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Abstract

Wicksell’s classical corpuscle problem deals with the retrieval of the size
distribution of spherical particles from planar sections. We discuss the problem
in a local stereology framework. Each particle is assumed to contain a reference
point and the individual particle is sampled with an isotropic random plane
through this reference point. Both the size of the section profile and the
position of the reference point inside the profile are recorded and used to
recover the distribution of the corresponding particle parameters. Theoretical
results concerning the relationship between the profile and particle parameters,
unfolding of the arising integral equations, uniqueness issues and domain of
attraction relations are discussed. We illustrate the approach by reconstructing
from simulated data using numerical unfolding algorithms.

Keywords: Wicksell’s corpuscle problem; local stereology; inverse problems;
numerical unfolding, stereology of extremes

1 Introduction and account of main results

This work discusses Wicksell’s corpuscle problem in a local stereology framework,
where the size distribution of spherical particles is recovered from plane sections
through reference points. In order to describe similarities and differences of the local
and the classical Wicksell problem, we start with a short outline of the latter.

Wicksell’s classical corpuscle problem, described very figuratively as “tomato
salad problem” by Günter Bach, asks how to recover the size distribution of random
balls in R3 from the observed size distribution of two-dimensional section profiles.
Although the stereological literature often refers to ball-shaped particles as “spheres”,
we decided to adopt terminology from pure mathematics, calling the solid particles
“balls”, and reserving the word “sphere” for the boundary of a ball. Assuming that
the “density of the centers and the distribution of the sizes being the same in all
parts of the body [where the observation is taken]”, Wicksell showed Wicksell (1925)
that the density fr of the profile radii r is given by

fr(x) =
x

ER

∫ ∞

x

1√
y2 − x2

dFR(y), (1.1)
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where FR is the cumulative distribution function of the radius R of the balls in R3,
and ER is the usual expectation of R. Stoyan & Mecke Mecke and Stoyan (1980) made
Wicksell’s arguments rigorous showing that (1.1) actually holds for all stationary
particle processes of non-overlapping balls, when R has a finite mean. The right
hand side of (1.1) is essentially an Abel integral transform of FR. It can be inverted
explicitly, and this shows in particular that FR is determined by Fr.

Relation (1.1) is the result of two mutually counteracting sampling effects: As
the probability that a ball is hit by the plane is proportional to its radius, the radius
distribution of the intersected balls is size weighted, preferring large balls. On the
other hand, the profile radius is always smaller than the radius of the intersected
ball, as the section plane almost surely misses the ball’s center. Already Wicksell
was aware of the fact that these two effects can annihilate each other. When R
follows a Rayleigh distribution (the distribution of the length of a centered normally
distributed two-dimensional vector), r also follows this distribution, with the same
parameter. The Rayleigh distribution is the only reproducing distribution in this
sense; see Drees and Reiss (1992). If Rw denotes the radius-weighted radii distribution
with cumulative distribution function

FRw(x) =
1

ER

(
xFR(x)−

∫ x

0

FR(s) ds

)
,

x ≥ 0, the two sampling effects can also be expressed by the relation

r = ΛRw, (1.2)

where Λ is a stochastic variable with Lebesgue-density s 7→ 1[0,1](s)s/
√

1− s2 that
is independent of Rw; see Baddeley and Vedel Jensen (2005). This also gives the
well-known moment relations

m̃k = ck+1
M̃k+1

M̃1

, (1.3)

k = −1, 0, 1, 2, . . ., where m̃k and M̃k are the kth moments of r and R, respectively,
and

ck =

√
π

2

Γ ((k + 1)/2)

Γ (k/2 + 1)
. (1.4)

The inversion of the integral equation (1.1) is ill-posed, which can informally be
described as ’small deviations of the data can lead to arbitrarily large deviations of
the solution’. There exist several methods, both distribution-free (non-parametric)
and parametric ones, for numerically solving Wicksell’s classical problem. Examples
of distribution-free methods are finite difference methods, spectral differentiation
and product integration methods and kernel methods. Parametric methods can be
divided into maximum likelihood methods and methods that only use the moment
relations. All methods have their advantages and disadvantages and none appears to
be generally best. References for the respective methods and an overview of existing
ones are given in for example (Stoyan et al., 1995, Section 11.4.1), Cruz-Orive (1983),
Blödner et al. (1984), Anderssen and Jakeman (1975a) and (Anderssen and De Hoog,
1990, p. 373-410).
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Stereology of extremes has received much interest due to applications in ma-
terial science; see Takahashi and Sibuya (2002) for an application to metallurgy.
The maximum size of balls in Wicksell’s classical problem is studied in Drees and
Reiss (1992), Takahashi and Sibuya (1996), Takahashi and Sibuya (1998) and Taka-
hashi and Sibuya (2001). There it is shown that FR and Fr belong to the same
type of extreme value distribution. Extremes of the size and shape parameters of
spheroidal particles are studied in Hlubinka (2003a), Hlubinka (2003b), Hlubinka
(2006) and Beneš et al. (2003).

More detailed reviews of the classical Wicksell problem can be found in (Stoyan
et al., 1995, Section 11.4), Cruz-Orive (1983), (Ohser and Mücklich, 2000, Chapter 6)
and earlier contributions, that are listed in these sources.

In the above description of Wicksell’s problem, we adopted the common model-
based approach, where the particle system is random, and the probe can be taken
with an arbitrary (deterministic) plane due to stationarity. Jensen Jensen (1984)
proved that (1.1) also holds in a design-based setting, where the particle system is
deterministic – possibly inhomogeneous – but the plane is randomized. In order to
obtain a representative sample, it is enough to choose an FUR (f ixed orientation
uniform random) plane. Inspired by local stereology, we discuss here a design-based
sampling scheme, where each particle contains a reference point and the individual
particle is sampled with an isotropic plane through that reference point. This design
is tailor-made for applications e.g. in biology, where cells often are sampled using a
confocal microscope by focusing on the plane through the nucleus or the nucleolus of
a cell; see the monograph Jensen (1998) on local stereology. To our knowledge, the
first explicit mention of Wicksell’s problem in a local setup is Jensen (1991), where
it is remarked that the problem is trivial whenever the reference point coincides
with the ball’s center, as the size distributions of balls and section profiles are then
identical. This being obvious, we want to show here that the local Wicksell problem
is far from trivial if this condition is violated.

Although biological application suggests to restrict considerations to R3, we will
consider particles in n-dimensional space intersected by hyperplanes, as the general
theory does not pose any essential extra difficulties. Like in the classical setting, we
assume that the particles are (approximate) balls, and in order to incorporate the
natural fluctuation, we assume that both the radius of the ball and the position of the
reference point in the ball are random. This way, a ball-shaped particle is described
by two quantities: firstly its random radius R, the size of the ball, and the distance
of the reference point from the center of the ball. It turns out to be favorable to
work with the relative distance Q ∈ [0, 1] instead, meaning that QR is the distance
of the reference point to the ball’s center. The variable Q can be considered as shape
descriptor. We do not take into account the direction of the reference point relative
to the ball’s center, as this direction appears to be of minor interest. In addition
it cannot be determined from isotropic sections, unless we would also register the
orientation of the section plane (which we will not do here). If a ball with a given
reference point is intersected by an isotropic hyperplane through the reference point
(independent of the ball), an (n − 1)-dimensional ball is obtained. We let r be its
radius and q be the relative distance of the reference point to its center.

