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Summary

In the present paper, we propose a semi-automatic procedure for estimation of par-
ticle surface area. It uses automatic segmentation of the boundaries of the particle
sections and applies different estimators depending on whether the segmentation
was judged by a supervising expert to be satisfactory. If the segmentation is correct
the estimate is computed automatically, otherwise the expert performs the necessary
measurements manually.

In case of convex particles we suggest to base the semi-automatic estimation on
the so-called flower estimator, a new local stereological estimator of particle surface
area. For convex particles, the estimator is equal to four times the area of the support
set (flower set) of the particle transect. We study the statistical properties of the
flower estimator and compare its performance to that of two discretizations of the
flower estimator, namely the pivotal estimator and the surfactor.

For ellipsoidal particles, it is shown that the flower estimator is equal to the
pivotal estimator based on support function measurements along four perpendicu-
lar rays. This result makes the pivotal estimator a powerful approximation to the
flower estimator. In a simulation study of prolate and oblate ellipsoidal particles,
the surfactor also performs well for particles which are not extremely elongated. In
particular, the surfactor is not very much affected by the singularity in the surfactor
formula or by possible inaccuracies in the necessary angle measurements.

We also assess the performance of the semi-automatic procedure in a study of
somatostatin positive inhibitory interneurons from mice hippocampi. Only 35% of
the cells needed to be analysed manually and an important decrease in workload
was obtained by using the semi-automatic approach.

Keywords: Local stereology, surface area, flower estimator, pivotal estimator, sur-
factor, computerized image analysis.
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1 Introduction

In Cruz-Orive (2005), a new local stereological principle, the invariator, for gener-
ating test lines with motion invariant density in three-dimensional space was in-
troduced (for an introduction to local stereology, see Jensen (1998)). Using the
invariator principle, a new unbiased estimator of the particle surface area was de-
rived. In the case of a convex particle, this estimator takes the simple form of 4
times the area of the support set (flower set) of the particle transect, generated by
an isotropic random section through a fixed reference point of the particle. For this
reason, the estimator sflo will be called the flower estimator. A discretized version
of the estimator, called the pivotal estimator spiv, was also provided in Cruz-Orive
(2005). The pivotal estimator involves determination of the values of the support
function of the particle transect in the section plane.

In a subsequent series of papers by Cruz-Orive, further aspects of these new
estimators were studied. In Cruz-Orive (2008), the variance of the pivotal estimator
was compared with the variance of another unbiased estimator of surface area, the
so-called surfactor ssur that had been suggested much earlier in Jensen & Gundersen
(1987) and further discussed in Jensen & Gundersen (1989). For a review of other
early methods of surface area estimation, see Kubínová & Janáček (1998).

In the comparison performed by Cruz-Orive (2008), a discretization along a single
ray in the section plane, emanating from the reference point, was used for both
estimators. It was concluded that for spherical particles with arbitrarily positioned
reference point in their interior the pivotal estimator has smaller variance than the
surfactor. In Cruz-Orive (2011), exact formulae for the area of the support set were
derived for a wide range of shapes of the particle transect, thus enabling the practical
use of the flower estimator.

Very recently, it was shown in Cruz-Orive (2012) that for a convex particle the
mean surfactor estimator (also called integrated or average surfactor) in the plane
section is in fact identical to the flower estimator, under rather non-restrictive as-
sumptions about the boundary of the particle. As a result, two approximations of
the flower estimator are now available – the pivotal estimator and the surfactor. In
fact these are two discretizations of the same integral, see Section 2.

We discuss the above-mentioned estimators in detail in Section 2. We present
a number of new results concerning their variances and other statistical properties.
Moreover, we assess and compare their performance in a broader setting than the
one of Cruz-Orive (2008) – we consider ellipsoids of revolution for which we derive
exact formulae for the variance of sflo, under the assumption that the reference point
is positioned in the centre of the ellipsoid. The most surprising result concerns the
decrease in the relative variance of sflo with increasing elongation of the ellipsoid, in
the case of oblate ellipsoids. Another surprising result of the comparison indicates
that for ellipsoidal particles choosing a centrally positioned reference point may not
be optimal in the sense of minimizing the variance of sflo. Other positions of the
reference point may lead to lower variability of the estimates.

In the present paper we also propose a semi-automatic version of the flower esti-
mator that uses automatic segmentation of the boundaries of the particle sections.
An expert supervises the process. If the segmentation is judged to be satisfactory,
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an estimate of the surface area of the particle is calculated, using the area of the
support set of the particle section. In the remaining cases, the expert intervenes
and uses a discretized version of the flower estimator, based on a small number of
manual measurements in the section plane. The resulting estimator is called the
semi-automatic flower estimator ssemi. A similar semi-automatic approach has re-
cently been proposed for volume estimation, see Hansen, Nyengaard, Andersen &
Jensen (2011). We study the precision of the semi-automatic flower estimator ob-
tained by applying a pivotal estimator respectively a surfactor on particle sections
with unsatisfactory segmentation. The resulting two estimators are called spivsemi and
ssursemi, respectively.

The application of the semi-automatic flower estimator is illustrated in a study
of somatostatin positive inhibitory interneurons from mice hippocampi which have
been genetically labelled with green fluorescent protein (GFP) and observed by
optical fluorescent microscopy. These data have recently also been studied in Hansen,
Nyengaard, Andersen & Jensen (2011) for semi-automatic volume estimation.

The composition of the paper is as follows. In Section 2, we give the necessary
background and notation for the flower estimator, the pivotal estimator and the
surfactor. We also give new results concerning the variance of these estimators in
this section. The performance of the estimators is compared for ellipsoidal particles
in Section 3. The semi-automatic approach is described in Section 4 and its perfor-
mance in the data set of interneurons is studied in Section 5. Conclusions of our
investigations are presented in Section 6. Mathematical derivations are deferred to
two appendices.

2 The estimators

Let Y be a particle (compact subset of R3). The aim is to estimate the surface area
of Y . Throughout this paper we assume that Y is convex and has a piecewise smooth
boundary so that the set of points on the boundary of Y where a tangent plane is
not uniquely determined has two-dimensional area (Hausdorff) measure zero.

Let S(Y ) be the surface area of Y and O an arbitrary reference point in its
interior. We assume that O is the origin of the coordinate system. We consider a
random isotropic section plane L2 through O and denote by ∂(Y ∩L2) the boundary
of the particle section. Let h(ω) denotes the support function of Y ∩L2 with respect
to O, i.e.

h(ω) = max (〈x, uω〉;x ∈ Y ∩ L2) , ω ∈ [0, 2π), (2.1)

where uω is a unit vector making an angle ω with a fixed axis in L2, x is a vector
joining O with a point of Y ∩ L2 and 〈x, uω〉 denotes the inner product of the two
vectors, see Cruz-Orive (2005).

Finally, let HL2 denote the support set of the (convex) planar section Y ∩ L2,
i.e. the set which has the graph of the support function h(ω) as its boundary. The
support set of a convex planar set is sometimes called the flower set. Its area will be
denoted by A(HL2).

In the following subsections we present estimators of the surface area S(Y ) of
a fixed particle Y . Note that if we extend this basic setting and consider Y to
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be a random particle these estimators can be used to estimate the population mean
surface area µ = ES(Y ). If a sample Y1, . . . , Yn from a population of random particles
is available and s is one of the estimators in question, ŝ = 1

n

∑n
i=1 s(Yi) can be

employed to estimate µ. The estimators considered in this paper can also easily
be adjusted to different sampling schemes and used for size-weighted surface area
estimation as discussed in Karlsson & Cruz-Orive (1997).

2.1 The flower estimator

The invariator principle proposed by Cruz-Orive (2005) can be utilized in the esti-
mation of the surface area of the convex particle Y , see also Cruz-Orive (2011). The
surface area of Y is

S(Y ) = 4E{A(HL2)} = 2E
{∫ 2π

0

h2(ω)dω
}
, (2.2)

where the expectation is taken with respect to the isotropic random orientation
of L2.

