction in the polaron model. It consists simply of the
set (0, ω(0)) + Σiso. When localizing away from (0, ω(0)) + Σiso, we cannot emit a
boson with zero momentum, hence we will never meet the infrared singularity. This
contribution can be omitted if the coupling function g behaves no worse than |k|β at
zero, with β > 2− ν/2. In order not to introduce a superfluous exceptional set we
define

Exc =
{

(0, ω(0)) + Σiso, ∂kjg 6∈ L2
loc(Rν), for some j ∈ {1, . . . , ν}

∅, ∂kjg ∈ L2
loc(Rν), for all j ∈ {1, . . . , ν}.

We write Exc(ξ) as usual for the fixed total momentum fibers of the set Exc. Observe
that Exc(ξ), ξ ∈ Rν , are discrete sets and that Exc∩E (1) is a relatively closed subset
of E (1). The latter is a consequence of the HVZ theorem.

Our second theorem is concerned with the structure of the embedded pure point
spectrum below the two-boson threshold. That is, the set Σpp ∩ E (1), cf. (1.25)
and (1.28).

Theorem 1.6. Assume Conditions 1.2 and 1.3, with n0 = 1. Let ξ ∈ Rν. The
following holds

(i) All eigenvalues in σpp(H(ξ))∩E (1)(ξ)\(T (1)(ξ)∪Exc(ξ)) have finite multiplicity.
(ii) The set σpp(H(ξ)) ∩ E (1)(ξ) is at most countable, with accumulation points at

most in T (1)(ξ) ∪ Exc(ξ) ∪ {Σ(2)
0 (ξ)}.

(iii) The set (Σpp ∪ T (1) ∪ Exc) ∩ E (1) is a relatively closed subset of E (1).
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The above theorem follows from standard arguments once we have established a
so-called Mourre estimate, cf. Theorem 3.16, away from T (1) and Exc. An additional
consequence of a Mourre estimate is a limiting absorption principle and hence in
particular:

Theorem 1.7. Assume Conditions 1.2 and 1.3, with n0 = 2. Then the fiber Hamil-
tonians H(ξ) have no singular continuous spectrum below the two-boson threshold,
i.e.

∀ξ ∈ Rν : σsc
(
H(ξ)

)
∩
(
−∞,Σ(2)

0 (ξ)
)

= ∅.

1.4 A Stratification Point of View
The paper is build around the construction of a vector field vξ ∈ C∞0 (Rν), from
which we construct a self-adjoint one-body operator aξ = i(vξ · ∇k +∇k · vξ)/2 and a
second quantized observable Aξ = dΓ(aξ) on F . The physical interpretation of vξ
is that of a relative velocity field, assigning to a momentum k the difference of the
velocity of a bound state at total momentum ξ− k and the velocity of an asymptotic
boson at momentum k. In Chapter 2 we argue that under our assumptions the fiber
Hamiltonians H(ξ) are of class Ck(Aξ), for k = 1, 2, provided (ST2) holds with
n0 = k.

In Chapter 3 we construct the vector field vξ locally in energy in E (1)(ξ) and away
from thresholds T (1)(ξ), in such a way that we can deduce at the end of the chapter a
Mourre estimate for the pair H(ξ) and Aξ. From our Mourre estimate, Theorems 1.6
and 1.7 will follow. Theorem 1.5 will be proved in Section 3.1, and ensures that the
construction of vξ can be done in a sufficiently large energy region inside E (1)(ξ).

The rest of this section is devoted to an explanation of the construction of the
threshold set and the vector field vξ, from the point of view of stratifications of proper
maps. We will not make any attempt to properly introduce the notions we refer to
here, which are entirely standard. For literature on the subject we refer the reader
to [30, Section 3] as well as [25, 29]. All stratifications discussed here will satisfy
Whitney’s regularity condition and the so-called frontier condition: Two strata either
have disjoint closures, or one is contained in the closure of the other.

Consider a (real analytic) ambient space X ⊂ R2ν+1 given as the following open
set

X =
{

(k, ξ, E) ∈ Rν × Rν × R
∣∣∣E < Σ(2)

0 (ξ)
}
.

Along with this we consider fibered ambient spaces

Xξ =
{

(k,E) ∈ Rν × R
∣∣∣ (k, ξ, E) ∈ X

}
.

We define (real analytic) projections Π: X → Rν+1 and Πξ : Xξ → R by

Π(k, ξ, E) = (ξ, E) and Πξ(k,E) = E.

The projections in fact take values inside the (real analytic) target spaces Y =
{(ξ, E) |E < Σ(2)

0 (ξ)} and Yξ = (−∞,Σ(2)
0 (ξ)) respectively.

We now introduce what turns out to be semi-analytic subsets of the ambient
spaces just defined. Let

A =
{

(k, ξ, E) ∈ X
∣∣∣ (ξ − k,E − ω(k)) ∈ Σiso)

}
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and
Aξ =

{
(k,E) ∈ Xξ

∣∣∣ (k, ξ, E) ∈ A
}
.

To see that these sets are semi-analytic we first remark that Σiso is semi-analytic as
a subset of the ambient space {(ξ, E) |E < Σess(ξ)}. This follows from the analysis
of Gérard and Nier [25]. It now follows that A and Aξ are semi-analytic as subsets
of X and Xξ respectively. Here one makes use of E − ω(k) < Σess(ξ − k) provided
(k, ξ, E) ∈ X.

That the projections Π and Πξ, when restricted to A and Aξ respectively, are
proper (preimages of compact sets are compact) is a consequence of [40, Theorem 2.4].
See also (3.1) below.

The splitting of Σiso into graphs of mass shells GS and level crossings, as Sν−1-
spheres, is a stratification of Σiso with strata being graphs of real analytic functions
of total momentum. This induces a stratification of X and Xξ into strata which are
again graphs of real analytic functions of (k, ξ) and k respectively.

The thresholds sets T (1)(ξ)∩ E (1)(ξ) and T (1) ∩ E (1) can be interpreted as coming
from a Hironaka-stratification of the maps Π|A and Πξ|Aξ as follows. The threshold
set T (1)(ξ) ∩ E (1)(ξ) are zero-strata in a stratification of the target space Yξ, and
T (1) ∩ E (1) is the union of zero-strata and those d-strata, with 1 ≤ d ≤ ν, transverse
to each {ξ} × Yξ inside Y .

The strata of the compatible stratification of A and Aξ will again be graphs
of real analytic functions and the strata not projecting into the threshold sets are
exactly those for which the function, e.g. S(1) from (1.29), defining the strata has
nowhere vanishing gradient with respect to k.

The vector field vξ, used at total momentum ξ, will be constructed by gluing
together k-gradients of the functions generating non-threshold strata in Aξ, which
plays the physical role of a vector field of relative break up velocity of a compound
system consisting of an asymptotic boson at momentum k, and an interacting system
at momentum ξ − k.

In fact we expect/conjecture that a Hironaka-stratification of the projections Π
and Πξ can be used also without the assumption (ST3) on rotation invariance to
construct the threshold sets, and a subsequent analysis of the resulting Whitney
stratification of A and Aξ should make it possible, along the same lines as employed
in Chapter 3 of this paper, to build a vector field vξ that works in a Mourre estimate.
However, at this stage where there are still many questions remaining about scattering
theory as well as the structure of high energy sectors of the energy-momentum
spectrum, we prefer the home-cooked and completely explicit stratification from
Chapter 3, where we have full control over all the nuts and bolts. We remark that our
insistence on constructing vξ as a vector field necessitates some geometrical/technical
considerations not met in [24] and [25], where vξ was allowed to be a more complicated
object. Again, with a view towards the future, we prefer to keep vξ as concrete as
possible.

We remark that it is a consequence of the analysis in Section 3.1 that T (1) ∩ E (1)

is a semi-analytic subset of the ambient space E (1). However, we cannot conclude that
Σiso∪(T (1)∩E (1)) is a semi-analytic subset of the ambient space {(ξ, E) |E < Σ(2)

0 (ξ)}.
The reason being that we have no control over the manner in which isolated mass
shells may hit the continuous energy-momentum spectrum. Such a statement together
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with control of possibly embedded non-threshold mass shells, would be a natural
input for investigating higher energy sectors.

Another, perhaps more serious, obstacle to analyzing the spectrum above the two-
boson threshold, is the possible existence of embedded mass shells. Embedded mass
shells below the two-boson threshold would give rise to one-boson scattering states
between the two- and three-boson thresholds. Controlling the induced thresholds,
in a manner similar to what is done here, necessitates that embedded mass shells
are real analytic. Proving this is well beyond current technology [13, 31, 41]. One
solution would be to pass to a weak coupling regime where the work of [4, 37] can
be used to rule out embedded mass shells below the two-boson threshold altogether.

2 Regularity with Respect to a Conjugate
Operator

In this chapter we recall the property of a Hamiltonian being of class Ck(A), with
respect to a self-adjoint conjugate operator A. In addition, we verify that our
fiber Hamiltonians are of class C2(A), for conjugate operators on the general form
constructed here. We remark that the particular model studied in this paper is
in fact quite singular in terms of the Ck(A) classes, in that the free operator
H0(ξ) = dΓ(

√
k2 +m2) + (ξ−dΓ(k))2 is of class C2(A) but fails to be of class C3(A),

if one chooses A to be e.g. a second quantized generator of dilation. While this does
not become a serious issue in the present paper, it will be a more serious obstacle
when possible embedded mass shells are analyzed, since the most advanced results to
date only hold under a C2(A) assumption [13, 41]. There are in particular no results
allowing one to follow degenerate embedded eigenvalues under perturbations without
stronger regularity assumptions.

Additionally, while H0(ξ) is of class C1(A), it does not satisfy a Mourre type
regularity condition on the first commutator, which manifests itself in the fact that
the group Wt generated by the generator of dilation does not preserve the domain of
any positive power of H0(ξ).

The class of conjugate operators we consider in this paper are build from one-body
operators of the form

a = 1
2

{
v · i∇k + i∇k · v

}
, where v ∈ C∞0 (Rν\{0}). (2.1)

It is well-known that such a are essentially self-adjoint on C∞0 (Rν). Furthermore, the
second quantization

A = dΓ(a) (2.2)
is essentially self-adjoint on C, cf. (1.12). Being self-adjoint, the operator a generates
a unitary group wt = eita which can be expressed in terms of the flow ψt of the
autonomous ODE ψ̇t = v(ψt), with ψ0(k) = k. We have the formula

(wtf)(k) =
√
Jt(k)f(ψt(k)), (2.3)

where Jt is the determinant of the Jacobi matrix Dkψt. By Liouville’s formula we
have the equation

Jt(k) = e
∫ t

0 Tr[Dv(ψs(k))]ds, (2.4)
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which is uniformly bounded in k. By the functorial properties of second quantization
we find that the group eitA generated by A is Γ(wt).

Note that ψt(k) = k for k 6∈ supp(v) and by boundedness of v we have

sup
k∈Rν
‖ψt(k)− k‖ ≤ sup

k∈Rν

∫ t

0
‖v(ψs(k))‖ ds ≤ t‖v‖∞. (2.5)

Unfortunately we use k here both as a momentum variable and as an integer
power for the class Ck(A). Both are standard notation that we prefer to adhere to
and trust the reader to distinguish from the context when k denotes momentum and
when it denotes an integer power.

2.1 The Ck(A) Classes of Operators
Let A be a self-adjoint operator on a complex Hilbert space H. We recall the notion
of Ck(A), k = 1, 2, . . . , regularity from [3].

Definition 2.1 (The Ck(A) class of operators). Let A be a self-adjoint opera-
tor on H, with domain D(A).

(i) Let B ∈ B(H) be a bounded operator and k ∈ N. We say that B ∈ Ck(A)
if, for all φ ∈ H, the map R 3 s 7→ e−isABeisAφ ∈ H is k times continuously
differentiable.

(ii) Let H be a self-adjoint operator on H. We say that H is of class Ck(A) if there
exists z ∈ C\σ(H) such that (H − z)−1 ∈ Ck(A).

Note that Ck(A) is a subalgebra of B(H), cf. [3, 21]. Lets make some remarks.
The requirement that A and H be self-adjoint can be relaxed considerably [21],
something we will however not need. The requirement in (ii) that (H − z)−1 ∈ Ck(A)
for some z in the resolvent set of H, is equivalent to (H − z)−1 ∈ Ck(A) for all
such z. Finally, we note that if the bounded operator B is itself self-adjoint then
B ∈ Ck(A) if and only if B is of class Ck(A).

The results in this section are recalled from the literature without proofs, for
which we refer the reader to [3, 18, 20, 21].

We remind the reader that there are several equivalent formulations for a bounded
operator B to be of class C1(A). We collect some as a lemma.

Lemma 2.2. Let B ∈ B(H). The following are equivalent.

(i) B ∈ C1(A).
(ii) It holds that lim inf

s→0+
1
s
‖e−isABeisA −B‖ <∞.

(iii) There is a constant C such that for all ψ, φ ∈ D(A),

|〈Aψ,Bφ〉 − 〈Bψ,Aφ〉| ≤ C‖φ‖‖ψ‖. (2.6)

(iv) B maps D(A) into itself and AB − BA : D(A) → H extends to a bounded
operator on H.
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If B ∈ C1(A), the commutator [A,B], which is a priori only defined as a form on
D(A), can by Lemma 2.2 be extended to H. We write [A,B]◦ for the unique bounded
operator on H extending the quadratic form [A,B].

If B = (H − z)−1, with H being self-adjoint and of class C1(A), then we can
compute the form [B,A] on D(A) and find that [B,A] = −(H−z)−1[H,A](H−z)−1,
which is meaningful due to Lemma 2.2 (iv). Here [H,A] is read as a form on
D(H)∩D(A). Since the left-hand side extends by continuity to the bounded operator
[A,B]◦, we observe that [H,A] extends from D(A) ∩ D(H) to a bounded form on
D(H), which we can and will identify with an operator [H,A]◦ ∈ B(H1;H−1). Here
we used the standard scale of space associated with H. That is Hs, |s| ≤ 1, is the
completion of D(H) with respect to the norm ‖ψ‖s = ‖(|H| + 1)sψ‖. We remark
that if H is of class C1(A), then

D(H) ∩ D(A) is dense in D(H) (2.7)

and hence, the extension [H,A]◦ of the form [H,A] is unique.
We will need the following well-known lemma

Lemma 2.3. If H is a self-adjoint operator of class C1(A) and Wt = eitA is the
unitary group associated to the self-adjoint operator A, then we have

∀ψ, φ ∈ D(H) : 〈ψ, i[H,A]◦φ〉 = lim
s→0

1
s

(
〈Hψ,Wsφ〉 − 〈ψ,WsHφ〉

)
.

