
A A R H U S U N I V E R S I T Y
D E P A R T M E N T O F M A T H E M A T I C S

ISSN: 1397–4076

RESTRICTION OF COMPLEMENTARY SERIES

REPRESENTATIONS OF O(1, N) TO SYMMETRIC

SUBGROUPS
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Restriction of complementary series representations
of O(1, N) to symmetric subgroups

Jan Möllers, Yoshiki Oshima

Abstract

We find the complete branching law for the restriction of complementary
series representations of O(1, n+ 1) to the symmetric subgroup O(1,m+ 1)×
O(n − m), 0 ≤ m < n. The decomposition consists of a continuous part
and a discrete part which is trivial for some parameters. The continuous part
is given by a direct integral of principal series representations whereas the
discrete part consists of finitely many complementary series representations.
The explicit Plancherel formula is computed on the Fourier transformed side of
the non-compact realization of the complementary series by using the spectral
decomposition of a certain hypergeometric type ordinary differential operator.
The main tool connecting this differential operator with the representations
are second order Bessel operators which describe the Lie algebra action in this
realization.
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Introduction

In the unitary representation theory of reductive Lie groups one is mainly concerned
with the following two problems as was advocated in [8]:

(1) Classify all irreducible unitary representations of a given reductive Lie group,

(2) Decompose a given unitary representation into irreducible ones.

While problem (1) is a long-standing problem in general, there is a classification of
all irreducible unitary representations for certain subclasses of groups, among them
semisimple Lie groups of rank one (see [1, 7]). Our focus is on the rank one group
G = O(1, n+ 1), n ∈ N, for which we study problem (2).

All irreducible unitary representations of G are obtained as subrepresentations of
representations induced from a parabolic subgroup P = MAN on the level of (g, K)-
modules. Up to conjugation P is unique and M ∼= O(n) × (Z/2Z), A ∼= R+ and
N ∼= Rn. We restrict our attention to representations induced from characters of P .
Denote by π

O(1,n+1)
σ,ε the representation of G, which is induced from the character

of P given by the character σ ∈ C of A and the character ε ∈ Z/2Z of the second
factor of M ∼= O(n) × (Z/2Z) (normalized parabolic induction). In this parame-

terization π
O(1,n+1)
σ,ε is irreducible and unitarizable if and only if σ ∈ iR ∪ (−n, n).

By abuse of notation we denote by π
O(1,n+1)
σ,ε also the corresponding irreducible uni-

tary representations. For σ ∈ iR the representations π
O(1,n+1)
σ,ε are called unitary

principal series representations and for σ ∈ (−n, 0) ∪ (0, n) they are called comple-

mentary series representations. We have natural isomorphisms π
O(1,n+1)
−σ,ε ∼= π

O(1,n+1)
σ,ε

for σ ∈ iR ∪ (−n, n).

In this paper we solve problem (2) for the restriction of π
O(1,n+1)
σ,ε , σ ∈ iR ∪ (−n, n),

ε ∈ Z/2Z, to any symmetric subgroup of G. By Berger’s list [2] any non-trivial
symmetric subgroup of G is either conjugate to

K = O(1)×O(n+ 1) or

H = O(1,m+ 1)×O(n−m), 0 ≤ m < n.

Since K is a maximal compact subgroup of G the branching law for the restriction
of π

O(1,n+1)
σ,ε to K is simply the K-type decomposition (1.2) which is well-known. The

branching to H is the main topic of this paper. In the formulation of the branching
law we use the convention [0, α) = ∅ for α ≤ 0.

Theorem (see Theorem 4.7). For σ ∈ iR ∪ (−n, n) and ε ∈ Z/2Z the repre-
sentation πGσ,ε of G = O(1, n + 1) decomposes into irreducible representations of
H = O(1,m+ 1)×O(n−m), 0 ≤ m < n, as follows:

πGσ,ε
∣∣
H
∼=

∞∑⊕

k=0

(∫ ⊕

iR+

π
O(1,m+1)
τ,ε+k dτ

⊕
⊕

j∈Z∩[0, |Reσ|−n+m−2k
4 )

π
O(1,m+1)
|Reσ|−n+m−2k−4j,ε+k

)
�Hk(Rn−m),
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where Hk(Rn−m) denotes the irreducible representation of O(n−m) on the space of
solid spherical harmonics of degree k on Rn−m.

The explicit Plancherel formula is given in Theorem 4.1. First of all, the re-
striction πGσ,ε|H is decomposed with respect to the action of O(n −m), the second
factor of H. Then the decomposition of each Hk(Rn−m)-isotypic component into ir-
reducible representations of O(1,m+ 1) contains continuous and discrete spectrum
in general. The continuous part is a direct integral of unitary principal series rep-
resentations π

O(1,m+1)
τ,ε+k . The discrete part appears if and only if k < |Reσ|−n+m

2
and

is a finite direct sum of complementary series representations. Therefore the whole
branching law of πGσ,ε|H contains only finitely many discrete components and the
discrete part is non-trivial if and only if |Reσ| > n − m. In particular for m > 0
there is always at least one discrete component if σ is sufficiently close to the first
reduction point n or −n.

For σ ∈ iR the decomposition is purely continuous. In this case the branching
law is actually equivalent to the Plancherel formula for the Riemannian symmetric
space O(1,m+1)/(O(1)×O(m+1)) (see Appendix A) and therefore easy to derive.
We remark that a similar method was used in [9] for the branching laws of the most
degenerate principal series representations of GL(n,R) with respect to symmetric
pairs. However, for the complementary series representations, i.e. σ ∈ (−n, 0)∪(0, n),
the decomposition cannot be obtained in the same way.

The proof of the Plancherel formula we present works uniformly for σ ∈ iR ∪
(−n, n). It uses the “Fourier transformed realization” of πGσ,ε on L2(Rn, |x|−Reσ dx).
For this consider first the non-compact realization on the nilradicalN of the parabolic
subgroup P opposite to P . We then take the Euclidean Fourier transform on N ∼= Rn

to obtain a realization of πGσ,ε on L2(Rn, |x|−Reσ dx). The advantage of this realiza-
tion is that the invariant form is simply the L2-inner product. The Lie algebra action
in the Fourier transformed picture is given by differential operators up to order two,
the crucial operators being the second order Bessel operators studied in [6, 12]. Us-
ing these operators we reduce the branching law to the spectral decomposition of an
ordinary differential operator of hypergeometric type on L2(R+) (see Section 2). The
spectral decomposition of this operator is derived in Section 3 and used in Section 4
to obtain the branching law and the explicit Plancherel formula. An interesting for-
mula for the intertwining operators realizing the branching law in the non-compact
picture on N is computed in Section 5. These intertwining operators will be subject
of a subsequent paper.

Up to now only partial results regarding the branching of πGσ,ε, σ ∈ (−n, n), to
H were known:

• For n = 2 and m = 1 the full decomposition was given by Mukunda [13]
using the non-compact picture. This case corresponds to the branching law
SL(2,C)↘ SL(2,R).

• For n ≥ 2 and m = n − 1 Speh–Venkataramana [14, Theorem 1] proved the

existence of the discrete component π
O(1,n)
σ−1 in π

O(1,n+1)
σ for σ ∈ (1, n) (special

case j = k = 0 in our Theorem). They also use the Fourier transformed
picture for their proof. This is a special case of their more general result for
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complementary series representations of G on differential forms, i.e. induced
from more general (possibly non-scalar) P -representations.

• The same special case was obtained by Zhang [19, Theorem 3.6]. He actually
proved that for all rank one groups G = SU(1, n + 1;F), F = R,C,H, resp.
G = F4(−20) certain complementary series representations of H = SU(1, n;F)
resp. H = Spin(8, 1) occur discretely in some spherical complementary series
representations of G. His proof uses the compact picture and explicit estimates
for the restriction of K-finite vectors.

Acknowledgements. We thank Toshiyuki Kobayashi and Bent Ørsted for helpful
discussions. Most of this work was done during the second author’s visit to Aarhus
University supported by the Department of Mathematics.

Notation. N = {1, 2, 3, . . .}, N0 = N ∪ {0}, R+ = {x ∈ R : x > 0}.

1 L2-realization of the complementary series of

O(1, n+ 1)

In this section we recall the necessary geometry of the group G = O(1, n + 1) and
some of its representation theory.

1.1 Subgroups and decompositions

Let G = O(1, n + 1), n ≥ 1, realized as the subgroup of GL(n + 2,R) leaving the
quadratic form

Rn+2 → R, x = (x1, . . . , xn+2)t 7→ x2
1 − (x2

2 + · · ·+ x2
n+2),

invariant. We fix the Cartan involution θ of G given by θ(g) = g−t = (gt)−1, g ∈ G,
which corresponds to the maximal compact subgroup K := Gθ = O(1)×O(n+1). On
the Lie algebra level the Lie algebra g of G has the Cartan decomposition g = k⊕ p
into the ±1 eigenspaces k and p of θ where k is the Lie algebra of K. Choose the
maximal abelian subalgebra a := RH ⊆ p spanned by the element

H := 2(E1,n+2 + En+2,1),

where Eij denotes the (n + 2) × (n + 2) matrix with 1 in the (i, j)-entry and 0
elsewhere. The root system of the pair (g, a) consists only of the roots ±2γ where
γ ∈ a∗C is defined by γ(H) := 1. Put

n := g2γ, n := g−2γ = θn

and let

N := expG(n), N := expG(n) = θN

4



be the corresponding analytic subgroups of G. Since dim(n) = dim(n) = n the half
sum of all positive roots is given by ρ = nγ. We introduce the following coordinates
on N and N : For 1 ≤ j ≤ n let

Nj := E1,j+1 + Ej+1,1 − Ej+1,n+2 + En+2,j+1,

N j := E1,j+1 + Ej+1,1 + Ej+1,n+2 − En+2,j+1.

For x ∈ Rn let

nx := exp
( n∑

j=1

xjNj

)
∈ N, nx := exp

( n∑

j=1

xjN j

)
∈ N.

Further put M := ZK(a) and A := exp(a) and denote by m the Lie algebra of M .
We write M = M+ ∪m0M

+ where

M+ := {diag(1, k, 1) : k ∈ O(n)} ∼= O(n) and

m0 := diag(−1, 1, . . . , 1,−1).

Via conjugation the element m0 acts on N and N by

m0nxm
−1
0 = n−x and m0nxm

−1
0 = n−x

and the action of m ∈M+ ∼= O(n) on N and N by conjugation is given by

mnxm
−1 = nmx and mnxm

−1 = nmx

for x ∈ Rn, where mx is the usual action of O(n) on Rn. Further A acts on N and
N by

etHnxe
−tH = ne2tx and etHnxe

−tH = ne−2tx

for x ∈ Rn, t ∈ R. The following decomposition holds

g = n⊕m⊕ a⊕ n (Gelfand–Naimark decomposition).

The groups
P := MAN and P := MAN = θ(P )

are opposite parabolic subgroups in G and NP ⊆ G is an open dense subset. Let
W := NK(a)/ZK(a) be the Weyl group corresponding to a. Then W = {1, [w0]}
where the non-trivial element is represented by the matrix

w0 = diag(−1, 1, . . . , 1) ∈ K.

The element w0 has the property that w0Nw
−1
0 = N and hence w0Pw

−1
0 = P . More

precisely,
w0nxw

−1
0 = n−x and w0e

tHw−1
0 = e−tH .

We have the disjoint union

G = P ∪ Pw0P (Bruhat decomposition).

The following lemma is a straightforward calculation:
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Lemma 1.1. For x ∈ Rn, x 6= 0, we have w−1
0 nx = nyme

tHnz ∈ NP with

y = −|x|−2x,

z = |x|−2x,

t = log|x|,
m =



−1

1n − 2|x|−2xxt

−1


 .

