
On Extensions of Group C∗-Algebras

PhD thesis in mathematics

July 2012

by Jonas Andersen Seebach

Advisors: Steen Thorbjørnsen and Klaus Thomsen

Department of Mathematical Sciences – Aarhus University





i

Abstract

The thesis deals with the question of (non-)invertibility of C∗-extensions arising
from group C∗-algebras. The first chapter outlines the basic preliminaries and sets
the stage. In particualar the basics of C∗-extensions and group C∗-algebras are
treated and more advanced theory such as semi-invertibility of extensions and weak
containment of representations is explained.

In the second chapter we give a negative result showing that the reduced group
C∗-algebra of an amalgamated free product of Abelian groups has non-invertible
extensions by the compact operators.

The third chapter gives a positive result. We show that all extensions of the
reduced group C∗-algebra of a free product of amenable groups by any stable and
sigma-unital C∗-algebra are semi-invertible.
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Resumé

Afhandlingen omhandler spørgsm̊alet om invertibilitet af ekstensioner af gruppe-
C∗-algebraer. I det første kapitel gennemg̊aes den grundlæggende teori og baggrund.
Specielt diskuteres de basale ting om ekstensioner af C∗-algebraer, men ogs̊a mere
avancerede emner som semiinvertibilitet bliver behandlet.

Det andet kapitel indeholder et negativt resultat, idet det vises, at den reduc-
erede gruppe-C∗-algebra af et amalgameret frit produkt af Abelske grupper har ikke-
invertible ekstensioner med de kompakte operatorer.

I det tredje kapitel er hovedresultatet positivt; det vises, at et frit produkt af
amenable grupper har en reduceret gruppe-C∗-algebra, for hvilken alle ekstensioner
med enhver stabil og sigma-unital C∗-algebra er semiinvertible.
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Preface

The present dissertation marks the conclusion of my work as a PhD student over the last
four years. It is divided into 3 chapters. The first chapter serves as an introduction to the
last two. The second chapter consists of a manuscript [Se] which is accepted for publication
but has not appeared yet. The third chapter is [ST] written jointly with my advisor Klaus
Thomsen.

The thesis focuses on the question of invertibility of C∗-extensions. This question has
been studied since the 1970’s where Brown, Douglas and Fillmore defined the semigroup
of extensions of a separable commutative unital C∗-algebra by the compact operators K

on a separable infinite-dimensional Hilbert space. See, e.g., [BDF]. Since then much
has happened. There is now a theory (due to G.G. Kasparov) of extensions of a general
(separable) C∗-algebra by any stable C∗-algebra. In the first section of the first chapter we
review the basics of this general theory and draw connections to the more classical theory,
where the role of the ideal is played by K.

Since all the C∗-extensions in this thesis arise from group C∗-algebras there is also
a section on groups and C∗-algebras. The main topic of that section is the notion of
weak containment which has a C∗-algebraic as well as a group theoretic formulation. The
connection between these are studied and a few consequences are derived.

The introductory chapter ends with an exposition of a couple of results needed in
Chapter 3 which did not fit into the first two sections. In particular, we give a relatively
detailed and self-contained account of a rather technical result of K. Thomsen and V.
Manuilov which is fundamental for Chapter 3.

In Chapter 2 we establish the MF property of the reduced group C∗-algebra of an
amalgamated free product of countable Abelian discrete groups. This result is then used
to give a characterization of the amalgamated free products of Abelian groups for which
the BDF semigroup of the reduced group C∗-algebra is a group. Along the way we get a
tensor product factorization of the corresponding group von Neumann algebra. Towards
the end of the chapter we apply the ideas from the first part to give a few more examples
of groups with a reduced group C∗-algebra which is MF.

In Chapter 3 we prove that the unitary equivalence classes of extensions of the reduced
group C∗-algebra of a free product of a countable collection of countable amenable groups
by any σ-unital stable C∗-algebra, taken modulo extensions which split via an asymptotic
homomorphism, form a group.

