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Abstract

In this thesis, we study groups of automorphisms for homogeneous trees of countable degree
by using an inductive limit approach. The main focus is the thourough discussion of two
Olshanski spherical pairs consisting of automorphism groups for a homogeneous tree and a
homogeneous rooted tree, respectively. We determine the spherical functions, discuss their
positive definiteness, and make realizations of the corresponding spherical representations.
We turn certain double coset spaces into semigroups and use this to make a complete clas-
sification of a certain class of unitary representations of the groups, the so-called irreducible
tame representations. We prove the existence of irreducible non-tame representations by con-
structing a compactification of the boundary of the tree - an object which until now has not
played any role in the analysis of automorphism groups for trees which are not locally finite.
Finally, we discuss conditionally positive definite functions on the groups and use the gen-
eralized Bochner-Godement theorem for Olshanski spherical pairs to prove Levy-Khinchine
formulas for both of the considered pairs.
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Dansk resume (Danish abstract)

I denne afhandling gennemføres med udgangspunkt i en tilgang baseret på induktive grænser
af topologiske grupper et studie af automorfier for homogene træer af tællelig grad. Fokus er
en grundig diskussion af to konkrete Olshanski-sfæriske par, der består af automorfigrupper
for et homogent træ både med og uden rod. Vi bestemmer de sfæriske funktioner, diskuterer,
hvorvidt disse er positivt definitte, og giver realisationer af de tilhørende sfæriske repræsen-
tationer. Vi udstyrer visse dobbeltsideklasserum med en semigruppestruktur og giver ved
brug heraf en fuldstændig klassifikation af en væsentlig type af unitære repræsentationer af
de betragtede grupper, de såkaldte irreducible, tamme repræsentationer. Vi beviser eksi-
stensen af irreducible, ikke-tamme repræsentationer ved konstruktion af en kompaktifikation
af træets rand, der i den eksisterende litteratur ingen rolle har spillet i analysen af auto-
morfigrupper for homogene træer, der ikke er lokalt endelige. Endelig diskuterer vi betinget
positivt definitte funktioner på de betragtede grupper og beviser ved brug af den generaliserede
Bochner-Godement-sætning for Olshanski-sfæriske par Levy-Khinchine-formler for begge de
betragtede par.
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Introduction

Homogeneous trees and their automorphisms come up naturally in a wide range of mathe-
matical areas and have been the center of attention for mathematical research for years. The
foundation for a renewed interest in the field was laid by the publication of the lecture notes
[Se] in the 1970s, and in the following years the development of harmonic analysis for groups
of automorphisms of locally finite, homogeneous trees was initiated. The main instigator was
Cartier whose papers [Ca1] and [Ca2] were the first to succesfully develop a theory of spherical
functions for such groups. During the last part of the 1970s, Olshanski took up the gauntlet
by providing an extensive insight into the representation theory, cf. the paper [O2]. During
recent years, the study has continued from a number of different perspectives (cf. [KuV] and
[CKS]), but has reached a stage where the harmonic analysis for groups acting on locally
finite, homogeneous trees is quite well-understood.

However, automorphism groups for homogeneous trees which are not locally finite have
been mostly neglected by the mathematical society. In the paper [O3] from 1982, Olshanski
obtained a complete classification of the irreducible representations for such groups, but since
then not much development has taken place. At its current state, the insight into harmonic
analysis of these groups is by no means satisfactory.

Meanwhile, the study of inductive limits of locally compact groups has been a hot topic in
harmonic analysis for the past decades, and the theory in the area has been rapidly developing.
A large number of families of well-known and heavily investigated groups are parametrized
by some dimension parameter, and this has made the study of inductive limits of such groups
natural. The most notable and well-understood examples are classical matrix groups for
which inductive limits have been studied in several different cases (for example, the reader
could consult [O1], [Fa1] and [Ra2] and their bibliographies). A totally different example
is the infinite symmetric group which has been thoroughly studied in the papers [O5] and
[KOV].

In his paper [O1] from 1990, Olshanki greatly facilitated this study by developing a gene-
ral theory of inductive limits of locally compact groups. The relation between unitary repre-
sentations of the inductive limit group and of the underlying locally compact groups was
investigated, and it was proved that every irreducible unitary representation of the inductive
limit may in a natural way be approximated by irreducible unitary representations of the
underlying groups. Furthermore, pairs of groups were studied, and the classical notions of a
Gelfand pair and spherical functions were generalized by the introduction of what is today
known as an Olshanski spherical pair.

The purpose of this thesis is to make use of the theory of Olshanski spherical pairs in a new
setting and hereby bring forward the development of the harmonic analysis of automorphism
groups for homogeneous trees which are not locally finite. The inductive limit approach has
turned out to be of invaluable use in the study of the infinite symmetric group which - from a
number of different perspectives - share similarities with such automorphism groups. Despite
this fact, inductive limits of automorphism groups have never been considered. This thesis
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Introduction

fills the void.
The thesis will center around the study of two Olshanski spherical pairs. One consists of

groups of automorphisms for a homogeneous tree which is not locally finite while the other is
built from groups of automorphisms of a rooted tree with similar characteristics. Our main
emphasis will be firstly to gain insight into the spherical functions and representations for
the pairs and to completely characterize a class of irreducible unitary representations for the
groups, the so-called tame representations. Secondly, we approach the main complication
arising from the fact that the tree is not locally finite, namely the non-existence of certain
measures on the boundary of the tree. We solve the problem by constructing a compactifica-
tion of the boundary with the required properties and show how the resulting representation
theory differs from what is known from the locally finite case.

The thesis is divided into two parts. Chapters 1 and 2 contain the background material
which is necessary for the later chapters. Since the reader is not expected to be familiar
with the harmonic analysis for automorphism groups for locally finite, homogeneous trees,
the treatment of this topic is fairly detailed. The purpose is to familiarize the reader with
the geometry of the tree and the reasoning applied in the area and to make the thesis as self-
contained as possible. Readers with the necessary background may skip large parts of these
chapters, most notably the proofs. The main material of the thesis is contained in chapters
3-8 which give a detailed description of the most important results of my research.

Chapter 1 is devoted to a short presentation of the theory of general Olshanski spherical
pairs and their spherical functions. We define such pairs and give a short discussion of their
topological properties. We will focus on this new concept as a generalization of the well-known
notion of a Gelfand pair. Hence, we prove that some of the well-known properties of unitary
representations in the case of Gelfand pairs are "‘inherited"’ in the case of Olshanski spherical
pairs. Finally, we generalize the notion of a spherical function to this setting and motivate it
by proving that the definition is "‘the right one"’ in the sense that important properties of
spherical functions for Gelfand pairs are carried over to this new situation.

In chapter 2 we develop the parts of the harmonic analysis for automorphism groups for
locally finite, homogeneous trees which will be needed in the remaining chapters. We give
detailed definitions of the basic concepts and show how the group of automorphisms can be
turned into a Hausdorff topological group which is locally compact if the tree is locally finite.
This leads to the construction of a certain Gelfand pair which is the center of attention. The
main point is to find the spherical functions for this pair, to determine which are positive
definite, and to find realizations of the corresponding spherical representations. This is done
in great detail and involves the study of the Laplace operator on the tree and certain measures
and functions on the boundary. New proofs have been provided in certain places, and details
are given in places where the existing literature fails to do this.

Chapter 3 centers around the construction and initial study of the first of the two Olshan-
ski spherical pairs which are the focus in this thesis, namely a pair (G,K) built from groups
of automorphisms for a homogeneous tree of countable degree. The main complication of the
construction involves an appropriate extension of automorphisms of certain locally finite, ho-
mogeneous subtrees to the "‘big"’ tree. We prove that the pair is really an Olshanski spherical
pair and discuss its topological properties. The main part of the chapter is the discussion of
the spherical functions for the pair. These are determined, and we investigate their positive
definiteness and give concrete realizations of the corresponding spherical representations. We
finish the chapter by observing that a new proof for a well-known fact on positive definiteness
of certain functions on the free group with countably many generators is provided by the
content of this chapter.

Chapter 4 returns to the locally finite case to develop harmonic analysis for a certain
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Gelfand pair consisting of automorphisms for a homogeneous rooted tree. Surprisingly, this
naturally occurring pair has not been studied in the existing litterature. It provides the
foundation for the study of our second Olshanski spherical pair in later chapters. Again the
main focus is the construction of the spherical functions (which are all positive definite) and
the corresponding spherical representations. These representations are studied in some detail,
and their relation to the spherical representations of chapter 2 is discussed.

Chapter 5 is concerned with the construction and initial study of the second of the two
Olshanski spherical pairs which are the main focus of this thesis - a pair which consists of
automorphism groups for a homogeneous rooted tree of countable degree. As in chapter 3 the
construction involves the extension of automorphisms of locally finite subtrees to the "‘big"’
tree, but it is way more technical and requires a lot of preliminary work. We prove that
the construction gives rise to an Olshanski spherical pair, determine the spherical functions
(which are all positive definite), and give realizations of the spherical representations. The
latter are investigated in greater detail.

The objective of chapter 6 is to continue the study of the groups from chapter 3 and 5
by making a complete classification of a big class of unitary representations, namely the so-
called irreducible tame representations. We make use of the inducing construction to create
a family of unitary representations and prove that these exhaust the class of irreducible
tame representations. The strategy centers around the construction of certain semigroups of
partial automorphisms of the tree and is based on a further development of ideas presented
by Olshanski in [O4] for the infinite symmetric group. Much of the chapter is devoted to the
construction of the semigroups and to their representations and to show how representations
of the semigroups are related to tame representations of the group. It turns out that this
relation and insight into the semigroups make a complete classification possible.

Chapter 7 has a two-fold purpose. Firstly, it is a continuation of the discussion of the previ-
ous chapter which encourages the study of non-tame representations. Secondly, it approaches
the problem of non-existence of certain invariant measures on the boundary - a feature which
is the main complication arising from the fact that the tree is not locally finite. It turns
out that these two questions are related. We replace the central role of the boundary in the
analysis of the locally finite tree by a certain compactification which possesses the required
measures. It turns out that this attempt to imitate the ideas from the locally finite case
produces a family of non-tame representations and hence proves the existence of such objects.
The representations are studied in greater detail, and the differences from the locally finite
case are discussed.

Chapter 8 makes a small digression and studies conditionally positive definite functions
for the two Olshanski spherical pairs which are the focus of this thesis. The main objective is
to prove Levy-Khinchine formulas for both pairs. We recall the basic facts on conditionally
positive definite functions and their relation to cocycles. We construct a certain function ψ on
the group of chapter 3 which by a study of an extension of the Haagerup cocycle is proved to
be conditionally positive definite and pure. This leads to the Levy-Khinchine decomposition
formulas in which the functions ψ plays a central role.

The thesis has been written at the conclusion of my time as a ph.d. student at the Faculty
of Science at Aarhus University. As such, it contains a detailed account of the main results
of the research project I have carried out. This project has been concerned with two major
topics: the study of Olshanski spherical pairs and the discussion of automorphism groups for
homogeneous trees. As pointed out above, the main idea of this thesis is to apply an inductive
limit approach to the study of automorphism groups. In this way both areas are reflected in
the thesis.

The use of inductive limit methods in the analysis of automorphism groups is by no means
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Introduction

exhausted, and the insight into the groups considered here are not yet complete. A number of
interesting questions remain unsolved. Along the way, I have included a number of remarks
which point out open problems that have caught my attention during my research and that
should be approached in the future.

On purpose, the proofs and explanations in the thesis are quite detailed. The idea is to
make the thesis as self-contained as possible and to make the material accessible to people
who are not completely familiar with either Olshanski spherical pairs or automorphism groups
for homogeneous trees.

Finally, I would like to express my sincere gratitude to my supervisor, Bent Ørsted, with-
out whom this project would never have reached the point where it is today. He has not
only turned my attention in the direction of this interesting topic, his immense knowledge
and superior insight have been a real inspiration and a great source of help. Furthermore, I
warmly thank Jacques Faraut and Marek Bozejko whose hospitality and helpfulness I have
enjoyed on two separate occassions during my project. Fruitful discussions and interesting
ideas have been invaluable results of my visits in Paris and Wroclaw.

Emil Axelgaard
Aarhus, July 2012
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Chapter 1

Olshanski Spherical Pairs and
Spherical Functions

The purpose of this chapter is to develop the basic abstract theory of Olshanski spherical pairs.
The results obtained here form important background information and provide a foundation
for the study of concrete Olshanski spherical pairs in chapters 3 and 5. In section 1, we
define such a pair (G,K) as an inductive limit of an increasing sequence of Gelfand pairs and
mention how this gives rise to a toplogical group. In section 2, we prove that the usual results
concerning K-invariant vectors for unitary representations known from the theory of Gelfand
pairs are still true in this more general situation. In section 3, we generalize the notion of
a spherical function and motivate the definition by proving that the basic characterization
of positive definite spherical functions for Gelfand pairs are still true in this more general
setting. Finally, we make a short discussion of the relation between spherical functions for an
Olshanski spherical pair and spherical functions for the underlying Gelfand pairs.

1.1 Olshanski spherical pairs

Let G1 ⊆ G2 ⊆ . . . ⊆ Gn ⊆ . . . be an increasing sequence of locally compact groups such that,
for each n, Gn has the topology induced from Gn+1 and Gn is a closed subgroup of Gn+1.
Furthermore, assume that, for each n, Kn is a compact subgroup of Gn such that Kn =
Gn ∩Kn+1 and such that (Gn,Kn) is a Gelfand pair, i.e. the Banach algebra L1(Kn\Gn/Kn)
of Kn-biinvariant integrable functions on Gn, is commutative under convolution. Define

G =
∞⋃
n=1

Gn and K =
∞⋃
n=1

Kn

G is clearly a group with the natural multiplication, and if we endow it with the inductive
limit topology, it follows by [TSH, Theorem 2.7] that G is a topological group. If e is the
neutral element in G, {e} is a closed subset of Gn for all n and so a closed subset of G. By [Fo,
Corollary 2.3], this means that G is Hausdorff. However, it is in general not locally compact,
cf. Remark 1.1.1.

K is clearly a subgroup of G, and the relation Kn = Kn+1 ∩ Gn shows that K ∩ Gn is
closed in Gn for all n. Hence, K is a closed subgroup of G which in general is not compact,
cf. Remark 1.1.1.

We say that (G,K) is anOlshanski spherical pair.

1



Chapter 1. Olshanski Spherical Pairs and Spherical Functions

Remark 1.1.1 It is an easy consequence of the definition of the inductive limit topology
that the group inversion in G is continuous - even if the groups were not assumed to be
locally compact. This assumption is, however, essential in establishing the continuity of the
group mulitplication in G. [TSH, Example 1.2] contains the discussion of a case where the
group multiplication in the inductive limit of topological groups is not continuous in the
inductive limit topology. However, [TSH, Part 1] introduces a new topology, the Bamboo-
Shoot topology, on the inductive limit which makes the group multiplication continuous in a
more general set-up. For locally compact groups, the topologies coincide.

It is not difficult to provide examples of the above construction where G turns out not
to be locally compact (for example our main examples of Olshanski spherical pairs which are
considered in chapters 3 and 5). In [HSTH, Proposition 6.5], it is, however, shown that G is
a locally compact group if and only if there exists n such that Gn is an open subgroup of G.

Furthermore, it is not difficult to see that K is compact if and only if K = Kn for some
n. Indeed, if K is compact and K 6= Kn for all n, we can find a subsequence {nk} of N such
that

Kn1 ( Kn2 ( . . .Knk
( . . .

Let x1 ∈ Kn1 and xk ∈ Knk
\ Knk−1

for n ≥ 2. Put An = {xj |j ≥ n}. The intersection
An ∩ Gk is - by the identity Kj = Gj ∩Kj+1 - finite and hence closed in Gk for all k. This
means that An is a closed subset of K and so compact. But ∩∞n=1An = ∅ - contradicting the
finite intersection property which should hold in the Hausdorff space G. Hence, K = Kn for
some n. On the other hand, if K = Kn for some n, the continuity of the inclusion map from
Gn into G immediately shows that K is compact.

Plenty of examples of Olshanski spherical pairs from the world of classical matrix groups
are known and have been studied in great detail. Examples are found in [O1], [Fa1] and
[Ra2]. We will not list these examples here since our focus will be Olshanski spherical pairs
which are of a very different nature. Our main example arises from automorphism groups for
homogeneous trees and will be discussed in great detail in chapters 3 and 5.

1.2 Olshanski spherical pairs and unitary representations

The above introduced concept of an Olshanski spherical pair obviously generalizes the well-
known concept of a Gelfand pair. Fortunately, some of the most important results concerning
the relation between irreducibility of a unitary representation ofG and the space ofK-invariant
vectors remain true in this more general situation. Propositions 1.2.1 and 1.2.2 are natural
generalizations of well-known results for Gelfand pairs (cf. [Fa2, Propositions I.3 and I.5]).

We begin by introducing some standard notation.
For a unitary representation π of G with representation space H, we let HK and HKn be

the subspaces of K- and Kn-invariant vectors, respectively. It is clear that H and HKn are
closed, and we denote by P and Pn the corresponding orthogonal projections. Since

HK1 ⊇ HK2 ⊇ . . . ⊇ HKn ⊇ . . .

and

HK =
∞⋂
n=1

HKn ,

it is well-known that Pn converges strongly to P .

2



Olshanski spherical pairs and unitary representations

Since the Gelfand-Naimark-Segal construction applied to a continuous, K-bi-invariant,
positive definite function provides us with a unitary representation with a K-invariant cyclic
vector, it is natural to ask when such representations are irreducible. The following proposition
reveals that this is the case if HK is "‘small"’.

Proposition 1.2.1 Let (G,K) be an Olshanski spherical pair, and let π be a unitary repre-
sentation of G with representation space H and with a cyclic vector v ∈ HK . If dim HK = 1,
π is irreducible.

Proof. Let U be a closed, invariant subspace.
First we assume that P (U) = {0}. In this case, U is orthogonal to HK and hence to

v ∈ HK . This means that for all x ∈ G and u ∈ U

〈π(x)v, u〉 =
〈
v, π(x−1)u

〉
= 0

since π(x−1)u ∈ U by the invariance of U . Hence, U is orthogonal to the dense subspace
spanned by the π(x)v’s for x ∈ G and so to H. This shows that U = {0}.

Now assume that P (U) 6= {0}. Since HK has dimension 1, this means that P (U) = HK .
If we by νn denote the normalized Haar measure on Kn, it is well-known that

Pnw =
∫
Kn

π(k)w νn(dk) (1.1)

for all w ∈ H and all n. By [Fo, Theorem A3.1], Pnw ∈ span {π(k)w | k ∈ Kn} which shows
that Pn(U) ⊆ U for all n. Since Pn converges strongly to P , we see that HK = P (U) ⊆ U ,
and so v ∈ U . The fact that v is cyclic now means that U = H.

This shows that π is irreducible. �

In light of Proposition 1.2.1, an obvious question is whether irreducibility automatically
implies that HK is "‘small"’, i.e. has dimension at most 1. This is the case as it is the content
of the following proposition:

Proposition 1.2.2 Let (G,K) be an Olshanski spherical pair, and let π be an irreducible
unitary representation of G. Then dim HK ≤ 1.

Proof. Assume that HK 6= {0}, and let n ∈ N. It is easy to see that the σ-algebra on Kn

induced by the Borel σ-algebra on Gn is just the Borel σ-algebra on Kn. Hence, we may
extend the normalized Haar measure νn on Kn to a finite Borel measure µn on Gn by defining

µn(A) = νn(A ∩Kn)

for all Borel subsets A of Gn. It is not difficult to check that µn is a Radon measure, and it
is obviously K-biinvariant.

Let x ∈ Gn, and denote by δx the corresponding Dirac measure which is a Radon measure
on Gn. For all Borel sets A in Gn and k ∈ Kn, the convolution µn∗δx∗µn satisfies the identity

(µn ∗ δx ∗ µn)(kA) =
∫
µn(kAy−1) (δx ∗ µn)(dy) =

∫
µn(Ay−1) (δx ∗ µn)(dy)

= (µn ∗ δx ∗ µn)(A)

which shows that µn ∗ δx ∗ µn is invariant under Kn from the left. Similarly, it is seen that
µn ∗ δx ∗ µn is invariant under Kn from the right, and so it is a Kn-biinvariant, finite Radon

3



Chapter 1. Olshanski Spherical Pairs and Spherical Functions

measure. Since (Gn,Kn) is a Gelfand pair, it follows by [W, Theorem 8.1.7] that the algebra
of regular Kn-biinvariant complex measures is commutative under convolution which shows
that

µn ∗ δx ∗ µn ∗ µn ∗ δy ∗ µn = µn ∗ δy ∗ µn ∗ µn ∗ δx ∗ µn

for all x, y ∈ Gn. If we by µ and ν denote finite Radon measures on Gn and if w ∈ H, we
have the obvious identities (recall (1.1) which describes the projection Pn as an integral)

π(x)w =
∫
Gn

π(g)w δx(dg) and Pnw =
∫
Gn

π(g)w µn(dg)

and ∫
Gn

π(g)w (µ ∗ ν)(dg) =
∫
Gn

π(g)(
∫
Gn

π(h)w ν(dh)) µ(dg)

They reveal that

Pnπ(x)Pnπ(y)Pn = Pnπ(x)PnPnπ(y)Pn = Pnπ(y)PnPnπ(x)Pn = Pnπ(y)Pnπ(x)Pn

For all k ≥ 0, we have the inclusion HKn+k ⊆ HKn which means that PnPn+k = Pn+k.
Hence, we observe that for all k ≥ 0 and all w ∈ H

Pnπ(x)Pnπ(y)Pn+kw = Pnπ(x)Pnπ(y)PnPn+kw = Pnπ(y)Pnπ(x)PnPn+kw

= Pnπ(y)Pnπ(x)Pn+kw

which by the strong convergence of the Pm’s and the continuity of the operators means that
Pnπ(x)Pnπ(y)P = Pnπ(y)Pnπ(x)P .

Similarly, it is true that Pn+kPn = Pn+k for all k ≥ 0 which by an analogous argument
means that Pπ(x)Pnπ(y)P = Pπ(y)Pnπ(x)P - an identity which is true for all n ∈ N.

Finally, the strong convergence and the continuity of the operators show that

(Pπ(x)P )(Pπ(y)P ) = Pπ(x)Pπ(y)P = Pπ(y)Pπ(x)P = (Pπ(y)P )(Pπ(x)P )

Let A be the norm closed algebra generated by the operators Pπ(x)P with x ∈ G. Since
this is just the closure of the set of all polynomial expressions in the Pπ(x)P ’s, the above
shows that A is a commutative Banach *-algebra. Similarly, we observe that HK is invariant
under A since it is invariant under the operators generating A.

The inclusion map from A into B(H), the Banach *-algebra of bounded operators on H,
is a *-representation of A. We claim that HK is an irreducible subspace. Indeed, let U 6= {0}
be a closed A-invariant subspace of HK , and denote by U⊥ the othogonal complement in HK .
Let u ∈ U , u 6= 0. For v ∈ U⊥, the invariance of U implies that

〈π(x)u, v〉 = 〈π(x)Pu, Pv〉 = 〈Pπ(x)Pu, v〉 = 0

Since π is irreducible, u is a cyclic vector for π, and so v is orthogonal to H. Hence, v = 0
which means that U = HK .

Since A is a commutative Banach *-algebra and HK is an irreducible subspace of the
considered *-representation of A, we see by [VD, Lemma 6.2.4] that dimHK = 1.

This finishes the proof. �

Propositions 1.2.1 and 1.2.2 will be invaluable tools in the discussion of spherical functions
in the next section.
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1.3 Spherical functions

It is a natural desire to try to generalize the notion of a spherical function for Gelfand pairs
to the more general concept of Olshanski spherical pairs. Fortunately, this is possible. As is
seen by Theorem 1.3.4, the following definition is the "‘right"’ one in the sense that the most
important properties of spherical functions for Gelfand pairs carry over to this more general
situation:

Definition 1.3.1 Let (G,K) be an Olshanski spherical pair. A K-biinvariant, continuous
function ϕ on G, ϕ 6= 0, is said to be spherical for (G,K) if for all x, y ∈ G.

lim
n→∞

∫
Kn

ϕ(xky) νn(dk) = ϕ(x)ϕ(y) (1.2)

where νn is the normalized Haar measure on Kn.

It should be noticed that the integrals in Definition 1.3.1 - by definition of the inductive
limit topology - make sense for any continuous function ϕ on G and for any n. Furthermore,
it is obvious that the constant function 1 is always a spherical function for (G,K).

The following properties of spherical functions are rather obvious:

Lemma 1.3.2 Let (G,K) be an Olshanski spherical pair, and let ϕ be a spherical function for
(G,K). Then

1. ϕ(e) = 1

2. ‖ϕ‖∞ = 1 if ϕ is bounded

Proof. Choose x ∈ G such that ϕ(x) 6= 0. By the K-biinvariance of ϕ, we observe that∫
Kn

ϕ(kx) νn(dk) =
∫
Kn

ϕ(x) νn(dk) = ϕ(x)

for all n. Since ϕ is spherical, this means that ϕ(x)ϕ(e) = ϕ(x) which proves 1.
To prove 2., we observe that for all x, y ∈ G and all n ∈ N∣∣∣∣∫

Kn

ϕ(xky) νn(dk)
∣∣∣∣ ≤ ‖ϕ‖∞

if ϕ is bounded. Since ϕ is spherical, this means that ‖ϕ‖2
∞ ≤ ‖ϕ‖∞ which shows that

‖ϕ‖∞ ≤ 1. Equality follows by 1. �

The spherical functions for several Olshanski spherical pairs arising from classical matrix
groups are known, cf. [Ra2] and [Fa1]. In chapters 3 and 5, we determine the spherical func-
tions for our main examples of Olshanski spherical pairs arising from automorphism groups
for homogeneous trees.

Define P1(K\G/K) to be the set consisting of all continuous, K-biinvariant, positive
definite functions ϕ on G with ϕ(e) = 1. This is clearly a convex subset of the vector
space consisting of all complex-valued functions on G. In general, not all spherical functions
for an Olshanski spherical pair are bounded, let alone positive definite, cf. chapter 3. For
ϕ ∈ P1(K\G/K), the equation (1.2) is, however, intimately related with the question of
irreducibility of the corresponding representation arising from the Gelfand-Naimark-Segal
construction and of extremality of ϕ in the convex set P1(K\G/K). This is the content of
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Chapter 1. Olshanski Spherical Pairs and Spherical Functions

Theorem 1.3.4 which generalizes a well-known result for Gelfand pairs (cf. [Fa2, Proposition
I.4 and I.6]).

First we need the following general and well-known fact whose proof may be found in [Fo,
Theorem 3.25]:

Lemma 1.3.3 Let G be a topological group and K a closed subgroup. Let ϕ ∈ P1(K\G/K).
ϕ is extremal in the convex set P1(K\G/K) if and only if the representation π associated to
ϕ by the Gelfand-Naimark-Segal construction is irreducible.

We are now ready to state and prove the main theorem:

Theorem 1.3.4 Let (G,K) be an Olshanski spherical pair. For a function ϕ ∈ P1(K\G/K),
the following are equivalent:

1. ϕ is a spherical function for (G,K).

2. The representation π associated to ϕ by the Gelfand-Naimark-Segal construction is ir-
reducible.

3. ϕ is an extremal point in P1(K\G/K)

Proof. By Lemma 1.3.3, it is enough to show that 1. and 2. are equivalent. So we assume
that ϕ is a spherical function for (G,K), and let v be a K-invariant cyclic unit vector in H,
the representation space of π, such that ϕ(x) = 〈v, π(x)v〉 for all x ∈ G. By the integral
expresson in (1.1) and the strong convergence of the projections Pn, we observe that〈
π(x)v, ϕ(y)v

〉
= ϕ(y)

〈
v, π(x−1)v

〉
= ϕ(y)ϕ(x−1) = lim

n→∞

∫
Kn

ϕ(x−1ky) νn(dk)

= lim
n→∞

∫
Kn

〈π(x)v, π(ky)v〉 νn(dk) = lim
n→∞

〈π(x)v, Pnπ(y)v〉 = 〈π(x)v, Pπ(y)v〉

for all x, y ∈ G. Since v is cyclic, this means that Pπ(y)v = ϕ(y)v for all y ∈ G which by
the same fact has as a consequence that P maps H into the 1-dimensional, closed subspace
spanned by v. Since HK 6= {0}, this means that dimHK = 1, and so π is irreducible by
Proposition 1.2.1.

Now assume that π is irreducible, and let x, y ∈ G. The calculations

〈v, π(x)Pπ(y)v〉 = lim
n→∞

〈
π(x−1)v, Pnπ(y)v

〉
= lim

n→∞

∫
Kn

〈
π(x−1)v, π(k)π(y)v

〉
νn(dk)

= lim
n→∞

∫
Kn

ϕ(xky) νn(dk)

show that it suffices to prove that ϕ(x)ϕ(y) = 〈v, π(x)Pπ(y)v〉.
By Proposition 1.2.2, HK has dimension 1, i.e. HK = Cv. This shows that

Pw = 〈w, v〉 v

for all w ∈ H, and so

〈w,Pπ(y)v〉 = 〈Pw, π(y)v〉 = 〈w, v〉 〈v, π(y)v〉 =
〈
w,ϕ(y)v

〉
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This means that Pπ(y)v = ϕ(y)v and so

Pπ(x)Pπ(y)v = ϕ(y)Pπ(x)v = ϕ(x)ϕ(y)v

Hence, we see that

〈v, π(x)Pπ(y)v〉 = 〈Pv, π(x)Pπ(y)v〉 = 〈v, Pπ(x)Pπ(y)v〉
= ϕ(x)ϕ(y) 〈v, v〉 = ϕ(x)ϕ(y)

which finishes the proof. �

Theorem 1.3.4 shows that one way to find irreducible unitary representations of G is by
determining the positive definite spherical functions for the pair (G,K). Recall that a unitary
representation of G is said to be spherical for the pair (G,K) if it is irreducible and has a
non-zero, K-invariant vector. By the Gelfand-Naimark-Segal construction, there is a bijective
correspondance between equivalence classes of spherical representations and the set of positive
definite spherical functions. Hence, one way to check that a set of spherical representations is
exhaustive is by finding all positive definite spherical functions. In chapters 3 and 5, we find
these functions in our main examples and make realizations of the corresponding spherical
representations. However, Theorem 1.3.4 shows that the set of such functions is of interest
from multiple perspectives. We emphasize this importance by denoting the set of positive
definite spherical functions for (G,K) by Ω, and we will refer to it as the spherical dual of
(G,K). As we shall see below in the generalized Bochner-Godement theorem for Olshanski
spherical pairs (Theorem 1.3.6), the functions in Ω are in a way the building blocks of all
K-biinvariant, continuous, positive definite functions on G.

Remark 1.3.5 It is a natural question to ask whether a spherical function for the Olshan-
ski spherical pair (G,K) is the pointwise limit of spherical functions for the Gelfand pairs
(Gn,Kn). Olshanski has solved this problem in the case of a positive definite spherical func-
tion.

In [O1, Theorem 22.10], it is proved - in this general situation - that every such function
is the uniform limit on compact sets of positive definite spherical functions for the pairs
(Gn,Kn) (notice that this type of convergence makes sense since an argument similar to
the one in Remark 1.1.1 shows that every compact set C ⊆ G is a subset of Gn for some
n). This and the relation in Theorem 1.3.4 between spherical representations and positive
definite spherical functions is used to show that every irreducible representation of G may be
approximated - in a way defined in [O1] - by irreducible representations of the Gn’s. This is
the content of [O1, Theorem 22.9].

Unfortunately, the general question has not yet been answered. Olshanski’s proof clearly
fails to deal with this situation since it heavily relies on the relation between spherical functions
and extremal points in convex sets of Theorem 1.3.4. Nobody has, however, constructed
spherical functions for (G,K) that are not pointwise limits of spherical functions for (Gn,Kn).
An important open problem in the abstract theory of Olshanski spherical pairs is to provide
a satisfactory answer to this question.

A famous result is the Bochner-Godement theorem which states that for a Gelfand pair
(G,K) all K-biinvariant, continuous, positive definite functions on G may be decomposed as
an integral over the spherical dual with respect to some finite measure (see [W, Theorem 9.3.4]
or [Fa2, Theorem II.1]). Recently, Rabaoui has generalized this theorem by using Choquet
theory to prove that the same is true for Olshanski spherical pairs (see [Ra1]). The precise
statement of the theorem is as follows:
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Chapter 1. Olshanski Spherical Pairs and Spherical Functions

Theorem 1.3.6 Let (G,K) be the Olshanski spherical pair corresponding to the increasing
sequence of Gelfand pairs {(Gn,Kn)}∞n=1. Assume that Gn is second countable for all n. Let
Ω be the spherical dual for (G,K), and equip it with the topology of uniform convergence on
compact sets. For every K-biinvariant, continuous, positive definite function ϕ on G, there
exists a unique positive, finite Borel measure on Ω such that

ϕ(g) =
∫

Ω
τ(g) µ(dτ)

for all g ∈ G.

This theorem will be the main tool in our study of conditionally positive definite functions
in chapter 8.

The aim of the main chapters 3-8 is to make the abstract theory of this chapter concrete
by making an extensive study of two Olshanski spherical pairs. In both cases, the spherical
functions will be determined and realizations of the spherical representations will be given and
scrutinized. The generalized Bochner-Godement theorem will be applied to give general for-
mulas for continuous, biinvariant, positive definite functions and to establish Levy-Khinchine
formulas which give integral decompositions of continuous, biinvariant, conditionally posi-
tive definite functions. Along the way, we will clarify the connection with a number of open
problems in the general theory of Olshanski spherical pairs.
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Chapter 2

Harmonic Analysis for Groups
Acting on Homogeneous Trees

This chapter provides the necessary background information on groups acting on homogeneous
trees and will be an important foundation for our main chapters 3-8. We develop harmonic
analysis and representation theory for groups consisting of automorphisms of locally finite,
homogeneous tree. The main emphasis will be on finding the spherical functions for certain
Gelfaind pairs, determine which are positive definite and find realizations of the spherical
representations. The reader is not assumed to be familiar with trees and their automorphisms.
Hence, the purpose of the chapter is two-fold. Firstly, it goes through a number of results
which will be needed later on. Secondly, a detailed and careful treatment should make the
reader more comfortable with reasoning focusing on trees. In section 1, we introduce the
basic concepts of this chapter, notably the concept of a tree and an automorphism, and study
different types of automorphisms. Furthermore, we turn the group of automorphisms into
a topological group and prove that it in some cases is locally compact. Section 2 contains
the construction of the boundary of a tree and a description of its most basic properties. In
section 3 we construct the Gelfand pair that will be the center of our attention. Section 4 is
devoted to the spherical functions for this Gelfand pair, and in section 5 we give realizations
of the spherical representations. The main results are Theorems 2.4.6 and 2.5.2.

2.1 Trees and automorphisms

A (non-directed) graph is a pair (X,C) consisting of a set X whose elements are known as
the vertices of the graph, and a set C consisting of two-element subsets of X - known as the
edges of the graph. Two elements x, y ∈ X are said to be neighbours if {x, y} ∈ C, and the
cardinality of {y ∈ X | {x, y} ∈ C} is known as the degree of x. A path of length n in (X,C)
is a finite sequence x0, x1, . . . , xn of vertices such that {xk, xk+1} ∈ C for all k, and a path
x0, x1, . . . , xn is known as a chain if xk 6= xk+2 for all k. A circuit is a chain x0, x1, . . . , xn
such that x0 = xn.

Similarly, sequences x0, x1, . . . , xn . . . and . . . , x0, x1, . . . , xn, . . . , of vertices are said to be
an infinite chain starting at x0 and a doubly infinite chain, respectively, if {xn, xn+1} ∈ C and
xn 6= xn+2 for all n.

The graph (X,C) is said to be connected if there for all x, y ∈ X exists a path x0, . . . , xn
with x0 = x and xn = y. A tree is a connected graph without circuits. A subtree of a tree
(X C) is a connected graph (Y,D) such that Y ⊆ X and D = {{x, y} ∈ C | x, y ∈ Y}. Note
that (Y,D) is again a tree since a circuit in (Y,D) would again be a circuit in (X,C).
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Let (X,C) be a tree, and let x, y ∈ X. It is easy to see that the connectedness and the
lack of circuits show that there exists a unique chain x0, . . . , xn with x0 = x and xn = y. We
denote this chain by [x, y]. If we define d(x, y) = n, it is not difficult to check that d is a
metric on X which induces the discrete topology on X. We will denote d the natural metric
and always regard X as a metric space equipped with this metric.

A bijective map g : X → X is said to be an automorphism if it has the property that x
and y are neighbours if and only if g(x) and g(y) are neighbours. An automorphism preserves
chains and so is an isometry of the metric space X. Conversely, a surjective isometry is
obviously an automorphism. Hence, a map from X into X is an automorphism if and only if
it is a surjective isometry.

The automorphism property is obviously preserved under composition, and the identity
map on X is of course an automorphism. Furthermore, for any automorphism g it follows
by definition that the inverse map g−1 is also an automorphism. Hence, the set Aut(X) of
automorphisms of a tree is a group under composition.

The automorphisms may in a natural way be split into three mutually disjoint sets. This
is the content of Proposition 2.1.2 below. For the proof, we need the following lemma:

Lemma 2.1.1 Let g be an automorphism of a tree (X,C), and let x ∈ X. Let x0 = x, x1, . . . , xn =
g(x) be the chain from x to g(x), and assume that n > 0. If g(x1) 6= xn−1, the chain can be
extended to a doubly infinite chain . . . , x−1, x0, x1, . . . such that g(xk) = xk+n for all k ∈ Z.

Proof. Define xn+1 = g(x1). By assumption, xn+1 6= xn−1, and since g is an automorphism,
d(xn, xn+1) = 1. Hence, x0, . . . , xn+1 is a chain. The chain property tells that x0 6= x2, and so
it follows by injectivity of g that g(x2) 6= g(x0) = xn. This means that x0, . . . , xn+2 is a chain
if we define xn+2 = g(x2). In this way, we may inductively define xk+n = g(xk) for k ≥ 1 to
obtain an infinite chain x0, x1, . . . , xn, . . . with the property that g(xk) = xn+k.

Using the same procedure on the chain xn, . . . , x0 = g−1(xn) for which g−1(xn−1) 6= x1,
we may extend it to an inifite chain xn, . . . , x0, x−1, . . . such that g−1(xk) = xk−n for all k.
The chain . . . , x−1, x0, x1, . . . now has the required property. �

Proposition 2.1.2 Let g be an automorphism of a tree (X,C). Then g has exactly one of
the following properties:

1. There exists a vertex x ∈ X such that g(x) = x.

2. There exists an edge {a, b} ∈ C such that g(a) = b and g(b) = a.

3. There exists a doubly infinite chain . . . , x0, x1, . . . , xn, . . . and an integer k ∈ N such
that g(xn) = xn+k for all n ∈ Z.

Proof. Let k = min {d(x, g(x))| x ∈ X}, and let x ∈ X be a vertex such that d(x, g(x)) = k.
If k = 0, g has property 1. If k = 1 and g2(x) = x, g has property 2. with a = x and
b = g(x). If k = 1 and g2(x) 6= x, it follows by Lemma 2.1.1 that we may extend the chain
x0 = x, x1 = g(x) to a doubly inifite chain . . . , x0, x1, . . . , xn, . . . such that 3. is satisfied. If
k ≥ 2 and x0 = x, . . . , xk = g(x) is the chain from x to g(x), it is by the minimality of k true
that g(x1) 6= xk−1 since d(x1, xk−1) = k − 2 < k. Hence, Lemma 2.1.1 shows that we may
extend this chain to a doubly infinite chain . . . , x0, x1, . . . , xn, . . . such that 3. is satisfied. So
g has at least one of the studied properties.

To see that it cannot have more than one, we assume that g has properties 1. and 2. We
may without loss of generality assume that d(x, b) = d(x, a) + 1. Since g is an isometry, we
see that d(x, a) = d(x, b) + 1 which is of course a contradiction.
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Now assume that g has properties 1. and 3. Obviously, we may choose n such that xn is
the unique vertex in the doubly infinite chain with minimal distance to x. g is an isometry,
and so d(x, xn) = d(x, xn+k) which contradicts the uniqueness of n since k ≥ 1.

Finally, assume that g has properties 2. and 3. It is obviously impossible that both a and
b are vertices in the doubly infinite chain . . . , x0, x1, . . . , xn, . . ., so we may without loss of
generality assume that d(b, xn) = d(a, xn) + 1 for all n. g is an isometry, and so we see that
d(a, xn+k) = d(b, xn+k) + 1 for all n which is a contradiction.

This finishes the proof. �

An automorphism g is said to be a rotation if it has property 1., an inversion if it has
property 2. and a k-step translation along the chain . . . , x0, x1, . . . , xn, . . . if it has property
3.

We now want to turn the group of automorphisms Aut(X) of a tree (X,C) into a topological
group. To do this, we endow Aut(X) with the compact-open topology. Recall that this
topology has as a subbase the collection of sets V (K,U) = {g ∈ Aut(X) | g(K) ⊆ U} where
K ⊆ X is compact and U ⊆ X is open. Since X is discrete, K runs through all finite subsets
of X and U through all subsets of X.

Observe that W ⊆ Aut(X) is open if and only if we for all g ∈W can find a finite set F ⊆ X

such that UF (g) = {h ∈ Aut(X) | h(x) = g(x) for all x ∈ F} ⊆ W . Indeed, let W ⊆ Aut(X)
be open, and let g in W . There exist finite subsets K1, . . . ,Kn of X and subsets U1, . . . , Un
of X such that g ∈

⋂n
i=1 V (Ki, Ui) ⊆ W . Put F = ∪ni=1Ki which is a finite subset of X. It is

obvious that UF (g) ⊆
⋂n
i=1 V (Ki, Ui) ⊆W . Conversely, let W ⊆ Aut(X) be a set such that for

all g ∈W there exists a finite subset F = {xi}ni=1 of X such that UF (g) ⊆W . Put Ki = {xi}
which is compact, and Ui = {g(xi)} which is open. Then g ∈

⋂n
i=1 V (Ki, Ui) = UF (g) ⊆ W .

Hence, W is open in the compact-open topology.
Since this characterization shows that the sets UF (g) are trivially open, Aut(X) is obviously

a Hausdorff space. Actually, Aut(X) is a Hausdorff topological group. To show continuity
of the group multiplication, let g, h ∈ Aut(X), let F ⊆ X be finite and consider the set
UF (gh). Put F ′ = {h(x) | x ∈ F}. If (g̃, h̃) ∈ UF ′(g) × UF (h), we see that g̃h̃ ∈ UF (gh).
Hence, the group multiplication is continuous. Similarly, if g ∈ Aut(X) and F ⊆ X is finite,
we define F ′ =

{
g−1(x)

∣∣ x ∈ F}
. If g̃ ∈ UF ′(g), x ∈ F and y = g−1(x), we observe that

g̃−1(x) = g̃−1(g(y)) = g̃−1(g̃(y)) = y = g−1(x), and so g̃−1 ∈ UF (g−1). Hence, the inversion
is also continuous, and Aut(X) is a topological group.

Remark 2.1.3 It should be observed that the set UF (g) is closed for all finite F ⊆ X and
g ∈ Aut(X). Indeed, if h ∈ Aut(X) \ UF (g), there exists x ∈ F such that h(x) 6= g(x). Put
F ′ = {x}. Then UF ′(h) ⊆ Aut(X) \UF (g). Since UF (g) is also open, and the sets of this type
constitute a basis for the topology, Aut(X) is totally disconnected.

Remark 2.1.4 An important property of the topology on Aut(X) is that the natural action
(g, x) 7→ g(x) is a continuous map from Aut(X) × X to X, i.e. that Aut(X) is a topological
transformation group of X. This is true since the neighbourhood U{x}(g) × {x} is mapped
into {g(x)} for all g ∈ Aut(X) and x ∈ X (the continuity is actually a consequence of general
properties of the compact-open topology since X is a locally compact Hausdorff space).

If we restrict our attention to a certain class of trees, the automorphism group Aut(X)
becomes a locally compact group. A tree (X,C) is said to be locally finite if for all vertices x ∈
X the set {y ∈ X | d(x, y) = 1} is finite. It is said to be homogeneous if {y ∈ X | d(x, y) = 1}
has the same cardinality for all x ∈ X. This common cardinality is known as the degree of the
tree.
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For a locally finite tree (X,C), the group Aut(X) is locally compact. To see this, fix a vertex
x ∈ X, and consider the subgroup Kx = {g ∈ Aut(X) | g(x) = x} of rotations of x. Since Kx =
U{x}(e) where e is the identity map, it is an open subgroup. However, Kx is also compact.
Indeed, let H be the set of functions f : X → X such that f(Dn) = Dn for all n where Dn =
{y ∈ X | d(x, y) = n}, and endow H with the compact-open topology. Note that Dn is finite
for all n since (X,C) is locally finite. Put kn = |Dn|. We may in an obvious way identifyH with
P =

∏∞
n=1 S(kn) - an infinite product of symmetric groups. If we equip P with the product

topology of the discrete topologies, the identification is between H and P as topological
spaces. Indeed, let f ∈ H, and let {sn} be the corresponding element in P . If F ⊆ X is
finite, and m = max {d(y, x) | y ∈ F}, the open set

∏m
n=1 {sn} ×

∏∞
n=m+1 S(kn) corresponds

to a subset of VF (f) = {h ∈ H | h(x) = f(x) for all x ∈ F} containing f . Conversely, a set∏k
n=1 {sn} ×

∏∞
n=k+1 S(kn) corresponds exactly to the set VF (f) where F =

⋃k
i=1 Di which

is finite.
Since P by Tychonoff’s theorem is compact, H is a compact space. Automorphisms are

isometries, and so it is obvious that Kx ⊆ H. If f ∈ H \Kx, f is not a surjective isometry,
and since it is surjective, there exist x1, x2 ∈ X such that d(f(x1), f(x2)) 6= d(x1, x2). If
F = {x1, x2}, it is true that VF (f) ⊆ H \Kx, and so Kx is a closed subset of H. This means
that Kx is compact in the compact-open topology and so is a compact subset of Aut(X).

The above considerations show that Kx is a compact neighbourhood of e in Aut(X) which
shows that Aut(X) is a locally compact group.

Remark 2.1.5 If (X,C) is not locally finite, Kx is in general not compact. For instance,
consider the tree in which one vertex x has infinite degree and the remaining vertices have
degree 1. If y is a vertex with degree 1, it is not difficult to see that the orbit Kx(y) =
{g(y) | g ∈ Kx} consists of all vertices of degree 1. Hence, Kx(y) is infinite and so non-
compact in the discrete space X. This contradicts the continuity of the natural action of
Aut(X) on X, cf. Remark 2.1.4.