Let τ be the involution of G given by conjugation with the matrix

diag(1m,−1n−m, 1).

Then the symmetric subgroup H := Gτ is isomorphic to O(1,m + 1) × O(n −m).
The subgroup H is generated by the subgroups NH , NH , MH and A, where (viewing
Rm as the subspace Rm × {0} ⊆ Rn)

NH := {nx : x ∈ Rm} and NH := {nx : x ∈ Rm}

and MH := M+
H ∪m0M

+
H with

M+
H := {diag(1, k1, k2, 1) : k1 ∈ O(m), k2 ∈ O(n−m)} ∼= O(m)×O(n−m).

Also denote by
PH := MHANH and PH := MHANH

the corresponding parabolic subgroups. We write h for the Lie algebra of H.

1.2 Principal series representations – non-compact picture
and standard intertwining operators

We identify a∗C with C by λ 7→ λ(H), i.e. σ ∈ C corresponds to σγ ∈ a∗C. Under
this identification ρ corresponds to n. For σ ∈ C let eσ be the character of A given
by eσ(etH) = eσt, t ∈ R. Further, for ε ∈ Z/2Z denote by ξε the character of
M = M+ ∪m0M

+ with ξε(m0) = (−1)ε and ξε(m) = 1 for m ∈M+. For σ ∈ C and
ε ∈ Z/2Z we consider the character χσ,ε := ξε⊗ eσ ⊗ 1 on P = MAN and induce it
to a representation of G:

ĨGσ,ε := IndGP (χσ,ε)

= {f ∈ C∞(G) : f(gman) = ξε(m)−1a−σ−ρf(g)∀ g ∈ G,man ∈ P = MAN}.

The group G acts on ĨGσ,ε by left-translations and this action will be denoted by π̃Gσ,ε.

Since NP ⊆ G is dense, a function in ĨGσ,ε is already uniquely determined by its

values on N and for f ∈ ĨGσ,ε we put

fN(x) := f(nx), x ∈ Rn.

Let IGσ,ε := {fN : f ∈ ĨGσ,ε} and denote by πGσ,ε the corresponding induced action, i.e.

πGσ,ε(g)fN := (π̃Gσ,ε(g)f)N , f ∈ ĨGσ,ε.
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In view of the Bruhat decomposition G = P ∪ Pw0P this action can be completely
described by the action of P and w0. Using Lemma 1.1 we find

πGσ,ε(na)f(x) = f(x− a), na ∈ N,
πGσ,ε(m)f(x) = f(m−1x), m ∈M+ ∼= O(n),

πGσ,ε(m0)f(x) = (−1)εf(−x),

πGσ,ε(e
tH)f(x) = e(σ+n)tf(e2tx), etH ∈ A,

πGσ,ε(w0)f(x) = (−1)ε|x|−σ−nf(−|x|−2x).

This also gives the following expressions for the differential action dπGσ = dπGσ,ε of
the Lie algebra g, which is independent of ε:

dπGσ (N j)f(x) = − ∂f
∂xj

(x), j = 1, . . . , n,

dπGσ (T )f(x) = −DTxf(x), T ∈ m ∼= so(n),

dπGσ (H)f(x) = (2E + σ + n) f(x),

dπGσ (Nj)f(x) = −|x|2 ∂f
∂xj

(x) + xj (2E + σ + n) f(x), j = 1, . . . , n,

where Da denotes the directional derivative in direction a ∈ Rn and E =
∑n

j=1 xj
∂
∂xj

is the Euler operator on Rn. For the action of n we have used the identity dπGσ (Na) =
πGσ,ε(w0)dπGσ (N−a)πGσ,ε(w

−1
0 ).

Now suppose σ ∈ (0, n) and consider the Knapp–Stein intertwining operator

J̃(σ, ε) : ĨGσ,ε → ĨG−σ,ε given by

J̃(σ, ε)f(g) :=

∫

N

f(gw0n) dn, g ∈ G, f ∈ ĨGσ,ε,

where dn is the Haar measure on N given by the push-forward of the Lebesgue
measure on Rn by the map Rn → N, x 7→ nx. This intertwining operator induces
an intertwining operator J(σ, ε) : IGσ,ε → IG−σ,ε by J(σ, ε)fN := (J̃(σ, ε)f)N , f ∈ ĨGσ,ε.
Using Lemma 1.1 we obtain

J(σ, ε)fN(x) =

∫

Rn
f(nxw0nz) dz

= (−1)ε
∫

Rn
|z|−σ−nfN(x− |z|−2z) dz.

Consider the coordinate change y := x−|z|−2z. Its Jacobian |det(∂y
∂z

)| is homogeneous

of degree −2n, O(n)-invariant and has value 1 for z = e1. Hence it is equal to |z|−2n.
This finally gives

J(σ, ε)f(x) = (−1)ε
∫

Rn
|x− y|σ−nf(y) dy

= (−1)ε(|−|σ−n ∗ f)(x),
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so J(σ, ε) is up to sign given by convolution with the function |−|σ−n. We define a
G-invariant Hermitian form (− | −)σ,ε on IGσ,ε by

(f | g)σ,ε := (−1)ε(f | J(σ, ε)g)L2(Rn) =

∫

Rn

∫

Rn
|x− y|σ−nf(x)g(y) dx dy. (1.1)

For σ ∈ (0, n) this form is in fact positive definite and in this case the closure
HG
σ,ε of IGσ,ε with respect to the inner product (− | −)σ,ε gives an irreducible unitary

representation (HG
σ,ε, π

G
σ,ε) of G. Using the intertwining operator J(σ, ε) : IGσ,ε → IG−σ,ε

one also obtains a unitarization (HG
−σ,ε, π

G
−σ,ε)

∼= (HG
σ,ε, π

G
σ,ε) of IG−σ,ε.

For σ ∈ iR the usual L2-inner product provides unitarizations (HG
σ,ε, π

G
σ,ε) on

HG
σ,ε = L2(Rn) and these representations form the unitary principal series. For σ ∈

(−n, 0) ∪ (0, n) they comprise the complementary series for G. Note that for any
σ ∈ (−n, n) ∪ iR the analytic continuation of the operator J(σ, ε) provides an
intertwining operator between the irreducible unitary representations (HG

σ,ε, π
G
σ,ε)

and (HG
−σ,ε, π

G
−σ,ε).

From the compact picture it is easy to see that the K-type decomposition of the
representations πσ,ε is given by

πGσ,ε
∣∣
K
∼=

∞∑⊕

k=0

Hk(Rn+1), (1.2)

where O(n+1) acts as usual onHk(Rn+1) and O(1) acts by (−1)ε+k, giving combined
the action of K ∼= O(1)×O(n+ 1).

1.3 The Fourier transformed picture

Consider the Euclidean Fourier transform FRn : S ′(Rn)→ S ′(Rn) given by

FRnu(x) = (2π)−
n
2

∫

Rn
e−i(x | y)u(y) dy. (1.3)

For σ ∈ (−n, n)∪ iR and ε ∈ Z/2Z we define a representation ρGσ,ε of G on F−1
RnHG

σ,ε

by
πGσ,ε(g) ◦ FRn = FRn ◦ ρGσ,ε(g), g ∈ G.

It is easy to calculate the group action of P = MAN :

ρσ,ε(na)f(x) = ei(x | a)f(x), na ∈ N, (1.4)

ρσ,ε(m)f(x) = f(m−1x), m ∈M+ ∼= O(n), (1.5)

ρσ,ε(m0)f(x) = (−1)εf(−x), (1.6)

ρσ,ε(e
tH)f(x) = e(σ−n)tf(e−2tx), t ∈ R. (1.7)

The action of w0 in the Fourier transformed picture is more involved (see e.g. [17,
Proposition 2.3]). Note that by these formulas the restriction ρσ,ε|P also acts on
C∞(Rm \ {0}). Using the classical intertwining relations

xj ◦ FRn = FRn ◦ (−i ∂
∂xj

),

∂
∂xj
◦ FRn = FRn ◦ (−ixj)
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it is easy to compute the differential action dρGσ of ρGσ,ε:

dρGσ (N j)f(x) = ixjf(x), j = 1, . . . , n, (1.8)

dρGσ (T )f(x) = −DTxf(x), T ∈ m ∼= so(n), (1.9)

dρGσ (H)f(x) = − (2E − σ + n) f(x), (1.10)

dρGσ (Nj)f(x) = −iBn,σj f(x), j = 1, . . . , n, (1.11)

where we abbreviate

Bn,σj := xj∆− (2E − σ + n)
∂

∂xj
.

The operators Bn,σj are called Bessel operators and were for G = O(1, n + 1) first
studied in [6]. They are polynomial differential operators on Rn and hence the action
dρGσ defines a representation of g on C∞(Ω) for every open subset Ω ⊆ Rn.

To describe the representation spaces F−1
RnHG

σ,ε in the Fourier transformed picture
we recall that the Fourier transform FRn intertwines convolution and multiplication
operators. Further, the Riesz distributions Rλ ∈ S ′(Rn) given by

〈Rλ, ϕ〉 =
2−

λ
2

Γ(λ+n
2

)

∫

Rn
ϕ(x)|x|λ dx, ϕ ∈ S(Rn),

for Reλ � 0 and extended analytically to λ ∈ C satisfy the following classical
functional equation (see [4, equation (2’) in II.3.3])

FRnRλ = R−λ−n.

With this and (1.1) we see that in the Fourier transformed picture the representa-
tions ρGσ,ε are realized on F−1

RnHG
σ,ε = L2(Rn, |x|−Reσ dx), σ ∈ iR ∪ (−n, n), and

the Fourier transform is a unitary (up to scalar multiples) isomorphism FRn :
L2(Rn, |x|−Reσ dx)→ HG

σ,ε intertwining the representations ρGσ,ε and πGσ,ε. The stan-
dard intertwining operators J(σ, ε) are in this picture given by multiplication

L2(Rn, |x|−Reσ dx)→ L2(Rn, |x|Reσ dx), f(x) 7→ |x|−σf(x).

The K-type decomposition (1.2) is difficult to see in the Fourier transformed
picture. However, one can still explicitly describe the space of K-finite vectors. For
this recall the renormalized K-Bessel function K̃α(z) from Appendix B.1. It is easy
to see that the vector

ψGσ (x) := K̃−σ
2
(|x|), x ∈ Rn \ {0}, (1.12)

is k-fixed and constitutes the minimal k-type. Note that as K-representation the
minimal K-type is for ε 6= 0 not the trivial representation since m0 ∈ K acts
by (−1)ε. To describe the underlying (g, K)-module we denote for f ∈ C∞(R+) and
k ∈ N0 by f ⊗ |x|2k the function f(|x|)|x|2k and by f ⊗ |x|2kC[x1, . . . , xn] the space
of all functions of the form f(|x|)|x|2kp(x) for some polynomial p ∈ C[x1, . . . , xn].

Lemma 1.2. The underlying (g, K)-module of (ρσ,ε, L
2(Rn, |x|−Reσ dx)) is given by

L2(Rn, |x|−Reσ dx)K =
∞⊕

k=0

K̃−σ
2

+k ⊗ |x|2kC[x1, . . . , xn]. (1.13)
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Proof. Since g = k+a+n the universal enveloping algebra U(g) of g decomposes by
the Poincaré–Birkhoff–Witt Theorem into U(g) = U(n)U(a)U(k). The (g, K)-module
L2(Rn, |x|−Reσ dx)K is generated by the k-fixed vector ψGσ and hence

L2(Rn, |x|−Reσ dx)K = U(g)ψGσ = U(n)U(a)ψGσ .