It follows that four times the area of the support set (the flower set) of the
observed section Y ∩L2 is an unbiased estimator of S(Y ), called the flower estimator:

sflo = 4A(HL2) = 2

∫ 2π

0

h2(ω)dω. (2.3)

If Y is an ellipsoidal particle with a reference point in its interior an especially
simple formula for sflo can be obtained. In that case any planar section of Y through
the reference point is an ellipse. The formula for the area of its support set is given
in Cruz-Orive (2011). It follows that

sflo = 2π(a2L2
+ b2L2

+ r2), (2.4)

where aL2 and bL2 denote the semiaxes lengths of the section ellipse and r is the
distance of the reference point O from the centre of the section ellipse. We use this
result in Section 3 to compare the empirical performance of the estimators in case
of ellipsoidal particles.

Concerning the variance of the flower estimator, we have derived exact formulae
for the case of oblate and prolate ellipsoids with the reference point in their centre.
For an oblate ellipsoid with semiaxes lengths equal to a, a and 1, a > 1, the variance
of sflo equals

var(sflo) = 2π2a2 +
2π2a arcsinh(

√
a2 − 1)√

a2 − 1
− 4π2a2 arcsinh2(

√
a2 − 1)

a2 − 1
. (2.5)

Similarly, for a prolate ellipsoid with semiaxes lengths equal to 1, 1 and c, c > 1,
the variance of sflo equals

var(sflo) =
2π2c2

c2 − 1

(
c2 − 1 + c2

√
c2 − 1 arctan(

√
c2 − 1)− 2c2 arctan(

√
c2 − 1)2

)
.

(2.6)
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Full details including derivation of these formulae are given in Appendix A.
A surprising consequence of the formula (2.5) is the fact that for an oblate

ellipsoid the relative variance of sflo (i.e. the variance divided by the square of the true
surface area) converges to 0 as the elongation of the ellipsoid increases (a→∞). This
trend is apparent in the numerical results in Section 3 and is not to be considered a
mistake. Again, necessary details are given in Appendix A, see especially Figure 9.

2.2 The pivotal estimator

The pivotal estimator spiv was proposed in Cruz-Orive (2005) as an approximation
to the flower estimator in case of convex particles. In the most simple form it can
be expressed as

spiv,1 = 4πh2(θ), (2.7)

where the angle θ is random with uniform distribution in [0, 2π). This secures the
unbiasedness of the estimator. In order to reduce the variance of the estimator (and
make the above-mentioned approximation more accurate) one could consider more
directions in which the values of the support function are measured. This leads to
another version of the pivotal estimator:

spiv,N =
4π

N

N−1∑

n=0

h2
(
θ + n

2π

N

)
, (2.8)

where N ∈ N and the angle θ is random and uniformly distributed in [0, 2π). Note
that the distribution of spiv,N remains the same if θ is uniformly distributed in
[0, 2π/N) instead. Also, spiv,N is an unbiased estimator of S(Y ) for any N ∈ N.

To see that this procedure in fact results in variance reduction in most cases
consider spiv,1 = 4πh2(θ) and spiv,2 = 2π(h2(θ) + h2(θ + π)), where θ has a uniform
distribution in [0, 2π). Since h(θ) = h(θ + 2π), h2(θ) and h2(θ + π) have the same
distribution. As a consequence spiv,2 has the form 1

2
(X1 + X2), where X1 and X2

have the same distribution as spiv,1. Hence, by Cauchy-Schwarz inequality,

var(spiv,2) = 1
4

(varX1 + varX2 + 2 cov(X1, X2))

= 1
2

var(spiv,1) + 1
2

cov(X1, X2) ≤ var(spiv,1). (2.9)

Therefore, the variance of spiv,2 is never larger than the variance of spiv,1. It can be
shown in a similar way that var(spiv,N) ≤ var(spiv,1) and var(spiv,2N) ≤ var(spiv,N)
for any N ∈ N.

As a compromise between accuracy and convenience it was suggested in Cruz-
Orive (2005) to use spiv,4 in practice when manual measurements are required. In
fact, it turns out that spiv,4 is the optimal approximation of sflo in the case of
general (triaxial) ellipsoidal particles with arbitrarily positioned reference point in
its interior, in the sense that spiv,4 = sflo, no matter the choice of θ in (2.8). Detailed
derivation of this result is presented in Appendix B. As a consequence, we expect
spiv,4 to be very efficient in practice for ellipsoidal or nearly ellipsoidal particles.
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Figure 1: Notation used for the local geometry at a boundary point of a particle section.

2.3 The surfactor

Let L1+ = L1+(θ) be a ray in L2 emanating from O and uniquely determined by the
angle θ ∈ [0, 2π) from a fixed axis in L2. For x ∈ ∂(Y ∩ L2) ∩ L1+ we define β(x)
to be the angle between L1+ and the line T (x) ⊂ L2 tangent to ∂(Y ∩ L2) at x,
see Figure 1. Similarly, we define α(x) to be the angle between L1+ and the line
N(x) ⊂ L2 normal to ∂(Y ∩ L2) at x. Note that α(x) + β(x) = π/2.

The classical surfactor ssur,1 is an unbiased estimator of the particle surface area,
see Jensen & Gundersen (1987) and Jensen (1998, Chapter 5.6). It is based on
one isotropic ray L1+(θ) ⊂ L2 through the reference point. Isotropic orientation of
L1+(θ) is obtained by letting the angle θ be uniformly distributed over [0, 2π). There
are two equivalent expressions for the classical surfactor ssur,1:

ssur,1 = ssur,1(Y ∩ L2, L1+(θ)) = 4π|xθ|2 [1 + (π/2− β(xθ)) cot β(xθ)] , (2.10)
ssur,1 = ssur,1(Y ∩ L2, L1+(θ)) = 4π|xθ|2 [1 + α(xθ) tanα(xθ)] , (2.11)

where xθ ∈ ∂(Y ∩ L2) ∩ L1+(θ). For convex particles there is almost surely a single
point in the intersection. Note that in general the distance from the origin O to
a boundary point x and the angle α(x) or β(x) give complementary information
about the size and shape of the section Y ∩ L2 and either one cannot be calculated
or estimated from the other.

Again, in order to reduce the variance of the estimator we consider another
variant of the surfactor which uses measurements along more rays emanating from
the reference point:

ssur,N =
1

N

N−1∑

n=0

ssur,1

(
Y ∩ L2, L1+

(
θ + n

2π

N

))
, (2.12)

where θ is uniformly distributed over [0, 2π). Clearly, ssur,N is unbiased for any
N ∈ N.

Note that traditionally the surfactor is considered to use measurements along
section lines passing through the reference point. However, this can be accomodated
in our more general description using the number of rays emanating from the ref-
erence point. For example, the surfactor using two perpendicular section lines is
identical to ssur,4 using measurements along four perpendicular rays. We use this
description to emphasize the connection to the pivotal estimator.

6



If the information about the whole particle section Y ∩L2 is available, for instance
by automatic segmentation of a digital image, we can take advantage of it and
estimate S(Y ) by the so-called integrated surfactor:

sint =
1

2π

∫ 2π

0

ssur,1(Y ∩L2, L1+(θ)) dθ = 2

∫ 2π

0

|xθ|2 [1 + α(xθ) tanα(xθ)] dθ, (2.13)

where again xθ ∈ ∂(Y ∩ L2) ∩ L1+(θ). We can regard the integrated surfactor as a
limit of ssur,N , N →∞. Cruz-Orive (2012) showed that the integrated surfactor and
the flower estimator are identical if Y is a convex particle with boundary of class
C2 or a convex polyhedral particle. More precisely, for any orientation of the section
plane L2 the right-hand sides of (2.3) and (2.13) coincide.

To the best of our knowledge the only studies using the surfactor to estimate
surface area of particles are Karlsson & Cruz-Orive (1997) (tungsten particles in
cemented carbide) and Tandrup, Gundersen & Jensen (1997) (cells in the dorsal
root ganglion of the rat). The limited use of the surfactor is probably due to the sin-
gularity in the surfactor formula, see (2.10) and (2.11), and the necessity to perform
manual angle measurements. In contrast to what has earlier been believed and also
anticipated in Cruz-Orive (2005), our findings suggest that the surfactor is not af-
fected much by the singularity and a possible inaccuracy in the angle measurements,
see Section 3.

