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METRICAL MUSINGS ON LITTLEWOOD AND FRIENDS

A. HAYNES, J. L. JENSEN, AND S. KRISTENSEN

Abstract. We prove a metrical result on a family of conjectures related to the Lit-
tlewood conjecture, namely the original Littlewood conjecture, the mixed Littlewood
conjecture of de Mathan and Teulié and a hybrid between a conjecture of Cassels and
the Littlewood conjecture. It is shown that the set of numbers satisfying a strong version
of all of these conjectures is large in the sense of Hausdorff dimension restricted to the
set of badly approximable numbers.

1. Introduction

The Littlewood conjecture in Diophantine approximation is concerned with the sim-
ultaneous approximation of two real numbers by rationals with the same denominator.
It states that for any pair α, β ∈ R,

lim inf
q∈N

q‖qα‖‖qβ‖ = 0, (1)

where ‖ · ‖ denotes the distance to the nearest integer. It follows from Dirichlet’s
theorem that for any single real number α,

lim inf
q∈N

q‖qα‖ ≤ 1. (2)

This is best possible, apart from improvements in the constant on the right hand
side. Indeed if α 6∈ Q has bounded partial quotients in its simple continued frac-
tion expansion, then the left hand side of (2) is positive. Such a number α is called
badly approximable, and we denote the collection of badly approximable numbers by
Bad ⊆ R.

By the Borel-Bernstein theorem (i.e. almost all real numbers have unbounded partial
quotients) the Lebesgue measure of Bad is 0, but by a theorem of Jarnik [8] its
Hausdorff dimension is 1. Furthermore since (1) is satisfied whenever α or β lies in
R\Bad, it follows immediately that the set of exceptions to the Littlewood conjecture
has Lebesgue measure 0.

The Littlewood conjecture has a long history. One of the first results, by Cassels
and Swinnerton-Dyer [3], states that the conjecture is satisfied if α and β lie in the
same cubic extension of Q. Although there have been several further advances toward
this conjecture, the most widely quoted recent result is that of Einsiedler, Katok,
and Lindenstrauss [5], who used powerful measure rigidity theorems in the space of
unimodular lattices to show that the set of (α, β) ∈ R2 for which (1) fails has Hausdorff
dimension 0.

However one should not forget that this breakthrough was preceded by an equally
significant theorem of Pollington and Velani [11], which states that for any α ∈ Bad,
there is a set G ⊆ Bad of Hausdorff dimension 1 such that, for all β ∈ G,

lim inf
q→∞

q(log q)‖qα‖‖qβ‖ ≤ 1.
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The conclusion here is stronger than (1) and it is worth pointing out that, although
it does not say as much about the exceptional set in the Littlewood conjecture, this
result does not follow from the theorem of Einsiedler, Katok, and Lindenstrauss.
More explicit constructions in the spirit of Pollington and Velani’s approach have
been obtained by Adamczewski and Bugeaud [1].

A problem related to the Littlewood conjecture is the so-called mixed Littlewood
conjecture of de Mathan and Teulié [4]. In its most basic form, the conjecture states
that for any α ∈ R and any prime p,

lim inf
q→∞

q|q|p‖qα‖ = 0, (3)

where |q|p denotes the p-adic absolute value of q. As above, (3) is trivially satisfied
unless α ∈ Bad.

The mixed Littlewood conjecture has also attracted considerable interest in recent
years. Like the Littlewood conjecture, it has a nice interpretation in terms of homo-
geneous dynamics. In additional there are new techniques from p-adic analysis and
one dimensional dynamics which are available for studying this problem. The original
statement of the conjecture is actually slightly more general then what we have men-
tioned so far. It involves the notion of a pseudo-absolute value, which we attend to
presently.