By (1.8) and (1.10) we have U(n) = C[x1, . . . , xn] and U(a) = C[E]. Using (B.3) we

further find that the Euler operator E acts on functions of the form K̃α(|x|)|x|2k,
α ∈ R, k ∈ N0, by

E
(
K̃α(|x|)|x|2k

)
= −1

2
K̃α+1(|x|)|x|2k+2 + 2kK̃α(|x|)|x|2k

Hence

U(n)U(a)ψGσ = U(n)
∞⊕

k=0

C
(
K̃−σ

2
+k ⊗ |x|2k

)

=
∞⊕

k=0

K̃−σ
2

+k ⊗ |x|2kC[x1, . . . , xn]

and the claim follows.

2 Reduction to an ordinary differential operator

This section deals with the reduction of the branching problem for ρGσ,ε|H to an
ordinary differential equation on R+.

Consider the L2-realization L2(Rn, |(x, y)|−Reσ dx dy) of the representation ρGσ,ε
where we split variables (x, y) ∈ Rm × Rn−m. We realize unitary principal series
and complementary series representations ρ

O(1,m+1)
τ,δ of the first factor O(1,m + 1)

of H = O(1,m + 1) × O(n − m) in the same way on L2(Rm, |x|−Re τ dx). For the
second factor O(n − m) denote by Hk(Rn−m) its representation on solid spherical
harmonics on Rn−m of degree k ∈ N0 by left-translation.

Proposition 2.1. Let σ ∈ (−n, n) ∪ iR and τ ∈ (−m,m) ∪ iR. For every solution
F ∈ C∞(R+) of the second-order ordinary differential equation

t(1 + t)u′′(t) +
(−σ+2k+n−m+2

2
t+ 2k+n−m

2

)
u′(t)

+ 1
4

((−σ+2k+n−m
2

)2 −
(
τ
2

)2
)
u(t) = 0

which is regular at t = 0 the map

Ψ : C∞(Rm \ {0}) �Hk(Rn−m)→ C∞(Rn \ {x = 0}),
Ψ(f ⊗ φ)(x, y) := |x|σ−τ−2k−n+m

2 F ( |y|
2

|x|2 )f(x)φ(y),

is PH- and h-equivariant if C∞(Rm \ {0}) carries the representation ρ
O(1,m+1)
τ,ε+k |PH

(resp. dρ
O(1,m+1)
τ ) and C∞(Rn \ {x = 0}) the representation ρGσ,ε|PH (resp. dρGσ |h).
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Proof. Put µ := 2k + n−m and α := σ−τ−µ
2

so that

Ψ(f ⊗ φ)(x, y) = |x|αF ( |y|
2

|x|2 )f(x)φ(y).

Since h = nH + mH + a + nH it suffices to check the intertwining property for NH ,
MH , A and nH .

(i) For na ∈ NH both ρGσ,ε(na) and ρ
O(1,m+1)
τ,ε+k (na) are by (1.4) the multiplication

operators ei(x | a) and hence the intertwining property is clear.

(ii) Let m = diag(1, k1, k2, 1) ∈ M+
H , k1 ∈ O(m), k2 ∈ O(n − m). Then with

m′ = diag(1, k1,1n−m+1) we have by (1.5)

ρGσ,ε(m)Ψ(f ⊗ φ)(x, y) = Ψ(f ⊗ φ)(k−1
1 x, k−1

2 y)

= |k−1
1 x|αF (

|k−1
2 y|2
|k−1

1 x|2 )f(k−1
1 x)φ(k−1

2 y)

= |x|αF ( |y|
2

|x|2 )f(k−1
1 x)φ(k−1

2 y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (m′)f ⊗ (k2 · φ))(x, y).

Further, for m0 we have with (1.6)

ρGσ,ε(m0)Ψ(f ⊗ φ)(x, y) = (−1)εΨ(f ⊗ φ)(−x,−y)

= (−1)ε|(−x)|αF ( |(−y)|2
|(−x)|2 )f(−x)φ(−y)

= (−1)ε+k|x|αF ( |y|
2

|x|2 )f(−x)φ(y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (m0)f ⊗ φ)(x, y).

(iii) For a = etH ∈ A we obtain with (1.7)

ρGσ,ε(a)Ψ(f ⊗ φ)(x, y) = e(σ−n)tΨ(f ⊗ φ)(e−2tx, e−2ty)

= e(σ−n)t|e−2tx|αF ( |e
−2ty|2
|e−2tx|2 )f(e−2tx)φ(e−2ty)

= e(σ−n−2α−2k)t|x|αF ( |y|
2

|x|2 )f(e−2tx)φ(y)

= e(τ−m)t|x|αF ( |y|
2

|x|2 )f(e−2tx)φ(y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (a)f ⊗ φ)(x, y).

(iv) To show the intertwining property for nH it suffices by (1.11) to show the
identity

Bn,σj Ψ(f ⊗ φ) = Ψ(Bm,τj f ⊗ φ)

for j = 1, . . . ,m which follows from the next lemma.

For σ, µ ∈ C we introduce the ordinary differential operator

Dσ,µ := t(1 + t)
d2

dt2
+

(
µ− σ + 2

2
t+

µ

2

)
d

dt
. (2.1)
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Lemma 2.2. Let σ, τ, α ∈ C, k ∈ N0, F ∈ C∞([0,∞)), f ∈ C∞(Rm \ {0}) and
φ ∈ Hk(Rn−m). Then for every j = 1, . . . ,m we have

Bn,σj
[
|x|αF ( |y|

2

|x|2 )f(x)φ(y)
]

= |x|αF ( |y|
2

|x|2 )Bm,τj f(x)φ(y) + xj|x|α−2f(x)φ(y) (4Dσ,µ + α(σ − µ− α))F ( |y|
2

|x|2 ).

Proof. We first note the following basic identities, where ∂
∂x

and ∂
∂y

are the gradients

in x ∈ Rm and y ∈ Rn−m respectively, and ∆x and ∆y the Laplacians on Rm and
Rn−m respectively:

∂

∂x
|x|α = α|x|α−2x, ∆x|x|α = α(α +m− 2)|x|α−2,

∂

∂x
F ( |y|

2

|x|2 ) = −2|y|2

|x|4
F ′( |y|

2

|x|2 )x, ∆xF ( |y|
2

|x|2 ) = 4
|y|4

|x|6
F ′′( |y|

2

|x|2 )− 2(m− 4)
|y|2

|x|4
F ′( |y|

2

|x|2 ),

∂

∂y
F ( |y|

2

|x|2 ) =
2

|x|2
F ′( |y|

2

|x|2 )y, ∆yF ( |y|
2

|x|2 ) =
4|y|2

|x|4
F ′′( |y|

2

|x|2 ) +
2(n−m)

|x|2
F ′( |y|

2

|x|2 ).

The calculation is split into several parts. In what follows we abbreviate t := |y|2
|x|2 .

(i) We begin with calculating xj∆xΨ(f ⊗ φ):

xj∆xΨ(f ⊗ φ)(x, y)

= Ψ(xj∆xf ⊗ φ)(x, y) + xj∆x|x|α · F ( |y|
2

|x|2 )f(x)φ(y)

+ xj∆xF ( |y|
2

|x|2 ) · |x|αf(x)φ(y) + 2xj
∂|x|α
∂x
· ∂f
∂x

(x) · F ( |y|
2

|x|2 )φ(y)

+ 2xj
∂|x|α
∂x
·
∂F ( |y|

2

|x|2 )

∂x
· f(x)φ(y) + 2xj

∂F ( |y|
2

|x|2 )

∂x
· ∂f
∂x

(x) · |x|αφ(y)

= Ψ(xj∆xf ⊗ φ)(x, y) + xj|x|α−2Ef(x)φ(y) (−4tF ′(t) + 2αF (t))

+ xj|x|α−2f(x)φ(y)
(
4t2F ′′(t)− 2(2α +m− 4)tF ′(t) + α(α +m− 2)F (t)

)
.

(ii) Next we calculate xj∆yΨ(f ⊗ φ):

xj∆yΨ(f ⊗ φ)(x, y)

= xj∆yF ( |y|
2

|x|2 ) · |x|αf(x)φ(y) + xj∆yφ(y) · |x|αF ( |y|
2

|x|2 )f(x)

+ 2xj
∂F ( |y|

2

|x|2 )

∂y
· ∂φ
∂y
· |x|αf(x)

= xj|x|α−2f(x)φ(y) (4tF ′′(t) + 2(2k + n−m)F ′(t))

since Eφ = kφ and ∆yφ = 0.

12



(iii) We now calculate ∂
∂xj

Ψ(f ⊗ φ):

∂

∂xj
Ψ(f ⊗ φ)(x, y)

=
∂|x|α
∂xj

· F ( |y|
2

|x|2 )f(x)φ(y) +
∂F ( |y|

2

|x|2 )

∂xj
· |x|αf(x)φ(y)

+
∂f

∂xj
(x) · |x|αF ( |y|

2

|x|2 )φ(y)

=
∂f

∂xj
(x) · |x|αF ( |y|

2

|x|2 )φ(y) + xj|x|α−2f(x)φ(y) (−2tF ′(t) + αF (t)) .

(iv) Next we find (2E − σ + n) ∂
∂xj

Ψ(f ⊗ φ) by using (iii):

(2E − σ + n)
∂

∂xj
Ψ(f ⊗ φ)(x, y)

= (2E − σ + n+ 2(α + k))
∂f

∂xj
(x) · |x|αF ( |y|

2

|x|2 )φ(y)

+ 2xj|x|α−2Ef(x)φ(y) (−2tF ′(t) + αF (t))

+ (2(α + k − 1)− σ + n)xj|x|α−2f(x)φ(y) (−2tF ′(t) + αF (t))

since E|x|β = β|x|β, EF ( |y|
2

|x|2 ) = 0 and Eφ = kφ.

Now, putting (i), (ii) and (iv) together gives the claimed identity.

3 Spectral decomposition of a self-adjoint

second-order differential operator on R+

In this section we find the spectral decomposition of the second-order differential
operator Dσ,µ on L2(R+, t

µ−2
2 (1 + t)−

Reσ
2 dt) using the theory developed by Weyl–

Titchmarsh–Kodaira (see [11, 16]).
We fix σ ∈ iR∪ (0, n) and ε ∈ Z/2Z. (In the case σ ∈ (−n, 0) only the derivation

of the discrete spectrum in Section 3.5 is slightly different. However, since πσ,ε ∼=
π−σ,ε the decomposition of the representations is again the same and it suffices to
consider σ ∈ iR ∪ (0, n).) Further fix k ∈ N0 and put µ := 2k + n−m. We assume
that m < n so that µ > 0. Proposition 2.1 suggests that the decomposition of
the O(n−m)-isotypic component of Hk(Rn−m) in ρGσ,ε into irreducible O(1,m+ 1)-
representations is given by the spectral decomposition of the differential operator
Dσ,µ defined in (2.1). Writing

Dσ,µ = t(1 + t)
d2

dt2
+ ((a+ b+ 1)t+ c)

d

dt

with

a = −σ − µ
4

+
τ

4
, b = −σ − µ

4
− τ

4
, c =

µ

2
,
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it is easy to see from (B.4) that the hypergeometric function

F (t, τ) := 2F1 (a, b; c;−t) (3.1)

solves the equation

Dσ,µu+ λ∗u = 0, λ∗ = ab =

(
σ − µ

4

)2

−
(τ

4

)2

.

We find a spectral decomposition of Dσ,µ in terms of F (t, τ).

3.1 Simplifications

Following [16, Examples 4.17 & 4.18] we first make the transformation t = sinh2(x
2
).