Similarly, the automorphism group Aut(X) is in general not locally compact if the tree is
not locally finite. Again, the tree above serves as an example. If the identity e has a compact
neighbourhood, it follows by the definition of the topology that there exists a finite set F ⊆ X

such that UF (e) is compact (recall that UF (e) is closed by Remark 2.1.3). If y /∈ F is a vertex
with degree 1, it is, however, easy to see that the orbit (UF (e))(y) is infinite and hence not
compact - contradicting the compactness of UF (e).

2.2 The boundary of a tree

An important feature of a tree (X,C) is that we - in a rather obvious way - may construct
its boundary. It turns out that the boundary has a natural topology and plenty of naturally
occurring Borel measures and that the automorphism group acts on the boundary. These
observations greatly facilitate the harmonic analysis for Aut(X).

Let (X,C) be a tree. We define a binary relation on the set of infinite chains in (X,C) by
declaring two infinite chains {xn}∞n=0 and {yn}∞n=0 to be equivalent if there exists N ∈ N and
k ∈ Z such that xn = yn+k for all n ≥ N . This relation is clearly an equivalence relation,
and we denote by Ω the set of equivalence classes. We will refer to Ω as the boundary of the
tree (X,C). It is easy to see that for any x ∈ X we may regard Ω as the set of infinite chains
{xn}∞n=0 with x0 = x. If ω ∈ Ω and x ∈ X, we denote by [x, ω) the infinite chain {xn}∞n=0

corresponding to ω with x0 = x and refer to it as the chain from x to ω.
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The Gelfand pair (G,K)

We now want to define a Hausdorff topology on Ω. To do this, we fix x ∈ X and declare
a subset U ⊆ Ω to be open if for each ω ∈ U there exists a vertex y ∈ [x, ω) such that
Ω(x, y) = {ω′ ∈ Ω | [x, y] ⊆ [x, ω′)} ⊆ U . This obviously defines a topology on Ω which
clearly does not depend on the choice of x. The sets Ω(x, y) are of course open for all y ∈ X,
and since the topology does not depend on the choice of x, this is true for all x ∈ X. This
shows that the topology is Hausdorff.

The sets Ω(x, y) are also closed. To see this, let x0 = x, . . . , xn = y be the chain from x to
y, and observe that the complement of Ω(x, y) is the union of the sets Ω(x, z) where z /∈ [x, y]
is neighbour of some xk with k ≤ n − 1. Hence, the topology has a basis consisting of open
and closed sets, and so Ω is totally disconnected.

Assume that (X,C) is locally finite, and fix x ∈ X. For n ≥ 1, define the finite set
Dn = {y ∈ X | d(x, y) = n}, and consider P =

∏∞
n=1 Dn. If we endow P with the product

topology of the discrete topologies on the Dn’s, P is by Tychonoff’s theorem a compact space.
We may in an obvious way regard Ω as a subset of P . It follows immediately by the definition
of the topologies involved that the topology on Ω is the topology inherited from P . For
{xn} ∈ P \ Ω, there exists an n such that xn−1 and xn are not neighbours in the tree. Since∏n
i=1 {xi}×

∏∞
i=n+1 Di ⊆ P \Ω, Ω is a closed subset of P . Hence, the boundary Ω is compact

for any locally finite tree (X,C), and the sets Ω(x, y) with x, y ∈ X are open and compact sets.
If x0, x1, . . . , xn, . . . is an infinite chain and g ∈ Aut(X), g(x0), g(x1), . . . , g(xn), . . . is clearly

also an infinite chain, so Aut(X) acts on the set of infinite chains in (X,C). Since this action
obviously preserves the equivalence relation introduced above, Aut(X) acts on Ω. We denote
this action by (g, ω) 7→ g · ω. It is continuous. Indeed, let x0, x1, . . . , xn, . . . be an infinite
chain, let ω ∈ Ω be the corresponding equivalence class, and let g ∈ Aut(X). Put F =
{x0, x1, . . . , xn}. If (g′, ω′) ∈ UF (g) × Ω(x0, xn), we observe that g′ · ω′ ∈ Ω(g(x0), g(xn)).
Hence, Aut(X) is a topological transformation group of the compact Hausdorff space Ω.

The boundary and the corresponding action of Aut(X) will be the central tool in the study
of spherical functions and representations in sections 2.4 and 2.5.

2.3 The Gelfand pair (G, K)

Let (X,C) be a locally finite, homogeneous tree of degree q + 1 ≥ 3 (note that for q = 0 the
tree consists of only 1 edge and for q = 1 the tree is very simple. For instance, it only has
one doubly infinite chain. We exclude these simple cases from the considerations below). We
will construct a certain Gelfand pair which will be the center of attention for the remainder
of this chapter.

To do this, we choose a vertex o ∈ X and keep it fixed for the remainder of this discussion.
Let G be a closed subgroup of the locally compact group Aut(X), and assume that it acts
transitively on X and that the subgroup K = Ko ∩ G acts transitively on Ω (since the tree
is homogeneous, Aut(X) is an example of a group satisfying these conditions). The above
observations imply that G is a locally compact group and that K is a compact subgroup.
We fix a Haar measure on G and denote the group algebra of G by L1(G) and the closed
subalgebra of K-biinvariant L1-functions by L1(K\G/K).

Remark 2.3.1 It is actually sufficient to assume that the closed subgroup G acts transitively
on X and Ω. The transitive action of K on Ω will then be a consequence of these assumptions.
This follows by [FN, Proposition 1.10.1] which states that a closed, non-compact subgroup
H ⊆ Aut(X) acting transitively on Ω satisfies that there exists a vertex x ∈ X such that
H ∩ Kx acts transitively on Ω. Since G acts transitively on X, it follows by the continuity
of the action of G on X (cf. Remark 2.14.4) that G is non-compact, and so G ∩ Kx acts
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transitively on Ω for some x ∈ X. It is now an easy consequence of the transitive action of G
on X that the same is true for K.

Since we do not need the fact that we may weaken our assumptions in this way, we will
not give a proof of [FN, Proposition 1.10.1]. Instead, we refer to [FN].

It turns out that the transitive action of K on Ω implies that (G,K) is a Gelfand pair:

Proposition 2.3.2 Let G and K be as above. The pair (G,K) is a Gelfand pair, i.e. the
Banach algebra L1(K\G/K) is commutative under convolution.

Proof. Let g ∈ G. Since g is an isometry, it is true that d(o, g−1(o)) = d(g(o), o). K acts
transitively on Ω, and every element in Ω can be regarded as an infinite chain starting at o.
Hence, K acts transitively on the sets {x ∈ X | d(o, x) = n} for all n ≥ 0. This means that
there exists k ∈ K such that (kg−1)(o) = g(o), and so h = g−1kg−1 ∈ K. Since g−1 = hgk−1,
we observe that g−1 ∈ KgK. By Gelfand’s lemma [W, Proposition 8.1.3], this shows that
(G,K) is a Gelfand pair. �

This immediately implies the following:

Corollary 2.3.3 Let G be as above. Then G is unimodular.

Proof. This immediately follows from Proposition 2.3.2 and [W, Lemma 8.1.5]. �

Remark 2.3.4 If we add the assumption that G contains a subgroup acting faithfully and
transitively on X, one may observe that the transitive action of K on Ω is actually equivalent
to the commutativity of L1(K\G/K). This is claimed in [FN, Section 2.4]. Hence, we can
not weaken our assumptions on K without destroying the Gelfand pair property in this case.
Since we do not need this in the sequel, we will omit a proof of this fact.

Sections 2.4 and 2.5 are devoted to the study of spherical pairs and representations for the
Gelfand pair (G,K).

2.4 Spherical functions for the Gelfand pair (G, K)

Let (G,K) be the Gelfand pair considered above. The purpose of this section is to determine
the spherical functions for this pair. To do this, we begin by observing some basic consequences
of our assumptions on G and K.

Since G acts transitively on X, the image of the map g 7→ g(o) is X. Since K is the isotropy
group corresponding to o, this map induces a bijection from the coset space G/K onto X.
Hence, we may regard a function f on G which is right invariant under K as a function f̃ on
X. Conversely, we may regard every function on X as a function on G which is right invariant
under K.

Let f be a K-biinvariant function on G and regard f as a function f̃ on X. If x, y ∈ X

satisfy that d(o, x) = d(o, y), it follows by the transitive action of K on Ω that there exists
k ∈ K such that k(x) = y. If g ∈ G satisfy that g(o) = x, it follows by the left-invariance of f
that f(kg) = f(g). Hence, f̃(x) = f̃(y), and so f̃ is constant on the sets {z ∈ X | d(o, z) = n}
for n ≥ 0. A function on X with this property is said to be radial. Hence, every K-biinvariant
function corresponds to a radial function on X. Conversely, every radial function corresponds
to a K-biinvariant function in exactly the same way.
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Since spherical functions for the pair (G,K) areK-biinvariant, we will study such functions
by considering radial functions on X. To do this, we introduce the Laplace operator L which
is a linear operator on the vector space consisting of complex-valued functions on X. For
f : X → C we define Lf to be the complex-valued function on X whose value in x is the
average of the values of f in the neighbours of x, i.e.

(Lf)(x) =
1

q + 1

∑
{x,y}∈C

f(y)

The spherical functions may be determined using the Laplace operator since it turns
out that such functions are closely related with radial eigenfunctions of L. The following
proposition characterizes the spherical functions of (G,K) as radial functions on X.

Proposition 2.4.1 Let G and K be as above. Let f be a K-biinvariant function on G, and
let f̃ be the corresponding radial function on X. Then f is a spherical function for (G,K) if
and only if f̃ is a eigenfunction for the Laplace operator L with f̃(o) = 1.

Proof. Assume that f is a spherical function. As is well-known, this means that f(e) = 1,
and so f̃(o) = 1. Let µ ∈ C be the common value of f̃ on the set {y ∈ X | d(o, y) = 1}, and
consider a vertex x ∈ X. By the transitive action of G on X, we choose g, h ∈ G such that
g(o) = x and h(o) = y is a neighbour of x. If k ∈ K, we observe that d((gkg−1h)o, x) = 1. If
y1, . . . , yq+1 are the neighbours of x, and if ki - by the transitive action of K on Ω - is chosen
such that (kig−1h)(o) = g−1(yi) for all i, we observe that{

k ∈ K
∣∣ (gkg−1h)o = yi

}
=

{
k ∈ K

∣∣ (kg−1h)o = g−1(yi)
}

= ki
{
k ∈ K

∣∣ (kg−1h)(o) = (g−1h)(o)
}

for all i. Since the union of these disjoint open sets is K, they all have measure (q + 1)−1

under the normalized Haar measure on K. This observation and the fact that f is spherical
shows that

µf̃(x) = f̃(x)f̃((g−1h)(o)) = f(g)f(g−1h) =
∫
K
f(gkg−1h) dk

=
∫
K
f̃((gkg−1h)(o)) dk =

1
q + 1

q+1∑
i=1

f̃(yi) = (Lf̃)(x)

where dk is the normalized Haar measure on K. This shows that f̃ is an eigenfunction of L
corresponding to the eigenvalue µ.

Conversely, assume that f̃ is an eigenfunction of L corresponding to the eigenvalue µ and
that f̃(o) = 1. To simplify the notation, we write f(n) for f̃(x) with d(o, x) = n ≥ 0 (which
is independent of the choice of x). We now observe that

µ = µf̃(o) = (Lf̃)(o) =
1

q + 1
(q + 1)f(1) = f(1)

since all neighbours of o have distance 1 to o. Similarly, let x ∈ X satisfy that d(o, x) = k ≥ 1.
By the eigenfunction property of f̃ , we now have that

f(1)f(k) = µf̃(x) = (Lf̃(x)) =
1

q + 1
f(k − 1) +

q

q + 1
f(k + 1)
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where we for the last equality have used that x has q neighbours of distance k + 1 to o and
one neighbour of distance k − 1 to o. Hence, we get the identity

f(k + 1) =
q + 1
q

f(1)f(k)− 1
q
f(k − 1) (2.1)

for all k ≥ 1.
f is constant on the disjoint double cosets KgK for g ∈ G which are open since K is an

open subset of G. Hence, f is continuous. Since f̃ 6= 0, the same is true for f , and so it is left
to prove that ∫

K
f(gkh) dk = f(n)f(m) (2.2)

for all g ∈ G with d(g(o), o) = n and h ∈ G with d(g(o), o) = m.
If n = 0, we see that g(o) = o, and so g ∈ K. The K-biinvariance of f and normalization

of dk then shows that ∫
K
f(gkh) dk =

∫
K
f(h) dk = f(h) = f(n)f(m)

where we for the last equality have used that f(n) = f(0) = f̃(o) = 1. In a similar way, we
see that (2.2) is satisfied if m = 0.

If n ≥ 1 and m = 1, we denote by y1, . . . , yq+1 the neighbours of g(o). Since d(h(o), o) = 1,
we may argue as in the first part of the proof to see that

∫
K
f(gkh) dk =

1
q + 1

q+1∑
i=1

f̃(yi) = (Lf̃)(g(o)) = µf̃(g(o)) = f(1)f(n) = f(m)f(n)

where we have used that µ = f(1).
Let n ≥ 1 and m ≥ 2. We should now split into two cases: n ≤ m and n > m. The general

calculations are very tedious and not in any way illuminating, so we will only consider the
case where n = 2. This illustrates the idea of the proof. We leave it to the reader to perform
the calculations in the general case.

We denote by y1, . . . , yk the vertices with distance m to o (notice that k = (q + 1)qm−1)
and observe that the transitive action of K on Ω implies that there for each i exists ki ∈ K
such that ki(h(o)) = yi. We see that

{k ∈ K | k(h(o)) = yi} = ki {k ∈ K | k(h(o)) = h(o)} ,

and since the sets on the left hand side constitute a partition of K into open disjoint sets, we
see that they have measure (q − 1)−1q1−m under the normalized Haar measure on K. If we
denote by x1, . . . , xk the vertices of distance m to g(o), we may choose the numbering such
that g(yi) = xi for all i. We now see that

∫
K
f(gkh) dk =

k∑
i=1

1
(q + 1)qm−1

f̃(xi)

=
qm

(q + 1)qm−1
f(m+ 2) +

(q − 1)qm−2

(q + 1)qm−1
f(m) +

qm−2

(q + 1)qm−1
f(m− 2)

=
q

q + 1
f(m+ 2) +

q − 1
q(q + 1)

f(m) +
1

q(q + 1)
f(m− 2)
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where we have used that qm of the xi’s have distance m+ 2 to o, that (q− 1)qm−2 of the xi’s
have distance m to o and that qm−2 of the xi’s have distance m − 2 to o (this is true since
m ≥ 2). Using (2.1) numerous times, we now get∫

K
f(gkh) dk = f(1)f(m+ 1)− 2

q + 1
f(m) +

q − 1
q(q + 1)

f(m) +
1
q
f(1)f(m− 1)

= −1
q
f(m) + f(1)(f(m+ 1) +

1
q
f(m− 1))

= −1
q
f(m) + f(1)(

q + 1
q

f(1)f(m)) = f(m)(
q + 1
q

f(1)f(1)− 1
q
f(0))

= f(m)f(2)

This finishes the proof in this case. �

The above proposition implies that in order to determine the spherical functions for the
pair (G,K), we should find the normalized radial eigenfunctions of L.

We begin by identifying some basic eigenfunctions which turn out to be - in some way to
be made precise below - the building blocks for all eigenfunctions of L. To do this, we fix a
boundary point ω ∈ Ω and introduce an equivalence relation on X. If x, y ∈ X are vertices
and [x, ω) = {xn}∞n=0, there exists a smallest N ≥ 0 such that {xn}∞n=N ⊆ [y, ω). We say
that x and y are ω-equivalent if d(x, xN ) = d(y, xN ). This relation is obviously reflexive and
symmetric. It is also transitive. Indeed, let x, y, z ∈ X be vertices such that x and y are
ω-equivalent and y and z are ω-equivalent. Let [y, ω) = {yn}∞n=0, and let N ≥ 0 and M ≥ 0
be the smallest numbers such that yN ∈ [x, ω) and yM ∈ [z, ω). We may without loss of
generality assume that N ≤M . If M > N , yM is the first vertex in [z, ω) which also belongs
to [x, ω). Since d(z, yM ) = d(y, yM ) = M −N + d(y, yN ) = M −N + d(x, yN ) = d(x, yM ), x
and z are ω-equivalent. If M = N and t is the first vertex in [z, ω) such that t ∈ [x, ω), we
see that d(x, t) + d(t, yN ) = d(x, yN ) = d(y, yN ) = d(z, yN ) = d(z, t) + d(t, yN ) which shows
that d(x, t) = d(z, t). Hence, x and z are ω-equivalent. This means that the relation is also
transitive and so is an equivalence relation. The equivalence classes of this relation is known
as the horocycles of ω.

Let [o, ω) = {xn}∞n=0 and extend it to a doubly infinite chain {xn}∞n=−∞. It is easy to see
that this chain consists of exactly one representative of each of the horocycles corresponding
to ω. We denote by Hn the horocycle corresponding to xn. If x, y ∈ X satisfy that x ∈ Hn

and y ∈ Hm, we define δ(x, y, ω) = m− n (notice that this does obviously not depend on the
choice of the doubly infinite chain). We will study the function P defined on X×X×Ω given
by

P (x, y, ω) = qδ(x,y,ω)

Let ω ∈ Ω and z ∈ C be fixed, and consider the function fz on X defined by fz(x) =
P z(o, x, ω) for x ∈ X. If we put

µ(z) =
qz + q1−z

q + 1
,

this function is an eigenfunction of L corresponding to the eigenvalue µ(z). Indeed, for x ∈ X

with x ∈ Hn, a neighbour y of x will always satisfy that y ∈ Hn+1 or y ∈ Hn−1. The first
possibility holds for exactly one neighbour while the last is true for the q remaining neighbours.
Hence, fz(y) = qzfz(x) for one neighbour y while fz(y) = q−zfz(x) if y is one of the remaining
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q neighbours. This shows that

(Lfz)(x) =
1

q + 1
(qzfz(x) + qq−zfz(x)) = µ(z)fz(x)

We see that Lfz = µ(z)fz.
Note that elementary calculations show that the map z 7→ µ(z) from C to C is surjective.

Hence, we have found eigenfunctions corresponding to any eigenvalue w ∈ C.
Using the function P , we are able to construct even more eigenfunctions for L. To do this,

fix x ∈ X and consider the function ψ from Ω to C defined by ψ(ω) = P (o, x, ω) for all ω ∈ Ω.
Let [o, x] = {xk}nk=0. For 0 ≤ k ≤ n, ψ takes the value q2k−n on the open set Ω(o, y) where
y /∈ [o, x] is a neighbour of xk. Since the union of all these open sets is Ω, we have seen that
ψ is a locally constant - and hence continuous - function assuming only finitely many values.

Let λ be a finitely additive complex measure on Ω defined on the algebra A generated by
the sets Ω(o, y) where y ∈ X. For z ∈ C, consider the function Pzλ given by

(Pzλ)(x) =
∫
P z(o, x, ω) λ(dω)

for all x ∈ X. By the above observations, this definition makes sense. Pzλ is an eigenfunction
of L corresponding to the eigenvalue µ(z). To see this, let x ∈ X, and let x1, . . . , xq+1 be the
neighbours of x. We have seen above that we may choose finitely many non-empty, disjoint
sets Ej ∈ A such that the functions ω 7→ P (o, x, ω) and ω 7→ P (o, xi, ω) are all constant on
the sets Ej for all j and all i. If we choose ωi ∈ Ei for all i, we observe that

(L(Pzλ))(x) =
1

q + 1

∑
i

∫
P z(o, xi, ω) λ(dω) =

1
q + 1

∑
i

∑
j

λ(Ei)P z(o, xi, ωj)

=
∑
j

λ(Ej)
1

q + 1

∑
i

P z(o, xi, ωj) =
∑
j

λ(Ej)µ(z)P z(o, x, ωj)

= µ(z)(Pzλ)(x)

since we have already seen that the maps y 7→ P z(o, y, ωj) are eigenfunctions corresponding
to the eigenvalue µ(z).

The map Pzλ is known as the Poisson transformation of the finitely additive complex
measure λ, and the map Pz is known as the Poisson transform.

Remark 2.4.2 It should be noticed that A consists of all finite unions of sets of the type
Ω(o, y) for y ∈ X. To see this, let x ∈ X, and consider the chain x0 = o, . . . , xn = x from
o to x. The complement of Ω(o, x) is clearly just the union of the finitely many sets Ω(o, y)
where y /∈ [o, x] is a neighbour of some xk for k ≤ n − 1. Furthermore, two sets Ω(o, y) and
Ω(o, z) are either disjoint or satisfy that Ω(o, y) ⊆ Ω(o, z) or Ω(o, z) ⊆ Ω(o, y), and so their
intersection is either empty or a set of the same type. This shows that the complement of a
finite union of sets of the type Ω(o, y) is again such a finite union, and so A exactly consists
of the sets claimed above.

Actually, it follows by the above observation that every element in A may be written as
a finite disjoint union of sets of the considered type.

The following theorem states the amazing fact that we have now found all eigenfunctions
of the Laplace operator L, i.e. every eigenfunction of L is the Poisson transform of some
finitely additive complex measure λ.
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Theorem 2.4.3 Let f be an eigenfunction of the Laplace operator L corresponding to the
eigenvalue µ ∈ C. Let z ∈ C, z 6= kπi

log q for all k ∈ Z, satisfy that µ = µ(z). Then there exists
a unique finitely additive complex measure λ on Ω defined on the algebra A generated by the
sets Ω(o, x) with x ∈ X such that f = Pzλ.

Remark 2.4.4 The assumption that z 6= kπi
log q for all k ∈ Z does not mean that some eigen-

functions are not covered by the statement in the theorem. If z = kπi
log q , µ(z) is either 1 or −1.

We can, however, cover these eigenvalues by other choices of z. For instance, µ(1) = 1 and
µ(1+ πi

log q ) = −1. Hence, this restriction does not impose any restriction on the corresponding
eigenvalue.

Proof. Let (Y,D) be a finite subtree of (X,C) with o ∈ Y. We say that a vertex x ∈ Y

is an interior point if it has degree q + 1 in (Y,D). Otherwise, we say that it is a boundary
point, and we denote the set of such vertices by ∂Y. A function ϕ on Y is said to be an
eigenfunction of L corresponding to the eigenvalue µ if (Lϕ)(x) = µϕ(x) for all interior points
x ∈ Y.

Let y ∈ Y be a boundary point, and choose ω ∈ Ω(o, y) such that [o, ω) ∩Y = [o, y]. It is
clear that y is in the corresponding horocycle Hd(o,y). For x ∈ Y, we have by construction of
ω that x ∈ Hd(o,y)−d(x,y). Hence, we see that

P (o, x, ω) = qd(o,y)−d(x,y)

for all x ∈ Y. We now define ϕy : Y → C by putting ϕy(x) = qz(d(o,y)−d(x,y)) for all x ∈ Y.
We have seen that ϕy is just the restriction to Y of a µ-eigenfunction of L, and so ϕy is an
eigenfunction for L on Y.

We claim that F = {ϕy | y ∈ ∂Y} is a basis for the vector space consisting of µ-eigenfunctions
for L on Y. To show this, we start by proving that the ϕy’s are linearly independent, and we
do this by induction in |Y|.

If |Y| = 1, the only vertex in Y is o, and F only contains the constant function 1.
Now assume that F is linearly independent for all subtrees containing o with n vertices,

and consider a subtree (Y,D) with |Y| = n + 1 and o ∈ Y. Since Y is finite, there exists
a boundary point s ∈ Y with degree 1 in (Y,D) such that s 6= o. Let Z = Y \ {s} and
E = {{x, y} ∈ C | x, y ∈ Z}. Then (Z,E) is clearly a subtree with n vertices and with o ∈ Z.
Denote by y1 the only neighbour of s in (Y,D), and note that y ∈ ∂Z. Let y2, . . . , ym be the
remaining boundary points of (Z,E).

We first consider the case where y1 is an interior point in (Y,D) and observe that F =
{ϕs, ϕy2 , . . . , ϕym}. Furthermore, we see that d(o, s) = d(o, y1) + 1 and d(x, s) = d(x, y1) + 1
for all x ∈ Z. Hence, it follows by definition that the restriction of ϕs to Z is exactly ϕy1 . By
the induction hypothesis, this means that the restrictions of ϕs, ϕy2 , . . . ϕym to Z are linearly
independent, and so F is linearly independent.

We now consider the case where y1 ∈ ∂Y and observe that F = {ϕs, ϕy1 , . . . , ϕym}.
Assume that

0 = c0ϕs +
m∑
i=1

ciϕyi

with ci ∈ C. As seen above, the restrictions of ϕs and ϕy1 to Z coincide, and so it follows
by the induction hypothesis that c0 + c1 = 0 and that ci = 0 for i ≥ 2. Hence, we have the
relation

0 = c0ϕs + c1ϕy1 (2.3)
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We observe that ϕs(s) = qzd(o,s) and that ϕy1(s) = qz(d(o,s)−1−1) = q−2zqzd(o,s). If we evaluate
in s in the relation (2.3), we see that c0 + c1q

−2z = 0. Since we also have that c0 + c1 = 0, we
see that c0 = c1 = 0, unless q−2z = 1. But this is only the case if z = kπi

log q for some k ∈ Z, and
this case has been excluded by assumption. Hence, we see that F is also linear independent
in this case.

To see that F is a basis for the set of µ-eigenfunctions for L on Y, we only need to see
that this space is spanned by |∂Y| such eigenfunctions. To prove this, we again use induction
in |Y|. The case |Y| = 1 is trivial since there are no interior points, and so all functions on
Y are µ-eigenfunctions for L. Hence, the considered space is obviously 1-dimensional in this
case.

We now assume that our claim is true if |Y| = n and consider a subtree (Y,D) with
|Y| = n + 1. Let s be given as above, and consider again the subtree (Z,E) with n vertices
and o ∈ Z. Let y1, . . . , ym be constructed as above. By the induction hypothesis, we can
find µ-eigenfunctions f ′1, . . . , f

′
m for L on Z spanning the set of all such functions (note that

m = |∂Z|). Let ϕ be a µ-eigenfunction for L on Y. There exists c1, . . . , cm such that

ϕ(x) =
m∑
i=1

cif
′
i(x)

for all x ∈ Z.
We first consider the case where y1 is an interior point in (Y,D). For all i, f ′i may be

extended to a µ-eigenfunction fi for L on Y by defining

fi(s) = (q + 1)µf ′i(y1)−
∑

{y1,x}∈D,x 6=s

f ′i(x)

Since ϕ is a µ-eigenfunction for L on Y, we have the following

ϕ(s) = (q + 1)µϕ(y1)−
∑

{y1,x}∈D,x 6=s

ϕ(x)

=
m∑
i=1

ci((q + 1)µfi(y1)−
∑

{y1,x}∈D,t6=s

fi(x)) =
m∑
i=1

cifi(s)

Since |∂Y| = m, this finishes the proof in this case.
Consider now the case where y1 ∈ ∂Y. In this case, we may for all i extend f ′i to a

µ-eigenfunction fi for L on Y by defining fi(s) = 0. Consider the function fm+1 on Y defined
by fm+1(s) = 1 and fm+1(x) = 0 for x 6= s. Since y1 ∈ ∂Y, fm+1 is a µ-eigenfunction for L.
We now see that

ϕ(x) =
m∑
i=1

cifi(x) + ϕ(s)fm+1(x)

for all x ∈ Y, and since |∂Y| = m+ 1, this finishes the proof of the fact that F is a basis for
the set of µ-eigenfunctions for L on Y.

Now return to the given eigenfunction f for L on X. For all n ≥ 0, consider the subtree
(Yn,Dn) where Yn = {x ∈ X | d(o, x) ≤ n} and Dn = {{x, y} ∈ C | x, y ∈ Yn}. This is clearly
a finite subtree with o ∈ Dn and with ∂Yn = {x ∈ X | d(o, x) = n}. Since the restriction of f
to Yn is a µ-eigenfunction for L on Yn, we can by the above find unique coefficients λy ∈ C
such that

f(x) =
∑

y∈∂Yn

λyϕy(x)
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for all x ∈ Yn. If y ∈ X satisfies that d(o, y) = n and t ∈ X is a neighbour with d(o, t) = n+1,
ϕy and the restriction of ϕt to Yn coincide. Hence, we see that

f(x) =
∑

t∈∂Yn+1

λtϕt(x) =
∑

y∈∂Yn

(
∑

t∈∂Yn+1,{t,y}∈C

λt)ϕy(x)

for x ∈ Yn. By uniqueness of the coefficients, λy =
∑

t∈∂Yn+1,{t,y}∈C λt.
We now define λ(Ω(o, y)) = λy for all y ∈ X. Using the above observation and the

structure of the sets in A (cf. Remark 2.4.2), it is easy to see that λ extends to a finitely
additive complex measure on A . For x ∈ Yn, we have seen above that ω 7→ P z(o, x, ω) is
constantly equal to ϕy(x) on Ω(o, y) for all y ∈ ∂Yn. Hence, we see that

f(x) =
∑

y∈∂Yn

λyϕy(x) =
∫
P z(o, x, ω) λ(dω)

which shows that f is just the Poisson transform of λ.
To prove uniqueness, we assume that f = Pzλ and see as above that

f(x) =
∫
P z(o, x, ω) λ(dω) =

∑
y∈∂Yn

λ(Ω(o, y))ϕy(x)

for all x ∈ Yn. Hence, it follows by the uniqueness that λ(Ω(o, y)) = λy, and so Remark 2.4.2
now shows that λ is uniquely given.

This finishes the proof. �

To find the spherical functions for the pair (G,K), we have seen above that we should find
the radial eigenfunctions for L. This means that we should investigate which finitely additive
complex measures on A give rise to eigenfunctions with this property.

To do this, we define

ν(Ω) = 1, ν(Ω(o, x))
1

(q + 1)qd(o,x)−1

for all x ∈ X with d(o, x) ≥ 1. Observe that
∑

d(o,x)=n ν(Ω(o, x)) = 1 for n ≥ 1 since there
are (q + 1)qn−1 vertices with distance n to o. By definition, the sets Ω(o, x) with x ∈ X

constitute a basis for the topology on Ω, and since there are only finitely many vertices with
a given distance to o, X is countable, and so this basis is countable. Hence, the σ-algebra
generated by these sets is the Borel σ-algebra. Using the fact that the sets Ω(o, x) are open
and compact in Ω, it is easy to check that the conditions in the standard extension theorem
[Gr, Theorem 17.1] are satisfied, and so ν extends uniquely to a Borel probability measure on
Ω. Since ν(k · Ω(o, x)) = ν(Ω(o, k(x))) = ν(Ω(o, x)) for all k ∈ K, ν is K-invariant.

The restriction of ν to A is of course a finitely additive complex measure, and it turns
out that it is exactly the scalar multiples of this measure which by the Poisson transform give
rise to radial eigenfunctions of L.

Proposition 2.4.5 Let f be a complex-valued function on X, and let µ ∈ C. Let z ∈ C,
z 6= kπi

log q for all k ∈ Z, satisfy that µ = µ(z). Then f is a radial eigenfunction for L
corresponding to the eigenvalue µ if and only if f is a scalar multiple of the function Pzν.

Proof. Assume that f is a radial µ-eigenfunction for L. By Theorem 2.4.3, we can find a
finitely additive complex measure λ such that Pzλ = f . Let E = Ω(o, x) for some x ∈ X.
We observe that k · E = Ω(o, k(x)) for k ∈ K, and so we may define the map k 7→ λ(k · E).
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This map is constant on the open disjoint sets Uy = {k ∈ K | k(x) = y} for y ∈ X with
d(o, y) = d(o, x). Hence, it is continuous. Since any E ∈ A is just the disjoint union of sets
of the type Ω(o, x) (cf. Remark 2.4.2), k 7→ λ(k · E) is a sum of continuous maps and hence
continuous. This means that we may define a finitely additive compex measure λK by the
prescription

λK(E) =
∫
K
λ(k · E) dk,

where dk is the normalized Haar measure on K. λK is clearly K-invariant. Since K acts
transitively on Ω, a K-invariant finitely additive complex measure τ with τ(Ω) = 1 must
satisfy that τ(Ω(o, x)) = 1

(q+1)qd(o,x)−1 for all x 6= o, and so τ = ν on A (cf. Remark 2.4.2).
Since a K-invariant finitely additive complex measure τ with τ(Ω) = 0 is constantly equal to
0, this shows that λK = λ(Ω)ν.

Let x ∈ X. For ω ∈ Ω, let y ∈ X satisfy that [x, ω) ∩ [o, ω) = [y, ω). Then δ(o, x, ω) =
d(o, y) − d(x, y). For k ∈ K, it is true that [k(x), k · ω) ∩ [o, k · ω) = [k(y), k · ω), and so
δ(o, k(x), k ·ω) = d(o, k(y))− d(k(x), k(y)) = d(o, y)− d(x, y) = δ(x, y, ω). Hence, we see that
P z(o, k(x), k · ω) = P z(o, x, ω).

For all y ∈ X with d(o, y) = d(o, x), define Ay = Ω(o, y). Since ω 7→ P z(o, x, ω) is constant
on the sets Ay, the map ω 7→ P z(o, x, k−1 · ω) is constant on the sets k ·Ay for all k ∈ K.

If we choose ωy ∈ Ay for all y, these two observations and the fact that f(k(x)) = f(x)
for all k ∈ K show that

f(x) =
∫
K
f(k(x)) dk =

∫
K

∫
Ω
P z(o, k(x), ω) λ(dω) dk

=
∫
K

∫
Ω
P z(o, x, k−1 · ω) λ(dω) dk

=
∫
K

∑
d(o,y)=d(o,x)

λ(k ·Ay)P z(o, x, ωy) dk =
∑

d(o,y)=d(o,x)

P z(o, x, ωy)λK(Ay)

= λ(Ω)
∑

d(o,y)=d(o,x)

P z(o, x, ωy)ν(Ay) = λ(Ω)
∫

Ω
P z(o, x, ω) ν(dω)

= λ(Ω)(Pzν)(x)

which proves one way of the theorem.
Conversely, assume that f = cPzν for c ∈ C. We have seen above that f is a µ-

eigenfunction for L, so it is left to shows that it is radial. If x, y ∈ X satisfy that d(o, x) =
d(o, y), it follows by the transitive action ofK on Ω that there exists k ∈ K such that y = k(x).
Hence, we observe that

f(y) = f(k(x)) = c

∫
Ω
P z(o, k(x), ω) ν(dω) = c

∫
Ω
P z(o, x, k−1 · ω) ν(dω)

= c

∫
Ω
P z(o, x, ω) ν(dω) = f(x)

since ν is K-invariant.
This finishes the proof. �

We observe that P (o, o, ω) = 1 for all ω ∈ Ω. Hence, (Pzν)(o) = ν(Ω) = 1 for all z ∈ C.
If we combine this fact with Propositions 2.4.1 and 2.4.5 above, we have proved the following
theorem which is the main result of this section:
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Theorem 2.4.6 The spherical functions for the pair (G,K) are the functions fz on G given
by

fz(g) = (Pzν)(g(o)) =
∫

Ω
P z(o, g(o), ω) ν(dω)

for all g ∈ G, where z ∈ C, z 6= kπi
log q for k ∈ Z.

If f is a spherical function for the pair (G,K), f corresponds to a normalized radial
eigenfunction f̃ for L. Since f̃ is radial, it is true for all x ∈ X that f̃(x) only depends on
d(o, x). Hence, we may regard f̃ and so f as a function on N∪{0}, and we will in the following
abuse notation and write f(n) for f(g) with d(o, g(o)) = n.

It turns out that we can inductively calculate the values of f without considering the
integral in Theorem 2.4.6. This is the content of the following proposition in which we have
made use of the above notation.

Proposition 2.4.7 Let f be a spherical function for the pair (G,K), and assume that f
corresponds to a radial eigenfunction for L with eigenvalue µ. Then f(0) = 1, f(1) = µ and

f(n) =
q + 1
q

f(1)f(n− 1)− 1
q
f(n− 2)

for all n ≥ 2.

Proof. By Proposition 2.4.1, f corresponds to a normalized function, and so f(0) = 1. Since
f corresponds to a radial eigenfunction for L, we observe that

µ = µf(o) = (Lf)(o) =
1

q + 1
(q + 1)f(1) = f(1)

For n ≥ 2, we observe that any point with distance n− 1 to o has q neighbours with distance
n and 1 neighbour with distance n− 2. Hence, the eigenfunction property shows that

f(1)f(n− 1) = µf(n− 1) = (Lf)(n− 1) =
1

q + 1
(qf(n) + f(n− 2))

which finishes the proof. �

Remark 2.4.8 It should be observed that the proposition above implies that there exists
at most one spherical function corresponding to a radial µ-eigenfunction for L for a given
eigenvalue µ. Since we have in Theorem 2.4.6 found a spherical function corresponding to
all possible eigenvalues (since the map z 7→ µ(z) is surjective), this shows that there exists
exactly one spherical function corresponding to all possible eigenvalues. This means that
if µ(z1) = µ(z2), the spherical functions in Theorem 2.4.6 corresponding to z1 and z2 are
identical.

2.5 Positive definite spherical functions and spherical repre-
sentations for the pair (G, K)

Our next goal is to investigate which spherical functions are positive definite and to find the
corresponding irreducible spherical representations arising from the Gelfand-Naimark-Segal
construction. We will find a criterion for positive definiteness in terms of the eigenvalue µ
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corresponding to a spherical function. Recall that there is a bijective correspondance between
the spherical functions and the corresponding eigenvalues (cf. Remark 2.4.8)

Let f be a positive definite spherical function for (G,K) corresponding to the eigenvalue
µ. Choose by the transitive action g ∈ G such that d(o, g(o)) = 1. Since we also have
that d(o, g−1(o)) = 1, Proposition 2.4.7 reveals that f(g−1) = f(g) = µ. By the positive
definiteness, we see that

µ = f(g) = f(g−1) = µ,

and so µ is real. Furhermore, the positive definiteness means that

|µ| = |f(g)| ≤ f(e) = 1

Hence, we see that µ ∈ [−1, 1].
If µ = 1, it follows by Proposition 2.4.7 that the corresponding spherical function is

(of course) the constant function 1 which is certainly positive definite. The corresponding
spherical representation is as always the trivial representation.

If µ = −1, it follows by Proposition 2.4.7 that f(g) = (−1)d(g(o),o) for all g ∈ G. If
X+ = {x ∈ X | d(o, x) is even} and X− = X \X+, it is for g ∈ G clearly true that g(X+) = X+

or g(X+) = X−. Hence, f is multiplicative, and so it is positive definite. We define π(g)w =
(−1)d(g(o),o)w for all w in the one-dimensional Hilbert space H and all g ∈ G. Since f is
multiplicative, π is a group homomorphism from G into the group of unitary operators on
H. The fact that g 7→ π(g)v is constant on the open set {h ∈ G | h0(o) = h(o)} for h0 ∈ G
and v ∈ H shows that π is an irreducible unitary representation of G. Furthermore, if h is a
unit vector, h is K-invariant and cyclic, and f(g) = 〈h, π(g)h〉 for all g ∈ G. By the essential
uniqueness of the representation in the Gelfand-Naimark-Segal construction, π is a realisation
of the spherical representation corresponding to f .

To consider the cases µ ∈ (−1, 1), we need to observe that ω 7→ P (x, y, ω) for x, y ∈ X is
the Radon-Nikodym derivative for some naturally occuring Borel measures on Ω. To see this,
we let x ∈ X and define νx(Ω) = 1 and νx(Ω(x, z)) = 1

(q+1)qd(x,z)−1 for all z 6= x. As it was the
case for ν, νx extends uniquely to a Borel measure on Ω, and we observe that ν = νo. Since
Ω has a countable basis for the topology, it even follows by [Co, Proposition 7.2.3] that νx is
a Radon measure.

Fix x, y ∈ X and define a Borel measure τ on Ω by τ(E) =
∫
E P (x, y, ω) νx(dω) for

any Borel set E. Consider z ∈ X with d(o, z) > max {d(o, x), d(o, y)}. For ω ∈ Ω(o, z),
a moment of thought shows that P (x, y, ω) = qd(x,z)−d(y,z). This means that τ(Ω(o, z)) =
qd(x,z)−d(y,z)νx(Ω(o, z)).

We now observe that the choice of z implies that Ω(o, z) = Ω(x, z) = Ω(y, z). Using this,
we see that

νy(Ω(o, z)) =
1

(q + 1)qd(y,z)−1
= qd(x,z)−d(,yz)

1
(q + 1)qd(x,z)−1

= qd(x,z)−d(y,z)νx(Ω(o, z)) = τ(Ω(o, z))

This shows that τ is a probability measure, and since the sets Ω(o, z) with z as above constitute
a countable basis for the topology on Ω and so generate the Borel σ-algebra, we see that
τ = νy. Hence, νy is absolutely continuous with respect to νx with Radon-Nikodym derivative
ω 7→ P (x, y, ω).

If g ∈ G satisfies that g−1(x) = y, we observe that g · Ω(y, z) = Ω(x, g(z)) for all z ∈ X.
Since d(y, z) = d(x, g(z)), this shows that νy(Ω(y, z)) = νx(g ·Ω(y, z)), and so we see as above
that νy(E) = νx(g · E) for all Borel subsets E of Ω.
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Since ω 7→ P (x, y, ω) is continuous and the set
{
g ∈ G

∣∣ g−1(x) = z
}

is open in G, we see
that the map (g, ω) 7→ P (x, g−1(x), ω) from G×Ω into (0,∞) is continuous. Combining this
with the above observations, we have shown that νx is a strongly quasi-invariant probability
measure on Ω.

We now observe that

µ(
1
2

+ it) =
q

1
2 (qit + q−it)
q + 1

=
2q

1
2<(qit)
q + 1

which shows that µ(z) runs through all values of the interval [−2q
1
2

q+1 ,
2q

1
2

q+1 ] ⊆ (−1, 1) (recall
that q ≥ 2) as t runs through R. Putting z = 1

2 + it for some t ∈ R, we will show that the
spherical function corresponding to the eigenvalue µ(z) is positive definite.

This is done using the fact that we have a strongly quasi-invariant measure ν on Ω, and
so we can in a standard way construct a unitary representation π of G on L2(ν). Indeed, for
g ∈ G and ϕ ∈ L2(ν), we define

(π(g)ϕ)(ω) = P z(o, g(o), ω)ϕ(g−1 · ω)

for all ω ∈ Ω. Then π is a unitary representation (cf. [Fo, section 3.1]). Furhermore, if we
denote by 1 the constant function 1 on Ω and by f the spherical function corresponding to
the eigenvalue µ(z), we observe that

〈1, π(g)1〉 =
∫

Ω
P z(o, g(o), ω) ν(dω) = f(g),

and so f is positive definite.
Furthermore, we observe that P (o, k(o), ω) = 1 for all k ∈ K and ω ∈ Ω, and so 1 is a

K-invariant vector in L2(ν). We will show that 1 is also cyclic.
To do this, we consider the vector space K(Ω) spanned by all indicator functions for sets

of the form Ω(o, x) with x ∈ X. This is known as the space of cylindrical functions. Since
the sets Ω(o, x) are both open and closed, cylindrical functions are continuous functions on
Ω. Hence, we see that K(Ω) ⊆ L2(ν).

The space K(Ω) actually consists of all continuous functions on Ω taking only finitely
many values. Indeed, for such a function ϕ the sets Ba = ϕ−1({a}) are open and closed and
so also compact for all a ∈ C. Since Ba is open, it may be written as a union of sets of the
form Ω(o, x) which are open. By compactness, it may then be written as a finite union of such
sets, and by Remark 2.4.2 we may even choose this union to be disjoint. This shows that ϕ
is cylindrical.

Let U be an open set, and let ε > 0. Since the sets Ω(o, x) constitute a countable basis for
the topology, we may write U as a countable union of sets of this type. Using the observations
of Remark 2.4.2, we may even assume this union to be disjoint. By countable additivity of ν,
we may find a finite union V of pairwise disjoint sets of the type Ω(o, x) such that V ⊆ U and
ν(U \ V ) < ε2. If we by χU and χV denote the corresponding indicator functions, we observe
that χV ∈ K(Ω) and that ‖χU − χV ‖2 < ε.

Since ν is a Radon measure, it is outer regular, and so we may for a Borel set E ⊆ Ω and
an ε > 0 find an open set U ⊇ E such that ν(U \ E) < ε2 which means ‖χU − χE‖2 < ε.

Combining this with the fact that the simple L2-functions are dense in L2(ν), we see that
K(Ω) is dense in L2(ν).

We now observe that K(Ω) =
⋃∞
n=0Kn(Ω) where for n ≥ 0 Kn(Ω) is the set spanned by

indicator functions for sets of the type Ω(o, x) for x ∈ X with d(o, x) ≤ n. We claim that
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Kn(Ω) is spanned by the functions ω 7→ P (o, x, ω) where x ∈ X has d(o, x) ≤ n. For simplicity,
we will denote the function ω 7→ P (o, x, ω) by Px for all x ∈ X.

We will prove this by induction. For n = 0, it is obvious since Kn(Ω) consists of all
constant functions, and Po is the constant function 1.

Assume that it is true for some n ≥ 0, and consider the indicator function χΩ(o,x) with
d(o, x) = n + 1. Let x0 = o, . . . , xn+1 = x be the chain from o to x. We have observed
that Px is constant on the sets Ω(o, y) where y /∈ [o, x] is a vertex that is neighbour of some
xk. Furthermore, it is easy to see that Px takes the same value on Ω(o, y) and Ω(o, z) if
y, z ∈ X are such neighbours of the same xk. Hence, Px is constant on Ω(o, x), and so we
may choose c ∈ C \ {0} such that Px − cχΩ(o,x) is constant on Ω(o, xn). This means that
Px − cχΩ(o,x) ∈ Kn(Ω) and so is a linear combination of the Py’s for y ∈ X with d(o, y) ≤ n.
This shows that χΩ(o,x) belongs to the span of the Py’s for y ∈ X with d(o, y) ≤ n+ 1. Since
the above also shows that this span is contained in Kn+1(Ω), this finishes the induction proof.

The conclusion is that K(Ω) is spanned by the Px’s with x ∈ X. Since π(g)1 = Pg(o), and
since G acts transitively on X, the fact that K(Ω) is dense in L2(ν) shows that 1 is a cyclic
vector for π.

It now follows by the essential uniqueness of the spherical representation associated to f by
the Gelfand-Naimark-Segal construction that this representation is equivalent with π. Hence,
π is a realisation of the spherical representation corresponding to f which is irreducible. This
means that π is also irreducible.