A pseudo-absolute value is defined in terms of a sequence D = (nk)
∞
k=0, satisfying

the conditions n0 = 1 and nk−1|nk for all k. The associated pseudo-absolute value of
an integer q is then defined as

|q|D = min{n−1k : q ∈ nkZ}. (4)

For an integer a if we set nk = ak, then associated pseudo-absolute value becomes
the usual a-adic absolute value. The more general version of the mixed Littlewood
conjecture is the assertion that

lim inf
q∈N

q|q|D‖qα‖ = 0, (5)

for any α ∈ R and any pseudo-absolute value sequence D.
We remark that with an additional p-adic absolute value multiplied onto the left

hand side of (5), and with a mild growth condition on D, it is proved in [7] that

lim inf
q∈N

q|q|p|q|D‖qα‖ = 0,

for all α ∈ R. This shows that a slightly weaker statement than the mixed Littlewood
conjecture is certainly true.

A final problem related to the Littlewood conjecture is the an old conjecture of
Cassels, recently resolved by Shapira [12]. Shapira’s theorem states that for Lebesgue-
almost every α, β,

lim inf
q→∞

q‖qα− γ1‖‖qβ − γ2‖ = 0,

for all γ1, γ2 ∈ R. In our main result below we address the case when γ1 = 0 and
consider more closely the collection of α, β for which

lim inf
q→∞

q‖qα‖‖qβ − γ‖ = 0, (6)

for every value of γ. Of course as before the problem is trivial unless α ∈ Bad. We
will call (6) the hybrid Cassels–Littlewood equation.

Now we present our main result, in which we consider a simultaneous version of the
three above mentioned problems.
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Theorem 1. Fix ε > 0 and let {αi} ⊆ Bad be a countable set of badly approximable
numbers, and {Dj} a countable set of pseudo-absolute value sequences. Then there is
set of G ⊆ Bad of Hausdorff dimension 1 such that for any β ∈ G,

(i) For any i ∈ N and γ ∈ R the inequality

q‖qαi‖‖qβ − γ‖ <
1

(log q)1/2−ε
, (7)

has infinitely many solutions q ∈ N, and

(ii) For any j ∈ N and δ ∈ R we have that

lim inf
q→∞

q|q|Dj‖qβ − δ‖ = 0. (8)

Furthermore, for each j such that Dj = (nk) satisfies the inequality nk ≤ Ck for some
C > 1, we may replace (8) by the stronger statement that for any δ ∈ R the inequality

q|q|Dj‖qβ − δ‖ <
1

(log q)1/2−ε
, (9)

has infinitely many solutions q ∈ N.

We should stress that while the Littlewood conjecture and the mixed Littlewood
conjecture are trivial whenever β /∈ Bad, this is no longer the case for the inhomogen-
eous versions in the theorem. Hence, the content of our result is of interest not only for
badly approximable numbers. Luckily, applying an argument analogous to our proof
below with the discrepancy estimate of R. C. Baker [2] in place of our Corollary 8,
we could get Theorem 1 for Lebesgue-almost every β. For comparison with Shapira’s
result [12] this remains worth stating.

A weaker version of our theorem is the following corollary.

Corollary 2. Let {αi} ⊆ Bad be a countable set of badly approximable numbers
and {Dj} a countable set of pseudo-absolute value sequences. The set of β ∈ Bad
for which the Dj-mixed Littlewood conjectures are all satisfied and for which all pairs
(αi, β) satisfy the hybrid Cassels–Littlewood equation is of Hausdorff dimension 1.

Considering only the cases where γ = 0, we get the following.

Corollary 3. Let {αi} ⊆ Bad be a countable set of badly approximable numbers
and {Dj} a countable set of pseudo-absolute value sequences. The set of β ∈ Bad
for which the Dj-mixed Littlewood conjectures are all satisfied and for which all pairs
(αi, β) satisfy the Littlewood conjecture is of Hausdorff dimension 1.

We point out that while these corollaries can be deduced using currently available
techniques concerning measure rigidity in homogeneous spaces, our main theorem
can not.

Our main result generalizes the result of Pollington and Velani [11] to cover both a
countable number of α’s and a countable number of pseudo-absolute values. We also
believe that, although we use some of the same techniques, our proof is substantially
simpler.