There is maybe some non-uniformity in the exposition due to the fact that Chapters 2

vii
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and 3 are written as individual papers, thus there may be some overlap between particularly
the introductory sections of these chapters and Chapter 1. I have made no effort to prevent
this and I hope that the reader will bear with me or maybe even appreciate the occasional
repetition.

The thesis is written so as to be relatively self-contained up to a good background in
operator algebras. The introductory chapter is intended to be more easily accessible than
the articles in chapters two and three in the hope that the reader will have a pleasant and
leisurely experience reading the background material.

I have not formally defined every notion appearing in this report, but I have tried to
give a quick explanation whenever an object or notion appears for the first time. Should
you encounter any unexplained terminology, a good place to look for an explanation is [B].

Finally, I feel the need to thank several people for their support. First and foremost
my advisors Klaus and Steen for excellent supervision and for listening to half-finished and
less than well-organized presentations of preliminary ideas.

A special thanks goes to Uffe Haagerup whose advice I have benefitted from several
times through Steen, and whose questions and ideas after my part A exam ultimately led
to the results which appear in chapter two.

I enjoyed the hospitality and company of Nate Brown at the Pennsylvania State Uni-
versity in the autumn and winter of 2010-2011. For that I am very grateful.

Last but not least, I would like to thank my fellow (PhD) students at IMF for taking
my mind off my project from time to time. I hope I succeeded in returning the favour.

Jonas Andersen Seebach



Chapter 1

Introduction

This chapter is designed to give (some of) the necessary background for Chapters 2 and
3. It has 3 sections, two general on C∗-extensions and on group C∗-algebras repectively
and one more specialized which focuses on providing some preliminary results needed in
Chapter 3.

1.1 Basics of extensions

In this section we review the basics of the theory of C∗-extensions. In particular we discuss
invertibility of these and relate the classical BDF-theory to the general theory of extensions
by stable C∗-algebras. Towards the end we discuss and motivate the recent idea of semi-
invertibility.

Definition and the Busby invariant

Everything in this subsection is very basic. The material covered is mostly from [JT].
Throughout A,B are C∗-algebras.

Definition 1.1.1. Let A, B be C∗-algebras. An extension of A by B is a short exact
sequence of C∗-algebras

0 → B → E → A→ 0 (1.1.1)

i.e. each of the maps (∗-homomorphisms) satisfies that the image of one map equals the
kernel of the next. In particular, the second map is injective and the third is surjective.

We will now construct the so-called Busby invariant of an extension.
Fix an extension of A by B and let the second map in (1.1.1) be denoted by i and the

third by p. We let M(B) denote the multiplier algebra of B and let Q(B) := M(B)/B
be the generalized Calkin algebra. The canonical quotient map M(B) → Q(B) is called
q. By the universal property of the multiplier algebra we get a unique ∗-homomorphism

1
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τ : E →M(B) that makes

B
i //

""F
F

F
F

F
F

F
F E

��
M(B)

commute. Here the bottom arrow is the canonical inclusion.
Let a ∈ A and suppose e, f ∈ p−1(a). Then e − f ∈ i(B) and so q(τ(e − f)) = 0.

It follows that there is a well-defined map ϕ : A → Q(B) making the following diagram
commute

E
p //

τ
��

A

ϕ

��
M(B)

q // Q(B)

It is easy to check that ϕ is in fact a ∗-homomorphism.

Definition 1.1.2. The Busby invariant of the extension (1.1.1) is the ∗-homomorphism
ϕ : A→ Q(B) making the following diagram with exact rows commute

0 // B // E //

τ
��

A

��

// 0

0 // B // M(B)
q // Q(B) // 0

To deserve the name of ’invariant’ the Busby invariant should of course be invarant
under a suitable notion of isomorphism. We say that two extensions of A by B respectively
given by maps ij , pj and C∗-algebras Ej , j = 1, 2, as above, are isomorphic if there is a
∗-homomorphism (hence ∗-isomorphism) ψ : E1 → E2 making