Using t d
dt

= tanh(x
2
) d

dx
we write the operator Dσ,µ as

Dσ,µ =
1

t

(
(1 + t)

(
t

d

dt

)2

+

(
µ− σ

2
t+

µ− 2

2

)
t

d

dt

)

=
d2

dx2
+ β(x)

d

dx

with

β(x) =
µ− 1

2
tanh

(x
2

)−1

− σ − 1

2
tanh

(x
2

)
.

Putting

y(x) = r(x)−1u
(

sinh2
(x

2

))
with r(x) = sinh

(x
2

)−µ−1
2

cosh
(x

2

)σ−1
2

we finally see that the differential equation Dσ,µu+ λ∗u = 0 is equivalent to

d2y

dx2
+ (λ∗ − q∗(x))y = 0

with

q∗(x) = 1
4
β(x)2 + 1

2
β′(x)

=
(µ− 1)(µ− 3)

16
tanh

(x
2

)−2

− µ(σ − 2) + 1

8
+

(σ + 1)(σ − 1)

16
tanh

(x
2

)2

.

To stay in line with [16, Examples 4.17 & 4.18] we shift the eigenvalues by putting

q(x) := q∗(x)−
(
σ−µ

4

)2
and λ := λ∗ −

(
σ−µ

4

)2
and obtain

d2y

dx2
+ (λ− q(x))y = 0. (3.2)

Note that q(x) is real-valued for σ ∈ iR ∪ R and hence the operator d2

dx2
− q(x) is

formally self-adjoint on L2(R+).
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3.2 Singularities and the boundary condition

The differential equation (3.2) has regular singular points at x = 0 and x = ∞.

The corresponding asymptotic behaviour of solutions at x = 0 is given by x
µ−1
2 and

x−
µ−3
2 for µ 6= 2 and by x

1
2 and log(x)x

1
2 for µ = 2. Hence x = 0 is of limit point

type (LPT) if µ ≥ 4 and of limit circle type (LCT) if µ = 1, 2, 3. The solution

η1(x, λ) = r(x)−1
2F1(a, b; c;− sinh2(x

2
))

has asymptotic behaviour x
µ−1
2 near x = 0, where

a = −σ − µ
4

+ i
√
λ, b = −σ − µ

4
− i
√
λ, c =

µ

2
.

Note that η1(x, λ) is holomorphic in λ ∈ C and real-valued if λ ∈ R and σ ∈ R∪ iR.
Indeed we can easily see η1(x, λ) = η1(x, λ) for λ ∈ R and σ ∈ R∪iR using Kummer’s
transformation formula (B.7). In the case of (LCT) at x = 0 we impose an additional
boundary condition (which is automatic in the case of (LPT)). For this we use the
solution η1(x, λ) for a fixed λ0 and impose

lim
x→0

W (η1(−, λ0), u)(x) = 0, (BC)

where W (u, v) = u′v− uv′ denotes the Wronskian. Then in both (LPT) and (LCT)
cases η1(x, λ) is the unique solution of (3.2) which is L2 near x = 0 and satisfies the
boundary condition (BC). Near x =∞ we consider the solution

η2(x, λ) = r(x)−1 sinh−2b(x
2
)2F1(b, b− c+ 1; b− a+ 1;− sinh−2(x

2
)),

which has the asymptotic behaviour eix
√
λ near x =∞ and hence is L2 near x =∞

for 0 < arg(
√
λ) < π. The other solution is obtained by interchanging a and b

and has asymptotics e−ix
√
λ whence x = ∞ is always of (LPT). Altogether the

operator in (3.2) extends to a self-adjoint operator on L2(R+) under the boundary
condition (BC).

3.3 Titchmarsh–Kodaira’s spectral theorem

We calculate the Wronskian

W (η1, η2)(λ)

= r(x)−2W (2F1(a, b; c;− sinh2(−
2

)),

sinh−2b(−
2

)2F1(b, b− c+ 1; b− a+ 1;− sinh−2(−
2

))(x)

= r(x)−2 sinh(x
2
) cosh(x

2
)W (2F1(a, b; c;−z),

z−b2F1(b, b− c+ 1; b− a+ 1;−1
z
))(sinh2(x

2
))

= r(x)−2 sinh(x
2
) cosh(x

2
)
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)

×W (z−a2F1(a, a− c+ 1; a− b+ 1;−1
z
),

z−b2F1(b, b− c+ 1; b− a+ 1;−1
z
))(sinh2(x

2
))

= (a− b)Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
=

2i
√
λΓ(−2i

√
λ)Γ(µ

2
)

Γ(−σ−µ
4
− i
√
λ)Γ(σ+µ

4
− i
√
λ)
,
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which depends only on λ. Now for f ∈ L2(R+) real-valued define

Φ(x, λ)

:=
1

W (η1, η2)(λ)

[
η2(x, λ)

∫ x

0

η1(y, λ)f(y) dy + η1(x, λ)

∫ ∞

x

η2(y, λ)f(y) dy
]
.

Then by [16, Section 3.1] we have

f(x) = lim
δ→0
− 1

iπ

∫ ∞+iδ

−∞+iδ

Φ (x, λ) dλ = lim
δ→0
− 1

π

∫ ∞+iδ

−∞+iδ

Im Φ (x, λ) dλ.

3.4 The continuous spectrum

We first treat the integration over the interval (0,∞). In this case
√
λ ∈ R+.

We study the cases σ ∈ (0, n) and σ ∈ iR separately. Recall that in both cases
η1(x, λ) ∈ R.

(i) σ ∈ (0, n). In this case a = b and c ∈ R. Using Γ(z) = Γ(z) we obtain

Im

(
η2(x, λ)

W (η1, η2)(λ)

)
=

1

2ir(x)

[ Γ(b)Γ(c− a)

(a− b)Γ(b− a)Γ(c)

× sinh−2b(x
2
)2F1

(
b, b− c+ 1; b− a+ 1;− sinh−2(x

2
)
)

− Γ(a)Γ(c− b)
(b− a)Γ(a− b)Γ(c)

sinh−2a(x
2
)2F1

(
a, a− c+ 1; a− b+ 1;− sinh−2(x

2
)
)]

=
1

2i(a− b)r(x)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)
Γ(a− b)Γ(b− a)Γ(c)2 2F1(a, b; c;− sinh2(x

2
))

=
1

2i(a− b)

∣∣∣∣
Γ(a)Γ(c− b)
Γ(a− b)Γ(c)

∣∣∣∣
2

η1(x, λ)

= − 1

4
√
λ

∣∣∣∣∣
Γ(−σ−µ

4
+ i
√
λ)Γ(σ+µ

4
+ i
√
λ)

Γ(2i
√
λ)Γ(µ

2
)

∣∣∣∣∣

2

η1(x, λ)

whence

Im Φ(x, λ) = − 1

4
√
λ

∣∣∣∣∣
Γ(−σ−µ

4
+ i
√
λ)Γ(σ+µ

4
+ i
√
λ)

Γ(2i
√
λ)Γ(µ

2
)

∣∣∣∣∣

2

η1(x, λ)

∫ ∞

0

η1(y, λ)f(y) dy.

(3.3)

(ii) σ ∈ iR. Note that a = c− a, b = c− b and c ∈ R. Hence we find by Kummer’s
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transformation formula (B.7)

Im

(
η2(x, λ)

W (η1, η2)(λ)

)
=

1

2ir(x)

[ Γ(b)Γ(c− a)

(a− b)Γ(b− a)Γ(c)

× sinh−2b(x
2
)2F1

(
b, b− c+ 1; b− a+ 1;− sinh−2(x

2
)
)

− coshσ(x
2
)

Γ(c− b)Γ(a)

(b− a)Γ(a− b)Γ(c)

× sinh−2(c−b)(x
2
)2F1

(
c− b, 1− b; a− b+ 1;− sinh−2(x

2
)
)]

=
1

2ir(x)

[ Γ(b)Γ(c− a)

(a− b)Γ(b− a)Γ(c)

× sinh−2b(x
2
)2F1

(
b, b− c+ 1; b− a+ 1;− sinh−2(x

2
)
)

− Γ(c− b)Γ(a)

(b− a)Γ(a− b)Γ(c)
sinh−2a(x

2
)2F1

(
a, a− c+ 1; a− b+ 1;− sinh−2(x

2
)
)]

= − 1

4
√
λ

∣∣∣∣∣
Γ(−σ−µ

4
+ i
√
λ)Γ(σ+µ

4
+ i
√
λ)

Γ(2i
√
λ)Γ(µ

2
)

∣∣∣∣∣

2

η1(x, λ)

where we have used the same calculation as above. This shows that (3.3) also holds
in the case σ ∈ iR.

In both cases we collect the continuous spectrum

− 1

π

∫ ∞

0

Im Φ (x, λ) dλ

=
1

4π

∫ ∞

0

η1(x, λ)

(∫ ∞

0

η1(y, λ)f(y) dy

) ∣∣∣∣∣
Γ(−σ−µ

4
+ i
√
λ)Γ(σ+µ

4
+ i
√
λ)

Γ(2i
√
λ)Γ(µ

2
)

∣∣∣∣∣

2
dλ√
λ
.

3.5 The discrete spectrum

Next we consider the integration over the interval (−∞, 0). Here
√
λ ∈ iR+. Again

we treat the cases σ ∈ (0, n) and σ ∈ iR separately. Recall that in both cases
η1(x, λ) ∈ R for all x ∈ R+.

(i) σ ∈ (0, n). We have a, b, c ∈ R which gives η2(x, λ) ∈ R for all x ∈ R+. The
poles of the function Φ(x, λ) as a function of λ are the zeros of the Wronskian. Since
Re(σ+µ

4
− i
√
λ) > µ

4
> 0 the poles of Φ(x, λ) are all simple and exactly at the points

where −σ−µ
4
− i
√
λ ∈ −N0. This gives i

√
λ = −σ−µ

4
+ j and λ = −

(
σ−µ

4
− j
)2

for
j ∈ N0 with j < σ−µ

4
. Consequently we have b = −j and therefore, by (B.5)

η1(x, λ) =
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)η2(x, λ)

=
Γ(−σ−µ

2
+ 2j)Γ(µ

2
)

Γ(−σ−µ
2

+ j)Γ(j + µ
2
)
η2(x, λ).
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Using resz=−nΓ(z) = (−1)n

n!
we find

res
λ=−(σ−µ4 −j)

2

1

W (η1, η2)(λ)

=
Γ(σ

2
− j)

(2j − σ−µ
2

)Γ(σ−µ
2
− 2j)Γ(µ

2
)
res

λ=−(σ−µ4 −j)
2Γ

(
−σ − µ

4
− i
√
λ

)

=
Γ(σ

2
− j)

(2j − σ−µ
2

)Γ(σ−µ
2
− 2j)Γ(µ

2
)

(
2j − σ − µ

2

)
(−1)j

j!

=
(−1)jΓ(σ

2
− j)

j!Γ(σ−µ
2
− 2j)Γ(µ

2
)
.

Since Im Φ(x, λ) = 0 for λ ∈ (−∞, 0) not a pole we obtain by the residue theorem
the discrete spectrum

− 1

π
lim
δ→0

∫ iδ

−∞+iδ

Im Φ (x, λ) dλ

=
∑

j∈[0,σ−µ
4

)∩Z

res
λ=−(σ−µ4 −j)

2Φ(x, λ)

=
∑

j∈[0,σ−µ
4

)∩Z

(−1)jΓ(σ
2
− j)Γ(−σ−µ

2
+ j)Γ(j + µ

2
)

j!Γ(µ
2
)2Γ(σ−µ

2
− 2j)Γ(−σ−µ

2
+ 2j)

η1(x,−
(
σ−µ

4
− j
)2

)

×
∫ ∞

0

η1(y,−
(
σ−µ

4
− j
)2

)f(y) dy.