We will deduce Theorem 1 from a result on the discrepancy of certain sequences
defined in terms of a generic point with respect to a very special measure called
Kaufman’s measure. In the next section, we will describe the properties of this measure
and state the result on uniform distribution. In Section 2, we will prove Theorem 1.
Finally, we give a few concluding remarks.
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Throughout we will use the Vinogradov notation and write f � g for two real
quantities f and g if there exists a constant C > 0 such that f ≤ Cg. If f � g and
g � f , we will write f � g. We will also as usual define the function e(x) = exp(2πix).

2. Kaufman’s measure and discrepancy

The key tool in proving our main theorem is a result on the discrepancy of cer-
tain sequences, which holds true for almost all α with respect to a certain measure
introduced by Kaufman [9].

Kaufman’s measure µM is a measure supported on the set of real numbers with
partial quotients bounded above byM . To be explicit, for each real number α ∈ [0, 1),
let

α = [a1, a2, . . . ] =
1

a1 + 1
a2+

1
...

be the simple continued fraction expansion of α. For M ≥ 3, let

FM = {α ∈ [0, 1) : ai(α) ≤M for all i ∈ N}. (10)

Kaufman [9] proved that the set FM supports a measure µM satisfying a number
of nice properties. For our purposes, we need the following two properties.
(i) For any s < dim(FM ), there are positive constants c, l > 0 such that for any

interval I ⊆ [0, 1) of length |I| ≤ l,
µM (I) ≤ c|I|s.

(ii) For any M , there are positive constants c, η > 0 such that the Fourier transform
µ̂M of the Kaufman measure µM satisfies

µ̂M (u) ≤ c|u|−η.
The first property allows us to connect the Kaufman measure with the Hausdorff
dimension of the set FM via the Mass Distribution Principle. The second property
provides a positive lower bound on the Fourier dimension of the set FM , but for our
purposes the property is used only in computations.

The second key tool is the notion of discrepancy from the theory of uniform distri-
bution. The discrepancy of a sequence in [0, 1) measures how uniformly distributed a
sequence is in the interval. Specifically, the discrepancy of the sequence (xn) is defined
as

DN (xn) = sup
I⊆[0,1]

∣∣∣
N∑

n=1

χI(xn)−N |I|
∣∣∣,

where I is an interval and χI is the corresponding characteristic function. A sequence
(xn) is uniformly distributed if DN (xn) = o(N).

Our key result is the following discrepancy estimate.

Theorem 4. Let µM be a Kaufman measure and assume that for positive integers
u < v we have

v∑

n,m=u

|an − am|−η �
1

log v

v∑

n=u

ψn

where (ψn) is a sequence of non-negative numbers and η > 0 is the constant from
property (ii) of the Kaufman measure. Then for µM -almost every x ∈ [0, 1] we have

DN (anx)� (N log(N)2 + ΨN )1/2 log(N log(N)2 + ΨN )3/2+ε + max
n≤N

ψn

where ΨN = ψ1 + · · ·+ ψN .
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3. Proofs

Initially, we prove Theorem 4 and then proceed to deduce Theorem 1. For the proof
of Theorem 4, we will need the following result found in [6].

Lemma 5. Let (X,µ) be a measure space with µ(X) <∞. Let F (n,m, x), n,m ≥ 0
be µ-measurable functions and let φn be a sequence of real numbers such that |F (n−
1, n, x)| ≤ φn for n ∈ N. Let ΦN = φ1 + · · ·+ φN and assume that ΦN →∞. Suppose
that for 0 ≤ u < v we have

∫

X

|F (u, v, x)|2dµ�
v∑

n=u

φn.

Then for µ-almost all x, we have

F (0, N, x)� Φ
1/2
N log(ΦN )3/2+ε + max

n≤N
φn.

We will also need the Erdős–Turán inequality (see e.g. [10]).

Theorem 6. For any positive integer K and any sequence (xn) ⊆ [0, 1),

DN (xn) ≤ N

K + 1
+ 3

K∑

k=1

1

k

∣∣∣
N∑

n=1

e(kxn)
∣∣∣.

Proof of Theorem 4. Suppose M ≥ 3 and for integers 0 ≤ u < v let

F (u, v, x) =
v∑

h=1

1

h

∣∣∣
v∑

n=u

e(hanx)
∣∣∣.