0 // B // E1
//

ψ
��

A // 0

0 // B // E2
// A // 0

commute.
This notion of isomorphism of course defines an equivalence relation on the set of

extensions of A by B. As it turns out the Busby invariant is a complete invariant for
this relation, i.e., two extensions are isomorphic if and only if they have the same Busby
invariant. Furthermore, any ∗-homomorphism ϕ : A → Q(B) gives rise to an extension in
the following way: Define

E = {(a, x) ∈ A×M(B) | ϕ(a) = q(x)}. (1.1.2)

This is a C∗-algebra. Note that B embeds in E by b 7→ (0, b), that (a, x) 7→ a is a surjective
∗-homomorphism and that the image of the first map equals the kernel of the last. In the
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language of category theory this is just a concrete realization of the pullback of (A,M(B))
along (ϕ, q). Note that the Busby invariant of the above extension is exactly ϕ. From here
it is a rather straight-forward verification that the Busby invariant is in fact a complete
invariant with respect to isomorphism. See Theorem 3.1.4 of [JT].

This thesis deals almost exclusively with the notion of unitary equivalence of extensions
which we now define.

Definition 1.1.3. Two extensions of A by B respectively given by maps ij , pj and algebras
Ej , j = 1, 2, are unitarily equivalent if there is a unitary u ∈M(B) and a ∗-homomorphism
(hence ∗-isomorphism) ψ : E1 → E2 making

0 // B //

Ad(u)

��

E1
//

ψ
��

A // 0

0 // B // E2
// A // 0

commute.

Just as before unitary equivalence defines an equivalence relation on the set of exten-
sions. As this equivalence is clearly weaker than isomorphism, we would like to describe
the corresponding equivalence relation on the level of Busby invariants.

Lemma 1.1.4. Let ϕi, i = 1, 2, be the Busby invariants of two extensions of A by B. If the
two extensions are unitarily equivalent via u ∈ M(B) then Ad q(u) ◦ ϕ1 = ϕ2. Conversely,
if there is a unitary u ∈M(B) such that Ad q(u)◦ϕ1 = ϕ2, then the extensions are unitarily
equivalent via u.

Proof. Assume that the extensions are unitarily equivalent via u ∈ M(B). Consider the
extension (ι, E, p) defined by the map Ad(q(u∗))◦ϕ2 as in 1.1.2. Define a ∗-homomorphism
ξ : E2 → E by ξ(e) = (p2(e), u

∗τ2(e)u), where τ2 : E2 →M(B) is the canonical map. Then
ξ makes

0 // B //

Ad(u)

��

E1
//

��

A // 0

0 // B //

Ad(u∗)

��

E2
//

ξ

��

A // 0

0 // B // E // A // 0

commute and hence, forgetting the middle row, we see that the extension corresponding
to ϕ1 is isomorphic to the one defined by Ad(q(u∗)) ◦ ϕ2. It follows that the two maps are
equal.

Conversely, let (ι, E, p) be the extension corresponding to Ad(q(u)) ◦ϕ1. Then we have
a map ξ : E1 → E given by ξ(e) = (p1(e), uτ1(e)u

∗), where as before τ1 : E1 → M(B) is
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the canonical map. Since Ad(q(u)) ◦ϕ1 = ϕ2, we have the following commutative diagram

0 // B //

Ad(u)

��

E1
//

ξ

��

A // 0

0 // B // E //

��

A // 0

0 // B // E2
// A // 0

This proves the lemma.

Additive structure

We would like to make the unitary equivalence classes of extensions of A by B into an
abelian semigroup and hence we need to define an addition satisfying the usual requirements
of associativity and commutativity. In order for us to do this, we will from now on assume
that our ideal, B, is stable, i.e., B ≃ B ⊗K.

Consider the (right) Hilbert C∗-module

HB := {(bn)n∈N ∈ BN |

∞
∑

n=1

b∗nbn converges in B}

over B with the obvious right action, pointwise algebraic operations and B-valued inner
product

〈(an), (bn)〉 =

∞
∑

n=1

a∗nbn.