We have now proved that the spherical functions corresponding to eigenvalues in [−2q
1
2

q+1 ,
2q

1
2

q+1 ]
are also positive definite, and we have found realisations of the corresponding spherical rep-

resentations. Left are the cases µ ∈ (2q
1
2

q+1 , 1) and µ ∈ (−1,−2q
1
2

q+1).
To consider these cases, we need to introduce an intertwining operator for all z ∈ C with

z 6= kπi
log q for k ∈ Z. Fix such a z, let ϕ ∈ K(Ω), and let n ≥ 0 be given such that ϕ ∈ Kn(Ω).

Using that z 6= kπi
log q for k ∈ Z, we may argue as above to see that the P zx ’s with x ∈ X and

d(o, x) ≤ n span Kn(Ω), and so we can find constants ax ∈ C such that ϕ =
∑

d(o,x)≤n axP
z
x .

We calculate the following:

(P1−z(ϕ dν))(y) =
∫

Ω
P 1−z
y ϕ dν =

∑
d(o,x)≤n

ax

∫
Ω
P 1−z
y P zx dν =

∑
d(o,x)≤n

ax

∫
Ω
(
dνx
dνy

)z dνy

For the last equality, we have used that Px = dνx
dν and Py = dνy

dν , and so it is easy to see that
PxP

−1
y = dνx

dνy
.

By symmetry, we may of course change the roles of x and y in the last integral, and so we
see that

(P1−z(ϕdν))(y) =
∑

d(o,x)≤n

ax

∫
Ω
(
dνy
dνx

)z dνx =
∑

d(o,x)≤n

ax

∫
Ω
P 1−z
x P zy dν

= (Pz(Izϕ dν))(y)

where Izϕ =
∑

d(o,x)≤n axP
1−z
x ∈ Kn(Ω).

We have seen that there exists a function Izϕ ∈ Kn(Ω) such that

P1−z(ϕ dν) = Pz(Izϕ dν) (2.4)

This condition and the continuity requirement even determines Izϕ uniquely. Indeed, by
Theorem 2.4.3 and the fact that all Poisson transformations are eigenfunctions, the Poisson
transform Pz is injective. Hence, Izϕ is uniquely determined ν-almost everywhere. Since

26



Positive definite spherical functions and spherical representations for the pair
(G,K)

non-empty open sets have positive measure under ν, the continuity of Izϕ means that it is
uniquely determined.

We denote the operator Iz from K(Ω) into K(Ω) uniquely defined by the relation (2.4) an
intertwining operator relative to the eigenvalue µ(z) (note that I1−z is an intertwining operator
related to the same eigenvalue), and observe that Iz is clearly linear. The above considerations
show that IzP zx = P 1−z

x , and since these functions span K(Ω), IzI1−z and I1−zIz are both the
identity operator. Hence, the intertwining operators are bijective.

We now define ϕo to be the constant function 1 on Ω. For x 6= o, we denote by p(x) the
neighbour of x in the chain [o, x], and we define

ϕx = qd(o,x)χΩ(o,x) − qd(o,p(x))χΩ(o,p(x))

if d(o, x) ≥ 2 and
ϕx = qd(o,x)χΩ(o,x) −

q

q + 1
χΩ(o,p(x))

if d(o, x) = 1.
For all x ∈ X, we see that ϕx ∈ Kd(o,x)(Ω). The following lemma reveals that the functions

ϕx are actually a collection of eigenfunctions of Iz which span K(Ω).

Lemma 2.5.1 The functions ϕx with x ∈ X and d(o, x) ≤ n span Kn(Ω) for all n ≥ 0.
Furthermore, ϕo is an eigenfunction for Iz corresponding to the eigenvalue 1, while ϕx is

an eigenfunction for Iz corresponding to the eigenvalue

q1−z − qz−1

qz − q−z
q−(2z−1)d(o,p(x))

for x 6= o.

Proof. By an induction proof similar to the one used to prove that the Px’s with x ∈ X span
K(Ω), it follows immediately that Kn(Ω) is spanned by the ϕx’s with d(o, x) ≤ n. Hence, the
first claim in the lemma follows.

To prove the second claim, we immediately observe that ϕo = P zo and so Izϕo = P 1−z
o = ϕo.

Let x 6= o, and let n = d(o, x) ≥ 1. It follows by the earlier observations that there exists
c′ ∈ C \ {0} such that χΩ(o,x) − c′P zx ∈ Kn−1(Ω), and so ϕx − cP zx ∈ Kn−1(Ω) for some
c ∈ C\{0}. This means that Izϕx−cP 1−z

x ∈ Kn−1(Ω). Hence, we see that ϕx = c1χΩ(o,x)+ψ1

and Izϕx = c2χΩ(o,x) + ψ2 for c1, c2 ∈ C \ {0} and ψ1, ψ2 ∈ Kn−1(Ω). This shows that we can
find c3 ∈ C \ {0} and ψ3 ∈ Kn−1(Ω) such that Izϕx = c3ϕx + ψ3.

Let y ∈ X be such that d(o, y) = n− 1. If y 6= p(x), it is trivial that
∫
Ω(y) ϕx dν = 0, and

if y = p(x), we see that ∫
Ω(y)

ϕx dν =
qn

(q + 1)qn−1
− qn−1

(q + 1)qn−2
= 0

for n ≥ 2 and ∫
Ω(y)

ϕx dν =
q

q + 1
− q

q + 1
= 0

for n = 1. Hence, the fact that P zt , P
1−z
t ∈ Kn−1(Ω) for all t with d(o, t) ≤ n − 1 shows

that Pz(ϕx dν) and P1−z(ϕx dν) are identically 0 on Xn−1 = {t ∈ X | d(o, t) ≤ n− 1}. This
implies that

(Pz(ψ3 dν))(t) = (Pz(Izϕx dν))(t)− c3(Pz(ϕx dν))(t) = (P1−z(ϕx dν))(t) = 0
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for all t ∈ X with d(o, t) ≤ n− 1. By the proof of Theorem 2.4.3, the restriction of Pz(ψ3 dν)
to Xn−1 can be written as linear combination of some basis for the space of µ(z)-eigenfunctions
on Xn−1 with coefficients

∫
Ω(y) ψ3 dν for all y ∈ X with d(o, y) = n − 1. This tells us that∫

Ω(y) ψ3 dν = 0 for all y ∈ X with d(o, y) = n − 1. But ψ3 ∈ Kn−1(Ω), and so we see that
ψ3 = 0. Hence, we see that Izϕx = c3ϕx, i.e. ϕx is an eigenfunction for Iz.

It only remains to calculate the corresponding eigenvalue c3. To do this we observe, that
P zx − q−zP zp(x) is identically equal to 0 on Ω \Ω(x) and constantly equal to qnz − q−zq(n−1)z =

q(n−1)z(qz − q−z) on Ω(x). Furthermore, we see that qz − q−z 6= 0 by the assumption on z.
Putting τ = Pz(Izϕx dν) = P1−z(ϕx dν) and remembering that τ(p(x)) = 0, we see that

1
qz − q−z

q−(n−1)zτ(x) =
1

qz − q−z
q−(n−1)z(τ(x)− q−zτ(p(x)))

=
1

qz − q−z
q−(n−1)z

∫
Ω
Izϕx(P zx − q−zP zp(x)) dν

=
1

qz − q−z
q−(n−1)z(qz − q−z)q(n−1)z

∫
Ω(x)

Izϕx dν

= c3

∫
Ω(x)

ϕx dν

Using that τ = P1−z(ϕx dν), we see in exactly the same way that

τ(x) = (q1−z − q−(1−z))q(n−1)(1−z)
∫

Ω(x)
ϕx dν

Since
∫
Ω(x) ϕx dν = qn−qn−1

(q+1)qn−1 6= 0 if d(o, x) ≥ 2 and
∫
Ω(x) ϕx dν =

q− q
q+1

q+1 6= 0 if d(o, x) = 1,
this shows that the eigenvalue c3 has the desired expression. �

Using the intertwining operator Iz, we are now able to prove that the spherical functions

corresponding to an eigenvalue µ ∈ (−1, −2q
1
2

q+1 ) ∪ (2q
1
2

q+1 , 1) is positive definite. We begin by

observing that z 7→ µ(z) maps
{
s+ kπi

log q

∣∣∣ k = 0, 1, s ∈ (0, 1
2)

}
onto this set, and so we fix

z = s + kπi
log q with s ∈ (0, 1

2) and k = 0, 1. Let f be the spherical function corresponding
to the eigenvalue µ(z). We observe that the intertwining operator Iz is well-defined and has
eigenfunctions and -values as stated in Lemma 2.5.1.

Let g, h ∈ G. An easy computation shows that ω 7→ P (o, g(o), ω)P (o, h(o), g−1 · ω) is a
continuous Radon-Nikodym derivative for νg(h(o)) with respect to ν. This shows that

P (o, g(h(o)), ω) = P (o, g(o), ω)P (o, h(o), g−1 · ω) (2.5)

for all ω ∈ Ω. Replacing h with g and g with g−1 and remembering that P (o, o, ω) = 1 for all
ω ∈ Ω, we see that

P (o, g(o), g · ω) = P (o, g−1(o), ω)−1
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for all ω ∈ Ω. Using these facts, we see that

f(g−1h) = (Pz(ν))(g−1(h(o))) =
∫

Ω
P z(o, g−1(h(o)), ω) ν(dω)

=
∫

Ω
P z(o, g−1(o), ω)P z(o, h(o), g · ω) ν(dω)

=
∫

Ω
P z(o, g−1(o), g−1 · ω)P z(o, h(o), ω) νg(o)(dω)

=
∫

Ω
P z(o, g−1(o), g−1 · ω)P z(o, h(o), ω)P (o, g(o), ω) ν(dω)

=
∫

Ω
P 1−z(o, g(o), ω)P z(o, h(o), ω) ν(dω) =

∫
Ω
(IzP zg(o))P

z
h(o) dν

since P zh(o) is real by the choice of z. This shows that for c1, . . . , cn ∈ C and g1, . . . , gn ∈ G

∑
i,j

cicjf(g−1
i gj) =

∫
Ω
(Izϕ)ϕ dν = 〈Izϕ,ϕ〉L2(ν)

where ϕ =
∑n

i=1 ciP
z
gi(o)

∈ K(Ω).
Let x, y ∈ X be given such that the eigenvalues of Iz corresponding to the eigenfunctions

ϕx and ϕy are different. We claim that ϕx and ϕy are orthogonal in L2(ν). To see this,
we first assume that x = o, and so we have that y 6= o. In the proof of Lemma 2.5.1, we
have seen that

∫
Ω ϕy dν = 0, and so ϕx and ϕy are ortogonal in L2(ν). Now assume that

x 6= o and that y 6= o. Since x and y correspond to different eigenvalues, it must be true that
d(o, p(x)) 6= d(o, p(y)). We assume without loss of generality that d(o, p(x)) < d(o, p(y)). If
Ω(o, p(x))∩Ω(o, p(y)) = ∅, we clearly have that ϕxϕy = 0, and so ϕx and ϕy are orthogonal in
L2(ν). If Ω(o, p(x))∩Ω(o, p(y)) 6= ∅, we have that Ω(o, p(x))∩Ω(o, p(y)) = Ω(o, p(y)). Hence,
we see that

ϕxϕy = c1ϕyχΩ(o,x) − c2ϕy

for c1, c2 ∈ C. If Ω(o, x) ∩ Ω(o, p(y)) = ∅, the first term vanishes, and so
∫
Ω ϕxϕy dν = 0.

Otherwise, Ω(o, x)∩Ω(o, p(y)) = Ω(o, p(y)) which reveals that ϕxϕy = (c1− c2)ϕy, and so ϕx
and ϕy are also orthogonal in this case. This proves that eigenfunctions from Lemma 2.5.1
corresponding to different eigenvalues are ortogonal.

Furthermore, we observe that our choice of z implies that the eigenvalues of Iz from Lemma
2.5.1 are positive.

Since ϕ ∈ K(Ω), it follows by Lemma 2.5.1 that ϕ can be written as a linear combination
of eigenfunctions of Iz. By the above observation, we may write ϕ =

∑m
j=1 ψj where the ψj ’s

are ortogonal eigenfunctions of Iz corresponding to positive eigenvalues bj . This shows that

∑
i,j

cicjf(g−1
i gj) = 〈Izϕ,ϕ〉L2(ν) =

m∑
j=1

bj ‖ψj‖2
L2(ν) ≥ 0

which proves that f is positive definite.
The above observations even give a new realisation of the unitary representation associated

to f by the Gelfand-Naimark-Segal construction. To see this, we define

〈ϕ,ψ〉z = 〈Izϕ,ψ〉L2(ν)
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for ϕ,ψ ∈ K(Ω). 〈·, ·〉z is clearly a sesquilinear form on K(Ω). The considerations above show
that this form is even positive and so Hermitian (cf. [Fo, Corollary A1.2]). If 〈ϕ,ϕ〉z = 0 and
ϕ =

∑m
j=1 ψj as above, we see that

m∑
j=1

bj ‖ψj‖2
L2(ν) = 0

which means that ψj = 0 for all j, and so ϕ = 0. This shows that 〈·, ·〉z is an inner product
on K(Ω).

Denote by Hz the completion of K(Ω) with respect to this inner product, by H the Hilbert
space associated to f by the Gelfand-Naimark-Segal construction and by V ⊆ H the dense
subspace spanned by the left translates of f . For c1, . . . , cn ∈ C and g1, . . . , gm ∈ G, we put
v =

∑n
i=1 ciL(gi)f ∈ V and ϕ =

∑n
i=1 ciP

z
gi(o)

∈ K(Ω). The above observations and the
definition of the inner product 〈·, ·〉 in V show that

〈v, v〉 =
∑
i,j

cicjf(g−1
i gj) = 〈Izϕ,ϕ〉 = 〈ϕ,ϕ〉z

This means that we may (well-)define a map T : V → K(Ω) by the condition

T (
n∑
i=1

ciL(gi)f) =
n∑
i=1

ciP
z
gi(o)

for all c1, . . . , cn ∈ C and g1, . . . , gn ∈ G. T is clearly linear, isometric and surjective, and so it
extends to a unitary operator from H onto Hz which we also denote by T . The representation
π associated to f by the Gelfand-Naimark-Segal construction may by T be translated into an
equivalent unitary representation πz of G on Hz.

We recall that π(g) on V is just the translation operator L(g) for g ∈ G. This shows that
for ϕ =

∑n
i=1 ciP

z
gi(o)

∈ K(Ω), g ∈ G and ω ∈ Ω

(πz(g)(ϕ))(ω) = ((Tπ(g)T−1)(ϕ))(ω) = (T (
n∑
i=1

ciL(ggi)f))(ω) =
n∑
i=1

ciP
z
(ggi)(o)

(ω)

= P zg(o)(ω)
n∑
i=1

ciP
z
gi(o)

(g−1 · ω) = P zg(o)(ω)ϕ(g−1 · ω)

where we have used the identity (2.5). Hence, we see that πz on K(Ω) is the same operator
as we studied in the case where z = 1

2 + it with t ∈ R.
We collect the above observations in the following theorem in which the positive definite

spherical functions for the pair (G,K) are listed, and in which we have found realisations of
all spherical representations of G. This is the main result of this section.

Theorem 2.5.2 Let (G,K) be the Gelfand pair introduced above. The positive definite sphe-
rical functions for (G,K) are the functions

fz(g) = (Pzν)(g(o)) =
∫

Ω
P z(o, g(o), ω) ν(dω)

for all g ∈ G, where z = 1
2 + it with t ∈ R or z = s+ ikπ

log q with s ∈ [0, 1
2) and k = 0, 1.

If z = 0, a realisation of the corresponding spherical representation from the Gelfand-
Naimark-Segal construction is the trivial representation.
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If z = iπ
log q , a realisation π of the corresponding spherical representation from the Gelfand-

Naimark-Segal construction is given by π(g)v = (−1)d(o,g(o))v for all g ∈ G and v ∈ H where
H is a one-dimensional Hilbert space.

In the remaining cases, the spherical representation from the Gelfand-Naimark-Segal is
equivalent to a representation π on the completion of the space K(Ω) of cylindrical functions
on Ω with respect to a certain inner product. In all cases, π(g) is given by

(π(g)ϕ)(ω) = P zg(o)(ω)ϕ(g−1 · ω)

for all g ∈ G, ω ∈ Ω and ϕ ∈ K(Ω).

Remark 2.5.3 For later analogy, we observe that the set of positive definite spherical function
on (G,K) by the above observations - using the eigenvalues of the corresponding eigenfunctions
for the Laplace operator - might be parametrized by the interval [−1, 1].

Remark 2.5.4 One should observe that all the unitary representations of the group G may
actually be determined if we add the assumption that G contains "‘sufficiently many"’ rota-
tions (we will not state the exact condition here since it is rather technical. It can be found
in [N]. One should, however, notice that the full automorphism group Aut(X) is an example
of a group with the required properties). The ideas in this classification is due to Olshanski,
cf. [O2].

A subtree (Y,D) of (X,C) is said to be complete if it consists of a single vertex or if all
vertices have degree 1 or q + 1. If π is an irreducible unitary representation of G, one may
prove that there exists a finite complete subtree (Y,D) of (X,C) for which there exists a
non-zero vector which is invariant under the group K(Y) = {g ∈ G | g(x) = x for all x ∈ Y}.
Let (J,E) be a minimal finite complete subtree with this property. We will refer to (J,E) as
a minimal tree for π. π is said to be spherical if |J| = 1, special if |J| = 2 and cuspidal if
|J| > 2.

It is not difficult to see that this concept of a spherical representation coincides with the
one used in the abstract setting for the pair (G,K). Hence, we have found all spherical
representations in Theorem 2.5.2 above. In [FN, Theorem 3.2.6], it is proved that there exist
exactly two non-equivalent special representations and that these are L2, but not L1.

To deal with the cuspidal representations with minimal tree (J,E), we consider the maxi-
mal proper subtrees (J1,E1), . . . , (Jn,En) of (J,E) and the subgroup K̃(J) = {g ∈ G | g(J) = J}.
We denote by F (J) the set of equivalence classes of all irreducible unitary representations of
K̃(J) which are trivial on K(J) and which for all i do not have any K(Ji)-invariant vectors.
For π ∈ F (J), we denote by Ind(π) the induced representation of π from K̃(J) to G. It now
follows by [FN, Theorem 3.3.14] that the map π 7→ Ind(π) is a bijection from F (J) onto the set
of equivalence classes of cuspidal representations of G with minimal tree (J,E). Furthermore,
it follows by [FN, Corollary 3.3.3] that the matrix coefficients of such a representation have
compact support.

We will not go through the details in this classification of the irreducible representations
of G since it would make this thesis too lengthy and since we do not need it. The reader is
referred to [FN] and [O2].

Remark 2.5.5 Other Gelfand pairs consisting of groups of automorphisms of a locally finite,
homogeneous tree have been studied. One important example is the subgroup Bω of Aut(X)
consisting of all rotations fixing a given point ω ∈ Ω. This group may also be characterized
as the stabilizer of the ω-horicycles. In [FN, Section 1.8] it is proved that this is an amenable
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group. The spherical functions for the pair (Bω,K) where K is a certain compact subgroup
of Bω are found in [N]. Furthermore, [N] classifies the irreducible unitary representations of
Bω. This is again based on the ideas of Olshanski in [O2].

The material covered in this section only deals with locally finite, homogeneous trees and
their automorphism groups. The purpose of the remaining chapters is to combine ideas and
results of chapters 1 and 2 to consider groups of automorphisms of homogeneous trees of
countable order.
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Chapter 3

An Olshanski Spherical Pair
Consisting of Automorphism
Groups for a Homogeneous Tree

This chapter is devoted to the construction and initial study of the first of the two Olshanski
spherical pairs which will be the center of attention for the remainder of this thesis. The pair
arises from Gelfand pairs consisting of automorphisms of locally finite, homogeneous trees of
increasing degree and is a natural extension of the considerations of chapter 2. The main
emphasis will be the determination of the spherical functions for the pair. We clarify which of
those are positive definite and give realizations of the corresponding spherical representations.
The main results are Theorem 3.2.1 and Corollary 3.2.3. We begin in section 1 by constructing
the Olshanski spherical pair which will be the center of attention in this chapter. In section 2,
we determine the spherical functions for this and find out which of these are positive definite
while section 3 deals with the spherical representations of the group. In section 4, we apply
the results developed in this chapter to prove positive definiteness of certain functions on the
free group with countably many generators. Along the way, we discuss several open questions
which are as yet unanswered.

3.1 The Olshanski spherical pair (G, K)

The purpose of this chapter is to make use of the theory of Olshanski spherical pairs in the
study of groups of automorphisms of a homogeneous tree of countable degree. The main idea
making this possible is the extension of automorphisms of certain locally finite, homogeneous
subtrees. This will be discussed below.

Let (X,C) be a homogeneous tree of countable degree, and denote by d the natural metric
on X. We fix a vertex o ∈ X. For each vertex x ∈ X, we number its neighbours by choosing a
bijection τx : N → {y ∈ X | d(x, y) = 1} such that - for x 6= o - τx(1) is contained in the chain
from o to x. We fix these bijections {τx}x∈X for the remainder of this discussion.

For each n ≥ 2, we define Xn ⊆ X by the condition that x ∈ Xn if the chain x0, x1, . . . , xk
with x0 = o and xk = x satisfies that xj+1 ∈ τxj ({1, 2, . . . , n+ 1}) for all j ∈ {0, . . . , k − 1}.
Furthermore, we put Cn = {{x, y} ∈ C | x, y ∈ Xn}. It is now evident that (Xn,Cn) is a locally
finite, homogeneous subtree of (X,C) of degree n+ 1, that

o ∈ X2 ⊆ X3 ⊆ . . . ⊆ Xn ⊆ . . .
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and that

X =
∞⋃
n=2

Xn

We denote by G∞ and Gn the automorphism groups for X and Xn, respectively. Endowed
with the compact-open topology, all are Hausdorff topological groups, and the Gn’s are even
locally compact groups.

For each n, we embed Gn in G∞ in the following way: Let g ∈ Gn. We want to extend
g to an automorphism g̃ of X, so we consider x ∈ X. Let x′ be the unique vertex in Xn with
minimal distance to x and construct the chain x0 = x′, x1, . . . , xk−1, xk = x from x′ to x. For
each j, there exists lj ≥ 2 such that xj+1 = τxj (lj), and we inductively define yj by putting
y0 = g(x′) and yj+1 = τyj (lj) for j ∈ {0, . . . k − 1}. Put g̃(x) = yk. g̃ is clearly an extension
of g to X taking values in X, and it is not difficult to see that it is actually an automorphism
of X.

We will refer to g̃ as the standard extension of g.
Fortunately, the algebraic and topological structures are preserved under the map g 7→ g̃:

Lemma 3.1.1 For each n, the map ϕn : Gn → G∞, g 7→ g̃, is an injective group homomor-
phism from Gn into G∞ which is a homeomorphism onto its image.

Proof. Let g, h ∈ Gn, and consider x ∈ X. Let x′, x0, x1, . . . , xk−1, xk and lj be as above. If
we inductively define yj by putting y0 = h(g(x′)) and yj+1 = τyj (lj) for j ∈ {0, . . . k − 1}, we
by definition have that (h̃g)(x) = yk.

Now put z0 = g(x′) and zj+1 = τzj (lj) for j ∈ {0, . . . k − 1}. Then g̃(x) = zk. Since
l0 > n + 1 and lj > 1 for j ≥ 1, zj /∈ Xn for j ≥ 1. This shows that z0 = g(x′) is the unique
vertex in Xn with minimal distance to g̃(x). Hence, h̃(g̃(x)) = wk if we define w0 = h(g(x′))
and wj+1 = τwj (lj) for j ∈ {0, . . . k − 1}. But yj = wj for all j and so (h̃g)(x) = h̃(g̃(x)).

This shows that ϕn is a group homomorphism. Since g̃ is an extension of g for all g ∈ Gn,
the kernel obviously only consists of the identity and so ϕn is injective.

To prove the continuity, we let F = {x1, . . . , xk} ⊆ X be a finite set and let g ∈ Gn.
Put UF (g̃) = {f ∈ G∞ | f(x) = g̃(x) for all x ∈ F}. We define x′j as the unique vertex in
Xn with minimal distance to xj and let F ′ = {x′1, . . . , x′k}. If we consider an automorphism
h ∈ VF ′(g) = {f ∈ Gn | f(x) = g(x) for all x ∈ F ′}, it is an immediate consequence of the
definition of h̃, g̃ that h̃ ∈ UF (g̃). This proves that the group homomorphism is even continu-
ous.

Finally, let F ⊆ Xn be finite and g ∈ Gn. If h ∈ Gn satisfies that h̃ ∈ UF (g̃), it is of course
also true that h ∈ VF (g). This shows that ϕn is a homeomorphism onto its image. �

For the remainder of this discussion, we will identify Gn with its image under ϕn and
so regard it as a subgroup of G∞. Accordingly, we will not distinguish between g and its
standard extension for g ∈ Gn.

An immediate observation is that for g ∈ Gn and k ≥ n, g(Xk) = Xk. Indeed, if x ∈ Xk

and x′, x0, . . . , xk and lj is defined as above, it must by definition of Xk be true that lj ∈
{2, . . . , k + 1} for all j. Since g(x′) ∈ Xn, this reveals that g(x) ∈ Xk. That we have equality
is an obvious consequence of the fact that Xk is locally finite and homogeneous.

The above observation makes us realize that the restriction of g to Xk is an automorphism
of Xk, and it is an immediate consequence of the definition that its extension to X using the
above procedure is again g. This shows that

G2 ⊆ G3 ⊆ . . . ⊆ Gn ⊆ . . .
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For all n, we now define Kn = {g ∈ Gn | g(o) = o} which is a compact subgroup of Gn.
Furthermore, we put K∞ = {g ∈ G∞ | g(o) = o}. Consider

G =
∞⋃
n=2

Gn ⊆ G∞, K =
∞⋃
n=2

Kn ⊆ K∞

G is obviously a subgroup of G∞ and consists of all standard extensions of automorphisms of
the considered subtrees. Similarly, K is a subgroup of K∞, and K = {g ∈ G | g(o) = o}. We
equip G with the inductive limit topology.

The following observation is immediate, but important:

Proposition 3.1.2 (G,K) is an Olshanski spherical pair, and the inductive limit topology
on G is stronger than the topology inherited from G∞.

Proof. {Gn} is an increasing sequence of locally compact groups, and since all Gn’s have
the induced topology from G∞, the topology on Gn is the one induced by Gn+1.

We want to prove that Gn is a closed subgroup of Gn+1. Let {gλ} ⊆ Gn be a net which
converges to g ∈ G∞. If x ∈ Xn, it follows by the definition of the topology on G∞ that there
exists λ such that g(x) = gλ(x) ∈ Xn. Since Xn is locally finite and homogeneous, this shows
that g(Xn) = Xn, and so the restriction of g to Xn is an automorphism of Xn. To show that
g ∈ Gn, we must prove that g is the standard extension h of this restriction.

Let x ∈ X, and let x′ ∈ Xn be the unique vertex with minimal distance to x. By definition
of the topology on G∞, there exists λ such that g and gλ coincide on {x, x′}. Since gλ is the
standard extension of its restriction to Xn, it follows by definition of standard extensions that
g(x) = h(x). This shows that Gn is a closed subgroup of G∞ and hence also of Gn+1.

By Proposition 2.3.2, (Gn,Kn) is a Gelfand pair for all n since Gn and Kn by homogeneity
of (Xn,Cn) act transitively on Xn and the boundary of (Xn,Cn), respectively. The identity
Kn = Gn ∩Kn+1 is obvious, and so (G,K) is an Olshanski spherical pair.

The last claim in the proposition is an immediate consequence of the definition of the
inductive limit topology and the fact that the topology on Gn is the one inherited from
G∞. �

Remark 3.1.3 The inductive limit topology on G is actually strictly stronger than the one
inherited from G∞. To see this, let x2 ∈ X2 and define inductively xn = τxn−1(n+1) for n ≥ 3.
xn is by definition the unique neighbour of xn−1 which is contained in Xn \ Xn−1. Consider
the set U = {g ∈ G | g(xn) = xn for all n ∈ N}. By definition of the standard extension,
U ∩Gn = {g ∈ Gn | g(xk) = xk for all k ∈ {2, . . . , n}} which is open in Gn. Hence, U is open
in the inductive limit topology.

However, U is not open in the topology inherited from G∞. Indeed, if F ⊆ X is finite,
there exists n such that F ⊆ Xn, and so we can find g ∈ Gn+2 such that g(x) = x for all
x ∈ F and such that g(xn+1) 6= xn+1 (g can be chosen such that it fixes every vertex x which
satisfies that the chain from o to x does not pass through xn+1 and τxn(n+ 3) and such that
g(xn+1) = τxn(n + 3)). Hence, {g ∈ G | g(x) = x for all x ∈ F} * U which shows that U is
not open in the topology inherited from G∞.

Remark 3.1.4 The subgroup G is actually dense in G∞. Indeed, let g ∈ G∞ and F ⊆ X be
a finite set. Choose N ≥ 0 such that F ∪ g(F ) ⊆ XN . It is now easy to see - for instance by
induction in the number of elements in F - that there exists h ∈ GN such that h(x) = g(x)
for all x ∈ F . This proves that G is dense in G∞.
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Remark 3.1.5 The idea of studying the group G may be compared to the approach which
has been applied to infinite symmetric groups. The analysis of such groups revolves around
two groups, namely the group S(∞) =

⋃∞
n=1 S(n) of finite permutations of the set N of natural

numbers and the group S̃(∞) of all permutations of N. The group S̃(∞) is usually equipped
with a topology which is strictly weaker than the discrete topology, and it is easily seen that
S(∞) is dense in S̃(∞). However, S(∞) is the inductive limit of discrete groups, and so the
inductive limit topology is the discrete one. Both groups have been studied and their relations
have been examined closely, cf. [L], [KOV], [O4] and [O5].

The situation considered in this chapter is similar. The group G∞ is the full automorphism
group and may be compared to the group S̃(∞). The group G contains all automorphisms
of the considered subtrees (seen as automorphisms of the "‘big"’ tree) and may in this regard
be seen as the analogue of S(∞). The topological structures also share some similarity in the
fact that the inductive limit topology is strictly stronger than the topology inherited from the
"‘full"’ group.

In this chapter, we will be concerned only with the group G (as is the case for the group
S(∞) in the papers [KOV] and [O5]) while we discuss the relation with G∞ in chapter 6. The
relation between S(∞) and S̃(∞) is the subject of the paper [O4].

We will study the pair (G,K) from a number of different perspectives. The remainder
of this chapter is devoted to the spherical functions and representations for the pair. In
chapter 6, we will investigate the relation between representations of the group G∞ and its
dense subgroup G which leads to the concept of a tame representation. Finally, conditionally
positive definite functions and cocycles will be the center of attention in chapter 8.

Remark 3.1.6 Even though by far the most research in the area of trees and automorphisms
has centered on locally finite, homogeneous trees, the idea of considering homogeneous trees
of infinite degree is not completely new. In the important paper [O3], Olshanski classifies
all irreducible representations of the automorphism group for a homogeneous tree of infinite
degree (regardless of the cardinality). The main strategy is to apply ideas from the analysis of
the infinite symmetric group. However, since the publication of [O3] not much development
has taken place. We take up the gauntlet of extending the theory by applying the theory of
Olshanski spherical pairs - an approach which has not been applied before.

This is in stark contrast to the infinite symmetric group which has been treated from a
number of different perspectives. The paper [O3] is heavily inspired by the approach used by
Liebermann in [L] which contains the classification of the irreducible representations of the
infinite symmetric group. In the papers [O4], [O5] and [KOV], the study centers, however,
around the inductive limit approach which is completely different. Our objective is to extend
the study of automorphism groups for homogeneous trees of infinite degree in a similar way,
and we will along the way use ideas from the analysis of the infinite symmetric group in our
study of the pair (G,K).

3.2 Spherical functions for (G, K)

Our main objective is to determine the spherical functions corresponding to the Olshanski
spherical pair (G,K). Using our knowledge of locally finite, homogeneous trees, we will do
this in Theorem 3.2.1 below. The spherical functions turn out to be much simpler than they
are for the Gelfand pairs (Gn,Kn).
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Theorem 3.2.1 A function ϕ : G → C is spherical for the pair (G,K) if and only if there
exists a constant a ∈ C such that

ϕ(g) = ad(g(o),o) (3.1)

for all g ∈ G.

Remark 3.2.2 The spherical functions in Theorem 3.2.1 were already found by Olshanski
in [O3] as an important part of his classification of all irreducible representations of the
automorphism group for a homogeneous tree of infinite degree. His approach is, however,
completely different from the one used here.

Proof. Assume that ϕ is a spherical function on G. Since Gn acts transitively on Xn for
each n, G acts transitively on X. Furthermore, the relation K = G∩K∞ reveals that K is the
isotropy group corresponding to o ∈ X. This means that the map g 7→ g(o) induces a bijection
from G/K onto X, and since ϕ is K-right-invariant, we may in the natural way regard ϕ as
a function ϕ̃ on X.

If x1, x2 ∈ X are vertices such that d(o, x1) = d(o, x2), there exists n such that x1, x2 ∈ Xn.
Hence, there exists k ∈ Kn ⊆ K such that k(x1) = x2. If g ∈ G satisfies that g(o) = x1, the
K-left-invariance of ϕ reveals that

ϕ̃(x2) = ϕ(kg) = ϕ(g) = ϕ̃(x1),

and so ϕ̃(x) does only depend on the distance of x to o. Hence, ϕ̃ is radial. Abusing the
notation, we will write ϕ(n) for ϕ̃(x) with d(o, x) = n.

Let n ≥ 1, and find g ∈ G such that d(o, g(o)) = n. There exists l such that g ∈ Gl, and
we may choose h ∈ Gl such that d(h(o), o) = 1. Let m ≥ l. For k ∈ Km, d((gkh)(o), g(o)) =
d((kh)(o), o) = d(h(o), o) = 1. Furthermore, if y1, . . . , ym+1 are the neighbours of g(o) in Xm

and Aj = {k ∈ Km | (gkh)(o) = yj}, we observe that Aj = kijAi for all i, j where kij ∈ Km

is an automorphism (which exists) for which (kijg−1)(yi) = g−1(yj). This shows that the
normalized Haar measure on Km takes the same value on the open sets Aj whose union is
Km. Since we may choose our numbering such that d(o, y1) = n− 1 and d(o, yj) = n+ 1 for
j 6= 1, we observe that∫

Km

ϕ(gkh) dk =
1

m+ 1
ϕ(n− 1) +

m

m+ 1
ϕ(n+ 1)

The fact that ϕ is spherical now makes us realize that

ϕ(n+ 1) = ϕ(1)ϕ(n) (3.2)

ϕ is spherical, and so it follows by Lemma 1.3.2 that ϕ(0) = ϕ(e) = 1. Hence, (3.2) also
holds for n = 0. Induction now shows that ϕ(n) = an where a = ϕ(1). This concludes the
proof of the "‘only if"’-part of the theorem.

Conversely, let ϕ be given by the condition (3.1). We observe that ϕ(e) = 1, so ϕ is
non-zero and clearly K-biinvariant. Furthermore, since {h ∈ G | h(o) = g(o)} is open in the
topology inherited from G∞ for all g ∈ G, ϕ is continuous in this topology and hence by
Propositon 3.1.2 in the inductive limit topology.

By Remark 2.4.8 and Proposition 2.4.7, we may for all n choose a spherical function ϕn
for the pair (Gn,Kn) such that (with the usual abuse of notation) ϕn(1) = a. We will by
induction in k prove that for all k ≥ 0 ϕn(k) converges to ϕ(k) as n → ∞, i.e. that ϕn
converges pointwise to ϕ. By Proposition 2.4.7, ϕn(0) = 1 for all n, and so the convergence is
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obvious in this case. It follows by assumption that ϕn(1) = a for all n, and so the convergence
is also true for k = 1.

Now consider k ≥ 2, and assume that ϕn(j) converges to ϕ(j) for j ≤ k. By Proposition
2.4.7, the relation

ϕn(k) =
n+ 1
n

aϕn(k − 1)− 1
n
ϕn(k − 2)

holds for all n. By the induction hypothesis, this means that ϕn(k) converges to aϕ(k− 1) =
ϕ(k) as n→∞.

Let g, h ∈ G, and let m satisfy that g, h ∈ Gm. Let ε > 0. Since ϕn is spherical for all n,
it is for n ≥ m true that∣∣∣∣∫

Kn

ϕ(gkh) dk − ϕ(g)ϕ(h)
∣∣∣∣ ≤ ∫

Kn

|ϕ(gkh)− ϕn(gkh)| dk + |ϕn(g)ϕn(h)− ϕ(g)ϕ(h)| (3.3)

where dk is the normalized Haar measure on Kn. Since d((gkh)(o), g(o)) = d(h(o), o), the
triangle inequality for the metric d reveals that d(o, (gkh)(o)) takes only finitely many values.
Hence, we may use that ϕn converges pointwise to ϕ and that ϕ(gkh)−ϕn(gkh) only depends
on d(o, (gkh)(o)) to find N ≥ m such that for all n ≥ N |ϕn(g)ϕn(h)− ϕ(g)ϕ(h)| < ε

2 and
|ϕ(gkh)− ϕn(gkh)| < ε

2 for all k ∈ Kn. (3.3) and the fact that the Haar measure dk is
normalized then shows that ∣∣∣∣∫

Kn

ϕ(gkh) dk − ϕ(g)ϕ(h)
∣∣∣∣ < ε

for n ≥ N . Hence, ϕ is a spherical function. �

An immediate consequence of Theorem 3.2.1 is that we are able to determine the spherical
dual for the pair (G,K):

Corollary 3.2.3 A function ϕ : G→ C is a positive definite spherical function for the pair
(G,K) if and only if there exists a constant a ∈ [−1, 1] such that

ϕ(g) = ad(g(o),o) (3.4)

for all g ∈ G.

Proof. Let ϕ be a positive definite spherical function for (G,K). Since ϕ is spherical, we can
find a ∈ C such that (3.4) is satisfied. The fact that d(g−1(o), o) = d(g(o), o) for g ∈ G shows
that ϕ(g) = ϕ(g−1) = ϕ(g) for all g ∈ G, and so a is real. Finally, the positive definiteness
shows that |ϕ(g)| ≤ |ϕ(e)| = 1 for all g ∈ G which shows that a is as claimed in the corollary.

Conversely, assume that ϕ satisfies (3.4). By Theorem 3.2.1, ϕ is a spherical function for
the pair (G,K), and we may - as in the proof of this theorem - for each n choose a spherical
function ϕn for the pair (Gn,Kn) such that ϕn(1) = a and such that ϕ is the pointwise limit
of the ϕn’s. By Theorem 2.5.2, ϕn is positive definite for all n, and so the same is true for
the pointwise limit ϕ. �

Remark 3.2.4 In light of Remark 1.3.5, it should be observed that the proof of Theorem
3.2.1 above shows that every spherical function for (G,K) is the pointwise limit of spherical
functions for the pairs (Gn,Kn). The convergence is even uniform on compact sets (note
that this concept makes sense by Remark 1.3.5). Indeed, let P ⊆ G be compact. Since the
action of G on X by Remark 2.1.4 is continuous in the inherited topology on G from G∞, it
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follows by Proposition 3.1.2 that it is continuous when G is equipped with the inductive limit
topology. Hence, the set P (o) is a compact subset of X, so it is finite. Since ϕn(g) and ϕ(g)
only depend on d(g(o), o) for g ∈ Gn, this shows that the convergence is uniform on P .

This proves that in this case the answer to the question of Remark 1.3.5 is affirmative and
further strengthens the conjecture that the answer to the open problem of approximation of
spherical functions for an Olshanski spherical pair by spherical functions for the underlying
Gelfand pairs is positive. A satisfying general answer to this open problem has, however, not
yet been given.

In the proof of Corollary 3.2.3, we observed that every positive definite spherical function
for (G,K) is a pointwise limit of positive definite spherical functions for (Gn,Kn), and the
argument above shows that the convergence is uniform on compact sets. The existence of such
functions was guaranteed by the theorem of Olshanski mentioned in Remark 1.3.5. Hence, we
have provided a concrete example of this abstract theorem.

Finally, one should observe that by Remarks 2.4.8 and 2.5.3 the spherical functions and
positive definite spherical functions for (Gn,Kn) are naturally parametrized by C and [−1, 1],
respectively. Theorem 3.2.1 and Corollary 3.2.3 reveal that these parametrizations are in a
natural way inherited by the spherical and positive definite spherical functions for (G,K).
Actually, it follows by the proofs and the above remarks that the spherical functions for
(Gn,Kn) corresponding to a given parameter converges uniformly on compact sets to the
spherical function for (G,K) corresponding to the same parameter.

Remark 3.2.5 As seen from Theorem 3.2.1, the spherical functions for (G,K) have a certain
multiplicative property. Surprisingly, this is a well-known fact from the study of spherical
functions for a large number of Olshanski spherical pairs arising from classical matrix groups.
This indicates that there is some kind of similarity between spherical functions in these cases
which have very different natures.

To make this precise, we begin by observing that the double coset KgK for g ∈ G consists
of all h ∈ G such that d(h(o), o) = d(g(o), o). Indeed, it is obvious that d(h(o), o) = d(g(o), o)
if h ∈ KgK. Conversely, if d(h(o), o) = d(g(o), o) for h ∈ G, we can find n such that
g, h ∈ Gn and k1 ∈ Kn such that (k1g)(o) = h(o). This means that k2 = h−1k1g ∈ Kn, and
so h = k1gk

−1
2 ∈ KgK. Hence, the double coset consists of the elements with the claimed

property.
This structure of the double cosets means that we may in an obvious way identify the space

K\G/K of such double cosets with N∪{0} which - equipped with addition - is a commutative
monoid. This semigroup structure is inherited by K\G/K. K-biinvariant functions on G
may naturally be regarded as functions on the commutative monoid K\G/K. Theorem 3.2.1
now states that a non-zero, K-biinvariant function on G is spherical if and only if it is a
multiplicative function on K\G/K. This is the multiplicative property we mentioned above.
It should be observed that a K-biinvariant function in this case is automatically continuous
since K ∩ Gn = Kn is open in Gn for all n which means that K is open in G. Hence, a K-
biinvariant function is constant on the disjoint open sets KgK for g ∈ G and so continuous.

In [O1, Section 23.12], Olshanski studies a large class of Olshanski spherical pairs (G,K)
arising from classical matrix groups and shows that we may equip the double coset space
K\G/K with a structure as a commutative monoid. Furthermore, he proves exactly the same
relation between multiplicative and spherical functions as we did above, i.e. that a non-zero,
continuous, K-biinvariant function is spherical if and only if the corresponding function on
K\G/K is multiplicative. Hence, the spherical functions have a similar characterization in
these two cases even though the groups are of two different, unrelated types.

This surprising similarity between these very different cases suggests that there is some-
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thing deeper and more general going on. At a first glance, the semigroup structures are not
in any way related in the two cases, but there might, however, be a connection. It is still an
open problem to study these semigroup structures in an attempt to identify the reasons for
this similarity from an abstract point of view.

Remark 3.2.6 In light of Remark 2.5.5, it should be observed that the automorphism groups
studied in [N] give rise to an Olshanski spherical pair if we - as above - let the degree of the
tree tend to infinity. The spherical functions for this pair are not yet known. It is still an
open problem to consider the harmonic analysis of this pair in detail.

Having determined the spherical dual for the pair (G,K), we may now apply the Bochner-
Godement theorem for Olshanski spherical pairs in Theorem 1.3.6 to determine all positive
definite, K-biinvariant functions on G. This is the content of Corollary 3.2.7 below.

Corollary 3.2.7 A function ϕ : G→ C is positive definite and K-biinvariant if and only if
there exists a finite Borel measure µ on [−1, 1] such that

ϕ(g) =
∫

[−1,1]
ad(g(o),o) µ(da)

If this is the case, the measure µ is unique.

Proof. Let Ω be the spherical dual for (G,K) equipped with the topology of uniform conver-
gence on compact sets. Denote by ϕa the positive definite spherical function corresponding to
the parameter a ∈ [−1, 1] in Corollary 3.2.3. By an argument similar to the one from Remark
3.2.4, it is easy to see that a net {aλ} ⊆ [−1, 1] converges to a ∈ [−1, 1] if and only if ϕaλ

converges to ϕa uniformly on compact sets. Hence, Ω may as a topological space be identified
with the interval [−1, 1].

Let n ≥ 2. Since Xn is locally finite, there exists for all m ≥ 0 finitely many y ∈ Xn

such that d(o, y) = m. Hence, Xn is countable. For each m ≥ 1, denote by Xm
n the direct

product of n copies of Xn. The set Xm
n × Xm

n is countable. For each m ≥ 1 and each pair
(x, y) ∈ Xm

n × Xm
n with x = (x1, . . . , xm) and y = (y1, . . . , ym), we choose an automorphism

gx,y ∈ Gn with the property that g(xi) = yi for all i if such an automorphism exists. Put
Fx = {x1, . . . , xm} for x ∈ Xm

n , and define Cn = {UFx(gx,y)} which is a countable set. By
definition of the topology on Gn, Cn is a basis for the topology on Gn, and so Gn is second
countable.

Let ϕ be a positive definite, K-biinvariant function. It follows by Remark 3.2.5 that ϕ
is automatically continuous. Hence, Theorem 1.3.6 provides the existence of a finite Borel
measure µ̃ on Ω such that

ϕ(g) =
∫

Ω
ϕa(g) µ̃(dϕa)

for all g ∈ G. If we translate µ̃ to [−1, 1], we get a measure µ with the desired properties.
The other direction is obvious since ϕa is positive definite and K-biinvariant for all a.
The uniqueness of µ is a direct consequence of Theorem 1.3.6. �

The integral representation of all K-biinvariant, positive definite functions in Corollary
3.2.7 will be the central tool in our proof of a Levy-Khinchine decomposition formula for the
pair (G,K) in chapter 8.
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3.3 Spherical representations

Having determined the positive definite spherical functions in Corollary 3.2.3, we want to
make concrete realizations of the spherical representations for the pair (G,K). All such repre-
sentations arise by the Gelfand-Naimark-Segal construction from a positive definite spherical
function.

The case a = 1 of course corresponds to the trivial representation of G.
In the case a = −1, we define π(g)v = (−1)d(g(o),o)v for all v in the one-dimensional Hilbert

space H and all g ∈ G. If X+ = {x ∈ X | d(o, x) is even} and X− = X \ X+, it is clearly true
that g(X+) = X+ or g(X+) = X−. Hence, π is a group homomorphism from G into the group
of unitary operators on H. Since g 7→ π(g)v is constant on the - by Proposition 3.1.2 open -
sets {h ∈ G | h0(o) = h(o)} for h0 ∈ G and v ∈ H, π is an irreducible unitary representation
of G. Furthermore, if h is a unit vector, h is K-invariant and cyclic, and ϕ(g) = 〈h, π(g)h〉
for all g ∈ G. By the essential uniqueness of the representation in the Gelfand-Naimark-Segal
construction, π is a realisation of the spherical representation corresponding to ϕ.