Our first result, Theorem 3.1, shows that the joint distributions of (r, q) and
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(R,Q) are connected by an explicit integral transform. Here and in the following we
assume that all balls have a positive radius, and that the reference point does almost
surely not coincide with the center of a ball, that is, we agree on P(Q = 0) = 0. The
last assumption is not essential, and most of our results can be extended to the case
P(Q = 0) > 0, as outlined in Remark 3.2. Like in the classical Wicksell problem
we show that the marginals of r and q always have probability densities fr and fq,
respectively, and we determine their explicit forms in Corollary 3.4. However, the
joint distribution of (r, q) need not have a density. Corollary 3.4 also shows that fq
only depends on the distribution of Q and not on R, which explains why we are
working with relative distances. In Proposition 3.5 we show that

r = ΓR (1.5)

with a stochastic variable Γ, whose density can be given explicitly. This is in analogy to
(1.2) in the classical case. However, there is no size-weighting in our local stereological
design, and the variable Γ is now depending on the distribution of Q. Thus, when R
and Q are independent, so are R and Γ, and moment relations in analogy to (1.3) are
readily obtained: if mk and Mk are the kth moments of r and R, respectively, then

mk = ck(Q)Mk, (1.6)

k = 0, 1, 2, . . .. The constants ck(Q) depend on the distribution of Q and are given in
Remark 3.6. However, (1.6) cannot be applied directly to obtain (estimates of the)
moments Mk, as ck(Q) depends on the shape of the full particle. Corollary 5.2 shows
that ck(Q) can be expressed by the distribution of q, making it possible to estimate
both mk and ck(Q) from the section profiles and thus to access Mk. Simulation
studies showed that this estimation procedure is quite stable, as described after
Corollary 5.2.

We then turn to uniqueness in Section 4. That the distribution of Q is uniquely
determined by the distribution of q follows from the fact that the two distributions
are connected by an Abel type integral equation. It can be inverted explicitly; see
Proposition 5.1 for n = 3. Theorem 4.1 shows that even the joint distribution of
(R,Q) is uniquely determined by the distribution of the profile quantities (r, q), but
only under the assumption that R and Q are stochastically independent. The two
marginals of (r, q) do not uniquely determine (R,Q) without this extra assumption,
as shown by an example after Theorem 4.1. It is an open problem whether the
joint distribution of (r, q) determines the joint distribution of (R,Q) without the
independence assumption.

To reconstruct FR and FQ from simulated data, when R and Q are independent,
we chose to use distribution-free methods. Maximum likelihood methods and method
of moments can though also be used as for the classical Wicksell problem. In Section 6
we describe the implementation of a Scheil-Schwartz-Saltykov type method Saltykov
(1974). Following Cruz-Orive (1983), the method can be classified as a finite difference
method, more specifically a ’successive subtraction algorithm’. The data is grouped
and the distributions FQ and FR discretized. Then Fq written in terms of FQ, Fr
written in terms of FR,Q, respectively, become systems of linear equations, which can
be solved. We carried out a number of stochastic simulation studies which illustrate
the feasibility of the approach. A few reconstructions are reported in Figures 2 and 3.
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In Section 7 we discuss practical examples and then turn to stereology of extremes
in Section 8. Similar results as in the classical case are obtained. Proposition 8.1
shows that if the particle parameters, R and Q, are independent, FR and Fr belong
to the same type of extreme value distribution. An analogous result holds for the
shape parameters. To our knowledge, stereology of extremes in a local setting has
only been treated in Pawlas (2012). There the shape and size parameters of spheroids
are studied but the isotropic section plane is always taken through the center of the
spheroid.

2 Preliminaries

Throughout we let Rn denote the n-dimensional Euclidean space and O its origin.
The Euclidean scalar product is denoted by 〈·, ·〉 and the Euclidean norm by ‖·‖.
We let ei be the vector in Rn with 1 in the ith place and zeros elsewhere. For a set
Y ⊆ Rn, we define

Y + x = {y + x | y ∈ Y }, x ∈ Rn, αY = {αy | y ∈ Y }, α > 0. (2.1)

We use ∂Y for the boundary and 1Y for the indicator function of Y . The unit ball
in Rn is Bn = {x ∈ Rn : ‖x‖ ≤ 1} and the boundary of it is the unit sphere (in Rn)
Sn−1, Sn−1 = {x ∈ Rn : ‖x‖ = 1}. A ball in Rn of radius R centred at O is denoted
by RBn, in accordance to (2.1). We write σn for the surface area of the unit ball
in Rn, i.e. σn = Hn−1

n (Sn−1), where Hd
n is the d-dimensional Hausdorff measure in Rn.

When n is clear from the context, we abbreviate Hd
n(du) by dud. For p = 0, 1, . . . , n

let

Lnp[O] = {Lnp[O] ⊆ Rn : Lnp[O] is a p-dim. linear subspace},
Lnp = {Lnp ⊆ Rn : Lnp is a p-dim. affine subspace}.

be the family of all p-dimensional linear, respectively affine, subspaces of Rn. These
spaces are equipped with their standard topologies (Schneider and Weil (2008)) and
we denote their Borel σ-algebras by B(Lnp[O]), B(Lnp), respectively. The spaces are
furthermore endowed with their natural invariant measures, and we write dLnp[O]

and dLnp , respectively, when integrating with respect to these measures. We use the
same normalization as in Schneider and Weil (2008)

∫

Ln
p[O]

dLnp[O] = 1.

A random subspace Lnp[O] is called isotropic random (IR) if and only if its distribution
is given by

PLn
p[O]

(A) =

∫

Ln
p[O]

1A dLnp[O], A ∈ B(Lnp[O]).

Similarly, a random flat Lnp ∈ Lnp is called isotropic uniform random (IUR) hitting a
compact object Y if and only if its distribution is given by

PLn
p
(A) = c

∫

Lnp
1A∩{Ln

p∈Lnp :Ln
p∩Y 6=∅} dL

n
p , A ∈ B(Lnp ), (2.2)
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where c is a normalizing constant. We let x|Lnp[O] be the orthogonal projection of
x ∈ Rn onto Lnp[O]. We furthermore adopt the convention of writing v⊥ for the
hyperplane with unit normal v ∈ Sn−1. We use B(z; a, b) to denote the incomplete
Beta function, given by

B(z; a, b) =

∫ z

0

ta−1(1− t)b−1dt, 0 < z < 1, a, b > 0.

When z = 1 we write B(a, b). Note in particular that B(1/2, (n− 1)/2) = σn/σn−1.
For an arbitrary function f we let f+(x) = max{f(x), 0} be its positive part. Given
a random variable X, its characteristic function (or Fourier transform) is defined by

ϕX(t) = EeitX , t ∈ R.

The reader is referred to Haan (1970) for the following important results from
stereology of extremes.

Let X1, . . . , Xn be independent and identically distributed random variables with
distribution function F . Denote the maximum of X1, . . . , Xn by X(n). Then we have
FX(n)

(x) = F n(x). If there exist sequences of constants {an} (an > 0, n = 1, 2, . . .)
and {bn} such that

lim
n→∞

F n(anx+ bn) = L(x), x ∈ R,

F is said to belong to the domain of attraction of the distribution function L. We
refer to {an} and {bn} as normalizing constants. We follow the notation in Haan
(1970) and write F ∈ D(L) if F is in the domain of attraction of L. Up to affine
transformation, L must be one of the extreme value distributions: Fréchet, Weibull
and Gumbel. The following notations are used for these distributions:

• L1,γ(x) = exp(−x−γ), x, γ > 0 (Fréchet),

• L2,γ(x) = exp(−(−x)γ), x ≤ 0, γ > 0 (Weibull),

• L3(x) = exp(−e−x), x ∈ R (Gumbel).

Let ωF = sup{x : F (x) < 1} be the right endpoint of F . There are sufficient and
necessary conditions for F ∈ D(L). These conditions are (γ > 0)

• F ∈ D(L1,γ) ⇔ ωF =∞, limx→∞
1−F (yx)
1−F (x)

= y−γ for all y > 0.