Partition N into two infinite disjoint sets N1, N2 and take bijections ϕi : Ni → N,
i = 1, 2. Define Vi : HB → HB by

Vi(bn) = (cn), where cn =

{

bϕi(n) if n ∈ Ni

0 if n /∈ Ni

,

for i = 1, 2. Then Vi is an adjointable B-module map with adjoint V ∗
i given by

V ∗
i (bn) = (cn), where cn = bϕ−1

i (n).

Note that the Vi’s are isometries, that V ∗
1 V2 = V ∗

2 V1 = 0 and V1V
∗
1 + V2V

∗
2 = 1. Since

the C∗-algebra of adjointable operators on HB is isomorphic to the multiplier algebra of
B ⊗ K (Lemma 1.27 of [JT]) which by assumption (and the universal property of the
multiplier algebra) is isomorphic to M(B), we get isometries v1, v2 ∈M(B) such that

v∗1v2 = v∗2v1 = 0 and v1v
∗
1 + v2v

∗
2 = 1. (1.1.3)
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Define a ∗-isomorphism1 Θ from the 2× 2-matrices over B, M2(B), to B by

Θ({bij}) = v1b11v
∗
1 + v1b12v

∗
2 + v2b21v

∗
1 + v2b22v

∗
2.

This extends to a ∗-isomorphism fromM2(M(B)) toM(B) which we also call Θ. By taking
the image of vi in Q(B) we also get an isomorphism Θ′ : M2(Q(B)) → Q(B) in the same
way we obtained Θ.

We are now ready to define an addition on the set of ∗-homomorphisms from A to
Q(B), namely

ϕ+ ψ := Θ′ ◦

(

ϕ 0
0 ψ

)

= Θ′ ◦ (ϕ⊕ ψ),

for ∗-homomorphisms ϕ, ψ : A→ Q(B).
There are now several things to check and we only discuss these briefly since there is

really nothing to add to the exposition given in [JT].
Since tensoring with M2(C) is an exact functor, we get a commutative diagram with

exact rows as follows

0 // M2(B) //

Θ

��

M2(M(B))
q⊗idM2(C)//

Θ
��

M2(Q(B))

Θ′

��

// 0

0 // B // M(B) // Q(B) // 0

(1.1.4)

The first thing which calls for checking is whether our addition is well-defined on unitary
equivalence classes of ∗-homomorphism. A trip around the right square in the diagram
above establishes this.

The next thing on the list is if the addition is associative. Luckily this is the case up to
unitary equivalence. See Lemma 3.2.3 of [JT]. The same is true for commutativity. Indeed,
the unitary v2v

∗
1+v1v

∗
2 implements the equivalence of ϕ+ψ and ψ+ϕ for ∗-homomorphisms

ϕ, ψ : A → Q(B). In other words we have an abelian semigroup structure on the unitary
equivalence classes of extensions.

One may also wonder if our addition is affected by the choice of Θ. Again the answer
is: Only up to unitary equivalence. More precisely, any other isomorphism from M2(B) to
B built out of isometries from M(B) satisfying algebraic relations as in (1.1.3) is unitarily
equivalent to Θ. This is Lemma 1.3.9 of [JT].

Neutral element and invertibility

In this subsection we will finally construct the main object of study in this thesis, namely
the semigroup Ext(A,B), where A,B are C∗-algebras with B stable.

Definition 1.1.5. Let A,B be C∗-algebras. A ∗-homomorphism ϕ : A→ Q(B) is said to
be split if there is a ∗-homomorphism Φ : A→M(B) such that q ◦ Φ = ϕ.

1The inverse is given by b 7→ {v∗i bvj}.
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Clearly, any extension unitarily equivalent to an extension with split Busby invariant
has itself split Busby invariant, so that

S := {[ϕ] | ϕ is split }

is a subset of the semigroup of unitary equivalence classes of extensions constructed in the
last section. Here the brackets mean the unitary equivalence class of ϕ : A→ Q(B).