(ii) σ ∈ iR. We have a = c− b, b = c− a and c ∈ R. By Kummer’s transformation
formula (B.7)

η2(x, λ) = r(x)−1 coshσ(x
2
) sinh−2(c−a)(x

2
)2F1(c− a, 1− a; b− a+ 1;− sinh−2(x

2
))

= r(x)−1 sinh−2b(x
2
)2F1(b− c+ 1, b; b− a+ 1;− sinh−2(x

2
))

= η2(x, λ).

Further since Γ(z) = Γ(z) we also find that the Wronskian W (η1, η2) is real-valued.
Hence Im Φ(x, λ) = 0 for λ ∈ (−∞, 0). Since W (η1, η2) has no poles in λ ∈ (−∞, 0)
for σ ∈ iR there is no discrete spectrum in this case.

3.6 The spectral theorem for Dσ,µ

Together this gives the spectral decomposition of L2(R+) into the eigenfunctions
η1(x, λ). For the precise statement let

S(σ, µ) := (0,∞) ∪
⋃

j∈[0,Reσ−µ
4

)∩Z

{
−
(
σ − µ

4
− j
)2
}
.
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Note that S(σ, µ) = (0,∞) for σ ∈ iR. On S(σ, µ) we define a measure dνσ,µ by

∫

S(σ,µ)

g(λ) dνσ,µ(λ) :=
1

4π

∫ ∞

0

g(λ)

∣∣∣∣∣
Γ(−σ−µ

4
+ i
√
λ)Γ(σ+µ

4
+ i
√
λ)

Γ(2i
√
λ)Γ(µ

2
)

∣∣∣∣∣

2
dλ√
λ

+
∑

j∈[0,Reσ−µ
4

)∩Z

(−1)jΓ(σ
2
− j)Γ(−σ−µ

2
+ j)Γ(j + µ

2
)

j!Γ(µ
2
)2Γ(σ−µ

2
− 2j)Γ(−σ−µ

2
+ 2j)

g(−
(
σ−µ

4
− j
)2

).

Then by [16, Sections 3.1 & 3.7] we have:

Theorem 3.1. For σ ∈ iR ∪ (0, n) and µ ∈ N the map

L2(R+)
∼−−→ L2(S(σ, µ), dνσ,µ), f 7→ g(λ) =

∫ ∞

0

η1(x, λ)f(x) dx,

is a unitary isomorphism with inverse

L2(S(σ, µ), dνσ,µ)
∼−−→ L2(R+), g 7→ f(x) =

∫

S(σ,µ)

η1(x, λ)g(λ) dνσ,µ(λ).

For our application we need the spectral decomposition of the operator Dσ,µ
which follows from Theorem 3.1 by the transformation u(t) 7→ r(x)−1u(sinh2(x

2
)).

To state this put

T (σ, µ) := iR+ ∪
⋃

j∈[0,Reσ−µ
4

)∩Z

{σ − µ− 4j}

and define a measure dmσ,µ on T (σ, µ) by

∫

T (σ,µ)

g(τ) dmσ,µ(τ) :=
1

8πi

∫

iR+

g(τ)

∣∣∣∣
Γ(−σ+µ+τ

4
)Γ(σ+µ+τ

4
)

Γ( τ
2
)Γ(µ

2
)

∣∣∣∣
2

dτ

+
∑

j∈[0,Reσ−µ
4

)∩Z

(−1)jΓ(σ
2
− j)Γ(−σ−µ

2
+ j)Γ(j + µ

2
)

j!Γ(µ
2
)2Γ(σ−µ

2
− 2j)Γ(−σ−µ

2
+ 2j)

g(σ − µ− 4j). (3.4)

Corollary 3.2. For σ ∈ iR ∪ (0, n) and µ ∈ N the map

L2(R+, t
µ−2
2 (1 + t)−

Reσ
2 dt)

∼−−→ L2(T (σ, µ), dmσ,µ),

f 7→ g(τ) =

∫ ∞

0

F (t, τ)f(t)t
µ−2
2 (1 + t)−

σ
2 dt

is a unitary isomorphism with inverse

L2(T (σ, µ), dmσ,µ)
∼−−→ L2(R+, t

µ−2
2 (1 + t)−

Reσ
2 dt),

g 7→ f(t) =

∫

T (σ,µ)

F (t, τ)g(τ) dmσ,µ(τ).
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Remark 3.3. For the discrete part, namely for τ = σ − µ − 4j, j ∈ N0, the Gauß
hypergeometric function F (t, τ) degenerates to a polynomial in t of degree j. More
precisely, we have (see (B.8))

F (t, σ − µ− 4j) =
j!

(µ
2
)n
P

(µ−2
2
,−σ

2
)

j (1 + 2t),

where P
(α,β)
n (z) denote the Jacobi polynomials.

Remark 3.4. For σ ∈ (0, n) the results of Corollary 3.2 can also be found in [3,
formula (A.11)] where the hypergeometric transform appears (essentially) as the ra-
dial part of the spherical Fourier transform on SU(1, n)/SU(n). Since our approach
provides a unified treatment of both complementary series and principal series, in-
cluding the case σ ∈ iR, we gave a detailed proof in this section for convenience.

4 Decomposition of representations and the

Plancherel formula

Using the spectral decomposition of Dσ,µ obtained in Corollary 3.2 we find in this
section the explicit Plancherel formula for the decomposition of ρGσ,ε|H .

Let us first consider the action of O(n−m) on L2(Rn, |(x, y)|−Reσ dx dy) which
gives the following decomposition as O(n−m)-representations:

L2(Rn, |(x, y)|−Reσ dx dy)

=

∞∑⊕

k=0

L2(Rm × R+, (|x|2 + r2)−
Reσ
2 r2k+n−m−1 dx dr) �Hk(Rn−m), (4.1)

where r = |y|. We fix a summand for some k ∈ N0 and put again µ = 2k + n−m.
The coordinate change t := r2

|x|2 gives

L2(Rm × R+, (|x|2 + r2)−
Reσ
2 rµ−1 dx dr)

= L2(Rm × R+,
1
2
|x|−Reσ+µt

µ−2
2 (1 + t)−

Reσ
2 dx dt).

Since

L2(Rm × R+,
1
2
|x|−Reσ+µt

µ−2
2 (1 + t)−

Reσ
2 dx dt)

∼= L2(Rm, 1
2
|x|−Reσ+µ dx)⊗̂L2(R+, t

µ−2
2 (1 + t)−

Reσ
2 dt)

we can apply Theorem 3.1 to find that the map

L2(Rm × R+,
1
2
|x|−Reσ+µt

µ−2
2 (1 + t)−

Reσ
2 dx dt)

→
∫ ⊕

T (σ,µ)

L2(Rm, 1
2
|x|−Re τ dx) dmσ,µ(τ)
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given by

f(x, t) 7→ f̂(x, τ) := |x|−
σ−τ−µ

2

∫ ∞

0

F (t, τ)f(x, t)t
µ−2
2 (1 + t)−

σ
2 dt

is a unitary isomorphism, where F (t, τ) is defined by (3.1) and the measure dmσ,µ

is given by (3.4). Its inverse is given by

g(x, τ) 7→ ǧ(x, t) :=

∫

T (σ,µ)

|x|
σ−τ−µ

2 F (t, τ)g(x, τ) dmσ,µ(τ).

Now we put these things together. For σ ∈ iR ∪ (0, n) and k ∈ N0 we put
µ := 2k + n−m and define an operator

Ψ(σ, k) :

(∫ ⊕

T (σ,µ)

L2(Rm, 1
2
|x|−Re τ dx) dmσ,µ(τ)

)
�Hk(Rn−m)

→ L2(Rn, |(x, y)|−Reσ dx dy)

by

Ψ(σ, k) (f ⊗ φ) (x, y)

:= |x|
σ−τ−µ

2 φ(y)

∫

T (σ,µ)
2F1

(
µ−σ+τ

4
, µ−σ−τ

4
; µ

2
;− |y|2|x|2

)
f(x, τ) dmσ,µ(τ).

Theorem 4.1. For σ ∈ iR∪ (0, n) and ε ∈ Z/2Z the map Ψ(σ, k) is H-equivariant
between the representations

∫ ⊕

T (σ,µ)

ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ) �Hk(Rn−m)→ ρGσ,ε

∣∣
H

and constructs the Hk(Rn−m)-isotypic component in ρGσ,ε|H . The following Plancherel
formula holds:

‖Ψ(σ, k)(f ⊗ φ)‖2
L2(Rn,|(x,y)|−Reσ dx dy)

=

∫

T (σ,µ)

‖f(−, τ)‖2
L2(Rm, 1

2
|x|−Re τ dx) dmσ,µ(τ) · ‖φ‖2

L2(Sn−m−1).

Proof. We have already seen that Ψ(σ, k) gives a unitary isomorphism so that the
Plancherel formula above holds. Further, by Proposition 2.1 the map Ψ(σ, k) inter-
twines the actions of MHANH on smooth vectors and hence on the Hilbert spaces.
Since H is generated by MHANH and NH it remains to prove the intertwining
property for NH . For this we use the Lie algebra action.

Lemma 4.2. Let L be a connected Lie group with Lie algebra l and let (ρ1,H1)
and (ρ2,H2) be unitary representations of L. Suppose that a continuous linear map
ϕ : H1 → H2 is given and there exist subspaces V1 ⊂ H1 and V2 ⊂ H2 such that

(i) Vi is dense in Hi for i = 1, 2,

(ii) Vi is contained in the space of analytic vectors Hω
i for i = 1, 2,
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(iii) Vi is dρi-stable for i = 1, 2,

(iv) (ϕ(dρ1(X)v1) | v2)H2
= −(ϕ(v1) | dρ2(X)v2)H2

for v1 ∈ V1, v2 ∈ V2 and X ∈ l.

Then ϕ is L-equivariant.

Proof. For v1 ∈ V1 and v2 ∈ V2 we put

fv1,v2(g) := (ϕ(ρ1(g)v1) | v2)H2
, g ∈ L,

hv1,v2(g) := (ρ2(g)ϕ(v1) | v2)H2
= (ϕ(v1) | ρ2(g−1)v2)H2

, g ∈ L,

which are analytic functions on L by (ii). For a smooth function f on L and X ∈ l
we define derivatives by

(R(X)f)(g) := lim
t→0

f(getX)− f(g)

t
, (L(X)f)(g) := lim

t→0

f(e−tXg)− f(g)

t
.

We have R(X)f(e) = −L(X)f(e) for the identity element e ∈ L and R(X) com-
mutes with L(X ′) for any X,X ′ ∈ l. Hence

R(X1)R(X2) · · ·R(Xk)f(e) = − L(X1)R(X2) · · ·R(Xk)f(e)

= −R(X2) · · ·R(Xk)L(X1)f(e)

...

= (−1)kL(Xk) · · ·L(X2)L(X1)f(e)

for X1, . . . , Xk ∈ l. Then (iv) implies

R(X1) · · ·R(Xk)fv1,v2(e) = fdρ1(X1)···dρ1(Xk)v1,v2(e)

= (−1)khv1,dρ2(Xk)···dρ2(X1)v2(e)

= (−1)kL(Xk) · · ·L(X1)hv1,v2(e)

= R(X1) · · ·R(Xk)hv1,v2(e).

Since fv1,v2 and hv1,v2 are analytic functions, they coincide. Therefore ϕ(ρ1(g)v1) =
ρ2(g)ϕ(v1) for v1 ∈ V1 and hence ϕ(ρ1(g)v) = ρ2(g)ϕ(v) for any v ∈ H1 by (i).

