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Abstract

In this dissertation we consider approximation of real num-
bers by rationals with certain restrictions on the denomina-
tors. First we consider numbers that are badly approximable
from the left by fractions with denominator of the form qn

for a fixed integer q ≥ 2 and all n ≥ 0. More precisely we let
c ∈ (0, 1) and consider the x ∈ [0, 1) such that

x− k

qn
≥ c

qn

for all n ≥ 0 and k
qn
≤ x. The set of these x is a nullset with

respect to the Lebesgue measure, and we give a formula on
how to calculate the Hausdorff dimension of this set. This
formula is then generalized to the case where q = β > 1
is in a certain dense set of real numbers, namely the simple
numbers.

Then, we let p, q ≥ 2 be integers and consider approxima-
tion by fractions with denominators of the form pnqm for all
n,m ≥ 0 and prove some versions of classical results in this
settings.

Finally we show a result related to the famous Littlewood
conjecture. We prove that there is a subset of the badly ap-
proximable numbers of full Hausdorff dimension such that a
family of conjectures related to the Littlewood conjecture is
simultaneously true on this set, namely the Littlewood con-
jecture, the mixed Littlewood conjecture and a hybrid of a
conjecture by Cassel and Littlewoods conjecture.
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Resumé

I denne afhandling undersøges det, hvor godt man kan ap-
proksimere reelle tal ved brøker, hvor vi sætter visse betingel-
ser p̊a nævnerne i brøkerne. Først betragter vi mængden af
tal, der er d̊arligt approksimérbare fra venstre ved brøker med
nævner p̊a formen qn, hvor q ≥ 2 er et helt tal og n ≥ 0. Mere
præcist lader vi c ∈ (0, 1) og ser vi p̊a de x ∈ [0, 1), der op-
fylder at

x− k

qn
≥ c

qn

for alle n ≥ 0 og k
qn
≤ x. Det viser sig, at det bliver en

Lebesgue-nulmængde, og vi giver en formel for udregning af
Hausdorffdimensionen af mængden af disse x. Resultatet gen-
eraliseres til ogs̊a at gælde, n̊ar q = β > 1 tilhører en tæt
mængde af reelle tal, nemlig de simple tal.

Derefter undersøges det, hvad der sker med approksima-
tionen, hvis man lader p, q ≥ 2 være forskellige hele tal og
tillader af nævnerne kan være p̊a formen pnqm. Vi ser her
p̊a, hvorledes nogle klassiske resultater i Diofantisk approksi-
mation tager sig ud, n̊ar vi begrænser nævnerne p̊a denne
m̊ade.

Til sidst vises et resultat relateret til Littlewoods formod-
ning, nemlig at der findes en delmængde af de d̊arligt ap-
proximerbare tal af fuld Hausdorff dimension, s̊aledes at en
række formodninger relateret til Littlewoods formdning alle
er sande simultant p̊a denne mængde. Det drejer sig om Lit-
tlewoods formodning, mixed Littlewoods formodning og en
hybrid mellem en formodning af Cassel og Littlewoods for-
modning.



3

Acknowledgements

I would like to thank my supervisor Simon Kristensen for
helpful discussions and supervision, and for making the last
three years a both educational and entertaining experience.
I would also like to thank Stephen Harrap for carefully proof
reading this dissertation and for many helpful comments and
corrections.



Contents

Contents 4

1 Introduction and summary 7
1.1 Diophantine approximation . . . . . . . . . . . . . . . . . 7
1.2 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . 9
1.3 Shift spaces and words . . . . . . . . . . . . . . . . . . . . 10
1.4 Summary of new results . . . . . . . . . . . . . . . . . . . 12

2 One-sided Bad 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 A golden example . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The general case . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 The dimension is constant . . . . . . . . . . . . . . . . . . 31
2.6 Fractal plots . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Beta-shifts 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Continuity of the dimension . . . . . . . . . . . . . . . . . 40
3.3 A real example . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 The real general case . . . . . . . . . . . . . . . . . . . . . 46
3.5 Two-sided approximation . . . . . . . . . . . . . . . . . . . 54

4 Restricted denominators, pnqm 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Khintchine’s theorem . . . . . . . . . . . . . . . . . . . . . 57
4.3 Badly approximable numbers . . . . . . . . . . . . . . . . 60
4.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Zero-one laws for Hausdorff measures . . . . . . . . . . . . 63
4.6 Multiplicative approximation . . . . . . . . . . . . . . . . . 65
4.7 Simultaneous approximation . . . . . . . . . . . . . . . . . 67
4.8 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 68

4



CONTENTS 5

5 Littlewood’s Conjecture 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Kaufman’s measure . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A On lower bounded orbits of the times-q map 79
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 Part and residue . . . . . . . . . . . . . . . . . . . . . . . 83
A.5 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.6 Induction mapping . . . . . . . . . . . . . . . . . . . . . . 90
A.7 Constant dimension . . . . . . . . . . . . . . . . . . . . . . 94
A.8 Numerical plot . . . . . . . . . . . . . . . . . . . . . . . . 95
A.9 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B Code 99
B.1 Brute force calculation of φ . . . . . . . . . . . . . . . . . 99
B.2 Smarter calculation of φ . . . . . . . . . . . . . . . . . . . 100

Bibliography 103





Chapter 1

Introduction and summary

1.1 Diophantine approximation

Diophantine approximation is a research area that deals with approxima-
tion of real numbers by rational numbers – the rationals are dense in the
reals, and we are interested in saying something about how dense they
are. The most basic result is the following classical theorem by Dirichlet
which is proved using his pigeon hole principle.

Theorem 1.1 (Dirichlet). Let x ∈ R. For any N ∈ N there is a non-
negative integer 0 ≤ n ≤ N and m ∈ Z such that∣∣∣x− m

n

∣∣∣ ≤ 1

nN
.

Proof. Let x ∈ R and let x = [x] + {x} where [x] ∈ Z and {x} = [0, 1).
By Dirichlet’s pigeon hole principle, two elements from the set {{nx} |
m = 0, 1, . . . , N} are in one of the intervals[

i

N
,
i+ 1

N

)
for i = 0, 1, . . . , N−1, say {n1x} and {n2x} with 0 ≤ n1 < n2 ≤ N . Now

1

N
≥ |{n2x} − {n1x}| = |(n2 − n1)x− ([n2x]− [n1x])| ,

so if we let m = [n2x]− [n1x] ∈ Z and n = (n2 − n1) ∈ {1, 2, . . . , N} we
have

1

N
≥ |mx− n|

and hence ∣∣∣x− m

n

∣∣∣ ≤ 1

nN
as desired.

7
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For x ∈ R we let
‖x‖ = min

y∈Z
|x− y|

denote the distance to the distance to the nearest integer. We then get
the following corollary.

Corollary 1.2. Let x ∈ R. Then

lim inf
n→∞

n ‖nx‖ ≤ 1. (1.1)

The corollary above is not far from the best approximation possible.
Hurwitz improved this to lim infn n ‖nx‖ ≤ 1√

5
and showed that this is

best possible since the golden ratio ϕ = 1+
√
5

2
satisfies

lim inf
n

n ‖nϕ‖ =
1√
5
.

The numbers x such that lim infn n ‖nx‖ > 0 are the so called Badly
approximable numbers,

Bad = {x ∈ R | lim inf
n

n ‖nx‖ > 0}.

These numbers have attracted a lot of interest from researchers and they
are the main topic of this dissertation. Recall the following classical
theorem by Khinchine.

Theorem 1.3 (Khinchine). Let ψ : R → (0,∞) be a continuous, non-
increasing function. Then the inequality

‖nx‖ < ψ(n) (1.2)

has infinitely many solutions in integers n > 0 for almost all x ∈ R with
respect to the Lebesgue measure if

∞∑
n=1

ψ(n) =∞, (1.3)

and if the series in (1.3) converges then there are only finitely many n > 0
such that (1.2) is true.

It follows from this theorem that Bad is a nullset with respect to the
Lebesgue measure.This is because if x /∈ Bad then for any m ∈ N we
have

n ‖nx‖ < 1

m
(1.4)
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for infintely many n. Now let

Em = {x ∈ R | n ‖nx‖ < 1

m
for infinitely many n ∈ N}

then Em is of full measure because

∞∑
n=1

1

mn
=∞,

Now

Bad = R \
∞⋂
m=1

Em

so Bad is a nullset.
Throughout the thesis we will let O(1) denote a bounded quantity

and let O(X) = O(1)X. If Y = O(X) we write Y � X and if both
X � Y and Y � X is true, we write X � Y .

1.2 Hausdorff dimension

Many of the results in this thesis use the notion of Hausdorff dimension.
Let Y ⊆ X where (X, d) is a metric space. We define the diameter of a
bounded set U ⊆ X as

diam(U) = sup
x,y∈U

d(x, y),

and we call a collection of sets {Ui} a δ-cover of Y if the union of the
sets cover Y and diam(Ui) ≤ δ for all i. Now let for s ≥ 0

H s
δ (Y ) = inf

{∑
i

diam(Ui)
s | {Ui} is a δ-cover of Y

}
.

As δ decreases this value increases, and we let

H s(Y ) = lim
δ→0

H s
δ (Y )

which may be a non-negative number or +∞. We call this the s-dimensional
Hausdorff measure of Y . This is in fact a measure, and it generalizes the
Lebesgue measure λn on Rn since

H n(Y ) =
λn(Y )

λn(B(0, 1
2
))
,

where B(0, 1
2
) ∈ Rn is the n-dimensional ball of radius 1

2
.
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∞

Hs(Y )

s

dimH Y

Figure 1.1: A plot of H s(Y ) as a function of s.

The Hausdorff dimension of Y is in some sense the appropriate s to
pick when trying to measure Y with the Hausdorff measure. If we for a
moment only consider integer values of s and let Y be a 2-dimensional set,
it is clear that it does not make sense to measure neither the length which
would be ∞, nor the volume which would be 0. So we are looking for
the critical value, where we make this jump from ∞ to 0. This happens
in a single point, because we see that for t > s we have

H t
δ (Y ) ≤ δt−sH s

δ (Y ),

so letting δ → 0 we see that if H s(Y ) < ∞ we must have H t(Y ) = 0.
This proves that the graph of s 7→H s(Y ) looks something like figure 1.1.
The critical value s where the graph jumps from +∞ to 0 is called the
Hausdorff dimension, and is denoted dimH Y . In this jump the Hausdorff
measure might be 0,∞, or any positive real number.

We will use Hausdorff dimension to measure the sizes of nullsets.
Jarńık proved [11] that dimH Bad = 1, so even though Bad is a nullset,
it is still large in the sense of Hausdorff dimension.

1.3 Shift spaces and words

Some of the variations of Bad we shall consider can be rephrased in terms
of dynamical systems in form of shift spaces and words. We provide a
brief introduction to both here. Let q ≥ 2 be an integer and consider the
set

Σ = Σq = {0, 1, 2, . . . , q − 1}N,
of right-infinite words on q-digits. Throughout the dissertation we will
write words in Σ in bold, that is a1a2 · · · = (a1, a2, . . .) ∈ Σ. For sim-
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plicity we let a finite word denote the corresponding word with a tail of
zeros,

a1 · · · an = a1 · · · an0 · · ·
When we compare two words we use the lexicographical ordering where
the leftmost digit is the most significant, so for example

1221 > 1212.

When an expression should be considered as one digit we write it in
square brackets, so

[1 + 2]345 = 3345.

We define powers of words as concatenation, so

(a1 · · · am)∞ = a1 · · · ama1 · · · ama1 · · ·

and
(a1 · · · am)n = a1 · · · ama1 · · · am · · · a1 · · · am

where we on the right have n copies of a1 · · · am for n ≥ 0.
Define the shift-map σ : Σ→ Σ by

σ(a1a2a3 · · ·) = a2a3 · · ·.

and define θ = θq : Σ→ [0, 1] by

θ(a1a2a3 · · ·) =
∞∑
i=1

ai
qi
,

The map θ is not one-to-one everywhere since for instance

θ(0999 · · ·) = θ(1000 · · ·) = 0.1

when q = 10. Given x ∈ [0, 1) we get

θ(a1a2 · · ·) = x

if we let
ai = bqT i−1xc

be the q-expansion of x where the times-q map T = Tq : [0, 1)→ [0, 1) is
defined by Tx = {qx}. We also get

Tθ(c) = θ(σ(c))

if θ(c), θ(σ(c)) < 1.
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1.4 Summary of new results

In Chapter 2 we will consider onesided approximation of real numbers
by fractions of the form k

qn
where q ≥ 2 is a fixed integer. Studying the

following variant of Bad will be our main focus. We will fix c ∈ [0, 1] and
consider numbers x ∈ R such that

x− k

qn
≥ c

qn

for all k, n ≥ 0 with k
qn
≤ x. This is equivalent with

{qnx} ≥ c

for all n ≥ 0 where where {·} denotes the fractional part of a number,
and since this is invariant under integer translation, we let

Fc = {x ∈ [0, 1) | {qnx} ≥ c for all n ≥ 0}

denote this variant of Bad. Urbanski [24] proved that the map c 7→
dimH Fc is continuous and constant almost everywhere with respect to the
Lebesgue measure, and Nilsson [17] characterized the intervals where the
map is constant. In Chapter 2 we prove the following theorem regarding
the Hausdorff dimension of Fc.

Theorem 2.4. Let c =
∑m

i=1
ci
qi
> 0 with 0 ≤ ci < q and let

n = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}

and

ai =

{
q − ci − 1 for 1 ≤ i < n
q − ci for i = n

.

Then

dimH Fc =
log ρ

log q

where ρ is the largest real root of

xn − a1xn−1 − a2xn−2 − · · · − an.

Note that we let both cj+1 · · · cm and c1 · · · cm−j denote the empty
word when j = m, and hence

cj+1 · · · cm = c1 · · · cm−j

in this case.
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A corollary of this theorem is that the analogue of Bad where we let
c depend on x has Hausdorff dimension one.

The results in Chapter 2 can be found in [12]. The proof given in
Chapter 2 is different and simpler than the one in [12], but the paper in
its full length is given in Appendix A.

One can generalize the base-q expansion of a real number in the fol-
lowing way. Given a real number β > 1 we can define the β-expansion
b1b2 · · · of a real number x ∈ [0, 1] by

b1 = bβxc

and

bi = bβ{βix}c.
for i ≥ 2. Evidently we have

x =
∞∑
i=1

bi
βi
.

The numbers β > 1 such that the β-expansion of 1 is finite are the
simple numbers. In Chapter 3 we prove that the numbers ρ > 1 occuring
in Theorem 2.4 are precisely the simple numbers, and we use this to give
a new proof that the map c 7→ dimH Fc is continuous.

Then we use the theory of β expansions to generalize Theorem 2.4,
and consider for c ∈ [0, 1) and a simple β the set of numbers badly
approximable from the left by fractions of the form k

βn
for integers k, n.

By the same argument as above this set is given by

Fc(β) = {x ∈ [0, 1) | {βnx} ≥ c for all n ≥ 0}.

Note that when β = q is an integer, it is also simple because then the
β-expansion of 1 is q. We prove the following theorem.

Theorem 3.5. Let β > 1 be a simple number such that the β expansion
of 1 is b1 · · ·bk and let c ∈ [0, 1) have β-expansion c1 · · · cm. Let

n = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}

and

t = min{1 ≤ j ≤ k | bj+1 · · ·bk ≤ c1 · · · cm}.
Assume that cj < b1 for j < n. Let dj = bj − c1 − 1 for j = 2, 3, . . . , t,

ai =

{
b1 − ci − 1 for i = 1, 2, . . . , n− 1
b1 − ci for i = n

.
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Then

dimH Fc(β) =
log ρ

log β

where ρ > 0 is the spectral radius of

a1 a2 · · · an−1 an d2 d3 · · · dt−1 dt
1 1 1 · · · 1 1

1
. . .

1
1 1 · · · 1 1

1
1

. . .

1


.

Note that the empty entries in the matrix are zeros. The technique
used to prove Theorem 3.5 is the same as that used to prove Theorem 2.4,
but the combinatorics involved is more complicated. Note that when
β = q is an integer, the theorem gives us that

dimH Fc =
log ρ

log q

where ρ is the spectral radius of

a1 a2 · · · an−2 an−1 an
1

1
. . .

1
1


.

The characteristic polynomial of this can be calculated to be xn−a1xn−1−
· · · − an, so Theorem 2.4 follows from Theorem 3.5.

In Chapter 4 we consider approximation where the denominators are
restricted to be in the set

A = {p`qm | `,m ≥ 0}.

Among other things we prove a version of Khinchine’s Theorem.
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Theorem 4.3. Let ψ : N → R+ be a monotonic function. For almost
all x ∈ R, the inequality ∣∣∣∣x− k

n

∣∣∣∣ < ψ(n)

n

is true for infinitely many integers k, n with n ∈ A if

∞∑
n=1

ψ(n) log n

n
=∞,

and if
∞∑
n=1

ψ(n) log n

n
<∞

then the inequality is false for almost all x ∈ R.

We also prove versions of this theorem in higher dimensions. Badly
approximable numbers in this setting are also considered. Here we prove
that

lim inf
n∈A

log n2 ‖nx‖ > 0

is true for x in a nullset, but

lim inf
n∈A

log n2+ε ‖nx‖ > 0

is true for almost all x when ε > 0. Using an effective version of Fursten-
berg’s orbit closure theorem by Bourgain, Lindenstrauss, Michel and
Venkatesh [4] we prove the following theorem.

Theorem 4.8. There is a constant c > 0 only dependent on p and q
such that the set

{x ∈ [0, 1] : lim inf
n∈A

(log log log n)c ‖nx‖ > 0}

is a subset of the union of rationals and Liouville numbers. In particular
it has Hausdorff dimension zero.

