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Abstract

For estimating P(Sn > x) by simulation where Sk = Y1 + · · · + Yk with
Y1, . . . , Yn are heavy-tailed with distribution F , (Asmussen and Kroese 2006)
suggested the estimator nF

(
Mn−1∨(x−Sn−1)

)
where Mk = max(Y1, . . . , Yk).

The estimator has shown to perform excellently in practice and has also nice
theoretical properties. In particular, (Hartinger and Kortschak 2009) showed
that the relative error goes to 0 as x→∞. We identify here the exact rate of
decay and propose some related estimators with even faster rates.

1 Introduction

This paper is concerned with the efficient simulation of

z = z(x) = P(Sn > x) ,

where Y1, . . . , Yn are i.i.d. with a common subexponential distribution F , Sn =
Y1 + · · · + Yn and x is large so that z is small (for background on subexponential
distributions, see, e.g., Embrechts et al. (1997), (Asmussen and Albrecher, 2010,
X.1), or Foss et al. (2011)). Recall from the outset the standard fact (or definition
of subexponentiality!) that z ∼ nF (x) as n→∞ where F (x) = 1−F (x) is the tail.

This problem has a long history. As is traditional in the literature, we denote
by a simulation estimator a r.v. Z = Z(x) that can be generated by simulation
and is unbiased, EZ = z. The usual performance measure is the relative error
e(x) = (Var Z)1/2/z. The relative error is bounded if lim supx→∞ e(x) <∞, and the
estimator Z is logarithmically efficient if lim supx→∞ z(x)εe(x) <∞ for all ε > 0.

Efficient estimators have long been known with light tails (see e.g. (Asmussen and
Glynn, 2007, VI.2), Bucklew (1990), Heidelberger (1995), Juneja and Shahabuddin
(2006) for surveys), and are typically based on ideas from large deviations theory
implemented via exponential change of measure. The heavy tailed case is more
recent. In Asmussen et al. (2000), some of the difficulties in a literal translation
of the light-tailed ideas are explained. However, Asmussen and Binswanger (1997)
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gave the first logarithmically efficient estimator for P(S > x) using a conditional
Monte Carlo idea. The idea was further improved in Asmussen and Kroese (2006),
which as of today stands as a model of an efficient and at the same time easily
implementable algorithm, and is also at the core of this paper. The idea is to combine
an exchangeability argument with the conditional Monte Carlo idea. More precisely
(assuming existence of densities to exclude multiple maxima) one has

z = nP(S > x, Mn = Yn) .

where Mk = max
(
Y1, . . . , Yk

)
. An unbiased simulation estimator of z based on sim-

ulated values Y1, . . . , Yn is therefore the conditional expectation

ZAK = nF
(
Mn−1 ∨ (x− Sn−1)

)

of this expression given Y1, . . . , Yn−1, where Sn−1 = Y1 + · · · + Yn−1.This estimator,
baptized the Asmussen-Kroese estimator by the simulation community, is shown in
Asmussen and Kroese (2006) to have bounded relative error and in Hartinger and
Kortschak (2009) to have vanishing relative error (e(x)→ 0), though the argument
for this is rather implicit and no quantitative rates are given.

The contribution of this note is two-fold: to compute the exact error rate of
ZAK in the regularly varying case; and to produce another estimator with a better
rate in some cases. Both aspects combine with ideas of higher order subexponential
methodology (cf. Remark 1). For subexponential distributions with a lighter tail than
regular variation like the Weibull, a corresponding theory is developed in Asmussen
and Kortschak (2012) and summarized in part in Section 5.

For the regularly varying case, our main result is the following:

Theorem 1. Assume f(x) = αL(x)/xα+1. If α > 2 or, more generally, E[Y 2] <∞
then

Var ZAK ∼ n2 Var[Sn−1]f(x)2 = n2(n− 1) Var[Y1]f(x)2.

If α = 2 and E[Y 2] =∞ then

Var ZAK ∼ 2n2(n− 1)f(x)2
∫ x

0

yF (y) dy.