• F ∈ D(L2,γ) ⇔ ωF <∞, limx→0+
1−F (ωF−yx)
1−F (ωF−x)

= yγ for all y > 0.

• F ∈ D(L3) ⇔ limx→ωF−
1−F (x+yb(x))

1−F (x)
= e−y for all y ∈ R. The function b is

some auxiliary function (it can be chosen such that it is differentiable for
x < ωF with limx→ωF− b

′(x) = 0 and limx→∞ b(x)/x = 0 if ωF = ∞, or
limx→ωF− b(x)/(ωF − x) = 0 if ωF <∞).

The following lemma is a slight generalisation of (Haan, 1970, Lemma 1.2.1) and the
proof is analogous to the one given there. A similar result can be found in (Kötzer
and Molchanov, 2006, Lemma 2.4).
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Lemma 2.1. Let f and g be positive functions on R2 and a ∈ R, such that
∫ ω

a

f(s, t)dt <∞,
∫ ω

a

g(s, t)dt <∞

for some ω ∈ (a,∞] and all s ≥ a. If

lim
(s,t)→(ω,ω)
s≤t<ω

f(s, t)

g(s, t)
= c, where c ∈ [0,∞]. (2.3)

then

lim
s→ω−

∫ ω
s
f(s, t)dt∫ ω

s
g(s, t)dt

= c.

An analogous result holds when s approaches ω from the right.

3 The direct problem

Consider a random ball in Rn with positive radius, centered at O′ and containing the
origin. Let R and Q denote the stochastic variables giving the radius of the ball, and
the relative distance of the center of the ball from O, respectively. Intersect the ball
with an IR hyperplane, Lnn−1[O], independent of the ball. Then an (n−1)-dimensional
ball is obtained. Let r be its radius and q = 1

r
‖O′|Lnn−1[O]‖ the relative distance of

its center from O, see Figure 1. Note that r is almost surely positive.

−→

Figure 1: To the left: RB3 + O′ with reference point (bold). The full line segment has
length R and the broken line segment has length RQ. To the right: Section plane with
profile. The full line segment and the broken line segment have length r and rq, respectively.

When Q = 0 the ball is centered at the origin and all hyperplanes give equivalent
(n− 1)-dimensional balls of radius R. We exclude this throughout, i.e. we assume
that

P(Q > 0) = 1. (3.1)

This assumption can easily be relaxed, see Remark 3.2. The cumulative distribution
function F(r,q) of (r, q) is given in the following theorem.

Theorem 3.1. Let RBn +O′ be a random ball in Rn containing O with ‖O′‖ = RQ,
and let

Z = Z(R,Q, x, y) =
1

Q2
max

{(R2 − x2)+

R2
,
(Q2 − y2)+

1− y2

}
(3.2)
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for x ∈ [0,∞), y ∈ [0, 1). If Lnn−1[O] is an IR hyperplane, independent of RBn +O′,
we have

F(r,q)(x, y) = 1− σn−1

σn
E
[
B
(

1−
(

1− Z
)+

;
1

2
,
n− 1

2

)]
, (3.3)

for x ≥ 0 and 0 ≤ y < 1. For y = 1, we obtain the marginal distribution function of
r by

Fr(x) = F(r,q)(x, 1) = 1− σn−1

σn
E
[
B
(

1−
(

1− 1

Q2R2
(R2−x2)+

)+

;
1

2
,
n− 1

2

)]
, (3.4)

where x ≥ 0.

Proof. To avoid confusion we adopt the notation EX , EX,Y for the expectation with
respect to the random variableX and the pair of random variables (X, Y ), respectively.
Assume without loss of generality that O′ = RQen. (Otherwise both RBn +O′ and
the section plane can be appropriately rotated. As the rotation is independent of
the section plane, the rotated plane is still IR.) Let v be an isotropic vector on Sn−1

representing the unit normal direction of Lnn−1[O]. Applying Pythagoras’ Theorem,
we obtain

r = R

√
1−Q2 〈en, v〉2 and q = Q

√
1− 〈en, v〉2

1−Q2 〈en, v〉2
. (3.5)

Using conditional expectation we have for x ∈ [0,∞) and 0 ≤ y ≤ 1, that

F(r,q)(x, y) = ER,QEv
[
1
{
R

√
1−Q2 〈en, v〉2 ≤ x, Q

√
1− 〈en, v〉2

1−Q2 〈en, v〉2
≤ y
} ∣∣∣ R,Q

]

= ER,Q
1

σn

∫

Sn−1

1
{
R

√
1−Q2 〈en, v〉2 ≤ x,

1− 〈en, v〉2

1−Q2 〈en, v〉2
≤ y2

Q2

}
dvn−1.

We use cylindrical coordinates (Müller, 1966, p.1), writing v = ten +
√

1− t2ω, with
ω ∈ Sn−1 ∩ e⊥n and t ∈ [−1, 1]. Using 〈en, v〉 = t and Hn−2

n−1(Sn−1 ∩ e⊥n ) = σn−1, the
cumulative distribution function becomes

F(r,q)(x, y) = ER,Q
σn−1

σn

∫ 1

−1

1
{
R
√

1−Q2t2 ≤ x,
1− t2

1−Q2t2
≤ y2

Q2

}(
1− t2

)n−3
2 dt.

The integrand is an even function of t. This and rearranging the indicator functions
gives

F(r,q)(x, y) =
2σn−1

σn
ER,Q

∫ 1

0

(
1
{
t ≥ 1

QR

√
(R2 − x2)+, y = 1

}

+ 1{t ≥
√
Z, y < 1}

) (
1− t2

)n−3
2 dt,

where Z is given by (3.2). Using the substitution s = t2 the cumulative distribution
function of (r, q), under the assumption 0 ≤ y < 1, becomes

F(r,q)(x, y) =
σn−1

σn
ER,Q

∫ 1

min{1,Z}
s

1
2
−1(1− s)n−1

2
−1ds

= 1− σn−1

σn
ER,Q

[
B
(

1−
(
1− Z

)+
;
1

2
,
n− 1

2

)]
.
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Using similar calculations, we obtain (3.4) for the marginal distribution of r.

Remark 3.2. If P(Q > 0) < 1, the result of Theorem 3.1 and, similarly, results
in the subsequent sections can be generalized by conditioning on the event Q > 0.
When Q = 0, we have r = R, and hence

F(r,q)(x, y) = P(Q > 0)
(

1− σn−1

σn
E
[
B
(

1−
(
1− Z

)+
;
1

2
,
n− 1

2

)∣∣∣Q > 0
])

+ P(R ≤ x,Q = 0),

when x ≥ 0, 0 ≤ y < 1. A similar modification allows to generalize (3.4).

The distribution functions given by (3.3) and (3.4) simplify considerably when
n = 3.

Corollary 3.3. When n = 3,

F(r,q)(x, y) = E
(
1−
√
Z
)+
, 0 ≤ x, 0 ≤ y < 1, (3.6)

and
Fr(x) = E

[(
1− 1

RQ

√
(R2 − x2)+

)+]
, x ≥ 0. (3.7)

From (3.3) we immediately infer that the marginal distribution of q is given by

Fq(y) = 1− σn−1

σn
E
[
B
(

1−
(

1− (Q2 − y2)+

Q2(1− y2)

)+

;
1

2
,
n− 1

2

)]
, 0 ≤ y < 1, (3.8)

which does not depend on the distribution of R. This is an important fact, which we
will use later on. It follows from (3.5) that one of the variables r and q determines
the other whenever Q and R are given. This implies that a joint probability density
function of (r, q) need not exist. However, it is elementary to show that the marginal
probability density functions exist. Let φ(·) be any smooth function having a compact
support in (0,∞). Then Eφ(X) =

∫∞
0
φ′(x)(1−FX(x))dx, where X = r, respectively

q. Using Fubini and Tonelli arguments, integration by parts and Leibnitz’s rule we
obtain the following corollary.