The results are generalized to the case where the denominator is of
the form qm1

1 qm2
2 · · · qmkk . The results in this chapter are joint work with

Sanju Velani during a stay at University of York in the spring of 2011.
A famous conjecture by Littlewood states that for all x, y ∈ R, we

have

lim inf
n

n ‖nx‖ ‖ny‖ = 0. (1.5)
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If x /∈ Bad we have
lim inf

n
n ‖nx‖ = 0,

and since ‖ny‖ ≤ 1
2
, (1.5) is true in this case. So the conjecture is only

interesting when x, y ∈ Bad.
Related to Littlewood’s conjecture is the Mixed Littlewood Conjec-

ture. Here we let D = {qk} with qk | qk+1 be a pseudo-absolute sequence
and let

|n|D = min

{
1

qk
: qk | n

}
be a pseudo absolute value. Then the Mixed Littlewood conjecture states
that

lim inf
n

n |n|D ‖ny‖ = 0 (1.6)

for all y ∈ R.
In Chapter 5 we prove that there is a set G ⊆ Bad of full Hausdorff

dimension such that both these conjectures and a version of a conjecture
by Cassel is true on this set.

Theorem 5.1. Fix ε > 0 and let {xi} ⊆ Bad be a countable set of badly
approximable numbers, and {Dj} a countable set of pseudo-absolute value
sequences. Then there is set of G ⊆ Bad of Hausdorff dimension 1 such
that for any y ∈ G, the following is true.

(i) For any i ∈ N and γ ∈ R the inequality

n ‖nxi‖ ‖ny − γ‖ <
1

(log n)1/2−ε
,

has infinitely many solutions n ∈ N, and

(ii) For any j ∈ N and δ ∈ R we have that

lim inf
n→∞

n |n|Dj ‖ny − δ‖ = 0.

Furthermore, for each j such that Dj = (qk) satisfies the inequality qk ≤
Ck for some C > 1, we may replace (5.2) by the stronger statement that
for any δ ∈ R the inequality

n |n|Dj ‖ny − δ‖ <
1

(log n)1/2−ε
,

has infinitely many solutions n ∈ N.

The results in Chapter 5 is done joint with Simon Kristensen and
Alan Haynes and can be found in [10].



Chapter 2

One-sided Bad

2.1 Introduction

This chapter presents the results from [12], but with significantly simpler
proofs. The paper [12] in its full length is given in Appendix A.

Recall that x ∈ R is a Badly approximable number if there is c > 0
such that ∣∣∣∣x− k

n

∣∣∣∣ ≥ c

n2

for all n, k ∈ Z. We consider the problem where we fix an integer q ≥ 2
and restrict the denominator to be of the form qn for n ≥ 0. We let
c ∈ [0, 1] and consider x ∈ R such that

x− k

qn
≥ c

qn

for all n ≥ 0 and k
qn
≤ x, or equivalently that

{qnx} ≥ c (2.1)

for all n ≥ 0 where {·} denotes the fractional part. Note that we approx-
imate with fractions from the left and that c is fixed. The set of x ∈ R
that satisfies (2.1) is invariant under integer translation so we consider
the set

Fc = {x ∈ [0, 1) | {qnx} ≥ c for all n ≥ 0}.
We see that F0 = [0, 1) and F1 = ∅ and that Fc2 ⊆ Fc1 when c1 ≤ c2
so if we define φq = φ : [0, 1] → [0, 1] by φ(c) = dimH Fc then φ is
non-increasing.

Urbanski [24] proved that this map is continuous and constant almost
everywhere with respect to the Lebesgue measure and Nilsson [17] com-
pletely characterized the intervals where φ is constant. The main result

17
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in this chapter is a formula for calculating the exact value of φ(c) when c
has finite base q-expansion. Figure A.1 is a plot of φ for different values
of q made using this result.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.1: Plots of φ for q = 2 (red), 3 (green), 4 (blue), 5 (magenta),
7 (light blue).

2.2 A golden example

To illustrate the technique used to prove the main result in this chapter,
we begin with a simple example. Here we fix q = 2 and c = 1

4
. Define

T : [0, 1)→ [0, 1) by

Tx = {2x}.

We have

F = F 1
4

=
∞⋂
n=0

F n.
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where

F n =
n⋂
i=0

T−i
[

1

4
, 1

)
,

for n = 0, 1, . . .. We wish to prove that the Hausdorff dimension of F is
given by

dimH F =
logϕ

log 2
,

where ϕ is the largest real solution of x2− x− 1 = 0, namely the Golden
ratio,

ϕ =
1 +
√

5

2
.

We can construct F n as in figure 2.2. Here we draw T−i[1/4, 1) for
i = 0, 1, 2, . . .. The intersection of the first n of these is equal to F n.

Figure 2.2: Geometric construction of F 1
4

when q = 2. The grey lines are

T−i[1/4, 1) for i = 0, 1, 2, 3, 4, 5 and the black lines are the intersections
of these.

We associate a word Cn ∈ Σ2 to F n for all n = 0, 1, 2, . . . in the
following way. We claim that F n is a disjoint union of two types of
intervals: Some intervals I1 such that T nI1 =

[
1
4
, 1
)
, which we say is of

type 1, and some I2 such that T nI2 =
[
1
2
, 1
)
, which we say is of type 2.

We now define Cn by looking at the intervals in F n from left to right,
and for each interval of type j, we add a digit j to the right of Cn. We
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then get the following sequence of words.

C0 = 1

C1 = 21

C2 = 121

C3 = 21121

C4 = 12121121

C5 = 2112112121121

We now prove the following lemma.

Lemma 2.1. We can find Cn by letting C0 = 1, and then iterating from
Ci to Ci+1 for i ≥ 0 via the morphisms

1→ 21, 2→ 1.

Proof. We prove this by induction. Recall that F n+1 = T−n−1[1/4, 1) ∩
F n. Assume we have an interval I1 of type 1 in F n. Consider the inter-
section

I1 ∩ T−n−1
[

1

4
, 1

)
.

Note that

T n
(
I1 ∩ T−n−1

[
1

4
, 1

))
=

[
1

4
, 1

)
∩ T−1

[
1

4
, 1

)
.

This set is illustrated in the figure below. Here the blue line is I1 =
[1/4, 1), the green lines are T−1[1/4, 1) and the red lines are the intersec-
tion of the two. We see that this intersection is two intervals J,K where
TJ =

[
1
2
, 1
)

and TK =
[
1
4
, 1
)
.

1
4

1
8

5
8

J K

I1

So the intersection I1∩T−n−1
[
1
4
, 1
)

consists of two intervals – one of type
1 and one of type 2, so for each interval of type 1 there is in F n we get
an interval of type 1 and one of type 2 in F n+1.

Now assume that there is an interval I2 of type 2 in F n. Then

T n
(
I2 ∩ T−n−1

[
1

4
, 1

))
=

[
1

2
, 1

)
∩ T−1

[
1

4
, 1

)
.
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as in the figure below. Here the blue line is I2 = [1/2, 1), the green lines
are T−1[1/4, 1) and the red line is the intersection which is one interval
J such that TJ =

[
1
4
, 1
)
.

I2
1
2

1
8

5
8

J

So for each interval of type 2 in F n we get an interval of type 1 in F n+1.
This finishes the proof of the lemma.

We define fn to be the number of disjoint intervals in F n and prove
the following lemma.

Lemma 2.2. For n ≥ 0, fn is the n’th Fibonacci number, that is f0 =
1, f1 = 2 and fn = fn−1 + fn−2 for n ≥ 2.

Proof. We see that fn is equal to the number of digits of Cn, so it is
enough to prove that the number of digits of Cn is the n’th Fibonacci
number. We know that we can define Cn by C1 = 1 and then use the
morphisms

1→ 21, 2→ 1

to get from Cn to Cn+1 for n ≥ 0. Now let f 1
n and f 2

n denote the number
of 1’s and 2’s respectively in Cn. Then we have for any n > 1 that

f 2
n = f 1

n−1,

and

f 1
n = f 1

n−1 + f 2
n−1 = fn−1.

So

fn = f 1
n + f 2

n = f 1
n−1 + fn−1 = fn−2 + fn−1,

as desired.

Using this result we can now calculate the Hausdorff dimension of F .
Here we give a heuristic argument where we assume that

0 < H s(F ) <∞

for some s and leave the rigorous calculation to the proof of the general
case. We know that F n consists of fn intervals, namely f 1

n = fn−1 of type
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1 which is of length 3
2n+2 and f 2

n = fn−2 of type 2 which is of length 2
2n+2 .

So we get for s ≥ 0 that

H s(F n) = fn−1

(
3

2n+2

)s
+ fn−2

(
2

2n+2

)s
= (fn−2 + fn−3)

(
3

2n+2

)s
+ (fn−3 + fn−4)

(
2

2n+2

)s
=

1

2s

(
fn−2

(
3

2n+1

)s
+ fn−3

(
2

2n+1

)s)
+

1

22s

(
fn−3

(
3

2n

)s
+ fn−4

(
2

2n

)s)
=

1

2s
H s(F n−1) +

1

22s
H s(F n−2).

Letting n→∞ and assuming that 0 < H s(F ) <∞ for some s we get

1 =
1

2s
+

1

22s
.

Solving this in s gives

s =
logϕ

log 2
.

So under the assumption that 0 < H s(F ) < ∞ for some s we get
dimH F = s in this example.

2.3 The general case

We now proceed to the general case. Here we need the Perron-Frobenius
theorem. A square matrix A with non-negative entries is said to be
irreducible if for any i, j there is n such that (An)ij > 0. Recall that the
spectral radius of a matrix is the eigenvalue that is largest in absolute
value. We have the following theorem.

Theorem 2.3 (Perron-Frobenius). If A is an irreducible matrix, then
the spectral radius ρ is real and ρ > 0.

We are now ready to prove the following theorem which gives a simple
way of calculating the value of φ(c) when c = k

qm
for integers k,m.

Theorem 2.4. Let c =
∑m

i=1
ci
qi
> 0 with 0 ≤ ci < q and let

n = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}
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and

ai =

{
q − ci − 1 for 1 ≤ i < n
q − ci for i = n

.

Then

dimH Fc =
log ρ

log q

where ρ is the largest real root of

xn − a1xn−1 − a2xn−2 − · · · − an.

Proof. First notice that since x ∈ Fc if and only if x ∈ T−i[c, 1) for all
i = 0, 1, . . . we have

Fc =
∞⋂
i=0

F i
c

where F 0
c = [c, 1) and F i

c = F i−1
c ∩ T−i[c, 1).

We claim that F i
c can be written as a disjoint union,

F i
c =

fi⋃
k=1

Jk (2.2)

where fi ∈ N and each Jk is an interval such that

T iJk = [θ(cjk · · · cm), 1) (2.3)

for some integer jk ≤ n. Furthermore we claim that if we for i ≥ 0 define
Ci ∈ Σn by

Ci = j1 · · · jfi
with jk as in (2.3), we have C0 = 1 and for i ≥ 0, we can find Ci+1 in
terms of Ci by the morphims

1→ 21a1 , 2→ 31a2 , . . . , [n− 1]→ n1an−1 , n→ 1an . (2.4)

We will prove this claim by induction. Now F 0
c = [c, 1) and C0 = 1,

so the claim is true for i = 0. Now assume that i ≥ 0 and that F i
c is a

disjoint union as in (2.2) and define j1, . . . , jfi as in (2.3). Then

F i+1
c =

(
fi⋃
k=1

Jk

)
∩ T−i−1[c, 1) =

fi⋃
k=1

(
Jk ∩ T−i−1[c, 1)

)
.

Now let k with 1 ≤ k ≤ fi be given, and let J = Jk and j = jk. If j < n
then

cj+1 · · · cm > c1 · · · cm−j
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and so
θ(cj · · · cm) ∈ T−1[c, 1)

because Tθ(cj · · · cm) = θ(cj+1 · · · cm). We see that

T i
(
J ∩ T−i−1[c, 1)

)
= [θ(cj · · · cm), 1) ∩ T−1[c, 1)

consists of the interval [
θ(cj · · · cm),

cj + 1

q

)
.

and if cj < q − 1 then furthermore of the q − cj − 1 = aj intervals

[θ([q− 1]c1 · · · cm), 1),

[
θ([q− 2]c1 · · · cm),

q − 1

q

)
, . . . ,[

θ([cj + 1]c1 · · · cm),
cj + 2

q

)
.

See the figure below to see an illustration of this where q = 4. Here the
blue line is [θ(cj · · · cm), 1) and the green lines are T−1[c, 1).

θ(0c1 · · · cm) θ(1c1 · · · cm) θ(2c1 · · · cm) θ(3c1 · · · cm)

3
4

1
4

2
4

θ(cj · · · cm)

Now

T

[
θ(cj · · · cm),

cj + 1

q

)
= [θ(cj+1 · · · cm), 1)

and

T

[
θ([q− `]c1 · · · cm),

q − `+ 1

q

)
= [c, 1)

for ` = 1, 2, . . . , aj so the intersection J ∩ T−i−1[c, 1) gives an interval
I such that T i+1I = [θ(cj+1 · · · cm), 1) and aj intervals K such that
T i+1K = [c, 1). So for each j in Ci we get [j + 1]1a

j in Ci+1 so the
morphisms given in (2.4) are true when j < n.

Assume now that j = n then

cj+1 · · · cm ≤ c1 · · · cm−j
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and so
θ(cj · · · cm) /∈ T−1[c, 1).

as in the illustration below where the green lines are T−1[c, 1).

θ(0c1 · · · cm) θ(1c1 · · · cm) θ(2c1 · · · cm) θ(3c1 · · · cm)

3
4

1
4

2
4

θ(cj · · · cm)

Now [θ(cj · · · cm), 1)] ∩ T−1[c, 1) consists only of q − cj = aj intervals

[θ([q− 1]c1 · · · cm), 1),

[
θ([q− 2]c1 · · · cm),

q − 1

q

)
, . . . ,[

θ(cjc1 · · · cm),
cj + 1

q

)
.

For each of these we have

T

[
θ([q− `]c1 · · · cm),

q − `+ 1

q

)
= [c, 1)

for ` = 1, 2, . . . , aj so the intersection J∩T−i−1[c, 1) consists of aj intervals
K such that T i+1K = [c, 1). So for each j = n in Ci we get 1an in Ci+1.
This proves that the morphisms in (2.4) are true and finishes the proof
of the claim.

Let gji (k) denote the number of j’s in a word after i iteratations,
where we start with the word just consisting of the digit k. Then we get
from the morphisms that

g1i (k) = a1g
2
i−1(k) + a2g

2
i−1(k) + · · ·+ ang

n
i−1(k)

g2i (k) = g1i−1(k)

g3i (k) = g2i−1(k)

...

gni (k) = g−1i
n−1(k),

so if we let

gi(k) =


g1i (k)
g2i (k)
...

gni (k)

 (2.5)
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we have

gi(k) = Mgi−1(k)

when i ≥ 1 and M is the n× n matrix given by

M =



a1 a2 · · · an−2 an−1 an
1

1
. . .

1
1



where the empty entries are zeroes. We now wish to prove that the
characteristic polynomial of M is

det(xI −M) = xn − a1xn−1 − a2xn−2 − · · · − an. (2.6)

By expanding along the first column we get

det(xI −M) = det



x− a1 −a2 · · · −an−2 −an−1 −an
−1 x

−1 x
. . .

. . .

−1 x
−1 x



= xn − a1xn−1 + det



−a2 −a3 · · · −an−2 −an−1 −an
−1 x

−1 x
. . .

. . .

−1 x
−1 x
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which is equal to

xn− a1xn−1− a2xn−2 + det



−a3 −a4 · · · −an−2 −an−1 −an
−1 x

−1 x
. . .

. . .

−1 x
−1 x



= xn−a1xn−1−a2xn−2−a3xn−3+det



−a4 −a5 · · · −an−2 −an−1 −an
−1 x

−1 x
. . .

. . .

−1 x
−1 x



and continuing like this we get (2.6). Recall that the Cayley-Hamilton
theorem states that a square matrix satisfies its own characteristic equa-
tion. This gives us

Mn = a1M
n−1 + a2M

n−2 + · · ·+ an,

and hence by (2.5) that

gi(k) = a1gi−1(k) + a2gi−2(k) + · · ·+ angi−n(k)

for i > n. This gives us

gji (k) = a1g
j
i−1(k) + a2g

j
i−2(k) + · · ·+ ang

j
i−n(k)

for j = 1, 2, . . . , n. Now let gi(k) denote the total number of digits after
i iterations. Then gi(k) is the sum of the entries in gi, and we that

gi(k) = a1gi−1(k) + a2gi−2(k) + · · ·+ angi−n(k).

Recall that an = q − cn ≥ 1, so by entrywise comparsion we have

M ≥ P

where P is the permutation matrix given by

P =


1

1
1

. . .

1

 .
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We see that for each i, j there is n such that the (i, j)’th entry of P n is
strictly positive. Since M ≥ P this is also true for M , so M is irreducible,
and by the Perron-Frobenius Theorem we get that the spectral radius ρ
of M is real and ρ > 0.

We now claim that gi(k) � ρi for i ≥ n. This can be proved by
induction. Assume that there are constants K1, K2 > 0 such that

K1ρ
j ≤ fj ≤ K2ρ

j

for all k and all j < i. Now

fi = a1gi−1(k) + · · ·+ angi−n(k)

≤ K2(a1ρ
i−1 + · · ·+ anρ

i−n)

= K2ρ
i−n(a1ρ

n−1 + · · ·+ an)

= K2ρ
i

since ρn = a1ρ
n−1 + a2ρ

n−2 + · · ·+ an. The lower bound is simlar, so we
have now proved the claim.