If α < 2 then Var ZAK ∼ n2(n− 1)kαF (x)3 where

kα =
(

2α +
1

3
23α − 22α + α

∫ 1/2

0

(
(1− y)−α − 1

)2
y−α−1dy

)

= α

∫ ∞

0

[
((1− y) ∨ y)−α − 1

]2
y−α−1 dy .

Remark 1. A main idea of higher order subexponential methodology is the Taylor
expansion

F (x− Sn−1) = F (u) + f(x)Sn−1 + · · · (1.1)

which easily leads to the refinement

P(Sn > x) = nF (x) + nf(x)ESn−1 + · · ·
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at least in the regularly varying case, cf. Omey and Willekens (1987), Baltrūnas and
Omey (1998) and Barbe and McCormick (2009). Technically, the Taylor expansion is
only useful for moderate Sn−1, and large values have to be shown to be negligible by a
separate argument; this also is the case in the present paper. One may note that (1.1)
is only useful for heavy-tailed distributions where typically F (x)� f(x)� f ′(x)�
· · · – for light-tailed distributions like the exponential typically F (x), f(x), f ′(x), . . .
have the same magnitude.

Remark 2. The rates for Var ZAK in Theorem 1 have to be compared with the
bounded relative error rate L(x)2/x2α. For α > 2, one sees an improvement to
L(x)2/x2α+2, for α < 2 to L(x)3/x3α. In Section 3, we exhibit an estimator improving
this rate for α > 2 and in Section 4 one for 1 < α < 2.

The feature of vanishing relative error is quite unusual. The few further examples
we know of are Blanchet and Glynn (2008) and Dupuis et al. (2007) in the setting
of dynamic importance sampling, though it should be remarked that the algorithms
there are much more complicated than those of this paper and that the rate results
are not very explicit.

Remark 3. In applications to ruin theory and the M/G/1 queue, the number n of
terms in Sn is an independent r.v. With some effort, our theory can be refined to
this case, but we will not give the details here.

2 Proof of theorem 1

Proof of Theorem 1. We will use the notation S(n−2) = Sn−1 −Mn−1 and An,x ={
Mn−1 ≤ x/2(n− 1)

}
. Then the the Asmussen-Kroese estimator can be written as

ZAK = n(X1 +X2) where

X1 = I(Acn,x)F
(
Mn−1 ∨ (x− Sn−1)

)
, X2 = I(An,x)F

(
Mn−1 ∨ (x− Sn−1)

)
.

Recall that the density of Mn−1 is (n − 1)f(y)F (y)n−2 and hence the tail is ∼
(n− 1)F (y). We have

E[Xk
1 ] = E

[
F (Mn−1 ∨ x− Sn−1)k; S(n−2) >

√
x, Acn,x

]

+ E
[
F (Mn−1 ∨ x− Sn−1)k; S(n−2) ≤

√
x, Acn,x

]
.

The first term is a O
(
F (x)k+1F (

√
x)
)
, since we can bound F (·) by O

(
F (x)

)
and

the event S(n−2) >
√
x, An,x has probability O

(
F (x)F (

√
x)
)
since it occurs only

if at least one in the i.i.d. sample Y1, . . . , Yn−1 that is not the maximum exceeds√
x/(n− 2) and another exceeds x/2.
For the second term, note that hereMn−1 ≤ Sn−1 ≤Mn−1 +

√
x. Hence an upper
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bound is

E
[
F
(
Mn−1 ∨ (x−Mn−1 −

√
x)
)k

; Acn,x
]

=

∫ (x−√x)/2

x/(2(n−1))
F (x−√x− y)k(n− 1)f(y)F (y)n−2 dy

+

∫ ∞

(x−√x)/2
F (y)k(n− 1)f(y)F (y)n−2 dy

∼ (n− 1)
(
α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−kα dy +

1

k + 1
2α(k+1)

)
F (x)k+1

where we used
∫ (x−√x)/2

x/(2(n−1))
F (x−√x− y)kf(y)F (y)n−2 dy

∼
∫ (x−√x)/2

x/(2(n−1))
F (x−√x− y)kf(y) dy

=

∫ (1−1/√x)/2

1/(2(n−1))
F (x−√x− xz)kf(xz)x dz

∼ xF (x)kf(x)

∫ (1−1/√x)/2

1/(2(n−1))
(1− 1/

√
x− z)−αkz−α−1 dz

∼ αF (x)k+1

∫ 1/2

1/(2(n−1))
(1− z)−αkz−α−1 dz.