2.2 H(ξ) is of Class C2(A)
In this section we state and prove a C2(A) regularity result for the fiber Hamiltonians
with respect to conjugate operators of the type (2.2). Since this is of independent
interest, we formulate precise conditions under which our results hold, conditions
that are implied by a combination of Conditions 1.2 and 1.3.
Condition 2.4. We say that (ω,Ω, g) satisfies a Ck-condition, k = 1, 2, if there
exists sΩ ∈ [0, 2] such that
(Ck1) ω,Ω ∈ Ck(Rν).
(Ck2) Ω ≥ 0 and infη∈Rν ω(η) > 0.
(Ck3) ∃C > 0 such that Ω(η) ≥ C−1〈η〉sΩ − C and |∂αΩ(η)| ≤ C〈η〉sΩ−|α|, |α| ≤ k.
(Ck4) g ∈ L2(Rν) admits k distributional derivatives with ∂αg ∈ L2

loc(Rν), |α| ≤ k.

Note that due to the ξ- and g-independence of the domain of H(ξ), and the
equivalence of the associated ‖ · ‖s norms, the scale of spaces Hs are ξ- and g-
independent. To avoid ambiguity we use H0(0) to define the s-norms.
Proposition 2.5. Suppose (ω,Ω, g) satisfies a Ck-condition with
k = 1: Then for all ξ ∈ Rν the fiber Hamiltonian H(ξ) is of class C1(A) and we

have the explicit form of the commutator

i[H(ξ), A]◦ = dΓ(v · ∇ω)− dΓ(v) · ∇Ω(ξ − dΓ(k))− φ(iag).

Furthermore

∀t ∈
[
0, 1

2

]
: [H(ξ), A]◦ ∈ B

(
H1−t,H− 1

2−t
)
. (2.8)
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k = 2: Then for all ξ ∈ H(ξ) the fiber Hamiltonian H(ξ) is of class C2(A).

Proof. Fix a ξ ∈ Rν . For the purpose of this proof we abbreviate H0 = H0(ξ) and
H = H(ξ). Recall the notation D (1.13) for the common domain of H0(ξ) and H(ξ),
ξ ∈ Rν , and C (1.12) for the common core of H(ξ) and A.

We begin with the case ‘k = 1’ and observe that

∀z ∈ C\σ(H0) : (H0 − z)−1C = C, (2.9)

which ensures that the following computation, for ψ, ϕ ∈ C,
〈
ψ,
[
(H0 + 1)−1, A

]
ϕ
〉

= −
〈
(H0 + 1)−1ψ, [H0, A](H0 + 1)−1ϕ

〉

is meaningful. As a form on C one can easily compute that

FC := i[H0, A]|C = dΓ(v · ∇ω)− dΓ(v) · ∇Ω(ξ − dΓ(k)).

Since v · ∇ω is uniformly bounded, cf. (Ck1), we can bound the first term by a
number operator, and hence due to (Ck2) by H0. Likewise, we can bound dΓ(v) by
H0, and the operator ∇Ω(ξ − dΓ(k)) can due to (Ck3) be controlled by H1/2

0 . Recall
that sΩ ≤ 2. This yields the following bound for all ψ̃, ϕ̃ ∈ C

∣∣∣
〈
ψ̃, i[H0, A]ϕ̃

〉∣∣∣ ≤ C
(∥∥∥(H0 + 1)ψ̃

∥∥∥
2

+
∥∥∥(H0 + 1) 1

2 ϕ̃
∥∥∥

2
)
.

Hence we find that

∀ψ, ϕ ∈ C :
∣∣∣
〈
ψ, i

[
(H0 + 1)−1, A

]
ϕ
〉∣∣∣ ≤ C

(∥∥∥ψ
∥∥∥

2
+
∥∥∥(H0 + 1)− 1

2ϕ
∥∥∥

2
)
.

Since C is a core for A, this proves that H0 is of class C1(A) and hence i[H0, A] has
a unique extension by continuity from D ∩D(A) to a bounded form i[H0, A]◦ on D.
We now observe, appealing to the bound, that the form FC extends continuously to
a bounded form FD on D, defined by the same expression. Since FD and i[H0, A]◦
coincide on C, they must also be identical as forms on D. Finally we observe by
symmetry and interpolation that

∀t ∈
[
0, 1

2

]
: i[H0, A]◦ ∈ B

(
H1−t,H− 1

2−t
)
. (2.10)

We now turn to the full fiber Hamiltonian H. Since φ(g) is H1/2
0 bounded, we can

choose λ > 0 large enough such that ‖φ(g)R0(λ)‖ < 1, where R0(λ) = (H0 + λ)−1.
We can now write

R(λ) := (H − λ)−1 = R0(λ)(1+φ(g)R0(λ))−1. (2.11)

Recall that C1(A) is a subalgebra of B(H), and S ∈ C1(A) invertible implies S−1 ∈
C1(A) (see [21, Corollary 2.10]). Hence it suffices to show that φ(v)R0(λ) ∈ C1(A)
in order to prove that H is of class C1(A).
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Using Lemma 2.2 (iv) we conclude that for ϕ ∈ C ⊂ D(A) we have R0(λ)Aϕ =
AR0(λ)ϕ− [R0(λ), A]◦ϕ. Calculate for ψ, ϕ ∈ C

〈
φ(g)ψ,R0(λ)iAϕ〉 − 〈Aψ, iφ(g)R0(λ)ϕ

〉

=
〈
φ(g)ψ, iAR0(λ)ϕ〉 − 〈Aψ, iφ(g)R0(λ)ϕ

〉

−
〈
φ(g)ψ,R0(λ)i[H0, A]R0(λ)ϕ

〉

= −
〈
ψ, φ(iag)R0(λ)ϕ

〉
−
〈
ψ, φ(g)R0(λ)i[H0, A]◦R0(λ)ϕ

〉
.

(2.12)

By using (2.10) and H1/2
0 -boundedness of φ(g), it follows that for all ψ, ϕ ∈ C

∣∣∣
〈
ψ, φ(g)R0(λ)iAϕ

〉
−
〈
Aψ, iφ(g)R0(λ)ϕ

〉∣∣∣ ≤ C
(
‖ψ‖2 + ‖ϕ‖2

)
,

for some C > 0. Since C is a core for A this bound extends to D(A) and hence by
Lemma 2.2 we conclude that φ(g)R0(λ) ∈ C1(A). To verify the formula for i[H,A]◦
it now suffices to verify the formula as a form on C as we did for [H0, A]◦. The
perturbation contributes an H-bounded term, so it is (2.10) that is the most singular
contribution and hence (2.8) holds true. This completes the proof for the case ‘k = 1’.

We turn to the case ‘k = 2’. Having established that R(λ) ∈ C1(A), one can
repeat the argument around (2.12) above to conclude that φ(g)R(λ) ∈ C1(A). Since
(φ(g)R(λ))∗ = R(λ)φ(g), the closure of R(z)φ(g) defined a priori on D, we get

φ(g)R(λ) and R(λ)φ(g) are of class C1(A). (2.13)

Compute as an identity between bounded operators

i[R(λ), A]◦ = −R(λ)
{

i[H0, A]◦ − φ(iag)
}
R(λ)

= −R(λ)(H0 + λ)R0(λ)i[H0, A]◦R(λ) +R(λ)φ(iag)R(λ)
= −R(λ)φ(g)i[R0(λ), A]◦(1+φ(g)R0(λ))−1 +R(λ)φ(iag)R(λ)

+ i[R0(λ), A]◦(1+φ(g)R0(λ))−1,

where the last equality made use of (2.11). We conclude that to show that H is of
class C2(A), it suffices to show that [R0(λ), A]◦ and R(λ)φ(iag)R(λ) are both of class
C1(A).

We begin with [R0(λ), A]◦. Compute for ψ, ϕ ∈ C
〈
ψ, [R0(λ), A]◦Aϕ

〉
−
〈
Aψ, [R0(λ), A]◦ϕ

〉

=
〈
ψ,R0(λ)[[H0, A]◦, A]R0(λ)ϕ

〉

− 2
〈
ψ,R0(λ)[H0, A]◦R0(λ)[H0, A]◦R0(λ)ϕ

〉
,

(2.14)

where we used again (2.9) and AC ⊂ C to perform the computations. The form
[[H0, A]◦, A] should be understood as a form on C where it can be computed to be

F ′C := [[H0, A]◦, A]
= − dΓ(〈v, (∇2ω)v〉)− dΓ(〈(∇v)v,∇ω〉)
− 〈dΓ(v),∇2Ω(ξ − dΓ(k))dΓ(v)〉+ dΓ((∇v)v) · ∇Ω(ξ − dΓ(k)).
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The two first terms in F ′C are controlled by the number operator, cf. (Ck1), and
hence by H0. The third term is the most singular and require a square of the number
operator to bound, cf. (Ck3), and hence is just bounded as a form on D. The fourth
and final term can be controlled by H3/2

0 . In conclusion we find the existence of a
C > 0 such that

∀ψ̃, ϕ̃ ∈ C :
∣∣∣
〈
ψ̃, F ′Cϕ̃

〉∣∣∣ ≤ C
(∥∥∥(H0 + λ)ψ̃

∥∥∥
2

+
∥∥∥(H0 + λ)ϕ̃

∥∥∥
2
)

We can now estimate the left-hand side in (2.14), cf. also (2.10), and find that

∀ψ, ϕ ∈ C :
∣∣∣
〈
ψ, [[R0, A]◦, A]ϕ

〉∣∣∣ ≤ C
(
‖ψ‖2 + ‖ϕ‖2

)
,

for some C > 0. Since C is a core for A, we have thus established that [R0(λ), A]◦ ∈
C1(A). Note that to control the last term in (2.14) using (2.10), one has to make
full use of all the free resolvents.

It remains to consider R(λ)φ(iag)R(λ). Writing

R(λ)φ(iag)R(λ) = R0(λ)φ(iag)R0(λ) + 2Re
{
R(λ)φ(g)R0(λ)φ(iag)R0(λ)}

+R(λ)φ(g)R0(λ)φ(iag)R0(λ)φ(g)R(λ),

we appeal to (2.13) and conclude that it suffices to show that R0(λ)φ(iag)R0(λ) is
of class C1(A). Here we can compute as a form on C for one last time

[R0(λ)φ(iag)R0(λ), A] = − iR0(λ)φ(a2g)R0(λ)
+ [R0(λ), A]◦φ(iag)R0(λ) +R0(λ)φ(iag)[R0(λ), A]◦.

By (Ck4) ag, a2g ∈ L2(Rν) and the right-hand side clearly extends to a bounded
operator and we are done. �

2.3 Extended Operators
Below we will make use of the following two simple observations, the proofs of which
are left to the reader.

Lemma 2.6. Let H,A1, A2, A3 be self-adjoint operators such that H ∈ C1(Aj),
j = 1, 2. Suppose furthermore that there exists a dense set D0, with the following
properties:

(i) D0 ⊂ D(Aj), j = 1, 2, 3.
(ii) D0 is a core for A3.
(iii) For all ψ ∈ D0 we have A3ψ = A1ψ + A2ψ.

Then H is of class C1(A3) and [H,A3]◦ = [H,A1]◦ + [H,A2]◦ as an identity between
elements of B(H1;H−1).

Lemma 2.7. Let {Hn}n∈N be a family of Hilbert spaces, and suppose that for each
n ∈ N we are given two self-adjoint operators Hn and An on Hn, with Hn of
class C1(An). Then H = ⊕∞n=1Hn is of class C1(A), with A = ⊕∞n=1An, as self-
adjoint operators on H = ⊕∞n=1Hn. Furthermore [H,A]◦ = ⊕∞n=1[Hn, An]0 under the
identification B(H1;H−1) = ⊕∞n=1B(Hn;1;Hn;−1).
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In the proposition below v, ṽ ∈ C∞0 (Rν\{0}), ã = (ṽ · i∇k + i∇k · ṽ)/2 and
Ã(`) = A ⊗ 1F(`) +1F ⊗ dΓ(`)(ã). The tilde-free versions are as usual constructed
using v.

Proposition 2.8. Suppose (ω,Ω, g) satisfies a C1-condition. Then for all ` ∈ N and
ξ ∈ Rν the following holds: H(`)(ξ) is of class C1(A⊗ 1F(`)), C1(1F ⊗ dΓ(`)(ã)) and
C1(Ã(`)), with

i
[
H(`)(ξ), A⊗ 1F(`)

]◦
=
∫ ⊕

R`ν
i
[
H(`)(ξ; k), A

]◦
dk,

i
[
H(`)(ξ),1F ⊗ dΓ(`)(ã)

]◦
=

∫ ⊕

R`ν

∑̀

j=1
ṽ(kj)

·
(
∇ω(kj)−∇Ω

(
ξ −∑`

j=1 kj − dΓ(k)
))

dk,

i
[
H(`)(ξ), Ã(`)

]◦
= i
[
H(`)(ξ), A⊗ 1F(`)

]◦
+ i
[
H(`)(ξ),1F ⊗ dΓ(`)(ã)

]◦
.

Furthermore, Hx(ξ) is of class C1(Ax) and

i
[
Hx(ξ), Ax

]◦
= [H(ξ), A]◦ ⊕

{ ∞⊕

`=1
i
[
H(`)(ξ), A(`)

]◦}

= dΓx(v · ∇ω)− dΓx(v) · ∇Ω
(
ξ − dΓx(k)

)
− φ(iag)⊗ 1F .

Remark 2.9. For the purpose of the proof below we abbreviate k(`) = k1 + · · ·+ k`,
for vectors k = (k1, . . . , k`) ∈ R`ν . Note that [H(`)(ξ; k), A]◦ = [H(ξ − k(`)), A]◦ can
be computed using Proposition 2.5 ‘k = 1’. �

Proof. We only prove that H(`)(ξ) is of class C1(A⊗ 1F(`)) and C1(1F ⊗ dΓ(`)(ã)).
The C1(Ã(`)) property then follows from Lemma 2.6 and that Hx(ξ) is of class C1(Ax)
follows from Lemma 2.7 after choosing ṽ = v. The expressions can subsequently be
easily confirmed by computations on a suitable core for H(`)(ξ).

Let ` ∈ {1, 2, 3, . . . } and ξ ∈ Rν . We begin by showing that H(`)(ξ) is of class
C1(A⊗ 1F(`)), where we identify F ⊗ F (`) with L2

sym(R`ν ;F).
Let

C(`) =
{
f ∈ C0,sym(R`ν ;F)

∣∣∣∀k ∈ R`ν : f(k) ∈ C
}
.

Here C0,sym(R`ν ;F) denotes the continuous and compactly supported F-valued
functions, symmetric under permutation of the ` variables. Clearly C(`) is a core for
A⊗ 1F(`) . Pick a λ < Σ0, cf. (1.15). Since

(H(`)(ξ)− λ)−1 =
∫ ⊕

R`ν
(H(`)(ξ; k)− λ)−1dk,

we observe that for f ∈ C(`) we have

(
(H(`)(ξ)− λ)−1f

)
(k) =

(
H(ξ − k(`)) +

∑̀

j=1
ω(kj)− λ

)−1
f(k).
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Hence by Lemma 2.2 (iv) we conclude that

(H(`)(ξ)− λ)−1C(`) ⊂
{
f ∈ C0,sym(R`ν ;F)

∣∣∣∀k ∈ R`ν : f(k) ∈ D(A) ∩ D
}

=: C̃(`).
(2.15)

For f, g ∈ C̃(`) we compute

〈
f,
[
H(`)(ξ), A⊗ 1F(`)

]
g
〉

=
∫

R`ν

〈
f(k),

[
H(ξ − k(`)) +

∑̀

j=1
ω(kj), A

]
g(k)

〉
dk

=
∫

R`ν

〈
f(k),

[
H(ξ − k(`)), A

]◦
g(k)

〉
dk.