We now wish to prove that

dimH Fc =
log ρ

log q
.

We consider the slightly larger set

F̂c =
∞⋂
i=0

F̂ i
c ,

where F̂ i
c is the union of F i

c and the right end-points of the half-open
disjoint intervals that is in F i

c . This ensures that F̂c is a compact set and
that

dimH Fc = dimH F̂c

since F̂c is the union of Fc and a countable set of points.
First we note that F̂ i

c consists of fi closed intervals. Now T−i[c, 1] is
the disjoint union of qi intervals of length (1 − c)q−i < q−i and spaced
cq−i < q−i−m. So because F̂ i

c ⊆ T−i[c, 1], the fi intervals in fi are also at
most q−i long and spaced at least q−i−m. Recalling the definition of the
s-dimensional Hausdorff measure we get

H s
q−i(F̂c) ≤ fiq

is = fiρ
−i ≤ K2 <∞

where K2 is as above and

s =
log ρ

log q
,



2.4. ASYMPTOTICS 29

so letting i → ∞ we get H s(F̂c) ≤ K2. To prove a lower bound we
consider any cover of F̂c. By the compactness it is enough to consider
finite covers of closed intervals, so we assume that {Uh} is such a cover.
Let h be given. We can pick j such that

q−j−1 ≤ diam(Uh) < q−j.

Since the intervals in F̂ j+m
c are spaced at least q−j−m we see that Uh

intersects at most one of these intervals. Let i ≥ j + m. Since any digit
will give at most K2ρ

i−j−m digits after i− j −m iterations, any interval
in F̂ j+m

c and hence Uh intersects at most K2ρ
i−j−m intervals in F̂ i

c . Now

K2ρ
i−j−m � fiρ

−j−m = fiq
(−j−m)s ≤ fiq

s diam(Uh)
s (2.7)

Now pick j large enough to ensure that q−j−1 ≤ diam(Uh) for all h and
let i ≥ j + m. Since {Uh} is a cover of F̂c it intersects all fi intervals
from F̂ i

c . By counting intervals and applying (2.7) we get∑
h

fiq
s diam(Uh)

s � fi

and hence ∑
h

diam(Uh)
s � q−s

for any cover {Ui}. This proves that H s(F̂c)� q−s = ρ−1 > 0 and hence
that

dimH F̂c =
log ρ

log q

as desired.

2.4 Asymptotics

We now wish to give show result on the asymptotic behavoir of φq(c)
when q →∞. Let

ψ(c) = ψq(c) =

{
1 + log(1−c)

log q
0 ≤ c < q−1

q

0 otherwise.

See figure 2.3 for a plot of φ and ψ when q = 6. We now prove the
following lemma.

Lemma 2.5. For all c ∈ [0, 1) we have

|φq(c)− ψq(c)| → 0 as q →∞.
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Figure 2.3: Plots of φ6 (red) and ψ6 (green).

Proof. Let c ∈ [0, 1) be given. Then if we let i = bqcc we have

i

q
≤ c ≤ i+ 1

q
.

Now

φq

(
i

q

)
≥ φq(c) ≥ φq

(
i+ 1

q

)
and likewise for ψ since both functions are decreasing. Now from Theo-
rem 2.4 we get ψq(

i
q
) = φq(

i
q
) = log(q−i)

log q
, so

log(q − i)
log q

≥ φq(c), ψq(c) ≥
log(q + 1− i)

log q

and recalling the definition of i we have

|φq(c)− ψq(c)| ≤
log(q − i+ 1)− log(q − i)

log q
≤ log 2

log q
→ 0

as q →∞.
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Since φ and ψ are asymptotically similar, and ψq → 1 as q →∞, we
get the following theorem.

Theorem 2.6. For all c ∈ [0, 1) we have

φq(c)→ 1 as q →∞.

Proof. Let c ∈ [0, 1). We now consider q large enough to ensure that

q − 1

q
> c.

For these q we have

ψq(c) = 1 +
log(1− c)

log q

and hence that ψq(c)→ 1 as q →∞. From Lemma 2.5 we now get that

φq(c)→ 1 as q →∞

as desired.

In figure 2.4 we see a plot of φ when q = 500, 000 to illustrate the
convergence.

2.5 The dimension is constant

We wish to prove that the map φq is constant almost everywhere. We
follow the proof of Nilsson [17] with some minor alterations.

Define

l(c1 · · · cm) = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}.

We now prove the following lemma.

Lemma 2.7 (Nilsson). Let c = θ(c1c2 · · ·) ∈ [0, 1) for some c1c2 · · · ∈ Σ.
If there is a maximal m ∈ N such that

l(c1 · · · cm)) = m

then φ is constant on the interval J = [θ(c1 · · · cm), θ((c1 · · · cm)∞] and
c ∈ J .

Proof. Since l(c1 · · · cm) = m we get that for any n ≥ 1 we have l((c1 · · · cm)n) =
m, because l((c1 · · · cm)n) ≤ m and for any j < m we have

cj+1 · · · cm(c1 · · · cm)n−1 > (c1 · · · cm)n−1c1 · · · cm−j.
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Figure 2.4: Plot of φ500,000.

So when t = θ((c1 · · · cm)n) for some n ≥ 1, we get from Theorem 2.4
that

φ(t) =
log ρ

log q

where ρ is the largest real root of xm−a1xm−1−· · ·−am where a1, . . . , am
is as in Theorem 2.4. This is independent of n, so ρ is the same for all
n. This proves that φ is constant on J .

Now we wish to prove that c ∈ J . To prove this it is enough to show
that cm+1cm+2 · · · ≤ (c1 · · · cm)∞, so we assume for contradiction that
this is not the case. For any integer k ∈ N we let k′ ∈ {1, 2, . . . ,m} be
the unique number such that k′ ≡ k (modm). Since we have assumed
cm+1cm+2 · · · > (c1 · · · cm)∞ there is n > m such that

cm+1 · · · cn−1 = (c1 · · · cm)uc1 · · · cn′−1

for some integer u ≥ 0 and cn > cn′ . We now want to prove that
this implies l(c1 · · · cn) = n which will give us the desired contradiction.
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Assume on the contrary that l(c1 · · · cn) = j < n, then

c1 · · · cn−j ≥ cj+1 · · · cn. (2.8)

The left hand side of (2.8) is

(c1 · · · cm)sc1 · · · c(n−j)′

for some integer s ≥ 0 and the right hand side is

cj′+1 · · · cm(c1 · · · cm)tc1 · · · cn′−1cn

for some integer t ≥ 0. If j 6≡ 0 (modm) then considering just the first
m− j digits we get

c1 · · · cm−j′ ≥ cj′+1 · · · cm

so l(c1 · · · cm) ≤ j′ < m which is a contradiction. If j ≡ 0 (modm) then
(2.8) reduces to

(c1 · · · cm)sc1 · · · cn′ ≥ (c1 · · · cm)t−1c1 · · · cn′−1cn,

but here all but the last digit are equal, so we must have cn′ ≥ cn which
is a contradiction.

Using this lemma we can now prove that φ is constant almost every-
where.

Theorem 2.8 (Nilsson). The map φ is constant almost everywhere with
respect to the Lebesgue measure.

Proof. We assume that c > 0. From Lemma 2.7 we see that it is enough
to prove that the set of points

c =
∞∑
i=1

ci
qi

for which there are infinitely many m ∈ N such that l(c1 · · · cm) = m is
a nullset. Given such an c we see that

c1 · · · cm−n < cn+1 · · · cm

for infinitely many m ∈ N and all n < m. Now

{qnθ(c1c2 · · ·)} = θ(cn+1cn+2 · · ·)
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so in particular this gives us

c < {qnc} = T nc

for all n ≥ 1. So to finish the proof we need to prove that

L = {c ∈ [0, 1) | T nc > c for all n ≥ 1}

is a nullset. Note that

L ⊆
∞⋃
m=1

Lm

where

Lm =

{
c ∈ [0, 1) | T nc ≥ 1

qm
for all n ≥ 1

}
,

so it is enough to prove that Lm is a nullset for all m. Now

Lm =
∞⋂
n=1

T−n[q−m, 1) ⊆ Fq−m .

By Theorem 2.4 we get that since qm = θ(0m−11) we have

dimH Fq−m =
log ρ

log q

where ρ is the largest real root of xm − (q − 1)xm−1 − · · · − (q − 1). But
q is not a root of this and ρ ≤ q, so ρ < q and hence dimH Fq−m < 1. In
particular Fq−m is a nullset with respect to the Lebesgue measure, so Lm
is also a nullset. This finishes the proof of the theorem.

2.6 Fractal plots

In the six plots below we zoom in on the graph of φ3 – notice the self-
similarity and the fractal structure of the graph. The green square on
the first five plots indicates where we zoom in on the next plot.

The Octave code used to generate the data for these plots as well as
for the other plots in this chapter can be found in Appendix B.
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0.614

0.616

0.618

0.62

0.622

0.624

0.626

0.628

0.63

0.632

0.492 0.494 0.496 0.498 0.5 0.502 0.504 0.506 0.508

0.623

0.624

0.625

0.626

0.627

0.628

0.629

0.63

0.631

0.496 0.497 0.498 0.499 0.5 0.501 0.502 0.503 0.504 0.505





Chapter 3

Beta-shifts

3.1 Introduction

The theory of β-expansions goes back to Parry [18] and Rényi [22]. It
is a generalization of base q-expansions of real numbers where we allow
a non-integer base β > 1. The first result in this chapter is that we
will describe a connection between Theorem 2.4, and the theory of β-
expansions, and we will use this connection to give a new proof that φ
as defined in the preceding chapter is continuous. Now we define

Fc(β) = {x ∈ [0, 1) | {βnx} ≥ c for all n ≥ 0}

for β > 1. We will generalize Theorem 2.4 in order to calculate φ(c) =
φβ(c) = dimH Fc(β).

First we define β-expansions and give some general results. Let β > 0
and define Tβ : [0, 1)→ [0, 1) by T = Tβx = {βx}. We now define a map
γβ : [0, 1]→ Σ by γβ(x) = a1a2 · · · where a1 = b{βx}c and

ai = bβT i−1β xc

for i = 2, 3, . . .. Note that ai ∈ {0, 1, . . . , dβe − 1} for i ≥ 2. If we let

θβ(a1a2 · · ·) =
∞∑
i=1

ai
βi

then

x = θβ(γβ(x)).

The map T works as a shift operator since

Tθ(a1a2 · · ·) = θ(a2a3 · · ·).

39
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We call a1a2 · · · the β-expansion of x. If the β-expansion of 1 is finite,
we call β a simple number . If

γβ(1) = a1a2 · · · an

then
1 =

a1
β

+
a2
β2

+ · · ·+ an
βn

and hence
βn = a1β

n−1 + a2β
n−2 + · · ·+ an

so β is a solution of 0 = xn − a1x
n−1 − · · · − an. We call this the

characteristic equation for β.
The map θ preserves order, that is

θ(a1a2 · · ·) > θ(b1b2 · · ·) ⇐⇒ a1a2 · · · > b1b2 · · ·

where we when comparing words use the lexicographical ordering. This
was proved by Parry [18]. He also proved the following two theorems.

Theorem 3.1 (Parry). There is a β > 1 with γβ(1) = a1 · · · an0 · · · if
and only if

a1 · · · an > ai+1 · · · an0i

for all 0 ≤ i < n.

Theorem 3.2 (Parry). The simple numbers are dense in (1,∞).

3.2 Continuity of the dimension

Recall that for a finite word c1 · · · cn ∈ Σ we let

l(c1 · · · cn) = min{1 ≤ j ≤ n | cj+1 · · · cn ≤ c1 · · · cn−j}.

We now prove the following lemma.

Lemma 3.3. Let c1 · · · cn, a1 · · · an ∈ Σ and assume

ai =

{
q − ci − 1 if 1 ≤ i < n
q − cn if i = n.

Then the following are equivalent.

(i) dimH Fc = log β
log q

where c = θ(c1 · · · cn) and l(c1 · · · cn) = n.

(ii) β is simple with characteristic polynomial xn − a1xn−1 − · · · − an.
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Proof. Assume (i) is true. By Theorem 2.4 we see that β is the largest
real root of xn − a1x

n−1 − · · · − an so by Theorem 3.1 it is enough to
prove that

a1 · · · an > ai+1 · · · an0i

for all i < n. Since l(c1 · · · cn) = n we know that

c1 · · · cn−i < ci+1 · · · cn

for i < n. Let i < n be given. If c1 · · · cn−i−1 < ci+1 · · · cn−1 then

a1 · · · an−i−1 > ai+1 · · · an−1

and we are done. If not then c1 · · · cn−i−1 = ci+1 · · · cn−1 and cn−i < cn.
In this case

a1 · · · an−i−1 > ai+1 · · · an−1

and
an−i = q − cn−i − 1 > q − cn − 1 > q − cn = an

and we are done.
Now assume that (ii) is true. Then

a1 · · · an > ai+1 · · · an0i

for all i < n. By an argument identical to that above we can prove that

c1 · · · cn−i < ci+1 · · · cn

for i < n and hence that l(c1 · · · cn) = n. Using Theorem 2.4 now finishes
the proof of the lemma.

Combining this lemma with Theorem 3.2 we get the following result.

Theorem 3.4. The map φ is continuous.

Proof. Since φ is non-increasing it is enough to prove that the image of
the map is dense, but this follows from Lemma 3.3 and Theorem 3.2.

3.3 A real example

We now wish to study the generalization of the problem considered in
Chapter 2, where we instead of an integer q ≥ 2 consider a simple number
β > 1 and consider the set

Fc(β) = {x ∈ [0, 1) | {βnx} ≥ c for all n ≥ 0}.
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We begin with an example where β ≈ 2.83118 has characteristic equa-
tion

0 = x3 − 2x2 − 2x− 1

and c = θ(02) = 2
β2 ≈ 0.12476. Note that 1 = θ(221). Now

F = F 2
β2

(β) =
∞⋂
i=0

F i

where F 0(β) = [c, 1) and F i = F i−1 ∩ T−i[c, 1). For each i ≥ 0 we now
define four classes of intervals,

I i1 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(02), 1)}
I i2 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(2), 1)}
Ki

1 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(02), θ(21))}
Ki

2 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(02), θ(1))}

We now claim that F i is a disjoint union of intervals

F i =

fi⋃
h=1

Jh

where fi ∈ N and for each h, the interval Jh is in one of the four classes
of intervals. We will prove this by induction. When i = 0 we see that

F 0 = [c, 1) = [θ(02), 1) ∈ I01 .

Now assume that it is true for some i ≥ 0. Then we see that

F i+1 = F i ∩ T−i−1[c, 1) =

fi⋃
h=1

(Jh ∩ T−i−1[c, 1))

for some fi ∈ N. So it is enough to prove that for each h, the in-
tersection Jh ∩ T−i−1[c, 1) is a union of intervals that each is in one of
I i+1
1 , I i+1

2 , Ki+1
1 , Ki+1

2 . Let h with 1 ≤ h ≤ fi be given and let J = Jh.
First we assume that J ∈ I i1, so

T iJ = [θ(02, 1)).

Now
T i(J ∩ T−i−1[c, 1)) = [θ(02, 1)) ∩ T−1[c, 1). (3.1)

We see that

T−1[c, 1) = [θ(002), θ(1)) ∪ [θ(102), θ(2)) ∪ [θ(202), θ(221))
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From this we see that [θ(02), 1) ∩ T−1[c, 1) consists of three intervals

[θ(02, 1)) ∩ [θ(002), θ(1)) = [θ(02), θ(1))

[θ(02, 1)) ∩ [θ(102), θ(2)) = [θ(102), θ(2))

[θ(02, 1)) ∩ [θ(202), 1) = [θ(202), θ(221)),

see the figure below for an illustration. Her the blue line is [θ(02, 1] and
the green lines are T−1[c, 1).

θ(002) θ(1) θ(102) θ(2) θ(202) θ(221)

θ(02)

Note that we were interested in counting the intervals of J∩T−i−1[c, 1)
and instead found the intervals in T i(J ∩ T−i−1[c, 1)). This is not a
problem, because there is actually the same number of intervals in the
two sets. To prove this, it is enough to prove that if x, y ∈ J with
x < y then T ix < T iy. This implies in particular that T i : J → [0, 1) is
injective and that we do not have any ’wrap around’ issues. Now assume
for contradiction that x, y ∈ J with x < y, but T ix > T iy. Let x1x2 · · ·
and y1y2 · · · denote the β-expansions of x and y respectively. Then we
have

x1x2 · · · < y1y2 · · ·
but

xi+1xi+2 · · · > yi+1yi+2 · · ·
so

x1x2 · · ·xi < y1y2 · · ·yi.

Now let z = θ(y1y2 · · ·yi). Then x < z < y so we have a number z ∈ J
with T iz = 0. From the definition of the four types of intervals J can be
in, we see that z /∈ J , so this gives the desired contradiction.

We now see that

T [θ(02), θ(1)) = [θ(2), 1)

T [θ(102), θ(2)) = [θ(02), 1)

T [θ(202), θ(221)) = [θ(02),21.

So J ∩ T−i−1[θ(02), 1) is a union of three intervals: One in I i+1
2 , one in

I i+1
1 , and one in Ki+1

1 .
Now we assume that J ∈ I i2. Then

T iJ = [θ(2), 1).
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As above we consider the intersection of this interval with T−1[c, 1) =
[θ(002), θ(1)) ∪ [θ(102), θ(2)) ∪ [θ(202), 1). Here we get one interval,
[θ(202), 1) and T [θ(202), 1) = [θ(02), θ(21)) so J ∩ T−i−1[c, 1) is an
interval in Ki+1

1 . This is illustrated in the figure below where the blue
line is [θ(2), 1) and the green lines are T−1[c, 1).