Omitting
√
x gives the same lower bound, so

E[Xk
1 ] ∼ (n− 1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−kα dy +

1

k + 1
2α(k+1)

)
F (x)k+1.

Next consider X2. If Mn−1 ≤ x/2(n− 1), then Sn−1 ≤ x/2 and so

X2 = I(An,x)F (x− Sn−1)
= F (x)− I(Acn,x)F (x) + I(An,x)Sn−1f(Ξ) = F (x)−X2,1 +X2,2

(2.1)

where x− Sn−1 ≤ Ξ ≤ x. Now

E[Xk
2,1] = F (x)kP(Acn,x) ∼ (n− 1)2α(n− 1)αF (x)k+1.

To evaluate E[Xk
2,2], we split the expectation into Sn−1 ≤ εx and Sn−1 ≥ εx, for

some 1/(2(n − 1)) > ε > 0. When Sn−1 ≤ εx, we have f(x) ≤ f(Ξ) ≤ f
(
(1 − ε)x

)
.

This and monotone convergence gives

lim
ε→0

lim
x→∞

E
[
Skn−1f(Ξ)k; Sn−1 ≤ εx

]

f(x)kE
[
Skn−1; Sn−1 ≤ εx

] = 1 .

4



Further by (Bingham et al., 1989, Proposition 1.5.8 and 1.5.9a) and partial integra-
tion

E
[
Skn−1; Sn−1 ≤ εx

]
= k

∫ εx

0

yk−1F Sn−1(y)dy − (εx)kF Sn−1(εx)

∼





ESkn−1 EY k
1 <∞,

k
∫ x
0
yk−1F Sn−1(y)dy α = k,

εk−α α
k−αx

kF Sn−1(x) α < k.

If εx ≤ Sn−1 ≤ x/2 then it holds uniformly in Sn−1 that

lim
x→∞

Sn−1f(Ξ)

F (x)
= lim

x→∞
F (x− Sn−1)− F (x)

F (x)
= (1− Sn−1/x)−α − 1 ,

and hence

E
[
Skn−1f(Ξ)k; Sn−1 > εx, Mn−1 ≤ x/(2(n− 1))

]

∼ F (x)kE
[((

1− Sn−1/x)−α − 1
)k

; Sn−1 > εx, Mn−1 ≤ x/(2(n− 1))
]
.

As above we can split the expectation into S(n−2) ≤
√
x and S(n−2) >

√
x, such that

we can prove that for x→∞

E[
(
(1− Sn−1/x)−α − 1

)k
; Sn−1 > εx, Mn−1 ≤ x/(2(n− 1))

]

∼ E[
(
(1−Mn−1/x)−α − 1

)k
; εx < Mn−1 ≤ x/(2(n− 1))

]

∼ (n− 1)

∫ x/(2(n−1))

εx

(
(1− y/x)−α − 1

)k
f(y) dy

∼ (n− 1)x

∫ 1/(2(n−1))

ε

(
(1− y)−α − 1

)k
f(yx) dy

∼ (n− 1)xf(x)

∫ 1/(2(n−1))

ε

(
(1− y)−α − 1

)k
y−α−1 dy

∼ α(n− 1)F (x)

∫ 1/(2(n−1))

ε

(
(1− y)−α − 1

)k
y−α−1 dy .

Here ( · )k is of order yk at y = 0. Since ε was arbitrary, it follows that if E[Y 2] <∞

E[Xk
2,2] ∼ f(x)kE[Skn−1] .