Since
M1 := sup

η∈Rν

∥∥∥(H(η)− λ)−1[H(η), A]◦(H(η)− λ)−1
∥∥∥ <∞,

M2 := sup
ξ∈Rν ,k∈R`ν

∥∥∥(H(ξ − k(`))− λ)(H(`)(ξ; k)− λ)−1
∥∥∥ <∞,

(2.16)

we can finally estimate for f, g ∈ C(`)

∣∣∣
〈
f,
[
(H(`)(ξ)− λ)−1, A⊗ 1F(`)

]
g
〉∣∣∣

≤
∫

R`ν

∣∣∣
〈
(H(`)(ξ; k)− λ)−1f(k), [H(ξ − k(`)), A]◦(H(`)(ξ; k)− λ)−1g(k)

〉∣∣∣dk

≤M1M
2
2‖f‖‖g‖.

That C(`) is a core for A⊗ 1F(`) now implies that H(`)(ξ) is of class C1(A⊗ 1F(`)).
By Lemmata 2.6 and 2.7 it now suffices to show that the fiber Hamiltonian

H(`)(ξ) is of class C1(1F ⊗ dΓ(`)(ã)). Denote by w̃t the group eitã generated by ã.
Then w̃

(`)
t = 1F ⊗Γ(`)(w̃t) is the group generated by 1F ⊗ dΓ(`)(ã). If we denote

by ψ̃t the globally defined flow generated by the ODE ψ̇t = ṽ(ψt) we can write
(w̃tf)(y) =

√
J̃tf(ψ̃t(y)), where J̃t is the Jacobi determinant. See (2.3) and (2.4).

We introduce a bit of notation. Given k ∈ R`ν we write ψ̃(`)
t (k) = ψ̃t(k1) + · · ·+

ψ̃t(k`). We compute as a form on C̃(`), cf. (2.15),

w̃
(`)
−t
[
H(`)(ξ), w̃(`)

t

]

= w̃
(`)
−t

(
Ω
(
ξ − k(`) − dΓ(k)

)
+
∑̀

j=1
ω(kj)

)
w̃

(`)
t − Ω

(
ξ − k(`) − dΓ(k)

)
−
∑̀

j=1
ω(kj)

= Ω
(
ξ − ψ̃(`)

t (k)− dΓ(k)
)
− Ω

(
ξ − k(`) − dΓ(k)

)
+
∑̀

j=1

(
ω
(
ψ̃t(kj)

)
− ω(kj)

)

= −
∫ t

0
∇Ω

(
ξ − ψ(`)

t (k)− dΓ(k)
)
·
∑̀

j=1
ṽ
(
ψ̃s(k)

)
ds

+
∑̀

j=1

∫ t

0
∇ω

(
ψ̃s(kj)

)
· ṽ
(
ψ̃s(kj)

)
ds. (2.17)
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Estimate, as a fiber operator pointwise in k,
∥∥∥∥∇Ω

(
ξ − ψ(`)

s (k)− dΓ(k)
)(

Ω
(
ξ − k(`) − dΓ(k)

)
+ 1

)− 1
2
∥∥∥∥

≤ C sup
η∈Rν

〈
ξ − ψ(`)

s (k)− η
〉sΩ−1

〈
ξ − k(`) − η

〉sΩ/2 ≤ (1 + |s|)C̃

uniformly in s and k. Here we used (2.5) in the last step. Appealing to (2.5) again
and the C1-condition, cf. Condition 2.4, we observe that the right-hand side of (2.17)
is (H(ξ − k(`))− λ)1/2-bounded uniformly in k. From this observation it is now clear
that as a form on C(`)

1
t

[
(H(`)(ξ)− λ)−1, w̃

(`)
t

]
= −(H(`)(ξ)− λ)−1

{
1
t

[
H(`)(ξ), w̃(`)

t

]
(H(`)(ξ)− λ)−1

}
,

and the term in brackets extends to a bounded operator uniformly bounded in
0 < |t| ≤ 1. Cf. (2.16). It thus follows from Lemma 2.2 (ii) that H(`)(ξ) is of class
C1(1F ⊗ dΓ(`)(ã)). �

We end this section by formulating and proving a virial theorem which will be
used to extract the effective free dynamics induced by mass shells. Similar virial
theorems were used in [9, 25]. In the following U ⊂ Rm is open and H a complex
separable Hilbert space, with dense subspace D0. Suppose {H(x)}x∈U is a family of
N-measurable operators, essentially self-adjoint on D0, cf. Appendix A. Then H :=∫⊕
U H(x)dx, a priori defined on {f ∈ L2(U ;H) |x ∈ U : f(x) ∈ D0 a.e.}, is essentially
self-adjoint. Let A be a self-adjoint operator on H, and a = 1⊗1

2{v · i∇x + i∇x · v},
with v ∈ C∞0 (U ;Rm). Then A(1) = A⊗ 1L2(U) +1H⊗ a is self-adjoint as an operator
on H⊗ L2(U), which we identify as usual with L2(U ;H).

Theorem 2.10. Let E ∈ C1(U), with E(x) ∈ σpp(H(x)) for all x ∈ U . Suppose H
is of class C1(A(1)) and the commutator fibers, i.e. i[H,A(1)]◦ =

∫⊕
U i[H,A(1)]◦(x)dx.

Then for almost every x ∈ U

1{E(x)}(H(x))i[H,A(1)]◦(x)1{E(x)}(H(x)) = v(x) · ∇E(x)1{E(x)}(H(x)). (2.18)

Remark 2.11. By the assumption i[H,A(1)]◦ being fibered is meant the existence
of a family of operators x→ i[H,A(1)]◦(x) ∈ B(Hx,1;Hx,−1), with

U 3 x→ B(x) = (H(x)− i)−1i[H,A(1)]◦(x)(H(x)− i)−1

weakly measurable, and (H − i)−1i[H,A(1)]◦(H − i)−1 =
∫⊕
U B(x)dx. Note that it

follows from the discussion in Appendix A that both sides of (2.18) are weakly
measurable. �

Proof. Let ψ, ψ̃ ∈ C∞0 (U) with ψψ̃ = ψ and observe, cf. Lemma 2.3, that in the
sense of forms on D(H) we have

i[H,A(1)]◦ = lim
t→0

1
t
[H,Wt],
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with Wt = eitA(1) = eitA ⊗ eita. Abbreviate

Pψ :=
∫ ⊕

U
ψ(x)1{E(x)}(H(x)) dx.

Note that x→ 1{E(x)}(H(x)) is weakly measurable, and hence strongly measurable,
cf. Appendix A. Since Pψ preserves, in fact has range inside, D(H) we can compute
as a form on D(H)

Pψ[H,Wt]Pψ = Pψ[E,Wt]Pψ = Pψ[ψ̃E,Wt]Pψ,

where E and ψ̃E should be read as multiplication operators in the base space, or
equivalently as 1H⊗E and 1H⊗ψ̃E. Since ψ̃E ∈ C1

0(U) we clearly have ψ̃E ∈
C1(A(1)) with i[ψ̃E,A(1)]◦ = i[ψ̃E, a]◦ = v · ∇(ψ̃E). Hence

Pψi[H,A(1)]◦Pψ = lim
t→0

1
t
Pψ[H,Wt]Pψ = lim

t→0
1
t
Pψ[ψ̃E,Wt]Pψ

= v · ∇(ψ̃E)P 2
ψ = v · ∇EP 2

ψ.

We conclude the theorem since ψ was arbitrary and when fibered the above
identity reads

∫ ⊕

U
ψ(x)2

1{E(x)}(H(x))i[H,A(1)]◦(x)1{E(x)}(H(x)) dx

=
∫ ⊕

U
ψ(x)2v(x) · ∇E(x)1{E(x)}(H(x)) dx. �

3 The Commutator Estimate
In this section we analyze the geometry of the threshold set T (1), construct vector
fields v ∈ C∞0 (Rν) going into the one-body conjugate operator a, cf. (2.1), and finally
prove a Mourre estimate for the fiber Hamiltonians below the two-boson threshold
Σ(2)

0 and away from threshold energies (and the set Exc).
We remark that in the literature, this type of analysis [2, 11, 12, 16, 38] has made

essential use of the property ω(k) → ∞, |k| → ∞, something we do not want to
assume here in view of the polaron model. In [40] this assumption was avoided, by
instead using that for bounded ω the gap between the ground state energy Σ0(ξ) and
the bottom of the essential spectrum Σess(ξ) closes at large total momentum. More
precisely, under Condition 1.2, and the additional assumption supk∈Rν ω(k) < ∞,
the second case in (MC6), we have

lim
|ξ|→∞

Σess(ξ)− Σ0(ξ) = 0. (3.1)

We refer the reader to [40] for a proof. This result is crucial for treating the polaron
model, and its importance is encoded in Lemma 3.1 below.
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3.1 Structure of the Threshold Set
Recall from (1.28) the notation E (1) for the energy-momentum region between the 1-
and 2-boson thresholds.

Lemma 3.1. Assume Condition 1.2. Let C ⊂ E (1) be a compact set and K ⊂ Rν.
The following holds

(i) KC := {k ∈ Rν | ∃(p, e) ∈ Σiso, s.t. (p+ k, e+ ω(k)) ∈ C} is compact.
(ii) If K∩KC is closed, then the set ΣC(K) =

{
(p, e) ∈ Σiso

∣∣∣∃k ∈ K s.t. (p+ k, e+
ω(k)) ∈ C

}
is compact.

Remark 3.2. Observe that ΣC(K) = ΣC(KC ∩ K). In particular we abbreviate
ΣC := ΣC(Rν) = ΣC(KC).

The set KC consists of asymptotic momenta available to states localized in C
for one-boson emission, due to energy and momentum conservation. The set ΣC

(ΣC(K)) contains the interacting bound states reachable from states localized in C
after emission of one boson (with asymptotic momentum in K). �

Proof. We divide the proof into three steps.
Step I: Reducing the problem to compactness of a single set. Let X = Rν × Σiso.
Define a map Ψ: X → Rν+1 by

Ψ(k, p, e) = (p+ k, e+ ω(k)).

Denote by Π1 : X → Rν the projection onto the k coordinate and by Π2 : X → Rν+1

the projection onto the (p, e) coordinate. With this notation we can write KC =
Π1(Ψ−1(C)) and ΣC(K) = Π2(Ψ−1(C) ∩ (K × Rν+1)). Hence it suffices to prove that
C ′ = Ψ−1(C) is a compact subset of R2ν+1.
Step II: There exists ε > 0 such that C ′ ⊂ Rν × {(p, e) ∈ Σiso | e ≤ Σess(p) − ε}.
Indeed, let ε = d(C,Σ(2)

0 ) > 0, the distance from C to the two-boson threshold.
Suppose (k, p, e) ∈ C ′ satisfies that e ∈ (Σess(p)− ε,Σess(p)). Then

e+ ω(k) > Σess(p) + ω(k)− ε = Σ(1)
0 ((p+ k)− k) + ω(k)− ε ≥ Σ(2)

0 (p+ k)− ε.

This contradicts the choice of ε, since (p+ k, e+ ω(k)) ∈ C.
Step III: C ′ is compact. Since Ψ is continuous, the preimage C ′ is closed as a subset
of X. By Step II, it is in fact closed as a subset of R2ν+1 as well. It remains to argue
that C ′ is bounded.

Assume C ′ is unbounded. Then there must exist a sequence (kn, pn, en) ∈ C ′ with
|kn| + |pn| → ∞. Since (pn + kn, en + ω(kn)) is in the compact set C, pn + kn is a
bounded sequence. Hence |kn| and |pn| both diverge to ∞. Let ε = d(C,Σ(2)) as in
Step II. By (3.1) there exists N such that for n ≥ N we have Σ0(pn) > Σ(1)

0 (pn)− ε.
For n ≥ N we can now estimate

en + ω(kn) ≥ Σ0(pn) + ω(kn) > Σ(1)(pn) + ω(kn)− ε
= Σ(1)

0 ((pn + kn)− kn) + ω(kn)− ε ≥ Σ(2)
0 (pn + kn)− ε.

This contradicts the choice of ε and we are done. �
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The remainder of this section is devoted to the geometry of the threshold sets
T (1)
S , T (1)

‖ and T (1)
∦ , cf. (1.30), (1.31) and (1.33).

Lemma 3.3. Assume Conditions 1.2 and 1.3, with n0 = 0. We have the following
two properties

(i) The sets T (1)
‖ (ξ) ∩ E (1)(ξ) and T (1)

∦ (ξ) ∩ E (1)(ξ) are locally finite, with possible
accumulation points only at the upper boundary Σ(2)

0 (ξ), the 2-boson threshold.
(ii) The sets T (1)

‖ ∩ E (1) and T (1)
∦ ∩ E (1) are (relatively) closed subsets of E (1).

Remark 3.4. The set T (1)
‖ is precisely the union of graphs of ω centered above each

crossing point, i.e. a graph of k → e+ ω(p+ k) for each (p, e) ∈ X . �

Proof. We begin with (i) and take first the set T (1)
‖ (ξ). Fix ξ ∈ Rν and a matching

collinear unit vector u. Let r ∈ R be such that ξ = ru.
Suppose {En} ⊂ T (1)

‖ (ξ), En < Σ(2)
0 (ξ), with En → E < Σ(2)

0 (ξ). We need to
argue that the sequence {En} is eventually constant. Let E ′ = (E + Σ(2)

0 (ξ))/2, such
that

C = {ξ} ×
[
Σ(1)

0 (ξ), E ′
]

(3.2)

is a compact subset of E (1). For n large enough we have (ξ, En) ∈ C.
There exists rn ∈ R, for each n ∈ N, such that (ξ − rnu,En − ω(rnu)) ∈ X for

all n. Observe that (ξ− rnu,En−ω(rnu)) ∈ X ∩ΣC for large n. Since ΣC is compact,
cf. Lemma 3.1, and the set X consists of isolated Sν−1-spheres centered at ξ = 0,
we conclude that |ξ − rnu| = |r − rn||u|, and hence also rn, only take finitely many
values. But then En − ω(rnu) must also take only finitely many values and hence En
is eventually constantly equal to E.

As for the set T (1)
6‖ (ξ) we assume again that {En} ⊂ T (1)

6‖ (ξ), En < Σ(2)
0 (ξ), and

En → E < Σ(2)
0 (ξ). There exists kn, for each n, such that (ξ − kn, E − ω(kn)) ∈ X

and ∇ω(kn) = 0.
Let ε > 0 and the compact subset C of E (1) be as before, cf. (3.2). The sequence

{(ξ − kn, En − ω(kn))} must, for n large, again run inside the compact set ΣC and
thus since X consists of isolated spheres, we must have a subsequence {knj} such
that |ξ − knj | = Rc and Enj − ω(knj) = Ec are constant, signifying that we are on
the same level crossing ∂B(0;Rc)×{Ec} ⊂ X . If ξ = 0 or ω is constant, we are done
since in either case ω(knj) is a constant sequence, and hence Enj = E.

