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ABSENCE OF POSITIVE EIGENVALUES FOR HARD-CORE
N-BODY SYSTEMS

K. ITO AND E. SKIBSTED

Abstract. We show absence of positive eigenvalues for generalized 2-body hard-
core Schrödinger operators under the condition of bounded strictly convex obsta-
cles. A scheme for showing absence of positive eigenvalues for generalized N -body
hard-core Schrödinger operators, N ≥ 2, is presented. This scheme involves high
energy resolvent estimates, and for N = 2 it is implemented by a Mourre commu-
tator type method. A particular example is the Helium atom with the assumption
of infinite mass and finite extent nucleus.
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1. Introduction and results

Consider the N -body Schrödinger operator

H =
N∑

j=1

(
− 1

2mj

∆xj + V ncl
j (xj)

)
+

∑

1≤i<j≤N
V elec
ij (xi − xj) (1.1)

for a system of N d-dimensional particles in the exterior of a bounded strictly
convex obstacle Θ1 ⊂ Rd (for N = 1 the last term is omitted). Whence H is
an operator on the Hilbert space L2(Ω); Ω = (Ω1)N , Ω1 = Rd \ Θ1. It is defined
more precisely by imposing the Dirichlet boundary condition. This operator models
a system of N d-dimensional charged particles interacting with a fixed charged
nucleus of finite extent, for example a ball (or possibly a somewhat deformed ball).
In particular (assuming 0 ∈ Θ1) we could have Coulomb interactions V ncl

j (y) =

qjq
ncl|y|−1 and V elec

ij (y) = qiqj|y|−1 in dimension d ≥ 2. We address the problem of
proving absence of positive eigenvalues. While this property is well-known for the
one-body problem it is open for N ≥ 2. We introduce for obstacle problems of this
type a general procedure involving high energy resolvent estimates for effective sub-
Hamiltonians. We show that this scheme can be implemented for the case N = 2. In
this case essentially such an effective sub-Hamiltonian is a one-body Hamiltonian for
an exterior region. The result is shown in the so-called generalized 2-body hard-core
framework.

1.1. Usual generalized N-body systems. We will work in a generalized frame-
work. We first review the analogue of this without obstacles, i.e. with “soft poten-
tials”. This is given by real finite dimensional vector space X with an inner prod-
uct q, i.e. (X, q) is Euclidean space, and a finite family of subspaces {Xa | a ∈ A}
closed with respect to intersection. We refer to the elements of A as cluster decom-
positions (not to be motivated here). The orthogonal complement of Xa in X is
denoted Xa, and correspondingly we decompose x = xa ⊕ xa ∈ Xa ⊕Xa. We order
A by writing a1 ⊂ a2 if Xa1 ⊂ Xa2 . It is assumed that there exist amin, amax ∈ A
such that Xamin = {0} and Xamax = X. Let B = A \ {amin}. The length of a chain
of cluster decompositions a1 ( · · · ( ak is the number k. Such a chain is said to
connect a = a1 and b = ak. The maximal length of all chains connecting a given
a ∈ A \ {amax} and amax is denoted by #a. We define #amax = 1 and denoting
#amin = N + 1 we say the family {Xa | a ∈ A} is of N -body type. Whence the
generalized 2-body framework is characterized by the condition Xa ∩ Xb = 0 for
a, b 6= amin, a 6= b.

The N -body Schrödinger operator H introduced above (now considered without
an obstacle) can be written on the form

H = H0 + V

where 2H0 is (minus) the Laplace-Beltrami operator on the space

X = (Rd)N , q =
N∑

j=1

mj|xj|2,

V = V (x) =
∑

b∈B Vb(x
b) and indeed the relevant family {Xa |a ∈ A} of subspaces as

discussed above is of N -body type. However this is just one example of a generalized
N -body Schrödinger operator. The general construction of such an operator H is
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similar, and under the following condition it is well-defined with form domain given
by the Sobolev space H1(X), cf. [RS, Theorem X.17].

Condition 1.1. There exists ε > 0 such that for potential Vb, b ∈ B, there is a

splitting Vb = V
(1)
b + V

(2)
b , where

(1) V
(1)
b is smooth and

∂αy V
(1)
b (y) = O

(
|y|−ε−|α|

)
. (1.2)

(2) V
(2)
b is compactly supported and

(−∆ + 1)−1/2V
(2)
b (−∆ + 1)−1/2 is compact on L2(RdimXb

y ). (1.3)

Let −∆a = (pa)2 and −∆a = p2
a denote (minus) the Laplacians on L2(Xa) and

L2(Xa), respectively. Here pa = πap and pa = πap denote the internal (i.e. within
clusters) and the inter-cluster components of the momentum operator p = −i∇,
respectively. For a ∈ B, denote

V a(xa) =
∑

b⊂a
Vb(x

b),

Ha = −1
2
∆a + V a(xa),

Ha = Ha − 1
2
∆a,

Ia(x) =
∑

b 6⊂a
Vb(x

b).

We define Hamin = 0 on L2(Xamin) := C. The operator Ha is the sub-Hamiltonian
associated with the cluster decomposition a and Ia is the sum of all inter-cluster
interactions. The detailed expression of Ha depends on the choice of coordinates
on Xa.

In a natural way we have sub-Hamiltonians Ha and “inter-cluster” Hamiltonians
Ha = Ha⊗ I + I ⊗ 1

2
p2
a. Given a family {Xa | a ∈ A} of N -body type and imposing

Condition 1.1 the generalized N -body Hamiltonian is H = Hamax .
Let

T = ∪a∈A,#a≥2 σpp(Ha)

be the set of thresholds of H. The HVZ theorem [RS, Theorem XIII.17] gives the
bottom of the essential spectrum Σ2 := inf σess(H) of H by the formula

Σ2 = min
a∈A\{amax}

inf σ(Ha) = min
a∈A,#a=2

inf σ(Ha). (1.4)

It is also well-known that under rather general conditions H does not have positive
eigenvalues and the negative eigenvalues can at most accumulate at the thresholds
from below, see [FH] and [Pe].

1.1.1. Graf vector field. We give a brief review of the construction of a family of
conjugate operators for N -body Hamiltoninans originating from [Sk1]. A slightly
different proof appears in [Sk2]. This construction is based on the vector field
invented by Graf [Gra] which is a vector field satisfying the following properties, cf.
[Sk2, Lemma 4.3]. We use throughout the paper the notation 〈x〉 =

√
x2 + 1 and

N0 = N ∪ {0}.
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Lemma 1.2. There exist on X a smooth vector field ω with symmetric derivative ω∗
and a partition of unity {q̃a} indexed by a ∈ A and consisting of smooth functions,
0 ≤ q̃a ≤ 1, such that for some positive constants r1 and r2

(1) ω∗(x) ≥∑a πaq̃a.
(2) ωa(x) = 0 if |xa| < r1.
(3) |xb| > r1 on supp(q̃a) if b 6⊂ a.
(4) |xa| < r2 on supp(q̃a).
(5) For all α ∈ NdimX

0 and k ∈ N0 there exist C ∈ R:

|∂αx q̃a|+ |∂αx (x · ∇)k
(
ω(x)− x

)
| ≤ C. (1.5)

Now, proceeding as in [Sk2], we introduce the rescaled vector field ωR(x) := Rω( x
R

)
and the corresponding operator

A = AR = ωR(x) · p+ p · ωR(x); R > 1.

We also introduce the function d : R→ R by

d(E) =

{
infτ∈T (E)(E − τ), T (E) := T ∩ ]−∞, E] 6= ∅,
1, T (E) = ∅. (1.6)

These devices enter into the following Mourre estimate. We remark that all inputs
needed for the proof are stated in Lemma 1.2 and that although [Sk2, Corollary 4.5]
is stated for relatively operator compact potentials the proof of [Sk2] generalizes
to include the class of relatively form compact potentials of Condition 1.1. For a
different proof we refer to [Gri].

Lemma 1.3. For all E ∈ R and ε > 0 the exists R0 > 1 such that for all R ≥ R0

there is a neighbourhood V of E and a compact operator K on L2(X) such that

f(H)∗i[H,AR]f(H) ≥ f(H)∗{4d(E)− ε−K}f(H) for all f ∈ C∞c (V). (1.7)

Here the commutator is given by (1.13) stated below. The possibly existing local
singularities of the potential do not enter (for R large) due to Lemma 1.2 (2). This
feature motivates application to hard-core models, see Subsection 1.2.

Two of the consequences of a Mourre estimate like the one stated above are that
the set of thresholds T is closed and countable and that the eigenvalues of H can
at most accumulate at T . We discuss a third consequence, decay of non-threshold
eigenstates, in Subsection 1.2.

1.2. Generalized N-body hard-core systems. The generalized hard-core model
is a modification for the above model. For the generalized hard-core model we are
given for each a ∈ B an open subset Ωa ⊂ Xa with Xa \ Ωa compact, possibly
Ωa = Xa. Let for amin 6= b ⊂ a

Ωa
b =

(
Ωb + Xb

)
∩Xa = Ωb + Xb ∩Xa,

and for a 6= amin

Ωa =
⋂

amin 6=b⊂a
Ωa
b .

We define Ωamin = {0}.
Condition 1.4. There exists ε > 0 such that for all b ∈ B there is a splitting

Vb = V
(1)
b + V

(2)
b , where
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(1) V
(1)
b is smooth on the closure of Ωb and

∂αy V
(1)
b (y) = O

(
|y|−ε−|α|

)
. (1.8)

(2) V
(2)
b vanishes outside a bounded set in Ωb and

V
(2)
b ∈ C

(
H1

0 (Ωb), H
1
0 (Ωb)

∗). (1.9)

Here and henceforth, given Banach spaces X1 and X2, the notation C
(
X1, X2

)

and B
(
X1, X2

)
refers to the set of compact and the set of bounded operators T :

X1 → X2, respectively.
We consider for a ∈ B the Hamiltonian Ha = −1

2
∆xa + V a on L2(Ωa) with

Dirichlet boundary condition on ∂Ωa, in particular H = 1
2
p2 + V on L2(Ω) with

Dirichlet boundary condition on ∂Ω where Ω := Ωamax . The corresponding form
domain is the Sobolev space H1

0 (Ωa). Due to the continuous embedding H1
0 (Ωa) ⊂

H1
0 (Ωa

b ) for amin 6= b ⊂ a we conclude that indeed Ha is self-adjoint, cf. [RS,
Theorem X.17]. Again we define Hamin = 0, and the set of thresholds is also given
as in Subsection 1.1. We note that one can replace the Hilbert space L2(X) in
Lemma 1.3 by H := L2(Ω) and then obtain a Mourre estimate for the present
Hamiltonian H, cf. [Gri, Theorem 2.4]. All what is needed for this is to make sure
that R > 1 is so large that the rescaled Graf vector field ωR either vanishes or acts
tangentially on the boundary ∂Ω. The latter is doable due to Lemma 1.2 (2).

According to [Gri, Theorem 2.5(1)] non-threshold eigenstates decay exponentially
at rates determined by thresholds above the corresponding eigenvalues. This is a
consequence of the hard-core Mourre estimate by arguments similar to the ones of
[FH] for usual N -body Hamiltonians. In [Gri] Griesemer states as an open problem
absence of positive eigenvalues under an additional connectedness condition. This
is the problem we shall address in the present paper. The pattern of proof of [FH]
does not work except the following induction scheme: For N = 1 absence of positive
eigenvalues follows from various papers (assuming that Ω ⊂ X is connected), for
example most recently [IS2]. For N ≥ 2 we could suppose by induction that the
result holds for sub-Hamiltonians, whence that there are no positive thresholds.
Using the hard-core Mourre estimate in a similar way as for soft potentials [FH, Gri,
IS2] we then deduce that an eigenstate with corresponding positive eigenvalue would
decay super-exponentially, cf. [Gri, Theorem 2.5(1)]. This would be derived in terms
of the potential function r discussed below. Whence for any such eigenstate φ (i.e.
corresponding to a positive eigenvalue) we would have eσrφ ∈ L2(Ω) for all σ ≥ 0.
Consequently what would remain to be shown for completing the induction argument
is that super-exponentially decaying eigenstates vanish.

Although we are not able in general to implement the above scheme for showing
absence of positive eigenvalues we show a partial result which reduces the problem
to resolvent estimates for sub-system type Hamiltonians. Moreover we do in fact
implement the scheme for N = 2 under additional conditions.

Condition 1.5. Suppose N ≥ 2. For all b ∈ B \ {amax} with Ωb ( Xb the set
Θb := Xb \ Ωb 6= ∅ has smooth boundary ∂Θb = ∂Ωb and is strictly convex.

For the notion of strict convexity used in this paper we refer to Appendix B. Given
Condition 1.5, by definition if Ωb ( Xb, then dimXb ≥ 2. With minor modifications
we could have allowed dimXb = 1 in the definition of strict convexity and obtained
the same results, however for convenience we prefer not to do that.
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The main result of this paper is the following.

Theorem 1.6. Suppose N = 2 and Conditions 1.4 and 1.5. Suppose that for all

b ∈ B \ {amax} with Ωb ( Xb the term V
(2)
b = 0 while for all b ∈ B \ {amax} with

Ωb = Xb

xb · ∇V (2)
b (xb), (xb · ∇)2V

(2)
b (xb) ∈ C

(
H1(Xb), H1(Xb)∗

)
. (1.10)

Suppose that any eigenstate of H vanishing at infinity must be zero (the unique
continuation property). Then H does not have positive eigenvalues.

The unique continuation property is a well-studied subject, see for example [Ge,
JK, RS, Wo]. It is valid for a large class of potential singularities given connectedness
of Ω.

Corollary 1.7. For N = 2 charged particles confined to the exterior of a bounded
strictly convex obstacle Θ1 ⊂ Rd containing 0, d ≥ 2, the corresponding Hamiltonian
H given by (1.1) with Coulomb interactions V ncl

j (y) = qjq
ncl|y|−1 and V elec

ij (y) =

qiqj|y|−1 does not have positive eigenvalues.