If α = 2 and E[Y 2] =∞, (Bingham et al., 1989, Proposition 1.5.9a) yields

E[X2
2,2] ∼ 2f(x)2(n− 1)

∫ x

0

yF (y) dy .

If α < 2,

E[X2
2,2] ∼ α(n− 1)F (x)3

∫ 1/(2(n−1))

0

(
(1− y)−α − 1

)2
y−α−1 dy.
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Further if E[Y1] <∞, then E[X2,2] ∼ f(x)E[Sn−1]. If α = 1 and E[Y1] =∞, then

E[X2,2] ∼ (n− 1)f(x)

∫ x

0

F (y) dy .

If α < 1, then

E[X2,2] ∼ α(n− 1)

∫ 1/(2(n−1))

0

(
(1− y)−α − 1

)
y−α−1 dy F (x)2.

Now recall the formula

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov[X, Y ] .

Using

E[X1X2] = E[X2,1X2,2] = 0 , E[X2] ∼ F (x) , E[X2,1]E[X2,2] = o(E[X2
2,2]) ,

we get

1

n2
Var[ZAK] = Var[X1] + Var[X2,1] + Var[X2,2]− 2F (x)E[X1].

Collecting all terms we get that for α ≥ 2 Var[X2,2] dominates the other terms
asymptotically and for α < 2 we get

1

n2
Var ZAK ∼ (n− 1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−2αdy + 1

3
23α + (2(n− 1))α

− 2α

∫ 1/2

1/(2(n−1))
y−α−1(1− y)−αdy − 22α

+ α

∫ 1/(2(n−1))

0

(
(1− y)−α − 1

)2
y−α−1dy

)
F (x)3

= (n− 1)

(
α

∫ 1/2

1/(2(n−1))
y−α−1

(
(1− y)−2α − 2(1− y)−α

)
dy + 1

3
23α

+ (2(n− 1))α − 22α + α

∫ 1/(2(n−1))

0

(
(1− y)−α − 1

)2
y−α−1dy

)
F (x)3

= (n− 1)

(
− α

∫ 1/2

1/(2(n−1))
y−α−1dy + 1

3
23α + (2(n− 1))α − 22α

+ α

∫ 1/2

0

(
(1− y)−α − 1

)2
y−α−1dy

)
F (x)3

= (n− 1)

(
2α +

1

3
23α − 22α + α

∫ 1/2

0

(
(1− y)−α − 1

)2
y−α−1dy

)
F (x)3.

Remark 4. In the case α = 2, E[Y 2] =∞, the above discussion leads to asking for
more explicit growth rates of

I(x) =

∫ x

0

yF (y) dy =

∫ x

0

L(y)

y
dy .
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An obvious conjecture is that the order is L(x) log x. But this turns out not be true
for all L(x). For a more detailed analysis, assume that L(x) ∼ c exp{

∫ x
a
e(t)/t dt}

where e(t) is differentiable and a, c > 0. Further we assume that I(x)→∞. If there
exists a κ 6= −1 with

lim
t→∞

e′(t)t

e(t)2
→ −κ

then a partial integration argument yields I(x) ∼ L(x)/(κ+ 1)e(x). For example,
if L(x) ∼ (log x)β we can choose e(x) = β/ log x and κ = 1/β, so that hence I(x) ∼
L(x) log(x)/β + 1. Another example is L(x) ∼ exp

{
(log log x)γ

}
where γ > 0. Then

e(x) = γ(log log x)γ−1/ log x, κ = 0 and I(x) ∼ L(x log x/γ(log log x)γ−1.
On the other hand if e(x) log x → τ and τ 6= −1, it can be shown that I(x) ∼

L(x) log(x)/τ + 1. Again for L(x) ∼ (log x)β we can choose e(x) = β/ log x and
τ = β and find as above that I(x) ∼ L(x log x/γ(log log x)γ−1.