3 Performance of the surface area estimators – el-
lipsoidal particles

3.1 Basic setting

In order to investigate properties of the surface area estimators described in the
previous section we looked into a situation where the ground truth is known. For
this purpose we have chosen oblate and prolate ellipsoids for which the formulae for
their surface areas are readily available.

Consider a given oblate or prolate ellipsoid Y with semiaxes lengths denoted by
a, b and c and the reference point O in its centre. Given the orientation of the section
plane L2 (with O ∈ L2) the lengths of the semiaxes of the section ellipse Y ∩L2 are
easily determined, see Appendix A. In the general case with reference point placed
arbitrarily in the interior of Y another method must be employed, e.g. using the
results of Jensen & Møller (1986).

In this basic setting we assume that all the necessary measurements are per-
formed precisely. We generated M = 1000 independent isotropic sections through
the reference point for each ellipsoid. For each section we calculated sflo using (2.4)
and K = 100 independent replications of spiv,2, ssur,2 and ssur,4. Note that spiv,4 is
optimal in case of ellipsoidal particles in the sense that spiv,4 = sflo, see Section 2.2
and Appendix B. Hence, these two estimators are not distinguished in the following.

For all the estimators we estimated their relative bias and relative error (square
root of the estimated mean squared error, divided by the correct value of the surface
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Table 1: Estimated relative error of the estimators for oblate ellipsoids (semiaxes lengths
satisfying c < a = b) and prolate ellipsoids (semiaxes lengths satisfying c > a = b).

Oblate ellipsoids

a : c 1.5 : 1 2 : 1 3 : 1 4 : 1 6 : 1 8 : 1

sflo 0.0887 0.120 0.124 0.117 0.0856 0.0743
spiv,2 0.222 0.351 0.488 0.560 0.625 0.655
ssur,2 0.234 0.405 0.689 0.923 1.33 1.62
ssur,4 0.0891 0.132 0.252 0.412 0.723 0.957

Prolate ellipsoids

a : c 1 : 1.5 1 : 2 1 : 3 1 : 4 1 : 6 1 : 8

sflo 0.149 0.289 0.525 0.729 1.03 1.27
spiv,2 0.258 0.457 0.763 1.03 1.39 1.65
ssur,2 0.268 0.507 0.970 1.44 2.24 3.07
ssur,4 0.149 0.295 0.590 0.911 1.53 2.07

area of the ellipsoid). For spiv,2, ssur,2 and ssur,4 we also estimated the within-section
variance by

1

M(K − 1)

M∑

i=1

K∑

j=1

(sij − s̄i·)2, (3.1)

where s denotes either spiv,2, ssur,2 or ssur,4 and s̄i· = 1
K

∑K
j=1 sij, sij being the jth

replication in the ith section. Later we express the estimated within-section variance
as a fraction of the total estimated variance.

In almost all cases the absolute value of the estimated relative bias was < 1%,
except for the prolate ellipsoids with semiaxes length ratios 4 : 1 or higher, where
it was < 2.6%. However, using more than 1000 section planes brings the estimated
relative bias closer to 0. This is consistent with the theoretical unbiasedness of the
estimators.

Table 1 summarizes the estimated relative errors of the estimators. The results
indicate that the estimated relative errors tend to grow with the increasing elonga-
tion of the ellipsoid, the important exception being sflo in the case of oblate ellipsoids.
This observation is explained in detail in Section 3.1.1.

Increasing the number of rays (directions) used in the estimation resulted in
significantly reduced variance of the estimators – the estimated relative error was
always smaller for ssur,4 than for ssur,2, see Table 1. The same holds for spiv,4 = sflo
and spiv,2. Moreover, for slightly elongated ellipsoids ssur,4 showed very small values
of the within-section variability, see Table 2. Virtually no improvement in precision
could be gained by using sflo instead of ssur,4 in that case.
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Table 2: Estimated fraction of the within-section variance for oblate ellipsoids (semiaxes
lengths satisfying c < a = b) and prolate ellipsoids (semiaxes lengths satisfying c > a = b).
(All values are %.)

Oblate ellipsoids

a : c 1.5 : 1 2 : 1 3 : 1 4 : 1 6 : 1 8 : 1

spiv,2 84.3 88.3 93.7 95.5 98.1 98.8
ssur,2 85.6 91.6 96.8 98.4 99.7 99.8
ssur,4 0.909 17.1 75.7 92.0 98.7 99.4

Prolate ellipsoids

a : c 1 : 1.5 1 : 2 1 : 3 1 : 4 1 : 6 1 : 8

spiv,2 66.5 59.7 53.3 49.1 44.7 41.7
ssur,2 69.4 67.8 70.2 74.2 79.9 82.3
ssur,4 0.352 4.15 20.8 35.9 53.2 62.8

3.1.1 Variance of sflo

Table 1 for oblate ellipsoids shows counter-intuitive improvement of the precision of
sflo, in terms of relative error or relative variance, with increasing elongation of the
ellipsoid. This surprising phenomenon does not occur for prolate ellipsoids and is
caused by the fact that the absolute variance of sflo increases at a lower rate than
the square of the surface area of the ellipsoid.

We have derived exact formulae for the variance of sflo for both oblate and prolate
ellipsoids with centrally positioned reference point, see (2.5) and (2.6). Appendix A
provides the necessary details, together with a discussion of the asymptotic be-
haviour of the relative variance of sflo. A surprising consequence of formula (2.5) is
that the relative variance of sflo for oblate ellipsoids goes to 0 in the limit with the
semiaxes lengths ratio going to infinity, see Appendix A.

Only one source of variability affects the precision of sflo, namely the random
orientation of the section plane L2 (called L2-variability in the following). For oblate
ellipsoids it follows the above-mentioned trend – relative L2-variability goes to 0 in
the limit with increasing elongation of the ellipsoid.

Apart from L2-variability, the estimators spiv,N and ssur,N , N ≥ 1, are also in-
fluenced by the random orientation of the rays in L2 emanating from the reference
point (called L1-variability). To be precise, sflo = spiv,4k, k ∈ N, and hence these
variants of the pivotal estimator are not affected by L1-variability. For a given ellip-
soid L1-variability can be reduced by using more section lines as demonstrated in
Table 1 for ssur,2 and ssur,4. However, L2-variability cannot be reduced in any way.

For any given N and increasing elongation of the ellipsoid the L1-variability be-
comes the dominant source of variability of ssur,N at some point, i.e. at some semiaxes
length ratio, and L2-variability becomes negligible in comparison. This is partially
demonstrated in Table 2 as within-section variability corresponds to L1-variability.
Even for very large N the relative variance of ssur,N for oblate ellipsoid first fol-
lows the decreasing trend of L2-variability but eventually (possibly for extremely
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elongated ellipsoids) the L1-variability becomes dominant and the relative variance
increases rapidly (results not shown).

In case of prolate ellipsoids the situation is similar but differs in one important
aspect: the relative variance of sflo increases with the increasing elongation of the
ellipsoid and thus no improvement in precision is observed. Nevertheless, the reason-
ing about L1-variability becoming dominant at some point and the relative variance
increasing rapidly still holds.

3.2 Influence of the position of the reference point

To assess the influence of the reference point position we performed the estimation
using sflo = spiv,4 and ssur,4 for oblate and prolate ellipsoids with semiaxes lengths
ratio 2:1 and 8:1, respectively. Note that we focus on sflo and ssur,4 rather than spiv,2
or ssur,2 because these estimators are expected to be preferred in most applications.
Equation (2.4) was used to calculate sflo.

Five positions of the reference point were chosen to lie on the minor semiaxis
of the ellipsoid, the first one being at the centre of the ellipsoid and the last one
at distance 0.95 times the minor semiaxis length from the centre. The latter choice
was motivated by the aim to often obtain tangent angles β close to 0 (normal angles
α close to π

2
) which could make the surfactor unstable, see (2.10), (2.11). This was

considered to be the worst case scenario with respect to the position of the reference
point and the performance of ssur,4.

For each reference point location we generated 1000 independent isotropic sec-
tions through the reference point and computed 100 independent replications of ssur,4
in each section. We assume that all the necessary length and angle measurements
are performed precisely.