Note for Corollary 1.7 that indeed Ω = (Ω1)2 \ {(x1, x2) ∈ (Rd)2 | x1 = x2} is
a connected subset of R2d for d ≥ 2 (which follows readily using that Ω1 ⊂ Rd is
connected) and that the version of the unique continuation property of [RS] applies.

Another result of this paper is the following statement in which a technical con-
dition stated in Section 2 enters.

Proposition 1.8. Suppose N ≥ 2 and Conditions 1.4 and 2.1. Suppose H does
not have positive thresholds. Suppose that any eigenstate of H vanishing at infinity
must be zero (the unique continuation property). Then H does not have positive
eigenvalues.

By imposing the analogous version of Condition 2.1 for sub-Hamiltonians as well
as the unique continuation property for these operators and for H (in addition to
Condition 1.4) we obtain that H does not have thresholds nor positive eigenvalues,
cf. the scheme discussed above. However since we are only able to verify Condi-
tion 2.1 for N = 2 using Condition 1.5 we need these restrictions in Theorem 1.6.
Nevertheless, since proving Condition 2.1 for higher N under Condition 1.4 possibly
as well as under Condition 1.5 could be a purely technical difficulty, we consider
the statement of Proposition 1.8 in such situation as a result of independent inter-
est. We devote Section 2 to the crucial step in the proof. Section 3 is devoted to
the verification of Condition 2.1 for N = 2. Supplementary material is given in
Appendices A and B.

1.3. Geometric properties. We complete this section by a brief discussion of some
properties related to Lemma 1.2, and we show an estimate which may be viewed as
a first step in a proof of (a hard-core version of) Lemma 1.3 (not to be elaborated
on in this paper). These properties will be important in Section 2.

1.3.1. Potential function. Since ω∗ is symmetric we can write

ω = ∇r2/2.

It will be important for us that the function r = r(x) can be chosen positive, smooth
and convex, see the proof of [De, Proposition 4.4] (we remark that [De] also uses
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the Graf construction although with a different regularization procedure). From the
convexity of r we learn that

∂r|dr|2 ≥ 0; ∂rf = iprf := ∇r · ∇f. (1.11a)

We have a slight extension of part of (1.5), cf. [De, Lemma 4.3 f)],

∀α ∈ NdimX
0 and k ∈ N0 : |∂αx (x · ∇)k

(
r2 − x2

)
| ≤ Cα. (1.11b)

In particular we obtain yet another useful property

∀α ∈ NdimX
0 : |∂αx

(
|dr|2 − 1

)
| ≤ Cα〈x〉−2. (1.11c)

In fact letting f = r2 − x2 the bounds (1.11c) follow from (1.11b) and the identity

|dr|2 − 1 =
x · ∇f + 4−1|df |2 − f

x2 + f
.

The rescaled r reads

rR(x) = Rr(x/R),

so that ωR = ∇r2
R/2. Clearly the bounds (1.11a)–(1.11c) are also valid for the

rescaled r (possibly with R-dependent constants). We also rescale the partition
functions of Lemma 1.2 q̃a,R(x) := q̃a(x/R) and similarly for the “quadratic” parti-
tion functions

qb(x) = q̃b(kx)
(∑

c

q̃c(kx)2
)−1/2

; k = r1/r2.

Using that

q̃c(x)q̃b(kx) = 0 if c 6⊂ b,

and Lemma 1.2 (1) we conclude that

ω∗(x) ≥
∑

b

πbq
2
b (x). (1.12)

1.3.2. Commutator calculation. We calculate

i[H,AR] = 2pω∗(x/R)p− (4R2)−1
(
∆2r2

)
(x/R)− 2ωR · ∇V, (1.13)

and using (1.12) we thus deduce

i[H,AR] ≥ 2
∑

b

qb,R p
2
b qb,R +O

(
R−2

)
− 2ωR · ∇V

= 2
∑

b

qb,R p
2
b qb,R +O

(
R−min{2,ε}).

(1.14)

1.3.3. More notation. We fix a non-negative χ ∈ C∞(R) with 0 ≤ χ ≤ 1 and

χ(t) =

{
0 for t ≤ 5/4,

1 for t ≥ 7/4.

We shall frequently use the rescaled function

χν(t) = χ(t/ν), ν > 0, (1.15)

and the notation χ+
ν = χν and χ−ν = χ̄ν = 1− χν .

For any self-adjoint operator T and state φ we write 〈T 〉φ = 〈φ, Tφ〉 for the
corresponding expectation value.
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2. Reduction to high-energy hard-core sub-system resolvent bounds

Under Condition 1.4 we propose a scheme for showing

(H − E)φ = 0, E > 0, and ∀σ ≥ 0 : eσrφ ∈ H = L2(Ω)⇒ φ = 0. (2.1)

Here and henceforth r = rR is the rescaled potential function. We suppress the
dependence on R which is fixed (large) from this point. The proposed method relies
on the unique continuation property and certain high-energy hard-core sub-system
type resolvent bounds. The latter are stated in Condition 2.1 given below. Whence
we give the crucial step of the proof Proposition 1.8.

2.1. General scheme. For φ given as in (2.1) we let for any ν ≥ 1 and σ ≥ 0

φσ = φσ,ν := χνe
σ(r−4ν)φ ∈ H; χν = χν(r). (2.2)

Putting Hσ = H − σ2

2
|dr|2 we note that

(Hσ − E)φσ = − iσ(Re pr)φσ − ieσ(r−4ν)R(ν)φ, (2.3)

where R(ν) = i[H0, χν ] = Re
(
χ′νp

r
)
. Whence by undoing the commutator, cf.

Appendix A,

〈i[Hσ, A]〉φσ = −2σRe〈(Re pr)A〉φσ − 2 Re〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ. (2.4)

The first term of (2.4) is computed

− 2σRe((Re pr)A)

= −σ(Re pr)(2rRe pr − i|dr|2) + h.c.

= −4σ(Re pr)rRe pr + σ(∂r|dr|2).

(2.5)

As for the second term we estimate (recall the notation χ̄ν = 1− χν)

− 2 Re〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ

≤ ‖eσ(r−4ν)R(ν)φ‖2 + ‖χ̄2νAχνe
σ(r−4ν)φ‖2

≤
{
‖χ′νeσ(r−4ν)prφ‖+ 1

2
‖(χ′′ν |dr|2 + χ′ν(∆r))e

σ(r−4ν)φ‖
}2

+
{
‖2rχ̄2νχνe

σ(r−4ν)prφ‖+ ‖χ̄2ν(2r|dr|2χ′ν + 2σrχν |dr|2

+ 1
2
(∆r2)χν)e

σ(r−4ν)φ‖
}2

≤ Cν2‖χν/2|pφ|‖2 + Cν2〈σ〉2‖φ‖2

≤ Cν2〈p2〉φ + Cν2〈σ〉2‖φ‖2.

Note that C > 0 does not depend on ν or σ because r ≤ 2ν on suppχ′ν . Using the
relative ε-smallness of the potential we have for some C > 0

〈
p2
〉
φ
≤ 〈4H + C〉φ = (4E + C)‖φ‖2, (2.6)

and we deduce that

−2 Re〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ ≤ Cν2〈σ〉2‖φ‖2. (2.7)
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On the other hand doing the commutator, cf. (1.13), and then using (1.11a) and
(1.14) we obtain that

〈i[Hσ, A]〉φσ ≥ −σ
2 Im〈A|dr|2〉φσ + 2

∑

b

〈p2
b〉qb,Rφσ − o(R

0)‖φσ‖2

= σ2〈r∂r|dr|2〉φσ + 2
∑

b

〈p2
b〉qb,Rφσ − o(R

0)‖φσ‖2

≥ σ〈∂r|dr|2〉φσ + 2
∑

b

〈p2
b〉qb,Rφσ − o(R

0)‖φσ‖2

(2.8)

We combine (2.4)–(2.8) and conclude that

Cν2〈σ〉2‖φ‖2 + o(R0)‖φσ‖2

≥ 4σ〈r〉(Re pr)φσ
+ 2

∑

b

〈p2
b〉qb,Rφσ .

(2.9)

We aim at deriving some useful positivity from the second term of (2.9) to the
right. For that let us for b ∈ A introduce

H̃b = H̃b + p̃2
bχ
−
σ2/2

(
p̃2
b

)
; (2.10)

H̃b = s(x)−1Hbs(x)−1, p̃2
b = 1

2
s(x)−1p2

bs(x)−1 where

s(x) = χ+
ν/2(r)(|dr| − 1)/

√
2 + 1/

√
2.

Here we suppressed the dependence of H̃b on the parameter R (through r, and
considered as fixed) as well as the dependence on ν and σ. The latter parameters
will be considered as independent large parameters (at the end we fix ν large and let

σ →∞). The operator H̃b − σ2 should be thought of as an effective approximation
to

2|dr|−1
(
Hb − σ2

2
|dr|2

)
|dr|−1 ≈ 2Hb − σ2 = 2Hb + p2

b − σ2.

Let us here note the following consequence of (1.11c)

∀α ∈ NdimX
0 : |∂αx

(
s(x)− 1/

√
2
)
| ≤ Cαν

−2. (2.11)

The definitions (2.10) are accompanied by the following specification of domains:
For b ∈ A we define

Hb = L2(Ωb)⊗ L2(Xb) = L2(Ωb + Xb),

and note that

Hb ⊂ L2(Xb)⊗ L2(Xb) = L2(X).

The first term of (2.10), H̃b, is an operator on Hb. We specify its form domain to be
L2(Xb, H

1
0 (Ωb); dxb). The corresponding quadratic form is closed. The operator p̃2

b is
an operator on L2(X) with Q(p̃2

b) = Q(p2
b) = L2(Xb)⊗H1(Xb) and D(p̃2

b) = D(p2
b) =

L2(Xb)⊗H2(Xb). However since it is multiplicative in the xb variable the space Hb

is an invariant subspace, in fact D(p̃2
b)∩Hb = L2(Ωb)⊗H2(Xb). Whence clearly the

second term of (2.10) is a bounded operator on Hb (with the norm bound 7
8
σ2). We

conclude H̃b is a well-defined operator on Hb with form domain

Q(H̃b) = L2(Xb, H
1
0 (Ωb); dxb) ⊂ Hb.
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For later applications let us note the facts that D(p̃2
c) ⊃ D(p̃2

b) and Hb ⊃ Hc for all
c ⊃ b (the latter embedding is due to the relation Ωb + Xb ⊃ Ωc + Xc).

We introduce a technical condition for the operators introduced in (2.10).

Condition 2.1. For all b 6= amax the following bound holds uniformly in all large
σ, ν > 1, ε ∈ (0, 1] and reals λ near 1:

‖δε(H̃b/σ
2 − λ)‖B(B(|xb|),B(|xb|)∗) ≤ Cσ. (2.12)

Here, by definition, for any self-adjoint operator T

δε(T ) = π−1 Im(T − iε)−1.

The space B( · ) is a Besov space, see Subsection 3.1 for the abstract definition.
Note that (2.12) is trivially fulfilled for b = amin (by the spectral theorem). We
derive the bounds for N = 2 in Section 3 under the additional regularity conditions
on the obstacles and potentials stated in Theorem 1.6. Note that for N = 2 and
b /∈ {amin, amax} only b′ = b obeys amin 6= b′ ⊂ b and hence for such b (2.12)
is an effective high energy bound for a bounded obstacle (hence one-body type).
More generally we prove (2.12) for b with #b = N under the additional regularity
conditions for Ωb and Vb. High energy resolvent bounds are studied previously in the
literature, see for example [Je, Vo1, Vo2, RT]. Although slightly weaker bounds than
(2.12) will suffice (Besov spaces can be replaced by weighted spaces for example) we
need the linear dependence of sigma on the right hand side. Whence the slightly
weaker dependence σ lnσ found in recent papers on 1-body obstacle problems (see
for example [Chr]) would not suffice.

Let us also introduce φ̃σ = s(x)φσ. We estimate for b 6= amax, k1 > 0 (can be fixed
arbitrarily) and all large σ > 1

1
2
〈p2
b〉qb,Rφσ = 〈p̃2

b〉qb,Rφ̃σ
≥ 〈p̃2

bχ
+
k1σ

(
p̃2
b

)
〉qb,Rφ̃σ

≥ k1σ
(
‖qb,Rφ̃σ‖2 − 〈χ−k1σ

(
p̃2
b

)
〉qb,Rφ̃σ

)

≥ k1σ
(
‖qb,Rφ̃σ‖2 − 〈χ−σ2/8

(
p̃2
b

)
〉qb,Rφ̃σ

)
.

(2.13)

The contribution to (2.9) from the first term to the right in (2.13) amounts (for

ν ≥ Rr2) to the positive term 4k1σ‖φ̃σ‖2, and it remains to estimate the contribution
from the second term to the right. Now up to a term of order O(σ−2) better it is
given by summing the expressions −4k1σRe〈χ−σ2/8

(
p̃2
b

)
q2
b,R〉φ̃σ .

We write for b 6= amax and R1 ≥ Rr2/r1

q2
b,R = q2

b,R

∑

b1⊃b
q2
b1,R1

= q2
b,Rq

2
b,R1

+ q2
b,R

∑

b1)b

q2
b1,R1

.

Actually we shall later need R1 � R. We repeat the expansion by writing for
R2 � R1 and b1 ) b

q2
b,Rq

2
b1,R1

= q2
b,Rq

2
b1,R1

q2
b1,R2

+
∑

b2)b1

q2
b,Rq

2
b1,R1

q2
b2,R2

.