3 An improved estimator for α > 2

In the case of finite second moment we get that the error is basically given by the
variance of the term X2,2 in (2.1). Since for large values of x X2,2 is close to Sn−1f(x)
a natural idea is to use this approximation as a control variate which results in the
estimator

Z = ZAK + n (ESn−1 − Sn−1) f(x). (3.1)

The next theorem shows that this estimator is indeed an improvement over ZAK.

Theorem 2. Assume f ′(x) = −α(α − 1)L(x)/xα+2. If α > 4 or, more generally,
E[Y 4] <∞ then

Var Z ∼ 1
4
n2 Var[S2

n−1]f
′(x)2.

If α = 4 and E[Y 4] =∞ then

Var Z ∼ n2(n− 1)f ′(x)2
∫ x

0

y3F (y)dy.

If 2 < α < 4 then Var Z ∼ n2(n− 1)kαF (x)3 where

kα = α

∫ ∞

0

(
((1− z) ∨ z)−α − 1− αz

)2
z−α−1dz .

Proof. The proof is a variation of the proof of Theorem 1. Define An,x =
{
Mn−1 ≤

x/2(n−1)
}
. At first note that Var Z = n2 Var Z1 where Z1 = F (x−Sn−1∨Mn−1)−

Sn−1f(x). We will use

Z1 = Z1I
(
Acn,x

)
+ Z1I (An,x) = X1 +X2.
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Similar to the proof of Theorem 1 we get that

EXk
1 = E

[(
F (x− Sn−1 ∨Mn−1)− Sn−1f(x)

)k
;Acn,x

]

∼ E
[(
F (x−Mn−1 ∨Mn−1)−Mn−1f(x)

)k
;Acn,x

]

= x(n− 1)

∫ ∞
1

2(n−1)

[
F ((x− xz) ∨ xz)− xzf(x)

]k
f(xz)F (xz)n−2dz

∼ α(n− 1)F (x)k+1

∫ ∞
1

2(n−1)

[
((1− z) ∨ z)−α − αz

]k
z−α−1dz.

If Mn−1 ≤ x/2(n− 1), then Sn−1 ≤ x/2 and so

X2 = F (x)− F (x)I
(
Acn,x

)
+
(
F (x− Sn−1)− F (x)− Sn−1f(x)

)
I (An,x)

= F (x)− I(Acn,x)F (x)− 1
2
I(An,x)S

2
n−1f

′(Ξ) = F (x)−X2,1 +X2,2.

where x− Sn−1 ≤ Ξ ≤ x.
Proceeding as in the proof of Theorem 1 we get that

E[Xk
2,1] = F (x)kP(Acn,x) ∼ (n− 1)2α(n− 1)αF (x)k+1.

To evaluate E[Xk
2,2], we split the expectation into Sn−1 ≤ εx and Sn−1 ≥ εx, for some

1/(2(n− 1)) > ε > 0. When Sn−1 ≤ εx, we have −f ′(x) ≤ −f ′(Ξ) ≤ −f ′
(
(1− ε)x

)
.

This and monotone convergence gives

lim
ε→0

lim
x→∞

E
[
S2k
n−1f

′(Ξ)k; Sn−1 ≤ εx
]

f ′(x)kE
[
S2k
n−1; Sn−1 ≤ εx

] = 1 .

Further by (Bingham et al., 1989, Proposition 1.5.8 and 1.5.9a) and partial integra-
tion

E
[
S2k
n−1; Sn−1 ≤ εx

]
= 2k

∫ εx

0

y2k−1F Sn−1(y)dy − (εx)2kF Sn−1(εx)

∼





ES2k
n−1 EY 2k

1 <∞,

2k

∫ x

0

y2k−1F Sn−1(y)dy α = 2k,

ε2k−α
α

2k − αx
2kF Sn−1(x) α < 2k.