Corollary 3.4. Adopt the set-up in Theorem 3.1. The probability density functions
of r and q exist. The function

fr(x) =
2σn−1

σn
E
[1{R

√
1−Q2 ≤ x < R}x
QR
√
R2 − x2

(
1− R2 − x2

Q2R2

)(n−3)/2]
, (3.9)

x ≥ 0, is a density function of r and

fq(y) =
2σn−1

σn
E
[
1{0 < y < Q}

( y
Q

)n−2 (1−Q2)(n−1)/2

√
Q2 − y2(1− y2)n/2

]
, (3.10)

0 ≤ y < 1, a density function of q.
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We remark that when R and Q are independent and n = 3, (3.9) simplifies

fr(x) = xER
[ 1{x < R}
R
√
R2 − x2

(
EQ

1{R
√

1−Q2 ≤ x}
Q

)]
, x ≥ 0. (3.11)

As mentioned in (1.2) the radius of the section profile can be written as a multiple of
the size-weighted radius Rw of the intersected ball in the classical Wicksell problem. A
similar result holds in the local Wicksell problem but here the radii of the intersected
balls are not size-weighted.

Proposition 3.5. If the assumptions of Theorem 3.1 hold, then

r = ΓR,

where the random variable Γ has density

fΓ(z) =
2σn−1

σn
E
[
1{
√

1−Q2 ≤ z < 1} z

Qn−2
√

1− z2
(Q2 − 1 + z2)

n−3
2

]
, (3.12)

z ≥ 0. If R and Q are independent, then R and Γ are independent.

Proof. Let h(x|R = R0), x ≥ 0, be the conditional density of r given that a ball of
radius R0 is cut by the section plane. By (3.9) we have that

h(x|R = R0) =
2σn−1

σn
E
[1{R0

√
1−Q2 ≤ x < R0}x
QR0

√
R2

0 − x2

(
1− R2

0 − x2

Q2R2
0

)n−3
2
∣∣∣R = R0

]
,

x ≥ 0, is a version of this density. We note that h satisfies the scaling property

h(x|R = R0) =
1

R0

h
( x
R0

∣∣∣R = 1
)
.

Let Γ be the stochastic variable defined by Γ = r/R. Using conditional expectation,
conditioning on R = R0, and then the substitution s = r/R0, we obtain

P(Γ ≤ z) = EP(r ≤ zR0|R = R0) = E[

∫ z

0

R0h(sR0|R = R0)ds],

for z ≥ 0. Applying the scaling property and conditional expectation we see that
a density of Γ is given by (3.12). When Q and R are independent, R and Γ are
independent by construction.

The cumulative distribution function of the random variable Γ in Proposition 3.5
is immediately obtained using (3.4) with R = 1,

FΓ(z) = 1− σn−1

σn
E
[
B
(

1−
(

1− (1− z2)

Q2

)+

;
1

2
,
n− 1

2

)]
, 0 ≤ z < 1. (3.13)
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Remark 3.6. As Γ in Proposition 3.5 only depends on (R,Q) through Q we may
write ck(Q) = EΓk, k = 0, 1, 2, . . ., for the kth moment of Γ. These moments are
given by

ck(Q) =
2σn−1

σn
E
[ 1

Qn−2

∫ 1

√
1−Q2

zk+1

√
1− z2

(Q2 − 1 + z2)(n−3)/2dz
]
, (3.14)

for k = 0, 1, 2, . . .. In particular for n = 3, the substitution x = z2, yields

ck(Q) = 1
2
E
[ 1

Q

(σk+3

σk+2

−B
(

1−Q2,
k + 2

2
,
1

2

))]
. (3.15)

Denote the kth moment of R by Mk, and that of r by mk. When R and Q are
independent, Proposition 3.5 gives us the following moment relation

mk = ck(Q)Mk, (3.16)

where ck(Q) is given by (3.14).

4 Uniqueness

The distribution Fq uniquely determines FQ. This can be seen from (3.10), which
can be rewritten as

fq(y) =
2σn−1y

n−2

σn(1− y2)n/2
1{y > 0}

∫ 1

y

(1− s2)
n−1
2

sn−2
√
s2 − y2

dFQ(s).

This is essentially an Abel transform of the positive measure (1− s2)
n−1
2 /sn−2dFQ(s).

The Abel transform has a unique solution, see e.g. (Gorenflo and Vessella, 1991,
Section 1.2.), and hence Fq uniquely determines FQ. An explicit solution is given in
Proposition 5.1 for n = 3.

When the spatial parameters R and Q are stochastically independent, we also
can show that Fr determines FR uniquely.

Theorem 4.1. Adopt the set-up in Theorem 3.1. If R and Q are independent, F(r,q)

uniquely determines F(R,Q).

Proof. From Proposition 3.5 we have that r = ΓR and thus log r = log Γ + logR.
When R and Q are independent, Γ and R are independent and hence the characteristic
functions obey

ϕ− log r(t) = ϕ− log Γ(t)ϕ− logR(t), t ∈ R. (4.1)

We want to show that the characteristic function ϕ− log Γ is an analytic function. We
note that F− log Γ(z) = 1− FΓ(e−z). Using the dominated convergence theorem, we
get limz→0 fΓ(z) = 0. Hence, applying l’Hopital’s rule, we obtain

lim
z→∞

1− F− log Γ(z)

e−z
= lim

z→0

FΓ(z)

z
= lim

z→0
fΓ(z) = 0,

11



that is 1− F− log Γ(z) = o(e−z) as z →∞. As F− log Γ(−z) = 0 when z ≥ 0, we have

1− F− log Γ(z) + F− log Γ(−z) = o(e−z).

Therefore ϕ− log Γ is an analytic function (Lukacs, 1960, p.137). This implies that
ϕ− log Γ has only countably many zeros. Therefore, in view of (4.1), ϕ− log r uniquely
determines the continuous function ϕ− logR. It then follows from the Fourier unique-
ness theorem that Fr determines FR uniquely. As Fq uniquely determines FQ, this
finishes the proof.

It is of interest to ask if the same holds without the independence assumption:
Does the joint distribution F(r,q) uniquely determine F(R,Q) when the independence
assumption is dropped? This is an open question, but the following example shows
that the answer is negative if only the marginals Fq and Fr are given.

Example 4.2. Assume n = 3 and let the joint density of (R,Q) be given by

f(R,Q)(t, s) = 3s1{0 < t < s < 1}. (4.2)

Then the two marginals are

fQ(s) = 3s2 1{0 < s < 1}, fR(t) = 3
2
(1− t2) 1{0 < t < 1}.

Inserting (4.2) into (3.9) and using elementary but tedious calculations, we obtain
that fr is given by

fr(x) = 3 1{x < 1} tan−1
(√

1− x2/x
)

− 1{1/2 < x < 1}3x(log(1 +
√

1− x2)− log x)

− 1{x < 1/2}3x
[
log
(√

(1−
√

1− 4x2)/2 +

√
(1−

√
1− 4x2)/2− x2

)

+ log(1 +
√

1− x2)− log
(√

(1 +
√

1− 4x2)/2 +

√
(1 +

√
1− 4x2)/2− x2

)

− log x− ((1 +
√

1− 4x2)/2)−1/2 + ((1−
√

1− 4x2)/2)−1/2

]
. (4.3)

We now show that there is another pair (R′, Q′) of size and shape variables which
are stochastically independent, but lead to the same section marginals Fq and Fr
as does the pair (R,Q) with density (4.2). As FQ′ is uniquely determined by Fq, we
necessarily have FQ′ = FQ. If we assume that R′ has a density fR′ , this and (3.9)
imply that this density must satisfy

fr(x) = 3
2
x3

∫ ∞

x

fR′(s)

s3
√
s2 − x2

ds. (4.4)

Define
h(x) =

2

3x3
fr(x) and g(s) =

fR′(s)

s3
.