Upon further iteration the procedure stops for each branch after say n times when
necessarily bn = amax (n is at most N). Whence the only non-trivial terms to
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examine have the form

q2
b,Rq

2
b,R1

or q2
b,R

∏

1≤j≤m
q2
bj ,Rj

q2
bm,Rm+1

,

where m ≤ n − 1, b ( b1 · · · ( bm ( amax and R � R1 · · · � Rm � Rm+1. As
the reader will see these constraints are needed later, see the verification of (2.20).
Moreover we shall need the constraint ν ≥ Rm+1r2. Introducing the notation b0 = b
and R0 = R in either case the form is then q2

bm,Rm
q2
bm,Rm+1

times a bounded factor

Q2
m, in fact |Qm(x)| ≤ 1. We decompose

Re
(
χ−σ2/8

(
p̃2
b

)
q2
b,R

)

= Re
(∑

χ−σ2/8

(
p̃2
b

)
q2
bm,Rmq

2
bm,Rm+1

Q2
m

)

+ Re
(∑

χ−σ2/8

(
p̃2
b

)
q2
bm,Rmq

2
amax,Rm+1

Q2
m

)

=
∑

qbm,Rm+1qbm,RmQmχ
−
σ2/8

(
p̃2
b

)
Qmqbm,Rmqbm,Rm+1 + remainder.

Here the remainder is the sum of terms either O(σ−2) better than “the good term”

4k1σ‖φ̃σ‖2 we derived from (2.13) or being expressed by factors of qamax,Rm+1 . Whence
(using ν ≥ Rm+1r2) the remainder conforms with (2.9).

Next on both sides of the factor χ−σ2/8

(
p̃2
b

)
in the summation to the right we insert

I = χ−σ2/4

(
p̃2
bm

)
+ χ+

σ2/4

(
p̃2
bm

)
.

This yields four times as many terms. The contribution from the terms with two
factors of χ−σ2/4 is then estimated as

∑
qbm,Rm+1qbm,RmQmχ

−
σ2/4

(
p̃2
bm

)
χ−σ2/8

(
p̃2
b

)
χ−σ2/4

(
p̃2
bm

)
Qmqbm,Rmqbm,Rm+1

≤ Re
(∑

q2
bm,Rm+1

χ−σ2/4

(
p̃2
bm

)2
q2
bm,RmQ

2
m

)
+O(σ−2). (2.14)

We take a closer look at the first term later. We first consider the contributions
from

2 Re
(
χ+
σ2/4

(
p̃2
bm

)
χ−σ2/8

(
p̃2
b

)
χ−σ2/4

(
p̃2
bm

))
+ χ+

σ2/4

(
p̃2
bm

)
χ−σ2/8

(
p̃2
b

)
χ+
σ2/4

(
p̃2
bm

)
.

For this purpose let us for ψ ∈ L2(X) introduce

ψσ = χ+
σ2/4

(
p̃2
bm

)
χ−σ2/8

(
p̃2
b

)
ψ and ψ̃σ = χ−σ2/8

(
p̃2
b

)
χ+
σ2/4

(
p̃2
bm

)
ψ.

We apply (see below for a proof)

‖[χ+
σ2/4

(
p̃2
bm

)
, χ−σ2/8

(
p̃2
b

)
]‖ ≤ C 1

σν
, (2.15a)

yielding

‖ψσ − ψ̃σ‖ ≤ C 1
σν
‖ψ‖,

and whence with the operator monotone function f(t) = (t− 1)/(1 + t)

‖ψ̃σ‖2 ≤ 2‖ψσ‖2 + C 1
σ2ν2
‖ψ‖2

≤ 2f(5
4
)−1〈f( 4

σ2 p̃
2
bm)〉ψσ + C 1

σ2ν2
‖ψ‖2

≤ 2f(5
4
)−1〈f( 4

σ2 p̃
2
b)〉ψσ + C 1

σ2ν2
‖ψ‖2.
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Obviously it follows from (2.15a) that

‖f( 4
σ2 p̃

2
b)[χ

+
σ2/4

(
p̃2
bm

)
, χ−σ2/8

(
p̃2
b

)
]‖ ≤ C 1

σν
, (2.15b)

and we can “reverse the commutation”

2f(5
4
)−1〈f( 4

σ2 p̃
2
b)〉ψσ

≤ 2f(5
4
)−1〈f( 4

σ2 p̃
2
b)〉ψ̃σ + C 1

σν
‖ψ‖ ‖ψσ‖+ C 1

σν
‖ψ‖ ‖ψ̃σ‖

≤ 2f(5
4
)−1f(7

8
)‖ψ̃σ‖2 + ‖ψσ‖2 + ε‖ψ̃σ‖2 + Cε

1
σ2ν2
‖ψ‖2

≤ ‖ψσ‖2 + Cε
1

σ2ν2
‖ψ‖2;

here we took ε = 2f(5
4
)−1|f(7

8
)|, for example. By combining with the previous

estimation we find

‖ψσ‖2 ≤ C 1
σ2ν2
‖ψ‖2,

and then in turn

‖ψσ‖, ‖ψ̃σ‖ ≤ C 1
σν
‖ψ‖.

We conclude that indeed, due to errors of the form O(ν−1σ−1) + O(σ−2), we need
to examine the first term of (2.14) only.

2.1.1. Verification of (2.15a). Introduce Pm = σ−2p̃2
bm

and P = σ−2p̃2
b . We show

the slightly stronger bound

‖[χ+
1/4(Pm), χ−1/8(P )]‖ = ‖[χ−1/4(Pm), χ−1/8(P )]‖ ≤ C 1

σν2
. (2.15c)

Since Pm, P ≥ 0 we can truncate χ−ν , ν = 1/4, 1/8, at the negative half-axis to
become functions χ1, χ2 in C∞c (R) and invoke the standard representation for a
self-adjoint operator T and such function χ

χ(T ) =

∫

C
(T − z)−1 dµ(z), dµ(z) = − 1

2πi
∂̄χ̃(z)dzdz̄, (2.16)

where we have used an almost analytic extension χ̃ ∈ C∞c (C), i.e.

χ̃(t) = χ(t) for t ∈ R, |∂̄χ̃(z)| ≤ Ck| Im z|k; k ∈ N.

Whence

χ−1/4(Pm) =

∫

C
(Pm − z1)−1 dµ1(z1), (2.17a)

χ−1/8(P ) =

∫

C
(P − z2)−1 dµ2(z2). (2.17b)

Using (2.17a), (2.17b) and the domain relation D(Pm) ⊃ D(P ) we represent

[χ−1/4(Pm), χ−1/8(P )] =

∫

C

∫

C
(Pm − z1)−1(P − z2)−1

[Pm, P ](P − z2)−1(Pm − z1)−1 dµ2(z2)dµ1(z1).

Next we note the elementary bounds

‖(Pm − z)−1‖ ≤ 1
| Im z| , (2.18a)

‖〈P 〉(P − z)−1‖ ≤ C |z|+1
| Im z| . (2.18b)
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Using (2.11) we compute

‖〈P 〉−1[Pm, P ]〈P 〉−1‖ ≤ C 1
σν2
. (2.18c)

Finally applying (2.18a)–(2.18c) to the double integral we obtain the bound

· · · ≤ C1
1
σν2

∫

C

∫

C
| Im z1|−2 (|z2|+1)2

| Im z2|2 |dµ2(z2)| |dµ1(z1)| = C2
1
σν2
,

and we have shown (2.15c).

2.1.2. Localization for first term of (2.14). We decompose (for k2 > 0 to be fixed
later, big)

q2
bm,Rm+1

χ−σ2/4

(
p̃2
bm

)2
q2
bm,RmQ

2
m = q2

bm,Rm+1
χ−σ2/4

(
p̃2
bm

)
(χ− + χ+)q2

bm,RmQ
2
m;

χ− := χ−(k2Rmσ)−1(|H̃bm/σ
2 − 1|),

χ+ := χ+
(k2Rmσ)−1(|H̃bm/σ

2 − 1|).

To treat the contribution from χ− we write q2
bm,Rm

= χ−r2Rm(|xbm |)q2
bm,Rm

. Now
imposing Condition 2.1 and applying (2.12) with b = bm we get using

‖χ−r2Rm(|xbm |)‖B(Hbm ,B(|xbm |)) ≤ C
√
r2Rm

that

‖χ−r2Rm(|xbm|)(χ−)2χ−r2Rm(|xbm |)‖B(Hbm ) ≤ C1/k2. (2.19)

Here we used the general bound for S bounded and T self-adjoint

‖S∗g(T )S‖ ≤ ‖g‖L1 sup
λ∈supp g,ε∈(0,1]

‖S∗δε(T − λ)S‖,

cf. Stone’s formula [RS]. We fix k2 such that (#A)N+1
√
C1/k2 ≤ 1/2, saving “the

good term” 2k1σ‖φ̃σ‖2 in the previous bound (2.9).

2.1.3. Completion of proof of (2.1). We need to examine the contribution from χ+

to (2.9). We write

q2
bm,Rm+1

χ−σ2/4

(
p̃2
bm

)2
χ+ = k2Rmσq

2
bm,Rm+1

χ−σ2/4

(
p̃2
bm

)2
(H̃bm/σ

2 − 1)Q̃m,

where Q̃m = Q̃m(H̃bm/σ
2) is bounded with norm at most 1. Taking expectation in

φ̃σ and using the Cauchy Schwarz inequality it suffices to bound

4k1σ
∑

k2Rmσ
−1‖(H̃bm − σ2)χ−σ2/4

(
p̃2
bm

)2
q2
bm,Rm+1

φ̃σ‖ ‖φ̃σ‖
≤ k1σ‖φ̃σ‖2 + 4σ〈r〉(Re pr)φσ

+ C
(
ν2〈σ〉2‖φ‖2 + ‖φσ‖2

)
.

(2.20)

With (2.9) this yields

C
(
ν2〈σ〉2‖φ‖2 + ‖φσ‖2

)
≥ k1σ

(
1−O

(
ν−1σ−1

)
−O

(
σ−2
))
‖φ̃σ‖2,

and we learn by letting σ → ∞ that χ4ν(r)φ ≡ 0 (for ν large), and then in turn
from the unique continuation property that φ = 0.
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2.1.4. Mapping properties. As a preparation for proving (2.20) let us note the fol-

lowing mapping properties of S = χ−σ2/4

(
p̃2
a

)2
and T = q2

a,Rm+1
entering in (2.20)

with a = bm. Recall that the form domain Q
(
H̃a

)
of H̃a is L2(Xa, H

1
0 (Ωa); dxa).

S ∈ B
(
Q
(
H̃a

)
, H1

0 (Ωa + Xa)
)
, (2.21a)

T ∈ B
(
H1

0 (Ωa + Xa), H
1
0 (Ω)

)
, (2.21b)

TS ∈ B
(
Q
(
H̃a

)
, H1

0 (Ω)
)
, (2.21c)

TS ∈ B
(
Q
(
H̃a

))
. (2.21d)

For (2.21a) we can use (2.16) to represent S = χ
(
p̃2
a

)
, apply the integral to a simple

tensor ψa ⊗ ψa and then calculate derivatives of the resulting expression (not to be
elaborated on). Clearly S is a smoothing operator in the xa variable yielding the
improved smoothness. Also we note that since S is multiplicative in the xa variable
it preserves the support in this variable of elements of an approximating sequence.
We obtain that indeed Sψa ⊗ ψa ∈ H1

0 (Ωa + Xa) with

‖Sψa ⊗ ψa‖1 ≤ C‖ψa ⊗ ψa‖
Q
(
H̃a

).

This bound extends to finite sums of simple tensors (by the same arguments) and
hence (2.21a) follows by density and continuity. As for (2.21b) we use that

supp
(
q2
a,Rm+1

)
∩
(
Ωa + Xa

)
⊂ Ω.

Clearly (2.21c) follows from (2.21a) and (2.21b), while in turn (2.21d) follows from
(2.21c) and the inclusion Ω ⊂ Ωa +Xa implying that H1

0 (Ω) is continuously embed-

ded in H1
0 (Ωa + Xa) and therefore in Q

(
H̃a

)
.

2.1.5. Proof of (2.20). We consider the vector (H̃a−σ2)χ−σ2/4

(
p̃2
a

)2
q2
a,Rm+1

φ̃σ, a = bm,

in (2.20) as an element of the dual space of the form domain Q
(
H̃a

)
, that is in

L2(Xa, H
1
0 (Ωa)∗; dxa). As a part of (2.20) we must show that indeed it belongs

to Ha. This will follow from (2.21c) and the calculations below. We rewrite, using

that φ̃σ ∈ Q
(
H̃a

)
, H̃aφ̃σ ∈ Q

(
H̃a

)∗
and (2.21d),

(H̃a − σ2)χ−σ2/4

(
p̃2
a

)2
q2
a,Rm+1

φ̃σ = χ−σ2/4

(
p̃2
a

)2
q2
a,Rm+1

(H̃a − σ2)φ̃σ + Tcom

Tcom = [H̃a, χ
−
σ2/4

(
p̃2
a

)2
q2
a,Rm+1

]φ̃σ,

and then

(H̃a − σ2)φ̃σ = s(x)−1
(

1
2
p2
as(x)−1χ−σ2/2

(
p̃2
a

)
s(x) +Ha − σ2

2
|dr|2

)
φσ

= s(x)−1
(
(Hσ − E + iσ(Re pr))φσ + ieσ(r−4ν)R(ν)φ

)
+ T1 + T2 + T3

T1 = −p̃2
aχ

+
σ2/2

(
p̃2
a

)
φ̃σ,

T2 = s(x)−1
(
E − Ia − iσ(Re pr)

)
φσ

T3 = −s(x)−1ieσ(r−4ν)R(ν)φ.