If εx ≤ Sn−1 ≤ x/2 then it holds uniformly in Sn−1 that

−S2
n−1f

′(Ξ)

2F (x)
∼ F (x− Sn−1)− F (x)− Sn−1f(x)

F (x)
∼ (1− Sn−1/x)−α − 1− αSn−1

x
,

and hence
1
2
E
[
S2k
n−1(−f(Ξ))k; Sn−1 > εx, Mn−1 ≤ x/(2(n− 1))

]

∼ F (x)kE
[(

1− Sn−1/x)−α − 1− αSn−1/x
)k

; Sn−1 > εx, Mn−1 ≤ x/(2(n− 1))
]

∼ F (x)kE[
(
(1−Mn−1/x)−α − 1− αMn−1/x

)k
; εx < Mn−1 ≤ x/(2(n− 1))

]

∼ α(n− 1)F (x)k+1

∫ 1/(2(n−1))

ε

(
(1− y)−α − 1− αy

)k
y−α−1 dy .
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Here ( · )k is of order y2k at y = 0. Since ε was arbitrary, it follows that if E[Y 4] <∞

E[Xk
2,2] ∼

1

2k
(−f ′(x))kE[S2k

n−1] .

If α = 4 and E[Y 4] =∞, (Bingham et al., 1989, Proposition 1.5.9a) yields

E[X2
2,2] ∼ (n− 1)f ′(x)2

∫ x

0

y3F (y) dy .

If α < 4,

E[X2
2,2] ∼ α(n− 1)F (x)3

∫ 1/(2(n−1))

0

(
(1− y)−α − 1− αy

)2
y−α−1 dy.

Further since E[Y 2
1 ] <∞, E[X2,2] ∼ −1

2
f ′(x)E[S2

n−1]. Finally with the same collect-
ing of terms as in the proof of Theorem 1 the Theorem follows.

4 An improved estimator for 1 < α < 2

If EY 2
1 = ∞ then the estimator (3.1) has Var(Z) = ∞ so this estimator is no

improvement for α < 2. Nevertheless it is an interesting question if we can improve
on ZAK also in this case. In this section we will consider the case of 1 < α < 2
where we have a finite mean but an infinite second moment. We will denote with
Y(1) ≤ · · · ≤ Y(n) the order statistic of Y1, . . . , Yn, with Mk = max1≤i≤k Yi and with
Sk =

∑k
i=1 Yi. At first note that

P(Sn > x) = P
(
Sn > x, Y(n−1) ≤

x

2(n− 1)

)
(4.1)

+ P
(
Sn > x, Y(n−1) >

x

2(n− 1)

)
. (4.2)

We will use separate estimators for (4.1) and (4.2). By conditioning on the two
largest elements and using symmetry

P
(
Sn > x, Y(n−1) >

x

2(n− 1)

)
= n(n− 1)P

(
Y1 >

x

2(n− 1)

)2

pn.x

where

pn,x = P
(
Sn > x, min

i∈{n−1,n}
Yi ≥Mn−2

∣∣ min
i∈{n−1,n}

Yi >
x

2(n− 1)

)
.

Denote with Zc(x) the crude Monte Carlo estimator of pn,x, i.e. we first simulate
Yn−1, Yn conditioned to exceed x/2(n−1) then the rest normal and use the estimator

Zc(x) = I (Sn > x) I (min(Yn−1, Yn) ≥Mn−2)

[note that conditioned r.v. generation is easy whenever inversion is available, cf.
(Asmussen and Glynn, 2007, p. 39)]. The estimator

Zb(x) = n(n− 1)F (x/(2(n− 1)))2Zc(x)
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is an unbiased estimator for (4.2) and as x→∞
Var Zb(x) = Var

[
Zs(x)

]
(n(n− 1))2F (x/2(n− 1))4

. 24αn2(n− 1)4α+2F (x)4.

So we have to find an estimator for (4.1). By conditioning on the largest element
and using symmetry we get that

P
(
Sn > x,X(n−1) ≤

x

2(n− 1)

)
= nP

(
Sn > x,Mn−1 ≤

x

2(n− 1)

)
.