Table 3 summarizes the estimated characteristics of sflo and ssur,4. In almost all
cases the absolute value of the estimated relative bias was < 1%, except for the
prolate ellipsoid with semiaxes length ratio 8 : 1, where the estimated relative bias
was < 3.1% for all considered positions of reference point. However, using more than
1000 section planes brings the estimated relative bias closer to 0. This is consistent
with the theoretical unbiasedness of sflo and ssur,4, regardless of the position of the
reference point in the interior of Y .

Concerning sflo, some improvement in precision while moving the reference point
towards the boundary is apparent in each inspected case, see Table 3. In most cases
this trend reverses at some point and the relative errors increase again when the
reference point gets very close to the boundary.

As discussed in Section 3.1.1, variability of sflo is caused by the random orien-
tation of the section plane only. Recall equation (2.4) and note that the term r2 is
constant for a given ellipsoid and given position of the reference point, and hence does
not contribute to var(sflo). The variance of sflo thus consists of two components aris-
ing from a2L2

and b2L2
. However, aL2 and bL2 are in general strongly correlated. This

makes it difficult to assess their delicate interplay which determines var(a2L2
+ b2L2

).
Figure 2 shows a concrete example (oblate ellipsoid with semiaxes lengths equal

to 2, 2 and 1), where the changes in the values of the relative error are very promi-
nent. The behaviour of var(a2L2

), var(b2L2
) and var(a2L2

+ b2L2
) as the reference point
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Table 3: Estimated characteristics of sflo and ssur,4 for different ellipsoids and 5 reference
points located along the minor semiaxis. Minor semiaxis length is 1, major semiaxis length
is 2 and 8, respectively. Based on 1000 independent section planes through the reference
point and 100 independent replications of ssur,4 for each section.

Oblate ellipsoids

Position of ref. point [0,0,0] [0,0,0.50] [0,0,0.75] [0,0,0.85] [0,0,0.95]

2 : 1, sflo, rel. error 0.120 0.0490 0.0576 0.103 0.151
2 : 1, ssur,4, rel. error 0.132 0.131 0.168 0.178 0.201
2 : 1, ssur,4, w. s. variance (%) 17.1 85.8 87.6 65.8 39.2
8 : 1, sflo, rel. error 0.0743 0.0558 0.0371 0.0352 0.0492
8 : 1, ssur,4, rel. error 0.957 0.961 1.07 1.05 0.967
8 : 1, ssur,4, w. s. variance (%) 99.4 99.8 99.9 99.9 99.7

Prolate ellipsoids

Position of ref. point [0,0,0] [0.50,0,0] [0.75,0,0] [0.85,0,0] [0.95,0,0]

1 : 2, sflo, rel. error 0.289 0.242 0.206 0.234 0.284
1 : 2, ssur,4, rel. error 0.295 0.247 0.245 0.273 0.322
1 : 2, ssur,4, w. s. variance (%) 4.15 16.6 31.9 28.4 24.8
1 : 8, sflo, rel. error 1.27 1.22 1.06 1.05 1.01
1 : 8, ssur,4, rel. error 2.07 2.00 2.03 1.95 1.88
1 : 8, ssur,4, w. s. variance (%) 62.8 64.1 69.5 70.9 72.2

moves from the centre of the ellipsoid towards its boundary is plotted.
Without loss of generality, let aL2 denote the length of the major semiaxis of the

section ellipse. If the reference point is in the centre of the ellipsoid, the length of
the major semiaxis of the section ellipse is always aL2 = 2, no matter the orientation
of the section plane, and thus var(a2L2

) = 0. All the variability of a2L2
+ b2L2

is due to
b2L2

in this case, bL2 denoting the length of the minor semiaxis of the section ellipse.
As the reference point is moved along the minor semiaxis towards the boundary

the variability of a2L2
grows and at some point it becomes dominant over the vari-

ability of b2L2
. Nevertheless, the strong negative correlation between a2L2

and b2L2
(see

the right part of Figure 2) reduces var(a2L2
+ b2L2

) to very low values for a certain
interval of the reference point positions.

For prolate ellipsoids, a similar trend was not observed. When moving the ref-
erence point from the centre of the ellipsoid towards its boundary var(a2L2

+ b2L2
)

somewhat decreases, with a small increase in the proximity of the boundary. The
main difference from the oblate ellipsoids is that the variance of b2L2

(squared minor
semiaxis length of the section ellipse) is negligible compared to the variance of a2L2

(squared major semiaxis length of the section ellipse) and hence the behaviour of
var(a2L2

+ b2L2
) is almost identical to that of var(a2L2

).
Concerning ssur,4, the precision of the estimates in terms of the relative error

does not increase much or at all while moving the position of the reference point
from the centre of the ellipsoid towards its boundary, see Table 3. As discussed
in Section 3.1.1, the variance of ssur,4 consists of two parts: the variance due to
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Figure 2: Illustration of the variance of sflo: oblate ellipsoid with semiaxes lengths equal
to 2, 2 and 1. Horizontal axis of the graphs – position of the reference point along the
minor semiaxis, 0 being at the ellipsoid’s centre and 1 at the boundary. Left: variance
of a2L2

+ b2L2
(solid line), a2L2

(dashed line, aL2 denotes the length of the section ellipse’s
major semiaxis) and b2L2

(dotted line, bL2 denotes the length of the section ellipse’s minor
semiaxis). Right: estimated coefficient of correlation between a2L2

and b2L2
. Based on 1000

section planes generated independently for each position of the reference point.

the random orientation of the section plane L2 (corresponding to var(sflo)) and the
additional variability due to the random orientation of the rays emanating from the
reference point.

To further investigate the behaviour of the precision of ssur,4 we analysed changes
in the distribution of the normal angles α(x) and the distance to the boundary |x|,
caused by the change of the reference point location. For a detailed example consider
for instance a prolate ellipsoid with semiaxes lengths 1, 1 and 8. In the 100 · 1000
replications of ssur,4 for each position of the reference point we recorded one of the
four necessary angle measurements as well as the corresponding distance to the
boundary (the other three measurements do not provide independent information).

Histograms illustrating the distribution of the recorded values of α(x) are shown
in Figure 3, together with the graph of 1+α(x) tanα(x) giving a hint how much the
corresponding angle measurements affect the resulting estimate. Even though Fig-
ure 3 shows considerable shift towards higher values of α(x) when the reference point
moves to the boundary it is not dramatic in terms of increase of 1 + α(x) tanα(x).

Figure 4 shows histograms of the recorded values of |x|2(1+α(x) tanα(x)), where
|x| is the distance from the reference point to the boundary. Note that the shift
towards high values while moving the reference point closer to the boundary is
apparent but not substantial. This could be attributed to the fact that even though
the normal angles α(x) generally increase the closer the reference point is to the
boundary, the elliptic sections get smaller at the same time. Thus, the terms |x|2
and 1 + α(x) tanα(x) compensate each other on average.
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Figure 3: Histograms of recorded values of α(x). Prolate ellipsoid, semiaxes length ratio
1 : 8, different locations of the reference point. Based on 1000 independent section planes
and 100 replications of ssur,4 for each section plane. Frequencies correspond to the left
y-axis. Solid line – graph of function 1 + α tanα with values corresponding to the right
y-axis.
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Figure 4: Histograms of recorded values of |x|2(1+α(x) tanα(x)), where |x| is the distance
from the reference point to the boundary. Prolate ellipsoid, semiaxes length ratio 1 : 8,
different locations of the reference point. Based on 1000 independent section planes and
100 replications of ssur,4 for each section plane. Vertical axis was truncated – frequencies
corresponding to the first column exceed 97 000 in all cases.
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3.3 The surfactor – inaccuracy in angle measurement

A characterictic property of the surfactor is that it requires angle measurements
in order to determine α(x) or β(x), see Figure 1. In practice, additional variability
may be introduced to the estimation procedure involving the surfactor by possible
inaccuracy of the angle measurements. Note that other estimators considered in this
paper do not suffer from this shortcoming.

To investigate the effect of the possible inaccuracy in angle measurements on the
resulting surfactor estimates we have added a random error ε to the tangent line
orientation. This results in corrupted measurement of α(x) and β(x). We assume that
the additive error term ε is a random variable uniformly distributed over (−δ, δ), δ ≥
0, and that the necessary length measurements are performed precisely (we focus on
inaccuracy of angle measurements as it is supposed to have a larger impact on the
resulting estimates due to the singularity in the surfactor formula).