The remaining cases are - as in chapter 2 - more complicated. Let a ∈ (−1, 1), and let ϕ
be the positive definite spherical function given by (3.4). Let V be a vector space with basis
{vx}x∈X. Define a sesquilinear form H : V × V → C by the condition that H(vx, vy) = ad(x,y)

for all x, y ∈ X. Since a is real, H is clearly Hermitian.
We now put wo = vo and wx = (1 − a2)−

1
2 (vx − avτx(1)) for all x ∈ X \ {o} (notice that

1− a2 is positive). Observe that

H(wo, wo) = ad(o,o) = 1

and

H(wx, wx) = (1− a2)−1(ad(x,x) − 2aad(x,τx(1)) + a2ad(τx(1),τx(1)))

= (1− a2)−1(1− 2a2 + a2) = 1

for x 6= o.
Furthermore, it is true that

H(wo, wx) = (1− a2)−
1
2 (an − aan−1) = 0

for x ∈ X \ {o} with d(o, x) = n. Similarly, for x, y ∈ X \ {o} for which y is not contained in
the chain from o to x and x is not contained in the chain from o to y, we see that

H(wx, wy) = (1− a2)−1(an − aan−1 − aan−1 + a2an−2) = 0

where n = d(x, y). Finally, for x, y ∈ X \ {o} for which x 6= y and y is contained in the chain
from o to x, we obtain the following:

H(wx, wy) = (1− a2)−1(an − aan+1 − aan−1 + a2an) = 0

where n = d(x, y). Hence, we see that {wx}x∈X is an orthonormal system in V for the
Hermitian form H, and so it is linearly independent.

{wx}x∈X is actually a basis. Indeed, let x ∈ X and let x0 = o, x1, . . . , xn = x be the chain
from o to x. Put aj = an−j for all j ∈ {0, . . . , n}. Then vx = a0wx0 +

∑n
j=1 aj(1 − a2)

1
2wxj

which shows that {wx}x∈X span V .
The existence of a basis for V which is an orthonormal system for the Hermitian form H

now immediately implies that H is actually an inner product on V .
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Let H be the completion of the inner product space V , and denote the inner product by
〈·, ·〉. Since V = span {wx}x∈X is dense in H, {wx}x∈X is an orthonormal basis for H.

For all g ∈ G, define a linear operator π(g) on V by the condition that π(g)vx = vg(x)
for all x ∈ X. The isometry property of g means that H(π(g)vx, π(g)vy) = H(vx, vy) for
all x, y ∈ X. Furthermore, the surjectivity of g shows that the image of π(g) is V . Hence,
π(g) extends to a unitary operator on H, and the map π : G → U(H), the group of unitary
operators on H, is clearly a group homomorphism. Finally, fix x ∈ X, and let g0 ∈ G. If
g ∈ {h ∈ G | h(x) = g0(x)} which is open in the topology on G induced by G∞ and so by
Proposition 3.1.2 in the inductive limit topology on G, it is true that π(g)vx = π(g0)vx. This
shows that g 7→ π(g)vx is continuous. Since {vx}x∈X is a basis for V which is dense in H, this
proves that π is a unitary representation of G.

vo is clearly a K-invariant unit vector. Since

span {g ∈ G | π(g)vo} = V,

vo is even a cyclic vector. It is clearly true that

ϕ(g) = 〈vo, π(g)vo〉 ,

and so it follows by the essential uniqueness of the representation in the Gelfand-Naimark-
Segal construction that π is equivalent to the representaion obtained by applying this con-
struction to ϕ. This shows that π is irreducible and a realization of the spherical representation
corresponding to ϕ.

The above representations constitute the complete family of spherical representations for
the pair (G,K).

Remark 3.3.1 The above construction of the spherical representations in the case a ∈ (−1, 1)
differs dramatically from the construction in section 2.5 of the representations associated to
the positive definite spherical function for (Gn,Kn) corresponding to eigenvalues in (−1, 1).
In some of these cases, the representation space was just L2(νn) where νn was a Kn-invariant
probability measure on the boundary Ωn of (Xn,Cn).

Inspired by this, it is natural to try to construct realizations of the spherical representations
for (G,K) on some L2-space related to the boundary and to obtain an integral representation
for the spherical functions as in Theorem 2.4.6 for the pairs (Gn,Kn). Since the boundary of
(X,C) does clearly not possess aK-invariant measure, the task is to find an object which should
replace the boundary. An approach could be to attack this problem using the techniques of
[KOV, Section 2] where the infite symmetric group is considered. The idea should be to
construct continuous projection maps sn : Ωn+1 → Ωn for all n such that the image measure
sn(νn+1) = νn for all n. This creates a projective system, and the corresponding projective
limit could - in the product topology - be regarded as some compactification of the boundary.
The Kolmogorov consistency theorem would provide the existence of a measure on this object.

In chapter 7, we construct such a compactification of the boundary, and it plays an impor-
tant role in our study of the second of our two main examples of Olshanski spherical pairs. The
corresponding representation gives rise to a family of new interesting representations. Unfor-
tunately, it does not play a role in the analysis of the group G since this group does not act on
it. The group Gn acts on the boundary Ωn for all n, and so we may - using the idea of [KOV,
Section 2] - extend this action to the projective limit of the sets Ωn if the projection maps
satisfy that sn(g ·ω) = g ·sn(ω) for all g ∈ Gn and all ω ∈ Ωn+1, i.e. if the projection maps are
equivariant with respect to the action of Gn. Unfortunately, the projection maps mentioned
above do not have this property, and so G does not act on the projective limit. Hence, the
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compactification of the boundary may not be used to write up an integral representation of
the spherical functions in the case of a homogeneous tree of countable degree.

It is still an open problem whether reasonable integral representations of the spherical
functions for the pair (G,K) can be obtained and whether the spherical representations may
be realised on some L2-space arising from the boundary.

Remark 3.3.2 Since the Gelfand-Naimark-Segal construction shows that there is a bijective
correspondance between the set of equivalence classes of spherical representations for (G,K)
and the spherical dual for (G,K), we have found realizations of all spherical representations for
(G,K). In chapter 6, we extend our class of unitary representations of G by giving a complete
classification of a family of representations which will be known as tame. These are the
representations of G which arise by restriction of representations of G∞. More representations
of the group G are, however, not known.

As mentioned in Remark 2.5.4, a complete classification of the irreducible representations
can be obtained for the Gelfand pairs (Gn,Kn). It is an open problem to get a more complete
picture of the representation theory of G. The methods of Olshanski applied in the locally
finite case are certainly not applicable here, so new techniques need to be developed.

We finish this chapter with the observation that an interesting fact on free groups is an
easy consequence of our results. The analysis of G will be continued in chapters 6 and 8.

3.4 An application

We finish this chapter by observing that the results developed here provide a new proof of a
well-known, non-trivial fact concerning positive definiteness of functions on free groups. Let
F be the free group with countably many generators, and let B ⊆ F be a free countable set of
generators. Recall that we define the length |x| of x ∈ F as the number of factors in B ∪B−1

which are needed to write x as a reduced word. Let t ∈ [−1, 1], and define ϕ : F → C by

ϕ(x) = t|x|

for x ∈ F . In [H], it is proved that ϕ is positive definite. Another proof which covers a much
larger class of functions (known as Haagerup functions) can be found in [DF]. We will prove
that the positive definiteness of ϕ is a consequence of Corollary 3.2.3 above.

For the proof, we recall that we to a group H and a generating subset S may associate
the Cayley graph which is the graph (Y,D) for which Y = H and for which x, y ∈ H, x 6= y,
are neighbours if an only if there exists s ∈ S ∪ S−1 such that y = xs. The fact that S is
generating clearly means that (Y,D) is a connected graph.

We now state and prove the desired result:

Corollary 3.4.1 Let F be a free group with countably many generators, let B = {bn}∞n=1 be
a free subset generating F , and denote by |x| the length of x ∈ F . For t ∈ [−1, 1], the function
ϕ : F → C defined by

ϕ(x) = t|x|

for x ∈ F is positive definite.

Proof. Let (X,C) be the Cayley graph associated to G using B as the set of generators.
As seen above, (X,C) is a connected graph, and it is obvious that the fact that B is a free
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subset implies that there are no circuits in (X,C). Hence, (X,C) is a tree which clearly is
homogeneous with countable degree.

Denote by Fn the subgroup generated by b1, . . . , bn, and observe that F =
⋃∞
n=1 Fn.

Let o be the vertex in X corresponding to the neutral element e ∈ F . As above, we will
for each x ∈ X choose bijections τx : N → {y ∈ X | d(x, y) = 1} with the requirements in-
troduced in the beginning of this section. If x ∈ Fn, we do make this choice such that
τx({1, . . . , 2n}) =

{
xb1, xb

−1
1 , . . . , xbn, xb

−1
n

}
which is clearly possible. It now follows by con-

struction that X2n−1 = Fn for all n ∈ N.
Let n ∈ N, and let x ∈ Fn. The map z 7→ xz is a bijection from Fn onto Fn and so a

bijection from X2n−1 onto X2n−1. It follows by definition of the edges in (X2n−1,C2n−1) that
this map is even an automorphism of the tree (X2n−1,C2n−1). Hence, we have in a natural
way a map from Fn into G2n−1 which is clearly an injective group homomorphism. In this
way, we may regard Fn as a subgroup of G2n−1 and so of G.

Let t ∈ [−1, 1]. By Corollary 3.2.3, the map ψ : G→ C defined by the relation

ψ(g) = td(g(o),o)

is positive definite on G. Hence, the restriction to Fn is also positive definite. If x ∈ Fn and
g ∈ G2n−1 denote the corresponding automorphism, we clearly have that d(g(o), o) = |x|.
This shows that the restrictions of ψ and ϕ to Fn coincide. Since F = ∪∞n=1Fn, this implies
that ϕ is positive definite. �

Remark 3.4.2 The idea of Corollary 3.4.1 is to study the free group by associating it with
a tree on which the elements of the group act as automorphisms. A similar idea may be used
to study other objects. One important example is the case of p-adic numbers Qp where p is
a prime number, cf. [Sa]. In two different ways, it is possible to construct a locally finite,
homogeneous tree of degree p+ 1 from Qp, and these constructions make it possible to study
different groups using the harmonic analysis for groups acting on such trees.

One construction is discussed in [FN, Appendix A]. The set X of vertices is defined to be
the set of equivalence classes corresponding to an equivalence relation on the set of lattices
in a 2-dimensional vector space over Qp. One may define an integer-valued metric on this
set. If we define the set of edges C using this metric, it is possible to show that (X,C) is a
locally finite, homogeneous tree of degree p+1 and that the boundary is homeomorphic to the
one-point compactification of Qp. Since an element GL(2,Qp) acts in a natural way on the set
of lattices, it is possible to identify the group PGL(2,Qp) = GL(2,Qp)/ {αI | α ∈ Qp \ {0}}
with a closed subgroup of the automorphism group Aut(X). Hence, the representation theory
and harmonic analysis of PGL(2,Qp) may be studied by the methods developed in the study
of groups acting on trees. We refer to [FN, Appendix A] for the details in the construction
above.

Another construction is discussed in [F-T]. Here the set X of vertices is just the set of
closed balls in Qp with radius pk for k ∈ Z. Two balls are said to be neighbours if one is
contained in the other and if the radius of the "‘big"’ ball is p times the radius of the "‘small"’
ball. This defines a set C of edges. One may prove that (X,C) is a homogeneous tree of degree
p+ 1 and that the boundary is homeomorphic to the one-point compactification of Qp. One
may also prove that the group Isom(Qp) of isometries of Qp may be identified with a closed
subgroup of Aut(X) (actually with the group of rotations fixing a point on the boundary which
is mentioned in Remark 2.5.5). Hence, the representation theory and harmonic analysis of
Isom(Qp) may also be studied using the methods developed in the study of groups acting on
trees. We refer to [F-T] for a detailed discussion of the construction of (X,C).
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Using the ideas of this section, we may consider the automorphism groups for locally
finite, homogeneous trees as the degree of the tree tends to infinity. In the above situation,
this corresponds to the prime number p tending to infinity, and so the ideas of this chapter
may be applied to investigate the groups PGL(2,Qp) and Isom(Qp) as p→∞. Such a study
has not yet been carried out.

Remark 3.4.3 Let H be a group, and assume that l : H → N ∪ {0} is a map which we will
refer to as the length function. If t ∈ [−1, 1], it has in a number of different contexts been
studied whether the function ϕ : H → C defined by

ϕ(h) = tl(h)

for h ∈ H is positive definite. For instance, Corollary 3.4.1 shows that this is the case if H is
the free group with countably many generators and l is the usual length function. Corollary
3.2.3 shows that it is also true if H = G is the inductive limit of automorphism groups as
above if we define the length l(g) = d(g(o), o) for g ∈ G.

Another example is the case where H is the symmetric group Sn and where the length l(x)
for x ∈ Sn is the minimal number with the property that there exist simple transpositions
y1, . . . , yl(x) such that x = y1 . . . yl(x). The idea in this definition of length is that the length
is the number of basic "‘building blocks"’ needed to build x. In [BS], it is proved that ϕ is
also positive definite in this situation (actually, more general operator-valued functions are
considered).

A similar idea can be used to define another length function on the automorphism group
H = Aut(X) for a homogeneous tree (X,C) of degree at least 3. It follows by [FN, Proposition
1.3.4] that every automorphism h ∈ Aut(X) may be written as the product of step-1 transla-
tions. Hence, step-1 translations are the basic "‘building blocks"’ of the automorphism group,
and we may define l(h) to be the minimal number of such translations needed to "‘build"’ h.
It is not yet known whether the function ϕ is positive definite in this situation.
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Chapter 4

The Spherical Functions for a
Gelfand Pair Consisting of
Automorphism Groups for a
Homogeneous Rooted Tree

The purpose of this chapter is to develop the theory of spherical functions and representations
for a Gelfand pair consisting of groups of automorphisms of a locally finite, homogeneous
rooted tree. The main emphasis will be on constructing a family of spherical representations
for the pair and - by considering the corresponding spherical functions - show that these
exhaust all spherical representations for the pair. In some regard, the theory developed here
may be seen as an equivalent for rooted trees to the material in chapter 2, and it will form the
foundation for the study of our second Olshanski spherical pair in chapter 5. We will need a
fair amount of basic definitions, notation and elementary observations. These will be collected
in section 1. In section 2, we construct a family of spherical representations for the considered
pair, and in section 3 we determine all spherical functions and show that the representations
from section 2 exhaust all spherical representations. Section 4 is devoted to the decomposition
into direct sums of irreducible representations of the restriction of the spherical representations
to a certain subgroup and contain observations which will be needed in chapters 5 and 7.
Finally, section 5 determines the relation between the spherical representations found in this
chapter and the spherical representations of chapter 2.

4.1 Definitions, notation and preliminary observations

A rooted tree is a tree (X,C) together with a fixed vertex o ∈ X. The vertex o will be known
as the root of the tree. Let (X,C) be a rooted tree which is locally finite and homogeneous of
degree q + 1 ≥ 3, and let o ∈ X be its root. This will be kept fixed in the following.

An automorphism of the tree (X,C) which fixes the root o will be known as an automor-
phism of the rooted tree (X,C). As seen in chapter 2, the group Auto(X) of such automorphisms
form a compact subgroup of the group Aut(X) of all automorphisms of the tree (X,C).

Let K be a closed subgroup of Auto(X). By the above, K is a compact group. Define
Mn = {x ∈ X | d(o, x) = n} for n ≥ 0. Since every automorphism is an isometry, K clearly
acts on each Mn, and it is an immediate consequence of the definition of the topology on K
that this action is continuous. We will assume that the action on Mn is transitive for each n.
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An example of a group satisfying this assumption is the full group of automorphisms of the
rooted tree.

For a vertex x ∈ X, we denote by Kx the subgroup of K consisting of automorphisms
fixing x. It is immediate by the definition of the topology that Kx is both closed and open
and so a compact and open subgroup of K.

For a vertex x ∈ Mn with n ≥ 1, we define p(x) ∈ X to be the unique vertex satisfying
that d(x, p(x)) = 1 and that p(x) ∈ Mn−1. We will refer to the map p : X \ {o} → X as the
canonical projection.

Denote by Ω the boundary of (X,C) which in its usual topology is a compact Hausdorff
space. A rooted chain is an infinite chain x0, x1, x2, . . . in X with x0 = o. Recall that Ω may
be identified with the set of rooted chains. For x ∈ X with d(o, x) = n, we denote by Ω(x)
the set of ω ∈ Ω for which the corresponding rooted chain x0, x1, x2, . . . satisfies that xn = x.

We define on Ω a metric δ which induces the right topology. Indeed, let ω, ω′ ∈ Ω and
assume that ω 6= ω′. Let x0, x1, x2, . . . and y0, y1, y2, . . . be the rooted chains corresponding
to ω and ω′, respectively, and let n = min {m ≥ 0 | xm 6= ym}. Define δ(ω, ω′) = 1

n , and
δ(ω, ω) = 0.

If ω, ω′, ω′′ ∈ Ω and δ(ω, ω′) ≥ max {δ(ω, ω′′), δ(ω′, ω′′)}, it is clear that δ(ω, ω′) = δ(ω, ω′′)
or δ(ω, ω′) = δ(ω′, ω′′). Hence, δ satisfies the triangle inequality and so is a metric on Ω. Since
the open ball b(ω, 1

n) with center ω and radius 1
n is clearly just Ω(xn), δ induces the already

given topology on Ω.
Recall that the group K by the map (g, ω) 7→ g · ω acts continuosly on Ω. The injectivity

of an automorphism shows that δ(g · ω, g · ω′) = δ(ω, ω′) for all ω, ω′ ∈ Ω and all g ∈ K, and
so δ is K-invariant.

We fix once and for all ω ∈ Ω, and let x0, x1, x2, . . . be the corresponding rooted chain.
This will be kept fixed for the remainder of this chapter. We define for n ∈ N

An =
{
τ ∈ Ω

∣∣∣∣ δ(ω, τ) =
1
n

}
and put A∞ = {ω}. Furthermore, we define Bn to be the open ball with center ω and radius
1
n for n ∈ N. Finally, we declare Kω to be the isotropy group of ω, i.e.

Kω = {g ∈ K | g · ω = ω}

Since Kω =
⋂∞
n=0Kxn is an intersection of closed sets, it is a closed, and hence compact,

subgroup of K.
We now construct a map m : X → N by defining m(xn) = q − 1 for n ≥ 1 and m(y) = q

for all y ∈ X satisfying that y 6= xn for all n ≥ 1. We make two assumptions on K to
ensure that K is "‘big enough"’. Firstly, for each n ≥ 1 and each y ∈ Mn−1 there exists a
labeling z1, z2, . . . , zm(y) of the vertices in p−1(y) \ {xn} and an automorphism k ∈ Kω such
that k(zi) = zi+1 for i < m(y) and k(zm(y)) = z1 and such that k(z) = z for all z ∈ Mn

with p(z) 6= y. Secondly, for all y ∈ Mn \ {xn}, there exists a labeling z1, z2, . . . , zm(y)−1 of
the vertices in p−1(p(y)) \ {xn, y} and an automorphism k ∈ Kω such that k(zi) = zi+1 for
i < m(y) − 1 and k(zm(y)−1) = z1 and such that k(z) = z for all z ∈ Mn with p(z) 6= p(y).
Observe that k automatically satisfies that k(y) = y. These conditions are of course satisfied
by the full group of automorphisms of the rooted tree.

It is an easy observation that the assumptions on K imply that K acts transitively on Ω.
This is part of the content of the following lemma:

Lemma 4.1.1 Let K be as above. Then the action of K on Ω is transitive, and the orbits of
the action of Kω on Ω are exactly the sets An with n ∈ N and n = ∞.
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Proof. Let τ, τ ′ ∈ Ω, and let y0, y1, y2, . . . and z0, z1, z2, . . . be the rooted chains corre-
sponding to τ and τ ′, respectively. For n ≥ 0, define

Kn = {g ∈ K | g(yn) = zn}

It follows immediately by the above characterization of the topology of Aut(X) that Kn is a
closed subset of K. Hence, each Kn is compact. Furthermore, it is clear that K0 ⊇ K1 ⊇
. . . ⊇ Kn ⊇ . . .. Since the transitive action of K on Mn implies that Kn 6= ∅ for n ≥ 1, the
finite intersection property means that

⋂∞
n=0Kn 6= ∅. Let g ∈

⋂∞
n=0Kn. g evidently satisfies

that g · τ = τ ′ which proves the first part of the lemma.
To prove the second part, we begin by observing that the Kω-orbit O(ω) of ω is clearly

A∞. Now let τ ∈ Ω satisfy that τ 6= ω, let n ∈ N be given such that τ ∈ An, and let
y0, y1, y2 . . . be the corresponding rooted chain. The K-invariance of δ immediately implies
that δ(g ·τ, ω) = δ(τ, ω) for all g ∈ Kω and so the Kω-orbit O(τ) of τ satisfies that O(τ) ⊆ An.

For the other inclusion, let τ ′ ∈ An, assume that τ ′ 6= τ and denote by y0, y1, y2, . . .
and z0, z1, z2, . . . the rooted chains corresponding to τ and τ ′, respectively. Let m be the
smallest number such that ym 6= zm. We observe that m ≥ n. By our assumption on K,
we may find an automorphism g0 ∈ Kω such that g0(ym) = zm. Now assume that we have
constructed automorphisms g1, . . . , gl such that (glgl−1 . . . g0)(ym+l) = zm+l and hence also
(glgl−1 . . . g0)(yi) = zi for i < m + l. By our assumption, we may find gl+1 ∈ Kω such that
gl+1((glgl−1 . . . g0)(ym+l+1)) = zm+l+1. In this way we inductively define a sequence {gl} ⊆ Kω

such that (glgl−1 . . . g0)(ym+l) = zm+l for all l. By compactness, the sequence
{∏l

i=0 gi

}
has a

convergent subsequence with limit g ∈ Kω. It follows clearly by the definition of the topology
on K that g(yl) = zl for all l and so g · τ = τ ′. This proves that An ⊆ O(τ) and so finishes
the proof of the proposition. �

Since K acts transitively on Ω by Lemma 4.1.1, and since Kω is the isotropy group for
ω, we may use the bijection gKω 7→ g · ω to identify the coset space K/Kω with Ω. By [W,
Theorem 1.6.7], this map is even a homeomorphism, so it is an identification of topological
spaces. We may now identifiy a right-Kω-invariant function ϕ on K with a function ϕ̃ on Ω.
Furthermore, the description of the orbits of the action of Kω on Ω in Lemma 4.1.1 means that
we may identify a Kω-biinvariant function ϕ on Kω with a function ϕ̃ on Ω which is constant
on the sets An. Conversely, every such function may be identified with a Kω-biinvariant
function on K.

The following proposition is an important observation:

Proposition 4.1.2 The pair (K,Kω) is a Gelfand pair.

Proof. Let g ∈ K. Since δ is K-invariant, we have that δ(g−1 · ω, ω) = δ(ω, g · ω). Hence,
there exists an n such that g−1 · ω, g · ω ∈ An. By Lemma 4.1.1, this implies that there exists
k ∈ Kω such that (kg) · ω = g−1 · ω which means that k1 = gkg ∈ Kω. This leads to the
conclusion that g−1 = kgk−1

1 ∈ KωgKω. By [W, Proposition 8.1.3], this implies that (K,Kω)
is a Gelfand pair. �

The remainder of this chapter will revolve around the study of spherical functions and
representations for the pair (K,Kω).
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4.2 Construction of spherical representations for (K, Kω)

The objective of this section is to construct a family {πn}∞n=0 of spherical representations for
the pair (K,Kω).

To do this, we let π0 be the one-dimensional trivial representation which is of course
spherical. For the remaining representations, let n ≥ 1 be fixed, and consider `2(Mn) which
is a (q + 1)qn−1-dimensional Hilbert space. Since the counting measure on Mn is a K-
invariant Radon measure, it follows by [Fo, Section 3.1] that we may construct a unitary
representation π̃n by defining (π̃n(g)f)(x) = f(g−1(x)) for x ∈ Mn, f ∈ `2(Mn) and g ∈ K
(The fact that this definition defines a unitary representation is actually easier checked in
this than in the general case. Indeed, π̃n is clearly a group homomorphism from K into the
group of unitary operators on `2(Mn), and the continuity in the strong operator topology
follows by the fact that the map g 7→ π̃n(g)f with f ∈ `2(Mn) is constant on the open sets
{g ∈ K | g(x) = g0(x) for all x ∈ Mn} for g0 ∈ K and so locally constant).

Now consider the subspace

Hn =

f ∈ `2(Mn)

∣∣∣∣∣∣
∑

x∈p−1({y})

f(x) = 0 for all y ∈ Mn−1


Since the automorphism property means that p(g−1(x)) = g−1(p(x)) and

∣∣p−1(
{
g−1(y)

}
)
∣∣ =∣∣p−1({y})

∣∣ for g ∈ K and x, y ∈ X, we see that∑
x∈p−1({y})

(π̃n(g)f)(x) =
∑

x∈p−1({y})

f(g−1(x)) =
∑

x∈p−1({g−1(y)})

f(x) = 0

for y ∈ Mn−1, f ∈ Hn and g ∈ K. Hence, Hn is invariant under π̃n.
We denote by πn the subrepresentation of π̃n corresponding to the invariant subspace Hn.
Let n ≥ 2. We observe that |Mn−1| = (q+1)qn−2 and denote the elements by y1, . . . , y(q+1)qn−2 .

Furthermore, we note that
∣∣p−1({yi})

∣∣ = q for i ∈
{
1, . . . , (q + 1)qn−2

}
and denote the ver-

tices in p−1({yi}) by xi1, . . . , x
i
q. For i ∈

{
1, . . . (q + 1)qn−2

}
and j ∈ {1, . . . , q − 1}, we define

a function f ij ∈ Hn by the conditions that f ij(x
i
j) = 1, f ij(x

i
q) = −1 and that f ij(x) = 0 for all

other vertices x ∈ Mn. The set
{
f ij

}
is clearly linearly independent and spans Hn and so is

a basis for Hn. Hence, the representation πn has dimension (q + 1)(q − 1)qn−2.
Since the space H1 consists of all functions f on M1 with the property that

∑
x∈M1

f(x) =
0 and since |M1| = q+1, it is seen in a similar way that π1 is a q-dimensional representation.

A key observation is that the representation πn is irreducible for all n ≥ 0. This is the
content of Proposition 4.2.1 below:

Proposition 4.2.1 The representation πn is an irreducible representation of K for all n.

Proof. Let n ≥ 1. Let M be a non-trivial subspace of Hn which is invariant under πn. Let
f ∈ M satisfy that f 6= 0, and let x ∈ Mn be given such that f(x) 6= 0. By the transitive
action of K on Mn, there exists g ∈ K such that g(x) = xn. Hence, (π(g)f)(xn) = f(x) 6= 0.
Hence, we may assume that f(xn) 6= 0.

Let y ∈ Mn−1. By assumption, there exists a labeling zy1 , z
y
2 , . . . , z

y
m(y) of the vertices

in p−1(y) \ {xn} and an automorphism ky ∈ Kω such that ky(z
y
i ) = zyi+1 for i < m(y),

k(zym(y)) = zy1 and ky(z) = z for z ∈ Mn with p(z) 6= y. Since f ∈ Hn, we have that

(π(ky)f + π(k2
y)f + . . .+ π(km(y)

y )f)(zyi ) = 0 (4.1)
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if y 6= xn−1 and
(π(ky)f + π(k2

y)f + . . .+ π(km(y)
y )f)(zyi ) = −f(xn) (4.2)

if y = xn−1. Define h ∈ Hn to be the function given by the conditions that h(xn) = 1, that
h(z) = − 1

m(xn−1) if p(z) = xn−1 and z 6= xn and that h(z) = 0 if p(z) 6= xn−1. Since ky(z) = z

if p(z) 6= y, we may use (4.1) and (4.2) and a suitable scaling to see that h ∈M.
Since M⊥ is also a non-trivial πn-invariant subspace, we have that h ∈M⊥. However, we

know that h 6= 0, and so this is a contradiction. Hence, πn is irreducible. Since π0 is just the
trivial 1-dimensional representation, this finishes the proof. �

An immediate consequence of Proposition 4.2.1 is that the representation πn is spherical
for the pair (K,Kω) for all n ≥ 0:

Corollary 4.2.2 The representation πn is a spherical representation for the pair (K,Kω)
for all n.

Proof. Let n ≥ 1. Let h ∈ Hn be the function from the proof of Proposition 4.2.1. Since
k−1(xn) = xn, k−1(xn−1) = xn−1 and p(k−1(x)) = k−1(p(x)) for all x ∈ X and all k ∈ Kω,
we observe that π(k)h = h for all k ∈ Kω and so h is non-zero and Kω-invariant. Since πn
is irreducible by Proposition 4.2.1, it is spherical for the pair (K,Kω). Since π0 is just the
trivial representation which is clearly spherical for (K,Kω), this finishes the proof. �

Remark 4.2.3 For later purposes, we observe that the function h in the proof of Corollary
4.2.2 is actually Kxn-invariant.

It is of interest to determine the positive definite spherical functions corresponding to the
spherical representations πn, n ≥ 0.

To do this, we begin by observing that the function ϕ0 constantly equal to 1 is the spherical
function corresponding to π0.

Let n = 1, and let h ∈ Hn be the function of the proof of Proposition 4.2.1. We observe
that

‖h‖2 = 1 +
q∑
i=1

1
q2

= 1 +
1
q

Hence, the spherical function ϕ1 corresponding to the spherical representation π1 is given by

ϕ1(g) =
1

1 + 1
q

〈π(g)h, h〉

for g ∈ K. If g ∈ Kx1 , we clearly have that ϕ1(g) = 1. If g /∈ Kx1 , we see that

ϕ1(g) =
1

1 + 1
q

(−2
q

+ (q − 1)
1
q2

) =
1

1 + 1
q

−q − 1
q2

=
−q − 1
q(q + 1)

= −1
q

If we by 1C denote the indicator function for a set C, this means that the spherical function
ϕ1 is given by

ϕ1 = 1Kx1
− 1
q
1K\Kx1

and the corresponding function ϕ̃1 on Ω satisfies that

ϕ̃1 = 1B1 −
1
q
1A1
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Let n ≥ 2 and let h ∈ Hn be the function of the proof of Proposition 4.2.1. We observe
that

‖h‖2 = 1 +
q−1∑
i=1

1
(q − 1)2

= 1 +
1

q − 1

Hence, the spherical function ϕn corresponding to the spherical representation πn is given by

ϕn(g) =
1

1 + 1
q−1

〈π(g)h, h〉

for g ∈ K. If g ∈ Kxn , we clearly have that ϕn(g) = 1. If g ∈ Kxn−1 \Kxn , we see that

ϕn(g) =
1

1 + 1
q−1

(− 2
q − 1

+ (q − 2)
1

(q − 1)2
) =

1
1 + 1

q−1

−q
(q − 1)2

=
−q

q(q − 1)
= − 1

q − 1

If g /∈ Kxn−1 , we clearly have that 〈π(g)h, h〉 = 0 which means that ϕn(g) = 0. This implies
that the spherical function ϕn is given by

ϕn = 1Kxn
− 1
q − 1

1Kxn−1\Kxn

and the corresponding function ϕ̃n on Ω satisfies that

ϕ̃n = 1Bn −
1

q − 1
1An

The objective of the following section is to prove that the set of spherical functions calcu-
lated above is complete, i.e. contains all spherical functions for the pair (K,Kω).

4.3 The spherical functions for (K, Kω)

It turns out that {πn}∞n=0 is the set of all spherical representations for the pair (K,Kω). To
see this, we will find all the spherical functions for (K,Kω).

Theorem 4.3.1 The spherical functions for the pair (K,Kω) are the functions ϕn, n ≥ 0,
where

ϕ0 ≡ 1,

ϕ1 = 1Kx1
− 1
q
1K\Kx1

and
ϕn = 1Kxn

− 1
q − 1

1Kxn\Kxn−1

for n ≥ 2.
The spherical functions are all positive definite.

Proof. We have already seen that the functions ϕn with n ≥ 0 are all spherical. Furthermore,
their positive definiteness follows by the compactness of K and [VD, Theorem 6.5.1]. Hence,
it is left to show that there are no more spherical functions.

To do this, let ϕ be a spherical function, and let ϕ̃ be the corresponding function on Ω
which is constant on the sets An with n ∈ N and n = ∞. To simplify things, we will abuse
the notation and denote the value of ϕ̃ on An by ϕ̃(n). Since ϕ 6= 0, there exists a minimal
n ∈ N ∪ {∞} such that ϕ̃(n) 6= 0.
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We begin by observing that n 6= ∞. Indeed, if this was the case ϕ would just - since every
spherical function is normalized at the identity - be the indicator function for the subgroup
Kω. Hence, the continuity of ϕ implies that Kω is open. We recall that Kω =

⋂∞
n=1Kxn .

It is an immediate consequence of the transitivity of the action of K on Mn that Kxn has
measure (q+ 1)−1q1−n under the normalized Haar measure on K for n ≥ 1. This proves that
Kω has measure 0. However, this contradicts the fact that Kω is open and non-empty. Hence,
n 6= ∞.

Now let m > n, and choose by the transitive action of K on Ω automorphisms g, h ∈ K
such that g · ω ∈ An and h · ω ∈ Am. Since ϕ is spherical, we have that

ϕ̃(m)ϕ̃(n) =
∫
Kω

ϕ(hkg) dk =
∫
Kω

ϕ̃(n) dk = ϕ̃(n)

where we have used that (hkg) ·ω ∈ An for all k ∈ Kω. This shows that ϕ̃(m) = 1 for m > n.
We now assume that n = 1. It is clear that (gkg) ·ω ∈ A1 for all k ∈ Kω with the property

that (kg)(x1) 6= g−1(x1) and that (gkg) · ω ∈ B1 for all k ∈ Kω with the property that
(kg)(x1) = g−1(x1). Since it is a consequence of the assumptions that Kω acts transitively
on p−1({x0}) \ {x1}, it follows by the translation invariance of the normalized Haar measure
on Kω that (gkg) · ω ∈ A1 on an open subset of Kω of measure q−1

q and that (gkg) · ω ∈ B1

on an open subset of measure 1
q . By the previous observation that ϕ̃(m) = 1 for m > n, this

implies that

(ϕ̃(1))2 =
∫
Kω

ϕ(gkg) dk =
1
q

+
q − 1
q

ϕ̃(1)

Solving this equation, we see that ϕ̃(1) = 1 or ϕ̃(1) = −1
q which means that ϕ̃ ≡ 1 or

ϕ̃ = 1B1 − 1
q1A1 . This shows that ϕ = ϕ0 or that ϕ = ϕ1.

Now assume that n ≥ 2. Exactly as above, we see that

(ϕ̃(n))2 =
∫
Kω

ϕ(gkg) dk =
1

q − 1
+
q − 2
q − 1

ϕ̃(n)

Solving this equation, we see that ϕ̃(n) = 1 or ϕ̃(n) = − 1
q−1 which means that ϕ̃ = 1Bn−1 or

ϕ̃ = 1Bn − 1
q−11An . If ϕ̃ = 1Bn−1 , the same considerations as above show that

0 = (ϕ̃(n− 1))2 =
q − 1
q

ϕ̃(n− 1) +
1
q

=
1
q

if n = 2 and that

0 = (ϕ̃(n− 1))2 =
q − 2
q − 1

ϕ̃(n− 1) +
1

q − 1
=

1
q − 1

if n > 2. In both cases we have a contradiction, and so ϕ̃ = 1Bn − 1
q−11An . Hence, we see that

ϕ = ϕn which finishes the proof. �

The bijective correspondance between positive definite spherical functions and spherical
representations for the pair (K,Kω) now implies the following corollary.

Corollary 4.3.2 The set of spherical representations for the pair (K,Kω) is {πn}∞n=0.

Remark 4.3.3 In light of Remark 2.5.4, it is of interest to notice that we may actually
classify all irreducible unitary representations of K if we make some further assumption on
K. Again we will not state the complete further requirement on K since it is rather technical.
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It may be found in [N]. It should, however, be observed that the full group Auto(X) of
automorphisms of the rooted tree (X,C) satisfies this further condition and so all irreducible
unitary representations of this group may be completely classified.

As in Remark 2.5.4, the classification is based on the fact that every unitary representation
of K has a minimal tree. Hence, the unitary representations of K may again be divided into
spherical, special and cuspidal representations. We shall see that the irreducible spherical
representations are exactly the representations which are spherical for the pair (K,Kω) and
which have been found in Corollary 4.3.2. Furthermore, we will observe that K does not
possess any special representations.

Assume that π is an irreducible spherical representation of K. Let x ∈ X be given such
that the projetion P (x) on the subspace H(x) of Kx-invariant vectors is non-zero, and let
n = d(o, x). By the transitive action of K on Mn, there exists g ∈ K such that g(x) = xn. It
is easy to check that π(g)(H(x)) = H(xn) which proves that Hxn 6= 0. Hence, there exists a
non-zero vector which is invariant under Kxn ⊇ Kω which means that π is spherical for the
pair (K,Kω). By Corollary 4.3.2, this implies that π = πn for some n. Since Remark 4.2.3
shows that πn has a Kxn-invariant vector for each n ≥ 0 and so is an irreducible spherical
representation, we see that the irreducible spherical reprentations of K are the representations
πn with n ≥ 0.

Now assume that π is an irreducible special representation of K, and let e ∈ C be an edge
such that P (e) 6= 0. Let a, b ∈ X be the vertices of e and assume without loss of generality
that d(o, a) < d(o, b). It is now clear that Kb = K(e) and so H(b) 6= 0. This contradicts the
fact that π is special. Hence, K does not have any irreducible special representations.

To classify the cuspidal representations, we need the above mentioned further assumption
on K. The methods developed by Olshanski in [O2] apply directly to this case and gives a
complete classification of the irreducible cuspidal representations of K, and the results are
identical to the ones mentioned in Remark 2.5.4. We will not go through the details and refer
to [O2], [FN] and [N] for the ideas behind this classification.

The spherical representations will be discussed in greater detail in the following section.

4.4 Restriction of spherical representations for the pair (K, Kω)
to Kω

The set of spherical representations for the pair (K,Kω) consists exactly of the irreducible
unitary representations with the property that their restrictions to Kω contain the trivial
representation as a subrepresentation. We are, however, able to write up the complete de-
compositions of these restrictions into direct sums of irreducible representations of Kω. This
is the content of Theorem 4.4.1 below. The irreducible representations of Kω turning up in
our decompositions may seem to be of less importance, but they will play a crucial role in our
study of representations in relation to one of our main examples of Olshanski spherical pairs
in chapters 5 and 7.

To make the decomposition, consider for n ≥ 1 the subspace

Vn =
{
f ∈ Hn

∣∣ f(xn) = 0, f(y) = 0 for all y /∈ p−1({xn−1})
}

The facts that g(xn) = xn, g(xn−1) = xn−1 and g(p(y)) = p(g(y)) for all g ∈ Kω immediately
imply that Vn is Kω-invariant. We denote by σn the corresponding subrepresentation of the
restriction of πn to Kω. With the notation of section 4.2, we choose i such that yi = xn−1

and we choose our numbering such that xiq 6= xn. It is now obvious that the functions f ij with
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xij 6= xn constitute a basis for Vn and so σn is a q − 1-dimensional representation for n = 1
and a q − 2-dimensional representation for n ≥ 2.

For n ≥ 2, we futhermore consider the subspace

Un =
{
f ∈ Hn

∣∣ f(y) = 0 for all y ∈ p−1({xn−1})
}

The same facts as above prove that Un is also Kω-invariant. We denote by λn the corre-
sponding subrepresentation of the restriction of πn to Kω. With the notation of section 4.2,
we observe that the functions f ij with i chosen such that yi 6= xn−1 constitute a basis for Un.
Hence, the representation λn is (q − 1)((q + 1)qn−2 − 1)-dimensional.

Finally, we denote for n ≥ 1 by Wn the 1-dimensional subspace spanned by the Kω-
invariant function of the proof of Corollary 4.2.2 and denote by αn the corresponding subrep-
resentation of the restriction of πn to Kω, i.e. αn is equivalent to the trivial representation of
Kω.

We are now in a position to prove the following:

Theorem 4.4.1 The representations αn, σn and λn are irreducible for all n. The restriction
of πn to Kω is irreducible for n = 0, equivalent to αn ⊕ σn for n = 1 and equivalent to
αn ⊕ σn ⊕ λn for n ≥ 2.

Proof. The irreducibility of αn is obvious while the irreducibility of λn and σn may be
proved in the same way as the irreducibility of πn in Proposition 4.2.1 - now using both of
our assumptions on Kω.

To prove the second statement, let n ≥ 1 and assume that f ∈ W⊥n , the ortogonal
complement of Wn in Hn. We observe that∑

y∈p−1({xn−1})\{xn}

f(y) = cf(xn)

where c = q for n = 1 and c = q − 1 for n ≥ 2. The fact that f ∈ Hn means, however, that∑
y∈p−1({xn−1})\{xn}

f(y) = −f(xn)

which implies that f(xn) = 0. Hence, it is easy to see that

W⊥n = {f ∈ Hn | f(xn) = 0}

This proves that the restriction of π1 is equivalent to α1 ⊕ σ1. For n ≥ 2, we clearly have
that Vn is the orthogonal complement of Un in W⊥n which implies that the restriction of πn
is equivalent to αn ⊕ σn ⊕ λn. Since the irreducibility of the restriction of π0 is trivial, this
finishes the proof. �

A pattern similar to the one observed in Theorem 4.4.1 will turn up again in Theorem
5.4.1 which deals with spherical representations in the case of a homogeneous rooted tree of
countable degree. In a sharp contrast, we will in chapter 7 encounter a family of represen-
tations which at a first glance and by construction may look quite similar to the spherical
representations. However, they have the very strong property that the restriction to Kω

remains irreducible.
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4.5 The K-types for spherical representations of certain sub-
groups of Aut(X)

An important aspect in the analysis of spherical representations with respect to a Gelfand
pair is the question of decomposition of the restriction to the compact subgroup of such
representations into a direct sum of irreducible representations. Having discussed irreducible
representations of K in this chapter, we are able to give a satisfactory answer to this question
for a number of the spherical representations for the pair (G,K) found in chapter 2. We finish
our discussion of the locally finite case by providing this answer. The ideas and results will
be of importance in our discussion of a compactification of the boundary for a homogeneous
rooted tree of countable degree.

We consider a closed subgroup G of Aut(X) with the property that the subgroup

K = {g ∈ G | g(o) = o}

satisfies the assumptions of the previous sections. Since K acts transitively on Ω by Lemma
4.1.1, it follows by [FN, Lemma 4.1] that the pair (G,K) is a Gelfand pair for which the
spherical representations are determined in section 2.5. We consider the Borel probability
measure ν on Ω which was studied in chapter 2 and denote the corresponding L2-space by
L2(Ω). As seen in chapter 2, the spherical representations corresponding to eigenvalues in the

interval [−2q
1
2

q+1 ,
2q

1
2

q+1 ] may be realised on L2(Ω) as described in section 2.5 with z = 1
2 + it and

t ∈ R. The function P satisfies that P (g, τ) = 1 for all g ∈ K and all τ ∈ Ω. Hence, the
restriction of each of these spherical representations to K is one common representation π on
L2(Ω) given by

(π(g)f)(τ) = f(g−1 · τ)

for all f ∈ L2(Ω) and all τ ∈ Ω. We will decompose this into a direct sum of irreducible
representations of K.

To do this, we consider - as in chapter 2 - the spaces K(Ω) and Kn(Ω) with n ≥ 0 of
continuous functions on Ω taking only finitely many values. We recall that K(Ω) is dense in
L2(Ω) and that K(Ω) =

⋃∞
n=0Kn(Ω). The map 1x 7→ (q+ 1)

1
2 q

n−1
2 1Ω(x) clearly extends to an

isometric isomorphism Tn of `2(Mn) onto Kn(Ω) for each n ∈ N. Since π(g)1Ω(x) = 1Ω(g(x))

for all g ∈ K and x ∈ X, this map satsifies the relation that π(g)Tn = Tnπ̃n(g). Hence, we
may - with some abuse of notation - regard π̃n and πn as subrepresentations of π and Hn as
a subspace of L2(Ω) for all n ≥ 0.

We now observe that H0 = K0(Ω). If we by f(y) denote the common value on Ω(y), we
observe that Hn consists of all functions f ∈ Kn(Ω) with the property that∑

y∈p−1({x})

f(y) = 0

for all y ∈ Mn−1. This implies that Hn is the orthogonal complement of Kn−1(Ω) in Kn(Ω)
for all n ∈ N. Hence, it follows by induction that Kn(Ω) =

⊕n
k=0Hk for all n ≥ 0. Since

K(Ω) is dense in L2(Ω), this has as consequence that π is equivalent to
⊕∞

n=0 πn.
We have proved the following proposition:

Proposition 4.5.1 The common restriction to K of the representations in the unitary prin-
cipal series for G is the direct sum of the spherical representations for the pair (K,Kω), i.e.
π =

⊕∞
n=0 πn.
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We will return to this decomposition when we construct non-tame representations in chap-
ter 7 and will consider a similar result in the case of a homogeneous rooted tree of countable
degree. Here Ω will be replaced by a compactification of the boundary, and it turns out that
a similar decomposition will produce a family of new representations.
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Chapter 5

An Olshanski Spherical Pair
Consisting of Automorphism
Groups for a Homogeneous Rooted
Tree

In this chapter, we construct the second of the two Olshanski spherical pairs which are the
focus of this thesis and determine the spherical representations and functions for the pair.
The main results are Theorem 5.3.1 and Corollary 5.3.7. The material of the chapter may be
seen as an analogue to the results of chapter 3 for a homogeneous rooted tree of countable
degree. We will continue the study of the pair in chapters 6-8. In section 1, we carry out
the rather technical construction of the relevant groups and show that they constitute an
Olshanski spherical pair. Section 2 is devoted to the construction of a family of spherical
representations for the pair while the purpose of section 3 is to study spherical functions and
in this way show that the constructed family of spherical representations is exhaustive. We
finish off by pointing out how the results concerning our pair fit into the structure seen in
relation to other Olshanski spherical pairs.

5.1 An Olshanski spherical pair consisting of automorphism
groups for a rooted, homogeneous tree of infinite degree

We begin by going through the construction of the Olshanski spherical pair which we will
study in this chapter. The ideas are the same as applied in the construction of the pair
(G,K) in chapter 3, but the details are much more technical in this case. The reason for this
might not be clear, but will be justified in chapter 7, cf. Remark 7.1.2.