If we are in dimension ν = 1 we are also done, since this will force knj to only
attain the two values ξ +Rc and ξ −Rc. Hence Enj = E, for j sufficiently large.

We can thus assume that ν ≥ 2 and ω is not a constant function. Fix another
unit vector v, with v ·u = 0. By symmetry in the hyperspace orthogonal to u, we can
assume that knj ∈ span{u, v}. Using that |ξ − knj | = Rc, we can write the momenta
as

knj = k(ϑj) = ξ −Rc

(
cos(ϑj)u+ sin(ϑj)v

)
,

with ϑj ∈ R a bounded sequence. But since ϑ → |∇ω(k(ϑ))|2 is a non-zero real
analytic function the sequence ϑj can only attain finitely many values. Again we
conclude that Enj can only attain finitely many values, and hence must be constantly
equal to E for j large.
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As for (ii), let {(ξn, En)}n∈N ⊂ T (1)
‖ ∩E (1) be a convergent sequence with (ξn, En)→

(ξ, E) ∈ E (1). Let 0 < R < d((ξ, E),Σ(2)
0 ), i.e. R is chosen smaller than the distance

from (ξ, E) to the upper boundary of E (1). With this choice

C =
(
B(ξ;R)× [E −R,E +R]

)
∩ E (1) (3.3)

is a compact subset of E (1). For n large enough we have (ξn, En) ∈ C. By rotational
symmetry we can assume that ξ and all the ξn’s are collinear with a unit vector u.
Write ξ = ru and ξn = rnu. There exist a sequence of momenta snu, with sn ∈ KC for
n large enough, such that ((rn−sn)u,En−ω(snu)) ∈ ΣC ∩X , for n large enough. By
compactness of KC we can extract a convergent subsequence snj converging to s ∈ R.
Then

(
ξ − su,E − ω(su)

)
= lim

j→∞

(
(rnj − snj)u,Enj − ω(snju)

)
∈ ΣC ∩ X ,

since the set on the right-hand side is closed. Hence (ξ, E) ∈ T (1)
‖ , which implies that

T (1)
‖ is closed as a subset of E (1).
We now turn to T (1)

6‖ . We again take a sequence {(ξn, En)}n∈N ⊂ T (1)
6‖ converging

to (ξ, E) ∈ E (1). As above we can assume that there exists a unit vector u such that
ξ = ru and ξn = rnu, with rn → r.

Since (rnu,En) ∈ T (1)
6‖ there must exist kn ∈ Rν such that (rnu−kn, En−ω(kn)) ∈

X and ∇ω(kn) = 0. By the, by now, standard argument, there exists a convergent
subsequence {knj}. Denote by k its limit.

We can now argue as for T (1)
‖ that

(
ξ − k,E − ω(k)

)
= lim

j→∞

(
rnju− knj , Enj − ω(knj)

)
∈ X

and ∇ω(k) = limj→∞∇ω(knj) = 0. Hence (ξ, E) ∈ T (1)
6‖ , which establishes the

remaining part of (ii). �

Proof of Theorem 1.5. Abbreviate for the purpose of this proof

U =
{

(ξ, E) ∈ T (1)
S

∣∣∣ (ξ, E) 6∈ T (1)
‖ ∪ T (1)

∦

}

U(ξ) =
{
E ∈ R

∣∣∣ (ξ, E) ∈ U
}
.

(3.4)

The sets U and U(ξ) are subsets of T (1)
S and T (1)

S (ξ) respectively.
Given Lemma 3.3 it remains to prove the following two statements:

U ∩ E (1) ⊂ T (1) (3.5)
U(ξ) ∩ E (1)(ξ) is locally finite. (3.6)

To prove (3.5), let (ξn, En) ∈ U ∩ E (1) and assume (ξn, En) → (ξ, E) with
E < Σ(2)

0 (ξ). We need to argue that (ξ, E) ∈ T (1).
Construct a compact set C ⊂ E (1) containing (ξ, E) as in (3.3). For n large

enough we have (ξn, En) ∈ C. For each (large) n we can find a kn ∈ KC , a mass shell
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(An, Sn) ∈ S, such that ξn− kn ∈ An, En = Sn(ξn− kn) +ω(kn) and ∇Sn(ξn− kn) =
∇ω(kn). Here we used that (ξn, En) ∈ T (1)

S .
Since KC is compact we can pass to a convergent subsequence {kn`} with k :=

lim`→∞ kn` ∈ KC . Abbreviate

p` :=
(
ξn` − kn` , En` − ω(kn`)

)
∈ ΣC . (3.7)

Since ΣC is closed we have

lim
`→∞

p` = p :=
(
ξ − k,E − ω(k)

)
∈ ΣC ⊂ Σiso. (3.8)

Recall that level crossings, as Sν−1-spheres inside X , are isolated and only finitely
many mass shells emanate from each crossing. Hence we can assume that there exists
a distinguished mass shell (A, S) ∈ S such that p` ∈ GS, cf. (1.27), for all `. We can
furthermore assume that we are in one of the two following cases

Case A ∀` : ∇ω(kn`) 6= 0
Case B ∀` : ∇ω(kn`) = 0.

(3.9)

In Case A we must have for each ` an s` ∈ R such that kn` = s`u and lim`→∞ s`
exists. If k → S(1)(ξ; k) = S(ξ − k) + ω(k) is not a constant function, the sequence
s` must be eventually constant and hence k ∈ A + ξ and p ∈ GS. Here we used
that s→ S(1)(ξ; su) continues analytically through level crossings. If on the other
hand k → S(1)(ξ; k) is a constant function, we can replace the kn` ’s by a constant
k ∈ A+ ξ. Hence the new limit will satisfy p ∈ GS.

In Case B we have ∇S(ξn` − kn`) = 0, so we must have either S constant, or
|ξn` − kn`| eventually constant and equal to |ξ − k|. In the latter case k ∈ A+ ξ and
p ∈ GS. We now assume that S is a constant function.

If ω is also constant we can redefine the kn` ’s as above and again arrive at p ∈ GS.
If ω is not a constant, |kn` | is eventually constant and equal to r ≥ 0. First of all
we observe that r is strictly smaller than the outer radius of A. This is due to the
choice of (ξn` , En`) away from T (1)

∦ , cf. (1.33). We can thus replace the kn` ’s with
possibly different kn` ’s in rSν−1 such that the limit k ∈ A+ ξ.

Summing up, we have argued that either p ∈ GS, or we can make a different
choice of sequence kn` such that p ends up inside GS. Then, by continuity, we must
have E = S(ξ − k) + ω(k) and ∇S(ξ − k) = ∇ω(k). Hence (ξ, E) ∈ T (1)

S . This
proves (3.5).

To verify (3.6), let (ξ, En) ∈ U(ξ), with En < Σ(2)
0 (ξ), such that En → E ∈ U(ξ),

with E < Σ(2)
0 (ξ). We have to prove that the sequence En is eventually constant.

Assume towards a contradiction that it is not eventually constant. Hence we can
assume, possibly passing to a subsequence, that it is strictly monotone.

Let C ⊂ E (1) compact, be as in (3.2). For n sufficiently large we have (ξ, En) ∈ C.
By the choice of En we can to each n identify a kn ∈ KC and a mass shell (An, Sn) ∈ S
such that ξ − kn ∈ An, En = Sn(ξ − kn) + ω(kn) and ∇Sn(ξ − kn) = ∇ω(kn).

As in the verification of (3.5) we can extract a subsequence {En`} together with
a convergent sequence of momenta {kn`}, and a distinguished mass shell (A, S) ∈ S
such that ξ − k, ξ − kn` ∈ A and p`, p ∈ GS, cf. (3.7) and (3.8). Here k = lim`→∞ kn` .
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We can furthermore assume that we are in either Case A or Case B, cf. (3.9). Here
we used that E ∈ U(ξ), cf. (3.4), to rule out the possibility that p ∈ X .

In Case A we reach a contradiction with En` being strictly monotone as follows.
Write ξ = ru for some unit vector u and r ∈ R. If ξ 6= 0 the demand that∇S(ξ−kn`) =
∇ω(kn`), together with rotation invariance, forces all the kn` ’s to be collinear with
u. If ξ = 0, we can again use rotation invariance and simply replace all the kn` ’s
by |kn` |u and thus arrive at the same situation. Hence the map t → S(1)(ξ; tu) =
S((r − t)u) + ω(tu) is analytic and vanishes along a sequence with accumulation
point inside its domain of analyticity. Hence it is constant, i.e. En` = S(1)(ξ; kn`) is
constant.

In Case B we reach a contradiction as follows. Since∇ω(kn`) = 0 = ∇S(ξ−kn`) we
can conclude that: Either ω is constant or |kn` | is eventually constant. Furthermore,
either S is constant or |ξ − kn`| is eventually constant. Regardless of which of
the 4 possible combinations we find ourselves in, we conclude again that En` =
S(ξ − kn`) + ω(kn`) is eventually constant. �

3.2 Some Geometric Considerations
The goal of this section is, given a

(ξ, E) ∈ E (1)\T (1), (3.10)

to choose a compact interval J = [E − δ, E + δ] with

(ξ, E) ∈ {ξ} × J ⊂ E (1)\T (1), (3.11)

such that states localized in J (at sharp total momentum ξ) can only break up into
channels with non-zero breakup velocity.

Given J ⊂ E (1)(ξ) and K ⊂ Rν , we associate the sets

KJ := K{ξ}×J , ΣJ := Σ{ξ}×J and ΣJ (K) := Σ{ξ}×J (K).

The set KJ contains the momenta available for boson emission starting from a state
localized with respect to energy in J , whereas ΣJ labels the available interacting
bound states the system can relax to. With the choice (3.11) of J , some of the k’s
in KJ may correspond to elements (ξ − k,E − ω(k)) on level crossings, but only if ξ
is non-zero, and then k is linearly independent of ξ. Here E ∈ J . We introduce the
notation

KXJ :=
{
k ∈ KJ

∣∣∣ ∃λ ∈ J :
(
ξ − k, λ− ω(k)

)
∈ X

}
(3.12)

for the subset of KJ corresponding to level crossings. In addition we write, for
K ⊂ Rν ,

ΣXJ = ΣJ ∩ X and ΣXJ (K) = ΣJ (K) ∩ X
for the reachable interacting bound states at level crossings.

For ξ 6= 0, we use the notation Oν(ξ) for the subgroup of the orthogonal group
consisting of orthogonal matrices O satisfying Oξ = ξ. It is convenient, given ξ 6= 0,
to introduce a change of coordinates. Let

Πξ : Rν−1 → {η ∈ Rν | ξ · η = 0}
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be a (linear) isometric isomorphism of Rν−1 onto the orthogonal complement of ξ.
We define a change of coordinates k : (0,∞)× [0, 2π)× Sν−2 → Rν\{ξ} by

k(s, ϑ, w) := ξ − s cos(ϑ) ξ|ξ| + s sin(ϑ)Πξ(w). (3.13)

Observe that Πξ induces a group isomorphism Oν−1 → Oν(ξ) by mapping O ∈ Oν−1
to Oξ ∈ Oν(ξ), determined by the two relations Oξξ = ξ and OξΠξ = ΠξO. For
O ∈ Oν−1 we have

Oξk(r, ϑ, w) = k(r, ϑ,Ow). (3.14)
We will use the function k defining the change of coordinates also beyond angles
confined to [0, 2π). Finally, note that

k(r, 2π − ϑ,w) = k(r, ϑ,−w). (3.15)

Lemma 3.5. Assume Conditions 1.2 and 1.3, with n0 = 0. Suppose ν ≥ 2. Let
(ξ, E) ∈ E (1)\T (1)

‖ . There exists a finite number of radii {Rj}Mj=1, with Ri > 0, and
for each i = 1, . . . ,M , a finite set of angles {ϑi,j}Mi

j=1, with ϑi,j ∈ (0, π), such that

KX{E} =
M⋃

i=1

Mi⋃

j=1
k(Ri, ϑi,j, S

ν−2).

If ξ = 0 or ω is constant the set KX{E} is empty.

Remark 3.6. 1) The set described above is a finite union of non-empty Sν−2-spheres,
all centered along a line through the origin in the direction of ξ. They sit inside
Sν−1-spheres of crossings centered at ξ with radius Ri.

2) In dimension ν = 1 the set in question is empty by the choice of (ξ, E). In
dimension 2 the set consists of finitely many points placed symmetrically around the
line through the origin and ξ, with no points on the line through 0 and ξ. �

Proof. First we observe that if ξ = 0 we have KX{E} = ∅. This is due to the assumption
that ω is rotation invariant. For a similar reason, the set is also empty if ω is a
constant function regardless of ξ. From now on we assume that ξ 6= 0 and that ω is
not constant.

From Lemma 3.1 we know a priori that the sets KX{E} and ΣX{E} are compact. In
particular, there exist finitely many radii R1, . . . , RM , and energies λ1, . . . , λM such
that

ΣX{E} ⊂
M⋃

i=1
RiS

ν−1 × {λi} ⊂ X . (3.16)

The choice of (ξ, E) ensures that Ri > 0 for all i = 1, . . . ,M .
Clearly the set KX{E} is invariant under rotations from the group Oν(ξ). Fix a

unit vector v orthogonal to ξ. Take for example v = Πξ(e1). Put u = ξ/|ξ|.
What we need to show is that K = KX{E} ∩ span{u, v} is a finite set. The choice of

(ξ, E) ensures that the intersection above does not contain any elements in Ru = Rξ.
The orbit under Oν(ξ) of k ∈ KX{E} ∩ span{u, v} are exactly the Sν−2-spheres in the
lemma, cf. (3.14).
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Aiming for a contradiction we will assume that there exists a countably infi-
nite sequence {kn}n∈N ⊂ K consisting of distinct momenta. Observe that (ξ − kn,
E − ω(kn)) ∈ ΣX{E}, and hence by (3.16) there must exist 1 ≤ i ≤ M and a subse-
quence {knj}, with |ξ − knj | = Ri > 0 and E − ω(knj) = λi for all j. We can now
write knj = k(Ri, ϑj, e1), for a sequence of distinct angles ϑj ∈ [0, 2π).