We generated 1000 independent isotropic sections of different ellipsoids with the
reference point in their centre and computed 100 independent replications of ssur,4
in each section. Table 4 shows the resulting estimates of the characteristics of ssur,4.

Table 4: Estimated charateristics of ssur,4 with inaccurate angle measurements for oblate
and prolate ellipsoids with different semiaxes lengths ratios. The additive error term is a
random variable uniformly distributed over (−δ, δ). Based on 1000 isotropic sections, each
with 100 independent replications of ssur,4. Reference point is in the ellipsoid’s centre in
each case.

δ = 0◦ oblate, 2 : 1 oblate, 8 : 1 prolate, 1 : 2 prolate, 1 : 8

Rel. bias −0.00107 0.00312 −0.00885 −0.0220
Rel. error 0.132 0.957 0.295 2.07
w.s. variance (%) 17.1 99.4 4.15 62.8

δ = 5◦ oblate, 2 : 1 oblate, 8 : 1 prolate, 1 : 2 prolate, 1 : 8

Rel. bias 1.88 · 10−4 0.0197 0.00733 0.0659
Rel. error 0.140 1.02 0.301 2.27
w.s. variance (%) 18.4 99.4 4.81 64.3

δ = 10◦ oblate, 2 : 1 oblate, 8 : 1 prolate, 1 : 2 prolate, 1 : 8

Rel. bias 0.00867 0.0937 0.00192 0.107
Rel. error 0.140 1.20 0.306 2.62
w.s. variance (%) 24.7 99.8 6.02 68.1

δ = 15◦ oblate, 2 : 1 oblate, 8 : 1 prolate, 1 : 2 prolate, 1 : 8

Rel. bias 0.0227 0.790 0.0190 0.607
Rel. error 0.146 23.2 0.317 41.7
w.s. variance (%) 34.7 99.9 8.55 99.2

The results indicate that for slightly elongated ellipsoids the precision of ssur,4 is
not affected much even by severe inaccuracy of the angle measurements. On the other
hand, for considerably elongated ellipsoids the estimates become virtually useless
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if δ > 10◦. Note also that even though the additive error term has a symmetric
distribution, its effect is not because of the shape of the function 1 + α(x) tanα(x).
Overestimating the angle α(x) has a larger impact on the resulting estimate than
underestimating it. This results in a positive bias of ssur,4, see Table 4.

4 Semi-automatic estimation

Studies involving estimation of geometric properties of particles by manual mea-
surement can be very time-consuming – especially if both length and angle mea-
surements are required, as is the case in surface area estimation using the surfactor.
If digital images of the particle sections are recorded the workload can be greatly
reduced by taking advantage of automated segmentation of particle boundaries by
means of digital image analysis. In this section we propose both automatic and semi-
automatic procedures for estimating the surface area of a convex particle, using the
automatically segmented boundaries.

4.1 The automatic flower estimator

Let Ŷ2 denote the estimate of the true particle section Y ∩L2 provided by automatic
segmentation and assume that the reference point O is contained in Ŷ2. It is natural
to use information about the whole particle section and define the automatic flower
estimator as

saut = sflo(Ŷ2), (4.1)

In practice this estimator will often be approximated by spiv,N(Ŷ2) for a suitable
number of directions N . We denote the resulting estimator spivaut. Moreover, direct or
approximate methods of computing the flower estimator given in Cruz-Orive (2011)
may be employed.

Naturally, the approximation of the flower estimator using the surfactor may
be used, resulting in the estimator denoted ssuraut in the following. Note that this
estimator could also be used to estimate the surface area of non-convex particles as
it does not depend on the assumption of convexity. In that case it should not be
considered as an approximation to the flower estimator.

Properties of saut depend strongly on the quality of the segmentation. The auto-
matic flower estimator saut provides unbiased estimates if the segmentation is flawless
(Ŷ2 = Y ∩L2). However, if the segmentation is incorrect, saut may be heavily biased.

4.2 The semi-automatic flower estimator

To overcome the possible issues with the bias of the automatic estimator we propose
a semi-automatic version ssemi, a combination of the automatic flower estimator
saut and the pivotal estimator spiv,4 or the surfactor ssur,4. We denote the resulting
estimators spivsemi and ssursemi, respectively.

Let the process of automatic segmentation and estimation using saut be super-
vised by an expert who intervenes only if the segmentation of particle boundary
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is not satisfactory. In that case the expert performs manually the necessary mea-
surements required to calculate spiv,4 or ssur,4. If the segmentation is judged to be
satisfactory, ssemi = saut. Otherwise ssemi = spiv,4 or ssur,4, respectively.

Unlike the flower estimator, the semi-automatic flower estimator ssemi might be
biased. Let A be the event that the automatic segmentation is judged satisfactory by
the expert. Using the same technique as in Hansen, Nyengaard, Andersen & Jensen
(2011) it can be shown that the bias of ssemi can be expressed as

bias(ssemi) = pE(saut − sflo|A). (4.2)

Here p is the probability of the segmentation being accepted as satisfactory and
E(saut − sflo|A) is the mean difference of saut and sflo among the particles with
satisfactory segmentation. Note that the bias will be small because saut − sflo is
small for particles with satisfactory segmentation.

Similarly, it can be shown that the mean squared error (MSE) of ssemi can be
expressed as

MSE(ssemi) = pMSE(saut|A) + (1− p) MSE(s·,4|Ac), (4.3)

where MSE(saut|A) is the mean squared error of saut among the particles with seg-
mentation judged as satisfactory and MSE(s·,4|Ac) is the mean squared error of spiv,4
or ssur,4, respectively, among the cells for which the segmentation is not satisfactory.

Estimates of bias and mean squared error of ssemi can be obtained in a straightfor-
ward manner by plugging in the empirical estimates of p,E(saut−sflo|A),MSE(saut|A)
and MSE(s·,4|Ac) into equations (4.2) and (4.3), respectively.

5 A comparative study

In order to assess the performance of automatic and semi-automatic estimators pro-
posed in Section 4 we analysed data from a study of somatostatin positive inhibitory
interneurons from mice hippocampi, observed by optical fluorescent microscopy. A
characteristic feature of these cells are dendrites which were not regarded as part of
the cell body in this study and do not contribute to the cell surface area. The study
was originally presented and described in detail in Hansen, Nyengaard, Andersen &
Jensen (2011).

The data constitute of points on the boundaries of central cell sections of 91 indi-
vidual cells. The boundaries were segmented automatically and the xy-coordinates
of points on the individual boundaries were recorded. Points not originating from
dendrites or from other cells visible in other layers of the thick section were consid-
ered to lie on the true boundary of the cell.

To represent the true boundary of each sampled cell section, a polynomial smooth-
ing spline was fitted to the xy-coordinates of points on the true cell section boundary.
Because these nerve cells do not have a natural reference point, the centre of mass
of the recorded segmented true boundary points was used as a reference point. It
approximates the centre of mass of the entire cell and has nearly central position in
the cell section.
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We estimated the mean cell surface area by spiv,4, ssur,4 and ssur,200 using the true
boundaries of the cell sections. 100 independent replications of spiv,4 and ssur,4 were
calculated for each cell section. The most reliable results are obtained by ssur,200 since
a closer look reveals that some of the true cell sections include very small concave
boundary elements and hence are not perfectly convex, see Figure 5. The surfactor
is not affected by this problem but the pivotal estimator in fact uses the convex hull
of the cell section instead of the true (non-convex) cell section. Using 200 rays in
ssur,200 turned out to be sufficient for the purpose of approximating sflo since using
even more section lines yielded virtually identical results.

To assess the performance of the semi-automatic flower estimator proposed in
Section 4 we computed the estimates using spivsemi and ssursemi. Approximation of saut
by spiv,200 was used to analyse cell sections with satisfactory segmentation (these
exhibit only negligible deviations from convexity).

We also approximated ssuraut by ssur,200 applied to the whole segmented boundary
of the cell section described by a polynomial smoothing spline fitted to all segmented
boundary points, i.e. including points originating from dendrites or other cells. To
avoid confusion we denote this approximation of the automated surfactor by ssuraut in
the following. We do not present results obtained using spivaut due to the non-convexity
of badly segmented cell sections. We assume that all the necessary measurements
were performed precisely.