Due to (2.3) (and (2.21c)) we need to estimate the contributions from T1–T3 and
Tcom only.
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As for T1 we note that (χ−σ2/4)2χ+
σ2/2 = 0. Whence by commutation

‖χ−σ2/4

(
p̃2
a

)2
q2
a,Rm+1

T1‖ ≤ C σ
Rm+1
‖φ̃σ‖,

which agrees with (2.20) provided Rm+1 � Rm.
We estimate

‖χ−σ2/4

(
p̃2
a

)2
q2
a,Rm+1

T2‖2 ≤ C‖φσ‖2 + 2σ2‖(Re pr)φσ‖2

≤ (C +O(σ2/ν2))‖φσ‖2 + 2
ν
σ2〈r〉(Re pr)φσ

.

Whence the contribution from T2 to the bound (2.20) is given by

· · · ≤ Cε−1Rm

(
(σ−1 + σ

ν2
)‖φσ‖2 + σ

ν
〈r〉(Re pr)φσ

)
+ εRmσ‖φ̃σ‖2.

This bound agrees with (2.20) for all large ν and σ if we choose ε > 0 small (note
that ν � Rm is used). Notice that we needed the second term on the right hand
side of (2.20) (this is the only occurrence).

As for the contribution from T3 we invoke (2.6).
To treat the contribution from Tcom we decompose

Tcom = χ−σ2/4

(
p̃2
a

)2
[H̃a, q

2
a,Rm+1

]φ̃σ + [H̃a, χ
−
σ2/4

(
p̃2
a

)2
]q2
a,Rm+1

φ̃σ

and use the representation (2.16) for both terms to the right.
Noting the following generalization of (2.6), cf. Appendix A.2,

‖χνeσr|pφ|‖2 ≤ 4E‖χνeσrφ‖2 + C〈σ〉2‖χν/2eσrφ‖2, (2.22)

it follows (for the first term) that

‖[H̃a, q
2
a,Rm+1

]φ̃σ‖ ≤ C σ
Rm+1

(
‖φ̃σ‖+ ‖φ‖

)
,

which agrees with (2.20) provided Rm+1 � Rm.
We claim that

‖[H̃a, χ
−
σ2/4

(
p̃2
a

)2
]q2
a,Rm+1

φ̃σ‖ ≤ C σ
ν

(
‖φ̃σ‖+ ‖φ‖

)
, (2.23)

which also agrees with (2.20), hence finally showing the latter bound.
Now for showing (2.23) we do various commutation using (2.22)

[H̃a, χ
−
σ2/4

(
p̃2
a

)2
]q2
a,Rm+1

φ̃σ

= O
(
σ
ν

)
+ [s(x)−2, χ−σ2/4

(
p̃2
a

)2
]Haq2

a,Rm+1
φ̃σ

= O
(
σ
ν

)
+O

(
1
σν

)
〈σ−2p̃2

a〉−1s(x)−1Haq2
a,Rm+1

φσ

= O
(
σ
ν

)
+O

(
1

νRm+1

)
+O

(
1
σν

)
〈σ−2p̃2

a〉−1s(x)−1q2
a,Rm+1

Haφσ,

where we used the convention ‖O
(
σ
ν

)
‖ ≤ C σ

ν

(
‖φ̃σ‖+‖φ‖

)
and similarly for the term

O
(

1
νRm+1

)
. Next we decompose

Haφσ =
(
(Hσ − E + iσ(Re pr))φσ + ieσ(r−4ν)R(ν)φ

)

+ (E − iσ(Re pr) + σ2

2
|dr|2 − 1

2
p2
a − Ia)φσ − ieσ(r−4ν)R(ν)φ.

The first term vanishes. The second term contributes with a term of the form O
(
σ
ν

)
.

To see this we use (2.22) in two applications (note that the factor 〈σ−2p̃2
a〉−1s(x)−1

is used to bound one factor of p2
a), and we use the factor q2

a,Rm+1
(note that q2

a,Rm+1
Ia

is bounded). The third term is O
(

1
ν

)
. We have shown (2.23).
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3. High-energy hard-core one-body resolvent bound

In Subsections 3.3–3.5 we verify Condition 2.1 for N = 2 under Conditions 1.4
and 1.5. The proof will be based on various results for abstract Besov spaces to be
given in Subsection 3.1 and on a variant of Mourre theory somewhat related to [Sk3].
We present our main results for the obstacle case in Subsection 3.2. These will be
given in a slightly more general setting, and we devote Subsections 3.3 and 3.4 to
proofs. The case of an empty obstacle is treated in Subsection 3.5.

3.1. Abstract Besov spaces. LetA be a self-adjoint operator on a Hilbert spaceH.
Let R0 = 0 and Rj = 2j−1 for j ∈ N. We define correspondingly characteristic func-
tions Fj = F (Rj−1 ≤ | · | < Rj) and the space

B = B(A) =
{
u ∈ H

∣∣∣
∑

j∈N
R

1/2
j ‖Fj(A)u‖ =: ‖u‖B <∞

}
. (3.1)

We can identify (using the embeddings 〈A〉−1H ⊂ B ⊂ H ⊂ B∗, 〈A〉 :=
√
A2 + 1 )

the dual space B∗ as

B∗ = B(A)∗ =
{
u ∈ 〈A〉H

∣∣∣ sup
j≥1

R
−1/2
j ‖Fj(A)u‖ =: ‖u‖B∗ <∞

}
. (3.2)

Alternatively, the elements u of B∗ are those sequences u = (uj) ⊂ H with uj ∈
Ran(Fj(A)) and supj∈NR

−1/2
j ‖uj‖ < ∞. For previous related works we refer to

[AH, JP, GY, Wa, Ro, Sk3] and [Hö, Subsections 14.1 and 30.2]. We note the
bounds, cf. [Hö, Subsections 14.1],

‖u‖B∗ ≤ sup
R>1

R−1/2‖F (|A| < R)u‖ ≤ 2‖u‖B∗ . (3.3)

Introducing abstract weighted spaces L2
s = L2

s(A) = 〈A〉−sH we have the embed-
dings

L2
s ⊂ B ⊂ L2

1/2 ⊂ H ⊂ L2
−1/2 ⊂ B∗ ⊂ L2

−s, for all s > 1/2. (3.4)

All embeddings are continuous and corresponding bounding constants can be chosen
as absolute constants, i.e. independently of A and H. In particular

‖u‖H ≤ ‖u‖B for all u ∈ B. (3.5)

We refer to the spaces B and B∗ as abstract Besov spaces. Recall the following
interpolation type result, here stated abstractly. The proof is the same as that of
the concrete versions [AH, Theorem 2.5], [Hö, Theorem 14.1.4], [JP, Proposition 2.3]
and [Ro, Subsection 4.3].

Lemma 3.1. Let A1 and A2 be self-adjoint operators on Hilbert spaces H1 and H2,
respectively, and let s > 1/2. Suppose T ∈ B(H1,H2) ∩ B(L2

s(A1), L2
s(A2)). Then

T ∈ B(B(A1), B(A2)), and there is a constant C = C(s) > 0 (independent of T )
such that

‖T‖B(B(A1),B(A2)) ≤ C
(
‖T‖B(H1,H2) + ‖T‖B(L2

s(A1),L2
s(A2))

)
. (3.6)

We state and prove the following (partial) version of [Sk3, Lemma 2.5].

Lemma 3.2. Suppose A is a self-adjoint operator on a Hilbert space H, c > 1 and
u ∈ B(A), then u ∈ B(cA) with

‖u‖B(cA) ≤ 8c1/2‖u‖B(A). (3.7)
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Proof. Pick i ≥ 2 such that Ri−1 < c ≤ Ri. Then for all j ≥ i+ 1

Fj(ct) ≤ F (Rj−1/Ri ≤ |t| < Rj/Ri−1) ≤ Fj−i+1(t) + Fj−i+2(t).

Whence for any u ∈ B(A) we can estimate

‖u‖B(cA) ≤
(

sup
j≥i+1

(
Rj/Rj−i+1

)1/2
+ sup

j≥i+1

(
Rj/Rj−i+2

)1/2)‖u‖B(A) +
i∑

j=1

R
1/2
j ‖u‖H

≤
(
2(i−1)/2 + 2(i−2)/2 + 2i/2(

√
2 + 1)

)
‖u‖B(A)

≤
(√

2 + 1 + 2(
√

2 + 1)
)
c1/2‖u‖B(A)

≤ 8c1/2‖u‖B(A).

�
We note the following abstract version of a result from [JP, Mo2] (proven by using

suitable decompositions of unity and the Cauchy Schwarz inequality, see also [Wa,
Subsection 2.2]).

Lemma 3.3. Let A1 and A2 be self-adjoint operators on Hilbert spaces H1 and H2,
respectively, and let T ∈ B(H1,H2). Suppose that uniformly in m,n ∈ Z,

‖F (m ≤ A2 < m+ 1)TF (n ≤ A1 < n+ 1)‖ ≤ C. (3.8)

Then with the constant C from (3.8) we have

‖T‖B(B(A1),B(A2)∗) ≤ 2C. (3.9)

We note the following (partial) abstract criterion for (3.8), cf. [Mo2, (I.10)] (see
also [Wa]). Recall that a bounded operator T on a Hilbert space is called accretive
if T + T ∗ ≥ 0, cf. for example [RS, Chapter X].

Lemma 3.4. Let A be a self-adjoint operator on a Hilbert space H, and suppose
T ∈ B(H) is accretive. Suppose the following bounds uniformly in n ∈ Z,

‖F (n ≤ A < n+ 1)TF (n ≤ A < n+ 1)‖ ≤ C1,

‖F (A < n)TF (n ≤ A < n+ 1)‖ ≤ C2,

‖F (n ≤ A < n+ 1)TF (A ≥ n)‖ ≤ C3.

Then (3.8) holds with A1 = A2 = A, the accretive T and with C = 2C1 + C2 + C3.

3.2. Setting of problem. Suppose Ω ⊂ X = Rd is open and Θ := X \ Ω 6= ∅ is
bounded with smooth boundary ∂Θ = ∂Ω. Moreover suppose Θ is strictly convex,
see Appendix B for definition. The case Ω = X is simpler and will be treated in
Subsection 3.5.

We consider a Hilbert space H = L2(Ω, dx) ⊗ L2(M, dy). The structure of the
second factor will not be of importance. To make contact to (2.12) we think of Ω as
Ωb, x as xb and y as xb (here b /∈ {amin, amax} and #b = N). Hence the function s

of (2.12) is now a function of x and y, viz. s = s(x, y). The operator H̃b takes the

form H̃b = H̃b + B̃b on H. We simplify notation and look at

H = H̃b + B̃;

H̃b = s(x, y)−1(1
2
p2
x + V (x))s(x, y)−1 = p̃2

x + V (x)s(x, y)−2,

B̃ = B̃(x),
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where the operator B̃(x) acts as a bounded operator on the component L2(M, dy).
As an operator on H it is bounded, and it needs to be small and regular in x in
a certain sense (to be specified in (3.19c)-(3.19e)). Whence our method does not

require much specific structure of the operator-valued potential B̃. The unbounded

part, H̃b, is defined with Dirichlet boundary condition at ∂Ω, and the two-body
potential V = V (x) needs to be sufficiently regular. For simplicity we impose
V ∈ C∞(Ω) and ∂αxV (x) = O

(
|x|−ε−|α|

)
, cf. Condition 1.4 (1). Whence the form

domain of H̃b is given by the space

Q(H̃b) = Q(H) = L2(M,H1
0 (Ω); dy) ⊂ H.

The reader should keep in mind the rough approximation H̃b ≈ −∆x+2V (x) (recall
here that s ≈ 1/

√
2 in the large ν regime). We denote the resolvent of Hσ := σ−2H

by R(z, σ), viz. R(z, σ) = (Hσ − z)−1.
We introduce a function r = r(x) that is different from the function r of Section 2.

It is now given as

r(x) = dist(x, ∂Ω), (3.11a)

which can be extended to a smooth function on X and which at infinity has bounds

∂αr = O
(
r1−|α|) = O

(
〈x〉1−|α|

)
. (3.11b)

More importantly there exists c > 0 such that

∇2r|{r(x)=r} ≥ c
1+r

I. (3.11c)

The verification of (3.11b) and (3.11c) is given in Appendix B. Note the following
consequence of (3.11c),

∀δ ∈ (0, 1] : ∇
2r2

2
≥ δdr ⊗ dr ⊕ r∇2r|{r(x)=r} ≥ min(δ, c) r

1+r
I.

In terms of the function r we introduce a conjugate operator different from the
operator A that appears in Lemma 1.3. Now

A := ∇r2
2
· p+ p · ∇r2

2
. (3.12)

This operator is self-adjoint on L2(Ω, dx) (it is essentially self-adjoint on C∞c (Ω))
and whence also on H. Note that Q(H) is “boundedly stable” under the dynamics
generated by A (using here terminology of [GGM], see also [FMS]), i.e.

∀ψ ∈ Q(H) : sup
|t|<1

‖eitAψ‖Q(H) <∞. (3.13a)

We note the representation A = rpr + prr where

pr := ∇r
2
· p+ p · ∇r

2
= −i ∂

∂r
− i∆r

2
.

In turn the operator pr is symmetric as an operator with domain H1
0 (Ω), and we

define p2
r as the Friedrichs extension from C2

c (Ω) and use the same notation for p2
r⊗I.

Note the inclusion Q(H) ⊂ Q(p2
r) for form domains as well as the following analogue

of (3.13a)

∀ψ ∈ Q(p2
r) : sup

|t|<1

‖eitAψ‖Q(p2r)
<∞. (3.13b)

Note for (3.13a) and (3.13b) that a similar property is derived in Appendix A for
the conjugate operator used in Section 2 (the one constructed by the Graf vector
field). Note for (3.13b) the explicit formula ‖preitAψ‖ = e2t‖prψ‖. For a different
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proof, given in a generalized setting, see Lemma A.11. The property (3.13a) follows
from Lemma A.7.