θ(002) θ(1) θ(102) θ(2) θ(202) θ(221)

θ(2)

If J ∈ Ki
1 then

T iJ = [θ(02), θ(21))

and when intersected with T−1[c, 1) we get three intervals

[θ(02), θ(1)), [θ(102), θ(2)), [θ(202), θ(21)).

as seen below. Here the blue line is [θ(02), θ(21)) and the green lines are
T−1[c, 1).

θ(002) θ(1) θ(102) θ(2) θ(202) θ(221)

θ(02) θ(21)

Now

T [θ(02), θ(1)) = [θ(2), 1)

T [θ(102), θ(2)) = [θ(02), 1)

T [θ(202), θ(21)) = [θ(02), θ(1))

so J ∩T−i−1[c, 1) consists of three intervals: One in I i+1
2 , one in I i+1

1 , and
one in Ki+1

2 .
Finally, if J ∈ Ki

2 then

T iJ = [θ(02), θ(1))

and the intersection with T−1[c, 1) gives us one interval [θ(02), θ(1)). The
figure below illustrates this where the blue line is [θ(02), θ(1)) and the
green lines are T−1[c, 1).

θ(002) θ(1) θ(102) θ(2) θ(202) θ(221)

θ(02) θ(1)
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Now
T [θ(02), θ(1)) = [θ(2), 1)

so J ∩ T−i−1[c, 1) is just one interval in I i+1
2 . This finishes the proof of

the claim.
For each i ≥ 0 we define a word Ci by putting a digit j in Ci for

each interval in F i that is in I ij for j = 1, 2, and a digit [j + n] for each
interval in F i that is in Ki

j for j = 1, 2. From the above considerations
we get that C0 = 1 and that for i ≥ 0 we can find Ci+1 from Ci by the
morphisms

1→ 213, 2→ 3, 3→ 214, 4→ 2.

So

C0 = 1

C1 = 213

C2 = 3213214

C3 = 214321321432132

and so on.
Recall that we denoted the number of intervals in F i by fi. The

number of digits in Ci equals fi, and we now wish to compute these
numbers. If we let f ji denote the number of j’s in Ci then we see that for
i > 0,

f 1
i = f 1

i−1 + f 3
i−1

f 2
i = f 1

i−1 + f 3
i−1 + f 4

i−1

f 3
i = f 1

i−1 + f 2
i−1

f 4
i = f 3

i−1

or equivalently 
f 1
i

f 2
i

f 3
i

f 4
i

 = M


f 1
i−1
f 2
i−1
f 3
i−1
f 4
i−1

 (3.2)

where

M =


1 0 1 0
1 0 1 1
1 1 0 0
0 0 1 0


The characteristic polynomial of M is x4 − x3 − 2x2 − x− 1 so from the
Cayley-Hamilton Theorem we get that

M4 = M3 + 2M2 +M + I
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From (3.2) we now get that
f 1
i

f 2
i

f 3
i

f 4
i

 =


f 1
i−1
f 2
i−1
f 3
i−1
f 4
i−1

+ 2


f 1
i−2
f 2
i−2
f 3
i−2
f 4
i−2

+


f 1
i−3
f 2
i−3
f 3
i−3
f 4
i−3

+


f 1
i−4
f 2
i−4
f 3
i−4
f 4
i−4


for i ≥ 4. Since fi = f 1

i + f 2
i + f 3

i + f 4
i we get in particular that

fi = fi−1 + 2fi−2 + fi−3 + fi−4.

Using this we can calculate (see the details in the proof in the next
section) that the Hausdorff dimension of Fc(β) is

dimH Fc(β) =
log ρ

log β

where ρ > 0 is the spectral radius of M and hence that

dimH Fc(β) ≈ 0.70420.

3.4 The real general case

We now wish to prove the following theorem which is a a generalization
of Theorem 2.4.

Theorem 3.5. Let β > 1 have characteristic equation 0 = xk− b1xk−1−
· · · − bk and let c ∈ [0, 1) have β-expansion c1 · · · cm and

Fc(β) = {x ∈ [0, 1) | {βix} ≥ c for all i ≥ 0}.

Let

n = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}
and

t = min{1 ≤ j ≤ k | bj+1 · · ·bk ≤ c1 · · · cm}.
Assume that cj < b1 for j < n. Let dj = bj − c1 − 1 for j = 2, 3, . . . , t,

ai =

{
b1 − ci − 1 for i = 1, 2, . . . , n− 1
b1 − ci for i = n

.

Then

dimH Fc(β) =
log ρ

log β
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where ρ > 0 is the spectral radius of



a1 a2 · · · an−1 an d2 d3 · · · dt−1 dt
1 1 1 · · · 1 1

1
. . .

1
1 1 · · · 1 1

1
1

. . .

1


.

Proof. We see that when k = 1 the theorem is identical to Theorem 2.4.
Because here β = q is an integer with characteristic equation x− q = 0,
so we need to find the spectral radius of


a1 a2 · · · an−1 an
1

1
. . .

1



which we found in the proof of Theorem 2.4 to be xn−a1xn−1−· · ·−an.
So we may assume that k ≥ 2

Let T : [0, 1)→ [0, 1) be defined by Tx = {βx}. Then we see that

F = Fc(β) =
∞⋂
i=0

F i

where F0 = [c, 1) and

F i = F i−1 ∩ T−i[c, 1).
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For i ≥ 0 we define

I i1 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(c1 · · · cm), 1)}
I i2 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(c2 · · · cm), 1)}
...

I in = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(cn · · · cm), 1)}
Ki

1 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(c1 · · · cm), θ(b2 · · ·bk)}
Ki

2 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(c1 · · · cm), θ(b3 · · ·bk)}
...

Ki
t−1 = {[a, b) ⊆ [0, 1) : T i[a, b) = [θ(c1 · · · cm), θ(bt · · ·bk)}

and let
I i = I i1 ∪ · · · ∪ I in ∪Ki

1 ∪ · · · ∪Ki
t−1.

We now claim that F i is the disjoint union of intervals from I i. We will
prove this by induction. First we see that when i = 0 we have

F 0 = [c, 1) = [θ(c1 · · · cm), 1) ∈ I01 .

Now assume that it is true for some i ≥ 0. So

F i =

fi⋃
h=1

Jh

for some fi ∈ N such that Jh ∈ I i for all h = 1, 2, . . . , fi. Now

F i+1 = F i ∩ T−i−1[c, 1) =

fi⋃
h=1

(Jh ∩ T−i−1[c, 1)).

So it is enough to prove that given one of the intervals Jh, the intersection
Jh∩T−i−1[c, 1) is the disjoint union of intervals that all are in I i+1. Let
J = Jh be one of the intervals in F i. By the induction hypothesis we get
that J ∈ I i.

First we prove a claim that we will use throughout the proof, nemely
that there is the same number of intervals in J ∩ T−i−1[c, 1) and T i(J ∩
T−i−1[c, 1)) for any J ∈ I i. It is enough to prove that if x, y ∈ J with
x < y then T ix < T iy. Now assume that x, y ∈ J with x < y, but
T ix > T iy. Let x1x2 · · · and y1y2 · · · denote the β-expansions of x and
y respectively. Then we have

x1x2 · · · < y1y2 · · ·
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but
xi+1xi+2 · · · > yi+1yi+2 · · ·

so
x1x2 · · ·xi < y1y2 · · ·yi.

Now let z = θ(y1y2 · · ·yi). Then x < z < y so we have a number z ∈ J
with T iz = 0. By the definition of the intervals in I i we see, that z /∈ J
which gives the desired contradiction.

The first case we consider is when J ∈ I ij for some j < n. Then

T i(J ∩ T−i−1[c, 1)) = [θ(cj · · · cm), 1) ∩ T−1[c, 1).

Now T−1[c, 1) is equal to

[θ(0c1 · · · cm), θ(1)) ∪ [θ(1c1 · · · cm), θ(2)) ∪ · · ·
∪ [θ([b1 − 1]c1 · · · cm), θ(b1)) ∪ [θ(b1c1 · · · cm), 1) (3.3)

Now since j < n we get by definition of n that

cj+1 · · · cm > c1 · · · cm−j.

So since cj < b1, the intersection [θ(cj · · · cm), 1) ∩ T−1[c, 1) is equal to

[θ(cj · · · cm), θ([cj + 1])) ∪ [θ([cj + 1]c1 · · · cm), θ([cj + 2]))

∪ [θ([cj + 2]c1 · · · cm), θ([cj + 3])) ∪ · · ·
∪ [θ([b1 − 1]c1 · · · cm), θ(b1)) ∪ [θ(b1c1 · · · cm), 1)

For the first of these intervals we have

T [θ(cj · · · cm), θ([cj + 1]) = [θ(cj+1 · · · cm), 1).

For the following b1 − cj − 1 = aj intervals we have

T [θ([cj + u]c1 · · · cm), θ([cj + u + 1])) = [θ(c1 · · · cm), 1)

for u = 1, 2, . . . , ai. For the last interval we have

T [θ(b1c1 · · · cm), 1) = [θ(c1 · · · cm), θ(b2 · · ·bk))

since 1 = θ(b1 · · ·bk). So the intersection J ∩ T−i−1[c, 1) is the union of
an interval from I i+1

j+1, aj intervals from I i+1
1 , and an interval from Ki+1

1 .
Now assume that J ∈ I in. Then

T i(J ∩ T−i−1[c, 1)) = [θ(cn · · · cm), 1) ∩ T−1[c, 1).
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By definition of n we get that

cn+1 · · · cm ≤ c1 · · · cm−n.

Now T−1[c, 1) is as in (3.3) so the intersection [θ(cn · · · cm), 1)∩T−1[c, 1)
is equal to

[θ(cnc1 · · · cm), θ([cn + 1])) ∪ [θ([cn + 1]c1 · · · cm), θ([cn + 2])) ∪ · · ·
∪ [θ([b1 − 1]c1 · · · cm), θ(b1)) ∪ [θ(b1c1 · · · cm), 1).

For the first b1 − cn = an intervals we have

T [θ([cn + u]c1 · · · cm), θ([cn + u + 1])) = [θ(c1 · · · cm), 1)

for u = 0, 1, . . . , an − 1. For the last interval we have

T [θ(b1c1 · · · cm), 1) = [θ(c1 · · · cm), θ(b2 · · ·bk)).

So the intersection J ∩ T−i−1[c, 1) is the union of an intervals from I i+1
1

and an interval from Ki+1
1 .

We now assume that J ∈ Ki
j for j < t− 1. Then

T i(J ∩ T−i−1[c, 1)) = [θ(c1 · · · cm), θ(bj+1 · · ·bm)) ∩ T−1[c, 1).

Recall that T−1[c, 1) is as in (3.3). Since j < t− 1, we must have

bj+2 · · ·bk > c1 · · · cm

and the intersection [θ(c1 · · · cm), θ(bj+1 · · ·bm)) ∩ T−1[c, 1) is equal to

[θ(c1 · · · cm), θ([c1 + 1])) ∪ [θ([c1 + 1]c1 · · · cm), θ([c1 + 2])) ∪ · · ·
∪ [θ([bj+1 − 1]c1 · · · cm), θ(bj+1)) ∪ [θ(bj+1c1 · · · cm), θ(bj+1 · · ·bm)).

For the first interval we have

T [θ(c1 · · · cm), θ([c1 + 1])) = [θ(c2 · · · cm), 1).

For the next bj+1 − c1 − 1 = dj+1 intervals we have

T [θ([c1 + u]c1 · · · cm), θ(c1 + u + 1)) = [θ(c1 · · · cm), 1)

for u = 1, 2, . . . , dj+1. And for the last interval we have

T [θ(bj+1c1 · · · cm), θ(bj+1 · · ·bm) = [θ(c1 · · · cm), θ(bj+2 · · ·bm)).

So the intersection J ∩ T−i−1[c, 1) is the union of an interval from I i+1
2 ,

dj+1 intervals from I i+1
1 and an interval from Ki+1

j+1.
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Finally we assume that J ∈ Ki
t−1. Then j = t− 1 and

bj+2 · · ·bk ≤ c1 · · · cm,

so the intersection T i(J ∩ T−i−1[c, 1)) is equal to

[θ(c1 · · · cm), θ([c1 + 1])) ∪ [θ([c1 + 1]c1 · · · cm), θ([c1 + 2])) ∪ · · ·
∪ [θ([bj+1 − 1]c1 · · · cm), θ(bj+1)).

For the first interval we have

T [θ(c1 · · · cm), θ([c1 + 1])) = [θ(c2 · · · cm), 1).

and for the next bj+1 − c1 − 1 = dj+1 intervals we have

T [θ([c1 + u]c1 · · · cm), θ(c1 + u + 1)) = [θ(c1 · · · cm), 1).

So J ∩ T−i−1[c, 1) is the union of dj+1 intervals from I i+1
1 and an interval

from Ki+1
j+1. This finishes the proof of the claim.

For each i ≥ 0 we now define a word Ci by putting a digit j in Ci for
each interval in F i that is in I ij and a [j + n] for each interval that is in
Ki
j. From the above considerations we then get that C0 = 1 and that for

i ≥ 0 we get Ci+1 from Ci by the morphisms

j→


[j + 1]1aj [n + 1] if 1 ≤ j < n
1an [n + 1] if j = n
21dj−n+1 [j + 1] if n < j < n+ t− 1
21dt if j = n+ t− 1

Now let gij(k) denote the number of j’s in a word after i iterations
where we begin with just the digit . From the morphisms we get for all
k = 1, 2, . . . , n+ t− 1 and i ≥ 1 that

g1i (k) = a1g
1
i−1(k) + · · ·+ ang

n
i−1(k) + d2g

n+1
i−1 (k) + · · · dtgn+t−1i−1 (k)

g2i = g1i−1(k) + gn+1
i−1 (k) + gn+2

i−1 (k) + · · ·+ gn+t−1i−1 (k)

g3i = g2i−1(k)

g4i = g3i−1(k)

...

gni = gn−1i−1 (k)

gn+1
i = g1i−1(k) + · · ·+ fni−1(k)

gn+2
i = gn+1

i−1 (k)

gn+3
i = gn+2

i−1 (k)

...

gn+t−1i = gn+t−2i−1 (k),
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or equivalently 
g1i (k)
g2i (k)
...

gn+t−1i (k)

 = M


g1i−1(k)
g2i−1(k)

...
gn+t−1i−1 (k)

 (3.4)

for i ≥ 1 where

M =



a1 a2 · · · an−1 an d2 d3 · · · dt−1 dt
1 1 1 · · · 1 1

1
. . .

1
1 1 · · · 1 1

1
1

. . .

1


.

Now let xn+t−1− e1xn+t−2− e2xn+t−3− · · · − en+t−1 be the characteristic
polynomial of M . By the Cayley-Hamilton theorem we get that M is a
root in its own characteristic polynomial,

0 = Mn+t−1 − e1Mn+t−2 − e2Mn+t−3 − · · · − en+t−1

and hence that

Mn+t−1 = e1M
n+t−2 + e2M

n+t−3 + · · ·+ en+t−1.

From (3.4) we get that for i ≥ n+ t− 1,
g1i (k)
g2i (k)
...

gn+t−1i (k)

 = e1


g1i−1(k)
g2i−1(k)

...
gn+t−1i−1 (k)

+ · · ·+ en+t−1


g1i−n−t+1(k)
g2i−n−t+1(k)

...
gn+t−1i−n−t+1(k)

 .

Now let gi(k) denote the total number of digits after i iterations. Then
gi(k) = g1i (k) + g2i (k) + · · ·+ gn+t−1i (k) for all i ≥ 0, and we get that

gi(k) = e1gi−1(k) + e2gi−2(k) + · · ·+ en+t−1gi−n−t+1(k) (3.5)

for i ≥ n+ t− 1.
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Now M is irreducible, so from the Perron-Frobenius theorem we get
that the spectral radius ρ is real and that ρ > 0. We now claim that
gi(k) � ρi for i ≥ n. This can be proved by induction. Assume that
there are constants K1, K2 > 0 such that for all k = 1, 2, . . . , n + t − 1
we have

K1ρ
j ≤ gj(k) ≤ K2ρ

j

for all j < i. Now

gi(k) = e1gi−1(k) + · · ·+ en+t−1gi−n−t+1(k)

≤ K2(e1ρ
i−1 + · · ·+ en+t−1ρ

i−n−t+1)

= K2ρ
i−n−t+1(e1ρ

n+t−1 + · · ·+ en+t−1)

= K2ρ
i

since e1ρ
n+t−2 + e2ρ

n+t−3 + · · · + en+t−1 = ρn+t−1. The lower bound is
similar, so this proves the claim.

We now wish to prove that

dimH F =
log ρ

log β
.

We consider the slightly larger set

F̂ =
∞⋂
i=0

F̂ i,

where F̂ i is the union of F i and the right end-points of the half-open
disjoint intervals that is in F i. This ensures that F̂ is a compact set and
that

dimH F = dimH F̂

since F̂ is the union of Fc and a countable set of points.
First we note T−i[c, 1] consists of disjoint intervals of length at most

(1 − c)βi < βi that are spaced cβ−i < β−i−m. Now F̂ i ⊆ T−i[c − 1],
so the same thing is trus for the fi closed intervals that F̂ i

c consists of.
We see that F̂ i covers F̂ , so recalling the definition of the s-dimensional
Hausdorff measure we get

H s
β−i(F̂ ) ≤ fiβ

−is = fiρ
−i ≤ K2 <∞

where K2 is as above and

s =
log ρ

log β
,

so letting i → ∞ we get H s(F̂ ) ≤ K2. To prove a lower bound we
consider any cover of F̂ . It is enough to consider finite covers of closed
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intervals, so we assume that {Uh} is such a cover. For each h we can pick
j such that

β−j−1 ≤ diam(Uh) < β−j.