Let f̃ be an importance sampling density of the form L̃(x)/xα̃ with α̃ < 2α − 2

and P̃, Ẽ the corresponding probability- and expectation operators. We will assume
that f̃ is bonded away from zero on finite intervals. We now combine the estimator
which conditions on Sn−1 with importance sampling and a control variate to get the
estimator

Zs(x) =
(
F (x− Sn−1)− F (x)

)
LIn,x + F (x)P(In,x)

where L =
∏n−1

i=1 f(Yi)/f̃(Yi) is the likelihood ratio and In,x is the indicator of the
event Mn−1 ≤ x/2(n− 1).

Since f(x) ∼ supz≥x f(z) (e.g. (Bingham et al., 1989, Theorem 1.5.3)), we get
by Taylor expansion

Ẽ
[(
F (x− Sn−1)− F (x)

)
LIn,x

]
. f(x/2)Ẽ[Sn−1LIn,x] ≤ f(x/2)ESn−1

and with the same arguments

Ẽ
[(
F (x− Sn−1)− F (x)

)
LIn,x

]2 . f(x/2)2Ẽ[S2
n−1L

2] .

We have that

Ẽ[S2
n−1L

2] = (n− 1)Ẽ
[
Y 2
1

f(Y1)
2

f̃(Y1)2

n∏

i=2

f(Yi)
2

f̃(Yi)2

]

+ (n− 1)(n− 2)Ẽ
[
Y1
f(Y1)

2

f̃(Y1)2
Y2
f(Y2)

2

f̃(Y2)2

n∏

i=3

f(Yi)
2

f̃(Yi)2

]
.

Since for k = 0, 1, 2

Ẽ
[
Y k f(Yi)

2

f̃(Yi)2

]
=

∫
yk
f(y)2

f̃(y)
dy < ∞

(the integrand is regularly varying with index k − 2α − 2 + α̃ + 1 < −1), it follows
by independence that Ẽ[S2

n−1L
2] <∞ and hence Ṽar(Zs(x)) = O

(
f(x)2

)
. Thus we

have shown

Theorem 3. Assume f(x) = αL(x)/xα+1. If 1 < α < 2 then the estimator Z(x) =
Zb(x) + nZs(x) is an unbiased estimator for P(Sn > x) with

Var(Z(x)) = O
(
f(x)2

)

Remark 5. Note that for a fixed number of simulations the confidence interval (of
fixed level) for the estimator Z(x) has a length of order f(x). This is the same order
as the error of the asymptotic approximation P(Sn > x)− nF (x).
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5 The weibull case

We finally give a brief survey of our results for the Weibull case F (x) = e−x
β with

0 < β < 1 (related distributions, say modified by a power, are easily included, but for
simplicity, we refrain from this). We refer to Asmussen and Kortschak (2012) for a
more complete treatment. The density is f(x) = βxβ−1e−x

β and f ′(x) = −p(x)F (x)
where p(x) = β2x2(β−1) + β(1− β)xβ−2.

Theorem 4. If 0 < β < log(3/2)/ log(2), then the Asmussen-Kroese estimator’s
variance is asymptotically given by

Var(ZAK) ∼ n2 Var(Sn−1)f(x)2

Note that log(3/2)/ log(2) ≈ 0.585 is also found to be critical in Asmussen and
Kroese (2006) as the threshold for logarithmic efficiency to hold.

As in Section 3 we can use the estimator defined in (3.1) to improve on ZAK.

Theorem 5. Assume that 0 < β < log(3/2)/ log(2) ≈ 0.585. Then the estimator Z
in (3.1) has vanishing relative error. More precisely,

Var(Z(x)) ∼ n2

4
Var(S2

n−1)f
′(x)2.

The estimator Z in (3.1) has the form ZAK + α(Sn−1−ESn−1), so it is a control
variate estimator, using Sn−1 as control for ZAK. It is natural to ask whether the
α = −nf(x) at least asymptotically coincides with the optimal

α∗ = −Cov(ZAK, Sn−1)/Var(Sn−1)

(cf. (Asmussen and Glynn, 2007, V.2)). The following lemma shows that this is the
case:

Lemma 6. Cov(ZAK, Sn−1) = nVar(Sn−1)f(x) + o
(
f(x)

)
.
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