Equation (4.4) is an Abel transform of g(s) with solution given by

fR′(s) = −2s4

π

∫ ∞

s

h′(x)√
x2 − s2

dx, (4.5)
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see e.g. (Gorenflo and Vessella, 1991, p.35). Hence, we would define fR′ by (4.5) if
we can guarantee that this function is a density. Inserting fr given by (4.3) it can
be shown that the function h′(x) is negative for all x. Furthermore, using Tonelli’s
theorem, we obtain

∫ ∞

0

fR′(s)ds = − 2

π

∫ ∞

0

h′(x)

∫ x

0

s4

√
x2 − s2

dsdx

= −3

8

∫ ∞

0

h′(x)x4dx.

Using partial integration and inserting for h, we find that fR′ integrates to one.
Hence fR′ is a density. We thus have shown that populations of balls with size-shape
parameters (R,Q) and (R′, Q′), respectively, lead to the same size-shape distributions
of their profiles, although F(R,Q) 6= F(R′,Q′).

5 The unfolding problem

We mentioned in the introduction that there exists a reproducing distribution for
the radii in the classical Wicksell problem (the Rayleigh distribution). In the local
Wicksell problem a reproducing radii distribution does typically not exist. When
the balls are not a.s. centered at O, the radii of the section profiles are smaller than
the radii of the respective balls with positive probability. This implies that there
does not exist a reproducing distribution in the local Wicksell problem under the
assumption P(Q > 0) > 0.

In the previous section we saw that under the assumption that R and Q are
independent, F(r,q) uniquely determines F(R,Q). In this section we will present analyt-
ical unfolding formulae and moment relations. In order to avoid technicalities, we
restrict attention to the three-dimensional case, which is most relevant for practical
applications. The following proposition gives FQ in terms of Fq.

Proposition 5.1. If the assumptions of Theorem 3.1 hold, and n = 3, then

1− FQ(y) = −2y3

π

(∫ 1

y

(s2 − 2)(1− Fq(s))
s3
√

1− s2
√
s2 − y2

ds−
∫ 1

y

√
1− s2

s2
√
s2 − y2

dFq(s)
)
, (5.1)

y ∈ [0, 1).

Proof. Let 0 ≤ y < 1. From (3.8) we know that the distributions of Q and q are
connected by

Fq(y) = 1− E
[√(Q2 − y2)+

Q
√

1− y2

]
.

Using integration by parts and rearranging, we obtain

1− Fq(y) =
y2

√
1− y2

∫ 1

y

1

s2
√
s2 − y2

(1− FQ(s))ds. (5.2)

Define

h(y) =

√
1− y2

y2
(1− Fq(y)) and g(s) =

1− FQ(s)

s2
. (5.3)
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Equation (5.2) is an Abel transform of g(s) with solution given by

g(y) = − 2

π

d
dy

∫ 1

y

sh(s)√
s2 − y2

ds = −2y

π

∫ 1

y

h′(s)√
s2 − y2

ds; (5.4)

see for instance (Gorenflo and Vessella, 1991, p.35). Inserting for g and the derivative
of h, (5.1) is obtained.

Using similar arguments as in the proof of Proposition 5.1, we obtain that when
Q has a density fQ, it is given by

fQ(s) =
8s2

π

d2

d(s2)2

∫ 1

s

t
√

1− t2√
t2 − s2

(1− Fq(t))dt, 0 ≤ s < 1. (5.5)

We can use (5.4) to write the moments of Γ in Proposition 3.5 as functions of q only.

Corollary 5.2. Adopt the set-up in Theorem 3.1. For n = 3 the moments of the
random variable Γ in Proposition 3.5, can be written as

EΓk = 1− k

π
E[Γ̃(q)], k = 0, 1, 2, . . . , (5.6)

where

Γ̃(y) =

∫ y

0

√
1− s2

s

∫ s2

0

√
t(1− t) k−2

2√
s2 − t

dtds. (5.7)

Proof. Using (3.13) with n = 3 we note that the distribution function of Γ can be
written as

FΓ(z) = E
[(

1− 1

Q

√
1− z2

)+]
=
√

1− z2

∫ 1

√
1−z2

g(s)ds, 0 ≤ z < 1,

where g(s) is given by (5.3). Using the first equality in (5.4) and substituting t = 1−z2,
the moments of Γ are given by

EΓk =

∫ 1

0

kzk−1(1− FΓ(z))dz = 1− k

π

∫ 1

0

(1− t) k−2
2

√
t

∫ 1

√
t

yh(y)√
y2 − t

dydt.

Inserting h and using Tonelli’s theorem we arrive at

EΓk = 1− k

π

∫ 1

0

√
1− y2

y
(1− Fq(y))

∫ y2

0

√
t(1− t) k−2

2√
y2 − t

dtdy

= 1− k

π
E[Γ̃(q)],

where Γ̃ is given by (5.7).

14



If k = 2m, m ≥ 1, equation (5.6) simplifies to

EΓ2m = 1− m

π

m−1∑

j=0

(
m− 1

j

)
(−1)j

σ2j+4

σ2j+3

E
[
B
(
q2; j + 1, 3

2

)]
,

and in particular
EΓ2 = 1

3
(2 + E[(1− q2)3/2]).

Thus the average surface area of balls in R3 can be estimated ratio unbiasedly by

12π
N

∑N
i=1 r

2
i

2 + 1
N

∑N
i=1(1− q2

i )
3/2
,

where (r1, q1), . . . , (rN , qN) are N independent observations of profile parameters.
When Q has a density, similar arguments as applied in the proof of (5.5) can be

used to show that the moments of Γ can be written as

EΓk = 1
2π
E[Γ̃1(q2)] + 1

π
E[Γ̃2(q2)], (5.8)

where

Γ̃1(y) =

∫ y

0

(1− t)k/2√
t

B
(y − t

1− t ,
1

2
,
1

2

)
dt, Γ̃2(y) =

√
1− y

∫ y

0

(1− t)k/2√
t
√
y − t

dt.

By (3.16) and Corollary 5.2, the moments of R can be estimated from the section
profiles when R and Q are independent. A number of stochastic simulation studies
were carried out, varying FQ, FR and the number of observations. The function
quad in the language and interactive environment Matlab was used to determine
Γ̃1 and Γ̃2 numerically. We used (5.8) instead of the more general expression given in
Corollary 5.2 as it is more straight-forward to implement. Then Mk was estimated
by dividing the crude Monte Carlo (CMC) estimate of mk by the CMC estimate
obtained for EΓk using (5.8). The simulations suggest that the estimation procedure
is quite stable for moments up to 7th order. The difference between the coefficient of
error of this estimator and of Mk estimated by CMC, using the simulated particle
radii, is typically less than 10% for k = 1, . . . , 7. This seems to be true irrespective
of the choice of FQ and even after adding moderate measurement errors to r and q.