Let (X,C) be a homogeneous tree of countable degree, and denote by d the natural metric
on X and by p the canonical projection of X. We fix a vertex o ∈ X. For each vertex x ∈ X,
we number its neighbours in p−1({x}) by choosing a bijection τx : N ∪ {0} → p−1({x}). We
fix these bijections {τx}x∈X for the remainder of this discussion.

We choose any natural number a ≥ 3. For each n ≥ 0, we define Xn ⊆ X by the
condition that x ∈ Xn if the chain x0, x1, . . . , xk with x0 = o and xk = x satisfies that
x1 ∈ τo(

{
0, 1, . . . , a2n − 1

}
) and that xj+1 ∈ τxj (

{
0, 1, . . . , a2n − 2

}
) for all j ∈ {1, . . . , k − 1}.

Furthermore, we put Cn = {{x, y} ∈ C | x, y ∈ Xn}. It is now evident that (Xn,Cn) is a locally
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finite, homogeneous subtree of (X,C) of degree a2n , that

o ∈ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . .

and that

X =
∞⋃
n=0

Xn

We define
Mn

k = {x ∈ Xn | d(o, x) = k}

and
Mk = {x ∈ X | d(o, x) = k}

for all n, k ≥ 0.
For each n ≥ 0, we will define a projection map qn from Xn+1 onto Xn with the following

properties:

1. qn(x) = x for all x ∈ Xn.

2. qn(x) ∈ Mn
k if x ∈ Mn+1

k

3. If x, y ∈ Xn+1 satisfy that d(x, y) = 1, we have that d(qn(x), qn(y)) = 1.

4. For x ∈ Mn
k with k ≥ 1, the set q−1

n ({x}) has cardinality a2n
(a2n

+ 1)k−1.

We do this by defining qn on Mn+1
k and use induction in k.

As a starting point, we define qn on Mn+1
0 by putting qn(o) = o. Now let x ∈ Mn+1

1 .
We may find lx ∈

{
0, . . . , a2n+1 − 1

}
such that x = τo(lx). We write lx = mxa

2n
+ rx with

mx, rx ∈
{
0, . . . , a2n − 1

}
and observe that τo(rx) ∈ Xn. We define qn(x) = τo(rx).

We now assume that qn has been defined on Mn+1
k for some k ≥ 1. Let x ∈ Mn+1

k+1 . We

may find lx ∈
{

0, . . . , a2n+1 − 2
}

such that x = τp(x)(lx). We write lx = mx(a2n −1)+ rx with

mx ∈
{
0, . . . , a2n}

and rx ∈
{
0, . . . , a2n − 2

}
and observe that the fact that qn(p(x)) ∈ Xn

implies that τqn(p(x))(rx) ∈ Xn. We define qn(x) = τqn(p(x))(rx).
It follows immediately by the definition and induction that qn has properties 1. and 2.

above while property 3. is built into the construction. To see that property 4. is satisfied,
we consider x ∈ Mn

k for k ≥ 1 and use induction in k. If k = 1, it follows by the definition
that q−1

n ({x}) has cardinality a2n . Now let k ≥ 2 and assume that the claim is true for all
vertices in Mn

k−1. This assumption implies that q−1
n (p(x)) has cardinality a2n

(a2n
+ 1)k−2. It

is clear by the definition that q−1
n ({x}) contains exactly (a2n

+ 1) vertices for every vertex in
q−1
n (p(x)) and so has cardinality a2n

(a2n
+ 1)k−1. This proves that qn has property 4.

We denote by K∞ and Kn the groups of automorphisms of X and Xn as rooted trees,
respectively. Endowed with the compact-open topology, all are Hausdorff topological groups,
and the Kn’s are even compact groups.

For each n, we embed Kn in K∞ in the following way: Let g ∈ Kn. We want to extend g
to an automorphism g̃ of X such that g̃(Xk) = Xk and qk ◦ g̃ = g̃ ◦ qk on Xk+1 for k ≥ n. To
do this, it suffices to extend g to an automorphism g1 of Xn+1 such that qn ◦ g1 = g1 ◦ qn since
an inductive application of this procedure produces an extension g̃ ∈ K∞ with the required
properties. We will construct g1 by extending g from Mn

k to Mn+1
k and use induction in k.
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To do this, we begin by observing that Mn
0 = Mn+1

0 , and so the extension in the induction
start is trivial. Let x ∈ Mn+1

1 and find lx ∈
{

0, a2n+1 − 1
}

such that x = τo(lx). We write

lx = mxa
2n

+ rx with mx, rx ∈
{
0, . . . , a2n − 1

}
. Similarly, we find sx ∈

{
0, . . . , a2n − 1

}
such that g(qn(x)) = g(τo(rx)) = τo(sx). We now define g1(x) = τo(mxa

2n
+ sx). It is clear

that this definition gives a bijection from Mn+1
1 onto Mn+1

1 , and we observe that qn(g1(x)) =
qn(τo(mxa

2n
+ sx)) = τo(sx) = g(qn(x)). If x ∈ Xn, we see that mx = 0 and so g1(x) =

τo(sx) = g(x) which means that g1 extends g.
Now let k ≥ 1, and assume that g1 has been defined as an extension of g on Mn+1

k which
is a bijection from Mn+1

k onto Mn+1
k and which satisfies that qn(g1(y)) = g1(qn(y)) for all

y ∈ Mn+1
k . Let x ∈ Mn+1

k+1 , and find lx ∈
{

0, . . . , a2n+1 − 2
}

such that x = τp(x)(lx). We

write lx = mx(a2n − 1) + rx with mx ∈
{
0, . . . , a2n

+ 1
}

and rx ∈
{
0, . . . , a2n − 2

}
. Similarly,

we find sx ∈
{
0, . . . , a2n − 2

}
such that g(qn(x)) = g(τqn(p(x))(rx)) = τg(qn(p(x)))(sx). We

now define g1(x) = τg1(p(x))(mx(a2n − 1) + sx). By the induction hypothesis, it is clear that
this definition gives a bijection from Mn+1

k+1 onto Mn+1
k+1 , and we observe that qn(g1(x)) =

qn(τg1(p(x))(mx(a2n − 1) + sx)) = τqn(g1(p(x)))(sx) = τg(qn(p(x)))(sx) = g(qn(x)). If x ∈ Xn, we
see that mx = 0 and so g1(x) = τg1(p(x))(sx) = τg(qn(p(x)))(sx) = g(x) which means that g1
extends g.

By induction, we get a bijection g1 from Xn+1 onto Xn+1 which extends g and which
satisfies that g1 ◦ qn = qn ◦ g1. It is an immediate consequence of the construction that g1 is
actually an automorphism of Xn+1.

By an inductive application of this procedure, g extends to an automorphism g̃ of X. We
will refer to g̃ as the standard extension of g.

Fortunately, the algebraic and topological structures are preserved under the map g 7→ g̃:

Lemma 5.1.1 For each n, the map ψn : Kn → K∞, g 7→ g̃, is an injective group homomor-
phism from Kn into K∞ which is a homeomorphism onto its image.

Proof. Let g, h ∈ Kn. By the inductive definition of g̃, h̃ and g̃h, the relation g̃h = g̃h̃ is a
consequence of the relation (gh)1 = g1h1. Hence, we will establish the latter.

Let x ∈ Xn+1 and find k ≥ 0 such that x ∈ Mn+1
k . We will prove that (gh)1(x) = g1(h1(x))

by induction in k. If k = 0, the relation is trivial. Assume that k = 1, and let mx be given as
in the definition of g1(x) above. We let sx ∈

{
0, . . . , a2n − 1

}
be given such that (gh)(qn(x)) =

τo(sx). By definition, we have that (gh)1(x) = τo(mxa
2n

+ sx). If we let tx ∈
{
0, . . . , a2n − 1

}
be given such that h(qn(x)) = τo(tx), we similarly have that h1(x) = τo(mxa

2n
+ tx). Since

qn(h1(x)) = h(qn(x)), we observe that g(qn(h1(x))) = (gh)(qn(x)) = τo(sx) which by definition
of g1 implies that g1(h1(x)) = τo(mxa

2n
+ sx) = (gh)1(x).

Now let k ≥ 1, and assume that (gh)1(y) = g1(h1(y)) for all y ∈ Mn+1
k . Let x ∈ Mn+1

k+1 ,
and let mx be given as in the definition of g1(x) above. We let sx ∈

{
0, . . . , a2n − 2

}
be

given such that (gh)(qn(x)) = τ(gh)(qn(p(x)))(sx). By definition, we have that (gh)1(x) =
τ(gh)1(p(x)(mx(a2n − 1) + sx). If we let tx ∈

{
0, . . . , a2n − 2

}
be given such that h(qn(x)) =

τh(qn(p(x)))(tx), we similarly have that h1(x) = τh1(p(x))(mx(a2n − 1) + tx). As above, we
observe that g(qn(h1(x))) = (gh)(qn(x)) = τ(gh)(qn(p(x)))(sx) = τg(qn(p(h1(x))))(sx), and since
g1(p(h1(x))) = g1(h1(p(x))), the definition of g1 shows that g1(h1(x)) = τg1(h1(p(x)))(mx(a2n −
1) + sx). The induction hypothesis now implies that (gh)1(x) = g1(h1(x)).

This shows that ψn is a group homomorphism. Since g̃ is an extension of g for all g ∈ Kn,
the kernel obviously only consists of the identity and so ψn is injective.

To prove the continuity, we let F ⊆ X be a finite set and let g ∈ Kn. Put UF (g̃) =
{f ∈ K∞ | f(x) = g̃(x) for all x ∈ F}. We choose k ≥ 0 such that d(o, x) ≤ k for all x ∈ F ,
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and put F ′ = {x ∈ X | d(o, x) ≤ k}. If h ∈ VF ′(g) = {f ∈ Kn | f(x) = g(x) for all x ∈ F ′}, it
is an immediate consequence of the (in two steps) inductive definition of h̃, g̃ that h̃ ∈ UF (g̃).
This proves that the group homomorphism ψn is continuous.

Finally, let F ⊆ Xn be finite and g ∈ Kn. If h ∈ Kn satisfies that h̃ ∈ UF (g̃), it is of course
also true that h ∈ VF (g). This shows that ϕn is a homeomorphism onto its image. �

For the remainder of this discussion, we will identify Kn with its image under ψn and
so regard it as a subgroup of K∞. Accordingly, we will not distinguish between g and its
standard extension for g ∈ Kn.

We immediately observe that the inductive construction of g̃ implies that

K0 ⊆ K1 ⊆ . . . ⊆ Kn ⊆ . . .

We denote by Ωn the boundary of the tree (Xn,Cn) and by Ω∞ the boundary of the tree
(X,C). We may regard Ωn as a subset of Ω∞ by identifying ω ∈ Ωn with a given rooted chain
with the point in Ω∞ corresponding to the same rooted chain. Under this identification, we
have that

Ω0 ⊆ Ω1 ⊆ . . . ⊆ Ωn ⊆ . . .

We define Ω =
⋃∞
n=0 Ωn and observe that it is an immediate consequence of the definition of

the topology on Ω∞ that Ω is dense in Ω∞. We denote by δ the metric on Ω∞ as defined in
section 4.1.

We now fix a point ω ∈ Ω0, and denote by x0, x1, . . . the corresponding rooted chain in
(X0,C0). This boundary point will be kept fixed for the remainder of this chapter. For all
n ≥ 0, we define Kω

n = {g ∈ Kn | g · ω = ω} which is a compact subgroup of Kn. Furthermore,
we put Kω

∞ = {g ∈ K∞ | g · ω = ω}. Consider

K =
∞⋃
n=0

Kn ⊆ K∞, K
ω =

∞⋃
n=0

Kω
n ⊆ Kω

∞

K is obviously a subgroup of K∞ and consists of all standard extensions of automorphisms of
the considered subtrees. Similarly, Kω is a subgroup of Kω

∞, and Kω = {g ∈ K | g · ω = ω}.
We equip K with the inductive limit topology.

The following observation is immediate, but important:

Proposition 5.1.2 (K,Kω) is an Olshanski spherical pair, and the inductive limit topology
on K is stronger than the topology inherited from K∞.

Proof. {Kn} is an increasing sequence of compact groups, and since all Kn’s have the
induced topology from K∞, the topology on Kn is the one induced by Kn+1.

We want to prove that Kn is a closed subgroup of Kn+1. Let {gλ} ⊆ Kn be a net which
converges to g ∈ Kn+1. If x ∈ Xn, it follows by the definition of the topology on Kn+1 that
there exists λ such that g(x) = gλ(x) ∈ Xn. Since Xn is locally finite and homogeneous, this
shows that g(Xn) = Xn, and so the restriction h of g to Xn is an automorphism h of Xn

which fixes o. To show that g ∈ Kn, we must prove that g is the standard extension h̃ of this
restriction.

To see this, we observe that a consequence of the definition of the topology on Kn is that
for each k ≥ 0 there exists λ such that g(x) = gλ(x) for all x ∈ Xn+1 with d(o, x) ≤ k. Hence,
h(x) = gλ(x) for all x ∈ Xn with d(o, x) ≤ k, and so it follows by definition of the standard
extension that h1(x) = gλ(x) = g(x) for all x ∈ Xn+1 with d(o, x) ≤ k. Since this holds for
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all k, the restriction of g to Xn+1 coincides with h1 and so the identity g = h̃ follows by the
fact that g ∈ Kn+1. This shows that Kn is a closed subgroup of Kn+1.

We have seen that (Kn,K
ω
n ) is a Gelfand pair for all n since Kn satisfies the assumptions

of chapter 4. The identity Kω
n = Kn ∩ Kω

n+1 is obvious, and so (K,Kω) is an Olshanski
spherical pair.

The last claim in the proposition is an immediate consequence of the definition of the
inductive limit topology and the fact that the topology on Kn is the one inherited from
K∞. �

Remark 5.1.3 The inductive limit topology on K is actually strictly stronger than the one
inherited from K∞. To see this, define

U = {g ∈ K | g(x) = x for all x ∈ M1}

It is an immediate consequence of the definition of the standard extension that

U ∩Kn = {g ∈ Kn | g(x) = x for all x ∈ Mn
1}

for all n ≥ 0, and this set is of course open in Kn. Hence, U is open in the inductive limit
topology.

However, U is not open in the topology inherited fromK∞. Indeed, if F ⊆ X is finite, there
exists n ≥ 0 such that F ⊆ Xn, and so we can find g0 ∈ Kn+1 such that g0(x) = x for all x ∈ F
and such that g0(x) 6= x for some x ∈ Mn+1

1 (g0 may be chosen such that it fixes all vertices in
Xn and interchanges two vertices in Mn+1

1 \Mn
1 ). Hence, {g ∈ K | g(x) = x for all x ∈ F} * U

which shows that U is not open in the topology inherited from K∞.

Remark 5.1.4 The subgroup K is actually dense in K∞. Indeed, let g ∈ K∞ and F ⊆ X be
a finite set. Choose N ≥ 0 such that F ∪ g(F ) ⊆ XN . It is now easy to see - for instance by
induction in the number of elements in F - that there exists h ∈ KN such that h(x) = g(x)
for all x ∈ F . This proves that K is dense in K∞.

Remark 5.1.5 In light of Remark 3.1.5, one should observe that the analysis of the group K
is comparable to the situation for the inifinite symmetric group. Here K plays the role of the
group S(∞) of all finite permutations of N while K∞ may be seen as an analogue of S̃(∞),
the group of all permutations of N. This similarity is discussed further in Remark 3.1.5.

In this chapter, we will be concerned only with the group K. The relation between the
groups K and K∞ will be the subject of chapter 7.

We finish this section by observing that each Kn satisfies the conditions of chapter 4.
Hence, Kn acts transitively on Ωn according to Lemma 4.1.1. This implies that K acts
transitively on Ω. Since Kω is just the isotropy group of ω, we may as in chapter 4 identify
each Kω-right-invariant function on K with a function on Ω.

Furthermore, we define An =
{
τ ∈ Ω

∣∣ δ(ω, τ) = 1
n

}
and Bn =

{
τ ∈ Ω

∣∣ δ(ω, τ) < 1
n

}
for

n ≥ 1, and we put A∞ = {ω}. For n ≥ 1 and j ≥ 0 we define Ajn and Bj
n to be the

corresponding sets with Ω replaced by Ωj . We observe that An =
⋃∞
j=0A

j
n and Bn =

⋃∞
j=0B

j
n.

Since the orbits of the action of Kω
j on Ωj by Lemma 4.1.1 are Ajn with n ≥ 1 and n = ∞,

the orbits of the action of Kω on Ω are the sets An with n ≥ 1 and n = ∞. Hence, a Kω-
biinvariant function ϕ on K may be regarded as a function ϕ̃ on Ω which is constant on the
sets An with n ≥ 1 and n = ∞.

With the notation firmly established, we will turn our attention to spherical representations
for the pair (K,K∞).
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5.2 Spherical representations for the pair (K, Kω)

In this section, we will construct a family {πn}∞n=0 of spherical representations for the pair
(K,Kω).

To do this, we let π0 be the one-dimensional trivial representation which is of course
spherical. For the remaining representations, let n ≥ 1 be fixed, and consider `2(Mn) which
is an infinite dimensional Hilbert space. We define (πn(g)f)(x) = f(g−1(x)) for x ∈ Mn,
f ∈ `2(Mn) and g ∈ K. It is trivial to check that this is a unitary representation of K (for
the continuity of the map g 7→ π(g)f with f ∈ `2(Mn), it suffices to prove continuity of the
restriction of this map to Km for each m, and by definition of the standard extension this
restriction is constant on the set {g ∈ Km | g(x) = g0(x) for all x ∈ Mm

n } which is open in
Km).

Remark 5.2.1 The representations πn are actually also continuous in the strong operator
topology if we equip K with the induced topology from K∞. Indeed, this is clearly true for
π0. For n ≥ 1, let x ∈ Mn and denote by fx ∈ `2(Mn) the function given by the conditions
that fx(x) = 1 and fx(y) = 0 for y 6= x. For g0 ∈ K, the map g 7→ π(g)fx is constant on
the open set {g ∈ K | g(x) = g0(x)} which implies that it is continuous. Since {fx}x∈Mn

is
an othonormal basis for `2(Mn), this implies the continuity of the map g 7→ π(g)f for all
f ∈ `2(Mn).

A key observation is that the representation πn is irreducible for all n ≥ 0. This is the
content of Proposition 5.2.3 below. For the proof, we need the following important lemma
which will be used repeatedly throughout the remaining chapters:

Lemma 5.2.2 For n ≥ 0, let Gn be a locally compact group, and assume that

G0 ⊆ G1 ⊆ . . . ⊆ Gn ⊆ . . .

Define G =
⋃∞
n=0Gn, and endow G with the inductive limit topology. Let π and ρ be uni-

tary representations of G with representation spaces Hπ and Hρ, respectively. Assume that
there exist increasing sequences {Hπ

n} and {Hρ
n} of closed, non-zero subspaces of Hπ and Hρ,

respectively, such that Hπ
n and Hρ

n are Gn-invariant for all n ≥ 0, and such that the subrep-
resentations πn and ρn of the Gn-restrictions of π and ρ corresponding to Hπ

n and Hρ
n are

irreducible. Furthermore, assume that
⋃∞
n=0Hπ

n and
⋃∞
n=0H

ρ
n are both dense in Hπ and Hρ,

respectively. Then the following holds:

1. π and ρ are irreducible unitary representations of G.

2. If πn and ρn are non-equivalent for all n ≥ 0, π and ρ are non-equivalent.

Proof. To prove 1., we consider T ∈ B(Hπ), the algebra of bounded operators on Hπ, and
assume that Tπ(g) = π(g)T for all g ∈ G. Denote by P πn the orthogonal projection onto Hπ

n,
and consider the operator Tn which is the restriction of P πn T to Hπ

n. Then Tn ∈ B(Hπ
n), and

since Hπ
n is invariant under Gn, we have that π(g)Tn = Tnπ(g) for all g ∈ Gn. By irreducibility

of πn and Schur’s Lemma, this implies that Tn = λnI for some λn ∈ C.
For h ∈ Hπ

n with h 6= 0, this means that Pn+1Th = λn+1h. Applying Pn on both sides
yields the equality λnh = λn+1h, and so there exists λ ∈ C such that Tn = λI for all n ≥ 0.
With h ∈ Hπ

m for some m ≥ 0, this implies that PnTh = λh for all n ≥ m. By denseness of⋃∞
n=0Hπ

n, P j converges strongly to I which implies that Th = λh. Another application of the
denseness means that T = λI which by Schur’s Lemma implies that π is irreducible.
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To prove 2., we assume that πn and ρn are non-equivalent for all n ≥ 0. Let T be a
bounded operator from Hπ into Hρ such that Tπ(g) = ρ(g)T for all g ∈ G. Let n ≥ 0.
Denote by Qn the orthogonal projection onto the closed subspace Hρ

n, and define Tn to be
the restricion of QnT to the subspace Hπ

n. We observe that Tn is a bounded operator from
Hπ
n into Hρ

n, and since Hρ
n is Gn-invariant, we see that ρ(g)Tn = Tnπ(g) for all g ∈ Gn. By

Schur’s Lemma and irreducibility of πn and ρn, this implies that Tn = 0.
Let h ∈ Hπ

m for some m ≥ 0. We have seen that QnTh = 0 for all n ≥ 0. By denseness
of

⋃∞
n=0H

ρ
n, the projections Qn converge strongly to the identity on Hρ. This implies that

Th = 0. The denseness of
⋃∞
n=0Hπ

n now reveals that T = 0, and so π and ρ are non-
equivalent. �

We are now able to prove irreducibility of the representations πn with n ≥ 0.

Proposition 5.2.3 The representation πn is an irreducible representation of K for all n.

Proof. The representation π0 is trivially irreducible.
Let n ≥ 1. Denote by πjn the n’th spherical representation for the pair (Kj ,K

ω
j ) from

Corollary 4.3.2 and denote by Hj
n the corresponding representation space which is a subspace

of l2(Mj
n). We may embed Hj

n isometrically into `2(Mn) by defining f(x) = 0 for all x ∈
Mn \M

j
n and all f ∈ Hj

n. If we denote this embedding by Sj , we clearly have that πn(g)Sj =
Sjπ

j
n(g) for all g ∈ Kj , and so we may regard Hj

n as a closed subspace of `2(Mn) and πjn as a
subrepresentation of the restriction of πn to Kj .

We clearly have that
H0
n ⊆ H1

n ⊆ . . . ⊆ Hj
n ⊆ . . .

Furthermore, we observe that
⋃∞
j=0H

j
n is dense in `2(Mn). Indeed, let x ∈ Mn and find

N ≥ 0 such that x ∈ MN
n . Define for all j ≥ 0 mj = a2j − 1 if n = 1 and mj = a2j − 2 if

n ≥ 2. For j ≥ N , consider the function f jx ∈ Hj
n given by the conditions that f jx(x) = 1,

that f jx(y) = − 1
mj

for all y ∈ (p−1({p(x)}) ∩M
j
n) \ {x} and that f jx(y) = 0 for y ∈ M

j
n with

p(y) 6= p(x). Finally, denote by fx the indicator function for the set {x}. We clearly have
that ∥∥fx − f jx

∥∥ =
∑

y∈(p−1({p(x)})∩Mj
n)\{x}

1
m2
j

=
1
mj

Since mj → ∞ as j → ∞, and since {fx}x∈Mn
constitute an orthonormal basis for `2(Mn),

this proves that
⋃∞
j=0H

j
n is dense in `2(Mn).

The irreducibility of πn is now an immediate consequence of 1. in Lemma 5.2.2. �

Remark 5.2.4 The representation πn with n ≥ 1 is the natural representation arising from
the action of K on Mn. By Proposition 5.2.4, πn is irreducible. This is in sharp contrast to
the case of a locally finite, homogeneous tree for which the natural representation arising from
the same action was not irreducible, cf. section 4.2. To get irreducibility and so the spherical
representation for the given pair, we had to pass to a certain subspace by imposing an extra
condition on the considered functions in `2(Mn).

This phenomenon is not unique and turns up on a number of occassions. Another example
will be considered in section 7.2 where the representation arising from the natural action of
the group G∞ (see chapter 3) on the set of oriented edges is treated. Again the representation
is irreducible in the case of a homogeneous tree of countable degree while this not the case if
the tree is locally finite.
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An immediate consequence of Proposition 5.2.3 is that the representation πn is spherical
for the pair (K,Kω) for all n ≥ 0:

Corollary 5.2.5 The representation πn is a spherical representation for the pair (K,Kω)
for all n.

Proof. Let n ≥ 1. Consider the indicator function fxn ∈ `2(Mn) of the set {xn}. Since
g−1(xn) = xn for all g ∈ Kω, we have that πn(g)fxn = fxn for all g ∈ Kω. Since πn is
irreducible by Proposition 5.2.3, it is spherical for the pair (K,Kω). Since π0 is just the
trivial representation which is clearly spherical for (K,Kω), this finishes the proof. �

In light of chapter 1, it is of interest to determine the positive definite spherical functions
corresponding to the spherical representations πn, n ≥ 0. We will as in section 1 define

Kx = {g ∈ K | g(x) = x}

We begin by observing that the function ϕ0 constantly equal to 1 is the spherical function
corresponding to π0. Now let n ≥ 1. As seen in the proof of Corollary 5.2.5, a Kω-invariant
unit vector in `2(Mn) is the indicator function fxn for the set {xn}. Hence, the positive
definite spherical function ϕn corresponding to πn is given by

ϕn(g) = 〈πn(g)fxn , fxn〉 = 1Kxn

The corresponding function ϕ̃n on Ω is given by

ϕ̃n = 1Bn

In the next section, we will prove that this list of spherical functions for the pair (K,Kω)
is actually exhaustive.

5.3 The spherical functions for (K, Kω)

It turns out that {πn}∞n=0 is the set of all spherical representations for the pair (K,Kω). To
see this, we will find all the spherical functions for (K,Kω).

Theorem 5.3.1 The spherical functions for the pair (K,Kω) are the functions ϕn, n ≥ 0,
where

ϕn = 1Kxn

The spherical functions are all positive definite.

Proof. We have already seen that the functions ϕn with n ≥ 0 are all spherical and positive
definite. Hence, it is left to show that there are no more spherical functions.

To do this, let ϕ be a spherical function, and let ϕ̃ be the corresponding function on Ω
which is constant on the sets An with n ∈ N and n = ∞. To simplify things, we will as in the
proof of Theorem 4.3.1 abuse the notation and denote the value of ϕ̃ on An by ϕ̃(n). Since
ϕ 6= 0, there exists a minimal n ∈ N ∪ {∞} such that ϕ̃(n) 6= 0.

We begin by observing that n 6= ∞. Indeed, if this was the case ϕ would just - since
every spherical function is normalized at the neutral element - be the indicator function for
the subgroup Kω. Hence, the continuity of ϕ implies that Kω is open in the inductive limit
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topology. However, Kω∩Kn = Kω
n for all n ≥ 0, and this set is by the proof of Theorem 4.3.1

not open in Kn. This contradicts the fact that Kω is open in the inductive limit topology.
Hence, n 6= ∞.

Now let m > n, and choose by the transitive action of K on Ω automorphisms g, h ∈ K
such that g · ω ∈ An and h · ω ∈ Am. Since ϕ is spherical, we have that

ϕ̃(m)ϕ̃(n) = lim
j→∞

∫
Kω

j

ϕ(hkg) αj(dk) = lim
j→∞

∫
Kω

j

ϕ̃(n) αj(dk) = ϕ̃(n)

where we by αj have denoted the normalized Haar measure on Kj and where we have used
that (hkg) · ω ∈ An for all k ∈ Kω. This shows that ϕ̃(m) = 1 for m > n.

Now choose N ≥ 0 such that g ∈ KN and let j ≥ N . It is clear that (gkg) · ω ∈ An
for all k ∈ Kω

j such that (kg)(xn) 6= g−1(xn) and that (gkg) · ω ∈ Bn for all k ∈ Kω
j such

that (kg)(xn) = g−1(xn). Since Kω
j acts transitively on p−1({xn−1}) \ {xn}, it follows by the

translation invariance of αj that (gkg) · ω ∈ An on a subset of Kω
j of measure a2j−3

a2j−2
if n ≥ 2

and of measure a2j−2

a2j−1
if n = 1 and that (gkg) · ω ∈ B1 on a subset of measure 1

a2j−2
if n ≥ 2

and of measure 1

a2j−1
if n ≥ 1. By the previous observation that ϕ̃(m) = 1 for m > n, this

implies that

(ϕ̃(n))2 = lim
j→∞

∫
Kω

j

ϕ(gkg) αj(dk) = ϕ̃(n)

Since ϕ̃(n) 6= 0, this means that ϕ̃(n) = 1. This proves that ϕ = ϕn−1. �

Remark 5.3.2 In light of Remarks 1.3.5 and 3.2.4, we once again observe that the spherical
functions for the pair (K,Kω) are all uniform limits on compact sets of spherical functions
for the pairs (Kn,K

ω
n ). Hence, this example - like the example of chapter 3 and the matrix

groups in [O1] - suggests that the conjecture of this being the case for all Olshanski spherical
pairs is true. As pointed out in Remark 1.3.5, it is, however, still an open problem to prove
this conjecture. An investigation of the validity of this conjecture should form an important
part of a further development of the abstract theory of Olshanski spherical pairs. With the
rich source of examples now available, the foundation for such a general theory is constantly
increasing. We refer to Remarks 1.3.5 and 3.2.4 for a further discussion of the question.

One should observe that all spherical functions for the pair (K,Kω) are positive definite.
For an Olshanski spherical pair, this is in general not true, cf. the example of chapter 3. It is
not even true for Gelfand pairs, cf. the example of chapter 2. For a Gelfand pair consisting
of compact groups, it is, however, a general fact, cf. [VD, Theorem 6.5.1]. The Olshanski
spherical pair (K,Kω) arises from Gelfand pairs of this nature. If the above conjecture is true,
it will be an immediate consequence that all spherical functions for an Olshanski spherical
pair arising from Gelfand pairs consisting of compact groups will be positive definite. After
all, they will be pointwise limits of positive definite functions as in the case considered here.

Remark 5.3.3 One should observe that for the pairs (G,K) and (K,Kω) it is true that
the product of spherical functions is again a spherical function. A similar property has been
observed in a rich number of examples arising from classical matrix groups, cf. [O1]. A general
theorem concerning this observation has not been established, but the rich source of examples
suggest that something general must be going on.

It should be observed that a Gelfand pair is also an Olshanski spherical pair. The stability
under multiplication of the set of spherical functions is, however, not a feature shared by all
Gelfand pairs - just consider the Gelfand pairs of chapters 2 and 4. Hence, we can not expect
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to prove a general theorem for all Olshanski spherical pairs. As soon as we consider a "‘real"’
limit of Gelfand pairs, the multiplicative property seems to come into play. The search for a
further assumption on an Olshanski spherical pair which makes the multiplicative property
inevitable should play an important role in the further development of the abstract theory of
Olshanski spherical pairs.

In light of Remark 3.2.5 concerning monoid structures of double coset spaces, we make
the following observation. It is an easy consequence of the transitive action of Kω on An that
for all g ∈ K with g · ω ∈ An

KωgKω = {h ∈ K | h · ω ∈ An}

By this observation, we may identify Kω\K/Kω with N ∪ {∞} which is a commutative
semigroup under the operation · given by

n ·m = min {n,m}

for all n,m ∈ N ∪ {∞}. Here, ∞ is a neutral element, and so this semigroup is a monoid.
In light of the above characterization of the spherical functions for the pair (K,Kω), we

have the following corollary:

Corollary 5.3.4 Let ϕ be a non-zero, continuous, Kω-biinvariant function on K. Then
ϕ is spherical if and only if the corresponding function on Kω\K/Kω is multiplicative with
respect to the monoid structure introduced above.

Remark 5.3.5 In Remark 3.2.5, we noticed that for the pair (G,K) a commutative monoid
structure may also be imposed on K\G/K in a way such that a non-zero, continuous, K-
biinvariant function is spherical for the pair (G,K) if and only if the corresponding function
on K\G/K is multiplicative with respect to this struture. A similar result has been observed
by Olshanski for a number of Olshanski spherical pairs arising from classical matrix groups
in [O1]. The pair (K,Kω) and Corollary 5.3.4 further suggest that a general phenomenon
occurs, but it is still an open problem to make any general observations on the existence of
such monoid structures on double coset spaces.

In light of Remark 5.3.3, it should be observed that the existence of a monoid structure on
the double coset space such that a non-zero, continuous, biinvariant function is spherical if and
only if the corresponding function on the double coset space is multiplicative with respect to
this structure immediately implies that the product of spherical functions is again spherical.
In Remark 5.3.3, we observed that this property is not shared by all Olshanski spherical pairs,
but seems to be inevitable if the Olshanski spherical pair is a "‘real"’ limit. The task for a
further study of monoid structures on double coset spaces of Olshanski spherical pairs should
thus revolve around a further assumption on the pair which secures the existence of such a
structure.

With our knowledge of all positive definite spherical functions for the pair (K,Kω), we
may now apply the generalized Bochner-Godement theorem in Theorem 1.3.6 to obtain a
decomposition of all continuous, Kω-biinvariant, positive definite functions.

Corollary 5.3.6 A function ϕ : K → C is continuous, positive definite and Kω-biinvariant
if and only if there exists a sequence {an}∞n=0 ∈ `2(N ∪ {0}) such that

ϕ(g) =
∞∑
n=0

an1Kxn
(g) (5.1)
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for all g ∈ K.
If this is the case, the sequence {an}∞n=0 is unique.

Proof. Let Ω =
{
1Kxn

}∞
n=0

be the spherical dual for (K,Kω) equipped with the topology
of uniform convergence on compact sets. Since uniform convergence on compact set implies
pointwise convergence, it is immediate that this is just the discrete topology. Hence, Ω may
as a topological space be identified with the discrete space N ∪ {0}. Furthermore, it follows
by the proof of Corollary 3.2.7 that the groups Kn with n ≥ 0 are all second countable.

Let ϕ be a continuous, Kω-biinvariant, positive definite function on K. Theorem 1.3.6
provides the existence of a finite Borel measure µ on Ω such that

ϕ(g) =
∫

Ω
1Kxn

(g) µ(d1Kxn
)

for all g ∈ K. Since the countable set Ω is discrete, we get a sequence {an}∞n=0 with the
desired properties.

The other direction is obvious since 1Kxn
is positive definite and Kω-biinvariant for all

n ≥ 0 and since the restriction to Km of a function ϕ defined by (5.1) is continuous by the
fact that the sets Kxn ∩Km are open in Km for all m,n ≥ 0.

The uniqueness of {an}∞n=0 is a direct consequence of Theorem 1.3.6. �

In chapter 8 we will make a similar decomposition of continuous, Kω-biinvariant, condi-
tionally positive definite functions on K. Again the spherical functions for the pair (K,Kω)
play an important role.

Combining Theorem 5.3.1 with section 1.3, we immediately see that the family of spherical
representations constructed in section 5.2 constitute the complete list of such representations.
This observation is the content of the following Corollary 5.3.7.

Corollary 5.3.7 The set of spherical representations for the pair (K,Kω) is {πn}∞n=0.

Corollary 5.3.7 contains the first part of a classification of the irreducible representations
of K. The purpose of chapter 6 is to extend this classification by getting hold on a much
larger class of representations, the so-called tame representations.

5.4 Decomposition of spherical representations for the pair
(K, Kω)

In Theorem 4.4.1, we decomposed the restrictions to Kω
n of the spherical representations for

the pair (Kn,K
ω
n ) into direct sums of irreducible representations. In this section, we do similar

considerations for the pair (K,Kω). It turns out that for the spherical representations the
pattern is similar to what we found in Theorem 4.4.1. The discussion will be continued in
section 7.4.

As a starting point, we define for n ≥ 1

Vn =
{
f ∈ `2(Mn)

∣∣ f(xn) = 0, f(y) = 0 for all y /∈ p−1({xn−1})
}

which is a closed subspace of `2(Mn). The facts that g(xn) = xn, g(xn−1) = xn−1 and
g(p(y)) = p(g(y)) for all g ∈ Kω immediately imply that Vn is Kω-invariant. We denote by
σn the corresponding subrepresentation of the restriction of πn to Kω. This representation is
clearly infinite-dimensional.
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For n ≥ 2, we futhermore consider the closed subspace

Un =
{
f ∈ `2(Mn)

∣∣ f(y) = 0 for all y ∈ p−1({xn−1})
}

The same facts as above prove that Un is also Kω-invariant. We denote by λn the cor-
responding subrepresentation of the restriction of πn to Kω. This representation is also
infinite-dimensional.

Finally, we denote for n ≥ 1 by Wn the 1-dimensional subspace spanned by the Kω-
invariant function 1{xn} and denote by αn the corresponding subrepresentation of the restric-
tion of πn to Kω, i.e. αn is equivalent to the trivial representation of Kω.

We are now in a proposition to prove the following:

Theorem 5.4.1 The representations αn, σn and λn are irreducible for all n. The restriction
of πn to Kω is irreducible for n = 0, equivalent to αn ⊕ σn for n = 1 and equivalent to
αn ⊕ σn ⊕ λn for n ≥ 2.

Proof. The irreducibility of αn is obvious for all n ≥ 1. To prove irreducibility of the
remaining representations, we define for k ≥ 0 and n ≥ 1 Vkn to be the subspace of Hk

n

corresponding to Vn of section 4.4. Similarly, we define for k ≥ 0 and n ≥ 2 Ukn to be the
subspace of Hk

n corresponding to Un of section 4.4.
For all n, we observe that

V0
n ⊆ V1

n ⊆ . . . ⊆ Vkn ⊆ . . . ,

that
U0
n ⊆ U1

n ⊆ . . . ⊆ Ukn ⊆ . . . ,

that
⋃∞
k=0 Vkn ⊆ Vn and that

⋃∞
k=0 Ukn ⊆ Un. As in the proof of Proposition 5.2.3, we observe

that
⋃∞
k=0 Vkn and

⋃∞
k=0 Ukn are dense in Vn and Un, respectively. Since Vkn and Ukn are Kω

k -
invariant and the corresponding subrepresentations of the restrictions to Kω

k of σn and λn,
respectively, are irreducible, it follows by Lemma 5.2.2 that σn and λn are irreducible for all
n.

To prove the second statement, it suffices to make the easy observation that `2(Mn) =
Wn ⊕ Vn ⊕ Un for n ≥ 2 and `2(M1) = W1 ⊕ V1. Since the irreducibility of the restriction of
π0 is trivial, this finishes the proof. �

Theorem 5.4.1 shows that the decomposition of the restriction to Kω of the spherical
representations for the pair (K,Kω) follow a pattern similar to the one observed for the pairs
(Kn,K

ω
n ) in Theorem 4.4.1. In section 7.4 we shall consider a new family of representations

which by construction are quite similar to the spherical representations. By restriction to Kω,
they do, however, behave completely different from what we have seen above.
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Chapter 6

Tame Representations of a Group
Consisting of Automorphisms of a
Homogeneous Rooted Tree

This chapter is devoted to the study of a class of irreducible unitary representations of the
group K from chapter 5, namely representations which arise by restriction of irreducible
unitary representations of the bigger group K∞. These will be known as irreducible tame
representations. It turns out that these may be completely classified, and the main task is
to carry out this classification using ideas developed by Olshanski in [O4]. In section 1, we
use the inducing construction to create a family of irreducible tame representations, and the
remainder of the chapter is devoted to the proof of the fact that this list is exhaustive. The
main tool is a family of semigroups which will be constructed in section 2. Section 3 deals
with the connection between tame representations and representations of these semigroups
while section 4 focuses on the classification of irreducible representations of the semigroups.
In section 5, we combine the previous observations to obtain a complete classification of all
irreducible tame representations of K. The main theorem is Theorem 6.5.1. The question of
the possible existence of non-tame representations will be considered in chapter 7.

6.1 Construction of irreducible unitary representations of K∞

The study of irreducible representations of the group K is difficult in the sense that we are not
able to classify all such representations. However, these difficulties do not arise when studying
the group K∞ which has K as a dense subgroup (remember that the topology of K is strictly
stronger than the topology inherited from K∞). By restriction of unitary representations
of K∞, we obtain a family of unitary representations of K which as a consequence may be
completely classified. Such representations arising by restriction of representations of K∞
are known as tame representations. Clearly, an irreducible tame representation arises by
restriction of an irreducible representation of K∞. Conversely, it follows by denseness of K
in K∞ and continuity that the restriction of an irreducible representation is an irreducible
tame representation. Since we can completely classfify the irreducible representations of K∞,
the same is true for the irreducible tame representations. The purpose of this chapter is to
continue the study of representations of K which we started in chapter 5 by giving a more
convenient definition of tame representations and by carrying out the classification of all
irreducible such representations. We will follow and modify an idea of Olshanski developed in
[O4] where it is used to classify all irreducible tame representations of the infinite symmetric
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group. Our main results are collected in Theorem 6.5.1.
Since there is a bijective correspondance between the set of irreducible tame representa-

tions of K and the set of irreducible representations of K∞, one should notice that the results
of Theorem 6.5.1 contain a complete classification of the irreducible representations of K∞.
This has already been obtained in [O3] by Olshanski. The semigroup approach applied here
differs, however, completely from the one used in [O3].

We begin by using the inducing construction of representations to construct irreducible
unitary representations ofK∞ which by restriction give rise to irreducible tame representations
of K. These representations are of course continuous in the topology inherited from K∞ and
so in the inductive limit topology on K, and by construction they may be extended to K∞.

For this purpose, we introduce some notation. A subtree J ⊆ X with the property that
o ∈ J will be referred to as a rooted subtree of (X,C). We fix a finite rooted subtree J. We
define

K̃∞(J) = {g ∈ K∞ | g(J) = J}

and
K∞(J) = {g ∈ K∞ | g(x) = x for all x ∈ J}

The sets K̃∞(J) and K∞(J) are clearly subgroups of K∞ which are both open and closed.
Furthermore, K∞(J) is a normal subgroup of K̃∞(J), and we observe that the quotient group
K̃∞(J)/K∞(J) is clearly isomorphic as a topological group to the discrete, compact group
Auto(J) consisting of all automorphisms of J fixing o. Hence, we may identify the set of
unitary representations of K̃∞(J) which are trivial on K∞(J) with the set of all unitary
representations of Auto(J). By using this fact, we may regard every irreducible unitary
representation of Auto(J) as a unitary representation of the open subgroup K̃∞(J) of K∞,
and so we may for every such representation make use of the inducing construction to produce
a unitary representation of K∞. In what follows, we will induce all irreducible representations
of the groups Auto(J) with J a finite rooted subtree of (X,C) and consider the properties of
these representations.

Let σ be a unitary representation of K̃∞(J) which is trivial on K∞(J). Denote by Hσ the
representation space of σ. Since K̃∞(J) is open and closed in K∞, it follows by definition of
the topology that K∞/K̃∞(J) is a discrete topological space. Hence, the counting measure is a
K∞-invariant Radon measure on K∞/K̃∞(J), and so we may use the inducing construction of
[Fo, Section 6.1] to construct the induced representation πJ,σ. Choose a set of representatives
{gα}α∈A for the left cosets in K∞/K̃∞(J). The corresponding representation space HπJ,σ

is
the set of functions f : K∞ → Hσ with the properties that

f(gh) = σ(h−1)(f(g)) (6.1)

for all h ∈ K̃∞(J) and all g ∈ K∞ and∑
α∈A

‖f(gα)‖2
σ <∞

(note that this condition by (6.1) does not depend on the choice of the representatives
{gα}α∈A) and the inner product 〈·, ·〉πJ,σ

on HπJ,σ
is given by

〈f1, f2〉πJ,σ
=

∑
α∈A

〈f1(gα), f2(gα)〉σ
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for f1, f2 ∈ HπJ,σ
. The representation πJ,σ is given by the relation

(πJ,σ(g)f)(x) = f(g−1x)

for all f ∈ HπJ,σ
and g, x ∈ K∞.

We may give another realization of the representation πJ,σ. Denote by I = IJ the set of
embeddings of J into X fixing o, i.e. I is the set of maps h : J → X with the properties that
h(o) = o and that x and y are neighbours in J if and only if h(x) and h(y) are neighbours in
X. We observe that Auto(J) acts on I by the map Auto(J) × I → I, (g, h) 7→ h ◦ g−1. This
gives rise to an action (g, h) 7→ g · h of K̃∞(J) on I which is trivial on K∞(J).

Similarly, K∞ acts on I by the map K∞ × I → I, (g, h) 7→ g • h = g ◦ h.
Define HτJ,σ

to be the set of functions f : I → Hσ with the properties that∑
h∈I

‖f(h)‖2
σ <∞ (6.2)

and
f(g · h) = σ(g)f(h) (6.3)

for all g ∈ K̃∞(J) and all h ∈ I. It is evident that HτJ,σ
is a vector space. Furthermore,

it is an obvious consequence of (6.2) that
∑

h∈I 〈f1(h), f2(h)〉σ converges absolutely for all
f1, f2 ∈ HτJ,σ

, and so we may define an inner product on HτJ,σ
by defining

〈f1, f2〉τJ,σ
=

∑
h∈I

〈f1(h), f2(h)〉σ

for f1, f2 ∈ HτJ,o
. Standard arguments show that this turns HτJ,σ

into a Hilbert space.
For g ∈ K∞, f ∈ HτJ,σ

and h ∈ I, we define

(τJ,σ(g)f)(h) = f(g−1 • h)

It is easy to check that this defines a unitary representation τJ,σ of K∞ on HτJ,σ
.

We now define a unitary operator U between HπJ,σ
and HτJ,σ

intertwining πJ,σ and τJ,σ.
For f in HπJ,σ

and h ∈ I, we choose g ∈ K∞ such that g(x) = h(x) for all x ∈ J and define

(Uf)(h) =
1

|Auto(J)|
1
2

f(g)

By (6.1) and the fact that σ is trivial on K∞(J), this definition does not depend on the choice
of g. In this way, we have defined a map Uf : I → Hσ. Keeping the notation from above, we
get for g0 ∈ K̃∞(J) that

(Uf)(g0 · h) = (Uf)(h ◦ g−1
0 ) =

1

|Auto(J)|
1
2

f(gg−1
0 ) = σ(g0)

1

|Auto(J)|
1
2

f(g) = σ(g0)((Uf)(h))

Furthermore, we observe that∑
h∈I

‖(Uf)(h)‖2
σ =

1
|Auto(J)|

|Auto(J)|
∑
α∈A

f(gα) =
∑
α∈A

f(gα) <∞

Hence, U is an isometry from HπJ,σ
to HτJ,σ

which is clearly linear. Furthermore, for f0 ∈
HτJ,σ

, we may define

f(g) = |Auto(J)|
1
2 f0(g|J)
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for g ∈ K∞. As above, it is easy to see that f0 ∈ HπJ,σ
and that Uf = f0. This proves that

U is unitary. Finally, with the notation from above we have for g0 ∈ K∞ that

(τJ,σ(g0)Uf)(h) =
1

|Auto(J)|
1
2

f(g−1
0 g) = (UπJ,σ(g0)f)(h)

and so U establishes an equivalence between πJ,σ and τJ,σ.
This proves that τJ,σ is another realization of the induced representation of σ to K∞.