Since the intervals in F̂ j+m are spaced at least β−j−m we see that Uh
intersects at most one of these intervals. Let i ≥ j + m. Since each
digit can become at most K2ρ

i−j−m digits after i− j −m iterations, Uh
intersects at most K2ρ

i−j−m intervals in F̂ i
c . Now

K2ρ
i−j−m � fiρ

−j−m = fiβ
(−j−m)s ≤ fiβ

s diam(Uh)
s. (3.6)

Now pick j big enough to ensure that β−j−1 ≤ diam(Uh) for all h, and
let i ≥ j +m. By counting intervals and applying (3.6) we get∑

h

fiβ
s diam(Uh)

s � fi

and hence ∑
h

diam(Uh)
s � β−s

for any cover {Uh}. This proves that H s(F̂ ) � β−s = ρ−1 > 0 and
hence that

dimH F̂ =
log ρ

log β

as desired. This finishes the proof of the theorem.

3.5 Two-sided approximation

In this section we give some heuristic arguments on how the result in the
preceeding section can be used to give a way of calculating the Hausdorff
dimension of

Fc,b = {x ∈ [0, 1) | c ≤ {qnx} < b for all n ≥ 0}.

Note that if x = θ(x1x2 · · ·) then

{qnx} = θ(xn+1xn+2 · · ·),

so if we let c = θ(c1c2 · · · cm), we can see Fc as defined in chapter 2 as
all words x1x2 · · · such that

xn+1xn+2 · · ·xn+m ≥ c1 · · · cm.

This is exactly this apporoach we used in the proof of Theorem 2.4 given
in Appendix A.
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Now assume that we are given a simple β > 0 with characteristic
equation

0 = xk − b1xk−1 − · · · − bk.
The β-expansion of 1 is then b1 · · ·bk and Parry [18] proved that there
is x ∈ [0, 1) with β-expansion x1x2 · · · if and only if

xn+1xn+2 · · ·xn+k < b1b2 · · ·bk

for all n = 0, 1, 2, . . .. So Theorem 3.5 can be seen as putting an upper
bound in Fc where q = dβe, and changing the proof of Theorem 3.5
slightly we get the following theorem.

Theorem 3.6. Let q ≥ 2 be an integer. Let c, b ∈ [0, 1) have q-expansion
c1 · · · cm and b1 · · ·bk respectively. Let

Fc,b = {x ∈ [0, 1) | c ≤ {qix} < d for all i ≥ 0}.

Let
n = min{1 ≤ j ≤ m | cj+1 · · · cm ≤ c1 · · · cm−j}

and
t = min{1 ≤ j ≤ k | bj+1 · · ·bk ≤ c1 · · · cm}.

Assume that cj < b1 for j < n. Let dj = bj − c1 − 1 for j = 2, 3, . . . , t,
and

ai =

{
b1 − ci − 1 for i = 1, 2, . . . , n− 1
b1 − ci for i = n

.

Then

dimH Fc,b =
log ρ

log q

where ρ > 0 is the spectral radius of

a1 a2 · · · an−1 an d2 d3 · · · dt−1 dt
1 1 1 · · · 1 1

1
. . .

1
1 1 · · · 1 1

1
1

. . .

1


.





Chapter 4

Restricted denominators,
pnqm

4.1 Introduction

We now consider Diophantine approximation where we restrict the de-
nominators to be in the set A = {pnqm | n,m ≥ 0} where p, q are two
distinct primes. The work in this chapter has been done joint with Sanju
Velani.

Throughout the chapter we let φ(n) = #{k ≤ n : k | n} denote the
Euler totient function and let l(·) be the Lebesgue measure.

4.2 Khintchine’s theorem

We now prove a version of Khintchine’s theorem in this setting, which
follows from the Duffin-Schaeffer theorem (Thm 2.5 in [8]). The Duffin-
Schaeffer theorem is an attempt to remove the assumption of monotonic-
ity from Khinchine’s theorem.

Theorem 4.1 (Duffin-Schafer). Let Ψ : N→ R≥0 and assume thats

lim sup
N∈N

(
N∑
n=1

Ψ(n)φ(n)

n

)(
N∑
n=1

Ψ(n)

)−1
> 0.

For almost all x ∈ R there are infinitely many n ∈ N such that

‖nx‖ < Ψ(n) (4.1)

if
∞∑
n=1

Ψ(n)φ(n)

n
=∞,

57
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and if the series converges, there are only finitely many n ∈ N such that
(4.1) is true.

We also need the following lemma on the convergence of series of
functions supported on A. We let a(N) = #{n ∈ A | n ≤ N}.

Lemma 4.2. Let ψ : N→ R≥0 be a non-increasing function. Then

∑
n∈A

ψ(n) <∞ ⇐⇒
∞∑
n=1

ψ(n) log n

n
<∞.

Proof. Let k ≥ 2. Then we have

∑
n∈A

ψ(n) =
∞∑
t=0

∑
kt<piqj≤kt+1

ψ(piqj).

Assume without loss of generality that p < q. We are trying to count the
number of lattice points (i, j) ∈ N2 such that

kt < piqj ≤ kt+1

for k ≥ p and t ≥ 0. Equivalently we wish to find solutions to the
inequality

t log k < i log p+ j log q ≤ (t+ 1) log k.

For each j with 0 ≤ j ≤ (t+1) log k
log q

we can find at least one i to make this

true, this proves the lower bound. For each j we see that log k
log p

+ 1 is an
upper bound to how many i’s we can find, so we get that

(t+ 1) log k

log q
+ 1 ≤ a(kt+1)− a(kt) ≤

(
(t+ 1) log k

log q
+ 1

)(
log k

log p
+ 1

)
.

Figure 4.1 is an illustration of this.
In particular the above estimates show that a(kt+1)− a(kt) � t so

∞∑
t=0

∑
kt<piqj≤kt+1

ψ(piqj) �
∞∑
t=0

ψ(kt)t =
∞∑
t=0

kt+1∑
n=kt+1

ψ(kt)t

kt+1 − kt .

Since ψ is assumed to be non-increasing we have

∞∑
t=0

kt+1∑
n=kt+1

ψ(kt)t

kt+1 − kt �
∞∑
t=0

kt+1∑
n=kt+1

ψ(n) log n

n
=
∞∑
n=1

ψ(n) log(n)

n
,

which finishes the proof.
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log q

log p

t log k

(t+ 1) log k

Figure 4.1: We are counting lattice points in this strip.

This gives us the following version of Khinchine’s theorem.

Theorem 4.3. Let ψ : N → R+ be a monotonic function. For almost
all x ∈ R, the inequality ∣∣∣∣x− k

n

∣∣∣∣ < ψ(n)

n

is true for infinitely many integers k, n with n ∈ A if

∞∑
n=1

ψ(n) log n

n
=∞,

and if
∞∑
n=1

ψ(n) log n

n
<∞

then the inequality is false for almost all x ∈ R.

Proof. Let

Ψ(n) =

{
ψ(n) if n ∈ A
0 otherwise

Then

lim sup
N

(
N∑
n=1

Ψ(n)φ(n)

n

)(
N∑
n=1

Ψ(n)

)−1
=

(p− 1)(q − 1)

pq
> 0
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and
∞∑
n=1

Ψ(n)φ(n)

n
=

(p− 1)(q − 1)

pq

∞∑
n=1

Ψ(n)

since φ(pnqm) = (p−1)pn−1(q−1)qm−1. So the theorem follows from the
above lemma.

4.3 Badly approximable numbers

For δ ≥ 0, let

BadA(δ) = {x ∈ [0, 1] : lim inf
n∈A

(log n)δ ‖nx‖ > 0}.

We claim that for δ > 2 this set has full measure, and for δ ≤ 2 it is
a nullset. To prove this we need the following consequence of Cauchy’s
condensation test.

Proposition 4.4. We have

∞∑
n=1

1

n log n
=∞, (4.2)

but for any ε > 0 we have

∞∑
n=1

1

n(log n)1+ε
<∞. (4.3)

Proof. Recall that Cauchy’s condensation test states that if an ≥ 0 and
an ≥ an+1 for all n then

∞∑
n=1

an <∞ ⇐⇒
∞∑
k=1

2ka2k <∞.

This shows that the sum in (4.2) diverges as it is asymptotically equiva-
lent to the sum

∞∑
k=1

1

k log 2

which is divergent. Similarly, the sum in (4.3) converges as it is asymp-
totically equivalent to the sum

∞∑
k=1

1

(k log 2)1+ε
,

which is convergent.
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This gives the following consequence of Khinchine’s theorem.

Theorem 4.5. For δ ≤ 2, the set BadA(δ) is a nullset, and if δ > 2 then
BadA(δ) has full measure.

Proof. Let δ ≤ 2, m ∈ N and define ψ(n) = 1/m
(logn)δ−1 . Then

∞∑
n=1

ψ(n) log n

n
=

1

m

∞∑
n=1

1

n(log n)δ−1

which diverges by the above proposition. From Theorem 4.3 we get that
for almost all x ∈ [0, 1] there are infinitely many n ∈ A, i ∈ N such that∣∣∣∣x− i

n

∣∣∣∣ < 1/m

n(log n)δ−1
.

Let Em denote these x and let

E =
⋂
m∈N

Em.

Since each Em has full measure, the set E has full measure. Now if
x ∈ BadA(δ) then there is c > 0 such that for all sufficiently large n ∈ A∣∣∣∣x− i

n

∣∣∣∣ > c

n(log n)δ−1

for all i ∈ N. For m large enough we see that x /∈ Em, so x /∈ E and
hence BadA(δ) must be a nullset.

Now let δ > 2 and define ψ as above. Now the corresponding sum
diverges, and hence must E be a nullset. If we take x /∈ E there must
exist m such that x /∈ Em and hence we have that for all but finitely
many n ∈ A and i ∈ N that∣∣∣∣x− i

n

∣∣∣∣ > 1/m

n(log n)δ−1
.

This implies that x ∈ BadA(δ) and hence that BadA(δ) has full measure.

From now on we define BadA = BadA(2), because this is the largest
δ that gives a nullset.
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4.4 Lower bound

Now we would like to prove that replacing the logarithm in the definition
of Badly approximable numbers with something slower makes the set
very small. In the classical case the set of badly approximable numbers

Bad = {x ∈ R | lim inf
n

n ‖nx‖ > 0}

is a nullset, and if we let ε > 0 then {x ∈ R | lim infn n
1+ε ‖nx‖ > 0} = ∅.

The set will not become empty in our case, since if we let x = s
t

with
(t, p) = (t, q) = 1, then

‖pnqmx‖ =

∥∥∥∥pnqmst

∥∥∥∥ .
The denominator and numerator of this fraction are coprime, so the
distance to the nearest integer is at least 1

t
and hence

‖pnqmx‖ ≥ 1

t

for all n,m ∈ N. So fractions with denominator coprime to p and q will
always be badly approximable no matter what we replace the logarithm
with.

It turns out that we also have to exclude Liouville Numbers. Recall
that such a number is defined as follows.

Definition 4.6. We say that x ∈ [0, 1] is a Liouville number if for any
integer n > 0 there is p, q ∈ N with q > 1 such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qn
.

From a result of Bourgain, Lindenstrauss, Michel, and Venkatesh [4]
we get the following effective version of Furstenberg’s orbit closure theo-
rem.

Theorem 4.7. Suppose p, q ∈ N are multiplicative independent and x ∈
[0, 1] is neither rational nor a Liouville number. Then there is a constant
κ = κ(p, q) such that for N ≥ N0(p, q, x), the minimal distance from
any number in [0, 1] to an element from {psqtx mod 1 | s, t ≤ N} is

1
(log logN)κ

.

This theorem yields that there is κ > 0 such that for x ∈ [0, 1] neither
Liouville nor rational we have

inf
s,t≤N

∥∥psqtx∥∥ ≤ 1

(log logN)κ
. (4.4)
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for sufficiently large N . Now since the set of Liouville numbers and
rationals has zero Hausdorff dimension, we get the following lemma.

Theorem 4.8. There is a constant c > 0 only dependent on p and q
such that the set

Bad′A = {x ∈ [0, 1] : lim inf
n∈A

(log log log n)c ‖nx‖ > 0}

is a subset of the union of rationals and Liouville numbers. In particular
it has Hausdorff dimension zero.

Proof. We see that if we let c = κ/2 where κ > 0 is the constant from
(4.4) we get

inf
s,t≤N

(log logN)c
∥∥psqtx∥∥ ≤ 1

(log logN)κ/2
.

Without loss of generality we assume that q > p. Since 2N ≥ s + t we
have

N ≥ log(psqt)

2 log q

and hence

inf
s,t≤N

(
log log

(
log(psqt)

2 log q

))c ∥∥psqt∥∥→ 0

as N → ∞. So to prove the lemma we need to prove that there is a
constant δ > 0 such that for sufficiently large s, t we have

log log

(
log(psqt)

2 log q

)
≥ δ log log log(psqt).

Now since the left hand side is log(log log(psqt) − k) with k = log 2 +
log log q, it is enough to prove that for sufficiently large x, there is a
constant δ > 0 such that

log(x− k) ≥ δ log x.

So we need to find δ > 0 such that xδ ≤ x − k for sufficiently large x.
Since this is true for any δ < 1, this finishes the proof of the theorem.

4.5 Zero-one laws for Hausdorff measures

We now wish to prove a version of Khinchine’s theorem for Hausdorff
measures by using the Mass transference Principle from [2]. This is de-
signed to transfer Lebesgue statements to statements about Hausdorff
measures. For a ball B ⊆ Rk with center c and radius r we let Bs ⊆ Rk

be the ball with center c and radius rs/k.
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Theorem 4.9 (Mass Transference Principle). Let s < k and let {Bi}i∈N
be a sequence of balls in Rk with radii ri such that ri → 0 as i → ∞.
Suppose that lim supiB

s
i is of full Lebesgue measure. Then

H s(lim sup
i

Bi ∩B) =∞

for all closed balls B.

We define for k ≥ 1, ψ : N→ R and an infinite subset P ⊆ N,

Sk(ψ, P ) = lim sup
n∈P

{
(x1, · · · , xk) ∈ [0, 1)k :

k∏
i=1

‖nx‖ < ψ(n)
}

of multiplicatively well approximable points. Now Theorem 4.3 can be
formulated as

l(S1(ψ,A)) =

{
0 if

∑∞
k=0

ψ(k) log k
k

<∞
1 if

∑∞
k=0

ψ(k) log k
k

=∞

In this section we will consider the case k = 1 and in the next we will
consider the general case k ≥ 1. Note that

S1(ψ,A) = lim sup
n∈A

n⋃
k=0

[
k

n
− ψ

n
,
k

n
+
ψn

n

]
. (4.5)

We now use Mass Transference Principle to prove the following theorem.

Theorem 4.10. Let 0 < s < 1 and let ψ : N→ R be monotonic. Then

H s(S1(ψ,A)) =

 0 if
∑∞

k=0

(
ψ(k)
k

)s
log k <∞

∞ if
∑∞

k=0

(
ψ(k)
k

)s
log k =∞

Proof. Suppose that

∞∑
n=0

(
ψ(n)

n

)s
log n =∞.

From (4.5) we see that we have to check if

lim sup
n∈A

n⋃
k=0

[
k

n
−
(
ψ

n

)s
,
k

n
+

(
ψn

n

)s]
is of full Lebesgue measure. This set is equal to Sq(ξ, A) where

ξ(n) =
ψ(n)s

ns−1
,
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so by Theorem 4.3 we get that S1(ξ, A) is of full measure since

∞∑
n=0

ξ(n) log n

n
=
∞∑
n=0

(
ψ(n)

n

)s
log n =∞

and by the mass transference principle this gives us that H s(S1(ψ,A)) =
∞.

Now suppose that

∞∑
n=0

(
ψ(n)

n

)s
log n <∞.

For each N ≥ 0 we see that

S1(ψ,A) ⊆
⋃

n≥Nn∈A

n⋃
k=0

[
k

n
− ψ

n
,
k

n
+
ψn

n

]
,

so for all N ≥ 0

H s(S1(ψ,A)) ≤
∑

n≥Nn∈A

(n+ 1)

(
2ψ(n)

n

)s
�

∑
n≥Nn∈A

ψ(n)s

ns−1
. (4.6)

Now if we let

Ψ(n) =

{
ψ(n)s

ns−1 if n ∈ A
0 otherwise

then
∞∑
n=0

Ψ(n) =
N−1∑
n=0

Ψ +
∑

n≥Nn∈A

ψ(n)s

ns−1

and using Lemma 4.2 we see that this series is convergent, so∑
n≥Nn∈A

ψ(n)s

ns−1
→ 0

as N →∞ so from (4.6) we get H s(S1(ψ,A)) = 0.

4.6 Multiplicative approximation

We now consider Sk(ψ,A) for general k ≥ 1, and again we wish to prove
a version of Khinchine’s theorem. The proof is similar to that of Theo-
rem 4.3, namely it is a direct consequence of the Duffin-Schaeffer theorem,
but this time we need a multiplicative analogue of this theorem which is
proved in [3].
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Theorem 4.11 (Multiplicative Duffin-Schafer). Let k ≥ 1 and let Ψ :
N→ R≥0. Suppose that

∞∑
n=1

Ψ(n) log(n)k−1 =∞

and

lim sup
N

(
N∑
n=1

(
φ(n)

n

)k
Ψ(n) log(n)k−1

)(
N∑
n=1

Ψ(n) log(n)k−1

)−1
> 0.