Observe that E − ω(knj ), and consequently ω(knj ), is a constant sequence. Since
the map R 3 ϑ→ f(ϑ) = ω(k(Ri, ϑ, e1)) is a real analytic function, constant along a
sequence ϑj that has a cluster point, we conclude that f must be a constant function.
Since ω is not a constant function, this can only happen if R 3 ϑ→ |k(Ri, ϑ, e1)| is
constant. But this is impossible because we assumed that ξ 6= 0, cf. (3.13). Hence
K does not contain a countable sequence of distinct momenta and we conclude the
lemma. Observe that (3.15) ensures that we can restrict the angles to (0, π). �

Let (ξ, E) be chosen as in (3.10). We construct torus neighborhoods Ti,j , in the
(r, ϑ, w) coordinate system, around the finitely many Sν−2-spheres in KX{E} identified
in Lemma 3.5. We can label these sets by radii and angles (Ri, ϑi,j), i = 1, . . . ,M
and j = 1, . . . ,Mi, with Ri > 0 and ϑi,j ∈ (0, π). We define

Ti,j(εϑ, εr) :=
{
k(r, ϑ, w)

∣∣∣ |Ri − r| < εr, |ϑ− ϑi,j| < εϑ, w ∈ Sν−2
}
,

where εϑ measure the angular thickness of the torus, and εr the radial thickness.
In order to pick an appropriate angular and radial thickness for the tori we

proceed in steps to ensure that a number of properties are satisfied. We first pick
0 < ε(4)

r , ε(2)
ϑ ≤ 1 such that

ε(4)
r < min

i=1,...,M
Ri

ε(2)
ϑ < min

1≤i≤M
min

1≤j≤Mi

{ϑi,j, π − ϑi,j}.
(3.17)

With this choice we have ensured that the tori will have their holes.
By the choice E 6∈ T (1)

6‖ (ξ) we know that ∇ω(k(Ri, ϑi,j, w)) 6= 0, for every
i = 1, . . . ,M , j = 1, . . . ,Mi, and w ∈ Sν−2. In addition, by rotation invariance of ω,
for any i and j the norm |∇ω(k(Ri, ϑi,j, w))| does not depend on w. By continuity
of ∇ω, we can choose 0 < ε(1)

ϑ ≤ ε(2)
ϑ and 0 < ε(3)

r ≤ ε(4)
r such that

∀i, j : inf
k∈Ti,j(ε(1)

ϑ
,ε(3)
r )
|∇ω(k)| > 0. (3.18)

The choice of ε(1)
ϑ and ε(3)

r implies that Ti,j(ε(1)
ϑ , ε(3)

r ) are topological tori and they
contain no k’s parallel with ξ, nor are there k’s with ∇ω(k) = 0.

Since ∇ω does not vanish on the tori Ti,j(ε(1)
ϑ , ε(3)

r ), and ω is rotation invariant,
we find that k · ∇ω(k) does not vanish on the tori either. Recall that k = 0, being
‘collinear’ with ξ, is not in any of the tori. Hence k · ∇ω(k) has a sign, which we
denote by σi,j ∈ {−1,+1}, for each i = 1, . . . ,M and j = 1, . . . ,Mi. We note the
identity

∀k ∈ Ti,j
(
ε(1)
ϑ , ε(3)

r

)
: |∇ω(k)| = σi,j

k

|k| · ∇ω(k). (3.19)
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Unfortunately the above choice of ε(1)
ϑ and ε(3)

r does not quite suffice. At the center
of the torus, i.e. for k’s in the set k(Ri, ϑi,j, S

ν−2), we know that (ξ−k,E−ω(k)) ∈ X .
In fact for such k we always end at the same level crossing

Xi,j :=
(
RiS

ν−1
)
×
{
E − ω(k(Ri, ϑi,j, e1))

}
,

due to rotation invariance. (Different j’s may a priori give rise to different crossings if
there at different energies sit level crossings at the same radius in momentum space.)
For other k’s in the torus we need to be sure that (ξ− k,E − ω(k)) does not land on
a different crossing. That is, we have to identify εϑ ≤ ε(1)

ϑ and ε(2)
r ≤ ε(3)

r such that

ΣX{E}
(
Ti,j

(
εϑ, ε

(2)
r

))
⊂ Xi,j. (3.20)

Here we can use that level crossings are isolated and that we only consider finitely
many tori, to ensure that

d = d(ξ, E) := min
i,j

d(Xi,j,X\Xi,j) > 0. (3.21)

For k ∈ Ti,j(εϑ, ε(2)
r ) we write first k = k(r, ϑ, w) with |r−Ri| ≤ ε(2)

r , |ϑ−ϑi,j| ≤ εϑ
and w ∈ Sν−2. Then we compute

(
ξ − k

E − ω(k)

)
=
(

ξ − k(Ri, ϑi,j, w)
E − ω(k(Ri, ϑi,j, w))

)
+
(

k(Ri, ϑi,j, w)− k(r, ϑ, w)
ω(k(Ri, ϑi,j, w))− ω(k(r, ϑ, w))

)

(3.22)
and estimate

∣∣∣∣∣

(
k(Ri, ϑi,j, w)− k(r, ϑ, w)

ω(k(Ri, ϑi,j, w))− ω(k(r, ϑ, w))

)∣∣∣∣∣ ≤ Ci,j max
{
εϑ, ε

(2)
r

}
,

using that ∇ω is bounded to argue for the existence of the constant Ci,j. Put
C = maxi,j Ci,j . Since the first term on the right-hand side of (3.22) is an element of
Xi,j we observe that if we choose εϑ, ε(2)

r ≤ d/(2C) we can conclude that

∀i, j and k ∈ Ti,j
(
εϑ, ε

(2)
r

)
: d((ξ − k,E − ω(k)),X\Xi,j) ≥

d

2 .

The constant d was defined in (3.21). We now make the choice

εϑ = min
{
ε(1)
ϑ , d/(2C)

}
, ε(2)

r = min
{
ε(3)
r , d/(2C)

}
,

and emphasize that with this choice the desired inclusion (3.20) holds true.
Our next task is to pick δ′ small enough such that KX[E−δ′,E+δ′] is contained inside

the union over i and j of the tori Ti,j(εϑ, ε(2)
r ), and such that the inclusion (3.20)

remains valid when {E} is broadened to J ′.
Lemma 3.7. Assume Conditions 1.2 and 1.3, with n0 = 0. There exists δ′ > 0 such
that J ′ = [E − δ′, E + δ′] ⊂ E (1)(ξ) and

KXJ ′ ⊂
M⋃

i=1

Mi⋃

j=1
Ti,j

(
εϑ, ε

(2)
r

)
(3.23)

ΣXJ ′
(
Ti,j

(
εϑ, ε

(2)
r

))
⊂ Xi,j. (3.24)
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Proof. Assume the inclusion (3.23) is false. Then there exists a sequence λn ∈
[E − 1/n,E + 1/n] =: Jn and kn ∈ KXJn with (ξ − kn, λn − ω(kn)) ∈ X and
kn 6∈ ∪Mi=1 ∪Mi

j=1 Ti,j(εϑ, ε(2)
r ).

By Lemma 3.1, we can extract a convergent subsequence {knj} converging to a
momentum k. Since λnj → E we must have (ξ−k,E−ω(k)) ∈ X , and hence k ∈ KX{E}.
Since the tori are open we conclude furthermore that k 6∈ ∪Mi=1 ∪Mi

j=1 Ti,j(εϑ, ε(2)
r ). But

this contradicts Lemma 3.5 and we have thus established (3.23).
As for (3.24) we proceed in a similar fashion assuming that for any n there exists

λn ∈ [E−1/n,E+1/n] and kn ∈ Ti,j(εϑ, ε(2)
r ) such that (ξ−kn, λn−ω(kn)) ∈ X\Xi,j .

Again, by Lemma 3.1, we must have a subsequence knj converging to a momentum
k ∈ Ti,j(εϑ, ε(2)

r ). For this k we must have (ξ − k,E − ω(k)) ∈ X\Xi,j, and hence
(ξ − k,E − ω(k)) ∈ ΣX{E}. But this contradicts (3.20). �

We identify the mass shells available for scattering channels, starting at momentum
ξ and energy in J ′ to be

S ′ :=
{

(A, S) ∈ S
∣∣∣GS ∩ ΣJ ′ 6= ∅

}
. (3.25)

By compactness of ΣJ ′ this set is finite. We list the radii of the spheres forming ∂A,
where (A, S) ∈ S ′, as R′1, . . . , R′M ′ . We exclude from the list of radii those already
included in R1, R2, . . . , RM . With this choice we find that

∀1 ≤ ` ≤M ′ : r′` := d
(
KJ ′ , ∂B(ξ;R′`)

)
> 0.

The next thing we need to do is to ensure that the set KJ ′ approaches level crossings,
or more precisely the spheres ∂B(ξ;Ri), through the radial face of the tori. Define
for ε > 0 the compact set

K(ε) := KJ ′\
(⋃

i,j

Ti,j(εϑ, ε)
)

(3.26)

and for i = 1, . . . ,M subsets

Ki :=
{
k(r, ϑ, w) ∈ K(ε(2)

r )
∣∣∣ |ϑ− ϑi,j| ≥ εϑ, j = 1, . . . ,Mi

}
,

which again are compact sets. Let

ri := d
(
Ki, ∂B(ξ, Ri)

)
> 0,

where strict positivity follows from (3.23). We now pick an upper bound for the
radial thickness εr to be

ε(1)
r := min

{
ε(2)
r , min

1≤i≤M
ri, min

1≤`≤M ′
r′`
}
.

This choice ensures that for ε ≤ ε(1)
r the set K(ε) approaches the spheres ∂B(Ri, ξ),

i = 1, . . . ,M , through the radial faces of the tori Ti,j(εϑ, ε), not through their angular
faces. In addition, k’s in K(ε) stay at least a distance ε away from boundaries of
annuli in which the relevant mass shells in S ′ are defined. To summarize: For all
0 < ε ≤ ε(1)

r , i ∈ {1, . . . ,M} and ` ∈ {1, . . . ,M ′} we have

d
(
K(ε), ∂B(ξ, Ri)

)
≥ ε and d

(
K(ε), ∂B(ξ, R′`)

)
≥ ε.
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3.3 An Analytic Consideration
The next part of the construction is somewhat less obvious, in that it anticipates the
proof of the Mourre estimate to follow. We need to construct a conjugate operator,
i.e. a vector field, in a set like KJ ′ , but we proceed differently depending on whether
we are inside or outside one of the tori introduced in the previous section. If we are
inside a torus we want the conjugate operator to be a ϑ derivative. We now proceed
to compute what turns out to be the relevant commutator and get something positive
on the crossing. Then we pick εr ≤ ε(1)

r small enough for the expression to remain
positive in the torus.

We anticipate a conjugate operator of the form (2.2), cf. also (2.1). We require
that the vector field v entering into the construction of the one-body conjugate
operator a satisfies

‖v‖∞ ≤ 2 + max
1≤i≤M

Ri. (3.27)

We define, for r > 0, auxiliary Hamiltonians Gξ(r) on the Hilbert space L2(R×
Sν−2;F) by the following direct integral construction

Gξ(r) =
∫ ⊕

R×Sν−2
Gξ(r, ϑ, w) dϑdw, (3.28)

where
Gξ(r, ϑ, ω) = H(ξ − k(r, ϑ, w)) + ω(k(r, ϑ, w))1F . (3.29)

For a ρi,j ∈ C∞0 (Rϑ), we define a self-adjoint cutoff angular derivative

ã = σi,j
1
2

{
i∂ϑρi,j + ρi,ji∂ϑ

}
.

We fix our choice of ρi,j to be compactly supported in (ϑi,j − 2εϑ, ϑi,j + 2εϑ), equal
to 1 on

Θi,j := (ϑi,j − εϑ, ϑi,j + εϑ) (3.30)
and satisfying that 0 ≤ ρi,j ≤ 1. Observe that ã only acts on the base space, not
on the fiber F . We now stitch A and ã together to get a conjugate operator on
F ⊗ L2(R⊗ Sν−2)

Ã(1) = A⊗ 1L2(R×Sν−2) +1F ⊗ã,
where we appeal to the identification F ⊗L2(R×Sν−2) ' L2(R×Sν−2;F). One can
verify that Gξ(r) is of class C1(Ã(1)) and

i
[
Gξ(r), Ã(1)

]◦
=
∫ ⊕

R×Sν−2
i
[
Gξ(r), Ã(1)

]◦
(ϑ,w) dϑdw,

where, as an identity on F ,

i
[
Gξ(r), Ã(1)

]◦
(ϑ,w)

= i
[
H(ξ − k(r, ϑ, w)), A

]◦
+ σi,jρi,j(ϑ)vξ(r, ϑ, w) · ∇ω(k(r, ϑ, w))1F ,

and
vξ(r, ϑ, w) := ∂k

∂ϑ
(r, ϑ, w) = r

(
cos(ϑ)Πξ(w) + sin(ϑ) ξ|ξ|

)
. (3.31)
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Let k = k(r, ϑ, w) 6= 0. By rotation invariance of ∇ω we find that

vξ(r, ϑ, w) · ∇ω(k) = (vξ(r, ϑ, w) · k)(k · ∇ω(k))/|k|2,

which taken together with (3.19) and (3.13) enables us to establish that:

∀k = k(r, ϑ, w) ∈ Ti,j
(
εϑ, ε

(1)
r

)
: σi,jvξ(r, ϑ, w) · ∇ω(k) = r sin(ϑ)|ξ| |∇ω(k)|

|k| .

This identity in conjunction with (3.18) implies, for all i and j, the crucial property

ci,j := inf
ϑ∈Θi,j ,w∈Sν−2

σi,jvξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) > 0. (3.32)

Note that sin(ϑ) > 0 for ϑ ∈ Θi,j. The set Θi,j was defined in (3.30).
Now we pick and fix a χ′′ ∈ C∞0 ((E − δ′, E + δ′)). We choose χ′′ such that χ′′ = 1

on [E − 3δ′/4, E + 3δ′/4]. Introduce bounded operators

B′′(r) := χ′′(Gξ(r))i
[
Gξ(r), Ã(1)

]◦
χ′′(Gξ(r)). (3.33)

We have

Lemma 3.8. Assume Conditions 1.2 and 1.3, with n0 = 1. The maps (0,∞) 3 r →
χ′′(Gξ(r)) and (0,∞) 3 r → B′′(r) are locally Lipschitz, and furthermore: For any
0 < r̄ <∞ there exists L > 0 such that the following holds

∀r, r′ ∈ (0, r̄] :
{ ‖χ′′(Gξ(r))− χ′′(Gξ(r′))‖ ≤ L|r − r′|
‖B′′(r)−B′′(r′)‖ ≤ L|r − r′|

where L does not depend on v satisfying the constraint (3.27).

Proof. For the purpose of this proof we abbreviate

k = k(r, ϑ, w) and k′ = k(r′, ϑ, w).