In the following, we will abuse notation and denote both representations by πJ,π and both
representation spaces by HπJ,σ

. It will be clear from the context which of the realizations is
used.

It turns out that the key to studying irreducible unitary representations of K∞ and so
irreducible tame representations of K consists of the subspaces of invariant vectors under
certain subgroups. For a finite rooted subtree J′ ⊆ X, we consider the open and closed
subgroup

K∞(J′) =
{
g ∈ K∞

∣∣ g(x) = x for all x ∈ J′
}

and define
HπJ,σ

(J′) =
{
h ∈ HπJ,σ

∣∣ πJ,σ(g)h = h for all g ∈ K∞(J′)
}

which is a closed subspace of HπJ,σ
. Furthermore, we define I(J′) ⊆ I to consist of all h ∈ I

with the property that h(J) ⊆ J′, and we define H′πJ,σ
(J′) to be the set of f ∈ HπJ,σ

with the
property that f(h) = 0 for all h /∈ I(J′). This is clearly also a closed subspace of HπJ,σ

. It
turns out that the spaces HπJ,σ

(J′) and H′πJ,σ
(J′) coincide and this gives a more convenient

description of the spaces HπJ,σ
(J′):

Lemma 6.1.1 Let J′ ⊆ X be a finite rooted subtree of (X,C). Then

1. HπJ,σ
(J′) = H′πJ,σ

(J′)

2. the projection onto the subspace HπJ,σ
(J′) is the map f 7→ f · 1I(J′)

Proof. Let g ∈ K∞(J′). Since g−1 • h = h for h ∈ I(J′) and g−1 • h /∈ I(J′) for h /∈ I(J′), it
follows that πJ,σ(g)f = f for f ∈ H′πJ,σ

(J′). Hence, we see that H′πJ,σ
(J′) ⊆ HπJ,σ

(J′).
Now assume that f ∈ HπJ,σ

(J′), and let h /∈ I(J′). We see that f(g−1 • h) = f(h) for all
g ∈ K(J′). Since the degree of X is infinite and since h /∈ I(J′), the orbit

{
g−1 • h

∣∣ g ∈ K(J′)
}

is infinite. The condition (6.2) now implies that f(h) = 0 and so f ∈ H′πJ,σ
(J′) which

establishes the inclusion HπJ,σ
(J′) ⊆ H′πJ,σ

(J′). This proves 1.
To prove 2., let f ∈ HπJ,σ

and observe that f = f · 1I(J′) + f · 1I(J′)c . We clearly
have that f · 1I(J′), f · 1I(J′)c ∈ HπJ,σ

, and 1. even shows that f · 1I(J′) ∈ HπJ,σ
(J′) and

f · 1I(J′)c ∈ HπJ,σ
(J′)⊥. This proves 2. �

Remark 6.1.2 1. in Lemma 6.1.1 above makes it possible to immediately determine which
of the spaces HπJ,σ

(J′) are the zero space and which are not. If J′ does not contain a rooted
subtree which is isomorphic to J as a rooted tree, the set I(J′) is clearly empty and so
HπJ,σ

(J′) = {0}. Conversely, if such a subtree of J′ exists, I(J′) is non-empty. Hence, we may
choose h0 ∈ I(J′). If we furthermore choose x ∈ Hσ \ {0} and (well)-define f(g · h0) = σ(g)x
for g ∈ K̃∞(J) and f(h) = 0 if h ∈ I does not belong to the K̃∞(J)-orbit of h0 (which is
finite), we clearly have that h ∈ HπJ,σ

(J′). Hence, we see that HπJ,σ
(J′) 6= {0}.

Thus, Lemma 6.1.1 implies that HπJ,σ
(J′) 6= {0} if and only if J′ contains a rooted subtree

which is isomorphic to J as a rooted tree.
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Putting J′ = J in Lemma 6.1.1 gives a useful characterization of the space HπJ,σ
(J) of

K∞(J)-invariant vectors. This enables us to prove certain useful properties of the represen-
tation πJ,σ. These are collected in the following Lemma 6.1.3.

Lemma 6.1.3 The representation πJ,σ has the following properties:

1. The closed subspace HπJ,σ
(J) is invariant under K̃∞(J) and the corresponding sub-

representation of K̃∞(J) is equivalent to σ and so irreducible.

2. The closed subspace HπJ,σ
(J) is cyclic.

Proof. Since g−1 • h /∈ I(J) for g ∈ K̃∞(J) and h /∈ I(J), it follows by 1. in Lemma 6.1.1
that HπJ,σ

(J) is invariant under K̃∞(J).
Now denote by h0 ∈ I(J) the natural embedding of J into X and construct U : HπJ,σ

(J) →
Hσ by defining Uf = |Auto(J)|

1
2 f(h0) for f ∈ HπJ,σ

(J). For h ∈ I(J), we may write h = g ·h0

for some g ∈ K̃∞(J). Combining this with the fact that g1 · h0 = g2 · h0 if and only if
g1, g2 ∈ K̃∞(J) belong to the same coset in K̃∞(J)/K∞(J), we see that U is a linear isometry
which by the construction of Remark 6.1.2 is surjective. Hence, U is a unitary operator which
by the relation (6.3) intertwines πJ,σ and σ. This establishes the equivalence in 1.

To prove 2., let h ∈ HπJ,σ
. Denote by P the set of rooted subtrees J′ of X which are

isomorphic to J as rooted subtrees. For each J′ ∈ P, we choose gJ′ ∈ K∞ such that gJ′(J) = J′.
It follows by 2. in Lemma 6.1.1 that h · 1I(J′) ∈ HπJ,σ

for all J′ ∈ P, and so we may define
hJ′ = πJ,σ(g−1

J′ )(h · 1I(J′)) ∈ HπJ,σ
for all J′ ∈ P. By 1. in Lemma 6.1.1, it is immediate that

hJ′ ∈ HπJ,σ
(J) for all J′ ∈ P. It is now evident by (6.2) that the net ∑

J′∈F
πJ,σ(gJ′)hJ′

∣∣∣∣∣∣ F ⊆ P is finite


converges to h in HπJ,σ

. This proves 2. �

Using Lemma 6.1.3, we are now able to prove that the representation πJ,σ is irreducible.

Proposition 6.1.4 The unitary representation πJ,σ is irreducible.

Proof. Let V be a closed invariant subspace of HπJ,σ. Since V is invariant, it follows by
[Fo, Proposition 3.4] that the orthogonal projection P onto V commutes with πJ,σ(g) for all
g ∈ K∞. For h ∈ HπJ,σ

(J) and g ∈ K∞(J), this implies that

πJ,σ(g)Ph = PπJ,σ(g)h = Ph

This shows that Ph ∈ HπJ,σ
(J). Since V ⊥ is also a closed, invariant subspace, we see that

HπJ,σ
(J) = (HπJ,σ

(J) ∩ V )⊕ (HπJ,σ
(J) ∩ V ⊥)

By 1. in Lemma 6.1.3, HπJ,σ
(J) is invariant under the restriction of πJ,σ to K̃∞(J), and the

corresponding subrepresentation is irreducible. SinceHπJ,σ
(J)∩V andHπJ,σ

(J)∩V ⊥ are closed
invariant subspaces for this representation, we have one of the two identities HπJ,σ

(J) ∩ V =
HπJ,σ

(J) and HπJ,σ
(J) ∩ V ⊥ = HπJ,σ

(J). Hence, HπJ,σ
(J) ⊆ V or HπJ,σ

(J) ⊆ V ⊥. However,
HπJ,σ

(J) is cyclic for πJ,σ by 2. of Lemma 6.1.3, and since V and V ⊥ are invariant and closed,
this implies that V = HπJ,σ

or V ⊥ = HπJ,σ
. This proves irreducibility of πJ,σ. �
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By Proposition 6.1.4, the inducing construction described above provides us with a family
of irreducible representations of K∞. It turns out that it is easy to point out when these are
equivalent.

Proposition 6.1.5 Two representations πJ1,σ1 and πJ2,σ2 are unitarily equivalent if and only
if J1 and J2 are isomorphic as rooted trees and σ1 and σ2 are unitarily equivalent (under
identification of the isomorphic groups K̃(J1) and K̃(J2)).

Proof. Assume that πJ1,σ1 and πJ2,σ2 are unitarily equivalent. Since the spaces HπJ1,σ1
(J1)

and HπJ2,σ2
(J2) are both non-zero by Remark 6.1.2, it follows by the same remark that J1

contains a finite rooted subtree which is isomorphic to J2 as a rooted tree and that J2 contains
a finite rooted subtree which is isomorphic to J1 as a rooted tree. This implies that J1 and
J2 are isomorphic as rooted trees.

Using this, we may now choose g ∈ K∞ such that g(J1) = J2. It is obvious that the map
h 7→ ghg−1 defines an isomorphism (as topological groups) from K̃(J1) onto K̃(J2). By 1.
in Lemma 6.1.3, the subrepresentation of the restriction of πJ1,σ1 to K̃(J1) corresponding to
the subspace HπJ1,σ1

(J1) is equivalent to σ1. By unitary equivalence, the subrepresentation
of the restriction of πJ1,σ1 to K̃(J2) corresponding to the subspace HπJ1,σ1

(J2) is equivalent
to σ2. However, it is obvious that πJ1,σ1(g)(HπJ1,σ1

(J1)) = HπJ1,σ1
(J2) and so the restriction

of πJ1,σ1(g) is a unitary operator from HπJ1,σ1
(J1) onto HπJ1,σ1

(J2) which satisfies that

πJ1,σ1(ghg
−1)πJ1,σ1(g) = πJ1,σ1(g)πJ1,σ1(h)

for all h ∈ K̃(J1). This proves that σ1 and σ2 are equivalent under the above identification of
the isomorphic groups K̃(J1) and K̃(J2).

Conversely, assume that J1 and J2 are isomorphic as rooted subtrees and assume that σ1

and σ2 are equivalent under the identification of K̃∞(J1) with K̃(J2). Let F : J1 → J2 be an
isomorphism from J1 onto J2 as rooted trees, and extend it to an automorphism g ∈ K∞. Let
V be a unitary equivalence between σ1 and σ2 under the identification h 7→ g−1hg of K̃(J2)
with K̃(J1). We leave it to the reader to check that the map U : HπJ1,σ1

→ HπJ2,σ2
defined

by
(Uf)(h) = V (f(h ◦ F ))

for all f ∈ HπJ1,σ1
and h ∈ IJ2 is a unitary equivalence between πJ1,σ1 and πJ2,σ2 . �

The objective of the remaining sections is to prove that we hereby have constructed all
irreducible unitary representations of K∞ and hence by restriction all irreducible tame repre-
sentations of K. This is the content of Theorem 6.5.1.

6.2 Construction of semigroups

We now construct a family of semigroups related to the group K∞ which will be the key
tool in our characterization of all irreducible representations of K∞. Our semigroups may be
divided into two groups: one consisting of a family of finite semigroups {Γ(J)} indexed by the
set of all finite rooted subtrees J ⊆ X and another consisting of a single infinite semigroup
Γ(X). The important feature of the semigroups is that we to every unitary representation π
of K∞ may associate representations of the semigroups Γ(J) and Γ(X), cf. Theorem 6.3.3 and
Theorem 6.3.7. The representations of Γ(J) may be used to give a complete characterization
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of π while the representation of Γ(X) is just an extension of π since K∞ is a subsemigroup of
Γ(X).

For the construction of our semigroups, we need the following definition:

Definition 6.2.1 Let Y be either X or a finite rooted subtree of X. A partial automorphism
γ of Y is an isomorphism between two rooted subtrees of Y with the property that γ(o) = o.
We denote by Γ(Y) the set of all partial automorphisms of Y.

Let Y be as in Definition 6.2.1. We will equip Γ(Y) with a multiplication which turns it into
a semigroup with a unity and a zero-element. To do this, let γ1 : G1 → I1 and γ2 : G2 → I2

be two partial automorphisms of Y. We observe that γ−1
1 (I1 ∩G2) and γ2(I1 ∩G2) are finite

rooted subtrees of Y. We define γ = γ2γ1 to be the isomorphism from γ−1
1 (I1 ∩ G2) onto

γ2(I1∩G2) given by the relation γ(x) = γ2(γ1(x)) for all x ∈ γ−1
1 (I1∩G2). Clearly, γ ∈ Γ(Y).

The multiplication in Γ(Y) is evidently associative and so turns Γ(Y) into a semigroup.
The identity map on Y is a unity 1, and the identity map on the subtree {o} is a zero element
0 in Γ(Y).

Finally, we define an involution on Γ(Y). For γ ∈ Γ(Y), we denote by γ∗ the inverse map
of γ. It is immediate that the map γ 7→ γ∗ is an involution on Γ(Y), i.e. satisfies the relations
(γ1γ2)∗ = γ∗2γ

∗
1 and (γ∗1)∗ = γ1 for γ1, γ2 ∈ Γ(Y).

If Y1 ⊆ Y2, we define a natural map pY2,Y1 : Γ(Y2) → Γ(Y1) in the following way: for a
partial automorphism γ : G → I of Y2 we observe that G′ = Y1∩γ−1(Y1∩I) and I′ = γ(G′)
are finite rooted subtrees of Y1, and so we may define pY2,Y1(γ) ∈ Γ(Y1) to be the restriction
of γ to G′. We observe that these maps satisfy the relation that pY3,Y1 = pY2,Y1 ◦ pY3,Y2

if Y1 ⊆ Y2 ⊆ Y3 which implies that under these circumstances it is true that pY3,Y1(γ1) =
pY3,Y1(γ2) if pY3,Y2(γ1) = pY3,Y2(γ2). For every finite rooted subtree J of X, we will denote
the map pX,J by pJ.

The maps pY2,Y1 are clearly not semigroup homomorphisms. However, they have the
following basic properties whose immediate proof is left to the reader:

Lemma 6.2.2 Assume that Y1 ⊆ Y2. The map pY2,Y1 preserves the involution, identity and
zero element.

Using the above maps, we will endow Γ(Y) with a topology. This is done by declaring a
subset U ⊆ Γ(Y) to be open if there for every γ0 ∈ U exists a finite rooted subtree J ⊆ Y

such that p−1
Y,J({pY,J(γ0)}) ⊆ U . Since the observations above show that p−1

Y,J({pY,J(γ0)}) ⊆
p−1

Y,G({pY,G(γ0)}) if G ⊆ J, this defines a topology on Γ(Y).
The semigroup Γ(Y) is clearly finite if Y is a finite rooted subtree, and since pY,Y is the

identity map, the topology on Γ(Y) is just the discrete topology in this case. However, the
semigroup Γ(X) is infinite, and the topology is obviously not discrete in this case.

We observe that it is an immediate consequence of the definition of the topology that the
maps pY2,Y1 are all continuous. The topology on Γ(X) is actually the initial topology with
respect to the maps pJ for J a finite rooted subtree of X (having endowed the semigroups Γ(J)
with the discrete topology).

The following lemma whose proof is an immediate consequence of the definition of the
topology shows that there is a suitable connection between the topology and the semigroup
structure on Γ(Y).

Lemma 6.2.3 The involution on Γ(Y) is continuous and the multiplication is separately con-
tinuous.
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Remark 6.2.4 The multiplication is of course jointly continuous if Y is finite, and so Γ(Y)
is a topological semigroup in this case. However, this is clearly not the case for the infinite
semigroup Γ(X).

We now observe that K∞ is related to the semigroup Γ(X) in the way that it may be
regarded as the subgroup of Γ(X) consisting of partial automorphisms whose domain and
range are all of X, i.e. K∞ may be seen as the subgroup

{γ ∈ Γ(X) | γγ∗ = γ∗γ = 1}

Furthermore, it is evident by the definitions that the topology on K∞ is just the topology
inherited from Γ(X).

Surprisingly, the finite semigroups Γ(J) with J finite are also related to the groups K and
K∞. To see this, we define - as we did in the case of the group K∞ - for a finite rooted subtree
J of X the open and closed (in both topologies) subgroup

K(J) = {g ∈ K | g(x) = x for all x ∈ J}

Since K and K∞ by the above observation may be regarded as subsets of Γ(X), the map pJ

sends K and K∞ into Γ(J). It turns out that we under this map obtain an identification
of Γ(J) with the double coset spaces K(J)\K/K(J) and K∞(J)\K∞/K∞(J), respectively.
This is the content of the following Proposition 6.2.5. It shows that we may regard the finite
semigroup Γ(J) as these double coset spaces equipped with a suitable semigroup structure
and a suitable involution.

Proposition 6.2.5 Let J be a finite rooted subtree of X. The restriction of pJ to K (resp.
K∞) is constant on each double coset in K(J)\K/K(J) (resp. K∞(J)\K∞/K∞(J)) and sets
up a bijection between K(J)\K/K(J) (resp. K∞(J)\K∞/K∞(J)) and Γ(J).

A moment of thought makes it easy to see that the double cosets in K(J)\K/K(J) (resp.
K∞(J)\K∞/K∞(J)) consist exactly of automorphisms which have the same image under pJ

and that the restriction of pJ to K (resp. K∞) is surjective. A formal proof is, however, very
tedious to write out and not in any way - considering the geometric simplicity of the question
- illuminating. Hence, we omit it. We leave it to the reader to write out the details. A proof
may be using the facts that K∞ as a set may be identified with

∏
x∈X S(∞) (where we by

S(∞) denote the symmetric group corresponding to the set N), that K may be identified with
a certain subset of this product, and that a similar statement for S(∞) has been proved in
[O4, Lemma 4.13].

Remark 6.2.6 The idea of analysing groups by equipping certain double coset spaces with
semigroup structures has been used extensively in the literature. We have already encountered
two examples in chapters 3 and 5. The analysis of the infinite symmetric group is approached
by a similar idea in [O4] and [O5], and the idea has been applied to a number of classical
matrix groups in [O1]. A matrix group in the field Fq has been studied by a similar approach
in the paper [Du].

A consequence of Proposition 6.2.5 is that the restriction to K of pJ is surjective for
every finite rooted subtree J. Combining this fact with the definition of the topology of Γ(X)
immediately yields the following corollary:

Corollary 6.2.7 K is a dense subset of Γ(X).
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It turns out that the study of representations of the finite semigroups Γ(J) with J a finite
rooted subtree enables us to determine all irreducible unitary representations of K∞. The
principal tool in this approach is the fact that we from every such representation of K∞
may construct representations of Γ(Y) for all possible choices of Y. This construction is the
content of the following section.

6.3 Tame representations of K and corresponding representa-
tions of the semigroups Γ(Y)

As we prove in Theorem 6.3.3, all unitary representations of K∞ may be extended to a
representation of the semigroup Γ(X). Hence, tame representations may also be defined as
representations of K which may be extended to Γ(X). However, we will in Definition 6.3.1
give a much more convenient definition of the concept of a tame reprsentation of K which in
Theorem 6.3.3 will turn out to be equivalent to our previous concept.

For the definition, we need some notation. We consider the finite subtrees

Sn = {x ∈ Xn | d(o, x) ≤ n}

which have the property that
⋃∞
n=0 Sn = X. Evidently, for every finite rooted subtree J of X

there exists n such that J ⊆ Sn. Hence, the subgroups K(Sn) constitute a local base for the
topology on K inherited from K∞ at the identity e.

For a unitary representation π of K with representation space Hπ, we denote by Hπ(J)
the closed subspace of all vectors invariant under K(J), and the corresponding orthogonal
projection will be denoted by PJ. For simplicity, the subspace Hπ(Sn) will be denoted by Hn

π

and the correspondong orthogonal projections will be referred to as Pn. We observe that this
defines an increasing family of closed subspaces. Finally, we define

H∞π =
∞⋃
n=0

Hn
π =

⋃
J

Hπ(J),

where the last union is over all finite rooted subtrees J ⊆ X.
Using this notation, we will now define the concept of a tame representation:

Definition 6.3.1 A unitary representation π of K is said to be tame if the subspace H∞π is
dense in Hπ.

Remark 6.3.2 This approach to the concept of a tame representation is not new. It has
been applied widely, most notably in the analysis of the infinite symmetric group, cf. [O4]
and [O5]. It also appears in the paper [Du] for a matrix group in the field Fq.

Remarkably, tame representations ofK are exactly the ones arising by restriction of unitary
representations of K∞ - in line with our earlier claim. Even more surprisingly, they are the
ones arising by restriction of representations of the semigroup Γ(X). Hence, the task of
characterizing tame representations of K is equivalent to the one of characterizing unitary
representations of K∞ or semigroup representations of Γ(X). This is the content of the
following theorem.

Theorem 6.3.3 Let π be a unitary representation of K. The following three conditions are
equivalent:

1. π is tame.
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2. π may be extended to a unitary representation of K∞.

3. π may be extended to a representation of the semigroup Γ(X).

Remark 6.3.4 It follows by Corollary 6.2.7 that K is dense in Γ(X). Hence, the continuity
requirement of a representation immediately implies that the extension τ to Γ(X) of a tame
representation π in Theorem 6.3.3 is unique. Of course this also means that the same is true
for its extension to K∞. Furthermore, the fact that K∞ = {γ ∈ Γ(X) | γγ∗ = γ∗γ = 1} means
that the restriction to K of a representation of Γ(X) is always unitary. This implies that
there are bijective correspondances between the sets of tame representations of K, unitary
representations of K∞ and representations of the semigroups Γ(X). As a consequence, the
study of these three concepts is essentially the same.

Furthermore, the extension of an irreducible tame representation of K to Γ(X) is clearly
irreducible. Conversely, if τ is an irreducible representation of Γ(X) with representation space
Hτ , its restriction to K is also irreducible. Indeed, let M⊆ Hτ be a closed subspace invariant
under K and denote by P the orthogonal projection onto M. For γ ∈ Γ(X), we may by
Corollary 6.2.7 choose a net {γλ} ⊆ K which converges to γ. For v ∈M and w ∈ Hτ , we see
that

〈τ(γ)v, w〉 = lim
λ
〈τ(γλ)v, w〉 = lim

λ
〈Pτ(γλ)v, w〉 = lim

λ
〈τ(γλ)v, Pw〉

= 〈τ(γ)v, Pw〉 = 〈Pτ(γ)v, w〉

This proves that Pτ(γ)v = τ(γ)v, and so τ(γ)v ∈M. Hence, τ is irreducible.
This shows that the sets of irreducible tame representations of K, of irreducible represen-

tations of K∞ and of irreducible representations of Γ(X) are in bijective correspondance.

Proof. First assume 3. Since

K∞ = {γ ∈ Γ(X) | γγ∗ = γ∗γ = 1} ,

the restriction of a representation of Γ(X) to K∞ is a unitary representation. Furthermore,
the topology on K∞ is just the topology inherited by Γ(X) which proves 2.

Now assume 2., and let h ∈ Hπ. We will abuse notation and also denote the extended
representation by π. Let ε > 0. By continuity of π, we may find n such that

‖h− π(g)h‖π <
ε

2

for all g ∈ K∞(Sn) and so for all g ∈ K(Sn). Since π is unitary and K(Sn) is a subgroup of
K∞, it follows by the Alaoglu-Birkhoff mean ergodic theorem [BR, Proposition 4.3.4] that Pn is
in the strong closure of the convex hull of π(K(Sn)). Hence, there exists anN , automorphisms
g1, . . . , gN ∈ K(Sn) and scalars c1, . . . , cN ∈ [0, 1] with

∑N
k=1 ck = 1 such that∥∥∥∥∥

N∑
k=1

ckπ(gk)h− Pnh

∥∥∥∥∥
π

<
ε

2

This implies that

‖h− Pnh‖π ≤

∥∥∥∥∥h−
N∑
k=1

ckπ(gk)h

∥∥∥∥∥
π

+

∥∥∥∥∥
N∑
k=1

ckπ(gk)h− Pnh

∥∥∥∥∥
π

<

N∑
k=1

ck ‖h− π(gk)h‖π +
ε

2
<
ε

2
+
ε

2
= ε
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This proves 1.
Now assume 1., i.e. that π is tame. We will complete the proof by proving 3., and so we

will extend π to a representation τ of the semigroup Γ(X). To do this, consider a finite rooted
subtree J ⊆ X with the property that Hπ(J) 6= 0. Let γ ∈ Γ(J). By Proposition 6.2.5, we
may choose g ∈ K such that pJ(g) = γ. If g̃ ∈ K is another automorphism satisfying that
pJ(g̃) = γ, it follows by Proposition 6.2.5 that we may find k1, k2 ∈ K(J) such that g̃ = k1gk2.
For h ∈ Hπ(J), this implies that

PJπ(g̃)h = PJπ(k1)π(g)π(k2)h = π(k1)PJπ(g)h = PJπ(g)h

since PJ and π(k1) commute by [Fo, Proposition 3.4]. Hence, we may (well)-define a map τJ
from Γ(J) into B(Hπ(J)), the algebra of bounded operators on Hπ(J), by

τJ(γ) = PJπ(g)|Hπ(J) (6.4)

Clearly, τJ(γ) is a contraction, i.e. ‖τJ(γ)‖ ≤ 1. Furthermore, we observe that

τJ(γ∗) = PJπ(g−1)|Hπ(J) = (PJπ(g)∗PJ)|Hπ(J)

= (PJπ(g)PJ)∗|Hπ(J) = (PJπ(g)|Hπ(J))
∗ = τJ(γ)∗ (6.5)

Finally, we see that for a finite rooted subtree J′ ⊆ X and J′ ⊆ J

pJ,J′(γ) = pJ,J′(pJ(g)) = pJ′(g)

and so
τJ′(pJ,J′(γ)) = PJ′π(g)|Hπ(J′) = PJ′PJπ(g)|Hπ(J′) = PJ′τJ(γ)|Hπ(J′) (6.6)

since Hπ(J′) ⊆ Hπ(J).
H∞π is by assumption dense in Hπ, and since {Hm

π }
∞
m=n form an increasing sequence, it

follows by basic Hilbert space theory that we may choose an orthonormal basis {ej}j∈J for
Hπ with the property that there exists an increasing sequence {Jm}∞m=n of subsets of J such
that J =

⋃∞
m=n Jm and {ej}j∈Jm

is an orthonormal basis for Hm
π for each m ≥ n.

Now let γ ∈ Γ(X), and let h ∈ H∞π . Choose n minimal such that Hn
π 6= {0}. For k ≥ n

such that h ∈ Hk
π, we write

τSk
(pSk

(γ))h =
∑
j∈Jk

akj ej

By the relation (6.6), we observe for m ≥ k that∑
j∈Jk

akj ej = τSk
(pSk

(γ))h = PkτSm(γ)h = Pk(
∑
j∈Jm

amj ej) =
∑
j∈Jk

amj ej

which implies that akj = amj for j ∈ Jk. By this independence fact, we may for j ∈ J choose
k ≥ n such that j ∈ Jk and such that h ∈ Hk

π and define aj = akj . By the contraction property
of τSk

(pSk
(γ)), it is true that

∑
j∈Jk

|aj |2 ≤ ‖h‖2 for all k ≥ n with h ∈ Hk
π, and so we deduce

that
∑

j∈J |aj |
2 ≤ ‖h‖2. Hence, we may define a (clearly linear) operator τ(γ) on H∞π by

τ(γ)h =
∑
j∈J

ajej

which by the above observation is a contraction. By denseness ofH∞π , we may uniquely extend
τ(γ) to a linear contraction on Hπ which by construction has the property that

Pkτ(γ)|Hk
π

= τSk
(pSk

(γ)) (6.7)
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for all k ≥ n. More generally, for a finite rooted subtree J ⊆ X with Hπ(J) 6= {0}, we may
choose k ≥ n such that J ⊆ Sk. Combining (6.6) and (6.7), this makes us realize that

PJτ(γ)|Hπ(J) = PJPkτ(γ)|Hπ(J) = PJτSk
(pSk

(γ))|Hπ(J)

= τJ(pSk,J(pSk
(γ))) = τJ(pJ(γ)) (6.8)

In this way, we have defined a map τ from Γ(X) into Γ(Hπ), the semigroup of linear
contractions on Hπ. For g ∈ K, it follows by (6.7) and (6.4) that

Pkτ(g)|Hk
π

= τSk
(pSk

(g)) = Pkπ(g)|Hk
π

for all k ≥ n. By denseness of H∞π , the projections Pk converge strongly to the identity, and
so τ(g) and π(g) agree on H∞π . By contintuity, this implies that τ(g) = π(g), and so τ is an
extension of π. As a consequence, τ(1) = I.

By (6.7), Lemma 6.2.2 and (6.5), we see that for γ ∈ Γ(X)

Pkτ(γ∗)|Hk
π

= τSk
(pSk

(γ∗)) = τSk
(pSk

(γ))∗ = (Pkτ(γ)|Hk
π
)∗

= ((Pkτ(γ)Pk)∗)|Hk
π

= (Pkτ(γ)∗)|Hk
π

for all k ≥ n. By strong convergence of the Pk’s, this implies that τ(γ∗) and τ(γ) agree on
H∞π which by continuity and denseness implies that τ(g∗) = τ(g)∗.

Now let γ ∈ Γ(X) and consider a net {γλ} ⊆ Γ(X) which converges to γ. For h, v ∈ Hk
π, it

follows by (*) that

〈τ(γλ)h, v〉π = 〈τ(γλ)h, Pkv〉π = 〈Pkτ(γλ)h, v〉π = 〈Pkτ(γ)h, v〉π = 〈τ(γ)h, v〉π

for λ such that pSk
(γ) = pSk

(γλ). By definition of the topology on Γ(X), this implies that
the net {〈τ(gλ)h, v〉} converges to 〈τ(g)h, v〉 which by denseness of H∞π implies that {τ(gλ)}
converges weakly to τ(g). Hence, τ is continuous.

Finally, we must show that
τ(γ1γ2) = τ(γ1)τ(γ2) (6.9)

for all γ1, γ2 ∈ Γ(X). To see this, fix γ1 ∈ K. Since τ extends π, (6.9) is true for all γ2 ∈ K.
Since the multiplication in Γ(X) is separately continuous, both sides of (6.9) are continuous
in γ2. Since they agree on K which by Corollary 6.2.7 is dense in γ(X), (6.9) holds for all
γ2 ∈ Γ(X). The proof is completed by fixing γ2 ∈ Γ(X) and repeating the argument for γ1.

This proves that τ is a representation of Γ(X) extending π. �

By extending a tame reprentation of K to K∞, we get the following corollary (which
may actually easily be directly proved by using the denseness of H∞π and the fact that the
subgroups K(Sn) constitute a local base at the identity for the topology on K inherited by
K∞).

Corollary 6.3.5 Let π be a tame representation of K. Then π is continuous in the topology
on K inherited from K∞.

Theorem 6.3.3 proves that every tame representation π of K in a natural way is associated
with a unique representation of the semigroup Γ(X). However, in a similar way it is also closely
related to representations of the semigroups Γ(J) for all finite rooted subtrees J ⊆ X with
Hπ(J) 6= {0}. In fact, the maps τJ constructed in the proof of Theorem 6.3.3 are such
representations. This is the content of Theorem 6.3.7.

For the proof, we need the following Lemma 6.3.6 and some notation. For J as above, we
denote by εJ ∈ Γ(X) the partial automorphism of X which is just the identity on J.

82



Tame representations of K and corresponding representations of the semigroups
Γ(Y)

Lemma 6.3.6 Let π be a tame representation of K, and denote by τ its extension to Γ(X)
from Theorem 6.3.3. For a finite rooted subtree J ⊆ X with Hπ(J) 6= {0}, it is true that

τ(εJ) = PJ

Proof. Let J be as in the lemma. Clearly, εJ is idempotent and self-adjoint, i.e. ε2J = εJ =
εJ∗. Hence, the fact that τ is a representation implies that τ(εJ) is an orthogonal projection.
Define U(J) = τ(εJ)(Hπ). We will prove that U(J) = Hπ(J).

Let g ∈ K(J). Then gεJ = εJ and so τ(g)τ(εJ) = τ(εJ). This implies that U(J) ⊆ Hπ(J)
and so PJτ(εJ) = τ(εJ).

By the relation (6.8), we see that

τ(εJ)|Hπ(J) = PJτ(εJ)|Hπ(J) = τJ(pJ(εJ)) = τJ(pJ(1)) = PJτ(1)|Hπ(J) = I|π(J)

This proves that Hπ(J) ⊆ U(J) which finishes the proof. �

Theorem 6.3.7 Let π be a tame representation of K. For each finite rooted subtree J ⊆ X

with Hπ(J) 6= {0}, the map τJ constructed in the proof of Theorem 6.3.3 is a representation
of Γ(J) on Hπ(J).

Proof. Let J be as in the theorem. By (6.5), τJ commutes with the involution, and it is an
immediate consequence of the definition of τJ that τJ(1) is the identity onHπ(J). Furthermore,
the fact that Γ(J) is discrete makes continuity considerations superfluous. Hence, we are left
with the multiplicativity of τJ.

To prove this, we observe that every partial automorphism of J is also a partial auto-
morphism of X. This gives rise to a natural imbedding γ 7→ γ̃ of Γ(J) into Γ(X) which is
clearly multiplicative. Furthermore, we construct a natural imbedding A 7→ Ã of B(Hπ(J))
into B(Hπ) by defining Ã = APJ. For γ ∈ Γ(J), we now observe by (6.8) and Lemma 6.3.6
that

˜τJ(γ) = τJ(γ)PJ = PJτ(γ̃)PJ = τ(εJ)τ(γ̃)τ(εJ) = τ(γ̃)

For γ1, γ2 ∈ Γ(J), this yields the identity

τJ(γ1)τJ(γ2)PJ = ˜τJ(γ1) ˜τJ(γ2) = τ(γ̃1)τ(γ̃2) = τ( ˜γ1γ2) = τJ(γ1γ2)PJ

which shows that τJ is multiplicative. �

We finish this section by a technical lemma which will be needed in the following sections.
Let J be as in Theorem 6.3.7 and consider a finite rooted subtree J′ ⊆ J. We denote by
εJ,J′ ∈ Γ(J) the partial automorphism of J which is just the identity on J′. Along the lines of
Lemma 6.3.6, we observe that the representation τJ has the following important property:

Lemma 6.3.8 Let π be a tame representation of K, and let J and J′ be as above. Denote by τJ
the corresponding representation of Γ(J) from Theorem 6.3.3. Then τJ(εJ,J′) is the orthogonal
projection onto the closed subspace Hπ(J′) of Hπ(J).

Proof. Let τ be the extension of π to a representation of Γ(X) from Theorem 6.3.3. Since
it is clearly true that εJ,J′ = pJ(εJ′), we use (6.8) and Lemma 6.3.6 to see that

τJ(εJ,J′) = (PJτ(εJ′))|Hπ(J) = (PJPJ′)|Hπ(J) = PJ′|Hπ(J)

This finishes the proof. �
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With the connection between tame representations of K and representations of the finite
semigroups Γ(J), it is of natural interest to study general representations of the latter. This
will be the focus of the following section.

6.4 Representations of the finite semigroups Γ(J)

Using Theorems 6.3.3 and 6.3.7, we see that we to every tame representation π of K may
associate representations of Γ(X) and Γ(J) for finite rooted subtrees J ⊆ X with Hπ(J) 6= {0}.
These representations may be used to give a complete classification of all irreducible tame
representations of K. To do this, we need to develop some theory on representations of the
finite semigroups Γ(J).

Fix a finite rooted subtree J ⊆ X for the remainder of this section. For a finite rooted
subtree J′ ⊆ J, we denote by δJ′ ∈ Γ(J) the partial automorphism of J which is just the
identity on J′. With this notation, we observe that δJ = 1, that δ{o} = 0 and that - with the
notation of section 6.3 - δJ′ = εJ,J′ .

Clearly, δ∗J′ = δJ′ = δ2J′ , i.e. it is self-adjoint and idempotent. Conversely, if δ ∈ Γ(J)
is self-adjoint and idempotent, the first condition tells that the domain and range of δ must
coincide and the second reveals that δ must be the identity on its domain. Hence, δ = δJ′

where we by J′ denote the domain of δ.
Using this observation, we may introduce a partial ordering ≤ on the set of self-adjoint

idempotents in Γ(J) by declaring that δJ1 ≤ δJ2 if and only if J1 ⊆ J2.
Fix for the remainder of this section a representation τ of Γ(J) with representation space

Hτ . For every finite rooted subtree J′ ⊆ J, the fact that δJ′ is self-adjoint and idempotent
implies that the same is true for τ(δJ′). Hence, it is a projection. We denote by Hτ (J′) its
range.

The following important observation is immediate.

Lemma 6.4.1 Let γ ∈ Γ(J), and let J′ be its domain. If Hτ (J′) = {0}, it is true that τ(γ) = 0.

Proof. Since Hτ (J′) = {0}, we have that τ(δJ′) = 0. Since γ∗γ = δJ′ , this implies that
τ(γ)∗τ(γ) = 0, and for h ∈ Hτ a consequence of this is that

‖τ(γ)h‖2
τ = 〈τ(γ)h, τ(γ)h〉τ = 〈τ(γ)∗τ(γ)h, h〉τ = 0

This shows that τ(γ) = 0. �

Now assume that τ is irreducible. Studying the representation τ , it turns out that it is of
special interest to consider finite rooted subtrees Y ⊆ J with the property that Hτ (Y) 6= {0}
while Hτ (Y′) = {0} for all finite rooted subtrees Y′ ( Y. We will refer to such a subtree as a
basic subtree for τ . Since Hτ (J) = Hτ , the existence of such a subtree is immediate. Observe
that for a basic subtree Y we may in a natural way regard Auto(Y) as a subsemigroup of Γ(J).
One reason for the importance of basic subtrees is the following lemma which establishes a
connection between τ and an irreducible unitary representation of Auto(Y) or - equivalently
- an irreducible unitary representation of K̃∞(Y) which is trivial on K∞(Y).

Lemma 6.4.2 Assume that τ is an irreducible representation of Γ(J). Let Y ⊆ J be a basic
subtree for τ . Then Hτ (Y) is invariant under Auto(Y), and the corresponding representation
of Auto(Y) is irreducible and unitary.
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Proof. Since γ = δYγ for all γ ∈ Auto(Y), it follows that τ(γ) = τ(δY)τ(γ) and so Hτ (Y)
is invariant under Auto(Y).

Since Γ(J) is finite, it follows by [O4, Lemma 1.10] and the irreducibility of τ that Hτ

is finite dimensional. Hence, it follows by 1.5 in [O4] that the algebra B(Hτ ) of bounded
operators on Hτ is spanned by the operators τ(γ) with γ ∈ Γ(J).

Now let A be a bounded operator on Hτ (Y). We may regard Aτ(δY) as a bounded
operator on Hτ . Hence, there exists γ1, . . . , γn ∈ Γ(J) and a1, . . . , an ∈ C such that

Aτ(δY) =
n∑
j=1

ajτ(γj)

Multiplying by τ(δY) on both sides and using that A takes values in Hτ (Y), this implies that

Aτ(δY) =
n∑
j=1

ajτ(δYγjδY)

However, it follows by Lemma 6.4.1 and the fact that Y is basic for τ that τ(δYγjδY) 6= 0
only if the domain of δYγjδY is all of Y, i.e. only if δYγjδY ∈ Auto(Y). Hence, A may be
written as a linear combination of operators τ(γ)|Hτ (Y) with γ ∈ Auto(Y). It now follows by
1.5 in [O4] that Hτ (Y) is irreducible under Auto(Y).

Finally, it is evident that τ(γ)τ(γ)∗ = τ(δY) = τ(γ)∗τ(γ) for γ ∈ Auto(Y), and since
τ(δY) is the identity on Hτ (Y), this implies that the required representation is unitary. �

The usefulness of this observation is underlined by Lemma 6.4.4 which states that an
irreducible representation of Γ(J) is uniquely determined by a basic subtree Y and the corre-
sponding irreducible unitary representation of Auto(Y).

For its proof, we need the following general lemma:

Lemma 6.4.3 Let S be a topological semigroup, and let τ and τ ′ be representations of S with
representation spaces Hτ and Hτ ′. Suppose that there exist cyclic vectors h ∈ Hτ and h′ ∈ Hτ ′

such that
〈τ(s)h, h〉τ =

〈
τ ′(s)h′, h′

〉
τ ′

(6.10)

for all s ∈ S. Then τ and τ ′ are equivalent.

Proof. For s1, s2 ∈ S, the assumption (6.10) implies that

〈τ(s1)h, τ(s2)h〉τ = 〈τ(s∗2s1)h, h〉τ =
〈
τ ′(s∗2s1)h

′, h′
〉
τ ′

=
〈
τ ′(s1)h′, τ ′(s2)h′

〉
τ ′

This clearly shows that we may well-define a linear isometry T from span {τ(s)h | s ∈ S} onto
span {τ ′(s)h′ | s ∈ S} by the condition that Tτ(s)h = τ ′(s)h for all s ∈ S. Since h and h′ are
cyclic for τ and τ ′, this extends to a unitary operator from Hτ onto Hτ ′ which we by abuse
of notation also denote by T .

For s, s′ ∈ S, we have that

Tτ(s)τ(s′)h = Tτ(ss′)h = τ ′(ss′)h′ = τ ′(s)τ ′(s′)h′ = τ ′(s)Tτ(s′)h

Since h is cyclic for τ , this implies that Tτ(s) and τ ′(s)T agree on a dense subspace of Hτ .
By continuity, this shows that Tτ(s) = τ ′(s)T proving the equivalence. �
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Lemma 6.4.4 Let τ and τ ′ be irreducible representations of Γ(J) with representation spaces
Hτ and Hτ ′, respectively. Assume that Y ⊆ J is a basic subtree for τ and τ ′ and that the cor-
responding irreducible unitary representations of Auto(Y) from Lemma 6.4.2 are equivalent.
Then τ and τ ′ are equivalent.

Proof. Let T be a unitary operator from Hτ (Y) onto Hτ ′(Y) establishing the equivalence of
the assumptions. Let h ∈ Hπ(Y) be non-zero. For γ ∈ Γ(J), we observe by Lemma 6.4.1 and
the fact that Y is basic that τ(δYγδY) 6= 0 (resp. τ ′(δYγδY) 6= 0) only if δYγδY ∈ Auto(Y).
Hence, we see that

〈τ(γ)h, h〉τ = 〈τ(γ)τ(δY)h, τ(δY)h〉τ = 〈τ(δYγδY)h, h〉τ = 〈Tτ(δYγδY)h, Th〉τ ′
=

〈
τ ′(δYγδY)Th, Th

〉
τ ′

=
〈
τ ′(γ)Th, Th

〉
τ ′

By irreducibility of τ and τ ′, h and Th are cyclic for τ and τ ′, respectively. Lemma 6.4.3 now
tells that τ and τ ′ are equivalent. �

Now fix a finite rooted subtree Y ⊆ J and an irreducible unitary representation π of
Auto(Y) with representation space Hπ. In light of Lemma 6.4.4, it is of interest to ask
whether there exists an irreducible representation τ of Γ(J) with Y as a basic subtree and
with π as the unitary representation of Auto(Y) arising from Lemma 6.4.2. The answer turns
out to be affirmative as we will see below.

We will construct a representation τ = τY,π of Γ(J) with the required property. To do
this, we denote by IY the set of injective maps h : Y → J with the property that h(o) = o and
that h(x) and h(y) are neighbours in J if and only if x and y are neighbours in Y. Clearly,
IY is finite. We define Hτ to be the set of functions f : IY → Hπ with the property that

f(h ◦ g−1) = π(g)(f(h)) (6.11)

for all g ∈ Auto(Y) and all h ∈ IY. Hτ is clearly a vector space, and we equip it with an
inner product 〈·, ·〉τ by defining

〈f1, f2〉τ =
∑
h∈IY

〈f1(h), f2(h)〉π

Standard arguments show that Hτ is a Hilbert space. If we for γ ∈ Γ(J) by dom(γ) denote
the domain of γ, we make the definition that

(τ(γ)f)(h) =

{
f(γ∗ ◦ h) for h(Y) ⊆ dom(γ∗)
0 otherwise

for all h ∈ IY, f ∈ Hτ and γ ∈ Γ(J). Elementary considerations prove that τ(γ)f ∈ Hτ for
all f ∈ Hτ and for all γ ∈ Γ(J) and that τ(γ) is a linear contraction on Hτ for all γ ∈ Γ(J).
Furthermore, it is immediate that τ(γ1γ2) = τ(γ1)τ(γ2) for all γ1, γ2 ∈ Γ(J) and that γ(1) = I.
Finally, we have for γ ∈ Γ(J) that

〈τ(γ∗)f1, f2〉τ =
∑

h∈IY,h(Y)⊆dom(γ)

〈f1(γ ◦ h), f2(h)〉π

=
∑

h∈IY,h(Y)⊆dom(γ)

〈f1(γ ◦ h), f2(γ∗ ◦ γ ◦ h)〉π

=
∑

h∈IY,h(Y)⊆dom(γ∗)

〈f1(h), f2(γ∗ ◦ h)〉π

= 〈f1, τ(γ)f2〉τ
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for all f1, f2 ∈ Hτ which proves τ(γ∗) = τ(γ)∗. Since Γ(J) is discrete, the map τ is automati-
cally weakly continuous, and so τ is a representation of Γ(J).

For a finite rooted subtree J′ ⊆ J and for f ∈ Hτ , it is evident that τ(δJ′)f = f if and
only if f is concentrated on the set {h ∈ IY | h(Y) ⊆ J′} and so Hτ (J′) consists exactly of the
functions f with this property. If J′ ( Y the only function with this property is the 0-function
and so Hτ (J′) = {0} for such rooted subtrees J′. Furthermore, Hτ (Y) consists exactly of the
functions in Hτ that are concentrated on Auto(Y).

Now fix x ∈ Hπ. We define fx : IY → Hπ by declaring that fx(h) = |Auto(Y)|−
1
2 π(h−1)x

for all h ∈ Auto(Y) and fx(h) = 0 for h /∈ Auto(Y). Evidently, fx ∈ Hτ , and since it is
concentrated on Auto(Y), it follows that fx ∈ Hτ (Y). The fact that fx 6= 0 for x 6= 0 now
implies that Hτ (Y) 6= {0}, and so Y is a basic subtree for τ .

The map T : Hπ → Hτ (Y), x 7→ fx, is clearly a linear isometry. Since f ∈ Hπ(Y) by
the condition (6.11) satisfies that f = f

|Auto(Y)|
1
2 f(eY)

where we by eY denote the identity in

Auto(Y), it follows that T is even a unitary operator. Finally, it follows by defintition of τ
and T that Tπ(g) = τ(g)T for all g ∈ Auto(Y) which proves that the subrepresentation of
the restriction to Auto(Y) of τ corresponding to the subspace Hτ (Y) is equivalent to π.