We recall the Hardy bounds, cf. [Da, Lemma 5.3.1],

‖r−κ|pr|−κ‖ ≤ 2 for κ ∈ [0, 1]. (3.14)

Moreover we have

−∆x = p2
r + L2 + 1

4
(∆r)2 + 1

2
(∂r∆r), (3.15)

where the second term is positive and commutes with r (it is the Laplace-Beltrami
operator in geodesic coordinates), and the third and fourth terms are bounded func-
tions on Ω.

We also introduce operators f1, f2 ≥ 0 with squares

f 2
1 = σ−2/3 + r

1+r
,

f 2
2 = σ−2/3 + r

1+r
+ σ−2p2

r = f 2
1 + σ−2p2

r.

A main preliminary bound of this section is

Lemma 3.5. With A given by (3.12) we have uniformly in all large σ, ν > 1 and
all Re z ≈ 1

‖f2R(z, σ)f2‖B(B(A),B(A)∗) ≤ C. (3.16)

The main result of the section is

Proposition 3.6. With r given as the multiplication operator on H in terms of the
function (3.11a) we have uniformly in all large σ, ν > 1 and all Re z ≈ 1

‖R(z, σ)‖B(B(r),B(r)∗) ≤ Cσ. (3.17)

Obviously for b with #b = N and Ωb 6= Xb, and under the regularity conditions
on Ω = Ωb and Vb = V introduced above, the bound (2.12) is a consequence of
Proposition 3.6.

3.3. Besov space bound of resolvent, Lemma 3.5. In this subsection we shall
prove Lemma 3.5 using a variant of Mourre theory.

3.3.1. First order commutator. We “compute” the commutator

i[H,A] := s−1
(
2p2

r + 2pir(∇2r)ijpj +W
)
s−1

+ 2 Re
(
s−1(∇r2 · ∇xs)H̃

b
)
−∇r2 · ∇xB̃;

(3.18)

W (x) := 1
2
(∆r)2 + ∂r∆r − 1

4
∆2r2 −∇r2 · ∇V (x).

Thus at this stage the first order commutator i[H,A] is defined by its formal ex-
pression. We note that it is a bounded quadratic form on Q(H). The term W is a
bounded function, and the second and third terms are “small”. More precisely in
terms of the parameters ν and σ of Section 2 we have uniform bounds, cf. (1.11c),
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(2.11) and (2.16),

|1+r
rs
∇r2 · ∇xs| ≤ Cν−1, (3.19a)

|1+r
r

(∇r2 · ∇x)
2s| ≤ C, (3.19b)

‖1+r
r
∇r2 · ∇xB̃‖ ≤ C σ2

ν
, (3.19c)

‖1+r
r

(∇r2 · ∇x)
2B̃‖ ≤ Cσ2, (3.19d)

0 ≤ B̃ ≤ 7
8
σ2. (3.19e)

We can estimate the second term after commutation as

2 Re
(
s−1(∇r2 · ∇xs)H̃

b
)
≥ −C1ν

−1
(

Re
(

r
1+r

H
)

+ C2

)
,

cf. (3.19a) and (3.19e).
Similarly we can estimate the third term as

−∇r2 · ∇xB̃ ≥ −C σ2

ν
r

1+r
,

cf. (3.19c).
Using these bounds, (3.11c) and (3.14) we can estimate for some small δ > 0 (and

uniformly in σ, ν > 1)

i[σ−2H,A] ≥ σ−23p2
r + δ

(
σ−2r−2 + Re

(
r

1+r
σ−2H̃b

))

− C1ν
−1 Re

(
r

1+r
σ−2H

)
− C3(σ−2 + ν−1 r

1+r
).

(3.20)

Next we estimate using (3.19e)

Re
(

r
1+r

σ−2H̃b
)
≥ (Re z − 7

8
) r

1+r
+ Re

(
r

1+r
(σ−2H − z)

)
.

We are interested in the regime Re z ≈ 1. Concretely let us assume that |1 −
Re z| ≤ 1

9
allowing us to estimate uniformly in the spectral parameter: There exists

δ′ ∈ (0, 3) such that for all such z and all large σ, ν > 1

δ
(
σ−2r−2 + (Re z − 7

8
) r

1+r

)
− C1ν

−1 Re z r
1+r
− C3(σ−2 + ν−1 r

1+r
) ≥ δ′f 2

1 .

From (3.20) we thus obtain

i[Hσ, A] ≥ δ′f 2
2 + (δ − C1ν

−1) Re
(

r
1+r

(Hσ − z)
)
. (3.21a)

Now let us introduce (cf. the method of [Mo1])

Rz(ε) = (Hσ − iεi[Hσ, A]− z)−1; ε Im z > 0, |1− Re z| ≤ 1
9
.

We only need |ε| ≤ 1, and we note that as a form Hσ − iεi[Hσ, A] is strictly m-
sectorial in the terminology of [Ka, RS], cf. the computation (3.18). The associated
operator, cf. [RS, Theorem VIII.17], is invertible if we also assume that | Im z| � 1,
and hence the inverse is well-defined with adjoint Rz(ε)

∗ = Rz̄(−ε) under these
conditions. However it follows from a connectedness argument and (3.23b) stated
below (with T = f2) that Rz(ε) is well-defined without the condition | Im z| � 1.
Note also that limε→0Rz(ε) = R(z, σ).

We obtain from (3.21a) that

i[Hσ, A] ≥ δ′
2
f 2

2 + (δ − C1ν
−1) Re

(
r

1+r
(Hσ − iεi[Hσ, A]− z)

)
. (3.21b)
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In fact using (3.15) and (3.18) we compute

Re
(

r
1+r

iεi[Hσ, A]
)

=
ε

2σ2
i[ r

1+r
, i[H,A]]

=
ε

2σ2
i[ r

1+r
, s−12p2

rs
−1 + Re

(
s−1(∇r2 · ∇xs)s

−1p2
rs
−1
)
]

= − ε

σ2
s−1
(

2 Re
(
pr(1 + r)−2

)

+ Re
(
(∇r2 · ∇xs)s

−1 Re
(
pr(1 + r)−2

)))
s−1

= − ε

σ2
Re
(
prg
)
,

(3.22)

where g = g(x, y) is a uniformly bounded function, and thus indeed

−(δ − C1ν
−1) Re

(
r

1+r
iεi[Hσ, A]

)
≤ Cσ−2/3f 2

2 ≤ δ′
2
f 2

2 .

Due to (3.21b) and the second resolvent equation we have the quadratic estimate

‖f2Rz(ε)T‖2 ≤ C1

(
|ε|−1‖T ∗Rz(ε)T‖+ ‖T ∗Rz(ε)

∗ r
1+r

T‖
)
.

Hence if T is an operator obeying

‖f−1
2

r
1+r

T‖ ≤ C2, (3.23a)

then

‖f2Rz(ε)T‖2 ≤ C1

(
|ε|−1‖T ∗Rz(ε)T‖+ C2‖T ∗Rz(ε)

∗f2‖
)
.

This leads to

‖f2Rz(ε)T‖2 ≤ C3|ε|−1‖T ∗Rz(ε)T‖+ C4. (3.23b)

We have the examples T = f2 and T = f2〈A〉−1 with bounds independent of all
large σ and ν. Indeed for all ψ ∈ H (or alternatively for all ψ ∈ L2(Ω, dx) since the
operators act on the first tensor factor only)

〈f 2
2 〉 r

1+r
f−1
2 ψ
≤ ‖ψ‖2 + 〈σ−2p2

r〉 r
1+r

f−1
2 ψ

≤ ‖ψ‖2 + ‖σ−1prf
−1
2 ψ‖2 + C1σ

−2‖f−1
2 ψ‖2

≤ C2‖ψ‖2,

proving (3.23a) for these examples.

3.3.2. Technical lemma. For B ∈ B(Q(p2
r),H) we define

adA(B) = [B,A] = s–lim
t→0

it−1
(
Be−itA − e−itAB

)
|Q(p2r)→H

,

provided the right hand side exists. Note that we here use (3.13b). In the termi-
nology of [GGM], B ∈ C1(A|Q(p2r)

, A|H) if the right hand side exists. We use this
interpretation of the (repeated) commutators in the following lemma (in turn to be
used later).

Lemma 3.7. Uniformly in all σ > 1

‖ adA(f2)f−1
2 ‖ ≤ C, (3.24a)

‖ ad2
A(f2)f−1

2 ‖ ≤ C. (3.24b)
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Proof. Note the representation (valid for any strictly positive operator S)

S−1/2 = π−1

∫ ∞

0

s−1/2(S + s)−1ds.

With S = f 2
2 we thus obtain (for the first term)

[f2, A] = S−1/2[S,A] + [S−1/2, A]S

= S−1/2[S,A]− π−1

∫ ∞

0

s−1/2(S + s)−1[S,A](S + s)−1dsS,

where

[S,A] = s–lim
t→0

it−1
(
Se−itA − e−itAS

)
|Q(p2r)→Q(p2r)

∗

is computed (up a factor −i) as

i[S,A] = 2 Re(i[S, rpr]) = 4σ−2p2
r − 2r(1 + r)−2 = 4S − 4f 2

1 − 2r(1 + r)−2.

In particular

−CS ≤ i[S,A] ≤ CS,

which obviously allows us to conclude that

B1 := S−1/2[S,A]S−1/2

is bounded. Similarly we introduce

B2 :=

∫ ∞

0

s−1/2(S + s)−1[S,A](S + s)−1dsS1/2,

and it remains to show boundedness of B2: We write with f := (f 2
1 + 1

2
r(1+r)−2)1/2

B2 = CI + i

∫ ∞

0

s−1/2(S + s)−14f 2(S + s)−1dsS1/2

= C(I − f 2S−1) + i

∫ ∞

0

s−1/2[(S + s)−1, 4f 2](S + s)−1dsS1/2

= C(I − fS−1f − f [f, S−1])− 4i

∫ ∞

0

s−1/2(S + s)−1[S, f 2](S + s)−2dsS1/2

= B − CfS−1[S, f ]S−1 − 4i

∫ ∞

0

s−1/2(S + s)−1[S, f 2](S + s)−2dsS1/2.

Using the notation O(1) = OB(H)(σ
0) we have

i[S, f ] = pr
σ
O(1)(σf)−1 + h.c.,

i[S, f 2] = pr
σ
O(1)σ−1 + h.c. = σ−2/3S1/2O(1)S1/2,

and the first identity yields that also

ifS−1[S, f ]S−1 =
(
fS−1 pr

σ

)
O(1)(σf)−1S−1 + fS−1(σ2/3f)−1O(1)

(
σ−1/3 pr

σ
S−1

)

= O(1)σ−2/3S−1 + fS−1σ−1/3O(1) = O(1);
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i.e. the term is uniformly bounded. The second identity yields that the integral is
bounded by

Cσ−2/3

∫ ∞

0

s−1/2‖(S + s)−1S1/2(S + s)−1‖ds

≤ Cσ−2/3

∫ ∞

0

s−1/2(σ−2/3 + s)−3/2ds,

(3.25)

and since the latter integral is independent of σ indeed also the integral is uniformly
bounded. So also B2 is uniformly bounded and (3.24a) follows.

As for (3.24b) we use a previous computation to obtain

− ad2
A(S) = 4

(
4S − 4f 2

1 − 2r(1 + r)−2
)

+ 2r ∂
∂r

(
4f 2

1 + 2r(1 + r)−2
)

= 16S − 16f̃ 2; f̃ =
(
σ−2/3 +

3
4
r + 9

4
r2 + r3

(1 + r)3

)1/2

.

which leads to form-boundedness

‖S−1/2 ad2
A(S)S−1/2‖ ≤ C.

We decompose

ad2
A(f2)S−1/2 = T1 + · · ·+ T5;

where

T1 = adA(S−1/2) adA(S)S−1/2 =
(

adA(S−1/2)S1/2
)(
S−1/2 adA(S)S−1/2

)
,

T2 = S−1/2 ad2
A(S)S−1/2,

T3 = −π−1

∫ ∞

0

s−1/2(S + s)−1 ad2
A(S)(S + s)−1dsS1/2,

T4 = π−1

∫ ∞

0

s−1/2(S + s)−1 adA(S)(S + s)−1 adA(S)(S + s)−1dsS1/2,

T5 = −π−1

∫ ∞

0

s−1/2(S + s)−1 adA(S)(S + s)−1 adA(S)(S + s)−1sdsS−1/2.

The boundedness of the term T1 follows from the previous proof. Clearly the term
T2 is bounded. We can show boundedness of T3 as we proceeded for (3.24a) (note

that now f̃ plays the role of the previous f). For T4 and T5 we rewrite

T4 + T5 = T̃4 + T̃5;

T̃4 = π−1

∫ ∞

0

s−1/2(S + s)−1 adA(S)(S + s)−1ds S1/2
(
S−1/2 adA(S)S−1/2

)
,

T̃5 = −2π−1

∫ ∞

0

s−1/2(S + s)−1 adA(S)(S + s)−1 adA(S)(S + s)−1sdsS−1/2.