We apply the lemma to the map ϕ = Ψ(σ, k) : H1 → H2 where

H1 :=

(∫ ⊕

T (σ,µ)

L2(Rm, 1
2
|x|−Re τ dx) dmσ,µ(τ)

)
�Hk(Rn−m),

H2 := L2(Rn, |(x, y)|−Reσ dx dy).

So let ρ1 and ρ2 be the restrictions of
(∫ ⊕

T (σ,µ)

ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ)

)
� 1 and ρGσ,ε

to L = NH , respectively. We regard an element

f ∈
∫ ⊕

T (σ,µ)

L2(Rm, 1
2
|x|−Re τ dx) dmσ,µ(τ)
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as a function f(x, τ) on (Rm \ {0}) × T (σ, µ) and let V1 be the space consisting of
linear combinations of the functions on (Rm \ {0})× T (σ, µ)× Rn−m of the form

(dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x)φ(y)χ(τ),

where X ∈ U(h), ψ
O(1,m+1)
τ is the spherical vector of ρ

O(1,m+1)
τ,ε+k as defined in (1.12),

φ ∈ Hk(Rn−m) and χ ∈ Cc(T (σ, µ)), i.e. χ is a continuous function on T (σ, µ)
with compact support. Further let V2 be the space of all K-finite vectors in L2(Rn,
|(x, y)|−Reσ dx dy). We now check conditions (i)–(iv):

(i) V1 is dense inH1 since Cc(T (σ, µ)) is dense in L2(T (σ, µ), dmσ,µ) and the space

of (K ∩ O(1,m + 1))-finite vectors for ρ
O(1,m+1)
τ is generated by ψ

O(1,m+1)
τ (x)

and dense in L2(Rm, |x|−Re τ dx). The space V2 is dense in H2 since it is the

space of K-finite vectors for ρ
O(1,n+1)
σ,ε .

(ii) K-finite vectors are analytic vectors for G and in particular for NH ⊆ G, hence
V2 ⊆ Hω

2 . The inclusion V1 ⊆ Hω
1 follows from the lemma below.

(iii) It is clear that V2 is dρ2-stable since the space of K-finite vectors is dρ
O(1,n+1)
σ -

stable. That V1 is dρ1-stable follows from the definition of V1.

Lemma 4.3. Let

(ρ′1,H′1) :=

(∫ ⊕

T (σ,µ)

ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ),

∫ ⊕

T (σ,µ)

L2(Rm, 1
2
|x|−Re τ dx) dmσ,µ(τ)

)
.

A function f(x, τ) on (Rm \ {0})× T (σ, µ) of the form

f(x, τ) := (dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x)χ(τ)

for X ∈ U(h) and χ ∈ Cc(T (σ, µ)) is an analytic vector of ρ′1.

Proof. Let χ = χc +χd be the decomposition into continuous part and discrete part
so that χc ∈ Cc(iR+) and χd ∈ Cc(T (σ, µ) ∩ (0,m)). Since

(dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x)

is an analytic vector of ρ
O(1,m+1)
τ,ε+k , the discrete part (dρ

O(1,m+1)
τ (X)ψ

O(1,m+1)
τ )(x)χd(τ)

is an analytic vector of ρ′1. Therefore we may and do assume χ ∈ Cc(iR+). It is
enough to prove that for any g0 ∈ O(1,m+ 1) there exists a neighborhood 0 ∈ U ⊂
so(1,m+ 1) such that

aN :=
∥∥∥ρ′1(expY )ρ′1(g0)f(x, τ)−

N∑

l=0

1

l!
dρ′1(Y )lρ′1(g0)f(x, τ)

∥∥∥
2

H′1
→ 0

as N → 0 for Y ∈ U . Consider the Euclidean Fourier transform FRm with respect
to the variable x (see (1.3)) which gives a unitary equivalence between

ρ′1 =

∫ ⊕

T (σ,µ)

ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ) and π1 :=

∫ ⊕

T (σ,µ)

π
O(1,m+1)
τ,ε+k dmσ,µ(τ).
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Put h(x, τ) := FRm(dρ
O(1,m+1)
τ (X)ψ

O(1,m+1)
τ )(x) then

aN =

∫

iR+

∥∥∥π1(expY )π1(g0)h(x, τ)

−
N∑

l=0

1

l!
dπ1(Y )lπ1(g0)h(x, τ)

∥∥∥
2

L2(Rm, 1
2
|x|−Re τ dx)

|χ(τ)|2 dmσ,µ(τ).

As in Section 1.2 the function h(x, τ) corresponds to a function h̃(g, τ) onO(1,m+1)×
iR+ satisfying h̃(gman, τ) = ξε+k(m)−1a−τ−ρh̃(g, τ) for m ∈ O(1,m+ 1)∩M , a ∈ A
and n ∈ NH . Consequently, aN is given as

∫

iR+

(∫

O(1)×O(m+1)

∣∣∣πO(1,m+1)
τ,ε+k (g0)h̃(exp(−Y )k, τ)

−
N∑

l=0

1

l!
dπO(1,m+1)

τ (Y )lπ
O(1,m+1)
τ,ε+k (g0)h̃(k, τ)

∣∣∣
2

dk
)
|χ(τ)|2 dmσ,µ(τ)

up to a constant factor, where dk is the Haar measure on O(1) × O(m + 1). Since

π
O(1,m+1)
τ,ε+k (g0)h̃ is analytic on O(1,m+ 1)× iR+, the sequence

N∑

l=0

1

l!
dπO(1,m+1)

τ (Y )lπ
O(1,m+1)
τ,ε+k (g0)h̃(k, τ)

converges uniformly to π
O(1,m+1)
τ,ε+k (g0)h̃(exp(−Y )k, τ) on the compact set (k, τ) ∈

(O(1)×O(m+ 1))× suppχ, which proves aN → 0.

To verify the intertwining condition (iv) we first prove the intertwining property
for each single space L2(Rm, |x|−Re τ dx) for fixed τ by embedding it into the C-
antilinear algebraic dual of the Harish-Chandra module L2(Rn, |(x, y)|−Reσ dx dy)K
of K-finite vectors. For τ ∈ T (σ, µ) and X ∈ U(h) let

fτ,X(x) := (dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x), x ∈ Rm \ {0}.

Proposition 4.4. Let X ∈ U(h), φ ∈ Hk(Rn−m) and g ∈ L2(Rn, |(x, y)|−Reσ dx dy)K.

(i) For every τ ∈ T (σ, µ) the integral

∫

Rn
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)fτ,X(x)φ(y)g(x, y)|(x, y)|−Reσ dx dy

converges absolutely and defines a continuous function in τ .

(ii) For every τ ∈ T (σ, µ) and j = 1, . . . ,m we have

∫

Rn
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)(Bm,τj fτ,X)(x)φ(y)g(x, y)|(x, y)|−Reσ dx dy

=

∫

Rn
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)fτ,X(x)φ(y)(Bn,σj g)(x, y)|(x, y)|−Reσ dx dy. (4.2)
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Proof. We first note that by (1.13) the function fτ,X(x) is a linear combination of
functions of the form

f(x) = K̃− τ
2

+a(|x|)|x|2ap(x)

for a ∈ N0 and p ∈ C[x] with coefficients depending smoothly on τ . Therefore we
may replace fτ,X(x) by one of these functions f(x). For the same reason we may
assume that

g(x, y) = K̃−σ
2

+b(|(x, y)|)|(x, y)|2bq(x, y)

for some b ∈ N0 and q ∈ C[x, y].

(i) By (B.1) and (B.2) there exists a continuous function C1(τ) > 0 on T (σ, µ) and
N1 > 0 such that

|K̃− τ
2

+a(t)t
2a| ≤ C1(τ)(1 + t)N1e−t, t > 0.

For the hypergeometric function we have by (B.5) and (B.8) (checking the cases
τ ∈ iR+ and τ ∈ (Reσ − µ− 4N0) ∩ R+ separately)

|F (t, τ)| ≤ C2(τ)(1 + t)
Reσ−Re τ−µ

4 , t > 0,

for some continuous function C2(τ) > 0 on T (σ, µ). We estimate

|p(x)| ≤ C3(1 + |x|)N2 ,

|φ(y)| ≤ C4|y|k ≤ C4|(x, y)|k,
|q(x, y)| ≤ C5(1 + |(x, y)|)N3 .

Further, for the K-Bessel function of parameter −σ
2

+ b we find by (B.1) and (B.2)
that

|K̃−σ
2

+b(t)t
2b| ≤ C6t

−δ(1 + t)N4e−t, t > 0,

for some arbitrarily small δ > 0 (covering the possible log-term for σ = b = 0) and
N4 > 0. Hence we obtain

∣∣∣|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)f(x)φ(y)g(x, y)
∣∣∣

≤ C1(τ)C2(τ)C3C4C5C6|x|
Reσ−Re τ−µ

2

(
1 + |y|2

|x|2
)Reσ−Re τ−µ

4

× (1 + |x|)N1+N2e−|x||(x, y)|k−δ(1 + |(x, y)|)N3+N4e−|(x,y)|

≤ C(τ)|(x, y)|Reσ−n+m−Re τ
2

−δ(1 + |(x, y)|)Ne−|(x,y)|

with C(τ) = C1(τ)C2(τ)C3C4C5C6 and N = N1 +N2 +N3 +N4. This is integrable
on Rn with respect to the measure |(x, y)|−Reσ if and only if

−Reσ − n+m− Re τ

2
− δ > −n.

Since δ can be chosen arbitrarily small this is equivalent to

n− Reσ +m− Re τ > 0.

But since Reσ < n and Re τ < m this inequality holds true for all τ ∈ T (σ, µ) and
therefore the integral converges absolutely. Moreover, we even have n−Reσ+m−
Re τ > n − Reσ > 0 for all τ and hence the convergence is uniformly in τ varying
in a compact subset of T (σ, µ), which finishes the proof of (i).
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(ii) First recall from Proposition 2.1 that

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(Bm,τj f)(x)φ(y) = Bn,σj
[
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)f(x)φ(y)
]
.

Therefore we have to show that
∫

Rn
Bn,σj Φ(x, y) · g(x, y) · |(x, y)|−Reσ dx dy

!
=

∫

Rn
Φ(x, y) · Bn,σj g(x, y) · |(x, y)|−Reσ dx dy, (4.3)

where we abbreviate

Φ(x, y) = |x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)f(x)φ(y).