We denote by P the finite set of rooted subtrees J′ of J which are isomorphic to Y as rooted
subtrees. For J′ ∈ P, we refer to {h ∈ IY | h(Y) = J′} as IY(J′). Clearly, IY =

⋃
J′∈P IY(J′).

For fixed f ∈ Hτ , we observe that f · 1IY(J′) ∈ Hτ for all J′ ∈ P. For J′ ∈ P, we choose an
isomorphism γJ′ ∈ Γ(J) from Y onto J′, and we observe that fJ′ = τ(γ∗J′)(f ·1IY(J′)) ∈ Hτ (Y).
It is now evident that

f =
∑
J′∈P

τ(γJ′)fJ′

which proves that Hτ (Y) is cyclic for τ .
Finally, we let V be a closed, τ -invariant subspace of Hτ , and we denote by P the cor-

responding orthogonal projection. By invariance, P commutes with τ(δY) and so we get for
h ∈ Hτ (Y) that

Ph = Pτ(δX)h = τ(δX)Ph

implying that Ph ∈ Hτ (Y). We may now repeat the proof of Proposition 6.1.4 to see that τ
is an irreducible representation of Γ(J).

This proves that τ = τY,π has the required properties, and so for every finite rooted subtree
Y ⊆ J and every irreducible unitary representation π of Auto(Y) there exists an irreducible
representation of Γ(J) with Y as a basic subtree and for which the unitary representation
from Lemma 6.4.2 is π.

Combining this with Lemma 6.4.4, we easily deduce that we have now constructed all
irreducible representations of τ .

Theorem 6.4.5 The representations τY,π with Y ⊆ J a finite rooted subtree and π a unitary
representation of Auto(Y) exhaust all irreducible representations of Γ(J).

Proof. Let τ be an irreducible unitary representation of Γ(J). Choose a basic subtree Y for
τ and denote by π the irreducible unitary representation of Auto(Y) from Lemma 6.4.2. It
now immediately follows by Lemma 6.4.4 that τ is equivalent to τY,π. �

Combining the material of this section with the content of section 6.1, we obtain in the
next section the complete classification of the irreducible tame representations of K.
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6.5 Classification of irreducible tame representations of K

With the complete classification of the irreducible representations of Γ(J) for all finite rooted
subtrees J ⊆ X in Theorem 6.4.5, we may now state and prove our main theorem 6.5.1
which gives a complete classification of all irreducible tame representations of K - or what
according to Theorem 6.3.3 is equivalent, all irreducible unitary representations of K∞. It
turns out that we have already in section 6.1 constructed all these representations, namely the
representations πJ,σ with J ⊆ X a finite rooted subtree and σ an irreducible representation of
Auto(J). We will abuse the notation and also denote the corresponding tame representation
of K by πJ,σ. By Proposition 6.1.4 and Remark 6.3.4, this representation remains irreducible.

For the proof of the main theorem, we need to introduce some terminology which is closely
related to the concepts introduced in section 6.4. For a tame representation π of K, we say
that a finite rooted subtree J ⊆ X is a basic subtree for π if Hπ(J) 6= {0} and if Hπ(J′) = {0}
for all finite rooted subtrees J′ ( J. Since π is tame, it is obvious that there exists a basic
subtree for every tame representation of K.

Theorem 6.5.1 The representations πJ,σ with J ⊆ X a finite rooted subtree and σ an irre-
ducible unitary representation of Auto(J) exhaust all irreducible tame representations of K.
The representations πJ1,σ1 and πJ2,σ2 are equivalent if and only if J1 and J2 are isomorphic
as rooted trees and σ1 and σ2 are equivalent.

Proof. The last statement immediately follows by Proposition 6.1.5 and the denseness of K
in K∞. Hence, we are left with a proof of the fact that every irreducible tame representation
of K is equivalent to some πJ,σ with J and σ as in the theorem.

Let π be an irreducible tame representation of K with representation space Hπ. Since π
is tame, we may choose a basic subtree J ⊆ X for π. By Theorem 6.3.7, we may consider the
associated representation τJ of the semigroup Γ(J) which has representation space Hπ(J).

τJ is irreducible. To see this, we recall that π is irreducible, and so it follows by 1.5 in [O4]
that span {π(g) | g ∈ K} is weakly dense in the algebra B(Hπ) of bounded operators on Hπ.
For a bounded operator A on Hπ(J), this implies that APJ which is a bounded operator on
Hπ may be approximated weakly by linear combinations of the operators π(g) with g ∈ K.
However, for x, y ∈ Hπ(J) and g ∈ K we see that

〈π(g)x, y〉π = 〈π(g)x, PJy〉π = 〈PJπ(g)x, y〉π = 〈τJ(pJ(g))x, y〉π

which proves that A may be approximated weakly by linear combinations of the operators
τJ(γ) with γ ∈ Γ(J). By 1.5 in [O4], this implies that τJ is irreducible.

Since J is a basic subtree for π, it follows by Lemma 6.3.8 that J is also a basic subtree for
the semigroup representation τJ. Hence, it follows by Lemma 6.4.2 that the restriction σ of τJ
to Auto(J) is an irreducible unitary representation. By the construction of the representation
τJ,σ and Lemma 6.4.4, we deduce that τJ = τJ,σ.

We now observe that γ ∈ Γ(J) is either in Auto(J) or has a domain which is strictly
contained in J. Hence, Lemma 6.4.1 implies that

τJ(γ) =

{
σ(γ) for γ ∈ Auto(J)
0 otherwise

88



Classification of irreducible tame representations of K

Now let h ∈ Hπ(J) be non-zero. By the above observation, we deduce for g ∈ K that

〈π(g)h, h〉π = 〈π(g)h, PJh〉π = 〈PJπ(g)h, h〉π = 〈τJ(pJ(g))h, h〉π

=

{
〈σ(pJ(g))h, h〉π for pJ(g) ∈ Auto(J)
0 otherwise

Since π is irreducible, h is cyclic for π. This together with Lemma 6.4.3 shows that π is
uniquely determined by the basic subtree J and the representation σ which is the restriction
of the associated representation τJ to Auto(J).

Finally, we observe by Remark 6.1.2 that J is a basic subtree for πJ,σ. Furthermore, it
follows immediately by definition of the semigroup representations of Theorem 6.3.7 (cf. (6.4))
that the restriciton to Auto(J) of the representation of Γ(J) corresponding to πJ,σ is equivalent
to σ. Hence, the above considerations imply that π is equivalent to πJ,σ.

This finishes the proof. �

An immediate consequence of the proof is the following:

Corollary 6.5.2 Let π be an irreducible tame representation of K with representation space
Hπ. For every finite rooted subtree J ⊆ X, the space Hπ(J) is finite-dimensional.

Proof. Let J ⊆ X be a finite rooted subtree with Hπ(J) 6= {0}. Using the arguments in the
proof of Theorem 6.5.1, we see that τJ is irreducible. Since Γ(J) is finite and Hπ(J) is the
representation space of τJ, it follows by [O4, Lemma 1.10] that Hπ(J) is finite-dimensional. �

Another consequence of our previous work is that tame representations of K behave nicely
in the way that they may be completely decomposed as a direct sum of irreducible represen-
tations of K. This is the content of the following Theorem 6.5.3.

Theorem 6.5.3 Let π be a tame representation of K. Then π can be decomposed into a
direct sum of irreducible representations.

Proof. Since π is tame, we may choose a finite rooted subtree J ⊆ X such that Hπ(J) 6= {0}.
By Theorem 6.3.7, we may consider the associated representation τJ of Γ(J) which has Hπ(J)
as representation space.

Since Γ(J) is finite, it follows by [O4, Lemma 1.10] that τJ decomposes into a direct sum
of irreducible representations. In particular, there exists a closed subspace H ⊆ Hπ(J) which
is invariant and irreducible under Γ(J).

We now consider the cyclic span Hσ ⊆ Hπ of H under the representation π. This is a
closed, π-invariant subspace of Hπ, and we denote by σ the corresponding subrepresentation
of π. We will prove that Hσ ∩Hπ(J) = H.

The inclusion ⊇ is obvious. Now consider an element h0 ∈ Hσ ∩ Hπ(J) which may be
approximated by linear combinations of vectors π(g)h with g ∈ K and h ∈ H. Since h0 ∈
Hπ(J), this implies that it may be approximated by linear combinations of vectors PJπ(g)h
with g ∈ K and h ∈ H. We observe that

PJπ(g)h = τJ(pJ(g))h ∈ H

for g ∈ K and h ∈ H, and since H is closed, this implies that h0 ∈ H. This proves the
inclusion ⊆ and so the desired equality.
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This equality implies that H = Hσ(J). Using this, we now prove that σ is irreducible. To
do this, consider a closed, invariant subspace V ⊆ Hσ. Since H = Hσ(J), we may argue as in
the proof of Proposition 6.1.4 to see that

H = (H ∩ V)⊕ (H ∩ V⊥)

Now let h ∈ H ∩ V, and consider g ∈ K. By invariance of V, π(g)h ∈ V. Furthermore,
it is well-known by [Fo, Theorem 3. that the invariance of V implies that PJ maps V into V.
Hence, it follows that τJ(pJ(g))h = PJπ(g)h ∈ V. Since H is τJ-invariant and the restriction
of pJ to K by Proposition 6.2.5 is surjective, this shows that H ∩ V is a closed, τJ-invariant
subspace of H. By irreducibility of H, this implies that H = H ∩ V or H = H ∩ V⊥. Hence,
H ⊆ V or H ⊆ V⊥. Since H by construction is cyclic for σ, the invariance of V and V⊥ implies
that V = Hσ or V⊥ = Hσ. This proves that σ is irreducible.

The existence of an irreducible subrepresentation of π may be combined with standard
arguments using Zorn’s Lemma to prove that π decomposes into a direct sum of irreducible
representations. �

One may ask how the spherical representations {πn}∞n=0 for the pair (K,Kω) considered
in chapter 5 fit into this chapter. For n ≥ 1, the definition of the representation πn on the
Hilbert space `2(Mn) in section 5.2 may without any modifications be extended to the group
K∞. In light of Remark 5.2.1, the extended map πn is continuous in the topology on K∞
and so is a unitary representation of K∞. According to Theorem 6.3.3, this proves that πn is
tame. Being the trivial representation, π0 is of course also tame. Theorem 6.5.1 now reveals
that for each n ≥ 0 there exists a finite rooted subtree Jn ⊆ X and an irreducible unitary
representation σn of Auto(Jn) such that πn is equivalent to πJn,σn .

Fortunately, Proposition 6.5.4 below shows that this is really the case.

Proposition 6.5.4 Let n ≥ 0 and denote by Jn the finite rooted subtree {xk}nk=0 and by σn
the trivial representation of the group Auto(Jn). Then πn is equivalent to πJn,σn.

Proof. Let n ≥ 1 and consider the second realization of the representation πJn,σn in section
6.1. For y ∈ Mn, we denote by hy the unique map in IJn with hy(xn) = y. We clearly have
the identity IJ = {hy | y ∈ Mn} and so IJn is in bijective correspondance with the set Mn.

Since σn is the trivial representation, we may put Hσ = C. We observe that K̃(Jn) =
K(Jn) which implies that the condition (6.3) on functions in HπJn,σn

is trivially satisfied by all
functions h : IJn → C. Hence, the condition (6.2) shows that HπJn,σn

is isomorphic to `2(Mn).
It is immediate by the definiton of the representations that πn and πJn,σn are equivalent under
this identification of the representation spaces.

Since K̃(J0) = K and σ0 is the trivial representation, πJ0,σ0 is also trivial and so equivalent
to π0. �

Remark 6.5.5 The method used here may also be applied to the group G to obtain similar
results, among those another proof of the classification of the irreducible unitary represen-
tations of Aut(X) obtained by Olshanski in [O3]. The main difference is to consider finite
subtrees of X instead of the finite rooted subtrees considered above and modify the definition
of tame representations, Γ(J) and Γ(X) accordingly. We leave it to the reader to make the
necessary modifications.

With the classification of all irreducible tame representations of K and the observation
that the irreducible representations considered in chapter 5 are all tame, one may ask whether
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we are done, i.e. whether all irreducible representations are tame. This turns - unfortunately
- out not be the case as we shall see in the next chapter where the analysis of the action of K
on a compactification of its boundary produces a family of irreducible representations which
are not tame.
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Chapter 7

A Compactification of the
Boundary of a Homogeneous Tree
of Countable Degree and the
Existence of Non-tame
Representations

Much of the analysis of the automorphism group for a locally finite, homogeneous rooted
tree in chapter 4 depends on the action of the group on the boundary of the tree and the
existence of invariant measures on the boundary. Such measures do not exist if the tree is not
locally finite which makes the analysis of the group K from chapter 5 more complicated. This
chapter deals with this case and solves the difficulties by carrying out the construction of a
certain compactication of the boundary on which the desired measure exists. The resulting
representation theory produces a family of irreducible representations which turn out not
to be tame - proving the existence of non-tame irreducible representations. Section 1 is
devoted to the construction of the compactification of the boundary which is the centrepiece
for the remainder of the chapter. In section 2 it is shown how the action of the group on this
compactification gives rise to a new family of representations, and in section 3 it is proved that
these are non-tame. We finish the chapter in section 4 by showing that the representations
remain irreducible even when they are restricted to the much smaller subgroup Kω.

7.1 A compactification of the boundary

Consider the homogeneous tree (X,C) and the group K from chapter 5. We will keep the
notation from that chapter. With the classification of all irreducible tame representations in
chapter 6, one may ask whether non-tame irreducible representations exist. The objective
of this section is to prove that the answer is affirmative, and so the representation theory of
the group K is much more complicated than it is for the group K∞. This is similar to the
case of the infinite symmetric group for which the representation theory of the group S̃(∞)
of all permutations of N is well-understood, cf. [L], while it is way more difficult for the
group S(∞) of all finite permutations, cf. [KOV] and [O5]. The goal of the chapter is not
to get a complete and satisfactory insight into the representation theory of K. We will only
make a considerable contribution by proving the existence of non-tame representations and
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so underline the differences between the groups K and K∞.
One of the main tools in the analysis of the automorphism group of a locally finite homo-

geneous tree in chapters 3 and 4 is the action of the automorphism group on the boundary of
the tree and the existence of invariant measures. The action of the boundary survives when
we pass from locally finite trees to trees of countable degree. Unfortunately, the same cannot
be said for the measure. Even with these difficulties, we will use the action on the boundary
to analyse K. The idea is to replace the boundary by a compactification. The action on
the boundary may be extended to this larger object, and a K-invariant measure exists. This
section is devoted to the construction of the compactification. We refer to Remark 3.3.1 for a
discussion of the problem which originally inspired the author to construct this new object.

We define for each n a map sn : Ωn+1 → Ωn in the following way: let τ ∈ Ωn+1 be given,
and consider the corresponding rooted chain y0, y1, . . . , in Xn+1. By properties 1.-3. of the
map qn in section 5.1, it follows that qn(y0), qn(y1), . . . is a rooted chain in Xn. We define
sn(τ) ∈ Ωn to be the corresponding element in the boundary.

We clearly have that sn(τ) = τ for all τ ∈ Ωn, and it is an immediate consequence of the
definition of the topology on Ωn and Ωn+1 that sn is continuous.

For n < m, we define rn,m = sn ◦sn+1 ◦ . . .◦sm−1 which is a continuous map from Ωm onto
Ωn, and we denote by rn,n the identity map on Ωn. The sets Ωn with n ≥ 0 together with
the maps rn,m with n ≤ m constitute a projective system, and we denote by K = lim←Ωn the
corresponding projective limit. By definition, we have that

K =

{
(τn) ∈

∞∏
n=0

Ωn

∣∣∣∣∣ sn(τn+1) = τn for all n ≥ 0

}
and we equip K with the product topology. For n ≥ 0, we denote by rn the projection map
from K onto Ωn, and these maps are of course continuous.

For n ≥ 0 and x ∈ Mk
n, we define by Ωn(x) the set of τ ∈ Ωn with the property that

the corresponding rooted chain y0, y1, . . . , in Ωn satisfies that yk = x. As is well-known,
the sets Ωn(x) for x ∈ Xn constitute a countable basis for the topology on Ωn. Hence, the
sets K ∩

∏∞
n=0 Un for which there exists a K ≥ 0 such that Un = Ωn(yn) with yn ∈ Xn for

n ∈ {0, . . . ,K} and such that Un = Ωn for n > K, constitute a countable basis for the topology
on K. With Un, K and yn as above, we observe that K∩

∏∞
n=0 Un = r−1

K (
⋂K
n=0 r

−1
n,K(Ωn(yn))).

It follows by the definition of the maps rn,K that r−1
n,K(Ωn(yn)) may be written as a finite

union of sets of the form ΩK(x) with x ∈ XK . Since the intersection of such sets is either the
empty set or again on this form, we have seen that

⋂K
n=0 r

−1
n,K(Ωn(yn)) may be written as a

union of such sets. This shows that the sets r−1
n (Ωn(x)) with x ∈ Xn and n ≥ 0 constitute a

countable basis for the topology on K. We even see that the sets r−1
n (Ωn(x)) with x ∈ Xn and

n ≥ N for some fixed N constitute a countable basis for the topology on K.
Furthermore, we see that K is a compact Hausdorff space. Indeed, let {τn} ∈

∏∞
n=0 Ωn

satisfy the condition that there exists i such that τi 6= ri,i+1(τi+1). By the Hausdorff property,
we may find open subsets U and V of Ωn such that τi ∈ U and rn,n+1(τi+1) ∈ V and such that
U∩V = ∅. DefineWi = U , Wi+1 = r−1

n,n+1(V ) andWn = Ωn for n 6= i and n 6= i+1 and observe
that each Wn is open in Ωn. We now see that {τn}∞n=0 ∈

∏∞
n=0Wn ⊆

∏∞
n=0 Ωn \ K which

proves that K is a closed subset of
∏∞
n=0 Ωn. Since this product is compact by Tychonoff’s

theorem, this proves the compactness of K. The Hausdorff property is immediate.
We may introduce a natural action of K on K. To do this, let g ∈ K and {τi}∞i=0 ∈ K,

and find n ≥ 0 such that g ∈ Kn. Define τ ′i = g · τi for i ≥ n and τ ′i = ri,n(τ ′n) for i < n, and
observe that the relation qk ◦ g = g ◦ qk implies that τ ′i = ri,i+1(τ ′i+1) for all i ≥ 0. This shows
that {τ ′i}

∞
i=0 ∈ K, and so we may (well-)define g · {τi}∞i=0 = {τ ′i}

∞
i=0. This clearly defines an

94



A compactification of the boundary

action of K on K.
To prove continuity of this action, we observe that [MS, Lemma 5.5] reveals that the

product topology on K×K is the inductive limit of the product topologies on Kn×K. Hence,
the action is continuous if only its restriction to Kn × K is continuous for all n. However,
this immediately follows by the continuity of the action of Kn on Ωm with m ≥ n and the
fact that the sets r−1

m (Ωm(x)) with x ∈ Xm and m ≥ n constitute a countable basis for the
topology on K.

By νn, we denote the unique Borel probability measure on Ωn with the property that

ν(Ωn(x)) =
1

a2n(a2n − 1)d(o,x)−1

for x ∈ Xn with x 6= o. This measure has been studied in chapters 2 and 4. By property 4. of
the map qn from section 5.1 and by the definition of rn,n+1, we see that the following holds
for x ∈ Mn

k with k ≥ 1:

νn+1(r−1
n,n+1(Ωn(x))) = a2n

(a2n
+ 1)k−1 1

a2n+1(a2n+1 − 1)k−1
=

1
a2n(a2n − 1)k−1

which proves that the push-forward measure rn,n+1(νn+1) which is a Borel probability measure,
is just the measure νn. Since the measure νn is clearly Kn-invariant, it follows by [Bour,
Theorem 4.2] that there exists a unique K-invariant Borel probability measure ν on K such
that νn = rn(ν).

Remark 7.1.1 The compact Hausdorff space K may be seen as some sort of compactification
of the boundary Ω∞ of the tree (X,C). To explain this, let τ ∈ Ω∞ and denote by y0, y1, . . .
the corresponding rooted chain in (X,C). For n ≥ 0, we define τn ∈ Ωn in the following way:
for m ≥ 0 choose k > n such that ym ∈ Mk

m and define zm = (qn ◦ . . . ◦ qm−1)(ym) ∈ Mn
m.

By property 1. of the maps qj , this definition is clearly independent of the choice of k.
Furthermore, it follows by properties 1., 2. and 3. that z0, z1, . . . , is a rooted chain in
(Xn,Cn). We denote by τn ∈ Ωn the corresponding boundary point.

It is evident by the definition sn(τn+1) = τn for all n ≥ 0 and so (τn) ∈ K. We define a
map ϕ : Ω∞ → K by defining ϕ(τ) = (τn).

Let τ1, τ2 ∈ Ω∞ with corresponding rooted chains y0, y1, . . . , and z0, z1, . . ., respectively,
and assume that τ1 6= τ2. This implies that we may find k ≥ 1 such that yk 6= zk. If we choose
m ≥ 0 such that yk, zk ∈ Mm

k , it follows by definition that rm(ϕ(τ1)) 6= rm(ϕ(τ2)). This shows
that ϕ(τ1) 6= ϕ(τ2). Hence, ϕ is injective.

The map ϕ is even continuous. Indeed, let τ ∈ Ω∞, let y0, y1, . . . be the corresponding
rooted chain in (X,C), and assume for n ≥ 0 and x ∈ Xn that ϕ(τ) ∈ r−1

n (Ωn(x)). Put
m = d(o, x). It now follows by defintion of ϕ that ϕ(Ω∞(ym)) ⊆ r−1

n (Ωn(x)). Since the sets
r−1
n (Ωn(x)) with n ≥ 0 and x ∈ X constitute a basis for the topology on K, this implies

continuity of ϕ.
However, one should observe that ϕ is not a homeomorphism onto its image. Indeed, let

τ ∈ Ω0 be a boundary point. By the construction of the maps sn, we may for each n ≥ 1
choose a boundary point τn ∈ Ωn \ Ωn−1 such that sn(τn) = τ and such that the intersection
of the corresponding rooted chain and Xn−1 only contains the vertex o. By this last property,
the rooted chains of τ and τn do only intersect in the vertex o and this shows that the sequence
{τn} does not converge to τ in Ω∞.

It is, however, true that {ϕ(τn)} converges to ϕ(τ) in K. To see this, we observe that
rn(ϕ(τm)) = rn,m(τm) = τ = rn(ϕ(τ)) for m > n. Since the sets r−1

n (Ωn(x)) with n ≥ 0
and x ∈ Xn constitute a basis for the topology on K, this implies that the sequence {ϕ(τn)}
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converges to ϕ(τ). This proves that ϕ is not a homeomorphism onto its image and so the
topology on Ω∞ is strictly stronger than the initial topology on Ω∞ with respect to the map
ϕ.

Since the sets r−1
n (Ωn(x)) with n ≥ 0 and x ∈ Xn constitute a basis for the topology on

K, it is evident that ϕ(Ω∞) is dense in K. Furthermore, one should observe that for g ∈ Kn

and m ≥ n we have that qm ◦ g = g ◦ qm and so ϕ(g · τ) = g · ϕ(τ) for all g ∈ K and τ ∈ Ω∞.
Hence, the action on K may be seen as an extension of the natural action on Ω∞ if we identify
Ω∞ with its image under ϕ.

Finally, we observe that ϕ(Ω∞) is a ν-null set. Indeed, let x ∈ M1 and choose m ≥ 0 such
that x ∈ Xm. By definition of the map ϕ, we have the inclusion

ϕ(Ω∞(x)) ⊆
∞⋂
n=m

r−1
n (Ωn(x))

The sequence
{
r−1
n (Ωn(x))

}∞
n=m

of subsets of K is decreasing and have the property that

ν(r−1
n (Ωn(x))) = νn(Ωn(x)) =

1
a2n

and so ϕ(Ω∞(x)) is a null set. Since

ϕ(Ω∞) =
⋃

x∈M1

ϕ(Ω∞(x))

and M1 is countable, this proves that ϕ(Ω∞) is a ν-null set.

In contrast to the case of a locally finite tree, the boundary Ω∞ is not compact, and we
may not equip it with a K-invariant probability measure. Since a great part of the analysis
of the groups Kn carried out in chapter 4 is related to its action on the boundary of the tree
and the existence of a K-invariant probability measure on Ωn, similar considerations may at
a first glance not be carried out for the group K. However, the above considerations show
that we may equip Ω∞ with a weaker topology and consider a natural compactification of the
boundary, namely the space K. The natural action on Ω∞ may be extended to an action on
its compactification K which is continuous, and we may construct a K-invariant measure on
this new space, namely the measure ν. This makes it natural to suggest that we - even with
the complications which arise at a first glance - may consider representation theory arising
from the action of the group K on the boundary of the tree. The role of the boundary Ω∞
will just be played by its compactification K. In this sense, K may be seen as a replacement
of Ω∞ in the analysis of K.

It is evident that Ω∞ with its natural topology does not possess a K-invariant Borel
measure with respect to its natural topology. The fact that ϕ(Ω∞) is a null set with respect
to ν shows that we may not use the above construction to create a non-trivial K-invariant
Borel measure on Ω∞ with its new, weaker topology. Hence, we cannot restrict the analysis
of the action of K on its boundary to the natural boundary Ω∞. We have to deal with the
complete compactification K.

Remark 7.1.2 The reader should be aware of the fact that the quite technical constructions
of chapter 5 are all made with the sole purpose of making the definition of the compactification
K possible. The construction works because of the important fact that for every n ≥ 0
and x ∈ Xn, the number p−1({x}) ∩ Xn divides p−1({x}) ∩ Xn+1. This ensures the relation
νn = rn,n+1(νn+1) which is necessary for the existence of the measure ν. The tedious extension
of an automorphism g ∈ Kn to X which was described in chapter 5 serves to make it possible
to extend the action of K on Ω∞ to the compactification K.
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Remark 7.1.3 The group G from chapter 3 acts - as described in chapter 2 - on the boundary
Ω∞ of the tree. If the tree is locally finite, we have even seen in chapter 2 that the natural
invariant measure on the boundary is strongly quasiinvariant for the action of the complete
automorphism group. One may ask whether G also acts on the compactification K.

Unfortunately, the answer is negative. The natural definition of an action of G on K

only works if the relation sn(g · ω) = g · sn(ω) holds for all n ≥ 0, all ω ∈ Ωn+1 and all
g ∈ Gn. However, this is not the case. This is regretful since the original inspiration for the
construction of the compactification K was the desire to establish an integral representation
of the spherical functions for the pair (G,K), cf. Remark 3.3.1. Such a representation has,
however, not yet been established.

The remainder of this chapter is devoted to the study of the representation theory which
arises from the action of K on the compactification K of its boundary.

7.2 A new family of representations of K

Since K acts continuously on the compactfication K of the boundary Ω∞, and since K has a
K-invariant measure, we may consider the natural representation π of K on L2(K). For each
f ∈ L2(K), g ∈ K and {τn} ∈ K, we define

(π(g)f)({τn}) = f(g−1 · {τn})

The K-invariance of ν implies that π(g) is a unitary operator of L2(K) for each g ∈ K. It
follows by the compactness of the Kn’s and [Fo, Section 3.1] that the restriction of π to each
Kn is continuous in the strong operator topology. Hence, π is a unitary representation of K.

This section is devoted to the study of π and its decomposition into a direct sum of irre-
ducible representations. The irreducible representations turning up will be of special interest
and are the center of attention in the last sections of the chapter.

Even though the representation π might be seen as an analogue to the representations of
the underlying groups Kn studied in Proposition 4.5.1, it behaves in a totally different way.
It turns out that it is not equivalent to the direct sum of all the spherical representations for
the pair (K,Kω) as it was the case in Proposition 4.5.1. On the contrary, it might be written
as the direct sum of the representations in a family of non-equivalent representations which -
with one trivial exception - are not spherical for the pair (K,Kω) and not tame. This is the
content of Theorem 7.2.3 below.

To introduce this family of representations, we observe that the map f 7→ f ◦ rn embeds
L2(Ωn) isometrically into L2(K). This follows by the fact that νn = rn(ν). Hence, we may
regard L2(Ωn) as a closed subspace of L2(Ω) consisting of functions whose value at {τk} ∈ K

only depend on τn. Similarly, the relation νn = sn(νn+1) implies that we - by the map
f 7→ f ◦ sn - may embed L2(Ωn) isometrically into L2(Ωn+1), and since f ◦ sn ◦ rn+1 = f ◦ rn
for f ∈ L2(Ω), it follows that

L2(Ω0) ⊆ L2(Ω1) ⊆ . . . ⊆ L2(Ωn) ⊆ . . . (7.1)

As in the proof of Proposition 5.2.3, we denote by Hj
n the representation space for the

n’the spherical representation πjn of the group Kj . By Proposition 4.5.1, we see that

L2(Ωj) =
∞⊕
n=0

Hj
n (7.2)
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Hence, we may regard the spaces Hj
n with n ≥ 0 and j ≥ 0 as closed subspaces of L2(K).

Let n ≥ 1, let j ≥ 0, and let f ∈ Hj
n. We clearly have that the function f ◦ sj is constant

on the sets Ωj+1(x) with x ∈ M
j+1
n . Let x ∈ M

j+1
n−1. By definition of qj , we have for all

y ∈ p−1(qj(x)) ∩ Xj the identity∣∣∣q−1
j (y) ∩ p−1(x) ∩ Xj+1

∣∣∣ = a2j
+ 1

if n ≥ 2 and ∣∣∣q−1
j (y) ∩ p−1(x) ∩ Xj+1

∣∣∣ = a2j

if n = 1. This implies that f ◦ sj ∈ Hj+1
n . Hence, we have proved the inclusions

H0
n ⊆ H1

n ⊆ . . . ⊆ Hj
n ⊆ . . . (7.3)

for n ≥ 1, and they are obvious in the case n = 0.
We now define Hn =

⋃∞
j=0H

j
n. (7.3) and the pairwise orthogonality of the spaces Hj

n for
fixed j immediately reveal that the closed subspacesHn are pairwise orthogonal. Furthermore,
it is an easy consequence of the invariance of Hj

n under πjn and (7.3) that
⋃∞
j=0H

j
n and so Hn

is invariant under π. For n ≥ 0, we denote by ρn the subrepresentation corresponding to the
subspace Hn.

The space Hj
0 consists of all constant functions on Ωj . Hence, H0 is the subspace of all

constant functions on K, and so ρ0 is just the trivial representation of K which is of course
spherical for the pair (K,Kω). However, it turns out that the representations ρn are not
spherical for the pair (K,Kω) if n ≥ 1. Furthermore, the ρn’s are non-equivalent for all
n ≥ 0. This is the content of the following proposition.

Proposition 7.2.1 The representations ρn, n ≥ 0, are non-equivalent. Furthermore, ρn is
not spherical for the pair (K,Kω) if n ≥ 1.

Proof. To see that the representations are non-equivalent, we observe that the isometric
embedding Sj of L2(Ωj) into L2(K) satisfies the relation π(g)Sj = Sjπ

j
n(g) for all g ∈ Kj .

This proves that Hj
n is a Kj-invariant subspace of L2(K) and that πjn is equivalent to the

subrepresentation of the restriction of ρn to Kj corresponding to Hj
n. The non-equivalence

of the representations ρn with n ≥ 0 now immediately follows by the non-equivalence of the
representations πjn with n ≥ 0 and Lemma 5.2.2.

To prove the second statement of the proposition, let n ≥ 1. Assume that ρn is spherical
for n ≥ 1 and denote by f ∈ Hn a Kω-invariant, non-zero function. Denote by P j the
ortogonal projection onto Hj

n. By denseness of
⋃∞
n=0H

j
n in Hn, the P j ’s converge strongly to

the identity onHn. Hence, the sequence
{
P jf

}
converges to f . For g ∈ Kω

j , theKj-invariance
of Hj

n implies that
ρn(g)P jf = P jρn(g)f = P jf

Hence, P jf is a Kω
j -invariant function in Hj

n.
Now denote by mj the map m of section 4.1 for the tree (Xj ,Cj). By [Fa2, Proposition I.5],

the space of Kω
j -invariant functions in Hj

n is 1-dimensional. In the proof of Corollary 4.2.2,
we identified one Kω

j -invariant function fj . Hence, there exists cj ∈ C such that P jf = cjfj ,
i.e. (P jf)((τk)) = cj if τj ∈ Ωj(xn), (P jf)((τk)) = − cj

mj(xn−1) if τj ∈ Ωj(xn−1) \ Ωj(xn), and
(P jf)((τk)) = 0 if τj /∈ Ωj(xn−1). Furthermore, the L2(K)-convergence to f of the sequence
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{
P jf

}
implies the existence of a subsequence

{
P jkf

}
which converges almost everywhere to

f .
Let n ≥ 2. The function P jkf is constantly 0 on the set K \ r−1

jk
(Ωjk(xn−1)) which by the

relation νjk = rjk(ν) has measure a2jk (a2jk−1)n−2−1

a2jk (a2jk−1)n−2
under ν. Since

{
K \ r−1

jk
(Ωjk(xn−1)

}
) is

an increasing sequence, this shows that P jkf converges to 0 almost everywhere. Hence, f = 0
which is a contradiction.

For the case n = 1, we observe that

‖fj‖2 =
1
a2j (1 + (a2j − 1)

1
(a2j − 1)2

) =
1

a2j − 1

The fact that |cj | ‖fj‖ =
∥∥P jf∥∥ ≤ 1 now implies that |cj | ≤ (a2j − 1)

1
2 and so

∣∣(P jkf)((τi))
∣∣ ≤ (a2jk − 1)

1
2

(a2jk − 1)
=

1

(a2jk − 1)
1
2

for (τi) ∈ K \ r−1
jk

(Ωjk(x1)). This set has - by the relation νjk = rjk(ν) - measure a2jk−1

a2jk
. Since

the sets K \ r−1
jk

(Ωjk(x1)) are increasing in k, this implies that P jkf converges to 0 almost
everywhere. Hence, we see that f = 0 which is a contradiction. �

Remark 7.2.2 The fact that ρn is non-spherical for n ≥ 1 actually follows as an easy corollary
of Theorem 7.4.1 below. We have, however, included a direct proof for completeness.

The non-equivalent representations ρn are exactly the building blocks for the representa-
tion π as we prove in the following theorem.

Theorem 7.2.3 The unitary representation π is equivalent to the direct sum of representa-
tions ρn with n ≥ 0, i.e. π =

⊕∞
n=0 ρn.

Proof. We have already seen that the closed subspaces Hn in L2(K) are pairwise orthogonal.
Furthermore, we recall that the closed subspaces L2(Ωn) by (7.1) form an increasing sequence
in L2(K). We now observe that

⋃∞
n=0 L

2(Ωn) is dense in L2(K), i.e. that

∞⋃
n=0

L2(Ωn) = L2(K)

Indeed, we have seen that K is a second countable compact Hausdorff space. By [Co,
Proposition 7.2.3], this implies that the finite measure ν is a Radon measure. Hence, it
is enough to show that 1U ∈

⋃∞
n=0 L

2(Ωn) for an open set U ⊆ K. However, we may write
U =

⋃∞
k=1 r

−1
nk

(Ωnk
(xk)) for some nk ≥ 0 and some xk ∈ Xnk

. This implies that it is enough
to show that 1⋃m

k=1 r
−1
nk

(Ωnk
(xk)) ∈

⋃∞
n=0 L

2(Ωn) for all m ≥ 1. To see that this is true, we

define N = maxmk=1 nk, and observe that
⋃m
k=1 r

−1
nk

(Ωnk
(xk)) =

⋃M
k=1 r

−1
N (ΩN (yk)) for some

yk ∈ Xm and some M ≥ 1. Since two sets of the form ΩN (yk) are either disjoint or satis-
fies some inclusion relation, we may even assume that the sets ΩN (yk) are pairwise disjoint.
Since 1⋃M

k=1 r
−1
N (ΩN (yk)) =

∑M
k=1 1r−1

N (ΩN (yk)), and since 1r−1
N (ΩN (yk)) ∈ L

2(ΩN ), this implies the
denseness of

⋃∞
n=0 L

2(Ωn) in L2(K).
It is now a consequence of (7.2) and the denseness of

⋃∞
n=0 L

2(Ωn) that L2(K) =
⊕∞

n=0Hn.
This finishes the proof. �

Whether the representations ρn with n ≥ 0 are "‘new"’ representations or covered by the
observations of chapter 6 will be the focus of the following section.
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7.3 The existence of non-tame representations

In light of chapter 6, a natural question is whether the representations ρn are tame or, equi-
valently, whether they can be extended continuously to unitary representations of the bigger
group K∞. It turns out that this is not the case as long as we exclude the trivial representation
ρ0 (which is of course tame), and so they are not covered by the complete classification of all
irreducible tame representations in Theorem 6.5.1. They are new representations and prove
the existence of non-tame representations.

Theorem 7.3.2 is a consequence of the following Proposition 7.3.1.

Proposition 7.3.1 For n ≥ 1, the representation ρn is not continuous in the topology inheri-
ted by K∞.

Proof. Let n ≥ 1 and choose y ∈ (p−1(xn−1) ∩ X0) \ {xn}. Consider the function f ∈ H0
n

with the property that f(xn) = 1, f(y) = −1 and f(x) = 0 for all x ∈ M0
n with x /∈ {xn, y}.

We regard f as an element in Hn ⊆ L2(K). By construction of the map qm, we may for m ≥ 0
choose gm ∈ Km+1 such that gm(x) = x for all x ∈ Xm, such that gm(q−1

m (xn)∩(Xm+1\Xm)) =
q−1
m (y)∩ (Xm+1 \Xm) and such that gm(q−1

m (y)∩ (Xm+1 \Xm)) = q−1
m (xn)∩ (Xm \Xm−1). By

the first of these three properties, it follows that the sequence {gm}∞m=0 ⊆ K converges to the
identity e in the topology of K∞.

Let m ≥ 1. It follows by the property 4. of the map qm that

(q0 ◦ q1 ◦ . . . qm)−1({z}) ∩ (Mm+1
n \Mm

n ) =
m∏
j=0

a2j
(a2j

+ 1)n−1 −
m−1∏
j=0

a2j
(a2j

+ 1)n−1

= (a2m
(a2m

+ 1)n−1 − 1)
m−1∏
j=0

a2j
(a2j

+ 1)n−1

for all z ∈ M0
n. Using this, the relation νm+1 = rm+1(ν) and the fact that f, π(gm)f ∈ Hm+1

n ,
we see that

‖π(gm)f − f‖2 = 2 ·
(a2m

(a2m
+ 1)n−1 − 1)

∏m−1
j=0 a2j

(a2j
+ 1)n−1

a2m+1(a2m+1 − 1)n−1
· 4

= 8

∏m−1
j=0 a2j

a2m+1

(a2m
(a2m

+ 1)n−1 − 1)
∏m−1
j=0 (a2j

+ 1)n−1

(a2m+1 − 1)n−1

= 8
a

∑m−1
j=0 2j

a2m

(a2m
(a2m

+ 1)n−1 − 1)
∏m−1
j=0 (a2j

+ 1)n−1

a2m(a2m + 1)n−1(a2m − 1)n−1

= 8a−1a
2m

(a2m
+ 1)n−1 − 1

a2m(a2m + 1)n−1
(

∏m−1
j=0 (a2j

+ 1)
a2m − 1

)n−1 (7.4)

We have that ∏m−1
j=0 (a2j

+ 1)
a2m − 1

≥
∏m−1
j=0 a2j

a2m − 1
=
a2m

a−1

a2m − 1
≥ a−1

which proves that the last factor in (7.4) dominates a1−n. Since the factor a2m
(a2m

+1)n−1−1
a2m (a2m+1)n−1

in (7.4) converges to 1 as m goes to infinity, this shows that ‖π(gm)f − f‖2 does not converge
to 0 as m goes to infinity.

This proves that π is not continues in the topology on K inherited from K∞. �
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Combining Proposition 7.3.1 and Corollary 6.3.5, we have established the fact that the
representations ρn are non-tame for n ≥ 1.

Theorem 7.3.2 For n ≥ 1, the representation ρn is not tame.

The last section of this chapter is devoted to a certain remarkable irreducibility property
of the representations ρn.

7.4 Restriction of ρn to Kω

In section 5.4 we discussed the decomposition of the restriction to Kω of the spherical repre-
sentations {πn}∞n=0 for the pair (K,Kω). One consequence of Theorem 5.4.1 is that for n ≥ 1
these representations do not remain irreducible under this restriction. It turns out that the
pattern is completely different for the representations {ρn}∞n=0. This is the content of the
following Theorem 7.4.1 which contains the answer of a classical problem in representation
theory - a problem which has been studied for locally finite homogeneous trees, cf. [St].

Theorem 7.4.1 The restriction of ρn to Kω is irreducible for all n ≥ 0.

Proof. Let n ≥ 2, and consider f ∈ HN
n for N ≥ 0. For k ≥ N , we define fk = f ·

1K\r−1
k (Ωk(xn−1)). By the above identification, we may for all k ≥ 0 regard Ukn as a subpace of

Hk
n in L2(K). Since f ∈ Hk

n for k ≥ N , we observe that fk ∈ Ukn . Furthermore, we clearly
have that f is bounded by some M ≥ 0. Hence, we see that

‖f − fk‖2 ≤M2ν(r−1
k (Ωk(xn−1))) = M2νk(Ωk(xn−1)) =

M2

a2k(a2k − 1)n−2

which proves that f ∈
⋃∞
k=0 Ukn . This implies that Hn =

⋃∞
k=0 Ukn . Since it follows by section

4.4 that the subrepresentation of the restriction to Kω
k of ρn corresponding to the subspace

Ukn is irreducible, it follows by Lemma 5.2.2 that the restriction of ρn to Kω is also irreducible.
We are left with the case n = 1. Consider f ∈ HN

1 for N ≥ 0. Choose y ∈ M0
1 with

y 6= x1. For k ≥ N , we define

fk = f · 1K\r−1
k (Ωk(x1)) + f(x1) · 1Ωk(y)

As above, we may for all k ≥ 0 regard Vk1 as a subpace of Hk
1 in L2(K). Since f ∈ Hk

1 for
k ≥ N , we observe that fk ∈ Vk1 . Furthermore, we see that

‖f − fk‖2 =
2 |f(x1)|2

a2k

which proves that f ∈
⋃∞
k=0 Vk1 . This implies that H1 =

⋃∞
k=0 Vk1 . Since it follows by section

4.4 that the subrepresentation of the restriction to Kω
k of ρ1 corresponding to the subspace

Vk1 is irreducible, it follows by Lemma 5.2.2 that the restriction of ρ1 to Kω is also irreducible.
Since ρ0 is just the trivial representations ofK, its restriction toKω is of course irreducible.

This finishes the proof. �

Remark 7.4.2 The construction of the non-tame representations {ρn}∞n=0 and their proper-
ties as they are discussed in this chapter will be our only dig into the theory of non-tame
representations of K. The most important observation is of course the existence of such re-
presentations. A number of the classical questions in representation theory remain, however,
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unanswered. It is an important open problem to further the development of this theory and
provide the necessary answers. The infinite symmetric group S(∞) of all finite permutations
of N does - as pointed out numerous times - share plenty of properties with K, and the work
on this group has been a great source of inspiration in the work presented here. Since the
development of the representation theory of S(∞) has progressed much further, much of the
work in this area should be helpful in the future research into the group K.
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Chapter 8

Conditionally Positive Definite
Functions and Cocycles

This chapter deals with continuous, conditionally positive definite, biinvariant functions for
the pairs (G,K) and (K,Kω) from chapters 3 and 5. The main purpose is to state and prove
Levy-Khinchine decomposition formulas in both cases which is done in Theorem 8.3.1 and
Theorem 8.4.1. Section 1 contains some background material on conditionally positive definite
functions and their relation with cocycles. In section 2, we consider a natural continuous, K-
biinvariant function on G and use the corresponding cocycle to prove that it is conditionally
positive definite. In section 3, we prove a Levy-Khinchine decomposition formula for the pair
(G,K) and observe that all K-biinvariant, conditionally positive function on G may be built
solely from the function studied in section 2 and the spherical functions for the pair (G,K). In
section 4, we prove a Levy-Khinchine decomposition formula for the pair (K,Kω) and observe
that the spherical functions are the only necessary building blocks in this case.

8.1 Conditionally positive definite functions and cocycles

Using the generalized Bochner theorem of Rabaoui, cf. Theorem 1.3.6, and our construction of
all spherical functions for the pair (G,K), we have in chapter 3 determined all K-biinvariant,
positive definite functions on G. A class of related functions are the so-called conditionally
positive definite functions which have been studied in a variety of settings. For our Olshanski
spherical pair (G,K), one essential question in this area is to decompose all K-biinvariant,
conditionally positive definite function by formulating a Levy-Khinchine formula which gives
an integral representation of every such function. The purpose of this section is to state and
prove such a formula.

Conditionally positive definite functions and Levy-Khinchine decomposition formulas play
an important role for limit theorems for independent and identically distributed random vari-
ables, cf. [GK]. This has prompted an extensive reasearch into the area - both for concrete
groups and from an abstract point of view. Main references are [Gu], [De] and [KaV]. The most
famous occurrence might be in the important theorem of Schoenberg which we state as The-
orem 8.3.2 below. Conditionally positive definite functions defined on automorphism groups
for locally finite homogeneous trees have been studied in [KuV]. In recent years, conditionally
positive definite functions have been examined in the framework of Olshanski spherical pairs.
An example may be found in the paper [Boua]. We will continue this idea in this chapter by
studying the Olshanski spherical pairs (G,K) and (K,Kω) of the previous chapters.

Conditionally positive definite functions are closely related to the so-called cocycles which
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Chapter 8. Conditionally Positive Definite Functions and Cocycles

are again related to unitary representations. This intimate relation has been studied in a
number of papers, cf. [Gu], [De] and [KaV], and will play an important role in our work
below. It turns out that an important ingredient in the decomposition of our Levy-Khinchine
formula is the natural conditionally positive definite function ψ : g 7→ −d(o, g(o)) which is
related to the well-known Haagerup cocycle. Along the way, we prove that the associated
representation is irreducible and so ψ is pure or indecomposable. This is in sharp contrast to
the case of a locally finite tree for which ψ and the Haagerup cocycle have been studied in
[KuV]. In that paper an explicit decomposition of ψ is found, and this proves that ψ is not
pure in the locally finite case.

We begin by recalling the basic facts about conditionally positive definite functions and
their relation with cocycles. For further details, we refer to [KaV]. For the remainder of this
section, we denote by T a topological group with neutral element e.