We estimate first for r, r′ > 0, using that ∇ω is a bounded function,

|ω(k)− ω(k′)| ≤ C1|k− k′|,

for some C1 > 0. But

|k− k′| = |r − r′|
∣∣∣ cos(ϑ) ξ|ξ| + sin(ϑ)Πξ(w)

∣∣∣ ≤ 2|r − r′|, (3.34)

such that, uniformly in ϑ and w,

|ω(k)− ω(k′)| ≤ 2C1|r − r′|. (3.35)

Next we compute as an identity between operators on C

Ω
(
ξ−k−dΓ(k)

)
−Ω

(
ξ−k′−dΓ(k)

)
=
∫ 1

0
∇Ω

(
ξ−sk−(1−s)k′−dΓ(k)

)
ds (k−k′).
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Appealing to (3.34) we arrive at
∥∥∥
(
Ω(ξ−k−dΓ(k))−Ω(ξ−k′−dΓ(k))

)(
1 + Ω(ξ−dΓ(k))

)− 1
2
∥∥∥ ≤ C2|r− r′|, (3.36)

which holds uniformly in 0 < r, r′ ≤ r̄, ϑ and w.
For z ∈ C, with Im(z) 6= 0, we can now estimate using (3.35) and (3.36) to obtain
∥∥∥
(
(Gξ(r)− z)−1 − (Gξ(r′)− z)−1

)
ψ
∥∥∥ ≤ C|r − r′|〈z〉|Im(z)|−2

∥∥∥(H0(ξ) + 1)− 1
2ψ
∥∥∥,

where C > 0 does not depend on 0 < r, r′ ≤ r̄, nor on z. Representing χ′′(Gξ(r))
using an almost analytic extension of χ′′ now yields the estimate

∥∥∥
(
χ′′(Gξ(r))− χ′′(Gξ(r′))

)
ψ
∥∥∥ ≤ C|r − r′|

∥∥∥(H0(ξ) + 1)− 1
2ψ
∥∥∥. (3.37)

Here one should read (H0(ξ) + 1)− 1
2 as a (ϑ,w)-independent operator acting on each

fiber F by the same operator. This in particular proves that the map r → χ′′(Gξ(r))
is locally Lipschitz and that the claimed bound holds.

We proceed to estimate the difference between the commutators

i
[
Gξ(r), Ã(1)

]◦ − i
[
Gξ(r′), Ã(1)

]◦

=
∫ ⊕

R×Sν−2
i[H(ξ − k), A]◦ − i[H(ξ − k′), A]◦

+ ρi,j(ϑ)
(
vξ(r, ϑ, w) · ∇ω(k)− vξ(r′, ϑ, ρ) · ∇ω(k′)

)
1F dϑdw.

(3.38)

Appealing to (3.31) and (3.34) we find that
∣∣∣ρi,j(ϑ)

(
vξ(r, ϑ, w) · ∇ω(k)− vξ(r′, ϑ, ρ) · ∇ω(k′)

)∣∣∣ ≤ C|r − r′|, (3.39)

for some C > 0 independent of v, satisfying the constraint (3.27), and 0 < r, r′ ≤ r̄.
We then compute

i[H(ξ−k), A]◦− i[H(ξ−k′), A]◦ = dΓ(v) ·
{
∇Ω(ξ−k−dΓ(k))−∇Ω(ξ−k′−dΓ(k))

}
.

(3.40)
Arguing as for (3.36) we get
∥∥∥(H0(ξ) + 1)− 1

2
(
i[H(ξ − k), A]◦ − i[H(ξ − k′), A]◦

)
(H0(ξ) + 1)−1

∥∥∥ ≤ C|r − r′|‖v‖∞,
(3.41)

where C > 0 does not depend on 0 < r, r′ ≤ r̄ or on v.
Putting together (3.38)–(3.41) we arrive at
∥∥∥(H0(ξ) + 1)− 1

2
(
i
[
Gξ(r), Ã(1)

]◦ − i
[
Gξ(r′), Ã(1)

]◦)
(H0(ξ) + 1)−1

∥∥∥ ≤ C|r − r′|,
The lemma now follows from the bound above together with (3.37). �
Lemma 3.9. Assume Conditions 1.2 and 1.3, with n0 = 1. Let i ∈ {1, . . . ,M} and
j ∈ {1, . . . ,Mi}. We have

1Θi,j B
′′(Ri) = 1Θi,j

( ∫ ⊕

R×S2
ρi,j(ϑ)vξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) dϑdw

)
χ′′(Gξ(Ri))2.

Furthermore, we have

1Θi,j B
′′(Ri) ≥ c′′ 1Θi,j χ

′′(Gξ(Ri))2,

for some c′′ > 0, which does not depend on v satisfying the constraint (3.27).
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Remark 3.10. The operator 1Θi,j should be read as
∫⊕
R×S2 1Θi,j(ϑ)1F dϑdw. A

similar notation is used for ρi,j in the proof below. �

Proof. We begin by writing

1Θi,j χ
′′(Gξ(Ri)) =

∫

R×S2
1Θi,j(ϑ)χ′′(Gξ(Ri, ϑ, w)) dϑdw.

When ϑ is confined to the neighborhood Θi,j we have

χ′′
(
Gξ(Ri, ϑ, w)

)
= χ′′

(
H(ξ − k(Ri, ϑ, w)) + ω(k(Ri, ϑ, w))

)

= 1E−ω(k(Ri,ϑi,j ,e1))
(
H(ξ − k(Ri, ϑ, w)

)
.

This is due to the choice of δ′, cf. (3.24), which ensures that we can at most land on
one energy level, namely on the crossing Xi,j sitting at height E in energy-momentum
space. By the virial theorem, cf. Theorem 2.10, this implies that

∫ ⊕

R×Sν−2
1Θi,j(ϑ)χ′′

(
Gξ(Ri, ϑ, w)

)
i
[
Gξ(Ri), Ã(1)

]◦
(ϑ,w)χ′′

(
Gξ(Ri, ϑ, w)

)
dϑdw

=
∫ ⊕

R×Sν−2
1Θi,j(ϑ)χ′′

(
Gξ(Ri, ϑ, w)

)

× i
[(
E − ω(k(Ri, ϑi,j, e1)

)
1F +ω(k(Ri, ϑ, w))1F , Ã(1)

]◦
(ϑ,w)

× χ′′
(
Gξ(Ri, ϑ, w)

)
dϑdw

=
∫ ⊕

R×Sν−2
1Θi,j(ϑ)vξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w))χ′′

(
Gξ(Ri, ϑ, w)

)2
dϑdw.

This proves the first part. The second statement clearly follows from the first together
with (3.32). One can choose

c′′ := inf
|ϑi,j−ϑ|≤εϑ

σi,jvξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) > 0,

which is independent of w. �

We now fix χ′ ∈ C∞0 ((E − 3δ′/4, E + 3δ′/4)), with χ′ = 1 on [E − δ′/2, E + δ′/2],
and write

B′(r) = χ′(Gξ(r))i
[
Gξ(r), Ã(1)

]◦
χ′(Gξ(r)) = χ′(Gξ(r))B′′(r)χ′(Gξ(r)). (3.42)

The operator B′′(r) was defined in (3.33).

Proposition 3.11. Assume Conditions 1.2 and 1.3, with n0 = 1. There exists c′ > 0
and 0 < εr ≤ ε(1)

r , independent of v satisfying (3.27), such that for all i ∈ {1, . . . ,M}
and j ∈ {1, . . . ,Mi}, we have

∀r ∈ [Ri − εr, Ri + εr] : 1Θi,j B
′(r) ≥ c′ 1Θi,j χ

′(Gξ(r))2.
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Proof. Apply Lemmata 3.8 and 3.9. This yields the bounds

1Θi,j B
′′(r) ≥ 1Θi,j B

′′(Ri)− L|Ri − r|
≥ c′′ 1Θi,j χ

′′(Gξ(Ri))2 − L|Ri − r|
≥ c′′ 1Θi,j χ

′′(Gξ(r))2 − L(1 + c′′)|Ri − r|.

Here L is the Lipschitz constant coming from Lemma 3.8 applied with

r̄ = max
1≤i≤M

Ri + ε(1)
r .

Choose εr = min{ε(1)
r , c′′(2L(1 + c′′))−1)}. Multiplying both sides first by χ′(Gξ(r))

from the left and the right, and subsequently by 1Θi,j , yields the result with c′ = c′′/2.
Recall that the all the operators are fibered, i.e. they are functions of ϑ and w. �

3.4 The Conjugate Operator
The task at hand in this section is the construction of the vector field vξ : Rν → Rν ,
used to define the conjugate operators

aξ = 1
2

(
vξ · i∇k + i∇k · vξ

)
, and Aξ = dΓ(aξ). (3.43)

These are operators on the form considered in Chapter 2, cf.(2.1) and (2.2). The vector
field vξ will depend both on the total momentum ξ and on the energy localization we
choose. Our first ingredient is a partition of unity in momentum space subordinate
to an appropriately chosen open covering of KJ ′ . The first sets in the covering were
constructed in the previous section, namely the disjoint open tori Ti,j(εϑ, εr).

Define a set of momenta
K := K(εr),

which is a compact subset of Rν . Recall from (3.26) the definition of the set K(εr).
We proceed to pick a 0 < δ ≤ δ′ with the property that the choice J = [E− δ, E+ δ]
ensures that ΣJ (K) is a graph, i.e. the projection onto momentum space Rν is
injective. To do this we define the energy distance between mass shells (A, S) ∈ S ′,
away from εr/2 neighborhoods of their boundaries ∂A: By compactness of ΣJ ′ ⊂ Σiso,
there exist P > 0 and σ > 0 such that

ΣJ ′(K) ⊂ ΣJ ′ ⊂
{

(p, λ)
∣∣∣ |p| ≤ P and λ ≤ Σess(p)− σ

}
.

Hence we define for (A, S) ∈ S ′

δ(A,S) = inf
{
d(S(p), σpp(H(p))\{S(p)})

∣∣∣ p ∈ Aεr,P , S(p) ≤ Σess(p)− σ
}
,

where Aεr,P =
{
p ∈ A

∣∣∣ d(p, ∂A) ≥ εr/2
}
∩BP (0).

Again, by compactness, δ = min(A,S)∈S′ δ(A,S) > 0. Recall that S ′ denotes the finite
collection of mass shells available for scattering, cf. (3.25).

We split K into compact components pertaining to shells (A, S) ∈ S ′

K(A,S) = K ∩ (A+ ξ) =
{
k ∈ K

∣∣∣ ξ − k ∈ A
}
.
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We pick open neighborhoods

V(A,S) =
{
k ∈ Rν

∣∣∣ d(k,K(A,S)) < εr/2
}
⊂ A+ ξ

which inherit the property of K that the distance from S(ξ − k) to the nearest
eigenvalue in σpp(H(ξ − k))\{S(ξ − k)} is at least a distance δ away. In addition we
remark that the sets V(A,S) are pairwise disjoint but overlap with possibly existing
tori Ti,j(εϑ, εr), provided ∂B(0, Ri) is a boundary of A.

To make a partition of unity we choose first ϕi,j ∈ C∞0 (Ti,j(2εϑ, 2εr)) such that
ϕi,j = 1 on Ti,j(εϑ, εr). It will be convenient to use a product construction such that

ϕi,j(k(r, ϑ, w)) = ρi,j(ϑ)ρ̃i(r),

where ρi,j was introduced in the previous section and ρ̃i ∈ C∞0 ((−2εr, 2εr)), with
ρ̃i = 1 on [Ri − εr, Ri + εr] and satisfying that 0 ≤ ρ̃i ≤ 1.

Using the smooth Urysohn lemma on the pairs K(A,S) ⊂ V(A,S), with (A, S) ∈ S ′,
yields smooth functions ϕ̃(A,S) with compact support in V(A,S) and equal to 1 on K(A,S).
By a standard construction we can replace these by (possibly) smaller functions
ϕ(A,S) with the same two properties and the additional property that

∀k ∈ KJ ′ :
∑

i,j

ϕi,j(k) +
∑

(A,S)∈S′
ϕ(A,S)(k) = 1. (3.44)

We can now construct our vector field

vξ =
∑

i,j

vξi,j +
∑

(A,S)∈S′
vξ(A,S), (3.45)

where

vξi,j(k) = σi,jϕi,j(k)vξ(k) and vξ(A,S)(k) = ϕ(A,S)(k) ∇S
(1)(ξ; k)

|∇S(1)(ξ; k)| . (3.46)

We have thus finished the construction of the conjugate operator Aξ, cf. (3.43). We
remark that the construction of vξ is consistent with the constraint (3.27), cf. (3.31).
The signs σi,j and the vector field vξ were introduced in (3.19) and (3.31) respectively.

In the following we make use of the notation

Ax
ξ = dΓx(aξ) = Aξ ⊗ 1F +1F ⊗Aξ on Fx (3.47)

and observe the direct sum decomposition

Ax
ξ = ⊕∞`=0A

(`)
ξ , where A(`)

ξ = Aξ ⊗ 1F(`) +1F ⊗ dΓ(aξ)|F(`) on F ⊗F (`). (3.48)

In particular, A(0)
ξ = Aξ. See also Section 1.2 for notation and constructions pertaining

to extended objects.
The following proposition is a Mourre estimate for H(1)(ξ), with conjugate

operator A(1)
ξ , stating that a composite system consisting of a dressed matter particle

and a free boson at total momentum ξ, localized in energy in the interval J , has
non-zero breakup velocity. This is the source of positivity in the Mourre estimate for
H we prove in the following section.
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Proposition 3.12. Assume Conditions 1.2 and 1.3, with n0 = 1. Let χ ∈ C∞0 (J ),
with χ ≥ 0. Then there exists c > 0 such that

χ
(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
χ
(
H(1)(ξ)

)
≥ cχ

(
H(1)(ξ)

)2
.

Proof. Let

B(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
(k)χ

(
H(1)(ξ; k)

)

and write

B := χ
(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
χ
(
H(1)(ξ)

)

=
∫ ⊕

Rν
B(k) dk

=
∑

i,j

∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)B(k) dk +

∑

(A,S)∈S′

∫ ⊕

Rν
1K(A,S)(k)B(k) dk,

where the summation over i and j is understood to be over i = 1, . . . ,M and
j = 1, . . . ,Mi.

We split the operator A(1)
ξ into the sum

A
(1)
ξ = Aξ ⊗ 1h +

∑

i,j

1F ⊗ ai,j +
∑

(A,S)∈S′
1F ⊗ a(A,S),

corresponding to the construction of vξ, cf. (3.45) and (3.48). This induces a decom-
position of B(k) using Lemma 2.6 and Proposition 2.8:

B(k) = B0(k) +
∑

i,j

Bi,j(k) +
∑

(A,S)∈S′
B(A,S)(k),

where

B0(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ), Aξ ⊗ 1h

]◦
(k)χ

(
H(1)(ξ; k)

)
,

Bi,j(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ),1F ⊗ ai,j

]◦
(k)χ

(
H(1)(ξ; k)

)
,

B(A,S)(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ),1F ⊗ a(A,S)

]◦
(k)χ

(
H(1)(ξ; k)

)
.

Observe that that k → Bi,j(k) has support in the torus Ti,j(2εϑ, 2εr) and k →
B(A,S)(k) has support in V(A,S). Using these support properties we compute

∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)B(k) dk =

∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)

(
B0(k) +Bi,j(k)

)
dk.

Write B̃i,j(k) = B0(k) +Bi,j(k) and observe that
∫ ⊕

R×Sν−2
B̃i,j(k(r, ϑ, w))dϑdw = χ(Gξ(r))B′(r)χ(Gξ(r)),
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where B′(r) was introduced in (3.42) and Gξ(r) in (3.28) and (3.29). Here we used
that χχ′ = χ. We have obtained the identity

∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)B(k) dk

=
∫ ⊕

[0,∞)
1(Ri−εr,Ri+εr)(r)

{∫ ⊕

R×Sν−2
1Θi,j(ϑ)B̃i,j(k(r, ϑ, w)) dϑdw

}
dr

=
∫ ⊕

[0,∞)
1(Ri−εr,Ri+εr)(r)1Θi,j χ(Gξ(r))B′(r)χ(Gξ(r)) dr.