To decide if the automatic boundary segmentation was satisfactory we used a
distance d on the set of subsets of L2. The segmentation was judged satisfactory if

d
(
Y ∩ L2, Ỹ

)
< d0, (5.1)

where Ỹ is the automatically segmented boundary, Y ∩ L2 is the true cell section
boundary and d0 ≥ 0. This enables determining if ssemi takes the value of saut or s·,4
for each cell section. The distance considered in this study was

d (B1, B2) =
|ssur,200(B1)− ssur,200(B2)|

ssur,200(B1)
. (5.2)

The motivation was that ssur,200 provides a very good approximation of sflo while
spiv,N disregards the possible non-convexity of the cell sections. Alternatively, a
distance using the difference of areas of B1 and B2 could be employed.

With d0 = 0.15 a total of 59 cell boundaries had a satisfactory segmentation
according to this criterion. Hence the probability p of satisfactory segmentation was
estimated to be p̂ = 59/91

.
= 0.648. Figure 5 shows examples of both correctly

and incorrectly segmented cell section boundaries together with the true cell section
boundaries approved by an expert.

Figure 6 shows the estimates using ssur,4, spiv,4, ssuraut and s
piv
semi for each sampled cell

plotted against ssur,200 in a double logarithmic scale. For clarity only 1 estimate using
ssur,4 and spiv,4 from the 100 repetitions is plotted for each cell. The figures show that
both ssur,4 and spiv,4 are in most cases nearly identical to ssur,200 which we regard as
the most precise and reliable estimator in this study. On the other hand, ssuraut yields
very high estimates for some cell sections due to incorrect boundary segmentation
(see Figure 5 for typical examples of unsatisfactory boundary segmentation). This
results in a considerable positive bias of saut.
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Figure 5: Hippocampus cells data: examples of cell sections with correctly segmented
boundary (left) and with boundary segmentation judged as unsatisfactory (right). Red
points – segmented boundary points, black crosses – the reference points, green areas –
true cell sections approved by an expert.

Estimates of the characteristics of the estimators are summarized in Table 5. To
obtain these estimates we used µ̂

.
= 645.5 µm2, the mean value of ssur,200, as the

true value of the mean cell surface area µ. The results are in agreement with the
observation that the cell sections have very regular boundaries with no considerable
elongation, unless the boundary was incorrectly segmented (which affects ssuraut only).
Thus, low values of estimated relative errors are to be expected for all estimators
except ssuraut. Note also the small positive bias of both variants of ssemi caused by the
fact that even though the segmentation was judged to be satisfactory for a given
cell section, it may still be somewhat different from the true cell section boundary
used by ssur,200.

Table 5: Hippocampus cells data: estimated characteristics of the estimators.

spiv,4 ssur,4 ssur,200 ssuraut spivsemi ssursemi

Mean (µm2) 645.2 645.6 645.5 868.4 655.0 655.5
Relative bias <0.01 <0.01 0 0.3453 0.01667 0.01670
Relative error 0.3574 0.3593 0.3579 0.8712 0.3643 0.3649
w.s. variance (%) 0.395 1.05

Using formulae for the relative error of the estimators similar to those given in
Hansen, Nyengaard, Andersen & Jensen (2011) we can estimate the number of cells
needed to be analyzed in order to obtain a given relative error of the estimated mean
cell surface area. The results are shown in Figure 7 for spiv,4 and spivsemi, respectively
(the curves corresponding to ssur,4 and ssur,200 cannot be visually distinguished from
the one corresponding to spiv,4 and are not shown; similarly, the curve corresponding
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Figure 6: Hippocampus cells data: surface area estimates ssur,4, spiv,4, ssuraut and s
piv
semi plot-

ted against ssur,200. The scale is ln(µm2).
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to ssursemi is not shown as it coincides with the curve corresponding to spivsemi). For ex-
ample, to obtain the relative error of 0.05 it is needed to analyze 51, 51, 52, 60 and
60 cell sections using spiv,4, ssur,200, ssur,4, spivsemi or ssursemi, respectively.

Since both variants of ssemi require analysis of more cells than spiv,4 or ssur,4 it
appears to be inferior to them. However, only about 35% of the cells in this study
needed to be analysed by spiv,4 or ssur,4 due to unsatisfactory boundary segmentation.
Hence using the semi-automatic estimator resulted in significant reduction of the
manual workload.
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4
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0

Figure 7: Hippocampus cells data: number of cells needed to be analyzed for spiv,4 (solid
line) and spivsemi (dashed line) in order to achieve a given level of the relative error. The
curves corresponding to ssur,4 and ssur,200 cannot be visually distinguished from the one
corresponding to spiv,4 (solid line) and are not shown. Similarly, the curve corresponding
to ssursemi is not shown as it coincides with the curve corresponding to spivsemi (dashed line).

6 Conclusions

In the present paper we have considered the task of estimating the surface area of
convex particles and discussed two different approximations of the flower estimator,
namely the pivotal estimator and the surfactor. We have compared their performance
both for artificial data (ellipsoidal particles with known surface area) and real data
coming from a study of somatostatin inhibitory interneurons from mice hippocampi.
The results indicate that the pivotal estimator using measurements of the support
function in four perpendicular directions is very efficient and that it is a powerful
approximation of the flower estimator.

We have presented a number of new results concerning the variance of the flower
estimator in the form of exact formulae (see equations (2.5) and (2.6)) and empir-
ical observations (e.g. that choosing the centrally positioned reference point is not
optimal for ellipsoidal particles in the sense of minimizing the variance of the esti-
mator, see Section 3.2). Moreover, we have shown that the pivotal estimator spiv,4
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is optimal for ellipsoidal particles with arbitrarily positioned reference point, in the
sense that it is equal to the flower estimator, no matter the directions at which the
measurements of the support function are performed (as long as the four directions
in the section plane are perpendicular to each other, see Appendix B).

Concerning the surfactor, our findings suggest that it performs well in case of
particles which are not extremely elongated, it is not very sensitive to the location
of the reference point within the particle and it is not affected much by possible
inaccuracy of the necessary angle measurements. The singularity introduced to the
surfactor formula (2.10) by the term cot β, where β is the angle between a random
line passing through the reference point and a tangent to the boundary of the particle
at the intersection point, should not prevent the surfactor from being used. Values of
the angle β close to 0 are not frequently encountered even in case of very elongated
particles and reference points close to the boundary.

We have also presented an automatic version of the flower estimator and a semi-
automatic procedure of surface area estimation supervised by an expert who inter-
venes only if the automatically detected boundary is judged to be incorrect. It was
found that in the somatostatin inhibitory interneurons study the number of cells
needed to be analysed for obtaining, for instance, a 5% precision of the estimate
of the mean cell surface area is 51, 51, 52, 60 and 60, depending on whether the
estimator sflo, spiv,4, ssur,4, spivsemi or ssursemi is used, respectively.

In this concrete study we can conclude that in order to obtain the required
precision, it is needed to sample (roughly) the same number of cells, irrespectively
of whether the flower estimator sflo, the pivotal estimator spiv,4 or the surfactor
ssur,4 is used. In manual analysis, the pivotal estimator is to be preferred to the
surfactor because even though the two estimators have roughly the same precision,
spiv,4 requires a factor two smaller workload.

For the same reason, the pivotal estimator is to be preferred in the semi-automatic
setting. Whether a semi-automatic approach is to be preferred to a manual approach
depends on the reduction in workload associated with the semi-automatic approach.
Note that the number of cells needed for obtaining a 5% precision was somewhat
higher in the semi-automatic case than in the manual case due to a small bias of the
semi-automatic flower estimator. It was, however, only needed to manually analyze
a fraction of these cells, about 35% in the above-mentioned study of somatostatin
positive inhibitory interneurons.