Theorem 6 with K = N tells us that

DN (xn)� F (0, N, x).

Integrating with respect to dµM (x) and applying Cauchy-Schwartz gives
∫
|F (u, v, x)|2dµM ≤

v∑

h,k=1

1

hk

∫ ∣∣∣
v∑

n=u

e(hanx)
∣∣∣
2
dµM

=

v∑

h,k=1

1

hk

(
v − u+ 1 +

v∑

n,m=u

n6=m

µ̂M (h(an − am))
)
.

Finally using property (ii) of the Kaufman measure we have
∫
|F (u, v, x)|2dµM �

v∑

h,k=1

1

hk

(
v − u+ 1 + h−η

v∑

n,m=u

n6=m

|an − am|−η
)

�
v∑

n=u

[log(n)2 + ψn].

Since F (n − 1, n, x) � log(n)2 + ψn for all n ≥ 1, the theorem then follows from
Lemma 5. �

We now state a corollary, which is of interest in its own right. Assuming nothing
about the sequence (an) we get the following corollary.
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Corollary 7. Let µ be a Kaufman measure. For µ-almost every x ∈ [0, 1] we have
DN (anx) � N1−ν for some ν > 0. In particular (anx) is uniformly distributed mod-
ulo 1.

Proof. Without loss of generality we may assume that an < an+1, and we have that
v∑

n,m=u

|an − am|−η ≤ 2
v−1∑

m=u

v∑

n=m+1

|n−m|−η � v2−η − u2−η � 1

log v

v∑

n=u

n1−2ν
′

for some ν ′ > 0, so for µ-a.e. x we have

DN (anx)� (N log(N)2 +N2−2ν′)1/2(log(N log(N)2 +N2−2ν′))3/2+ε+N1−2ν′ � N1−ν

for any ν > 0 with ν < ν ′. �
Corollary 7 is sufficient to prove Corollary 3 directly. However, we are aiming for a

proof of the more general Theorem 1. For the purposes of this result, we can specialize
to lacunary sequences an.

Corollary 8. Let ν > 0, let µ be a Kaufman measure and (an) a lacunary sequence
of integers. For µ-almost every x ∈ [0, 1] we have DN (anx)� N1/2(logN)5/2+ν.

Proof. We apply again Theorem 4. Using lacunarity of the sequence (an), we see that
∞∑

n,m=1

|an − am|−η <∞.

Consequently, we can absorb all occurrences of ΨN as well as the final term maxn≤N ψn
in the discrepancy estimate of Theorem 4 into the implied constant. It follows that

DN (anx)� (N log(N)2)1/2 log(N log(N)2)3/2+ε � N1/2(logN)5/2+ν

for µ-almost every x, where ν can be made as small as desired by picking ε small
enough. �

We are now ready to prove the main result, Theorem 1.

Proof of Theorem 1. Let G denote the set from the statement of the theorem and
suppose, contrary to what we are to prove, that dim g < 1. Pick an M ≥ 3 such that
dimFM > dimG (this can be done in light of Jarník’s Theorem). Let µ = µM denote
the Kaufman measure on FM .

Consider first one of the αi, and let (qk) denote the sequence of denominators
of convergents in the simple continued fraction expansion of αi. The sequence qk is
lacunary hence by Corollary 8, for µ−almost every x,

DN (qnx)� N1/2(logN)5/2+ν .

Let ψ(N) = N−1/2+ε for some ε > 0 and consider the interval

IγN = [γ − ψ(N), γ + ψ(N)].

By the definition of discrepancy, for every γ ∈ [0, 1] and µ-almost every β

|#{k ≤ N : {qkβ} ∈ IγN} − 2Nψ(N)| � N1/2(logN)5/2+ν .

Hence,

#{k ≤ N : {qkβ} ∈ IγN} ≥ 2Nψ(N)−KN1/2(logN)5/2+ν

= 2N1/2+ε −KN1/2(logN)5/2+ν ,
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where K > 0 is the implied constant from Corollary 8. Next let Nγ
h denote the

increasing sequences defined by

Nγ
h = min

{
N ∈ N : #{k ≤ N : {qkβ} ∈ IγN} = h

}
.