The operator Bn,σj is formally self-adjoint with respect to |(x, y)|−Reσ since dρGσ (Nj) =
−iBn,σj is, as part of the Lie algebra action, formally skew-adjoint on C∞c (Rn\{0}) ⊆
L2(Rn, |(x, y)|−Reσ dx dy)∞. Therefore it remains to show that we can integrate by
parts without leaving any boundary terms. Fix j ∈ {1, . . . ,m} and consider the
domain

Ωj,ε := {(x, y) ∈ Rn : |xj| > ε} ⊆ Rn

for ε > 0. Clearly Rn \⋃ε>0 Ωj,ε is of measure zero and hence (4.3) is equivalent to

lim
ε→0

∫

Ωj,ε

Bn,σj Φ(x, y) · g(x, y) · |(x, y)|−Reσ dx dy

!
= lim

ε→0

∫

Ωj,ε

Φ(x, y) · Bn,σj g(x, y) · |(x, y)|−Reσ dx dy. (4.4)

On Ωj,ε both |x| and |(x, y)| are bounded from below by ε. Hence, by (B.3) and (B.6),
all factors in the integrand

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)f(x)φ(y)g(x, y)|(x, y)|−Reσ

can be arbitrarily often differentiated in x and y and the result is a smooth function
on Ωj,ε. Since further the hypergeometric function grows at most polynomially and
the K-Bessel functions decay exponentially near ∞, all such differentiated terms
decay exponentially as |(x, y)| → ∞ and are hence integrable on Ωj,ε. Therefore we
can arbitrarily integrate by parts and all intermediate integrals exist. It remains to
show that for ε→ 0 all boundary terms that occur while integrating by parts vanish.
By the asymptotic behaviour of the K-Bessel functions at∞ the boundary terms at
∞ always vanish. Hence, by the choice of Ωj,ε, the only boundary terms that occur
are for derivatives in xj at xj = ±ε. Therefore we only need to consider the parts

xj
∂2

∂x2
j

,
∂

∂xj
and E

∂

∂xj

of Bn,σj . We treat these three parts separately. Here we start with the right hand
side of (4.4) and then integrate by parts once or twice.
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(a) ∂
∂xj

. The boundary terms that occur when integrating by parts are (up to mul-

tiplication with a constant) of the form
∫

Rn−1

(
Φ(x′, ε, y)g(x′, ε, y)|(x′, ε, y)|−Reσ

− Φ(x′,−ε, y)g(x′,−ε, y)|(x′,−ε, y)|−Reσ
)

dx′ dy

where we write x = (x′, xj) with x′ = (x1, . . . , x̂j, . . . , xm) ∈ Rm−1. The integrand
obviously converges pointwise almost everywhere to 0 as ε → 0 and it suffices to
find an integrable function independent of ε dominating the integrand to apply the
Dominated Convergence Theorem. For this note that in both Φ(x, y) and g(x, y)
the only terms dependent on the sign of xj are the polynomials p(x) and q(x, y),
respectively. Using the same estimates as in the proof of part (i) we find that

∣∣∣Φ(x′, ε, y)g(x′, ε, y)|(x′, ε, y)|−Reσ − Φ(x′,−ε, y)g(x′,−ε, y)|(x′,−ε, y)|−Reσ
∣∣∣

≤ C|(x′, ε, y)|−Reσ−n+m−Re τ
2

−δ(1 + |(x′, ε, y)|)Ne−|(x′,ε,y)|

×
∣∣∣p(x′, ε)q(x′, ε, y)− p(x′,−ε)q(x′,−ε, y)

∣∣∣

for some N > 0 and an arbitrarily small δ > 0. Now note that p(x′, ε)q(x′, ε, y) −
p(x′,−ε)q(x′,−ε, y) is an odd polynomial in ε and hence of the form ε · r(x′, ε, y).
For the extra ε from this observation we use the estimate |ε| ≤ |(x′, ε, y)|. We further
estimate |r(x′, ε, y)| ≤ C ′(1 + |(x′, ε, y)|)N ′ for some C ′, N ′ > 0 and find (assuming
ε ≤ 1)

≤ CC ′|(x′, ε, y)|−Reσ−n+m−Re τ
2

+1−δ(1 + |(x′, 1, y)|)N+N ′e−|(x
′,y)|.

Now suppose the exponent −Reσ−n+m−Re τ
2

+ 1 is ≤ 0. Then we can estimate

≤ CC ′|(x′, y)|−Reσ−n+m−Re τ
2

+1−δ(1 + |(x′, 1, y)|)N+N ′e−|(x
′,y)|,

which is independent of ε ∈ (0, 1) and integrable on Rn−1 for small δ > 0 since
Reσ < n and Re τ < m. If the exponent −Reσ−n+m−Re τ

2
+1−δ is positive the estimate

ε ≤ 1 also yields a dominant integrable function independent of ε. Therefore, in both
cases we can apply the Dominated Convergence Theorem and obtain that as ε→ 0
the boundary terms vanish.

(b) xj
∂2

∂x2j
. Integrating by part once gives (up to multiplication by a constant) the

boundary terms

∫

Rn−1

(
Φ(x′, ε, y)

(
xj
∂g

∂xj
(x, y)

)

xj=ε

|(x′, ε, y)|−Reσ

− Φ(x′,−ε, y)

(
xj
∂g

∂xj
(x, y)

)

xj=−ε
|(x′,−ε, y)|−Reσ

)
dx′ dy. (4.5)

We have
g(x, y) = K̃−σ

2
+b(|(x, y)|)|(x, y)|2bq(x, y)
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and use the product rule to find xj
∂g
∂xj

(x, y). The first term is by (B.3)

− x2
j

2
K̃−σ

2
+b+1(|(x, y)|)|(x, y)|2bq(x, y)

= − x2
j

2|(x, y)|2
K̃−σ

2
+b+1(|(x, y)|)|(x, y)|2(b+1)q(x, y)

and putting xj = ±ε gives

= − ε2

2|(x′, ε, y)|2
K̃−σ

2
+b+1(|(x′, ε, y)|)|(x′, ε, y)|2(b+1)q(x′,±ε, y).

Again ε2 can be estimated by |(x′, ε, y)|2 and we find that

ε2

2|(x′, ε, y)|2
K̃−σ

2
+b+1(|(x′, ε, y)|)|(x′, ε, y)|2(b+1) and K̃−σ

2
+b(|(x, y)|)|(x, y)|2b

satisfy the same estimates (see part (i)). The same argument applies to the other two
terms in the product rule. Therefore the same argument as in (a) yields the vanishing
of the boundary terms (4.5). Similar arguments yield the vanishing of the boundary
terms that occur when integrating by parts for the second time. For this note that
the formal adjoint of ∂

∂xj
on L2(Rn, |(x, y)|−Reσ dx dy) is − ∂

∂xj
+ (Reσ)

xj

|(x,y)|2 . Both

summands are treated separately as above.

(c) E ∂
∂xj

. We have

E
∂

∂xj
= xj

∂2

∂x2
j

+
∑

k 6=j
xk

∂

∂xk

∂

∂xj
+
∑

k

yk
∂

∂yk

∂

∂xj
.

The first term was already treated in part (b). For the other two terms note that we
can first integrate by parts the derivatives with respect to xk (k 6= j) and yk without
any boundary terms occurring. Secondly, integration by parts of the derivative with
respect to xj is dealt with as in part (b). This finishes the proof.

Remark 4.5. It is necessary in the proof of Proposition 4.4 (ii) to restrict integration
to the domain Ωj,ε. This is because the operator Bn,σj is of second order and we have
to integrate by parts twice. The intermediate result, i.e. after integrating by parts
once, may not be integrable on Rn and hence we need to restrict to a subdomain
on which these intermediate results are integrable. The same problem occurs when
one considers the two summands xj∆ and −(2E − σ + n) ∂

∂xj
separately. Here the

integral over Rn for each of the two summands may not converge while the integral
for the sum Bn,σj does by Proposition 4.4 (i) converge.

Remark 4.6. Part (i) of Proposition 4.4 constructs an embedding of

L2(Rm, |x|−Re τ dx)K∩O(1,m+1) �Hk(Rn−m)

into the C-antilinear algebraic dual of L2(Rn, |(x, y)|−Reσ dx dy)K for every τ ∈
T (σ, µ). By part (ii) this embedding is h-equivariant.
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Let us now continue the proof of Theorem 4.1 by showing property (iv) in
Lemma 4.2. Let v1 ∈ V1 and v2 ∈ V2. Suppose that

v1(x, τ, y) = fτ,X(x)φ(y)χ(τ) and v2(x, y) = g(x, y)

withX ∈ U(h), χ ∈ Cc(T (σ, µ)), φ ∈ Hk(Rn−m), and g ∈ L2(Rn, |(x, y)|−Reσ dx dy)K .
We have

(ϕ(dρ1(Nj)v1) | v2)H2

= − i
∫

Rn

∫

T (σ,µ)

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(Bm,τj fτ,X)(x)φ(y)g(x, y)|(x, y)|−Reσ

χ(τ) dmσ,µ(τ) dx dy

= − i
∫

T (σ,µ)

∫

Rn
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)(Bm,τj fτ,X)(x)φ(y)g(x, y)|(x, y)|−Reσ

χ(τ) dx dy dmσ,µ(τ),

where we were able to change the order of integration, because by Proposition 4.4 (i)
the inner integral in the last line converges absolutely and is continuous in τ and
the integration is only over the compact subset suppχ ⊆ T (σ, µ). Now, by Proposi-
tion 4.4 (ii) we find

= − i
∫

T (σ,µ)

∫

Rn
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)fτ,X(x)φ(y)Bn,σj g(x, y)|(x, y)|−Reσ

χ(τ) dx dy dmσ,µ(τ)

= − i
∫

Rn

∫

T (σ,µ)

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ,X(x)φ(y)Bn,σj g(x, y)|(x, y)|−Reσ

χ(τ) dmσ,µ(τ) dx dy

= (ϕ(v1) | dρ2(Nj)v2)H2
,

again using Proposition 4.4 (i) to change the order of integration. This finally shows
property (iv) of Lemma 4.2 and we obtain that ϕ = Ψ(σ, k) intertwines the group
action of NH and hence of H. Thus the proof of Theorem 4.1 is complete.

We obtain the whole spectral decomposition of ρGσ,ε|H from (4.1) and Theorem 4.1.

Theorem 4.7. For σ ∈ iR ∪ (−n, n) the representation ρGσ,ε decomposes under the
restriction to H = O(1,m+ 1)×O(n−m) as

ρGσ,ε
∣∣
H
∼=

∞∑⊕

k=0

(∫ ⊕

iR+

ρ
O(1,m+1)
τ,ε+k dτ

⊕
⊕

j∈Z∩[0, |Reσ|−n+m−2k
4 )

ρ
O(1,m+1)
|Reσ|−n+m−2k−4j,ε+k

)
�Hk(Rn−m).
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5 Intertwining operators in the non-compact

picture

In Proposition 2.1 we explicitly found an intertwining operator C∞(Rm \ {0}) �
Hk(Rn−m) → C∞(Rn \ {x = 0}). In the Fourier transformed picture this operator
is given by

A(σ, τ)(f ⊗ φ)(x, y) = |x|
σ−τ−µ

2
2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|

2

|x|2

)
f(x)φ(y),

where again µ = 2k + n − m. In Proposition 4.4 we even showed that for fixed
σ ∈ iR∪(−n, n), k ∈ N0 and τ ∈ T (σ, 2k−n+m) the operator A(σ, τ) is intertwining

between the Harish-Chandra module of ρ
O(1,m+1)
τ,ε+k �Hk(Rn−m) and the C-antilinear

algebraic dual of the Harish-Chandra module of ρ
O(1,n+1)
σ,ε . We now find a formal

expression for this intertwiner in the non-compact picture.
Consider the following diagram

C∞c (Rm \ {0})⊗Hk(Rn−m)
A(σ,τ) //

FRm⊗id
��

S ′(Rn)

FRn
��

FRmC
∞
c (Rm \ {0})⊗Hk(Rn−m)

I(σ,τ)
// S ′(Rn).

We extend the operator A(σ, τ) for all σ, τ ∈ C and determine the operator I(σ, τ)
for Re σ � Re τ � 0. We have

FRnA(σ, τ)(f ⊗ φ)(ξ, η)

= (2π)−
n
2

∫

Rm

∫

Rn−m
e−ix·ξ−iy·η|x|

σ−τ−µ
2

× 2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|

2

|x|2

)
f(x)φ(y) dy dx.