In case of non-convex particles the surfactor will find its use (the pivotal or the
flower estimator would estimate the surface area of the convex hull of the particle,
thus underestimating the actual surface area). In analogy to the semi-automatic
flower estimator, a semi-automatic version of the surfactor may be employed in that
case, using the integrated surfactor for particle sections with satisfactory segmen-
tation of the boundary and the classical version of the surfactor for the sections
with unsatisfactory segmentation. Alternatively, the method of surface area estima-
tion based on the invariator principle without the assumption of convexity, given
in Cruz-Orive (2005), could be used. The upcoming paper Thórisdóttir & Kiderlen
(2012) will deal with this topic.
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A Variance of the flower estimator – ellipsoids of
revolution

We are interested in the behaviour of var(sflo) with increasing elongation of the
ellipsoid. Assume that Y is an oblate or prolate ellipsoid and the reference point O
is the centre of the ellipsoid. Consider an isotropic section plane L2 through O. The
planar section Y ∩L2 is an ellipse with semiaxes lengths aL2 and bL2 . The integrated
surfactor is given by the formula sflo = 2π(a2L2

+ b2L2
), see (2.4). Hence the task of

determining var(sflo) reduces to determining var(a2L2
+ b2L2

) under the assumption of
isotropic orientation of the section plane.

A.1 Determining the elliptic section

First consider an oblate ellipsoid with semiaxes lengths a = b > c and fix c = 1.
Any planar section of this ellipsoid through its centre is an ellipse with the major
semiaxis length aL2 = a. The minor semiaxis length bL2 is variable and depends on
the orientation of the section plane L2. Hence, aL2 being constant, var(a2L2

+ b2L2
) =

var(b2L2
).

For simplicity assume that the orientation of the ellipsoid is such that the minor
axis is parallel to the coordinate z−axis. The orientation of the section plane L2 is
determined by its normal vector which is given by a point on the unit hemisphere.
Due to rotational symmetry of the ellipsoid bL2 is fully determined by γ, the angle
between the normal vector of L2 and the coordinate z−axis. Figure 8 illustrates the
dependence of bL2 on γ ∈ [0, π/2].

γ

aO

L
21

γ
b

L
2

Figure 8: Oblate ellipsoid with semiaxes lengths equal to 1 and a = b > 1. The figure
shows the planar section through the centre of the ellipsoid parallel to the minor axis of
the ellipsoid and perpendicular to L2. This elliptic section is sufficient to determine bL2 ,
the minor semiaxis length of the section ellipse in L2.

Points on the boundary of the auxiliary ellipse with semiaxes lengths equal to 1
and a > 1 (see Figure 8) can be parametrized by x = a cos t, y = sin t, t ∈ [0, 2π).
The parameter t for the point corresponding to the polar angle γ is given by

t(γ) = arctan(a tan γ).

Hence, b2L2
can be expressed as

b2L2
= a2 cos2 t(γ) + sin2 t(γ) = 1 + (a2 − 1) cos2 t(γ).
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Under the assumption of isotropic orientation of L2, the angle γ can be expressed
as γ = arccosV, where V is a random variable with uniform distribution in [0, 1].
We get, using B2

L2
to denote the random variable corresponding to b2L2

,

B2
L2

= 1 + (a2 − 1)Y, where Y = cos2{arctan[a tan(arccosV )]}.
Using forward-inverse trigonometric identities we can express Y as

Y = φ(V ) =
V 2

a2 − (a2 − 1)V 2
.

We are interested in var(Y ) as var(sflo) = 4π2 var(B2
L2

) = 4π2(a2 − 1)2 var(Y ).
Since φ is an increasing, differentiable function (0, 1) → (0, 1), we can easily deter-
mine the probability density function of Y :

fOY (y) = I(0,1)(y)
a

2
√
y

(
1 + y(a2 − 1)

)−3/2
, y ∈ R,

and thus the first two moments of Y and thereby var(Y ).
Now consider a prolate ellipsoid with semiaxes lengths a = b < c and fix a =

b = 1. Any planar section of this ellipsoid through its centre is an ellipse with
the minor semiaxis length bL2 = 1. The major semiaxis length aL2 is variable and
depends on the orientation of the section plane L2.

By a procedure similar to the one presented above we get that var(sflo) =
4π2 var(a2L2

) = 4π2(c2 − 1)2 var(Y ), where Y is an auxiliary random variable with
probability density function

fPY (y) = I(0,1)(y)
c2

2
√

1− y
(
1 + y(c2 − 1)

)−3/2
, y ∈ R.

From this we can calculate the first two moments of Y and thus var(Y ).

A.2 Calculating EY – oblate ellipsoid

For ease of exposition we denote p = a2 − 1. We assume that a > 1 and thus p > 0.
Then

EY =

∫ 1

0

yfOY (y) dy =

√
p+ 1

2

∫ 1

0

y1/2(1 + py)−3/2 dy.

By substituting t =
√
py we get

EY =

√
p+ 1

p3/2

∫ √p

0

t2(1 + t2)−3/2 dt.

Then we substitute t = tanu and write P = arctan(
√
p) :

∫ √p

0

t2(1 + t2)−3/2 dt =

∫ P

0

1

cosu
du−

∫ P

0

cosu du

=

[
log

(
tanu+

1

cosu

)]P

u=0

− [sinu]Pu=0

= log
(√

p+
√
p+ 1

)
−
√
p√

p+ 1
= arcsinh(

√
p)−

√
p√

p+ 1
.
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In the last line we used forward-inverse trigonometric identities again. Finally,

EY =

√
p+ 1

p3/2
arcsinh(

√
p)− 1

p
=
a arcsinh(

√
a2 − 1)

(a2 − 1)3/2
− 1

a2 − 1
.

A.3 Calculating EY 2 – oblate ellipsoid

Again we denote p = a2 − 1 and assume that a > 1 and p > 0. Then

EY 2 =

∫ 1

0

y2fOY (y) dy =

√
p+ 1

2

∫ 1

0

y3/2(1 + py)−3/2 dy.

By substituting t =
√
py we get

EY 2 =

√
p+ 1

p5/2

∫ √p

0

t4(1 + t2)−3/2 dt.

Then we substitute t = tanu and write P = arctan(
√
p) :

∫ √p

0

t4(1 + t2)−3/2 dt =

∫ P

0

1

cos3 u
du− 2

∫ P

0

1

cosu
du+

∫ P

0

cosu du.

By integration by parts we get
∫ P
0

1
cos3 u

du = 1
2

[
tanu
cosu

]P
u=0

+ 1
2

∫ P
0

1
cosu

du and thus

∫ √p

0

t4(1 + t2)−3/2 dt =
1

2

[
tanu

cosu

]P

u=0

− 3

2

[
log

(
tanu+

1

cosu

)]P

u=0

+ [sinu]Pu=0

=

√
p
√
p+ 1

2
− 3

2
arcsinh(

√
p) +

√
p√

p+ 1
.

In the last line we used forward-inverse trigonometric identities again. We conclude
that

EY 2 =
p+ 1

2p2
− 3
√
p+ 1

2p5/2
arcsinh(

√
p) +

1

p2
=

a2 + 2

2(a2 − 1)2
− 3a arcsinh(

√
a2 − 1)

2(a2 − 1)5/2
.

A.4 Variance of Y and sflo – oblate ellipsoid

Combining the previous results we get

var(sflo) = 4π2(a2 − 1)2 var(Y )

= 2π2a2 +
2π2a arcsinh(

√
a2 − 1)√

a2 − 1
− 4π2a2 arcsinh2(

√
a2 − 1)

a2 − 1
.

The surface area of an oblate ellipsoid with minor semiaxis length equal to 1 and
major semiaxis length equal to a > 1 is given by the formula

s = 2πa2
[
1 +

1

a
√
a2 − 1

arctanh

(√
a2 − 1

a

)]
.

25



Using l’Hospital’s rule it can be shown that the expression in square brackets has
a limit 1 as a → ∞. Recalling that arcsinh(x) = log(x +

√
x2 + 1), it is easily seen

that
lim
a→∞

var(sflo)

s2
= 0,

i.e. that the relative variance of sflo converges to 0 as a→∞.
The dependence of the relative variance of sflo for oblate ellipsoids on the major

semiaxis length a is shown in Figure 9. The shape of the curve is consistent with
our previous empirical findings.
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Figure 9: Oblate ellipsoids: dependence of the relative variance of sflo on the major semi-
axis length a of the ellipsoid. Solid line – theoretical values, crosses – empirical estimates
obtained by using 10 000 section planes through the centre of the ellipsoid. New, indepen-
dent section planes were used for each ellipsoid.