The boundedness of the term T̃4 follows from the previous proof. Whence it only

remains to show boundedness of T̃5. We proceed in a similar fashion as before
substituting for the first factor of adA(S) from the left adA(S) = −i4(S − f 2) and
then move to the left. The commutator is treated as in (3.25) using now also the
form-boundedness of the second factor of adA(S). So it remains to consider

(I − f 2S−1)

∫ ∞

0

s−1/2S(S + s)−2 adA(S)(S + s)−1S−1/2sds.
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We saw before that the first factor is bounded. For the integral we substitute again
adA(S) = −i4(S − f 2) and move to the left. Estimating as in (3.25) we conclude
that the commutator is bounded. So we are left with

∫ ∞

0

· · · ds = C1(S − f 2)

∫ ∞

0

s−1/2S(S + s)−3S−1/2sds = C2(I − f 2S−1),

which is bounded. Whence (3.24b) follows. �

3.3.3. Second order commutator. In (3.18) we took the formal commutator as a
definition of i[H,A], however due to the property (3.13a) there is the following
alternative interpretation

−i[H,A] = s–lim
t→0

t−1
(
He−itA − e−itAH

)
|Q(H)→Q(H)∗ , (3.26)

cf. Lemma A.9 and [GGM], which allows us to compute

d

dε
Rz(ε) = −Rz(ε)[Hσ, A]Rz(ε) = Rz(ε)A− ARz(ε) + εRz(ε) ad2

A(Hσ)Rz(ε), (3.27)

where ad2
A(Hσ) = [[Hσ, A], A] ∈ B(Q(H), Q(H)∗). Note that in the terminology of

[GGM], H ∈ C2(A|Q(H), A|Q(H)∗). The second identity of (3.27) is valid as a form on
the domain D∗ := DA|Q(H)∗ of the generator of the extended group {e−itA}|Q(H)∗ , so
that indeed A : D∗ → Q(H)∗, which combines with the mapping property Rz(ε) :
Q(H)∗ → Q(H). Below we use tacitly this interpretation and the fact that f2〈A〉−1 :
H → D∗, cf. (3.24a).

Using (3.14) (with κ = 1/2), (3.18) and (3.19a)-(3.19d) we compute

ad2
A(Hσ) = f2B0f2 +

dimX∑

i,j=1

(
r

1+r

)1/2
(σs)−1piBijpj(σs)

−1
(

r
1+r

)1/2
, (3.28)

where pj denotes the components of px and all B’s are uniformly bounded.
Using (3.23b), (3.27) and (3.28) we shall prove three bounds which are uniform in

z and ε as specified above and (for convenience) with Im z, ε > 0 as well as uniform
in (large) σ and ν:

‖Fz(ε)‖ ≤ C for Fz(ε) := 〈A〉−1f2Rz(ε)f2〈A〉−1, (3.29a)

‖F−z (ε)‖ ≤ C for F−z (ε) := eεAF (A < 0)f2Rz(ε)f2〈A〉−2, (3.29b)

‖F+
z (ε)‖ ≤ C for F+

z (ε) := 〈A〉−2f2Rz(ε)f2F (A ≥ 0)e−εA. (3.29c)

Regarding (3.29a). Due to (3.23b) for T = f2〈A〉−1 (note that we proved (3.23a))

‖Fz(ε)‖ ≤ Cε−1 for 0 < ε ≤ 1. (3.30)

Obviously (3.24a) yields the bounds

‖f−1
2 Af2〈A〉−1‖ ≤ C and ‖〈A〉−1f2Af

−1
2 ‖ ≤ C. (3.31)

Exploiting (3.23b), (3.27), (3.28) and (3.31) we can show that

∥∥ d

dε
Fz(ε)

∥∥ ≤ C
(
ε−1/2‖Fz(ε)‖1/2 + ‖Fz(ε)‖+ C̃

)
. (3.32)
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Here we can argue as follows for the contribution to (3.27) from the second term
in (3.28). For ψ ∈ H we estimate using (3.14), (3.19e) and (3.22)

∑

j

‖pj(σs)−1
(

r
1+r

)1/2
ψ‖2 ≤ C1‖f2ψ‖2 + 2 Re〈Hσ − z〉r1/2(1+r)−1/2ψ

≤ C2‖f2ψ‖2 + 2 Re〈 r
1+r

(Hσ − iεi[Hσ, A]− z〉ψ.
(3.33a)

We use (3.33a) to ψ = Rz(ε)f2〈A〉−1ψ̃, ψ̃ ∈ H, and then (3.23a) and (3.23b) with
T = f2〈A〉−1. Similarly we apply

∑

i

‖pi(σs)−1
(

r
1+r

)1/2
ψ‖2 ≤ C2‖f2ψ‖2 + 2 Re〈 r

1+r
(Hσ + iεi[Hσ, A]− z̄〉ψ (3.33b)

to ψ = Rz̄(−ε)f2〈A〉−1ψ̃. We conclude (3.32).
Clearly (3.29a) follows from (3.30) and (3.32) by two integrations.

Regarding (3.29b). Due to (3.23b) and (3.29a)

‖F−z (ε)‖ ≤ Cε−1/2. (3.34)

Using (3.27) we compute

d

dε
F−z (ε) = T1 + T2 + T3; (3.35)

T1 = eεAF (A < 0)[A, f2]Rz(ε)f2〈A〉−2,

T2 = eεAF (A < 0)f2Rz(ε)Af2〈A〉−2,

T3 = εeεAF (A < 0)f2Rz(ε) ad2
A(Hσ)Rz(ε)f2〈A〉−2.

Using again (3.23b) and (3.29a) we can estimate

‖Tj‖ ≤ Cε−1/2 for 0 < ε ≤ 1 and j = 1, 2, 3. (3.36)

Notice that for all of the terms T1–T3 we apply (3.23b) with T = f2〈A〉−1, Lemma 3.7
and in addition for T3 we apply (3.23b) with T = f2 and (3.33a)–(3.33b). Clearly
(3.29b) follows from (3.34)–(3.36) by one integration.

Regarding (3.29c). We mimic the proof of (3.29b).
Next we note that the above arguments apply to A→ A−n for any n ∈ Z yielding

bounds being independent of n. Taking ε→ 0 we thus obtain the following bounds
for the accretive operator T (z) = −if2R(z, σ)f2, all being uniform in n and in large
σ and ν,

‖〈A− n〉−1T (z)〈A− n〉−1‖ ≤ C̃,

‖F (A < n)T (z)〈A− n〉−2‖ ≤ C̃,

‖〈A− n〉−2T (z)F (A ≥ n)‖ ≤ C̃.

Due to these bounds and Lemmas 3.3–3.4 we conclude (3.16) with C = 16C̃
provided Im z > 0 (and hence also if Im z < 0).
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3.4. Besov space bound of resolvent, Proposition 3.6. We introduce operators

Sσ = f−1
2 f1 and Tσ = M(tσ); tσ(r) = σ

(
r

1+r

)1/2
(1 + r)f 2

1 .

Here and henceforth M( · ) refers to the operator of multiplication by the function
in the argument. We shall prove the following lemmas

Lemma 3.8. There exists C > 0 independent of σ > 1 such that

‖Sσv‖B(A) ≤ C‖v‖B(Tσ). (3.38)

Lemma 3.9. There exists C > 0 independent of σ > 1 such that

‖f−1
1 u‖B(Tσ) ≤ Cσ1/2‖u‖B(r). (3.39)

Proof of Proposition 3.6. We combine Lemmas 3.8–3.9 to obtain that

f−1
2 = Sσf

−1
1 ∈ B(B(r), B(A))

with a bounding constant of the form Cσ1/2. Whence, due to Lemma 3.5,

R(z, σ) = f−1
2

(
f2R(z, σ)f2

)
f−1

2 ∈ B(B(r), B(r)∗)

with a bounding constant of the form Cσ. �

Proof of Lemma 3.8. Since ‖Sσ‖ ≤ 1 it suffices, due to Lemma 3.1, to show the
bound

‖ASσv‖ ≤ C
(
‖Tσv‖+ ‖v‖

)
. (3.40)

Using (3.24a) we estimate for all ψ ∈ D(r) = D(M(r))

‖Af−1
2 ψ‖2 ≤ 2‖f−1

2 Aψ‖2 + C1‖f−1
2 ψ‖2

≤ 4‖f−1
2 2prrψ‖2 + C2‖f−1

2 ψ‖2

≤ 16σ2‖rψ‖2 + C2‖Sσf−1
1 ψ‖2

≤ 16σ2‖
(

r
1+r

)1/2
(1 + r)f1ψ‖2 + C2‖f−1

1 ψ‖2.

We apply the estimate to ψ = f1v yielding (3.40) with C = max(4, C
1/2
2 ). �

Proof of Lemma 3.9. Introducing f̃1 = σ1/2f1 we need to bound for j = 1, 2, 3

‖f̃−1
1 Fju‖B(Tσ) ≤ C‖u‖B(r); (3.41)

F1 = F (r < σ−2/3),

F2 = F (σ−2/3 ≤ r < 2),

F2 = F (r ≥ 2).

Using that tσ is a bounded function on the support of F1 and (3.5) we estimate

‖f̃−1
1 F1u‖B(Tσ) ≤ C1σ

−1/6‖u‖ ≤ C1‖u‖B(r), (3.42a)

which agrees with (3.41).
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Let gσ(r) = σr3/2 and Gσ = M(gσ). Using the two-sided estimates tσ(r) ≤ Cgσ(r)
and gσ(r) ≤ Ctσ(r), which are valid on the support of F2, we can estimate

‖f̃−1
1 F2u‖B(Tσ) ≤ C‖

(
σr
)−1/2

F2u‖B(Gσ)

= C
∑

2≤j≤J
R

1/2
j ‖F (Rj−1 ≤ gσ(r) < Rj)(σr

3/2)−1/2r1/4F2u‖

≤ 21/2C
∑

2≤j≤J
‖F (Rj−1 ≤ gσ(r) < Rj)r

1/4F2u‖,

where J = Jσ ∈ N is taken smallest such that RJ > 23/2σ. By estimating for each
term

r1/4 ≤
(
Rj/σ

)1/6 ≤ 2(j−J+3)/6,

we thus obtain

‖f̃−1
1 F2u‖B(Tσ) ≤ 21/2C

∑

2≤j≤J
2(j−J+3)/6‖u‖ ≤ C1‖u‖B(r), (3.42b)

which also agrees with (3.41).
Finally using the two-sided estimates tσ(r) ≤ Cσ(1 + r) and σ(1 + r) ≤ Ctσ(r),

which are valid on the support of F3, and Lemma 3.2 we can estimate

‖f̃−1
1 F3u‖B(Tσ) ≤ C1σ

−1/2‖u‖B(σ(1+r))

≤ 8C1‖u‖B((1+r)) ≤ C2‖u‖B(r),
(3.42c)

which also agrees with (3.41).
Having proved (3.42a)–(3.42c) we conclude (3.41). �

3.5. Case Ω = X. We outline a proof of the analogue of Proposition 3.6 for the
case Ω = X. This is conceptionally simpler than the previous case, and it suffices
to mimic parts of the previous proof. We can use the standard conjugate operator

A = x · p+ p · x, (3.43)

rather than the one defined by (3.12) (alternatively A is given by taking r = |x|
in (3.12)). We impose

V (x), x · ∇V (x), (x · ∇)2V (x) ∈ C
(
H1(X), H1(X)∗

)
. (3.44)

We consider a Hilbert space H = L2(X, dx) ⊗ L2(M, dy) where interpretation of

x, y and M is the same as in Subsection 3.2. Similarly introducing H = H̃b + B̃ as
before the form domains are

Q(H̃b) = Q(H) = L2(M,H1(X); dy) ⊂ H.
Again we have the property (3.13a). We define

f 2 = 1 + σ−2p2, f ≥ 0.

We have results similar to Lemma 3.5 and Proposition 3.6.

Lemma 3.10. With A given by (3.43) we have uniformly in all large σ, ν > 1 and
all Re z ≈ 1

‖fR(z, σ)f‖B(B(A),B(A)∗) ≤ C. (3.45)
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Proposition 3.11. We have uniformly in all large σ, ν > 1 and all Re z ≈ 1

‖R(z, σ)‖B(B(|x|),B(|x|)∗) ≤ Cσ. (3.46)

Given Lemma 3.10 we notice that Proposition 3.11 is an easy consequence of the
following analogues of Lemmas 3.8 and 3.9. Define

Tσ = M(tσ); tσ(x, y) = σ(1 + |x|).
Lemma 3.12. There exists C > 0 independent of σ > 1 such that

‖f−1v‖B(A) ≤ C‖v‖B(Tσ). (3.47)

Lemma 3.13. There exists C > 0 independent of σ > 1 such that

‖u‖B(Tσ) ≤ Cσ1/2‖u‖B(|x|). (3.48)

We can prove Lemma 3.12 by mimicking the proof of Lemma 3.8, while Lemma 3.13
is an immediate consequence of Lemma 3.2.

Whence it remains to show Lemma 3.10. For that we note the analogue of (3.18)
where now r = |x|

i[H,A] := s−1
(
2p2 +W

)
s−1 + 2 Re

(
s−1(∇r2 · ∇xs)H̃

b
)
−∇r2 · ∇xB̃; (3.49)

W (x) := −∇r2 · ∇V (x).

Using (3.49) we can indeed mimic the proof of Lemma 3.5 with f replacing f2.
Note this is much simpler now. For example there are no factors of r

1+r
to consider,

and the analogue of the second order commutator is given by (3.28) without the
second term on the right hand side. We leave the details to the reader.

Appendix A

In this appendix we show how to undo the commutator i[H,A]. This is used
to obtain (2.4). Since the Schrödinger operator H is realized with the Dirichlet
boundary condition the approximation procedure of [IS2] is not sufficient. We also
show (3.13a) and (3.26).

A.1. Setting. We shall work in a generalized setting on a manifold, and present
all conditions needed for the argument independently of the previous sections. The
case of a constant metric is sufficient for application to (2.4). The verification of the
conditions below under the conditions of Sections 1 and 2 is straightforward.

Let (Ω, g) be a Riemannian manifold of dimension d ≥ 1, and consider the
Schrödinger operator on H = L2(Ω) = L2(Ω, (det g)1/2dx):

H = H0 + V ; H0 = −1
2
∆ = 1

2
p∗i g

ijpj, pi = −i∂i.

We realize H0 as a self-adjoint operator by imposing the Dirichlet boundary con-
dition, i.e. H0 is the unique self-adjoint operator associated with the closure of the
quadratic form

〈H0〉ψ = 〈ψ,−1
2
∆ψ〉, ψ ∈ C∞c (Ω).