We first calculate the integral over y ∈ Rn−m. Using Appendix B.4 and the integral
formula (B.9) we find

(2π)−
n−m

2

∫

Rn−m
e−iy·η2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|

2

|x|2

)
φ(y) dy

= i−kφ(η)|η|−
µ−2
2

∫ ∞

0

Jµ−2
2

(|η|s)2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;− s2

|x|2
)
s
µ
2 ds

= i−kφ(η)|η|−
µ−2
2

2
σ+2
2 Γ(µ

2
)

Γ(µ−σ+τ
4

)Γ(µ−σ−τ
4

)
|x|

µ−σ
2 |η|−σ+2

2 K τ
2
(|x| · |η|).

If we let

ψ(x, η) :=
2
σ+2
2 i−kΓ(µ

2
)

Γ(µ−σ+τ
4

)Γ(µ−σ−τ
4

)
|η|−

σ+µ
2 |x|− τ2K τ

2
(|x| · |η|)
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then we find that

FRnA(σ, τ)(f ⊗ φ)(ξ, η) = FRm(f · ψ(−, η))(ξ) · φ(η)

= (FRmψ(−, η) ∗ FRmf)(ξ) · φ(η).

Therefore we compute, using again Appendix B.4 and the integral formula (B.10)
(noticing that Kν(x) = K−ν(x))

(FRmψ(−, η))(ξ)

=
2
σ+2
2 i−kΓ(µ

2
)

Γ(µ−σ+τ
4

)Γ(µ−σ−τ
4

)
|η|−

σ+µ
2 |ξ|−m−2

2

∫ ∞

0

Jm−2
2

(|ξ|s)s− τ2K τ
2
(|η|s)sm2 ds

=
2
σ−τ+m

2 i−kΓ(µ
2
)Γ(m−τ

2
)

Γ(µ−σ+τ
4

)Γ(µ−σ−τ
4

)
|η|−

σ+τ+µ
2 (|ξ|2 + |η|2)

τ−m
2 .

Altogether we see that I(σ, µ) is a partial convolution operator combined with a
multiplication operator

I(σ, τ)(f ⊗ φ)(ξ, η) = const · |η|−
σ+τ+µ

2 φ(η)

∫

Rm
(|ξ − ξ′|2 + |η|2)

τ−m
2 f(ξ′) dξ′.

For m = n − 1 this operator appears in [10] as a special case. This expression for
I(σ, τ) is valid for Re σ � Re τ � 0. It has a holomorphic extension to all σ, τ ∈ C
for f ∈ FRmC

∞
c (Rm \ {0}).

A Decomposition of principal series

We give a short alternative proof for the decomposition of the principal series πGσ,ε,
σ ∈ iR, ε ∈ Z/2Z, into irreducible H-representations. This decomposition turns out
to be essentially equivalent to the Plancherel formula for L2(O(1,m + 1)/(O(1) ×
O(m+1)),L′δ), where L′δ are the line bundles over the Riemannian symmetric space
O(1,m + 1)/(O(1) × O(m + 1)) induced by the characters (a, g) 7→ aδ of O(1) ×
O(m+ 1), δ ∈ Z/2Z.

Consider the flag variety X = G/P . Since G/P ∼= K/M we can identify X with
the unit sphere Sn ⊆ Rn+1. For this we define a G-action on Sn by the formula

g ◦ x :=
prx(g(1, x))

pr0(g(1, x))
, x ∈ Sn,

where pr0 : Rn+2 → R and prx : Rn+2 → Rn+1 denote the projections onto the first
coordinate and the last n+1 coordinates, respectively, and g(1, x) is the usual action
of g on (1, x) ∈ R× Rn+1 ∼= Rn+2. Then it is easy to prove the following:

Lemma A.1. The operation ◦ defines a transitive group action of G on Sn. The
stabilizer of the point en+1 = (0, . . . , 0, 1) ∈ Sn is equal to the parabolic subgroup P .
The maximal compact subgroup K also acts transitively on Sn and the stabilizer
subgroup of the point x0 is equal to M .
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Let us consider a slightly different embedding of O(1,m + 1) × O(n − m) into
G = O(1, n+ 1). Let

H ′ := {diag(g, h) : g ∈ O(1,m+ 1), h ∈ O(n−m)}.
Then clearly H and H ′ are conjugate and hence the branching to H is equivalent to
the branching to H ′. We shall therefore only deal with H ′ in this section.

Lemma A.2. Under the action ◦ of the group H ′ the sphere Sn decomposes into
the two orbits

O0 := H ′ ◦ e1 = {(x′, 0) : x′ ∈ Sm},
O1 := H ′ ◦ en+1 = {(x′, x′′) ∈ Sn : x′ ∈ Rm+1, x′′ ∈ Rn−m, x′′ 6= 0}.

The orbit O1 is open and dense in Sn. The isotropy group of en+1 in H ′ is

S = {(a, g, h, a) : a ∈ O(1), g ∈ O(m+ 1), h ∈ O(n−m− 1)}.
Now consider the realization of πσ,ε in the compact picture, i.e. on L2(G/P,Lσ,ε),

where Lσ,ε denotes the line bundle over G/P associated to the character man 7→
ξε(m)aσ+ρ of P . Since the orbit O1 ⊆ G/P is open and dense we have

L2(G/P,Lσ,ε) ∼= L2(O1,Lσ,ε|O1).

Now the stabilizer S of eP ∈ G/P in H is contained in P and hence the restriction of
the line bundle Lσ,ε to O1

∼= H ′/S is induced by the restriction of the corresponding
character of P to S which is simply ξε|S. Therefore we find

L2(G/P,Lσ,ε) ∼= L2(O1,Lε),
where Lε is the line bundle over O1

∼= H ′/S induced by the character ξε|S. Using
the decomposition of L2(Sn−m−1) into spherical harmonics we find

L2(O1,Lε) ∼=
∞∑⊕

k=0

L2(O(1,m+ 1)/(O(1)×O(m+ 1)),L′ε+k) �Hk(Rn−m)

as H ′-representations, where for δ ∈ (Z/2Z) we denote by L′δ the line bundle over the
symmetric space O(1,m+1)/(O(1)×O(m+1)) induced by the character (a, g) 7→ aδ

of O(1)×O(m+ 1). Together we obtain

πGσ,ε
∣∣
H
∼=

∞∑⊕

k=0

L2(O(1,m+ 1)/(O(1)×O(m+ 1)),L′ε+k) �Hk(Rn−m)

and hence the decomposition of πGσ,ε|H into irreducible H-representations is equiva-
lent to the decomposition of L2(O(1,m+ 1)/(O(1)×O(m+ 1)),L′δ) into irreducible
O(1,m+1)-representations, δ ∈ Z/2Z. Since O(1,m+1)/(O(1)×O(m+1)) is a Rie-
mannian symmetric space of rank one the decomposition of L2(O(1,m+ 1)/(O(1)×
O(m+ 1)),L′δ) is well-known and given by

L2(O(1,m+ 1)/(O(1)×O(m+ 1)),L′δ) ∼=
∫ ⊕

iR+

π
O(1,m+1)
τ,δ dτ ,

the unitary isomorphism established by the spherical Fourier transform. This proves
Theorem 4.7 for the special case σ ∈ iR.
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B Special functions

For the sake of completeness we collect here the necessary formulas for certain special
functions needed in this paper.

B.1 The K-Bessel function

We renormalize the classical K-Bessel function Kα(z) by

K̃α(z) :=
(z

2

)−α
Kα(z).

Then K̃α(z) solves the differential equation

d2u

dz2
+

2α + 1

z

du

dz
− u = 0.

It has the following asymptotic behaviour as x→ 0 (see [18, Chapters III & VII]):

K̃α(x) =





Γ(α)
2

(
x
2

)−2α
+ o(x−2α), for Reα > 0,

− log
(
x
2

)
+ o

(
log
(
x
2

))
, for Reα = 0,

Γ(−α)
2

+ o(1), for Reα < 0.

(B.1)

Further, as x→∞ we have

K̃α(x) =

√
π

2

(x
2

)−α− 1
2
e−x

(
1 +O

(
1

x

))
. (B.2)

For the derivative of K̃α(z) the following identity holds (see [18, equation III.71 (6)]):

d

dz
K̃α(z) = −z

2
K̃α+1(z). (B.3)

B.2 The Gauß hypergeometric function

Consider the classical Gauß hypergeometric function

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
n!(c)n

zn,

where (a)n = a(a+ 1) · · · (a+n− 1) denotes the Pochhammer symbol. The function

2F1(a, b; c; z) is holomorphic in z for z /∈ [1,∞) and meromorphic in the parameters
a, b, c ∈ C. It solves the differential equation

(1− z)z
d2u

dz2
+ (c− (a+ b+ 1)z)

du

dz
− abu = 0. (B.4)
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The following formula allows to study the asymptotic behaviour of the Gauß hyper-
geometric function near x =∞ (see [5, equation 9.132 (2)]):

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a2F1(a, a− c+ 1; a− b+ 1; 1

z
) (B.5)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)(−z)−b2F1(b, b− c+ 1; b− a+ 1; 1
z
).

Both summands on the right hand side of (B.5) are generically linear independent
solutions of (B.4). Their Wronskian is given by

W (z−a2F1(a, a− c+ 1; a− b+ 1;−1
z
), z−b2F1(b, b− c+ 1; b− a+ 1;−1

z
))

= (a− b)(1 + z)c−a−b−1z−c.

The following simple formula for the derivative of the hypergeometric function holds:

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (B.6)

We recall Kummer’s transformation formula (see [5, equation 9.131 (1)]):

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z). (B.7)

For a ∈ −N0 the hypergeometric function 2F1(a, b; c; z) degenerates to a polyno-

mial which can be expressed in terms of the Jacobi polynomials P
(a,b)
n (z) (see [5,

equation 8.962 (1)]):

2F1(−n, b; c; z) =
n!

(c)n
P (c−1,b−c−n)
n (1− 2z), n ∈ N0, (B.8)

where

P (a,b)
n (z) =

1

n!

n∑

k=0

(−n)k(a+ b+ n+ 1)k(a+ k + 1)n−k
k!

(
1− z

2

)k
.

B.3 Integral formulas

We consider the J-Bessel function Jν(z) and the K-Bessel function Kν(z). For the
J-Bessel function and the hypergeometric function the following integral formula
holds for y > 0, Reλ > 0 and −1 < Re ν < 2 max(Reα,Re β)− 3

2
(see [5, equation

7.542 (10)])
∫ ∞

0
2F1(α, β; ν + 1;−λ2x2)Jν(xy)xν+1 dx

=
2ν−α−β+2Γ(ν + 1)

λα+βΓ(α)Γ(β)
yα+β−ν−2Kα−β

(y
λ

)
. (B.9)

For the J-Bessel function and the K-Bessel function we have the following integral
formula for Reµ > |Re ν| − 1 and Re b > |Im a| (see [5, equation 6.576 (7)])

∫ ∞

0

xµ+ν+1Jµ(ax)Kν(bx) dx = 2µ+νaµbν
Γ(µ+ ν + 1)

(a2 + b2)µ+ν+1
. (B.10)
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B.4 Fourier and Hankel transform

Let FRn denote the Euclidean Fourier transform on Rn as defined in (1.3). Let k ∈ N0

and φ ∈ Hk(Rn). For f ∈ L2(R+, r
n+2k−1 dr) denote by f ⊗φ ∈ L2(Rn) the function

(f ⊗ φ)(x) := f(|x|)φ(x), x ∈ Rn.

Then by [15, Chapter IV, Theorem 3.10]

FRn(f ⊗ φ) = i−k(Hn+2k−2
2

f)⊗ φ,

where Hν is the modified Hankel transform of parameter ν ≥ −1
2

Hνf(r) = r−ν
∫ ∞

0

Jν(rs)f(s)sν+1 ds,

which is a unitary isomorphism (up to a scalar multiple) on L2(R+, r
2ν+1 dr).
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