A.5 Calculating EY – prolate ellipsoid

For ease of exposition we denote p = c2 − 1. We assume that c > 1 and thus p > 0.
Then

EY =

∫ 1

0

yfPY (y) dy =
p+ 1

2

∫ 1

0

y√
1− y (1 + py)−3/2 dy.

By substituting x =
√

1− y we get
∫ 1

0

y√
1− y (1 + py)−3/2 dy = 2

∫ 1

0

1− x2
(−px2 + p+ 1)3/2

dx.
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Then, using the second Euler substitution
√
−px2 + p+ 1 = xt−√p+ 1, we get

2

∫ 1

0

1− x2
(−px2 + p+ 1)3/2

dx =
4

p+ 1

∫ ∞

1+
√
p+1

(t2 + p)2 − 4(p+ 1)t2

(t2 + p)(t2 − p)2 dt.

Since the integrand is a rational function of t we can use partial fraction decompo-
sition and integrate the individual terms to get the result

4

p+ 1

∫ ∞

1+
√
p+1

(t2 + p)2 − 4(p+ 1)t2

(t2 + p)(t2 − p)2 dt =
2 arctan(

√
p)

p3/2
− 2

p(p+ 1)
.

The simple form of the result is due to specific identities for inverse trigonometric
functions.

Finally,

EY =
p+ 1

p3/2
arctan(

√
p)− 1

p
=

c2

(c2 − 1)3/2
arctan(

√
c2 − 1)− 1

c2 − 1
.

A.6 Calculating EY 2 – prolate ellipsoid

Again we denote p = c2 − 1 and assume that c > 1 and p > 0. Then

EY 2 =

∫ 1

0

y2fPY (y) dy =
p+ 1

2

∫ 1

0

y2√
1− y (1 + py)−3/2 dy.

By substituting x =
√

1− y we get
∫ 1

0

y2√
1− y (1 + py)−3/2 dy = 2

∫ 1

0

(1− x2)2
(−px2 + p+ 1)3/2

dx.

Then, using the second Euler substitution
√
−px2 + p+ 1 = xt−√p+ 1, we get

2

∫ 1

0

(1− x2)2
(−px2 + p+ 1)3/2

dx =
4

p+ 1

∫ ∞

1+
√
p+1

(
(t2 + p)2 − 4(p+ 1)t2

)2

(t2 + p)3(t2 − p)2 dt.

Since the integrand is a rational function of t we can use partial fraction decompo-
sition and integrate the individual terms to get the result

4

p+ 1

∫ ∞

1+
√
p+1

(
(t2 + p)2 − 4(p+ 1)t2

)2

(t2 + p)3(t2 − p)2 dt =
(p− 3) arctan(

√
p)

p5/2
+

p+ 3

p2(p+ 1)
.

The simple form of the result is due to specific identities for inverse trigonometric
functions.

We conclude that

EY 2 =
(p+ 1)(p− 3)

2p5/2
arctan(

√
p) +

p+ 3

2p2

=
c2(c2 − 4)

2(c2 − 1)5/2
arctan(

√
c2 − 1) +

c2 + 2

2(c2 − 1)2
.
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A.7 Variance of Y and sflo – prolate ellipsoid

Combining the previous results and keeping for the moment the simplified notation
p = c2 − 1 we get

var(sflo) = 4π2p2 var(Y )

=
2π2(p+ 1)

p

(
p+
√
p(p+ 1) arctan(

√
p)− 2(p+ 1) arctan(

√
p)2
)
.

The surface area of a prolate ellipsoid with minor semiaxis length equal to 1 and
major semiaxis length equal to c > 1 is given by the formula

s = 2π

[
1 +

c2√
c2 − 1

arcsin

(√
c2 − 1

c

)]
= 2π

[
1 +

p+ 1√
p

arcsin

( √
p√

p+ 1

)]
.

It can be shown that
lim
c→∞

var(sflo)

s2
=∞,

i.e. the relative variance of sflo converges to infinity as c → ∞. The increase of the
relative variance is asymptotically linear in c as

lim
c→∞

1

c

var(sflo)

s2
=

1

π
.

The dependence of the relative variance of sflo for prolate ellipsoids on the major
semiaxis length c is shown in Figure 10, together with empirical estimates of the
relative variance.
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Figure 10: Prolate ellipsoids: dependence of the relative variance of sflo on the major
semiaxis length c of the ellipsoid. Solid line – theoretical values, crosses – empirical esti-
mates obtained by using 10 000 section planes through the centre of the ellipsoid. New,
independent section planes were used for each ellipsoid. Dashed line – the asymptote for
the relative variance of sflo.

B Optimality of the pivotal estimator – ellipsoids

We show that for an arbitrary (triaxial) ellipsoid with a fixed reference point in
its interior the pivotal estimator spiv,4 and the flower estimator sflo are identical.
Hence spiv,4 is optimal for estimation of the surface area in the sense that it captures
all the information available in each section with the minimal effort (it requires
measurement of the support function in only four directions).

Any planar section of the ellipsoid through the reference point O is an ellipse
– we denote it Y and its semiaxes lengths a and b. Let z = [x0, y0] be the vector
of coordinates of the centre of the ellipse in the section plane, with the reference
point O being the origin of the coordinate system. According to Noumeir (2000), if
z = [0, 0], the support function of the ellipse Y can be expressed as

hY (ω) =
√
a2 cos2 ω + b2 sin2 ω, (B.1)

where ω is the angle with respect to the first coordinate axis, chosen such that it
coincides with the major axis of the ellipse. Note that due to the specific form of the
support function (B.1) hY (ω+π) = hY (ω). Let uω denote the unit vector making the
angle ω with the first coordinate axis. Then the support function of the translated
set Y + z, z ∈ R2, takes the form

hY+z(ω) = hY (ω) + 〈z, uω〉, z ∈ R2, (B.2)
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where 〈x, y〉 denotes the inner product of the vectors x and y.
First we consider the case of z = [0, 0], i.e. the reference point is in the centre

of the ellipse (this would be the case e.g. if the original reference point was in the
centre of the ellipsoid). We show that the estimator

s̃piv,2 = 2π
(
h2Y (ω) + h2Y

(
ω +

π

2

))
(B.3)

is optimal, no matter the value of ω, since s̃piv,2 = sflo = 2π(a2 + b2), see (2.4). Note
that the estimator s̃piv,2 slightly differs from the estimator spiv,2 defined in Section 2
as the difference in the arguments of hY is only π

2
and not π. The reasoning goes as

follows:

h2Y (ω) = a2 cos2 ω + b2 sin2 ω, (B.4)
h2Y (ω + π

2
) = a2 cos2(ω + π

2
) + b2 sin2(ω + π

2
)

= a2 sin2 ω + b2 cos2 ω, (B.5)
h2Y (ω) + h2Y (ω + π

2
) = a2 + b2. (B.6)

Hence, s̃piv,2 = 2π(a2 + b2) = sflo.
In the general case where z = [x0, y0] the estimator spiv,4 is optimal in the sense

that spiv,4 = sflo. The estimator can be expressed as

spiv,4 = π
3∑

n=0

h2Y+z

(
ω + n

2π

N

)
, (B.7)

see (2.8). Since h2Y+z(ω) = h2Y (ω) + 〈z, uω〉2 + 2hY (ω)〈z, uω〉, it is convenient to
decompose spiv,4 into three parts: spiv,4 = π(A+B + C, where

A = h2Y (ω) + h2Y
(
ω + π

2

)
+ h2Y (ω + π) + h2Y

(
(ω + π) + π

2

)
= 2(a2 + b2), (B.8)

B =
3∑

n=0

〈z, uω+nπ
2
〉2 = 2|z|2, (B.9)

C =
3∑

n=0

hY
(
ω + nπ

2

)
〈z, uω+nπ

2
〉 = 0. (B.10)

The values of B and C can be easily obtained using 〈z, uω〉 = x0 cosω + y0 sinω,
hY (ω+ π) = hY (ω) and simple trigonometric identities. Here |z|2 = x20 + y20 denotes
the squared distance from the reference point to the centre of the ellipse. As a result,
spiv,4 = 2π(a2 + b2 + |z|2) = sflo.
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