Then l(Sk(Ψ,N)) = 1.

This enables us to prove the following theorem.

Theorem 4.12. Let k ≥ 1 and ψ : N → R≥0 be a monotonic function.
If

∞∑
n=0

ψ(n) log(n)k

n
=∞

then l(Sk(ψ,A)) = 1.

Proof. Let

Ψ(n) =

{
ψ(n) if n ∈ A
0 otherwise.

Notice that Sk(Ψ,N) = Sk(ψ,A). Now

lim sup
N

(
N∑
n=1

(
φ(n)

n

)k
Ψ(n) log(n)k−1

)(
N∑
n=1

Ψ(n) log(n)k−1

)−1

=

(
(p− 1)(q − 1)

pq

)k
> 0

so by Theorem 4.11 we have that if

∞∑
n=1

Ψ(n) log(n)k−1 =∞

then l(Sk(φ,A)) = 1, and the theorem now follows from Lemma 4.2.
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4.7 Simultaneous approximation

We now consider the sets

Tk(ψ, P ) = lim sup
n∈P

= {(x1, · · · , xk) ∈ [0, 1)k : max
i
‖nxi‖ < ψ(n)}

where P ⊆ N is an infinite set, k ≥ 2 and ψ : N → R≥0. Once again
we wish to prove Khinchine’s theorem in this case which here follows
immediately from the fact that the Duffin-Schafer conjecture is true for
dimension ≥ 2, namely that we from [21] get the following theorem.

Theorem 4.13 (Duffin-Schafer in higher dimension). Let k ≥ 2 and
Ψ : N→ R≥0. We have l(Tk(Ψ,N)) ∈ {0, 1} and if

∞∑
n=1

(
Ψ(n)φ(n)

n

)k
=∞

then l(Tk(Ψ,N)) = 1.

Using this we can prove the following theorem.

Theorem 4.14. Let k ≥ 1 and let ψ : N→ R≥0 be monotonic. Then

l(Tk(ψ,A)) =

{
0 if

∑∞
n=0

ψ(n)k logn
n

<∞
1 if

∑∞
n=0

ψ(n)k logn
n

=∞

Proof. We have already considered the case k = 1 so assume k ≥ 2 and
that

∞∑
n=0

ψ(n)k log n

n
=∞.

Let

Ψ(n) =

{
ψ(n) if n ∈ A
0 otherwise.

Then l(Tk(Ψ,N)) = l(Tk(ψ,A)) so we need to prove that

∞∑
n=1

(
Ψ(n)φ(n)

n

)k
=∞.

The terms in this sum are only non-zero when n = piqj and here

φ(n)

n
=

(p− 1)(q − 1)

pq
,
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so
∞∑
n=1

(
Ψ(n)φ(n)

n

)k
�

∞∑
n=1

Ψ(n)k �
∞∑
n=0

ψ(n)k log n

n
=∞

using Lemma 4.2.
Now assume that

∞∑
n=0

ψ(n)k log n

n
<∞.

We see that

Tk(ψ,A) ⊆ lim sup
n∈A

n⋃
m=0

[
m

n
− ψ(n)

n
,
m

n
+
ψ(n)

n

]k
,

and by Lemma 4.2 we get∑
n∈A

(n+ 1)

(
2ψ(n)

n

)k
�
∑
n∈A

ψ(n)k �
∞∑
n=0

ψ(n)k log n

n
<∞,

so an application of the Borel-Cantelli lemma finishes the proof.

4.8 Generalizations

We should note that all the results here, except the lower bound result
based on the theorem by Bourgain, Lindenstrauss, Michel and Venkatesh,
can be generalized to the case of more than two primes p and q, ie. the
set A can be replaced with

Am = {pn1
1 · · · pnmm | ni ∈ N},

for m ≥ 2. Here Lemma 4.2 is as follows.

Lemma 4.15. Let ψ : N→ R≥0 is a non-increasing function. Then

∑
n∈Am

<∞ ⇐⇒
∞∑
n=1

ψ(n) log(n)m−1

n
<∞.

The proofs in this case will be almost identical, except that the nota-
tion will be more tedious. The different results in this chapter will then
be as follows.

Theorem 4.16. Let ψ : N → R+ be a monotonic function. For almost
all x ∈ R, the inequality ∣∣∣∣x− k

n

∣∣∣∣ < ψ(n)

n
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is true for infinitely many integers k, n with n ∈ Am if

∞∑
n=1

ψ(n) log(n)m−1

n
=∞,

and if
∞∑
n=1

ψ(n) log(n)m−1

n
<∞

then the inequality is false for almost all x ∈ R.

Theorem 4.17. For δ ≤ m, the set BadAm(δ) is a nullset, and if δ > m
then BadA(δ) has full measure.

Theorem 4.18. Let 0 < s < 1 and let ψ : N→ R be monotonic. Then

H s(S1(ψ,Am)) =

 0 if
∑∞

k=0

(
ψ(k)
k

)s
log(k)m−1 <∞

∞ if
∑∞

k=0

(
ψ(k)
k

)s
log(k)m−1 =∞

Theorem 4.19. Let k ≥ 1 and ψ : N → R≥0 be a monotonic function.
If

∞∑
n=0

ψ(n) log(n)k+m−1

n
=∞

then l(Sk(ψ,Am)) = 1.

Theorem 4.20. Let k ≥ 1 and let ψ : N→ R≥0 be monotonic. Then

l(Tk(ψ,Am)) =

{
0 if

∑∞
n=0

ψ(n)k log(n)m−1

n
<∞

1 if
∑∞

n=0
ψ(n)k log(n)m−1

n
=∞





Chapter 5

Littlewood’s Conjecture

5.1 Introduction

In the previous chapters we have discussed several ways of considering
approximation by rationals. In this chapter we will discuss the Littlewood
conjecture which deals with approximation of two real numbers x, y by
rationals with the same denominator. More precisely, the conjecture
states that

lim inf
n

n ‖nx‖ ‖ny‖ = 0

for all x, y ∈ R. Recall that if one of the real numbers, say x, is not a
badly approximable number, then

lim inf
n

n ‖nx‖ = 0,

and hence

lim inf
n

n ‖nx‖ ‖ny‖ < 1

2
lim inf

n
n ‖nx‖ = 0,

so the conjecture is only interesting when x, y ∈ Bad. This conjec-
ture, proposed by John Edensor Littlewood around 1930, has recently
attracted a lot of attention. Einsiedler, Katok, and Lindenstrauss [5]
proved that the set of exceptions to this conjecture has Hausdorff dimen-
sion zero. Preceding the paper of Einsiedler, Katok and Lindenstrauss
is the result of Pollington and Velani [20], which states that for any
x ∈ Bad, there is a set G ⊆ Bad which is also Hausdorff dimension one,
such that for y ∈ G, the Littlewood conjecture is true for x, y.

A problem related to the Littlewood conjecture is the so-called mixed
Littlewood conjecture of de Mathan and Teulié [15]. Here we only ap-
proximate a single real number x and replace the condition on y by a
condition of divisibility. The mixed Littlewood conjecture states that for
a prime p we have

lim inf
n

n |n|p ‖nx‖ = 0

71
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where

|n|p = min

{
1

pk
: pk | n

}
is the p-adic absolute value. A more general version of this conjecture
comes about by letting D = (qk)

∞
k=1 with qk | qk+1 be a pseudo-absolute

value sequence and

|n|D = min

{
1

qk
: qk | n

}
be a pseudo-absolute value. The conjecture then states that

lim inf
n

n |n|D ‖nx‖ = 0.

Harrap and Haynes [9] has proved that adding an extra p-adic norm to
the left hand side makes this conjecture true, that is

lim inf
n

n |n|p |n|D ‖nx‖ = 0

when there is some bound C such that qk+1

qk
< C for all k ≥ 1.

A final problem related to the Littlewood conjecture is a conjecture
of Cassels, which was recently resolved by Shapira [23]. This theorem
states that for almost all x, y ∈ R,

lim inf
n

n ‖nx− γ1‖ ‖ny − γ2‖ = 0

for all γ1, γ2 ∈ R. Here we consider the case where γ1 = 0.
The work in this chapter is joint with Simon Kristensen and Alan

Haynes [10]. We prove the following result.

Theorem 5.1. Fix ε > 0 and let {xi} ⊆ Bad be a countable set of badly
approximable numbers, and {Dj} a countable set of pseudo-absolute value
sequences. Then there is set of G ⊆ Bad of Hausdorff dimension 1 such
that for any y ∈ G, the following is true.

(i) For any i ∈ N and γ ∈ R the inequality

n ‖nxi‖ ‖ny − γ‖ <
1

(log n)1/2−ε
, (5.1)

has infinitely many solutions n ∈ N, and

(ii) For any j ∈ N and δ ∈ R we have that

lim inf
n→∞

n |n|Dj ‖ny − δ‖ = 0. (5.2)
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Furthermore, for each j such that Dj = (qk) satisfies the inequality qk ≤
Ck for some C > 1, we may replace (5.2) by the stronger statement that
for any δ ∈ R the inequality

n |n|Dj ‖ny − δ‖ <
1

(log n)1/2−ε
, (5.3)

has infinitely many solutions n ∈ N.

This theorem relies on a discrepancy estimate for almost all points
with respect the a certain measure, namely the Kaufman measure.

5.2 Kaufman’s measure

Recall that given a real number x ∈ [0, 1) one can find the continued
fraction expansion,

x = [a1, a2, . . .] =
1

a1 +
1

a2 +
1

· · ·

The Badly approximable numbers Bad are exactly the numbers x such
that the sequence (an) is bounded. As we did in Chapter 2, we fix a
bound M ≥ 3 and let

FM = {x ∈ [0, 1) : an(x) < M for all n ≥ 1}.

Kaufman [13] introduced a measure µM supported on FM with, among
other things, the following properties.

(i) For any s < dim(FM), there are positive constants c, l > 0 such
that for any interval I ⊆ [0, 1) of length |I| ≤ l,

µN(I) ≤ c |I|s .

(ii) For any M , there are positive constants c, η > 0 such that the
Fourier transform µ̂M of the Kaufman measure µM satisfies

µ̂M(u) ≤ c |u|−η .
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5.3 Discrepancy

Another key ingredient in this proof is the notion of discrepancy which
measure how well the fractional parts of a given sequence is distributed in
the interval [0, 1). Given an sequence (xn) ⊆ R, we define the discrepancy
of the sequence is

DN(xn) = sup
I⊆[0,1)

∣∣∣∣∣
N∑
n=1

χI({xn})− n |I|
∣∣∣∣∣ ,

where the supremum is over all intervals I ⊆ [0, 1), χI is the indicator
function on I, {·} denotes the fractional part of a number, and |I| is the
length of the interval I. If

DN(xn)

N
→ 0 as N →∞,

the sequence is uniformly distributed modulo 1.
An important result on discrepancy is the Erdős–Turán inequality,

see e.g. [16]. Note that we let e(t) = e2πit.

Theorem 5.2 (Erdős–Turán inequality). For any positive integer K and
any sequence (xn) ⊆ [0, 1),

DN(xn) ≤ N

K + 1
+ 3

K∑
k=1

1

k

∣∣∣∣∣
N∑
n=1

e(kxn)

∣∣∣∣∣
We will also need the following lemma found in [8].

Lemma 5.3. Let (X,µ) be a measure space with µ(X) < ∞. Let
F (n,m, x), n = 0, 1, . . . ,m = 1, 2, . . . be µ-measurable functions and
let φn be a sequence of real numbers such that |F (n− 1, n, x)| ≤ φn
forn = 1, 2, . . .. Let ΦN = φ1 + · · · + φN and assume that ΦN → ∞.
Suppose that for 0 ≤ u < v we have∫

X

|F (u, v, x)|2 dµ�
v∑

n=u

φn.

Then for µ-almost all x, we have

F (0, N, x)� Φ
1/2
N log(ΦN)3/2+ε + max

n≤N
φn.

Using these results we can now prove the following theorem, which
will be crucial in proving the main result, but is also interesting in its
own right
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Theorem 5.4. Let µM be a Kaufman measure and assume that for pos-
itive integers u < v we have

v∑
n,m=u

|an − am|−η �
1

log v

v∑
n=u

ψn

where (ψn) is a sequence of non-negative numbers and η > 0 is the con-
stant from property (ii) of the Kaufman measure. Then for µM -almost
every x ∈ [0, 1] we have

DN(anx)� (N log(N)2 + ΨN)1/2 log(N log(N)2 + ΨN)3/2+ε + max
n≤N

ψn

where ΨN = ψ1 + · · ·+ ψN .

Proof. Let

F (u, v, x) =
v∑

h=1

1

h

∣∣∣∣∣
v∑

n=u

e(hanx)

∣∣∣∣∣ .
By the Erdős-Turán inequality withK = N we getDN(anx)� F (0, N, x).
Let u, v be integers such that 0 ≤ u < v, then applying the Cauchy-
Schwartz inequality gives∫
|F (u, v, x)|2 dµ ≤

v∑
h,k=1

1

hk

∫ ∣∣∣∣∣
v∑

n=u

e(hanx)

∣∣∣∣∣
2

dµ

=
v∑

h,k=1

1

hk

(
v − u+ 1 +

v∑
n,m=u

n6=m

∫
e(h(an − am)x)dµ

)

=
v∑

h,k=1

1

hk

(
v − u+ 1 +

v∑
n,m=u

n6=m

µ̂(h(an − am))

)
.

Using property (ii) of the Kaufman measure, we now get∫
|F (u, v, x)|2 dµ�

v∑
h,k=1

1

hk

(
v − u+ 1 + Ch−η

v∑
n,m=u

n6=m

|an − am|−η
)

�
v∑

n=u

[log(n)2 + ψn].

We also see that F (n − 1, n, x) � log(n)2 + ψn for all n ≥ 1 so the
theorem now follows from Lemma 5.3.
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Assuming nothing about the sequence (an) we get the following corol-
lary.

Corollary 5.5. Let µ be a Kaufman measure. For µ-almost every x ∈
[0, 1] we have DN(anx) � N1−ν for some ν > 0. In particular (anx) is
uniformly distributed modulo 1.

Proof. Without loss of generality we may assume that an < an+1 for all
n and get the following estimate,

v∑
n,m=u

|an − am|−η ≤ 2
v−1∑
m=u

v∑
n=m+1

|n−m|−η � v2−η−u2−η � 1

log v

v∑
n=u

n1−2ν′

for some ν ′ > 0, so for µ-a.e. x we have

DN(anx)� (N log(N)2 +N2−2ν′)1/2(log(N log(N)2 +N2−2ν′))3/2+ε

+N1−2ν′ � N1−ν

for any ν > 0 with ν < ν ′.

If we assume the sequence (an) to be lacunary, that is an+1

an
≥ λ > 1

for all n, then we get the following corollary.

Corollary 5.6. Let ν > 0 and let µ be a Kaufman measure and (an)
a lacunary sequence of integers. For µ-almost every x ∈ [0, 1] we have
DN(anx)� N1/2(logN)5/2+ν.

Proof. We apply again Theorem 5.4. Using lacunarity of the sequence
(an), we see that

∞∑
n,m=1

|an − am|−η <∞.

Consequently, we can absorb all occurrences of ΨN as well as the final
term maxn≤N ψn in the discrepancy estimate of Theorem 5.4 into the
constant in the Vinogradov symbol. It follows that

DN(anx)� (N log(N)2)1/2 log(N log(N)2)3/2+ε � N1/2(logN)5/2+ν

for µ-almost every x, where ν can be made as small as desired by picking
ε small enough.
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5.4 Proof

We are now ready to prove the main theorem, Theorem 5.1. Let ε >
0, {xi} ⊂ Bad be a countable set, and let {D} be a countable set of
pseudo-absolute value sequences. Let G be the set of y ∈ Bad from
Theorem 5.1 and assume for contradiction that dimH G < 1. By Jarńık’s
theorem [11] we pick M such that dimH FM > dimH G, and let µ = µM
be the corresponding Kaufman measure supported on FM .

Pick one of the xi, and let (nk) be the sequence of the denominators
of the convergents of the continued fraction expansion of xi. Now this
sequence grows faster than the Fibonacci sequence, in particular it is
lacunary, and by Corollary 5.6 we get

DN(nkz)� N1/2(logN)5/2+ν

for almost every z.
Let ψ(N) = N−1/2+ε and consider the interval

IγN = [γ − ψ(N), γ + ψ(N)].

By the definition of discrepancy we get that for every γ ∈ [0, 1] and
µ-almost every y ∈ R that

|#{k ≤ N : {nky} ∈ IγN} − 2Nψ(N)| � N1/2(logN)5/2+ν

and hence

#{k ≤ N : {nky} ∈ IγN} ≥ 2Nψ(N)−KN1/2(logN)5/2+ν

= 2N1/2+ε −KN1/2(logN)5/2+ν .

where K > 0 is the implied constant from Corollary 5.6. Now let

Nγ
h = min{N ∈ N : #{k ≤ N : {nky} ∈ IγN} = h}

be an increasing sequence of integers. We claim that the sequence qNγ
h

satisfies (5.1) for the given xi and every γ with µ-almost every y. Now
since nNγ

h
is a convergent of xi we have

nNγ
h

∥∥∥nNγ
h
xi

∥∥∥ ≤ 1,

so
nNγ

h

∥∥∥nNγ
h
xi

∥∥∥∥∥∥nNγ
h
y − γ

∥∥∥ ≤ ∥∥∥nNγ
h
y − γ

∥∥∥ ≤ (Nγ
h )−1/2+ε.