We denote the form closure and the self-adjoint realization by the same symbol H0.
Moreover, we consider the weighted spaces

Hs = (H0 + 1)−s/2H, s ∈ R,

and H0 may also be understood as Hs → Hs−2, s ∈ R. For the realization of
H = H0 + V we assume the following condition:
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Condition A.1. The potential V is a locally integrable real-valued function, and
there exist ε ∈ [0, 1) and C > 0 such that for any ψ ∈ C∞c (Ω)

|〈V 〉ψ| ≤ ε〈H0〉ψ + C‖ψ‖2.

By this condition we extend the form domain of V as Q(V ) = H1, and this
defines a bounded operator V : H1 → H−1. We note, though, this quadratic form is
not necessarily closed. We henceforth consider H = H0 + V as a closed quadratic
form on Q(H) = H1 or, equivalently, as a bounded operator H1 → H−1. Then the
Friedrichs self-adjoint realization of H on H is the restriction of this H : H1 → H−1

to the domain:

D(H) = {ψ ∈ H1 |Hψ ∈ H} ⊂ H.
We next assume a regularity condition for the (virtual) boundary of Ω:

Condition A.2. There exists a real-valued function r ∈ C∞(Ω) such that:

(1) The gradient vector field 2ω = grad r2 on Ω is complete.
(2) The following bounds hold:

sup |dr| <∞, sup |∇2r2| <∞, sup |d∆r2| <∞. (A.1)

The function r of Condition A.2 is a generalization of that of previous sections.
For the r of Sections 1 and 2, defined in Subsection 1.3, we refer to Lemma 1.2
for properties. Note that the vector field 2ω is defined and complete on X ⊃ Ω
due to Lemma 1.2 (5). The completeness on Ω is then valid intuitively because the
vector field is tangent to the boundary ∂Ω, cf. Lemma 1.2 (2). Indeed one can use
Lemma 1.2 (2) to show Condition A.2 (1). Similarly Condition A.2 (2) follows from
Lemma 1.2 (5). For the r of Subsection 3.2 we refer to (3.11b) (the completeness is
valid because 2ω vanishes at the boundary ∂Ω ×M). For the r of Subsection 3.5
the properties (1)) and (2 are obvious, however there is a cusp singularity at x = 0
in this case. A substitute for Lemmas A.7–A.9, shown under Conditions A.1–A.2,
is in this case immediately provided by the formula ‖peitAψ‖ = e2t‖pψ‖.

By Condition A.2 (1) the vector field 2ω generates a one-parameter group of
diffeomorphisms on Ω, which we denote by

e2·· : R× Ω→ Ω, (t, x) 7→ e2tx. (A.2)

This satisfies by definition, in local coordinates,

∂t(e
2tx)i = gij(e2tx)(∂jr

2)(e2tx). (A.3)

We define the group of dilations eitA : H → H with respect to r as the one-parameter
group of unitary operators

eitAu(x) = J(e2t;x)1/2

(
det g(e2tx)

det g(x)

)1/4

u(e2tx),

where J is the relevant Jacobian. Note that there is another expression:

eitAu(x) = exp

(∫ t

0

1
2
(∆r2)(e2sx) ds

)
u(e2tx). (A.4)

We let A be the generator of eitA. By the unitarity of eitA the operator A is self-
adjoint, and C∞c (Ω) ⊆ D(A) is a core for it. In fact, the dense subspace C∞c (Ω) ⊆ H
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is invariant under eitA, and for any u ∈ C∞c (Ω) the limit

lim
t→0

t−1(eitAu− u)

exists in H. Note that by (A.4) when applied to vectors in C∞c (Ω) the operator A
takes the form

A = i[H0, r
2] = 1

2
{(∂ir2)gijpj + p∗i g

ij(∂jr
2)} = rpr + (pr)∗r,

where pr = −i∂r = −i(∂ir)g
ij∂j.

Let us first consider the commutator i[H,A] as a quadratic form defined for ψ ∈
C∞c (Ω) by

〈i[H,A]〉ψ = i〈Hψ,Aψ〉 − i〈Aψ,Hψ〉.
In order to discuss its extension we impose the following abstract form bound con-
dition, which is not quite independent of Conditions A.1 and A.2 (see for example
[IS1, Corollary 4.2]).

Condition A.3. There exists C > 0 such that for any ψ ∈ C∞c (Ω)

|〈i[H,A]〉ψ| ≤ C〈H0 + 1〉ψ.
Similarly to the above, we henceforth regard i[H,A] as a quadratic form on

Q(i[H,A]) = H1 (which may not be closed) or as a bounded operator H1 → H−1.

A.2. Preliminaries. We prove a regularity property of the flow (A.2).

Lemma A.4. There exists C > 0 such that for any t ∈ R and x ∈ Ω

de−C|t| ≤ gij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l] ≤ deC|t|. (A.5)

Proof. The proof is similar to that of [IS1, Lemma 2.3]. We note that the expression
in the middle of (A.5) is independent of choice of coordinates. Fix x ∈ Ω and choose
coordinates such that gij(x) = δij. Consider the vector fields along {e2tx}t∈R given
by ∂ie

2tx and ∂je
2tx. Since the Levi-Civita connection ∇ is compatible with the

metric,

∂
∂t
gkl(e

2tx)[∂i(e
2tx)k][∂j(e

2tx)l] = ∂
∂t
〈∂ie2tx, ∂je

2tx〉
= 〈∇∂te2tx∂ie

2tx, ∂je
2tx〉+ 〈∂ie2tx,∇∂te2tx∂je

2tx〉.
(A.6)

(The definition of ∇∂te2tx is given below.) From (A.3) it follows that

∇∂te2tx∂i(e
2tx)• = ∂t∂i(e

2tx)• + [∂t(e
2tx)k]Γ•kl∂i(e

2tx)l

= ∂i∂t(e
2tx)• + (gkm∂mr

2)Γ•kl∂i(e
2tx)l

= [∂i(e
2tx)k]∂k(g

•l∂lr
2) + [∂i(e

2tx)l]Γ•klg
km∂mr

2

= ∇∂ie2tx(g
•l∂lr

2)

= g•l[∂i(e
2tx)k](∇2r2)kl.

Thus, plugging this into (A.6) and taking a contraction with gij(x) = δij, we obtain
∣∣∣ ∂∂tgij(x)gkl(e

2tx)[∂i(e
2tx)k][∂j(e

2tx)l]
∣∣∣ ≤ Cgij(x)gkl(e

2tx)[∂i(e
2tx)k][∂j(e

2tx)l].

Noting gij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l]

∣∣
t=0

= d, we have (A.5). �
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Recall the functions χν , χ̄ν ∈ C∞(R) of Subsubsection 1.3.3. We shall henceforth
consider the functions χν = χν(r), χ̄ν = χ̄ν(r) as being composed with the function
r from Condition A.2. We also set

χν,ν′ = χνχ̄ν′ , χ̄ν′ = 1− χν′ , ν ′ ≥ 2ν ≥ 2.

Next, we prove the following statement:

Lemma A.5. Let ψ ∈ D(H). Then for any σ ≥ 0 with eσrψ, eσrHψ ∈ H, one has
eσrχνψ ∈ D(H) for all ν ≥ 1.

Proof. Step I. We first claim eσrχν,ν′ψ ∈ D(H). Since ψ ∈ H1, we have

eσrχν,ν′ψ, e
σrχν,ν′pψ ∈ H,

and hence peσrχν,ν′ψ ∈ H by (A.1). Choose a sequence ψn ∈ C∞c (Ω) such that, as
n→∞,

‖ψ − ψn‖+ ‖p(ψ − ψn)‖ → 0, (A.7)

and then by (A.1) again, as n→∞,

eσrχν,ν′ψn → eσrχν,ν′ψ, peσrχν,ν′ψn → peσrχν,ν′ψ in H.
This implies that eσrχν,ν′ψ ∈ H1. Note the distributional identity

Heσrχν,ν′ψ = eσrχν,ν′Hψ − eσr(σχν,ν′ + χ′ν,ν′)∂
rψ − 1

2
(∆eσrχν,ν′)ψ. (A.8)

Then since ψ, pψ,Hψ ∈ H, and by (A.1)

χν |∆r| = 1
2r
χν |(∆r2)− 2|dr|2| ≤ C, (A.9)

we have Heσrχν,ν′ψ ∈ H. Hence eσrχν,ν′ψ ∈ D(H).

Step II. We next show eσrχνpψ ∈ H. Noting that eσrχν,ν′ψ ∈ H1 as in Step I, we
commute and estimate by Conditions A.1 and A.2

‖eσrχν,ν′pψ‖2 = ‖peσrχν,ν′ψ‖2 − 〈|∇eσrχν,ν′|2 − 1
2
(∆e2σrχ2

ν,ν′)〉ψ
≤ 4〈H〉eσrχν,ν′ψ + C1,σ‖eσrχν/2,2ν′ψ‖2.

Whence, by reversing a commutation used above,

‖eσrχν,ν′pψ‖2 ≤ 4 Re〈eσrχν,ν′ψ, eσrχν,ν′Hψ〉+ C2,σ‖eσrχν/2,2ν′ψ‖2

≤ ‖eσrχν,ν′Hψ‖2 + Cσ‖eσrχν/2,2ν′ψ‖2

≤ ‖eσrχνHψ‖2 + Cσ‖eσrχν/2ψ‖2.

Now we let ν ′ →∞ invoking the Lebesgue dominated convergence theorem, and
we conclude that eσrχνpψ ∈ H.

Step III. We note peσrχνψ ∈ H by Step II. We choose a sequence ψn ∈ C∞c (Ω)
satisfying (A.7) as n→∞, and estimate

‖eσrχνψ − eσrχν,ν′ψn‖+ ‖p(eσrχνψ − eσrχν,ν′ψn)‖. (A.10)

For ν ′ ≥ 2ν we have the first term of (A.10) bounded by

‖eσrχνψ − eσrχν,ν′ψn‖ ≤ ‖eσrχν′ψ‖+ ‖eσrχν,ν′(ψ − ψn)‖,
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and the second term bounded by

‖p(eσrχνψ − eσrχν,ν′ψn)‖
≤ ‖peσrχν′ψ‖+ ‖peσrχν,ν′(ψ − ψn)‖
≤ ‖eσrχν′pψ‖+ Cσ‖eσrχν′/2,2ν′ψ‖

+ ‖eσrχν,ν′p(ψ − ψn)‖+ Cσ‖eσrχν/2,2ν′(ψ − ψn)‖.
Thus we can make (A.10) arbitrarily small by letting ν ′ be large and then n large.
Whence we obtain a sequence of states ψn(·) verifying

‖eσrχνψ − eσrχν,ν′(m)ψn(m)‖+ ‖p(eσrχνψ − eσrχν,ν′(m)ψn(m))‖ → 0

as m→∞, and hence eσrχνψ ∈ H1.
Finally using the distributional identity

Heσrχνψ = eσrχνHψ − eσr(σχν + χ′ν)∂
rψ − 1

2
(∆eσrχν)ψ

we learn, cf. (A.8) and (A.9), that Heσrχνψ ∈ H and hence that eσrχνψ ∈ D(H).
�

Corollary A.6. Suppose ψ ∈ D(H) satisfies eσrψ, eσrHψ ∈ H for all σ ≥ 0. Then
for all σ ≥ 0 and ν ≥ 1 one has eσrχνψ ∈ D(H) ∩ D(A).

A.3. Undoing commutators.

Lemma A.7. For any s ∈ [−1, 1] the inclusion eitAHs ⊆ Hs holds, and

sup
|t|<1

‖eitA‖B(Hs) <∞. (A.11)

Moreover, eitA : Hs → Hs is strongly continuous in t ∈ R.

Proof. Let us first set s = 1. For any ψ ∈ C∞c (Ω) we can compute by (A.4)

pi(e
itAψ)(x)

=

(∫ t

0

1
2
[pi(e

2sx)j](∂j∆r
2)(e2sx) ds

)
(eitAψ)(x) + [∂i(e

2tx)j](eitApjψ)(x).
(A.12)

Here and below we slightly abuse notation writing (eitApjψ)(x) rather than e
∫
···(pjψ)(e2tx).

Then by (A.1) and Lemma A.4 for any |t| ≤ T

‖eitAψ‖2
H1 = ‖ψ‖2

H + ‖peitAψ‖2
H

≤ ‖ψ‖2
H + CT‖eitAψ‖2

H + CT‖eitApψ‖2
H

≤ CT‖ψ‖2
H1 .

By a density argument this implies eitAH1 ⊆ H1, and moreover for any ψ ∈ H1 and
|t| ≤ T

‖eitAψ‖2
H1 ≤ CT‖ψ‖2

H1 .

Thus (A.11) follows for s = 1. As for the strong continuity as H1 → H1, we can
show it first on C∞c (Ω) using (A.12) and standard regularity properties for flows,
and then extend it by the boundedness.

We can show the same results for s = −1 by taking the adjoint, and then the
assertions are proved for s ∈ (−1, 1) by interpolation. �
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Lemma A.8. There exists C > 0 such that for any |t| < 1

‖HeitA − eitAH‖B(H1,H−1) ≤ C|t|
Proof. As a quadratic form on C∞c (Ω), or as an operator C∞c (Ω)→ H−1,

HeitA − eitAH =

∫ t

0

d
ds

ei(t−s)AHeisA ds

=

∫ t

0

eisAi[H,A]ei(t−s)A ds.

Then by Lemma A.7 and the density of C∞c (Ω) ⊆ H1 the assertion follows. �
Lemma A.9. The following strong limit to the right exists in B(H1,H−1), and the
following equality holds

i[H,A] = s–lim
t→0

t−1[HeitA − eitAH]. (A.13)

Proof. For any ψ ∈ C∞c (Ω)

t−1(HeitA − e−itAH)ψ − i[H,A]ψ = t−1

∫ t

0

{
eisAi[H,A]ei(t−s)A − i[H,A]

}
ψ ds.