6 Reconstruction

In this section we will discuss the estimation of FR and FQ from data. We assume
throughout this section that R and Q are stochastically independent, and that n = 3.
As mentioned in the introduction, there exist various methods for numerically solving
Wicksell’s classical problem but none of these seems to be superior to all the others.
In Blödner et al. (1984) six distribution-free methods are compared using several error
criteria as well as studying their numerical stability and sensitivity to underlying
distributions. Considering all criteria, the Scheil-Schwartz-Saltykov method (S3M)
from Saltykov (1974) is favoured, in particular when the underlying distribution
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is smooth. The method can be classified as a finite difference method, which are
relatively easy to implement. We therefore chose to implement a variation of S3M.
The method and its advantages and disadvantages are discussed in Blödner et al.
(1984). Although this method is rather crude, we obtain satisfactory results. We have
also studied the product integration method explained in Anderssen and Jakeman
(1975b). The method has been claimed to yield accurate results for Wicksell’s classical
problem, but our reconstruction of FQ based on Proposition 5.1 is not satisfactory.
The reconstruction F̂Q is not monotonic and fluctuates far too much around FQ to
be of any use. We have also implemented kernel density estimators for obtaining F̂Q
but without obtaining stable results.

In the following we describe the implementation of S3M in our setup. We start
using S3M to obtain a discrete approximation of FQ based on the Abel-type rela-
tion (5.2). By discretizing FQ, the integral becomes a finite sum. This produces a
system of linear equations that can be solved. After having obtained an estimate F̂Q
we can apply S3M again, this time discretizing FR to solve (3.7) numerically (where
F̂Q is substituted for the unknown FQ). We used Matlab for all simulations and for
generating the figures.

Assume that we observe N pairs (r1, q1), . . . , (rN , qN ) of size and shape variables
in independent sections of (independent) particles. Assume further that all observed
r’s, are less than or equal to a constant c. Divide the intervals (0, 1] and (0, c] into
classes of constant width. Let k1 denote the number of classes for q, k2 the number of
classes for Q, k3 for r and k4 for R. Different to Blödner et al. (1984) we allow k1, k3,
to be greater than k2, k4, respectively. Define ∆i = 1/ki, i = 1, 2, ∆i = c/ki, i = 3, 4.
Let ni = P(q ∈ ((i− 1)∆1, i∆1]) be the probability that q is in class i, i = 1, . . . k1,
and Nj = P(Q ∈ ((j − 1)∆2, j∆2]) the probability that Q is in class j, j = 1, . . . k2.

The S3M method approximates FQ(u) by the step function

u 7−→
∑

j:∆2j≤u
Nj.

Note that we use the standard definition of a cumulative distribution function and
hence the notation is slightly different from Blödner et al. (1984) where left continuous
distribution functions are considered. Inserting the approximation for FQ in (5.2)
and simplifying, we obtain

1− Fq(i∆1) ≈ 1√
1− i2∆2

1∆2

k2∑

j=1

Nj 1{i∆1 < j∆2}
√
j2∆2

2 − i2∆2
1

j
.

Hence ni can be approximated by

ni = (1− Fq((i− 1)∆1))− (1− Fq(i∆1)) ≈
k2∑

j=1

bijNj, (6.1)
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for i = 1, . . . , k1, where

bij =
1

j∆2

(
1{(i− 1)∆1 < j∆2}

√
j2∆2

2 − (i− 1)2∆2
1√

1− (i− 1)2∆2
1

− 1{i∆1 < j∆2}
√
j2∆2

2 − i2∆2
1√

1− i2∆2
1

)
,

for j = 1, . . . , k2, i = 1, . . . , k1 − 1, and

bk1j =
1

j∆2

1{(k1 − 1)∆1 < j∆2}
√
j2∆2

2 − (k1 − 1)2∆2
1√

1− (k1 − 1)2∆2
1

, j = 1, . . . , k2.

The relative frequencies n̂i = 1
N

∑N
j=1 1{qj ∈ ((i− 1)∆1, i∆1]} are approximations of

the left hand side of (6.1). Using these and solving the corresponding linear system
yields therefore approximations N̂j of the unknown probabilities Nj, j = 1, . . . , k2.
The function

F̂Q(u) =
∑

j:∆2j≤u
N̂j (6.2)

is then the estimator for FQ.
In a second step (3.7) is inverted using S3M. We note that (3.7) can be rewritten

as

Fr(x) = (1− FR(x)) + E
[
1{x < R}

√
R2 − x2

R

∫ 1

1
R

√
R2−x2

1

s2
(1− FQ(s))ds

]
,

for x ∈ [0,∞). Approximating FQ by F̂Q given by (6.2) we find

E
[
1{x < R}

√
R2 − x2

R

∫ 1

1
R

√
R2−x2

1

s2
(1− F̂Q(s))ds

]

= 1−
k2−1∑

j=1

N̂j
1

∆2j

∫ x/
√

1−∆2
2j

2

x

x2

t2
√
t2 − x2

(1− FR(t))dt

− FR(x)− N̂k2

1

∆2k2

∫ ∞

x

x2

t2
√
t2 − x2

(1− FR(t))dt.

Hence

Fr(x) ≈ 1

3

(
2−

k2−1∑

j=1

N̂j
1

∆2j

∫ x/
√

1−∆2
2j

2

x

x2

t2
√
t2 − x2

(1− FR(t))dt

− N̂k2

1

∆2k2

∫ ∞

x

x2

t2
√
t2 − x2

(1− FR(t))dt
)
. (6.3)

Now, in analogy to the treatment of FQ, we use the S3M method to approximate FR:
Let ma = P(r ∈ ((a−1)∆3, a∆3]) be the probability that r is in class a, a = 1, . . . , k3,
and Mb = P(R ∈ ((b− 1)∆4, b∆4]) the probability that R is in class b, b = 1, . . . , k4.
The S3M method approximates FR(u) by

u 7−→
∑

b:∆4b≤u
Mb.
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Using this in (6.3) we obtain, again using elementary calculations, that

Fr(a∆3)

≈ − 1

3

[k2−1∑

j=1

N̂j
1

∆2j

k4∑

b=1

Mb 1{∆4b ≥ a∆3}
√

1−
(

min
{∆2

4b
2

a2∆2
3

,
1

1−∆2
2j

2

})−1

+ N̂k2

1

∆2k2

k4∑

b=1

Mb 1{∆4b ≥ a∆3}
√

1− a2∆2
3

∆2
4b

2
− 2

]
.

We are thus lead to the following linear system involving the relative frequencies
m̂a = 1

N

∑N
j=1 1{rj ∈ ((a− 1)∆3, a∆3]}

m̂a = F̂r(a∆3)− F̂r((a− 1)∆3) =

k4∑

b=1

cabM̂b, (6.4)

for a = 1, . . . , k3, where

cab =
1

3

k2−1∑

j=1

N̂j
1

∆2j

×
[
1{∆4b ≥ (a− 1)∆3}

√
1−

(
min

{ ∆2
4b

2

(a− 1)2∆2
3

,
1

1−∆2
2j

2

})−1

− 1{∆4b ≥ a∆3}
√

1−
(

min
{∆2

4b
2

a2∆2
3

,
1

1−∆2
2j

2

})−1
]

+
N̂k2

3∆2k2

[
1{∆4b ≥ (a− 1)∆3}

√
1− (a− 1)2∆2

3

∆2
4b

2

− 1{∆4b ≥ a∆3}
√

1− a2∆2
3

∆2
4b

2

]

for a = 1, . . . , k3, b = 1, . . . , k4. The linear system of equations can be solved for the
unknown M̂b approximating Mb, b = 1, . . . , k4.