Definition 8.1.1 A function ψ : T → C is said to be conditionally positive definite if
ψ(t−1) = ψ(t) for all t ∈ T and if

n∑
i,j=1

cicjψ(t−1
j ti) ≥ 0

for all t1, . . . , tn ∈ T , all c1, . . . , cn ∈ C with
∑n

i=1 ci = 0 and all n ∈ N.
A conditionally positive definite function ψ is said to be normalized if ψ(e) = 0.

Clearly, the set of continuous, conditionally positive functions form a convex cone in the
vector space of all complex-valued functions on T . Functions belonging to extreme rays in
this convex cone will be known as pure or indecomposable. Furthermore, the continuous,
normalized, conditionally positive functions form a subcone. In the case of T being locally
compact, more may be said about the structure of these cones. See [KaV] for more details.

A positive definite function ϕ is of course conditionally positive definite, but not normalized
unless ϕ = 0. We may, however, from a positive definite function ϕ construct a number of new
conditionally positive definite functions. Indeed, for every real constant c ∈ R, the function
ψ : T → C given for all t ∈ T by ψ(t) = ϕ(t) + c is conditionally positive definite. ψ is of
course normalized if and only c = −ϕ(e) and so we may from every positive definite function
construct a normalized, conditionally positive definite function.

The function ψ constructed above is bounded. Remarkably, the converse is also true as
the following proposition states:

Proposition 8.1.2 Let ψ be a conditionally positive definite function on T . Then ψ is
bounded if and only if there exists a positive definite function ϕ on T and a real constant
c ∈ R such that ψ(t) = ϕ(t) + c for all t ∈ T .

The proof may be found in [KaV].
Using ideas very similar to the Gelfand-Naimark-Segal construction, it turns out that con-

tinuous, conditionally positive definite functions are closely related to unitary representations
and their cocycles. We will give a short description of this connection. We begin by giving
the definition of a cocycle in a unitary representation.

Definition 8.1.3 Let π be a unitary representation of T with representation space Hπ. A
cocycle in π is a continuous map β : T → Hπ with the property that

β(t1t2) = β(t1) + π(t1)β(t2)

for all t1, t2 ∈ T .
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A heavy amount of terminology is used in relation to the study of cocycles. For a vector h ∈
Hπ, it is evident that the map β : T → Hπ given for all t ∈ T by β(t) = π(t)v− v is a cocycle.
Such a cocycle will be known as trivial. A cocycle β is total if span {β(t) | t ∈ T} = Hπ, and it
is real if = 〈β(t1), β(t2)〉π = 0 for all t1, t2 ∈ T . Two cocycles β1, β2 in representations π1 and
π2, respectively, are said to be equivalent if there exists a unitary operator U : Hπ1 → Hπ2

with the properties that π2(t)U = Uπ1(t) and β2(t) = Uβ1(t) for all t ∈ T .
In analogy with Proposition 8.1.2, we note the following interesting observation. A proof

may be found in [Gu].

Proposition 8.1.4 A cocycle β : T → Hπ in a unitary representation π is bounded, i.e.
supt∈T ‖β(t)‖π <∞, if and only if β is trivial.

The intimate relation between cocycles and continuous, conditionally positive definite
functions arise from the fact that it is very easy to construct such a function from a real
cocycle β. This is the content of the following Lemma 8.1.5.

Lemma 8.1.5 Let π be a unitary representation of T with representation space Hπ, and let β
be a real cocycle in π. Let ψβ : T → C be given by the condition that ψβ(t) = −1

2 ‖β(t)‖2
π for

all t ∈ T . Then ψβ is a continuous, real, normalized, conditionally positive definite function.

Proof. It is immediate that ψβ is continuous and real. To prove that it is conditionally
positive definite, we observe that

β(e) = β(ee) = β(e) + π(e)β(e) = 2β(e)

which implies that β(e) = 0. Furthermore, this shows that for t ∈ T

β(t) + π(t)β(t−1) = β(tt1−) = β(e) = 0

which means that
π(t)β(t−1) = −β(t) (8.1)

for all t ∈ T . Using (8.1) and the fact that β is real, we get for n ∈ N, t1, . . . , tn ∈ T and
c1, . . . , cn ∈ C with

∑n
i=1 ci = 0 that

n∑
i,j=1

cicjψβ(t−1
j ti) = −1

2

n∑
i,j=1

cicj

〈
β(t−1

j ) + π(t−1
j )β(ti), β(t−1

j ) + π(t−1
j )β(ti)

〉
π

= −1
2

n∑
i,j=1

cicj

∥∥∥β(t−1
j )

∥∥∥2

π
− 1

2

n∑
i,j=1

cicj ‖β(ti)‖2
π −

n∑
i,j=1

cicj<
〈
π(tj)β(t−1

j ), β(ti)
〉
π

= −1
2

n∑
j=1

cj

∥∥∥β(t−1
j )

∥∥∥2

π

n∑
i=1

ci −
1
2

n∑
i=1

ci ‖β(ti)‖2
π

n∑
j=1

cj +
n∑

i,j=1

cicj< 〈β(tj), β(ti)〉π

=

∥∥∥∥∥
n∑
i=1

ciβ(ti)

∥∥∥∥∥
2

π

≥ 0

which proves that ψβ is conditionally positive definite. Finally, the fact that β(e) = 0 implies
that ψβ is normalized. �
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It turns out that all continuous, real, normalized, conditionally positive definite functions
arise from a real cocycle as in Lemma 8.1.5. The cocycle may actually be chosen to be total
as it is seen in the following Lemma 8.1.6. The proof is based on ideas very similar to the
Gelfand-Naimark-Segal construction.

Lemma 8.1.6 Let ψ : T → C be a continuous, real, normalized, conditionally positive definite
function. There exists a Hilbert space Hπ, a unitary representation π of T on Hπ and a total
and real cocycle β in π such that ψ(t) = −1

2 ‖β(t)‖2
π for all t ∈ T .

Proof. For t ∈ T , we denote by 1{t} the indicator function on T corresponding to the set
{t}. We define H0 to be the vector space of finitely supported functions on T whose integral
with respect to the counting measure are 0, i.e.

H0 =

{
n∑
i=1

ci1{ti}

∣∣∣∣∣ n ∈ N, t1, . . . , tn ∈ T, c1, . . . , cn ∈ C with
n∑
i=1

ci = 0

}
We may (well-)define a positive sesquilinear form 〈·, ·〉0 on H0 by the condition that〈

n∑
i=1

ci1{ti},
m∑
j=1

dj1{sj}

〉
0

=
∑
i,j

cidjψ(s−1
j ti)

for
∑n

i=1 ci1{ti},
∑m

j=1 dj1sj ∈ H0. Consider the subspace

N = {f ∈ H0 | 〈f, f〉0 = 0}

We define H = H0/N and we denote by [f ] the coset in H corresponding to f ∈ H0. The
sesquilinear form 〈·, ·〉0 induces an inner product on H. We denote by Hπ the completion of
H with respect to this inner product.

For t ∈ T and
∑n

i=1 ci1{ti} ∈ H0, we now (well-)define

π0(t)(
n∑
i=1

ci1{ti}) =
n∑
i=1

ci1{tti}

Clearly, π0(t) is a surjective linear map on H0 which preserves 〈·, ·〉0. π0(t) induces a linear
isometry on H, and so we may by continuity extend it to a unitary operator π(t) on Hπ. For
t, t′, it is evident that π(tt′) = π(t)π(t′) on H and so by continuity it holds on all of Hπ. If
f ∈ H and {tλ} ⊆ T is a net converging to some t ∈ T , one may easily use the continuity of
ψ and the fact that T is a topological group to check that π(tλ)f converges to π(t)f in Hπ.
By denseness of H in Hπ, this proves that π is continuous in the strong operator topology.
Hence, π is a unitary representation of T on Hπ.

We now define β : T → Hπ by the condition that β(t) =
[
1{t} − 1{e}

]
∈ H for all t ∈ T .

Again, it is easy to use the contunuity of ψ and the fact that T is a topological group to check
that β is continuous. Furthermore, we see that for t1, t2 ∈ T

β(t1t2) =
[
1{t1t2} − 1{e}

]
=

[
1{t1} − 1{e}

]
+

[
1{t1t2} − 1{t1}

]
= β(t1) + π(t1)β(t2)

which proves that β is a cocycle in π. Clearly, H = span {β(t) | t ∈ T} and so β is total. Since
ψ is real and

〈β(t), β(s)〉π = ψ(s−1t)− ψ(t)− ψ(s−1) + ψ(e) = ψ(s−1t)− ψ(t)− ψ(s−1) (8.2)

for t, s ∈ T , β is real.
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Finally, (8.2) and the fact that ψ is hermitian and real implies that

−1
2
‖β(t)‖2

π = −1
2
(ψ(e)− ψ(t)− ψ(t−1)) = −1

2
(−2ψ(t)) = ψ(t)

for all t ∈ T which finishes the proof. �

Combining Lemma 8.1.5 and Lemma 8.1.6, one may easily prove the first statement in
the following important Theorem 8.1.7 about the relationship between real, total cocycles and
continuous, real, normalized, conditionally positive definite functions - a result which is similar
to the relation between continuous, positive definite functions and unitary representations in
[Fo, Proposition 3.15 and Theorem 3.20]. The proof of the second is based on the same ideas
as the proof of [Fo, Theorem 3.25]. The details may be found in [Gu] and [De].

Theorem 8.1.7 With the notation of Lemma 8.1.5, the map β 7→ ψβ induces a bijection
between the set of equivalence classes of real, total cocycles and the set of continuous, real,
normalized, conditionally positive definite functions on T . The function ψβ is pure if and only
if β is a cocycle in an irreducible representation.

In sections 8.2 and 8.3, we will consider the pair (G,K) and K-biinvariant, conditionally
positive definite functions on G. We will construct a continuous, real, normalized, condi-
tionally positive definite function which is K-biinvariant, and we will - by constructing its
corresponding cocycle of Theorem 8.1.7 - prove that it is pure. In section 8.3, we will prove a
Levy-Khinchine formula for this pair and show that all K-biinvariant, conditionally positive
definite functions may be built from this particular function and all spherical functions for
the pair (G,K).

8.2 The Haagerup cocycle and its extension to G

Consider the group G∞ of all automorphisms of the tree (X,C). We define a function ψ :
G∞ → C by the condition that ψ(g) = −d(o, g(o)) for all g ∈ G∞. This function will be kept
fixed for the remainder of this section. We will prove that it is a continuous, real, normalized,
conditionally positive definite function. To do this, we will construct its corresponding cocycle
β from Theorem 8.1.7 and show that - with the notation of Lemma 8.1.5 - ψ = ψβ .

It turns out that the construction of β is based on a well-known cocycle for the free
group which is known as the Haagerup cocycle and which has been studied in [H]. To see
this, consider the free group Γ in countably many generators and choose a countable set A
of generators. We denote by e the neutral element in Γ and by |x| the length of x ∈ Γ with
respect to the generating set A. As in chapter 3, we may regard the tree (X,C) as the Cayley
tree for Γ corresponding to A. Hence, we may identify X with Γ in a way such that for
x, y ∈ Γ it is true that {x, y} ∈ C if and only if x−1y ∈ A ∪ A−1. We may even choose the
identification such that o ∈ X corresponds to e ∈ Γ. Furthermore, for y ∈ Γ the map x 7→ yx
is an automorphism of (X,C) and so we may also regard Γ as a subgroup of G∞. We observe
that the inherited topology from G∞ on Γ is the discrete topology, i.e. the usual topology on
Γ.

To construct the cocycle β corresponding to ψ, we start by defining it on the subgroup Γ
of G∞. We consider

Λ =
{
(x, y) ∈ Γ× Γ

∣∣ x−1y ∈ A
}
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and
Λ− =

{
(x, y) ∈ Γ× Γ

∣∣ x−1y ∈ A−1
}

= {(x, y) ∈ Γ× Γ | (y, x) ∈ Λ}

We define Hπ = `2(Λ), and we denote by e(x,y) the indicator function corresponding to the
set {(x, y)} with (x, y) ∈ Λ. The set

{
e(x,y)

}
(x,y)∈Λ

clearly constitute an orthonormal basis
for the Hilbert space Hπ. For (x, y) ∈ Λ−1, we define e(x,y) = −e(y,x).

For (x, y) ∈ Λ and z ∈ Γ, we have that (zx, zy) ∈ Λ. Hence, we may define π(z)e(x,y) =
e(zx,zy). Since the map (x, y) 7→ (zx, zy) is a bijection from Λ onto Λ, this by linearity
and continuity extends to a unitary operator π(z) on Hπ. The map π is clearly a group
homomorphism from Γ into the group of unitary operators on Hπ. Since the topology on Γ
is discrete, π is a unitary representation of Γ on Hπ.

We will now define β which is a cocycle in π. To do this, consider z ∈ Γ. We may uniquely
write z as a reduced word z = a1a2 . . . an with a1, . . . , an ∈ A ∪A−1. We define

β(z) =
√

2(e(e,a1) + e(a1,a1a2) + . . .+ e(a1a2...an−1,a1a2...an))

and so β is a continuous map from Γ intoHπ. By definition, it is true that e(x,xa)+e(xa,xaa−1) =
0 for x ∈ Γ and a ∈ A∪A−1. This implies that β(z1z2) = β(z1)+π(z1)β(z2) for z1, z2 ∈ Γ and
so β is a cocycle in π. This cocycle on the free group Γ is known as the Haagerup cocycle and
has been considered in [H]. It is real, and since β(xa)− β(x) = e(x,xa) for x ∈ Γ and a ∈ A, it
is also total.

Finally, we observe that

−1
2
‖β(z)‖2

π = −1
2
2 |z| = ψ(z)

where the last equality uses the identification of Γ with a subgroup of G∞. By Lemma 8.1.5,
this proves that the restriction of ψ to Γ is a continuous, real, normalized, conditionally
positive definite function. The corresponding cocycle from Theorem 8.1.7 is the Haagerup
cocycle β.

We will now extend π to a unitary representation of G∞ and β to a cocycle in this extended
representation π such that β is the cocycle corresponding to ψ. To do this, let g ∈ G∞. By
the identification of X with Γ, we may regard g(o) as an element of Γ. Since Γ may also be
identified with a subgroup of G∞, we denote by xg ∈ Γ the automorphism corresponding to
g(o) ∈ Γ. Clearly, xg(o) = g(o) and so kg = x−1

g g ∈ K∞. Hence, we may write g = xgkg
with xg ∈ Γ and kg ∈ K∞. Furthermore, this decomposition is unique since K∞ ∩ Γ = {e}.
By definition of the topology on G∞, the map g 7→ xg is a continuous map from G∞ onto
Γ. Hence, we may extend the Haagerup cocycle β to a continuous map from G∞ into Hπ by
defining

β(g) = β(xg)

Since {x, y} ∈ C for (x, y) ∈ Λ, it is also true that {g(x), g(y)} ∈ C. Hence, (g(x), g(y)) ∈
Λ ∪ Λ−, and so we may extend π to G∞ by defining

π(g)e(x,y) = e(g(x),g(y)) (8.3)

for all (x, y) ∈ Λ. Clearly, π(g) extends by linearity and continuity to a unitary operator π(g)
on Hπ. Since the relation (8.3) also holds for (x, y) ∈ Λ−, it is true that π(g1g2) = π(g1)π(g2)
for g1, g2 ∈ G∞. Finally, it follows by the definition of the topology on G∞ that g 7→ π(g)e(x,y)
is continuous which implies that π is continuous in the strong operator topology. Hence, we
have extended π to a unitary representation of G∞.
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We will prove that the extended map β is a cocycle in π. To see this, let g, h ∈ G∞ and
write with the above notation g = xgkg, h = xhkh and kgxh = xkgxh

kkgxh
. By definition, β is

right-invariant under K∞ and so

β(gh) = β(xgkgxh) = β(xgxkgxh
) = β(xg) + π(xg)β(xkgxh

) = β(g) + π(xg)β(xkgxh
) (8.4)

Here we have used that β is a cocycle in π on Γ. Now consider the chain x0, x1, . . . , xn with
x0 = o and xn = kg(xh(o)). We have that xkgxh

(o) = xn, and so it follows by definition that

β(xkgxh
) =

√
2(e(x0,x1) + e(x1,x2) + . . .+ e(xn−1,xn))

However, we also see that

π(kg)β(xh) =
√

2(e(x0,x1) + e(x1,x2) + . . .+ e(xn−1,xn))

and so β(xkgxh
) = π(kg)β(xh). Inserting this in (8.4), we have that

β(gh) = β(g) + π(xg)π(kg)β(xh) = β(g) + π(g)β(h)

which proves that β is a cocycle in π. Since β’s restriction to Γ is total, the same is of
course true for the extended cocycle, and it is an immediate consequence of the definition of
the extension that β is also real. Since ψ(g) = ψ(xg) for all g ∈ G∞, we finally have that
ψ(g) = −1

2 ‖β(g)‖2
π for all g ∈ G and so ψ is a conditionally positive definite function which

is obviously continuous, real and normalized and whose corresponding cocycle as in Theorem
8.1.7 is β.

It turns out that ψ is even pure. To see this, we will exploit Theorem 8.1.7 and prove that
the representation π is irreducible.

Fix an edge {o, x} ∈ C, and consider the group Aut({o, x}) of automorphisms of the tree
{o, x}. This is clearly the cyclic group of order 2 whose generator we denote by t and so there
exists exactly two irreducible unitary representations of {o, x}. We will consider one of those,
namely the one-dimensional unitary representation σ which is defined by the condition that
σ(t) = −1. Furthermore, we define the subgroups

G̃∞({o, x}) = {g ∈ G∞ | g({o, x}) = {o, x}}

and
G∞({o, x}) = {g ∈ G∞ | g(o) = o and g(x) = x}

and observe that Aut({o, x}) is isomorphic to the quotient group G̃∞({o, x})/G∞({o, x}). As
in chapter 6, we will regard σ as an irreducible unitary representation of G∞({o, x}) which
is trivial on G∞({o, x}), and we denote by πσ the representation of G∞ induced by σ. If we
by {gα}α∈A denote a set of representatives for the equivalence classes in G∞/G̃∞({o, x}), we
recall that the representation space Hπσ of πσ consists of functions f : G∞ → C with the
properties that

f(gh) = σ(h)f(g)

for all g ∈ G∞ and all h ∈ G̃∞({o, x}) and that∑
α∈A

|f(gα)|2 <∞
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and the inner product 〈·, ·〉πσ
on Hπσ is given by

〈f1, f2〉πσ
=

∑
α∈A

f1(gα)f2(gα)

for all f1, f2 ∈ Hπσ . The representation πσ is defined by the condition that

(πσ(g)f)(h) = f(g−1h)

for all g, h ∈ G∞ and f ∈ Hπσ .
Now consider (a, b) ∈ Λ∪Λ−1, and observe that {a, b} ∈ C. We define f(a,b) : G∞ → C by

the condition that

f(a,b)(g) =


1 if g(o) = a and g(x) = b

−1 if g(o) = b and g(x) = a

0 otherwise

and observe that f(a,b) ∈ Hπσ . Clearly, the set
{
f(a,b)

}
(a,b)∈Λ

consitute an orthonormal set
in Hπσ . Since {a, b}(a,b)∈Λ = C, the set is even an orthonormal basis for Hπσ . Hence, we
may define a unitary operator U : Hπ → Hπσ by the condition that Ue(a,b) = f(a,b) for all
(a, b) ∈ Λ. Since Ue(a,b) = f(a,b) also for (a, b) ∈ Λ−1, it is true that

πσ(g)Ue(a,b) = πσ(g)f(a,b) = f(g(a),g(b)) = Ue(g(a),g(b)) = Uπ(g)e(a,b)

for all (a, b) ∈ Λ and all g ∈ G∞, and so it follows by linearity and continuity that πσ(g)U =
Uπ(g) for all g ∈ G∞. This proves π and πσ are equivalent.

Since it is a consequence of Remark 6.5.5 that πσ is irreducible, we have proved that π is
also irreducible. The cocycle corresponding to ψ as in Theorem 8.1.7 is a cocycle in π, and
so it follows by Theorem 8.1.7 that ψ is a pure conditionally positive definite function.

We collect these observations in the following Theorem 8.2.1:

Theorem 8.2.1 The function ψ : G∞ → C given by ψ(g) = −d(o, g(o)) for all g ∈ G∞ is a
continuous, real, normalized, conditionally positive definite function which is pure. The corre-
sponding cocycle as in Theorem 8.1.7 is the extended Haagerup cocycle β whose corresponding
representation π is irreducible.

Remark 8.2.2 In [KuV], the function ψ has been considered for the case where (X,C) is a
locally finite, homogeneous tree of order q + 1. Using an extension of the Haagerup cocycle
which is similar to the one constructed above, it is proved that ψ is a continuous, real,
normalized, conditionally positive definite function, and the corresponding cocycle β and
representation π as in Theorem 8.1.7 are constructed using an approach similar to the one
above. However, an explicit decomposition of ψ is given which proves that ψ is not pure in
the locally finite case.

This is, however, not surprising. Indeed, Λ ∪ Λ−1 may clearly be identified with the set
E of oriented edges in (X,C) on which G∞ acts continuously (when E is endowed with the
discrete topology). Hence, we may consider the natural representation of G∞ on `2(E). A
function in `2(E) is said to be even if f((a, b)) = f((b, a)) for all {a, b} ∈ C. Similarly, f is said
to be odd if f((a, b)) = −f((b, a)) for all {a, b} ∈ C. We denote by V+ the closed subspace of
even functions in `2(E) and by V− the closed subspace of odd functions in `2(E). Evidently,
V+ and V− are invariant subspaces of `2(E), and - using the identification of Λ ∪ Λ−1 with E
- it is not hard to see that `2(E) = V+ ⊕ V−. It is easy to check that the representation π is
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equivalent to the subrepresentation corresponding to V−. As seen above, this representation
is irreducible if (X,C) is of countable order.

If (X,C) is locally finite of order q + 1, this is, however, not the case. The subspace

H− =

f ∈ V−
∣∣∣∣∣∣

∑
{a,b}∈C

f((a, b)) = 0 for all a ∈ X

 (8.5)

is clearly invariant, and so π is not irreducible. By Theorem 8.1.7, this is in agreement with
the fact that ψ is not pure in this case. As seen in [FN, Theorem 3.2.6], the subrepresentation
corresponding to H− is actually irreducible, and one of only two irreducible special repre-
sentations, cf. Remark 2.5.4. The other one is the subrepresentation corresponding to the
subspace H+ whose definition is obtained from (8.5) by replacing V− with V+.

It should be noticed that the existence of exactly two irreducible special representations
is a feature shared by the case where (X,C) has countable order. This is seen by the discus-
sion of irreducible representations in Remark 6.5.5 from which it follows that the only two
irreducible special representations may be obtained by inducing the two irreducible represen-
tations of Aut({o, x}) from G̃∞({o, x}) to G∞. These are equivalent to the representations
corresponding to the subspaces V+ and V−, respectively. The extra condition in (8.5) to get
irreducibility disappears in the case of a tree of countable order. A similar pattern has been
observed before, cf. Remark 5.2.4.

Finally, one should notice that if one naively considers the limit for q → ∞ of the de-
composition of ψ in [KuV, Theorem 5], the second term vanishes, and we are left with the
first term which is a conditionally positive definite function corresponding to the "‘negative"’
special representation. This suggests that in the case of a tree of countable order, ψ should
be pure and correspond to a cocycle in the "‘negative"’ special representation. As seen above,
these naive suggestions turn out to be correct.

Having proved that ψ is conditionally positive definite and pure, the next section is devoted
to the proof of the fact that it plays a key role as a building block for all K-biinvariant,
conditionally positive definite functions.

8.3 A Levy-Khinchine formula for (G, K)

In the previous section, we have proved that the function ψ is conditionally positive definite.
The same may of course be said of its restriction to G. We will abuse the notation and for the
rest of this section ψ will refer to this restriciton. Clearly, ψ is K-biinvariant. Another class
of K-biinvariant, conditionally posive definite functions are the positive definite spherical
functions for the pair (G,K). The objective of this section is to prove that this family
together with ψ constitute the building blocks from which we may construct all K-biinvariant,
conditionally positive definite functions on G. This is the content of Theorem 8.3.1 which gives
a Levy-Khinchine formula for the pair (G,K).

Theorem 8.3.1 Let ϕ : G→ C be a K-biinvariant function. Then ϕ is conditionally positive
definite if and only if there exist constants C0 ∈ R, C1 ≥ 0 and a Radon measure µ on [−1, 1)
with ∫

[−1,1)
(1− c) µ(dc) <∞ (8.6)

such that
ϕ(g) = C0 − C1d(o, g(o))−

∫
[−1,1)

(1− cd(o,g(o))) µ(dc) (8.7)
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for all g ∈ G. In this case, the constants C0 and C1 and the measure µ are all unique.

For the proof which is inspired by ideas in [BCR] and [Boua], we need the following famous
result of Schoenberg, cf. [Sc, page 527] and [BCR, Theorem 3.2.2]. We recall that a complex-
valued function ϕ on a group is said to be negative definite if and only −ϕ is conditionally
positive definite.

Theorem 8.3.2 Let T be a group and ϕ : T → C be a function on T . Then T is negative
definite if and only if e−tϕ is positive definite for all t > 0.

Furthermore, we need for the uniqueness part of the theorem the following technical lemma:

Lemma 8.3.3 Let µ1 and µ2 be Radon measures on [−1, 1) with the property that∫
[−1,1)

(1− c) µj(dc) <∞

for j = 1, 2. Assume that∫
[−1,1)

(1− cn) µ1(dc) =
∫

[−1,1)
(1− cn) µ2(dc) (8.8)

for all n ≥ 0. Then ∫
[−1,1)

cm(1− cn) µ1(dc) =
∫

[−1,1)
cm(1− cn) µ2(dc)

for all n,m ≥ 0.

Proof. Let j = 1, 2. Denote by λn the normalized Haar measure on Kn. Since the map
g 7→ cd(o,g(o)) with c ∈ [−1, 1) by Theorem 3.2.1 is spherical for the pair (G,K), it is true that

lim
n→∞

∫
Kn

cd(o,gkh(o)) λn(dk) = cd(o,g(o))cd(o,h(o)) (8.9)

for all g, h ∈ G and all c ∈ [−1, 1). We begin by proving that

lim
n→∞

∫
Kn

∫
[−1,1)

(1− cd(o,gkh(o))) µj(dc) λn(dk) =
∫

[−1,1)
(1− cd(o,g(o))cd(o,h(o))) µj(dc) (8.10)

for all g, h ∈ G.
To do this, we fix g, h ∈ G. Let n ≥ 0. It follows by the proof of Corollary 3.2.7 that Kn is

second countable, and the same is clearly true for [−1, 1). Hence, it follows by [Co, Proposition
7.6.2] that the Borel σ-algebra onKn×[−1, 1) is the product of the Borel σ-algebras onKn and
[−1, 1). The non-negative function (k, c) 7→ 1−cd(o,gkh(o)) is clearly continuous on Kn×[−1, 1)
and so measurable with respect to the product of the Borel σ-algebras on Kn and [−1, 1).
Since µj is a Radon measure and [−1, 1) is σ-compact, µj is σ-finite. Hence, it follows by the
classical version of Tonelli’s theorem that∫

Kn

∫
[−1,1)

(1− cd(o,gkh(o))) µj(dc) λn(dk) =
∫

[−1,1)

∫
Kn

(1− cd(o,gkh(o))) λn(dk) µj(dc) (8.11)

We observe that for all n ≥ 0 the function k 7→ d(o, gkh(o)) is bounded on Kn by some fixed
m ∈ N (which is independent of n). Since λn is a probability measure this implies that the

112



A Levy-Khinchine formula for (G,K)

function c 7→
∫
Kn

(1 − cd(o,gkh(o))) λn(dk) on [−1, 1) for all n ≥ 0 is bounded by the function
f : [−1, 1) → [0,∞) given by

f(c) =

{
1− cm if c ∈ [0, 1)
1− c if c ∈ [−1, 0)

By assumption, the function c 7→ 1−c on [−1, 1) is integrable with respect to µj . Furthermore,
we see that 1− cm = (1− c)

∑m−1
i=0 cj . Since c 7→

∑m−1
j=0 cj is bounded on [−1, 1), this shows

that also the function c 7→ 1 − cm on [−1, 1) is integrable with respect to µj . Hence, f is
µj-integrable. Using this, (8.9) and dominated convergence, we see that

lim
n→∞

∫
[−1,1)

∫
Kn

(1− cd(o,gkh(o))) λn(dk) µj(dc) =
∫

[−1,1)
(1− cd(o,g(o))cd(o,h(o))) µj(dc) (8.12)

Combining (8.11) and (8.12), we get (8.10).
(8.10) and the assumption (8.8) now imply that∫

[−1,1)
(1− cd(o,g(o))cd(o,h(o))) µ1(dc) =

∫
[−1,1)

(1− cd(o,g(o))cd(o,h(o))) µ2(dc) (8.13)

Subtracting the assumption (8.8) (with n = d(o, g(o))) from (8.13), we see that∫
[−1,1)

cd(o,g(o))(1− cd(o,h(o))) µ1(dc) =
∫

[−1,1)
cd(o,g(o))(1− cd(o,h(o))) µ2(dc)

If we for n,m ≥ 0 choose g, h ∈ G with n = d(o, g(o)) and m = d(o, h(o)), this finishes the
proof. �

Proof of Theorem 8.3.1. We first assume that ϕ is given by the expression in (8.7) for all
g ∈ G. Observe that the integrand in (8.7) is integrable for all g ∈ G by the assumption in (8.6)
since 1−cn = (1−c)

∑n−1
i=0 c

j for all n ≥ 1 and c 7→
∑n−1

j=0 c
j is bounded on [−1, 1). Since C0 is

real, the first term is conditionally positive definite. The fact that C1 ≥ 0 and Theorem 8.2.1
imply that the second term has the same property. Finally, the map g 7→ cd(o,g(o)) is for all
c ∈ [−1, 1) positive definite by Corollary 3.2.3, and so the map g 7→ cd(o,g(o))−1 is conditionally
positive definite. Hence, the same holds for the third term and so ϕ is conditionally positive
definite.

Now assume that ϕ is conditionally positive definite. Since ϕ(g−1) = ϕ(g) for all g ∈ G,
it follows that C0 = ϕ(e) is real. Define ψ : G → C by the condition that ψ(g) = ϕ(g) − C0

for all g ∈ G. Clearly, ψ is also conditionally positive definite. Hence, −ψ is negative definite,
and so it follows by Theorem 8.3.2 that etψ is positive definite for all t > 0. Since ψ(e) = 0
and ψ is K-biinvariant, it follows by Corollary 3.2.7 that for all n ∈ N there exists a Borel
probability measure νn on [−1, 1] such that

e
1
n
ψ(g) =

∫
[−1,1]

cd(o,g(o)) νn(dc) (8.14)

for all g ∈ G.
By differentiability, we observe that

lim
n→∞

e
1
n
ψ(g) − 1

1
n

= ψ(g)
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for all g ∈ G. This implies that for each g ∈ G there exists a constant Cg > 0 such that∣∣∣∣∣e
1
n
ψ(g) − 1

1
n

∣∣∣∣∣ ≤ Cg

for all n ∈ N. Using (8.14) and the fact that νn is a probability measure, this shows that∫
[−1,1]

n(1− cd(o,g(o))) νn(dc) =

∣∣∣∣∣
∫

[−1,1]
(cd(o,g(o)) − 1)n νn(dc)

∣∣∣∣∣ =

∣∣∣∣∣e
1
n
ψ(g) − 1

1
n

∣∣∣∣∣ ≤ Cg (8.15)

for all n ∈ N and g ∈ G.
For each n ∈ N, we consider the Borel measure τn on [−1, 1] given by

τn(A) =
∫
A
n(1− c) νn(dc)

for all Borel sets A ⊆ [−1, 1]. By choosing g0 ∈ G with d(o, g0(o)) = 1, we see by (8.15) that
τn([−1, 1]) ≤ Cg0 for all n ∈ N. Furthermore, by Theorem [Co, Proposition 7.2.3] the measures
τn are Radon measures for all n ∈ N. By the Riesz representation theorem [Ru, Theorem
6.19], the set of regular complex measures M ([−1, 1]) on [−1, 1] is isometrically isomorphic
to the continuous dual of the normed vector space C ([−1, 1]) consisting of all continuous
functions on the compact space [−1, 1] (with the supremum norm). By the Banach-Alaoglu
theorem [T, Theorem 1.48], this implies that the closed unit ball in M ([−1, 1]) is compact in
the weak-* topology. Since M ([−1, 1]) by [T, Proposition 1.43] is a topological vector space
in the weak-* topology, the closed ball of radius Cg0 is also compact in this topology. Hence,
there exists a subsequence nj of N and a regular complex measure τ on [−1, 1] such that τnj

converges to τ in the weak-* topology, i.e.

lim
j→∞

∫
[−1,1]

f(c) τnj (dc) =
∫

[−1,1]
f(c) τ(dc)

for all f ∈ C ([−1, 1]). As a special case, this implies that
∫
[−1,1] f(c) τ(dc) ≥ 0 for f ∈

C([−1, 1]) with f ≥ 0 and so it follows by the Riesz representation theorem [Ru, Theorem
6.19] that τ is a positive Radon measure on [−1, 1].

Now fix g ∈ G. Consider the function f : [−1, 1] → C given by the condition that

f(c) =

{
cd(o,g(o))−1

1−c if c 6= 1
−d(o, g(o)) if c = 1

By differentiability, limc→1−
cd(o,g(o))−1

1−c = −d(o, g(o)) and so f ∈ C([−1, 1]). Hence, we see
that

ψ(g) = lim
j→∞

e
1

nj
ψ(g) − 1

1
nj

= lim
j→∞

∫
[−1,1]

nj(cd(o,g(o)) − 1) νnj (dc)

= lim
j→∞

∫
[−1,1]

f(c)nj(1− c) νnj (dc) = lim
j→∞

∫
[−1,1]

f(c) τnj (dc)

=
∫

[−1,1]
f(c) τ(dc) (8.16)

Furthermore, we observe that∫
[−1,1]

f(c) τ(dc) = τ({1})f(1) +
∫

[−1,1)

cd(o,g(o)) − 1
1− c

τ(dc) (8.17)
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We now define a Borel measure µ on [−1, 1) by the condition that

µ(A) =
∫
A

1
1− c

τ(dc)

for all Borel sets A ⊆ [−1, 1), and by finiteness of τ we clearly have that∫
[−1,1)

(1− c) µ(dc) <∞

Furthermore, it follows by [Co, Proposition 7.2.3] and [Fo, Proposition 2.23] that µ is a Radon
measure. If we put C1 = τ({0}) ≥ 0, we combine (8.16) and (8.17) to get

ϕ(g)− C0 = ψ(g) = −C1d(o, g(o))−
∫

[−1,1)
(1− cd(o,g(o))) µ(dc)

This finishes the existence part of the proof.
To prove uniqueness, we assume that ϕ is given by the expression (8.7). We immediately

observe that C0 = ϕ(e) which proves uniqueness of C0. Now choose for n ≥ 1 gn ∈ G such
that d(o, gn(o)) = n. We then have that

ϕ(e)− ϕ(gn)
n

= C1 +
∫

[−1,1)

1− cn

n
µ(dc)

Clearly, limn→∞
1−cn
n = 0 for all c ∈ [−1, 1). Furthermore, we see that∣∣∣∣1− cn

n

∣∣∣∣ =

∣∣∣∣∣(1− c)
∑n−1

j=0 c
j

n

∣∣∣∣∣ ≤ (1− c)
n

n
= 1− c

for all c ∈ [−1, 1), and since c 7→ 1− c is µ-integrable by assumption, it follows by dominated
convergence that limn→∞

∫
[−1,1)

1−cn
n µ(dc) = 0. Hence, we see that C1 = limn→∞

ϕ(e)−ϕ(gn)
n

which proves uniqueness of C1.
To prove uniqueness of µ, we consider - in light of the previous observations - Radon

measures µ1 and µ2 on [−1, 1) with the properties that∫
[−1,1)

(1− cd(o,g(o))) µ1(dc) =
∫

[−1,1)
(1− cd(o,g(o))) µ2(dc)

for all g ∈ G and ∫
[−1,1)

(1− c) µj(dc) <∞

for j = 1, 2. It follows by Lemma 8.3.3 that∫
[−1,1)

cd(o,g(o))(1− cn) µ1(dg) =
∫

[−1,1)
cd(o,g(o))(1− cn) µ2(dg) (8.18)

for all g ∈ G and all n ≥ 0. The functions c 7→ 1− cn are µj-integrable for j = 1, 2 and n ≥ 0,
and so we define for n ≥ 0 and j = 1, 2 the finite Borel measure µnj on [−1, 1] by the condition
that

µnj (A) =
∫
A\{1}

(1− cn) µj(dc)

for all Borel sets A ⊆ [−1, 1]. It now follows by (8.18) that∫
[−1,1]

cd(o,g(o)) µn1 (dc) =
∫

[−1,1]
cd(o,g(o)) µn2 (dc)
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for all g ∈ G and all n ≥ 0. Hence, it follows by the uniqueness part of Theorem 1.3.6 that
µn1 = µn2 for all n ≥ 0 and so∫

A
(1− cn) µ1(dc) =

∫
A
(1− cn) µ2(dc) (8.19)

for all Borel sets A ⊆ [−1, 1).
Now let m ≥ 1 and consider a Borel set A ⊆ (− 1

m ,
1
m). We observe that

|1− cn| = (1− c)

∣∣∣∣∣∣
n−1∑
j=0

cj

∣∣∣∣∣∣ ≤ (1− c)
n−1∑
j=0

(
1
m

)j ≤ 1
1− 1

m

(1− c)

for all c ∈ A and all n ≥ 1. Since limn→∞(1−cn)1A(c) = 1A(c) for all c ∈ [−1, 1), it follows by
dominated convergence and (8.19) that µ1(A) = µ2(A). By basic measure theory, this implies
that µ1(A) = µ2(A) for all Borel sets A ⊆ (−1, 1). Since (8.19) with A = {−1} and n odd
implies that 2µ1({−1}) = 2µ2({−1}), we see that µ1 = µ2.

This finishes the proof. �

From the Levy-Khinchine decomposition in Theorem 8.3.1, we see that everyK-biinvariant,
conditionally positive definite function may be constructed using the positive definite spheri-
cal functions for the pair (G,K) - which are all bounded - and only one unbounded function,
namely the function ψ. Hence, the decomposition in (8.7) consists of a bounded and an
unbounded part.

Finally, we immediately deduce the following Corollary 8.3.4:

Corollary 8.3.4 Let ϕ : G → C be continuous, K-biinvariant and conditionally positive
definite. Then ϕ is real and bounded from above.

8.4 A Levy-Khinchine formula for (K, Kω)

In analogue with the previous section, we will also consider continuous, conditionally positive
definite functions on K which are Kω-biinvariant. It turns out that these are all bounded and
may be built solely from the spherical functions for the pair (K,Kω) (which are all positive
definite). This will be clear from the Levy-Khinchine decomposition formula for the pair
(K,Kω) in Theorem 8.4.1 which we will prove using methods and ideas similar to the ones
used in the proof of Theorem 8.3.1.

Theorem 8.4.1 Let ϕ : K → C be a function. Then ϕ is continuous, Kω-biinvariant and
conditionally positive definite if and only if there exist a constant C ∈ R and a sequence
{an}∞n=1 ∈ `1(N) of non-negative numbers such that

ϕ(g) = C −
∞∑
n=1

an1Kc
xn

(g) (8.20)

for all g ∈ K. If this is the case, the constant C and the sequence {an}∞n=1 are both unique.

Proof. We first assume that ϕ is given by the expression in (8.20) for all g ∈ K. Since the
function 1Kc

n
is clearly Kω-biinvariant for all n ≥ 1, ϕ is Kω-biinvariant. Let {gλ} ⊆ K be

a net converging to g ∈ K in the topology inherited by K∞. If g /∈ Kω, it follows by the
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definition of the topology that there exists λ0 such that
{

1Kc
xn

(gλ)
}∞
n=1

=
{

1Kc
xn

(g)
}∞
n=1

for
all λ ≥ λ0. Hence, ϕ(gλ) = ϕ(g) for all λ ≥ λ0. If g ∈ Kω, it is a consequence of the definition
of the topology that for each N ≥ 1, there exists a λ0 such that 1Kc

xn
(gλ) = 0 for all n ≤ N

and all λ ≥ λ0. Hence, ϕ(g) = C = limλ ϕ(gλ). This proves that ϕ is continuous in the
topology inherited by K∞ and so in the inductive limit topology.

Finally, we observe that the fact that C ∈ R implies that the first term in (8.20) is
conditionally positive definite. Furthermore, the map 1Kxn

is for all n ≥ 1 positive definite by
Theorem 5.3.1, and so the map −1Kc

xn
= 1Kxn

−1 is conditionally positive definite. Hence, the
fact that the numbers an are all non-negative implies that the second term is also conditionally
positive definite and so the same is true for ϕ.

Now assume that ϕ is continuous, Kω-biinvariant and conditionally positive definite. Since
ϕ(g−1) = ϕ(g) for all g ∈ K, it follows that C = ϕ(e) is real. Define ψ : K → C by the
condition that ψ(g) = ϕ(g)−C for all g ∈ G. Clearly, ψ is also conditionally positive definite.
Hence, −ψ is negative definite, and so it follows by Theorem 8.3.2 that etψ is positive definite
for all t > 0. Since ψ(e) = 0 and ψ is continuous and K-biinvariant, it follows by Corollary
5.3.6 that for all m ∈ N there exist a sequence {amn }

∞
n=0 of non-negative real numbers with∑∞

n=0 a
m
n = 1 such that

e
1
m
ψ(g) =

∞∑
n=0

amn 1Kxn
(g) (8.21)

for all g ∈ K.
By differentiability, we observe that

lim
m→∞

e
1
m
ψ(g) − 1

1
m

= ψ(g) (8.22)

for all g ∈ K. This implies that for each g ∈ K there exists a constant Cg > 0 such that∣∣∣∣∣e
1
m
ψ(g) − 1

1
m

∣∣∣∣∣ ≤ Cg

for all m ∈ N. Using (8.21) and the fact that
∑∞

n=0 a
m
n = 1, we see that

∞∑
n=1

mamn 1Kc
xn

(g) =
∞∑
n=0

amn (1− 1Kxn
(g))

1
m

=

∣∣∣∣∣
∑∞

n=0 a
m
n 1Kxn

(g)− 1
1
m

∣∣∣∣∣
=

∣∣∣∣∣e
1
m
ψ(g) − 1

1
m

∣∣∣∣∣ ≤ Cg (8.23)

for all m ∈ N and g ∈ G.
We now put bmn = mamn for n,m ≥ 1 and consider the sequences {bmn }

∞
n=1 ∈ `1(N) for

m ≥ 1. By choosing g0 ∈ K \Kx1 in (8.23), we see that
∑∞

n=1 b
m
n ≤ C(g0) for all m ≥ 1. It is

well-known that `1(N) may be isometrically embedded into the dual `∞(N)∗. By the Banach-
Alaoglu theorem [T, Theorem 1.48], the closed unit ball in `∞(N)∗ is compact in the weak-*
topology. Since `∞(N)∗ by [T, Proposition 1.43] is a topological vector space in the weak-*
topology, the closed ball of radius Cg0 is also compact in this topology. Hence, there exists a
convergent subnet

{{
bλn

}∞
n=1

}
λ∈A of the sequence {{bmn }

∞
n=1}

∞
m=1 ∈ `

∞(N)∗. Let Λ ∈ `∞(N)∗

denote its limit.
By weak-* convergence, we observe that limλ

∑∞
n=1 b

λ
ncn = Λ({cn}) for all {cn} ∈ `∞(N).

Denote for n ≥ 1 by en ∈ `∞(N) the sequence whose n’th entry is 1 while all other entries are
0. Define for n ≥ 1 an = Λ(en). Since limλ b

λ
n = Λ(en) = an, we see that an ≥ 0 for all n ≥ 1.
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Let g ∈ K. By the above, we see that limλ
∑∞

n=1 b
λ
n1Kc

xn
(g) = Λ(

{
1Kc

xn
(g)

}∞
n=1

). Combin-
ing this, the limit in (8.22) and the identity in (8.23), we see that

ψ(g) = −Λ(
{

1Kc
xn

(g)
}

) (8.24)

Now define f1 to be the sequence whose entries are all 1 and define for n ≥ 2 fn =
f1−

∑n−1
i=1 en. For n ≥ 1, choose an automorphism gn ∈ K0 such that gn(x) = x for all x ∈ X0

with d(o, x) ≤ n and gn(xn+1) 6= xn+1. It is a consequence of the definition of the topology in
K0 that e = limn→∞ gn. Since ψ is continuous in the inductive limit topology, its restriction
to K0 is continuous. Hence, we see that 0 = ψ(e) = limn→∞ ψ(gn). By construction of gn,
we see that

{
1Kc

xm
(gn)

}∞
m=1

= fn+1. By (8.24), this implies that limn→∞ Λ(fn) = 0. Since∑n
k=1 ak = Λ(e1 + . . .+ en) = Λ(f1)− Λ(fn+1), this proves that {an} ∈ `1(N).
Finally, for g ∈ K \ Kω there exists n ≥ 1 such that

{
1Kc

xm
(g)

}∞
m=1

= fn. Since aj =

Λ(fj)− Λ(fj+1) for j ≥ 1, we see that

ψ(g) = −Λ(fn) = lim
k→∞

(−Λ(fn) + Λ(fk+1)) = − lim
k→∞

k∑
j=n

aj = −
∞∑
j=n

aj = −
∞∑
j=1

aj1Kc
xj

(g)

For g ∈ Kω, we have that 1Kc
xn

(g) = 0 for all n ≥ 1, and so it is by (8.24) immediate that
ψ(g) = −

∑∞
n=1 an1Kc

n
(g). Since ϕ = C + ψ, we see that ϕ satisfies (8.20).

For the uniqueness, assume that ϕ is written as in (8.20). Choose for n ≥ 1 an automor-
phism gn ∈ Kxn−1 ∩Kc

xn
. We now see that C = ϕ(e) and that an = ϕ(gn) − ϕ(gn+1) for all

n ≥ 1 which proves uniqueness of C and the sequence {an}∞n=1. �

As is seen by the theorem, all continuous, Kω-biiinvariant, conditionally positive definite
functions may be constructed using only the spherical functions (K,Kω), and they are all
bounded. There is no unbounded part in the Levy-Khinchine decomposition (8.20). Observe
that the restriction of the function ψ : g 7→ −d(o, g(o)) to K is just the 0-function and so the
study of this particular function is completely irrelevant for the pair (K,Kω).

Finally, we deduce the following corollary:

Corollary 8.4.2 Let ϕ : K → C be continuous, Kω-biinvariant and conditionally positive
definite. Then ϕ is real and bounded.
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