Since xi ∈ Bad, the sequence (nk) is bounded between the Fibonacci
sequence and (2M)k where M is the maximal partial quotient of the
continued fraction expansion of xi. Hence k � log nk, so

nNγ
h

∥∥∥nNγ
h
xi

∥∥∥∥∥∥nNγ
h
y − γ

∥∥∥ ≤ (log nNγ
h
)−1/2+ε/2
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for sufficiently large h. This proves the claim, and proves that the set Ei
for which (5.1) is not true satisfies µ(Ei) = 0.

Now let D = Di = (qk) be one of the pseudo-absolute value sequences.
Recall that this implies qk | qk+1. Assume that

lim inf
n

n |n|D ‖ny − γ‖ = δ

for some δ > 0. In particular this implies that

qk |qk|D ‖qky − γ‖ ≥ δ,

for some k, but qk |qk|D = 1, so

‖qky − γ‖ ≥ δ.

From Corollary 5.5 we see that {qky} is uniformly distributed for µ-almost
all y, which the above contradicts. So the set E ′i of y ∈ Bad for which
(5.2) is not true must satisfy µ(E ′i) = 0.

Furthermore, assume that qk ≤ Ck for some C > 1. Then qk | qk+1,
so (qk) is lacunary, and the upper bound implies that k � log qk. So we
can repeat the argument from before to get that (5.3) is true for µ-almost
all y.

Now let E be the set of y ∈ Bad such that there is an i or j such that
(5.1) and (5.2) is false. Then

E =
⋃
i

Ei ∪
⋃
j

E ′j,

and hence µ(E) = 0.
Now µ(G) is maximal. Pick s such that dimH G < s < dimH FM .

Recall that µ(I) ≤ c |I|s. Now suppose that {Ui} is a cover of G. We
may assume that all Ui are intervals. Then

∑
i

|Ui| ≥
1

c

∑
i

µ(Ui) ≥
1

c
µ

(⋃
i

Ui

)
≥ 1

c
µ(G) > 0,

so H s(G) > 0 and hence
dimH G ≥ s,

which is a contradiction. This proves that dimH G = 1.



Appendix A

On lower bounded orbits of
the times-q map

Abstract

In this paper we consider the times-q map on the unit interval
as a subshift of finite type by identifying each number with its
base q expansion, and we study certain non-dense orbits of this
system where no element of the orbit is smaller than some fixed
parameter c.

The Hausdorff dimension of these orbits can be calculated us-
ing the spectral radius of the transition matrix of the correspond-
ing subshift, and using simple methods based on Euclidean divi-
sion in the integers, we completely characterize the characteristic
polynomials of these matrices as well as give the value of the spec-
tral radius for certain values of c. It is known through work of
Urbanski and Nilsson that the Hausdorff dimension of the orbits
mentioned above as a map of c is continuous and constant almost
everywhere, and as a new result we give some asymptotic results
on how this map behaves as q →∞.

A.1 Introduction

In this paper we study the set

F q
c = {x ∈ [0, 1) | qnx ≥ c for all n ≥ 0}

where q ≥ 2 is an integer. This set is related to badly approximable
numbers in Diophantine approximation, and has been studied by Nilsson
[17], who studied the Hausdorff dimension of the set as a map of c,
and in more generality by Urbanski [24] who considered the orbit of an
expanding map on the circle.
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As Nilsson did we will consider F q
c as a subshift of finite type which

enables us to see it as a problem in dynamical systems. When studied as a
subshift of finite type we can find the dimension of F q

c using the spectral
radius of the corresponding transition matrix, and this motivates the
theorem of this paper which characterizes the characteristic polynomial
of this matrix.

The author would like to his PhD supervisor Simon Kristensen and
he would also like to than Johan Nilsson for reading and commenting on
this paper.

A.2 Basic definitions

We begin with a definition of part and residue which comes from elemen-
tary integer division with residue. We let q ≥ 2 be an integer throughout
the paper and start with a well known result.

Proposition A.1. For integers n ∈ N and m ≥ 0 there are unique
integers 〈n,m〉 ∈ N (part) and 0 ≤ [n,m] < qm (residue) such that

n = qm〈n,m〉+ [n,m].

We note that if we write n = nk · · ·n1 in base q it is easy to find the
part and the residue, since [n,m] = nm · · ·n1 and 〈n,m〉 = nk · · ·nm+1.

The matrix we will consider in this paper is defined as follows.

Definition A.2. For m ≥ 1 we define a 0-1 matrix Am of size qm × qm
by

(Am)ij = 1 ⇐⇒ [i− 1,m− 1] = 〈j − 1, 1〉.
We let Am(P ) with P ⊆ {1, 2, . . . , qm} be the #P × #P matrix made
from picking only the rows and columns from Am corresponding to the
elements in P and for 0 ≤ k ≤ m we let Am(k) be the m − k ×m − k
matrix where we have removed the first k rows and columns from Am.

We will often omit the dependency on m when it is not confusing.
Considering i and j in base q we see that (Am)ij = 1 if and only if the
first m− 1 digits of j − 1 are equal to the last m− 1 digits of i− 1. So
when c = i

qm
we see that the base qm expansions of the numbers in F q

c

can be seen as a subshift of finite type with transition matrix Am(i)m.
The metric of the subshift and the unit interval are equivalent so the
dimensional properties are the same. In particular, finding the Hausdorff
dimension of F q

c now boils down to finding the spectral radius ρ(Am(k)),
since

dimH F (c) =
ρ(Am(i)m)

log qm
=
ρ(Am(i))

log q
. (A.1)
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For a proof of the first equality see [19]. This is why we were interested
in finding the characteristic polynomials of Am(i). The main theorem
of this paper is a complete characterization of these polynomials, and to
formulate this theorem we need the following definition.

Definition A.3. For n,m ≥ 1 with 0 ≤ n < qm we define

lm(n) = min{1 ≤ j ≤ m | 〈n, j〉 ≥ [n,m− j]}.
Using this definition we let

nm = n− [n,m− lm(n)] = qm−lm(n)〈n,m− lm(n)〉
be the minimal prefix of n.

This is well defined since [n, 0] = 〈n,m〉 = 0 for any n with 0 ≤ n <
qm. The notion of minimal prefix is taken from Nilsson [17], but is here
defined somewhat different since we only consider finite sequences.

Let us consider some examples.

Example A.4. Let q = 3,m = 3. Then

〈11, 1〉 = 3 ≥ 2 = [11, 2]

so l3(11) = 1 and
113 = 11− [11, 2] = 9.

If we let n = 7 we have

〈7, 1〉 = 2 < 7 = [7, 2]

and
〈7, 2〉 = 0 < 1 = [7, 1]

but
〈7, 3〉 = 0 = [7, 0]

so l3(7) = 3 and 73 = 7.

We are now ready to state the main theorem.

Theorem A.5. Let 0 < k < qm and let fmk (x) be the characteristic
polynomial of Am(k). Then

fmk (x) = gmk (x)xq
m−m−k

where
gmk (x) = xm − a1xm−1 − · · · − am

and a1a2 . . . am is the base q expansion of qm − km.

Notice that this implies the nice equality

gmk (q) = km.
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A.3 Proof outline

First recall that we can find the characteristic polynomial f(x) = xq
m−k−

a1x
qm−k−1 − · · · − aqm−k of Am(k) as

ai = (−1)i
∑
#P=i

detAm(P ) (A.2)

where we also require that P ⊆ {k + 1, k + 2, . . . , qm}, or as

ai =
1

i

(
traceAm(k)i+a1 traceAm(k)i−1+ · · ·+ai−1 traceAm(k)

)
. (A.3)

The first formula is sometimes used as the definition of the characteristic
polynomial, and for a proof of the latter see [6]. We now try to outline the
proof that essentially is the construction of an algorithm that calculates
both the characteristic polynomial of Am(i) and im.

• We prove that all the submatrices A(P ) that gives non-zero princi-
pal minors are permutations, so when removing rows and columns
from the first to the last, we only change the characteristic polyno-
mial when removing rows and columns corresponding to the small-
est element of a cycle.

• If lm(i) = m then i is the smallest element of an m-cycle and this
is the only permutation of size ≤ m that has i as an element.
So removing i decreases the m’th coefficient of the characteristic
polynomial by 1 and leaves all the preceding coefficients unchanged.
On the other hand, if lm(i) = n < m, then the nontrivial part of the
characteristic polynomial, gmi (x), can be found as xm−ngn〈i,m−n〉(x)
since we have (A.3) and can prove that

traceAm(i)k = traceAn(〈i,m− n〉)k

for all k ≤ m.

• If lm(i) = m, then im = i+ 1m−1, and if lm(i) = n < m then im =
qm−n〈i,m− n〉n, so we see that i and the characteristic polynomials
follow the same pattern.

• Since the theorem is true for m = 1, we can now use induction if
lm(i) < m. If not, we increase i until we have lm(i) < n, which
happens since lm(qm − 1) = 1.

• The m+ 1’st, m+ 2’nd, . . . , qm’th coefficient of fmk (x) are all zero,
because we have found the first M coefficients of the characteristic
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polynomial for any M , so we pick K such that lM(K) = m and
〈K,M−m〉 = k, then we see that gMK (x) has its m+1’th, m+2’th,
. . . , M ’th coefficients equal to zero, which will then also be true for
gmk (x). This finishes the proof of the theorem.

A.4 Part and residue

The results in this sections explain some properties of the part and residue
functions and gives a characterization of the powers of A. We will use
these results throughout the paper, often without specifically stating so.
The proofs in this section are rather straightforward and may be skipped
on a first read.

Proposition A.6. 1. For j, k, n ≥ 0 we have [[n, j], k] = [n,min{j, k}]
and 〈

〈n, k〉, j
〉

= 〈n, k + j〉.

2. For j > k we have

〈[n, j], k〉 = [〈n, k〉, j − k].

Proof. Let us first prove the two equalities in 1. Since [n, k] is the same
as n (mod q)k we have the first equality. Now assume that j + k ≤ m.
Now 〈n, k〉 = qj

〈
〈n, k〉, j

〉
+ [〈n, k〉, j], so

n = qk〈n, k〉+ [n, k] = qk+j
〈
〈n, k〉, j

〉
+ qk[〈n, k〉, j] + [n, k],

but since [〈n, k〉, j] < qj and [n, k] < qk we have

qk[〈n, k〉, j] + [n, k] ≤ qk(qj − 1) + qk − 1 = qk+j − 1 < qk+j,

and by the uniqueness of the residue and parts we see that 〈〈n, k〉, j〉 =
〈n, k + j〉. Now consider 2., so let j > k. From 1. we have

〈n, k〉 = qj−k
〈
〈n, k〉, j − k

〉
+ [〈n, k〉, j − k] = qj−k〈n, j〉+ [〈n, k〉, j − k]

and
[n, j] = qk〈[n, j], k〉+

[
[n, j], k

]
= qk〈[n, j], k〉+ [n, k].

So

n = qk〈n, k〉+ [n, k]

= qj〈n, j〉+ qk[〈n, k〉, j − k]− qk〈[n, j], k〉+ [n, j]

= qj〈n, j〉+ [n, j] + qk([〈n, k〉, j − k]− 〈[n, j], k〉)
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and since n = qj〈n, j〉+ [n, j] this implies that

[〈n, k〉, j − k] = 〈[n, j], k〉.

Lemma A.7. Let 1 ≤ k ≤ m. Then Akij = 1 if and only if

[i− 1,m− k] = 〈j − 1, k〉.
Proof. We will prove this by induction. For k = 1 it is the definition of
A, so assume that 1 < k ≤ m. We assume that the lemma is true for
all smaller k. If Akij = 1 there must exist some n with 0 ≤ n < qm and

Anj = 1 and Ak−1in = 1. Using the induction hypothesis we get

[i−1,m−k+1] = 〈n−1, k−1〉 and [n−1,m−1] = 〈j−1, 1〉 (A.4)

for this n. Now by part 2. of the above proposition we have

[〈n− 1, k − 1〉,m− k] = 〈[n− 1,m− 1], k − 1〉,
and using (A.4) we get[

[i− 1,m− k + 1],m− k
]

=
〈
〈j − 1, 1〉, k − 1

〉
,

and using part 1. of the proposition we get

[i− 1,m− k] = 〈j − 1, k〉
as desired.

Now assume that [i− 1,m− k] = 〈j − 1, k〉. Let

n− 1 = qk−1[i− 1,m− k + 1] + [〈j − 1, 1〉, k − 1].

This is a positive integer smaller than qm. By the uniqueness of the
residue and parts we see that

[i− 1,m− k + 1] = 〈n− 1, k − 1〉 (A.5)

and
[〈j − 1, 1〉, k − 1] = 〈n− 1, k − 1〉. (A.6)

From (A.5) and the induction hypothesis we see that Ak−1in = 1. We now
want to prove that Anj = 1. Recall that we assume [i − 1,m − k] =
〈j − 1, k〉, so

〈[n− 1,m− 1], k − 1〉 = [〈n− 1, k − 1〉,m− k]

=
[
[i− 1,m− k + 1],m− k

]
= [i− 1,m− k]

= 〈j − 1, k〉.
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Using this and (A.6) we see that

[n− 1,m− 1] = qk−1〈[n− 1,m− 1], k − 1〉+
[
[n− 1,m− 1], k − 1

]
= qk−1〈j − 1, k〉+ [n− 1, k − 1]

= qk−1〈j − 1, k〉+ [〈j − 1, 1〉, k − 1]

= qk−1
〈
〈j − 1, 1〉, k − 1

〉
+ [〈j − 1, 1〉, k − 1]

= 〈j − 1, 1〉.

This proves that Ak−1in = 1 and Anj = 1 which implies that Akij > 0. Now

assume that there is another n′ such that Ak−1in′ = 1 and An′j = 1. Then

[i− 1,m− k + 1] = 〈n′ − 1, k − 1〉

and

[〈j − 1, 1〉, k − 1] = 〈n′ − 1, k − 1〉
so

n′ − 1 = qk−1〈n′ − 1, k − 1〉+ [n′ − 1, k − 1]

= qk−1[i− 1,m− k + 1] +
[
[n′ − 1,m− 1], k − 1

]
= qk−1[i− 1,m− k + 1] + [〈j − 1, 1〉, k − 1]

= n− 1,

which proves that there can be only one such n, so Akij = 1.

Lemma A.8. If a, b, k is such that [a, k] < [b, k] and 〈a, k〉 = 〈b, k〉, then

[a, k + j] < [b, k + j]

for all 0 ≤ j ≤ m− k.

Proof. If 〈a, k〉 = 〈b, k〉 then〈
〈a, k〉, j

〉
=
〈
〈b, k〉, j

〉
,

and hence

〈a, k + j〉 = 〈b, k + j〉.
Since a < b we thus have

[a, k + j] < [b, k + j]

as desired.
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A.5 Minimality

We now prove the following rather simple lemma which states that the
only non-zero principal minors can be found as submatrices of A who are
permutations.

Lemma A.9. If detA(P ) 6= 0 then the corresponding matrix is a per-
mutation matrix.

Proof. Assume that we choose P such that one of the rows of A(P ) has
two ones. In other words there are i, j1, j2 ∈ P such that

Aij1 = Aij2 = 1.

Using the definition of A this implies that

〈j1 − 1, 1〉 = [i− 1,m− 1] = 〈j2 − 1, 1〉.

Now let k ∈ P be arbitrary. Then Akj1 = 1 if and only if [k− 1,m− 1] =
〈j1 − 1, 1〉, which is true if and only if

[k − 1,m− 1] = 〈j2 − 1, 1〉,

so Akj1 = Akj2 for all k ∈ P , so the j1’th and j2’nd column are equal and
so detA(P ) = 0. The proof is similar when we assume that there are two
ones in one column.

Recall that if A(P ) is a permutation, then P = P1 ∪ · · · ∪ Pn where
∩iPi = ∅ and A(Pi)’s are all cycles. This motivates the following two
theorems, where we characterize the subsets P where A(P ) is a cycle.
We are interested in the smallest elements of cycles, since the whole
cycle are removed when we remove this element, which we will prove is
exactly the numbers that are minimal.

Definition A.10. We say that 0 ≤ n ≤ qm is m-minimal if

A
l(n)
n+1,n+1 = 1,

or equivalently using Lemma A.7 if

[n,m− l(n)] = 〈n, l(n)〉.

Theorem A.11. Let P ⊂ {1, 2, . . . , qm} be such that A(P ) is a k-cycle
for some 1 ≤ k ≤ m. Then minP −1 is minimal with lm(minP −1) = k.
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Proof. Let P = {i1, i2, . . . , ik} be a k-cycle with Aji1ij+1
= 1 for 1 ≤ j < k

and Aki1i1 = 1. Without loss of generality we can assume that minP = i1.
Using Lemma A.7 we get that

[i1 − 1,m− j] = 〈ij+1 − 1, j〉,

for 1 ≤ j < k and
[i1 − 1,m− k] = 〈i1 − 1, k〉

so we need to prove that 〈ij+1 − 1, j〉 > 〈i1 − 1, j〉 for j = 1, 2, k− 1. We
have the non-strict inequality since i1 < ij. So assume for contradiction
that

〈i1 − 1, j〉 = 〈ij+1 − 1, j〉.
Now since i1 < ij+1 we have

[i1 − 1, j] < [ij+1 − 1, j],

and due to Lemma A.8 we have

[i1 − 1,m− k + j] < [ij+1 − 1,m− k + j] (A.7)

since k ≤ m. Since Ak−jij+1i1
= 1 we have [ij+1−1,m−k+j] = 〈i1−1, k−j〉.