From Proposition 3.11 we thus find a c′ > 0, independent of i and j, such that
∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)B(k) dk ≥ c′

∫ ⊕

Rν
1Ti,j(εϑ,εr)(k)χ

(
H(1)(ξ; k)

)2
dk. (3.49)

To deal with the remaining contributions we compute, using the support properties
of B(A,S),

1K(A,S)(k)B(k) = 1K(A,S)(k)
{
B0(k) +B(A,S)(k) +

∑

i,j

Bi,j(k)
}
.

Since 1K(A,S)(k)χ(H(1)(ξ; k)) = 1K(A,S)(k)1{S(1)(ξ;k)}(H(1)(ξ; k)) we can apply the
virial theorem, cf. Theorem 2.10, to compute for a.e. k = k(r, ϑ, w) ∈ K(A,S)

B0(k) = 0,
B(A,S)(k) = ϕ(A,S)(k)|∇kS

(1)(ξ; k)| ≥ c′(A,S)ϕ(A,S)(k),
Bi,j(k) = σi,jϕi,j(k)vξ(r, ϑ, w) · ∇ω(k(r, ϑ, w)) ≥ ci,jϕi,j(k).

Here the constants ci,j are defined in (3.32),

c′(A,S) := inf
k∈K(A,S)

|∇kS
(1)(ξ; k)| > 0

and positivity follows from K(A,S) being compact and J being chosen to not contain
threshold energies. Summing up, cf. (3.44) and recalling that for distinct shells
1K(A,S) ϕ(A′,S′) = 0, we get

∫ ⊕

Rν
1K(A,S)(k)B(k) dk ≥ c(A,S)

∫ ⊕

Rν
1K(A,S)(k)χ

(
H(1)(ξ; k)

)2
dk, (3.50)

with c(A,S) = min{c′(A,S),mini,j ci,j}.
Combining (3.49) and (3.50) we finally get

B ≥ c
∫ ⊕

Rν

{∑

i,j

1Ti,j(εϑ,εr)(k) +
∑

(A,S)∈S′
1K(A,S)(k)

}
χ
(
H(1)(ξ; k)

)2
dk

= cχ
(
H(1)(ξ)

)2
,

with c = min{c′,min(A,S)∈S′ c(A,S)}. �
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3.5 The Mourre Estimate
We will make use of a geometric partition of unity, introduced in [11], and since used
frequently, cf, [2, 12, 16, 22, 38], to perform localization arguments in non-relativistic
QFT.

The input is a pair of smooth functions j0, j∞ : Rν → [0, 1], with the properties
j2

0 + j2
∞ = 1 and j0 = 1 on {x ∈ Rν | |x| ≤ 1} and j∞ = 1 on {x ∈ Rν | |x| ≥ 2}.

We scale these functions and define for R > 0 localizations jR#(x) = j#(x/R) inside
and outside of balls with a radius scaling like R. Reading now x = i∇k these
operators become bounded self-adjoint operators on h and we form the vector
operator jR = (jR0 , jR∞) : h → h ⊕ h. It satisfies (jR)∗jR = 1h. The operator Γ(jR)
now maps F = Γ(h)→ Γ(h⊕ h), and composing with the canonical identification
operator U : Γ(h⊕ h)→ Γ(h)⊗ Γ(h) = Fx we get

Γ̌(jR) := UΓ(jR) : F → Fx.

The operator is a ‘partition of unity’ in that it is an isometry, i.e. Γ̌(jR)∗Γ̌(jR) = 1F .

Lemma 3.13. Assume Conditions 1.2 and 1.3, with n0 = 1. Let f ∈ C∞0 (R). Then

(i) Γ̌(jR)f(H(ξ)) = f(Hx(ξ))Γ̌(jR) + oR(1)
(ii) Γ̌(jR)f(H(ξ))i[H(ξ), Aξ]◦f(H(ξ))

= f(Hx(ξ))i[Hx(ξ), Ax
ξ ]◦f(Hx(ξ))Γ̌(jR) + oR(1)

Remark 3.14. We note that (i) was already proved in [38] in the case sΩ ∈ {0, 1, 2}.
As the assumption of sΩ being integer is only used in the proof of this result in [38],
this new proof now secures the validity of the results in [38] for non-integer values of
sΩ. �

Proof. In the following we fix a λ < Σ0, cf. (1.15). We will start by proving the
following statements: For p ∈ {1, . . . , ν} and w ∈ C∞0 (Rν) we claim that

(a) Γ̌(jR)f(H(ξ)) : F → Dx
1/2 and f(Hx(ξ))Γ̌(jR) : D1/2

∗ → Fx for any R > 1 and,

(Hx(ξ)− λ)− 1
2
(
Γ̌(jR)H(ξ)−Hx(ξ)Γ̌(jR)

)
f(H(ξ)) = oR(1),

f(Hx(ξ))
(
Γ̌(jR)H(ξ)−Hx(ξ)Γ̌(jR)

)
(H(ξ)− λ)− 1

2 = oR(1).

(b)
(
Γ̌(jR)∂pΩ(ξ − dΓ(k))− ∂pΩ(ξ − dΓx(k))Γ̌(jR)

)
f(H(ξ)) = oR(1).

(c) f(Hx(ξ))
(
Γ̌(jR)dΓ(w)− dΓx(w)Γ̌(jR)

)
(H0(ξ)− λ)− 1

2 = oR(1).

(d) f(Hx(ξ))
(
Γ̌(jR)φ(iaξg)− φ(iaξg)⊗ 1F Γ̌(jR)

)
f(H(ξ)) = oR(1).

In the rest of the proof we abbreviate H0 = H0(ξ), H = H(ξ), A = Aξ, Hx =
Hx(ξ), Ax = Ax

ξ , φx(w) = φ(w) ⊗ 1F , and Γ̌ = Γ̌(jR). For notational convenience,
we write M o= N if M = N + oR(1).
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Ad (a). We only prove half of the statement as the other half follows by a symmetric
argument. Note that (Hx−λ)−1/2(Γ̌(H−Ω(ξ−dΓ(k))−(Hx−Ω(ξ−dΓx(k))Γ̌)f(H) =
oR(1) by (the proof of) [38, Lemma 3.2]. Hence, to prove the statement, we need
only show that

(Hx − λ)− 1
2
(
Γ̌Ω(ξ − dΓ(k))− Ω(ξ − dΓx(k)

)
Γ̌)f(H) = oR(1). (3.51)

In order to use a commutator expansion formula, we find it useful to cast the
statement differently by extending Γ̌ and its adjoint to operators on Fx. Let, for the
purpose of this proof only, P : Fx → F be the projection

Fx = F ⊕
( ∞⊕

`=1
F ⊗ F (`)

)
3 (u, v) 7→ u ∈ F

and I = P ∗ : F → Fx the injection

F 3 u 7→ Iu = (u, 0) ∈ F ⊕
( ∞⊕

`=1
F ⊗ F (`)

)
.

Define Γ̌x : Fx → Fx by Γ̌x = Γ̌P . Note that PI is the identity on F and that

Γ̌xI = Γ̌, HxI = IH, AxI = IA and φx(g)I = Iφ(g).

We write, using [38, Lemma 3.6],

(Hx − λ)− 1
2
[
Γ̌x,Ω(ξ − dΓx(k))

]
f(Hx)

=
{

(Hx − λ)− 1
2
[
Γ̌x(Nx + 1)−2,Ω(ξ − dΓx(k))

]}
(Nx + 1)2f(Hx).

(3.52)

The estimate (3.51) follows if the term in the brackets above is oR(1). The commutator
[Γ̌x(Nx + 1)−2,Ω(ξ − dΓx(k))] satisfies the assumptions of [45, Theorem 3] with

B = Γ̌x(Nx + 1)−2, A = ξ − dΓx(k), fλ = Ω, s = sΩ, n0 = 2 and n = 1.

Hence, by [45, Theorem 3] we obtain the commutator expansion
[
Γ̌x(Nx + 1)−2,Ω(ξ − dΓx(k))

]
=

ν∑

p=1
∂pΩ(ξ − dΓx(k)) adξp−dΓx(kp)

(
Γ̌x(Nx + 1)−2

)

+R1
(
ξ − dΓx(k), Γ̌x(Nx + 1)−2

)
. (3.53)

The remainder R1(A,B) satisfies for some C > 0 the bound

‖R1(A,B)‖ ≤ C
∑

|α|=2
‖ adαA(B)‖. (3.54)

Let ψ ∈ F (m) and ϕ ∈ F ⊗F (`), with m ≥ 0 and ` ≥ 1. Note that P (ψ⊗ |0〉, ϕ) = ψ.
One can readily verify that

adαdΓx(k)(Γ̌x)
(
ψ ⊗ |0〉
ϕ

)
= U

∑
∑

α(`)=α

α!
∏m
`=1 α

(`)!

m⊗

`=1

(
adα(`)

k (jR0 )
adα(`)

k (jR∞)

)
ψ, (3.55)
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and
adα(`)

k

(
jR#
)

= i|α
(`)|R−|α

(`)|
(
∂α

(`)
j#
)( x
R

)
= O

(
R−|α

(`)|
)
,

where the sums are over all ordered sets of multi-indicies {α(`)}m`=1 in such a manner
that ∑m

`=1 α
(`) = α. The identity (3.55) extends by linearity to an identity between

bounded operators from F (m) ⊗F to 1[Nx = m]Fx, where Nx = N ⊗ 1F +1F ⊗N
is the extended number operator. Since

∑
∑

α(`)=α

α!
∏
` α(`)! = m|α|,

it follows that adαdΓx(k)(Γ̌x)(Nx + 1)−|α| = O(R−|α|), with respect to the norm on
B(Fx), and hence that

ν∑

p=1

∥∥∥ adξp−dΓx(kp)
(
Γ̌x(Nx+1)−2

)∥∥∥+
∥∥∥R1

(
ξ − dΓx(k), Γ̌x(Nx+1)−2

)∥∥∥ = O(R−1).

As sΩ ≤ 2, (H − λ)−1/2∂pΩ(ξ − dΓx(k)) is bounded. These two observations together
with (3.52), (3.53) and (3.54) imply the claim (a).

By an analogous argument we get (b). The proof of (c) and (d) can be found in
the proof of [38, Lemma 3.2].

We can now prove (i). Let χ ∈ C∞0 (R) be such that f = fχ. We pull the energy
localization through Γ̌ in two steps, using both bounds in (a) along the way,

f(Hx)Γ̌ = f(Hx)χ(Hx)Γ̌

= f(Hx)Γ̌χ(H) + 1
π

∫

C
∂̄χ̃(z)(Hx − z)−1f(Hx)

(
Γ̌H −HxΓ̌

)
(H − z)−1dz

o= f(Hx)Γ̌χ(H)

= Γ̌f(H) + 1
π

∫

C
∂̄f̃(z)(Hx − z)−1

(
Γ̌H −HxΓ̌

)
χ(H)(H − z)−1dz

o= Γ̌f(H).

This computation establishes (i).
Finally we argue for the validity of (ii). Let χ ∈ C∞0 (R) be as in the proof of (i).

By (i) and (a) we see that

f(Hx)[Hx, Ax]◦f(Hx)Γ̌
= f(Hx)[Hx, Ax]◦f(Hx)Γ̌χ(H) + f(Hx)[Hx, Ax]◦f(Hx)oR(1)
o= f(H)[H,A]◦Γ̌f(H)

+ 1
π

∫

C
∂̄f̃(z)f(H)[Hx, Ax]◦(Hx − z)−1

(
Γ̌H −HxΓx

)
χ(H)(H − z)−1dz

o= f(Hx)[Hx, Ax]◦Γ̌f(H),
(3.56)

Here we used that f(Hx)[Hx, Ax]◦(Hx − λ)−1/2 is bounded. The right-hand side of
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(3.56) splits into three terms

f(Hx)[Hx, Ax]◦Γ̌f(H) = f(Hx)dΓx(vξ · ∇ω)Γ̌f(H) (3.57a)
− f(Hx)dΓx(vξ) · ∇Ω(ξ − dΓx(k))Γ̌f(H) (3.57b)
− f(Hx)φx(iaξg)Γ̌f(H). (3.57c)

Now by (c) we find (3.57a) o= f(Hx)Γ̌dΓ(vξ · ∇ω)f(H), by (b), (c) and (a)

(3.57b) o= − f(Hx)
ν∑

p=1
dΓx(vξ;p)Γ̌∂pΩ(ξ − dΓ(k))f(H)

= − f(Hx)Γ̌dΓ(vξ) · ∇Ω(ξ − dΓ(k))f(H)

− f(H)
ν∑

p=1

(
dΓx(vξ;p)Γ̌− Γ̌dΓ(vξ;p)

)
(H0 − λ)− 1

2

· ∂pΩ(ξ − dΓ(k))(H0 − λ) 1
2f(H)

o= − f(Hx)Γ̌dΓ(vξ) · ∇Ω(ξ − dΓ(k))f(H),

and by (d) we conclude that (3.57c) o= −f(Hx)Γ̌φ(iaξg)f(H). Putting this together –
and again using (a) and (i) – we see that

(3.57) o= f(Hx)Γ̌[H,A]◦f(H)
= χ(Hx)Γ̌f(H)[H,A]◦f(H)

+ 1
π

∫

C
∂̄f̃(z)(Hx − z)−1χ(Hx)

(
Γ̌H −HxΓ̌

)
(H − z)−1[H,A]◦f(H)dz

o= Γ̌f(H)[H,A]◦f(H) + oR(1)f(H)[H,A]◦f(H),

as desired. �

We will make use of another partition of unity, this time in momentum space. It
has proved useful for the type of models studied here [22, 40]. We take, for r > 0,
sharp localizations 1r0 and 1

r
∞ onto sets Λr = {k ∈ Rν | |k| ≤ r} and Λc

r respectively.
As multiplication operators they are projections and this allows us to view the vector
operators 1r = (1r0,1r∞) as operators from h to hr< ⊕ hr>, with hr< = L2(Λr) and
hr> = L2(Λc

r). We can now lift this vector operator to a unitary operator

Γ̌(1r) = UΓ(1r) : F → F r< ⊗F r>,

where F r< = Γ(hr<) and F r> = Γ(hr>). Here U is again the canonical identification
operator and we have abused notation by using the same notation Γ̌, although
these operators map into a smaller space than Fx and they are unitary, not merely
isometric.