In our simulations, we used N independent realizations of (ri, qi) to estimate n̂i,
i = 1, . . . , k1 and m̂a, a = 1, . . . , k3. Then we solved (6.1) using constrained minimum
least squares, lsqlin in Matlab. To ensure that the estimated distribution functions
are non-decreasing, we required that N̂j ≥ 0, j = 1, . . . , k2, M̂b ≥ 0, b = 1, . . . , k4.
Non-negativity constraints have also been suggested in Taylor (1983) for the classical
S3M. The distribution function FQ is then estimated by (6.2). Using the estimate
F̂Q, (6.4) can be solved for M̂b, b = 1, . . . , k4, in exactly the same way and FR is then
estimated by F̂R(u) =

∑
b:∆4b≤u M̂b.

The simulations in Blödner et al. (1984) show that classes with overestimation
of the distribution function are usually close to classes with underestimation and
the authors refer to this phenomenon quite intuitively as waves. In order to decrease
the occurrence of waves, we allowed k1, k3, to be greater than k2, k4, respectively.
This does though not seem to be of great importance in our setting. We ran two
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types of simulations, one with the number of classes equal and another one with the
number of classes unequal. Then the Kullback Leibler divergence between the true
probability distribution and each of the estimated ones was calculated using KLDiv
in Matlab.The difference was negligible (even after adding independent measurement
errors to rj and qj). Therefore we chose the number of classes equal in the figures
presented below.
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Figure 2: The step function is F̂Q(u) and the dashed curve is FQ(u) when k1 = k2 = 20,
N = 100. To the left Q ∼ unf(0, 1) whereas on the right Q ∼ Beta(2, 5).

Figure 2 shows the comparison between F̂Q and FQ. The values k1 = k2 = 20,
N = 100 were chosen. To the left, Q is uniformly distributed on [0, 1], and to the
right, Q follows the Beta distribution with parameters 2 and 5. Figure 3 shows the
comparison between F̂R and FR. The setup corresponds to the ones in Figure 2 with
c = max{r1, . . . , rN} and k3 = k4 = 20. To the left, R is exponentially distributed
with mean one, and to the right R is uniformly distributed on [0, 10].
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Figure 3: The stepwise function is F̂R(u) and the dashed curve is FR(u) when
c = max{r1, . . . , rN}, N = 100, k1 = k2 = k3 = k4 = 20. One the left side Q ∼ unf(0, 1)
and R ∼ e(1) whereas on the right Q ∼ Beta(2, 5) and R ∼ unf(0, 10).

These results indicate that the S3M method is satisfactory for reconstructing FR
and FQ from simulated data. When the profile variables are measured with random
errors a similar recommendation as in Blödner et al. (1984) applies: the sample size
should be large (more than 400 profile sections) but the number of classes small
(around 7).

19



7 Examples

For illustration we discuss some special cases and variants of the above general
theory. We restrict attention to the three-dimensional case. Recall that we considered
Q to be a variable describing the ’shape’ of the random ball under consideration.
We first show that the formulae simplify if Q is (almost surely) the same for all
particles, meaning that all reference points have the same relative distance from their
respective ball centers.

Example 7.1. Assume that Q = Q0 a.s., Q0 > 0. Then the marginal distribution
function of q given by (5.2) becomes

Fq(y) = 1− 1{y < Q0}
√
Q2

0 − y2

Q0

√
1− y2

.

Furthermore, the moments of Γ in (3.15) simplify to

ck(Q) =
1

2Q0

(σk+3

σk+2

−B
(

(1−Q2
0),

k + 2

2
,
1

2

))
.

For k = 1, 2, we obtain

c1(Q) =
π

4Q0

− sin−1(
√

1−Q2
0)

2Q0

+

√
1−Q2

0

2
, c2(Q) = 1− Q2

0

3
.

The formulae simplify in particular if the reference point lies on the boundary of
the object, that is, when Q0 = 1.

Example 7.2. Let the reference point be located on the boundary of the ball
RB3 +O′. Then Q = 1 a.s. and we immediately obtain from Example 7.1 that q = 1
a.s. and ck(Q) = σk+3/(2σk+2). Note that this constant is the same as ck+1 given
by (1.4), which can be explained by the fact that the section plane is an IUR plane
hitting the ball, as shown in Example 7.4. The moments of Γ can in fact be calculated
explicitly in n-dimensional space and (3.16) becomes

mk =
σn−1σk+n

σnσk+n−1

Mk.

Furthermore (3.11) becomes an Abel transform of the positive measure PR(dt)/t.
Hence, when R has a density function fR, it is given by

fR(t) = −2t2

π

∫ ∞

t

1√
x2 − t2

d
dx

(fr(x)

x

)
dx

= −2t

π

d
dt

∫ ∞

t

fr(x)√
x2 − t2

dx;

see for instance (Gorenflo and Vessella, 1991, p.35).
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In practice a particle may have an easily identifiable kernel that cannot be treated
as a mathematical point. Thus one has to work with a reference set of positive volume.
In general, our methods do not apply in this case, but whenever the reference set is
(approximately) ball-shaped, concentric with the whole particle, and has a radius
proportional to the particle size, our method can be used. We suggest in the following
examples two possible schemes for this situation.

Example 7.3. Begin by assuming that the particle RB3 +O′ contains a reference
set Q0RB3 + O′, Q0 ∈ (0, 1]. The first sampling design we suggest is the choice of
an isotropic plane through a uniformly chosen boundary point of the reference set.
Let L3

2[O] be an IR plane and z a uniformly distributed point on the boundary of the
reference set, chosen independently of L3

2[O]. Define L = L3
2[O] + z and adopt L as the

sectioning plane, that is (r, q) refers to the parameters of the disk (RB3 +O′)∩L. By
construction (r, q) can thus be interpreted as section variables from a local IR plane
through the reference point z, which has relative distance Q0 from the ball’s center.
Hence, we can use the local Wicksell theory directly with Q = Q0. The simplifications
in Example 7.1 apply.

Example 7.4. As in Example 7.3 assume that the particle RB3 + O′ contains a
reference set Q0RB3 + O′, Q0 ∈ (0, 1]. In contrast to Example 7.3 we now use an
IUR section plane L3

2 hitting the reference set. By definition, the distribution of L3
2 is

PL3
2
(A) =

1

2σ3Q0

∫

S2

∫ Q0

−Q0

1A(ru+ u⊥)drdu2, A ∈ B(L3
2).

Using cylindrical coordinates, we have, equivalently

PL3
2
(A) =

1

σ2
3

∫

S2

∫

S2

1A(Q0v + u⊥)du2dv2,

so L3
2 is an isotropic plane through the (independent) point z = Q0v, which is

uniform on the boundary of the reference set. Concluding, we see that L3
2 has the

same distribution as L in Example 7.3. Hence, the two designs lead to the same
sample distribution, and, again, Wicksell’s local theory with Q = Q0 applies.

The last two (coinciding) sampling schemes can in particular be applied when
the reference set is taken to be the whole ball. This is equivalent to choosing Q0 = 1
and the formulae in Example 7.2 can be applied in this case.

8 Stereology of extremes

In some practical applications, for instance when studying damage of materials
Murakami and Beretta (1999), the distribution of the maximal size parameter is of
more interest than the whole distribution. When extremal parameters are studied
based on lower dimensional sections we speak of stereology of extremes. We will here
discuss stereology of extremes in the context of the local Wicksell problem.

We assume that R and Q are independent and that n = 3. Given independent
observations (r1, q1), . . . , (rN , qN ) we are interested in the distribution of the extremal
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particle radius. Therefore relations between the domains of attraction of the dis-
tributions of the size parameters are of interest. These are given in the following
theorem.

Proposition 8.1. Let n = 3, γ > 0, and assume that R and Q are stochastically
independent and have probability densities. The following statements hold

• if FR ∈ D(L1,γ), then Fr ∈ D(L1,γ),

• if FR ∈ D(L2,γ), then Fr ∈ D(L2,γ+1/2),

• if FR ∈ D(L3), then Fr ∈ D(L3).