We claim that the sequence qNγh satisfies (7) for the given αi and every γ with
µ-almost every β. Indeed, since each qNγh is a denominator of a convergent to αi,

qNγh ‖qNγhαi‖ ≤ 1.

Hence,
qNγh ‖qNγhαi‖‖qNγhβ − γ‖ ≤ ‖qNγhβ − γ‖ ≤ (Nγ

h )
−1/2+ε

.

Since αi ∈ Bad, the sequence of denominators of convergents qn is bounded between
the Fibonacci sequence and (2M)n, where M is the maximal partial quotient in the
simple continued fraction expansion of αi. Hence, n � log qn, and it follows that

qNγh ‖qNγhαi‖‖qNγhβ − γ‖ ≤ (log qNγh )−1/2+ε/2,

whenever h is large enough. This establishes our claim and shows that the exceptional
set Ei ⊆ FM for which (7) does not hold has µ(Ei) = 0.

Consider now one of the absolute value sequences, D| = {rk}. If we do not have an
upper geometric growth rate of the sequence, applying Corollary 7 implies that (8)
holds for µ-almost every β. Indeed, let β be such that {rkβ} is uniformly distributed
and suppose to the contrary that for some δ and ε > 0,

rk|rk|Dj‖rkβ − δ‖ > ε,

for every k. Since rk|rk|Dj = 1, this would violate the uniform distribution of the
sequence {rkβ} and complete the proof of the statement.

Next we show that when rk has the right upper growth rate, the stronger statement
(9) holds. By the divisibility condition, this sequence must again be lacunary. Hence,

DN (rnx)� N1/2(logN)5/2+ν .

Defining IδN with δ in place of γ and Ψ(N) as before and repeating the argument from
the Littlewood-case, we see that

#{k ≤ N : {qkβ} ∈ IδN} ≥ 2Nψ(N)−KN1/2(logN)5/2+ν

= 2N1/2+ε −KN1/2(logN)5/2+ν .

As before, we take a sequence N δ
h and note that since rNδh |rNδh |Dj = 1, we immediately

have for µ-almost every β a sequence rNδh satisfying the inequalities (9). Indeed,

rNδh |rNδh |Dj‖rNδhβ − δ‖ ≤ ‖rNδhβ − δ‖ ≤
(
N δ
h

)−1/2+ε
.

Since the upper and lower growth assumptions imply that k � log rk, this implies that

rNδh |rNδh |Dj‖rNδhβ − δ‖ ≤
(
log qNδh

)−1/2+ε
,

whenever h is large enough. The upshot is that the exceptional set E′j ⊆ FM for which
(8) does not hold has µ(E′j) = 0.

To conclude, let E be the set of β ∈ FM for which there is an i or a j such that
either (1) or (5) is not satisfied. Then,

E =
⋃

i

Ei ∪
⋃

j

E′j ,

and therefore µ(E) = 0.
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Finally µ(G) is maximal, so consider the trace measure µ̃ of µ on G, defined by
µ̃(X) = µ(X∩G). It follows from property (i) of Kaufman’s measures that µ is a mass
distribution on [0, 1), and since G is full, µ̃ inherits the decay property of (i) from µ.
By the Mass Distribution Principle it then follows that dim(G) = dim(FM ) > dim(G),
which contradicts our original assumption. Therefore we conclude that dim(G) = 1.

�

4. Concluding remarks

We suspect that the rate of convergence in Theorem 1 can be replaced by (log q)−1,
at least in the case γ = δ = 0 and with the Dj growing at most geometrically.
This is certainly the case with (7) for a single fixed αi as proved in [11]. However
it doesn’t seem possible to prove this using the method we have given here, without
some significant modification.

We suspect that it is possible to improve the discrepancy estimate in Corollary 8
to replace the exponent 5/2 + ν by 3/2 + ν for µM -almost every x. This is a natural
conjecture in view of the Lebesgue-almost sure discrepancy estimates of R. C. Baker
[2]. However, although it is an interesting problem in its own right, for the Littlewood-
type statements this would only give a marginal improvement.
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