Since the Hamiltonian does not involve k-derivatives, we will not pick up local-
ization errors, when applying a partition of unity in momentum space. We introduce
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notation for the fiber Hamiltonians Hr(ξ) restricted to F r<, the new ‘extended’ Hamil-
tonian Hx

r (ξ) and its building blocks H(`)
r (ξ) and their fiber operators H(`)

r (ξ; k):

Hr(ξ) = dΓ
(
ω|hr<

)
+ Ω

(
ξ − dΓ(k|hr<)

)
+ φ

(
1
r
0 g
)

H(`)
r (ξ; k) = H

(
ξ −∑`

j=1 kj
)

+
(∑`

j=1 ω(kj)
)
1Fr<

H(`)
r (ξ) =

∫ ⊕

(Λcr)`
H(`)
r (ξ; k) dk

Hx
r (ξ) = Hr(ξ)⊕

( ∞⊕

`=1
H(`)
r (ξ)

)
.

(3.58)

The direct sum above is with respect to the splitting

F r< ⊗F r> = F r< ⊕
( ∞⊕

`=1
F r< ⊗ Γ(`)

(
hr>
))
, (3.59)

where we identify F r< ⊗ Γ(`)(hr>) with L2
sym((Λc

r)`;F r<).

Lemma 3.15. Assume Conditions 1.2 and 1.3, with n0 = 1. Then

Γ̌(1r)f(H(ξ)) = f(Hx
r (ξ))Γ̌(1r) + or(1).

Proof. Note that H(ξ) = Γ̌(1r)∗Hx
r (ξ)Γ̌(1r) + φ(1r∞ g). Composing with the unitary

operator Γ̌(1r) from the left on both sides yields

Γ̌(1r)H(ξ) = Hx
r (ξ)Γ̌(1r) + Γ̌(1r)φ(1r∞ g).

Subtracting zΓ̌(1r) on both sides and multiplying with (Hx
r (ξ)−z)−1 and (H(ξ)−z)−1

from the left and the right respectively, we get

(Hx
r (ξ)− z)−1Γ̌(1r)

= Γ̌(1r)(H(ξ)− z)−1 + (Hx
r (ξ)− z)−1Γ̌(1r)φ(1r∞ g)(H(ξ)− z)−1,

where the term involving φ(1r∞ g) is of order 〈z〉1/2|Imz|−2or(1). The result is now
obtained using the calculus of almost analytic extensions. �

Let κ > 0 and λ ∈ R. Denote by E0,1 : R → R the indicator function for the
set [−1, 1]. Abbreviate Eλ,κ(t) = E0,1((t− λ)/κ), the indicator function for the set
[λ− κ, λ+ κ].

Theorem 3.16 (Mourre Estimate). Assume Conditions 1.2 and 1.3, with n0 = 1.
Let (ξ, λ) ∈ E (1)\(T (1)∪Exc). Then there exist κ > 0, c > 0 and a compact self-adjoint
operator K such that

Eλ,κ(H(ξ))i[H(ξ), Aξ]◦Eλ,κ(H(ξ)) ≥ cEλ,κ(H(ξ)) +K. (3.60)
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Proof. For a pair (ξ, λ) ∈ E (1)\(T (1) ∪ Exc) we have in (3.45) constructed a vector
field giving rise to a conjugate operator Aξ, cf. (2.2), and hence extended conjugate
operators A(`)

ξ and Ax
ξ , cf. Section 2.3. We recall from Proposition 2.5 and 2.8 that

H(ξ) is of class C1(Aξ), H(`)(ξ) is of class C1(A(`)
ξ ), and Hx(ξ) is of class C1(Ax

ξ).
Let f ∈ C∞0

((
Σ(1)

0 (ξ),Σ(2)
0 (ξ)

))
. Calculate using Corollary 3.13

f(H(ξ)) i[H(ξ), Aξ]◦ f(H(ξ))
= Γ̌(jR)∗ Γ̌(jR) f(H(ξ)) i[H(ξ), Aξ]◦ f(H(ξ))
= Γ̌(jR)∗ f(Hx(ξ)) i[Hx(ξ), Ax

ξ ]◦ f(Hx(ξ)) Γ̌(jR) + oR(1)
(3.61)

From Proposition 2.8 we know that

f(Hx(ξ)) i[Hx(ξ), Ax
ξ ]◦ f(Hx(ξ)) =

∞⊕

`=0
f
(
H(`)(ξ)

)
i
[
H(`)(ξ), A(`)

ξ

]◦
f
(
H(`)(ξ)

)
,

(3.62)
where H(0)(ξ) := H(ξ) and A(0)

ξ := Aξ. Recalling (1.17), (1.19) and (1.23) we find
that for ` ≥ 2 we have H(`)(ξ) ≥ Σ(`)

0 (ξ)1H(`) ≥ Σ(2)
0 (ξ)1H(`) . It follows that

∀` ≥ 2 : f
(
H(`)(ξ)

)
= 0. (3.63)

This takes care of the contributions to (3.62) with ` ≥ 2, where we can simply write
f(H(`)(ξ))i[H(`)(ξ), A(`)

ξ ]◦f(H(`)(ξ)) = f(H(`)(ξ))2, both sides being elaborate zeroes.
If we insert (3.62) into (3.61) and look at the ` = 0 contribution, we get

Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ]◦ f(H(ξ)) Γ(jR0 )
= Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ]◦ h(H(ξ)) f(H(ξ)) Γ(jR0 ) = BK,

(3.64)

where

B = Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ]◦ h(H(ξ)) and K = f(H(ξ)) Γ(jR0 ).

Here h ∈ C∞0 (R) equals 1 on the support of f . Note that B is bounded, so to see
that BK is compact, it is enough to prove that K is compact. Now by Lemma 3.15

K = Γ̌(1r)∗f(Hx
r (ξ))Γ̌(1r)Γ(jR0 ) + or(1). (3.65)

Like before, we split with respect to the direct sum decomposition (3.59), cf. also
(3.58), and find

Γ̌(1r)∗f(Hx
r (ξ))Γ̌(1r)Γ(jR0 )

= Γ̌(1r)∗
{
f(Hr(ξ))⊕

( ∞⊕

`=1
f(H(`)

r (ξ))
)}

Γ̌(1r)Γ(jR0 ).
(3.66)

Observe now that by a variational argument we have the bound from below
inf σ(Hr(ξ)) ≥ inf σ(H0(ξ) +φ(1r0 g)), and furthermore by monotonicity of Σ0(ξ) as a
function of the coupling g, cf. [40, Corollary 2.5 (i)], we get inf σ(H0(ξ) + φ(1r0 g)) ≥
Σ0(ξ). Hence

H(`)
r (ξ; k) ≥ Σ(`)

0 (ξ; k)1Fr< and H(`)
r (ξ) ≥ Σ(`)

0 (ξ)1Fr< .
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This ensures that f(H(`)
r (ξ)) = 0 for ` ≥ 2.

Choose and ε > 0 with ε < d(supp(f),Σ0(ξ)). As for the term with ` = 1 we get
similarly that H(1)

r (ξ; k) ≥ Σ(1)
0 (ξ; k)1Fr< and by (3.1) (if ω is bounded) r can thus

be chosen so large that Σ(1)
0 (ξ; k) = Σ0(ξ − k) + ω(k) ≥ Σ(2)

0 (ξ)− ε, for any |k| ≥ r.
Hence, for r large enough and |k| ≥ r we have f(H(1)

r (ξ; k)) = 0.
The only non-zero contribution to (3.66) for large r is thus the remaining ` = 0

term Γ(1r0)f(Hr(ξ))Γ(1r0)Γ(jR0 ), which clearly is compact. Hence we see by letting
r →∞ in (3.65) that K is compact.

By (3.63) we only get one non-compact contribution when inserting (3.62) into
(3.61), namely one coming from the term ` = 1, which is

f
(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
f
(
H(1)(ξ)

)
.

We can now apply Proposition 3.12. Let J = (λ− δ, λ+ δ) from Proposition 3.12,
which we apply with an f chosen to be equal to one on [λ− δ/2, λ+ δ/2]. We thus
get

f(H(ξ)) i[H(ξ), Aξ]◦ f(H(ξ)) ≥ cf(H(ξ))2 − cΓ(jR0 )f(H(ξ))2Γ(jR0 ) +BK,

which implies the theorem, with κ = δ/2, since Γ(jR0 )f(H(ξ))2Γ(jR0 ) was demon-
strated to be compact above. �
Proof of Theorem 1.6. Items (i) and (ii) are standard consequences of H(ξ) being
of class C1(A), cf. Proposition 2.5 ‘k = 1’, the virial theorem [20], and the Mourre
estimate Theorem 3.16. See e.g. [10, Chapter 4.3] and [31, Section VI]. The last
statement (iii) follows from Theorem 1.5 once we have observed that the Mourre
estimate is continuous in ξ and E: Let (ξ0, E0) ∈ E (1)\(Σpp ∪ T (1) ∪ Exc) be given.
Then the Mourre estimate, cf. Theorem 3.16,

fE,κ(H(ξ))i[H(ξ), Aξ0 ]fE,κ(H(ξ)) ≥ cfE,κ(H(ξ))2

holds true at (ξ, E) = (ξ0, E0) for some κ, c > 0. Here f ∈ C∞0 (R), with supp f ⊂
[−1, 1], 0 ≤ f ≤ 1 and f(t) = 1 for |t| < 1/2. Finally, fλ,κ(t) = f((t − λ)/κ).
Recall that, being away from the point spectrum, one can squeeze away the compact
error in the Mourre estimate, by passing to a smaller κ. We leave it to the reader
to argue that both sides of the estimate above are jointly continuous in ξ and E,
hence an estimate of the same form, possibly with a smaller κ, will hold in a small
neighborhood of (ξ0, E0). Hence, by the standard virial theorem [20], there can be
no point spectrum in a small neighborhood of (ξ0, E0). Taken together with relative
closedness of (T (1) ∪ Exc) ∩ E (1) in E (1) we are done. �
Proof of Theorem 1.7. Under the assumptions of the theorem we have H(ξ) of class
C2(A), cf. Proposition 2.5 ‘k = 2’. Hence we can conclude from Theorem 3.16 the
limiting absorption principle

sup
z∈C, Imz 6=0

Rez∈J

∥∥∥〈A〉−s(H(ξ)− z)−1〈A〉−s
∥∥∥ <∞, (3.67)

where s > 1/2 and J ⊂ E (1)(ξ)\(T (1)(ξ)∪Exc(ξ)∪ σpp(H(ξ))) is a compact interval.
For a proof of this estimate, we refer the reader to [3, 23]. It is a well-known
consequence of (3.67), together with Theorem 1.6, that the singular continuous part
of σ(H(ξ)) ∩ E (1)(ξ) is empty. See e.g. [48, Theorem XIII.20]. �
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A Fibered Operators
Let F be a separable Hilbert space and (X,S) a measurable space, i.e. S is a σ-algebra
of subsets of X.

Let H(x), for x ∈ X, be a family of self-adjoint operators on F with domain D(x).
The family is said to be weakly resolvent measurable if the map x→ (H(x) + i)−1 is
weakly - hence strongly - measurable. Henceforth we simply write measurable. This
implies the same property for x → (H(x)− z)−1 for any z ∈ C with Imz 6= 0. We
remark that if X = R and S is the Lebesgue measurable subsets of R, then being
weakly resolvent measurable is equivalent to being measurable in the sense introduced
by Nussbaum in [43], a property called ‘N-measurable’ in [28]. For equivalence of weak
resolvent measurability and N-measurability for self-adjoint families of operators see
[28, Theorem 4.11].

By Stone-Weierstrass we can conclude that for any f ∈ C0(R), the map x →
f(H(x)) is measurable. Choosing a sequence fn ∈ C0(R) with fn(t)→ 0 for t 6= λ and
fn(λ) = 1 yields measurability of eigenprojections x→ 1{λ}(H(x)). Stone’s formula
now gives measurability of x → 1I(H(x)) for any interval I. Since the collection
of Borel sets E for which x → 1E(H(x)) is measurable form a σ-algebra, we can
conclude that the property must hold true for all Borel sets.

Equip the Cartesian product X × R with the product σ-algebra S × Borel(R).
Let F ⊂ {ψ ∈ F | ‖ψ‖ = 1} be a countable dense subset of the unit ball. For ψ ∈ F
put

fψ(x, λ) = ‖(H(x)− λ)(H(x) + i)−1ψ‖/‖(H(x) + i)−1ψ‖.
Then (x, λ) → fψ(x, λ) is measurable. Put Σn = ∪ψ∈Ff−1

ψ ((−∞, 1/n)). Since the
joint spectrum Σ = {(x, λ) |λ ∈ σ(H(x))} ⊂ X × R can be written as ∩∞n=1Σn we
conclude that Σ is measurable.

Similarly, for ψ ∈ F and n ∈ N, we can define S×Borel(R) measurable functions

f (n)
ψ (x, λ) = ‖(n(H(x)− λ) + i)−1ψ‖.

By the spectral theorem together with the dominated convergence theorem, we
find that f (n)

ψ (x, λ) → ‖1{λ}(H(x))ψ‖, which is thus a measurable function of x
and λ. Taking supremum over ψ ∈ F , we conclude that (x, λ) → ‖1{λ}(H(x))‖ is
measurable and hence the joint point spectrum Σpp = {(x, λ) |λ ∈ σpp(H(x))} is an
S × Borel(R) measurable set.

Let now µ be a positive measure defined on the σ-algebra S. Denote by H
the Hilbert space L2(X;F) ' F ⊗ L2(X), consisting of all measurable functions
X 3 x→ ψ(x) with

∫
X ‖ψ(x)‖2

Fdµ(x) <∞. The construction

R(z) =
∫ ⊕

X
(H(x)− z)−1 dµ(x)

yields a family of bounded operators on H satisfying the first resolvent formula.
The operator R(z) satisfies R(z)∗ = R(z̄) and has kernel {0}. Hence, it is the
resolvent family of a self-adjoint operator H densely defined on H. Its domain is
D(H) = R(z)H, which is independent of z ∈ {z ∈ C | Imz 6= 0}.

Define a different domain by

D̃(H) =
{
ψ ∈ H

∣∣∣∣ψ(x) ∈ D(x) a.e. and
∫

X
‖H(x)ψ(x)‖2

F dµ(x) <∞
}
.
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We remark that for ψ ∈ H and Imz 6= 0 we have (R(z)ψ)(x) = (H(x) − z)−1ψ(x)
a.e. and hence D(H) ⊂ D̃(H). Furthermore we can on D̃(H) define a symmetric
operator H̃ by (H̃ψ)(x) = H(x)ψ(x). It is easy to see that H ⊂ H̃ and since H was
self-adjoint we must have H = H̃ and in particular D(H) = D̃(H). We remark that
even with only weak measurability of x→ H(x) one can always construct H̃ as a
closed operator, but without assumptions beyond weak measurability one may not
arrive at a densely defined operator, cf. [28, Remark 4.7].

The spectral resolution 1E(H), with E ⊂ R Borel, can be explicitly computed to
be

1E(H) =
∫ ⊕

X
1E(H(x)) dµ(x).

If D0 ⊂ D(x) for (almost) every x is a common core for H(x), then one can
construct an essentially self-adjoint operator on the dense set of ψ ∈ H, with a.e.
ψ(x) ∈ D0. The closure coincides with H and is the situation we find ourselves
in with the fibered Nelson Hamiltonian, where X = Rν equipped with the Borel
σ-algebra and Lebesgue measure.
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