Using (A.7) we get

[i1 − 1,m− k + j] < 〈i1 − 1, k − j〉.

Now consider ik−j+1. Since j < k we have Ak−ji1ik−j+1
= 1 so

[i1 − 1,m− k + j] = 〈ik−j+1 − 1, k − j〉,

and hence
〈ik−j+1 − 1, k − j〉 < 〈i1 − 1, k − j〉.

This implies that ik−j+1 < i1 which is a contradiction against i1 being
the least element in P .

Theorem A.12. Assume that i− 1 is minimal. Then there is a unique
P ⊆ {1, 2, . . . , qm} such that minP = i and A(P ) is a l(i− 1)-cycle.

Proof. We let P = {i, i2, i3, . . . , ik} where

i2 − 1 = q[i− 1,m− 1] + 〈i− 1,m− 1〉
i3 − 1 = q2[i− 1,m− 2] + 〈i− 1,m− 2〉

...

ik − 1 = qk−1[i− 1,m− k + 1] + 〈i− 1,m− k + 1〉.
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We now need to prove that An−1iin
= 1 and that i < in for all n =

2, 3, . . . , k. Using the uniqueness of the part and residue we see that

〈in − 1, n− 1〉 = [i− 1,m− n+ 1]

and
[in − 1, n− 1] = 〈i− 1,m− n+ 1〉

for n = 2, 3, . . . , k. The first of these equations implies that An−1iin
= 1.

Since lm(i− 1) = k we know that

〈i− 1, n〉 < [i− 1,m− n]

for n = 1, 2, . . . , k − 1. This implies that

in+1−1 = qn[i−1,m−n]+ 〈i−1,m−n〉 > qn〈i−1, n〉+[i−1, n] = i−1

since both 〈i− 1,m− n〉 and [i− 1, n] are smaller than qn.
We now need to prove that this P is unique. Assume that we have

P ′ = {i, i′2, . . . , i′k}, where we order the elements such that An−1ii′n
= 1.

This implies that

[i− 1,m− n+ 1] = 〈i′n − 1, n− 1〉

for all n = 2, 3, . . . , k. Since A(P ) is a k-cycle, we furthermore know that
Ak−n+1
i′ni

= 1, so

[i′n − 1,m− k + n− 1] = 〈i− 1, k − n+ 1〉.

Now we want to prove that i′n = in, so let 2 ≤ n ≤ k be given. We have

i′n − 1 = qn−1〈i′n − 1, n− 1〉+ [i′n − 1, n− 1]

and 〈i′n − 1, n− 1〉 = [i− 1,m− n+ 1], so we just need to prove that

[i′n − 1, n− 1] = 〈i− 1,m− n+ 1〉.

We have

[i′n − 1, n− 1] =
[
[i′n − 1,m− k + n− 1], n− 1

]
= [〈i− 1, k − n+ 1〉, n− 1]

=
[
[in − 1,m− k + n− 1], n− 1

]
= [in − 1, n− 1]

= 〈i− 1,m− n+ 1〉

so in = i′n for all n, and so P = P ′.
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Corollary A.13. If lm(i − 1) = m then there is exactly one P ⊆
{1, 2, . . . , qm} such that minP = i and A(P ) is a m-cycle.

Proof. This follows from the fact that Amij = 1 for all i, j. In particular
we have Amii = 1 for all i.

Now compare this corollary with the following lemma.

Lemma A.14. If lm(i− 1) = m, then im = i− 1m + 1.

Proof. It is enough to prove that i = i, since we certainly have i− 1 = i−
1. Using the definition we see that this is equivalent with [i,m− l(i)] = 0.
If l(i) = m we are done, so assume that l(i) < m. Now either [i,m −
l(i)] = 0, in which case we are done, or [i,m− l(i)] = [i− 1,m− l(i)] + 1.
Now since l(i− 1) = m we have

[i− 1,m− l(i)] < 〈i− 1, l(i)〉,

since l(i) < m = l(i− 1), but

[i− 1,m− l(i)] = [i,m− l(i)]− 1 ≤ 〈i, l(i)〉 − 1 ≤ 〈i− 1,m− l(i)〉,

which is a contradiction.

Recalling the idea of the proof we here see that if lm(i− 1) = m and
we remove the i’th row and column of Am, then we remove exactly one
permutation of size ≤ m, namely a m-cycle, which increases the m’th
coefficient of the characteristic polynomial by one, and we also see that
it increases the m’th digit of the base q expansion of i by one.

A.6 Induction mapping

In the following chapter we will no longer suppress the dependency on
m, since we are interested in mapping permutations between matrices of
different sizes while preserving cycles. We will illustrate the idea with an
example. If q = 3, and we write all numbers in base 3 we see that

012, 120, 201 (A.8)

is a 3-cycle in A3(012). We now map this up to

0120, 1201, 2012

which is a 3-cycle in A4(0120). On the other hand we could also map
(A.8) down to

01, 12, 20
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which is a 3-permutation in A2(01). In this section we will formally define
these maps, and also prove that they map cycles to cycles. We begin with
the ’down’ map which is defined in the following way.

Definition A.15. If 0 ≤ i < qm+1 then we define

Dm(i) = 〈i, 1〉.

For M > m and 0 ≤ i ≤ qM we let

Dm,M(i) = Dm ◦ · · · ◦DM−1(i) = 〈i,M −m〉.

We now prove the following lemma.

Lemma A.16. If lM(i) = m < M we have

lm(Dm,M(i)) = m.

Proof. We have [i,M −m] ≥ 〈i,m〉 and [i,M − j] < 〈i, j〉 for all 1 ≤ j <
m, and we need to prove that [i,m − j] < 〈i, j〉 for all 1 ≤ j ≤ m. But
this is clearly the case since m < M , so

[i,m− j] < [i,M − j] < 〈i, j〉

for all 1 ≤ j < m.

Corollary A.17. Let 0 ≤ i < qM . If lM(i) = m < M , then

iM = qM−mDm,M(i)m.

Proof. This follows from the definition of the minimal prefix.

We saw earlier that the characteristic polynomial of a matrix can be
found by considering the trace of the powers of the matrix. So if we can
map permutations bijectively between two transition matrices we must
have the same characteristic polynomials. As before we only need to
consider cycles as all permutations are products of cycles.

Definition A.18. An ordered k-tuple of distinct elements, (i1, . . . , ik)
with 0 ≤ ij ≤ qm for all j = 1, 2, . . . , k is a k-cycle inAm(c) ifAm(c)ij ,ij+1

=
1 for all j = 1, 2, . . . , k−1, and Am(c)ik,i1 = 1. In other words, if we have

[ij,m− 1] = 〈ij, 1〉

for j = 1, 2, . . . , k − 1 and [ik,m − 1] = 〈i1, 1〉 and ij ≥ c for all j =
1, 2, . . . , k.
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We have a ‘down’ map, mapping from large matrices to smaller and
we now define an ’up’ map, mapping from smaller to larger.

Definition A.19. Let P = (i1, . . . , ik) be a k-cycle in Am(c). Then we
let

Um(P ) = (qi1 + [i2, 1], · · · , qik + [i1, 1]),

and for M > m we let Um,M = UM−1 ◦ UM−2 ◦ · · · ◦ Um.

Lemma A.20. Let m = lM(c) and let P = (i1, i2, . . . , ik) be a k-cycle in
AM(c). Then

Dm,M(P ) = (Dm,M(i1), · · · , Dm,M(ik))

is a k-cycle in Am(Dm,M(c)). Furthermore, if Q = (j1, . . . , jk) is a k-
cycle in Am(Dm,M(c)), then Um,M(Q) is a k-cycle in AM(c).

Proof. To prove that Dm,M(P ) is a k-cycle in Am(Dm,M(c)) can be done
by straightforward calculations. We also get that Um,M(Q) is a k-cycle in
AM(qM−m〈c,M −m〉) rather straightforward. The problem is to prove
that it actually is a k-cycle in AM(c), or in other words that there are no
k-cycles with its smallest element in the interval between qM−m〈c,M−m〉
and c. Recalling the definition of cM and that the least element of a cycle
always is minimal we thus need to prove that if we have cM ≤ n < c,
then n cannot be minimal.

We get that nM = cM and lM(n) = lM(c) so

[c,M −m]− [n,M −m] = c− n

so if we assume that n is minimal we get

〈c,m〉 ≥ [c,M −m] = [n,M −m] + c− n = 〈n,m〉+ c− n

which is a contradiction. This finishes the proof of the theorem.

These two lemmas now lead to the following theorem regarding the
invariance of the traces.

Theorem A.21. Let m, k ≤M . Then

traceAm(c)k = traceAM(qM−mc)k.

More generally we have

traceAm(〈c,M −m〉)k = traceAM(c)k

whenever lM(c) ≥ m.
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Proof. Each k-cycle contributes to the trace, and since the maps used in
the lemmas maps all k-cycles invectively, we get the theorem.

Newton’s formula for the characteristic polynomial gives us, that if

fmc (x) = xn − a1xn−1 − · · · − an = det(xI − Am(k))

is the characteristic polynomial of Am(k) where n = qm − k, then

ak =
1

k

(
traceAm(c)k − a1 traceAm(c)k−1 − · · · − at−1 traceAm(c)

)
so the above theorem gives us that

fMc (x) = xM−mfmqM−mc(x).

Combining this with the simple lemma below gives us the proof of the
main theorem.

Lemma A.22. Let 0 ≤ n < qm. Then

qnm = qnm+1.

Proof. We see that

qnm = q(n− [n,m− lm(n)]) = qn− [qn,m+ 1− lm(n)],

so we just need to prove that lm+1(qn) = lm(n). Assume that j = lm(n).
Then

〈qn, j〉 ≥ q
〈
〈qn, j〉, 1

〉
= q〈qn, j + 1〉 = q〈n, j〉 ≥ q[n,m− j] = [qn,m].

Now assume that 〈qn, j〉 ≥ [qn,m+ 1− j] for some j > lm(n). Then

q[n, j] = [qn, j] ≤ 〈qn,m+ 1− j〉

so
[n, j] ≤ 〈〈qn,m+ 1− j〉, 1〉 = 〈n,m− j〉

which is a contradiction.

We are now ready to prove the main theorem, so let us restate it.

Theorem A.23. Let 1 ≤ k ≤ qm and let fmk (x) be the characteristic
polynomial of Am(k). Then

fmk (x) = gmk (x)xq
m−m−k

where
gmk (x) = xm − a1xm−1 − · · · − am

and a1a2 . . . am is the base q expansion of qm − km.
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Proof. We prove this theorem using induction. If m = 1 it is certainly
true since i1 = i for all 0 ≤ i < q and A1 is the all one matrix of size
q × q.

We see that when choosing m and i > 0 we have two possibilities:
Either we have l(i − 1) = m or l(i − 1) < m. In the first case removing
the i’th column and row only removes one non-zero minor, namely the
unique m-cycle with i as its minimal element given in Theorem A.12.
In this case we also have that the last digit of i− 1m is [i − 1, 1] which
must be non-zero, so here we just decrease am with 1, so the first m
coefficients of the characteristic polynomial changes in the right way due
to Lemma A.14.

If we have l(i− 1) = n < m we see that we can find the characteristic
polynomial of the smaller matrix of size qn instead and multiply it by
xm−n. As we see in Corollary A.17 this is also the case for k. So by
induction we are done.

Now we need to prove that the remaining coefficients are all zero. To
prove this we once again use Lemma A.21 to see that the M ’th coefficient
of fmk must be equal to the M ’th coefficient of fMqM−mc for any M > m.
And here we see that the m + 1’th, m + 2’th, . . . , and M ’th coefficient
all are zero, since the M ’th digit of the base q expansion of

qM − qM−mcM = qM−m(qm − cm)

is zero. This finishes the proof of the theorem.

A.7 Constant dimension

Now define φ : c 7→ dimH F (c). Recall from (A.1) that when c has
finite base q expansion we can calculate φ(c). Nilsson [17] proved that
this function is continuous and constant almost everywhere. Using the
theorem we see that if we have 0 ≤ i < j < qm such that im = jm then

φ

(
i

qm

)
= φ

(
j

qm

)
and since φ is a decreasing function it must be constant on the interval[

i

qm
,
j

qm

]
.

Now let 0 ≤ i < q be given and let

j(m) =
m∑
n=1

iqn−1.



A.8. NUMERICAL PLOT 95

We now claim that
qm−1im = j(m)m.

To prove this we see that lm(qm−1i) = 1 and so qm−1im = qm−1i. Now
lm(j(m)) = 1 and

j(m)m = iqm−1

which proves the claim. This gives us

φ

(
i

q

)
= φ

(
j(m)

qm

)
for all m and letting m→∞ we get that φ is constant on the interval[

i

q
,

i

q − 1

]
.

Now letting m = 1 we find

g1i (x) = x− i1 = x− i

which has one root, x = i, so we get

φ

(
i

q

)
=

log i

log q

on this interval.
A bit more work allows us to calculate φ(x) for x = i

qn
for larger n

since we here need to solve polynomial equations of degree n.

A.8 Numerical plot

Calculating the spectral radii of A(k), we can make numerical plots of
the function φ. The plot in figure A.1 was made using GNU Octave.

A.9 Asymptotics

We now want to consider φ as q → ∞. We consider the function ψ :
[0, 1)→ [0, 1) where

ψ(c) =

{
1 + log(1−c)

log q
0 ≤ c < q−1

q

0 otherwise.

and wish to prove that φ and ψ are somewhat asymptotically similar.
This can also be expressed by saying that ρ(Ac) behaves somewhat like
q − qc, which is true in the starting point of the intervals where φ is
constant, so we get the following theorem.



96
APPENDIX A. ON LOWER BOUNDED ORBITS OF THE

TIMES-Q MAP

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

q=2
q=3
q=5
q=7

Figure A.1: Numerical plots of φ for q ∈ {2, 3, 5, 7}.
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Figure A.2: Plots of φ and ψ when q = 7.
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Theorem A.24. For all c ∈ [0, 1) we have

φ(c)

ψ(c)
→ 1

as q →∞.

Proof. Let c ∈ [0, 1) be given. Then if we let i = bqcc we have

i

q
≤ c ≤ i+ 1

q
.

Now

φ

(
i

q

)
≥ φ(c) ≥ φ

(
i+ 1

q

)
and likewise for ψ since both functions are decreasing. Due to the result
we got earlier on constant intervals we have

log(q − i)
log q

≥ φ(c), ψ(c) ≥ log(q + 1− i)
log q

so recalling the definition of i we have

log(q − i)
log(q − i+ 1)

≥ φ(c)

ψ(c)
≥ log(q − i+ 1)

log(q − i)

and since i→∞ as q →∞, both the lower and upper bound converges
to 1. This finishes the proof.

Since we also see that ψ(c)→ 1 as q →∞, we also have the following
corollary.

Corollary A.25. For all c ∈ [0, 1) we have

φ(c)→ 1 as q →∞.

The convergence is very slow though – since φ and ψ are equal on q
points we can just look at the convergence of

log(1− c)
log q

to zero which is easy to calculate.
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Figure A.3: Plot of φ when q = 50000.



Appendix B

Code

The code is done in GNU Octave, and can be downloaded from http:

//jonaslindstrom.dk/thesis/hdim.zip.

B.1 Brute force calculation of φ

The set Fc can be seen as a subshift of finite type, see Appendix A, and
here we construct the transition matrix and find the spectral radius ρ.
Then φ(c) = log ρ

log q
.

##
# Promt for base number q and length of the words considered, m
##
q = input(”q=”);
m = input(”m=”);

##
# Construct the transition matrix
##
A = zeros(qˆm, qˆm);

for i=1:qˆm
for j=1:qˆm

# If the last m−1 digits of i−1 are equal to to
# the first m−1 of j−1 then set A(i,j) = 1
if mod(i−1,qˆ(m−1)) == floor((j−1)/q);

A(i, j) = 1;
endif

endfor
endfor

99

http://jonaslindstrom.dk/thesis/hdim.zip
http://jonaslindstrom.dk/thesis/hdim.zip
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##
# Calculate the Hausdorff dimensions of F c for c = (i−1)/qˆm
# where i=1,2,...,qˆm
##
x = zeros(1, qˆm);
h = zeros(1, qˆm);

for i=1:qˆm
# B is the transition matrix for F c where c=(i−1)/qˆm
B = A(i:qˆm, i:qˆm);

x(i) = (i−1)/qˆm;
h(i) = log(max(eig(B)))/log(q);

endfor

plot(x,h);

B.2 Smarter calculation of φ

Here we use Theorem 2.4 to calculate φ.

##
# Promt for base number q and length of the words considered, m
##
q = input(”q=”);
m = input(”m=”);

# h(i) will be the Hausdorff dimension of F x(i)
x = zeros(1,qˆm);
h = zeros(1,qˆm);

# When c=0, the entropy is q
x(1) = 0;
h(1) = q;

for c=1:qˆm
## Find n as in the theorem
for j=m:−1:1

## If the last m−j digits of c are larger than the first m−j,
## then n=j.
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if mod(c, qˆ(m−j)) <= floor(c / qˆj)
n = j;

endif
endfor

## The coefficients of the polynomial is saved in P
P = zeros(1,n+1);
P(1) = 1;

## The base q−expansion of a is a 1 ... a n as in the theorem where
a = qˆn − floor(c / qˆ(m−n));

## Find a n, a {n−1}, ..., a 1 and save them in P
for j=n+1:−1:2

b = mod(a, q);
P(j) = −b;
a = (a−b) / q;

endfor

h(c+1) = log(max(roots(P)))/log(q);
x(c+1) = c/qˆm;

endfor

plot(x,h);
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