We use the strong continuity of eitA of Lemma A.7 to obtain (A.13) on C∞c (Ω).
Then by Lemma A.8 and the density argument, the strong limit of (A.13) exists in
B(H1,H−1). �

The following lemma is a main result of this appendix:

Lemma A.10. Suppose ψ ∈ D(H) satisfies eσrψ, eσrHψ ∈ H for all σ ≥ 0. Then
for all σ ≥ 0 and ν ≥ 1

〈i[H,A]〉eσrχνψ = i〈Heσrχνψ,Aeσrχνψ〉 − i〈Aeσrχνψ,Heσrχνψ〉.
Proof. We note eσrχνψ ∈ D(H) ∩ D(A) by Corollary A.6. Then, by Lemma A.9

〈i[H,A]〉eσrχνψ = lim
t→0
〈t−1[HeitA − eitAH]〉eσrχνψ

= i〈Heσrχνψ,Aeσrχνψ〉 − i〈Aeσrχνψ,Heσrχνψ〉. �

A.4. Examination of (3.13a), (3.13b) and (3.26). It is easy to prove (3.13a) by
Lemma A.7 for s = 1 combined with the smallness of V , cf. Condition A.1. Similarly
(3.26) is a consequence of Lemma A.9. The bound (3.13b) is already obtained by
the explicit formula ‖preitAψ‖ = e2t‖prψ‖, but below we show a more general result
involving in fact only parts of Condition A.2. This is for the quadratic form P ∗r Pr
where Pr = 1

2

(
pr + (pr)∗

)
is the operator closure of this action on C∞c (Ω). Whence

in particular P ∗r Pr is closed on Q(P ∗r Pr) = D(Pr).

Lemma A.11. Suppose (Ω, g) is a Riemannian manifold of dimension d ≥ 1 for
which there exists a real-valued function r ∈ C∞(Ω) obeying Condition A.2 (1) and
the bounds

sup |dr| <∞, sup |∂r|dr|2| <∞.
Then the inclusion eitAD(Pr) ⊆ D(Pr) holds, and

sup
|t|<1

‖eitA‖B(D(Pr)) <∞. (A.14)
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Proof. We first note that

∂tr(e
2tx) = 2r(e2tx)(∂rr)(e2tx) = 2r(e2tx)|dr(e2tx)|2,

and this implies

r(e2tx) = r(x) exp

(
2

∫ t

0

|dr(e2sx)|2 ds

)
. (A.15)

Let ψ ∈ C∞c (M). Then, by AeitAψ = eitAAψ and A = 2rPr+ 1
i
|dr|2, we can compute

r(x)(Pre
itAψ)(x)

= (eitArPrψ)(x)− i
2

(
|dr(e2tx)|2 − |dr(x)|2

)
(eitAψ)(x)

= r(e2tx)(eitAPrψ)(x)− i
2

(∫ t

0

∂s|dr(e2sx)|2 ds

)
(eitAψ)(x)

= r(e2tx)(eitAPrψ)(x)− i

(∫ t

0

r(e2sx)(∂r|dr|2)(e2sx) ds

)
(eitAψ)(x),

so that we obtain using (A.15)

|(PreitAψ)(x)| ≤ CT
(
|(eitAPrψ)(x)|+ |(eitAψ)(x)|

)
(A.16)

for |t| < T and x /∈ r−1(0). By continuity (A.16) remains valid for |t| < T and x
in the boundary of r−1(0). On the other hand for any interior point x of r−1(0) we
compute using (A.4) and that e2sx = x,

(eitAψ)(x) = ψ(x),

(Pre
itAψ)(x) = Prψ(x) = (eitAPrψ)(x).

The latter formula agrees with (A.16) for |t| < T , and it follows that (A.16) is valid
uniformly in x ∈ Ω and |t| < T . Consequently

‖eitAψ‖2
D(Pr) ≤ CT‖ψ‖2

D(Pr).

We complete the proof by a density argument. �

Appendix B

In this appendix we introduce the notion of strictly convexity of an obstacle and
derive the geometric properties needed for the one-body type model considered in
Subsection 3.2.

Let Θ ⊂ Rd, d ≥ 2, be a bounded open set, denote its closure by Θ, and set
Ω = Rd \Θ. The goal of these short notes is to give a criterion for the existence of
a function r ∈ C∞(Ω) such that for some c > 0

|∇r| = 1 in Ω, (B.1a)

(∇2r)|Sr ≥ c〈r〉−1g|Sr , (B.1b)

|∂γr| ≤ Cα〈r〉1−|γ|, (B.1c)

where g is the Euclidean metric, Sr = r−1(r) is the level surface and g|Sr is the pull-
back of g to Sr. Note that Sr is smooth by (B.1a). We impose the following convexity
type condition for Θ. Note that the inequality (B.1b) represents the convexity of r.
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Condition B.1. Let Θ ⊂ Rd, d ≥ 2, be an open connected subset with smooth
boundary S = ∂Θ, and ν ∈ Γ(N+S) be the outward unit normal vector field on S.
There exists a constant κ > 0 such that

(∇ν)|S ≥ κg|S. (B.2)

A subset Θ ⊂ Rd fulfilling Condition B.1 is called strictly convex. We show in
Lemma B.4 that such set is convex. The symmetric tensor (∇ν)|S is called the second
fundamental form of S, and its eigenvalues relative to g|S are called the principal
curvatures. Hence (B.2) implies that the principal curvatures are bounded below by
κ > 0. For these notions we refer to [Cha, Section II.2], although we adopt different
signs for them.

Proposition B.2. Suppose Θ ⊂ Rd is strictly convex. Then the distance function
r(x) = dist(x,Θ), x ∈ Ω, satisfies (B.1a))–(B.1c.

In the sequel we prove Proposition B.2. We first show the convexity of Θ.

Lemma B.3. Let x ∈ S and set S̃x = exp[(TS)x]. Then there exists a neighborhood
U of x in Rd such that Θ ∩ S̃x ∩ U = {x}.

This is a sort of local convexity. We omit the proof, just referring to [Cha, Exer-
cise II.4].

Lemma B.4. For any x, y ∈ Θ the geodesic γxy connecting x and y lies in Θ.

Proof. Let us argue by contradiction assuming the set

Φ = {(x, y) ∈ Θ×Θ | γxy([0, 1]) ⊂ Θ}
does not coincide with Θ×Θ. Since γxy(t) is continuously dependent on (t, x, y), it
is clear that Φ is open in Θ×Θ. Since Θ×Θ is connected the boundary ∂Φ ⊂ Θ×Θ
is non-empty, so we can choose (x, y) ∈ ∂Φ. Then by definition

{0, 1} ⊂ U := γ−1
xy (Θ) ( [0, 1].

Clearly U is open in [0, 1]. We claim that U is also closed in [0, 1] yielding the
contradiction. For any τ ∈ [0, 1] \ U the point γxy(τ) ∈ S and the geodesic γxy is
tangent to S at γxy(τ) (here we use that (x, y) ∈ ∂Φ). By Lemma B.3 we then
conclude that τ ′ /∈ U for all τ ′ close to τ . �

Now we are ready to give the distorted spherical coordinates for Ω.

Lemma B.5. The exponential map on the outward normal vectors on S:

exp|N+S : N+S → Ω

is bijective.

Proof. We shall intensively use the convexity of Θ. Let us denote an element of
N+S by rν(σ), (r, σ) ∈ (0,∞) × S. If exp(rν(σ)) ∈ Θ for some (r, σ), then by the
convexity this contradicts the fact that ν is outward. Thus the image exp(N+S) is
included in Ω.

Next, assume exp(rν(σ)) = exp(r′ν(σ′)) for some (r, σ), (r′, σ′). By the convexity
we note that the obstacle Θ is in one side of the half space devided by the tan-
gent plane at σ, and by the normality of ν(σ) we obtain dist(exp(rν(σ)),Θ) = r.
Thus r = r′. Moreover, by the convexity of Θ and the minimality of r = r′ =
dist(exp(rν(σ)),Θ), σ = σ′.
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Finally take any x ∈ Ω, and then we can find y ∈ ∂Θ such that dist(x,Θ) =
‖x − y‖. Then the geodesic connecting x and y is orthogonal to ∂Θ, because,
otherwise, ‖x− y‖ does not give a minimal distance. This implies x is in the image
exp(N+S). �

As in the proof above we identify N+S ∼= (0,∞)× S through

N+S 3 rν(σ)↔ (r, σ) ∈ (0,∞)× S,
and consider (r, σ) ∈ (0,∞) × S as local coordinates of N+S. By Lemma B.5
exp|N+S : N+S → Ω is a C∞ bijection, and r is well-defined as the distance function
on Ω: r(x) = dist(x,Θ), x ∈ Ω. The following lemma implies that the pair (r, σ) in
fact defines local coordinates for Ω.

Lemma B.6. The exponential map exp|N+S : N+S → Ω is a diffeomorphism.

Proof. Parts of the arguments below depend on [Cha, Section III.6]. By Lemma B.5
it suffices to show that exp|N+S is a local diffeomorphism. For r ≥ 0 and σ ∈ S let
γ( · ; r, σ) be the geodesic defined by

γ(t; r, σ) = exp(trν(σ)), t ∈ [0, 1],

and we consider the vector field Yα along it:

Yα(t) = ∂αγ(t; r, σ); ∂α = ∂σα , α = 2, . . . , d.

The vector field Yα is the so-called Jacobi field and satisfies the equation

∇2
γ′Yα +R(γ′, Yα)γ′ = 0 (B.3)

with the initial conditions

Yα(0) = ∂α, (∇γ′Yα)(0) = π(TS)σ(r∇αν). (B.4)

Let Xα(t) be the parallel transport of ∂α ∈ (TS)σ along γ, i.e.

(∇γ′Xα)(t) = 0, Xα(0) = ∂α,

and seek for a solution to (B.3) and (B.4) of the form Yα(t) = cβα(t)Xβ(t). Since
R = 0 and (∇αν)β = ((∇2r)|S)αβ, we have (B.3)) and (B.4 reduced to

(cβα)′′(t) = 0, cβα(0) = δαβ, (cβα)′(0) = r((∇2r)|S)αγ(g|S)γβ.

We can solve this as a matrix equation, and hence obtain

Yα(t) = Xα(t) + tr((∇2r)|S)αγ(g|S)γβXβ(t). (B.5)

Note that we can choose local coordinates σ such that ∂α, α = 2, . . . , d, are prin-
cipal directions of S, so that (∇2r)|S and g|S are written as diagonal matrices.
Then by the positivity (B.2) it is straightforward to see that the set of tangents
{Yα(t) | α = 2, . . . , d} is linearly independent for all t ≥ 0. Thus exp|N+S is a local
diffeomorphism. �

Proof of Proposition B.2. By (B.5) we can write the metric of Ω in terms of coordi-
nates (r, σ), and

g = dr ⊗ dr + (g|S + r(∇2r)|S)αγ(g|S)γδ(g|S + r(∇2r)|S)δβ dσα ⊗ dσβ. (B.6)
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This can be verified by choosing local coordinates σα diagonalizing (∇2r)|S and g|S
and using the fact that the parallel transport does not change the length of vectors.
Now we recall that in general for a metric of the form

g = dr ⊗ dr + hαβ(r, σ)dσα ⊗ dσβ

we can compute the Christoffel symbols Γmij = 1
2
gkm

(
∂
∂xi
gkj + ∂

∂xj
gik − ∂

∂xk
gij
)
:

Γrrr = 0, Γrrα = 0, Γαrr = 0, Γrαβ = −1
2
∂
∂r
hαβ, Γαrβ = 1

2
hαγ ∂

∂r
hγβ, (B.7)

and hence

(∇2r)αβ = −Γrαβ = 1
2
∂
∂r
hαβ. (B.8)

Applying (B.8) to the representation (B.6) we obtain

(∇2r)αβ = ((∇2r)|S)αβ + r((∇2r)|S)αγ(g|S)γδ((∇2r)|S)δβ.

Then for any c < 1 there exists r0 > 0 such that for all r ≥ r0

(∇2r)|Sr ≥ cr−1g|Sr .

Hence we have (B.1b).
We next prove (B.1c). Note the coordinate-free expression:

∑

|γ|=k
|∂γr|2 = |∇kr|2 = gi1j1 · · · gikjk(∇kr)i1···ik(∇kr)j1···jk ,

where ∂γ to the left denotes the derivative in the Euclidean coordinates. Thus we
can compute it in the (r, σ)-coordinates. By (B.6) we have

grr = O(1), gαβ = O(〈r〉−2), grα = gαr = 0,

and it suffices to show that in these coordinates (∇kr)i1···ik = O(〈r〉1−l), where l is
the total number of occurrences of the subscript r in {i1, . . . , ik}. But this follows
from the following stronger property:

∂j1 · · · ∂js(∇kr)i1···ik = O(〈r〉1−l),

where l is the total number of occurrences of the subscript r in {j1, . . . , js} ∪
{i1, . . . , ik}. The latter statement follows in turn by induction employing a stan-
dard recurrence formula for covariant derivatives (see for example [IS1]) and the
expressions (B.6) and (B.7). Note that the statement is trivial for k = 1 and that
it follows from (B.6) and (B.7) that

∂j1 · · · ∂jsΓrαβ = O(〈r〉1−l),
∂j1 · · · ∂jsΓηαβ = O(〈r〉−l),
∂j1 · · · ∂jsΓαrβ = O(〈r〉−1−l).

Here l denotes the number of occurrences of the subscript r in {j1, . . . , js} and
r /∈ {α, β, η}. These bounds and the recurrence formula suffice for the induction
step by the Leibniz rule for differentiation. �
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