Proof. Writing out (3.7) explicitly gives

1− Fr(x) =

∫ ∞

x

(√t2 − x2

t

∫ 1

1
t

√
t2−x2

fQ(s)

s
ds+ FQ

(1

t

√
t2 − x2

))
fR(t)dt.

Applying integration by parts on the outer integral, we find that

1− Fr(x) =

∫ ∞

x

x2

t2
√
t2 − x2

(1− FR(t))

∫ 1

1
t

√
t2−x2

fQ(s)

s
dsdt, x > 0. (8.1)

We see from (3.5) that ωFR
= ωFr and we will call this common value ω. Let y > 0

and assume first that FR ∈ D(L1,γ) and this implies ω =∞. Using (8.1) and then
the substitution t = yz in the numerator, we obtain after some simplification

lim
x→∞

1− Fr(yx)

1− Fr(x)
= lim

x→∞

∫∞
x

x2

t2
√
t2−x2 (1− FR(yt))

∫ 1
1
t

√
t2−x2

fQ(s)

s
dsdt

∫∞
x

x2

t2
√
t2−x2 (1− FR(t))

∫ 1
1
t

√
t2−x2

fQ(s)

s
dsdt

.

We note that

lim
(x,t)→(∞,∞)
x≤t<∞

1
t2
√
t2−x2 (1− FR(yt))

∫ 1
1
t

√
t2−x2

1
s
fQ(s)ds

1
t2
√
t2−x2 (1− FR(t))

∫ 1
1
t

√
t2−x2

1
s
fQ(s)ds

= lim
x→∞

1− FR(yx)

1− FR(x)
.

Hence using Lemma 2.1, and FR ∈ D(L1,γ), we find

lim
x→∞

1− Fr(yx)

1− Fr(x)
= lim

x→∞
1− FR(yx)

1− FR(x)
= y−γ,

that is Fr ∈ D(L1,γ).
Let us now assume that FR ∈ D(L2,γ) implying in particular that 0 < ω < ∞.

From (8.1) we have

lim
x→0+

1− Fr(ω − yx)

1− Fr(ω − x)

= lim
x→0+

y
∫ x

0
(ω−yx)2(1−FR(ω−zy))

(ω−zy)2
√

(ω−zy)2−(ω−yx)2

∫ 1
1

(ω−zy)

√
(ω−zy)2−(ω−yx)2

fQ(s)

s
dsdz

∫ x
0

(ω−x)2(1−FR(ω−z))
(ω−z)2

√
(ω−z)2−(ω−x)2

∫ 1
1

(ω−z)

√
(ω−z)2−(ω−x)2

fQ(s)

s
dsdz

,
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where we have substituted t = ω − zy in the numerator and t = ω − z in the
denominator. As

lim
(x,z)→(0,0)

0<z≤x

(ω−yx)2(1−FR(ω−zy))

(ω−zy)2
√

(ω−zy)2−(ω−yx)2

∫ 1
1

(ω−zy)

√
(ω−zy)2−(ω−yx)2

fQ(s)

s
ds

(ω−x)2(1−FR(ω−z))
(ω−z)2

√
(ω−z)2−(ω−x)2

∫ 1
1

(ω−z)

√
(ω−z)2−(ω−x)2

fQ(s)

s
ds

= lim
x→0+

1√
y

(1− FR(ω − xy))

(1− FR(ω − x))

we have, using Lemma 2.1 and FR ∈ D(L2,γ), that

lim
x→0+

1− Fr(ω − yx)

1− Fr(ω − x)
= y lim

x→0+

1√
y

(1− FR(ω − xy))

(1− FR(ω − x))
= yγ+1/2.

Thus, Fr ∈ D(L2,γ+1/2).
Assume next that FR ∈ D(L3) and let the auxiliary function b be differen-

tiable for x < ω with limx→ω− b′(x) = 0 and limx→∞ b(x)/x = 0 if ω = ∞ or
limx→ω− b(x)/(ω − x) = 0 if ω <∞. Using (8.1) we have

lim
x→ω−

1− Fr(x+ yb(x))

1− Fr(x)

= lim
x→ω−

∫ ω
x+yb(x)

(x+yb(x))2(1−FR(t))

t2
√
t2−(x+yb(x))2

∫ 1√
1−(x+yb(x))2/t2

1
s
fQ(s)dsdt

∫ ω
x

x2(1−FR(t))

t2
√
t2−x2

∫ 1√
1−(x/t)2

1
s
fQ(s)dsdt

.

Due to the properties of b there exists an x0 ∈ (0, ω) such that g : x 7→ x+ yb(x) is a
strictly increasing function on [x0, ω); see for instance Drees and Reiss (1992). Using
the substitution t = z + yb(z) in the numerator and noting that from the properties
of b we have limx→ω− g−1(ω) = ω, we obtain

lim
x→ω−

1− Fr(x+ yb(x))

1− Fr(x)

= lim
x→ω−

(
1 + y

b(x)

x

)2

∫ ω
x

(1−FR(z+yb(z)))
∫ 1√

1−(x+yb(x))2/(z+yb(z))2
1
s
fQ(s)ds

(z+yb(z))2
√

(z+yb(z))2−(x+yb(x))2
(1 + yb′(z))dz

∫ ω
x

(1−FR(z))

z2
√
z2−x2

∫ 1√
1−(x/z)2

1
s
fQ(s)dsdz

.

Considering the quotient of the integrands, we have

lim
(x,z)→(ω,ω)
x≤z<ω

(1−FR(z+yb(z)))
∫ 1√

1−(x+yb(x))2/(z+yb(z))2
1
s
fQ(s)ds

(z+yb(z))2
√

(z+yb(z))2−(x+yb(x))2
(1 + yb′(z))

(1−FR(z))

z2
√
z2−x2

∫ 1√
1−(x/z)2

1
s
fQ(s)ds

= lim
(x,z)→(ω,ω)
x≤z<ω

(
1−

(x
z

)2) 1
2
(

1 + y
b(z)

z

)−3(
1−

(x
z

)2(1 + yb(x)/x

1 + yb(z)/z

)2)− 1
2

× 1− FR(z + yb(z))

1− FR(z)

∫ 1√
1−(x

z
)2(

1+yb(x)/x
1+yb(z)/z

)2
1
s
fQ(s)ds

∫ 1√
1−(x

z
)2

1
s
fQ(s)ds

(1 + yb′(z)).
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Using the properties of the function b, applying Lemma 2.1 and using FR ∈ D(L3),
we find

lim
x→ω−

1− Fr(x+ yb(x))

1− Fr(x)
= lim

x→ω−
1− FR(x+ yb(x))

1− FR(x)
= e−y.

Hence Fr ∈ D(L3), which finishes the proof.

An analogous result holds for the shape parameters. Arguments similar to the
proof of Proposition 8.1 and (5.2) show that FQ ∈ D(L2,γ) implies Fq ∈ D(L2,γ+1/2)
and FQ ∈ D(L3) implies Fq ∈ D(L3).

In order to use these results in practical applications, the normalizing constants
for both Fr and FR are required. They can be estimated by a semi-parametric
approach as in the classical Wicksell problem: First a parametric model for FR is
chosen. We know from Proposition 8.1 that FR and Fr belong to the same domain of
attraction. Hence normalizing constants based on (r1, q1), . . . , (rN , qN ) can be found,
for example using maximum likelihood estimators based on the k largest observations;
cf. Weissman (1978). One then has to derive normalizing constants for FR from the
estimated normalizing constants for Fr. Methods regarding this are discussed in e.g.
Hlubinka (2003b) and Takahashi (1987). When normalizing constants for FR have
been obtained, they can be used to approximate the distribution of the extremal
particle radius.
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