Actually, S is a subsemigroup. Indeed, if ϕ, ψ : A→ Q(B) are split with ∗-homomorphic
lifts Φ,Ψ respectively, then the ∗-homomorphism Ad(v1) ◦ Φ + Ad(v2) ◦ Ψ : A → M(B)
satisfies

q ◦ (Ad(v1) ◦ Φ + Ad(v2) ◦Ψ) = Θ′ ◦

(

ϕ 0
0 ψ

)

by (1.1.4). And so S is a subsemigroup. This leads to the following fundamental definition.

Definition 1.1.6. Let A,B be C∗-algebras with B stable. The quotient of the abelian
semigroup of unitary equivalence classes of extensions of A by B with S is called the
extension semigroup of A by B. We denote it by Ext(A,B).

By construction Ext(A,B) has a neutral element, namely any element arising from a
split ∗-homomorphism (such as, e.g., the zero-homomorphism). Two ∗-homomorphisms
ϕ, ψ : A → Q(B) define the same element in Ext(A,B) exactly when there are split
∗-homomorphisms, τi : A→ Q(B), i = 1, 2, and a unitary u ∈M(B) such that

Ad(q(u)) ◦Θ′ ◦ (ϕ⊕ τ1) = Θ′ ◦ (ψ ⊕ τ2).

Before discussing the interesting question of invertibility in the semigroup Ext(A,B),
we digress to give an ’explanation’ of our choice of the word split in the above.

In homological algebra terms an extension

0 → B → E
p
→ A→ 0

is split if there is a morphism s : A → E such that p ◦ s = idA. Consequently, the Busby
invariant of a split extension is split. The converse also holds but we postpone the proof
until Lemma 1.1.26.

Since we now have a semigroup Ext(A,B) with a neutral element e, it makes sense to
talk about invertibility. An element x ∈ Ext(A,B) is said to be invertible if there is an
element y ∈ Ext(A,B) such that x+ y = e. The element y is then called the inverse of x.
We may ask if the semigroup is in fact a group and if not, what elements in Ext(A,B) are
invertible? We quote the following theorem due to W. Arveson and G. G. Kasparov and
refer to Theorem 3.2.9 of [JT] for an excellent exposition of the proof.

Theorem 1.1.7. Let A,B be C∗-algebras, B stable and A separable. Let ϕ : A → Q(B)
be a ∗-homomorphism. The following are equivalent

1. The element of Ext(A,B) defined by ϕ is invertible.
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2. There is a completely positive contraction Φ : A→M(B), such that q ◦ Φ = ϕ.

3. There is a ∗-homomorphism π : A → M2(M(B)), such that ϕ = q ◦ π11, where
π11 : A→M(B) is the map that takes any a ∈ A to the (1, 1)’th entry of π(a).

A ∗-homomorphism ϕ : A → Q(B) satisfying the equivalent conditions in the above
theorem is said to be semisplit.

Theorem 1.1.7 shows in conjunction with a renowned lfting theorem of M. D. Choi and
E. G. Effros that for a large class of C∗-algebras Ext(A,B) is a group. We quote the lifting
theorem as follows and refer to pages 377-378 of [B] for a very nice proof.

Theorem 1.1.8. Let A,C be C∗-algebras with A separable. Let B ⊆ C be an ideal and
ϕ : A → C/B be a nuclear completely positive contraction. Then there is a completely
positive contraction Φ : A → C such that π ◦ Φ = ϕ, where π : C → C/B is the quotient
map.

From these two fundamental theorems we obtain the following easy corollary.

Corollary 1.1.9. Let A,B be C∗-algebras with B stable, A separable and nuclear. Then
Ext(A,B) is a group.

Proof. Since A is nuclear, the identity map is nuclear, so every ∗-homomorphism ϕ : A→
Q(B) is as well. As ∗-homomorphisms are completely positive contractions, the corollary
follows from the characterization of invertible elements and the lifting theorem.

We will now leave the general considerations we have had so far, and start to discuss
(non-)invertibility of extensions in the case where the role of the ideal is played by the com-
pact operators K on a separable infinite-dimensional Hilbert space. Later on we will discuss
another (weaker) invertibility notion than the one used to define Ext(A,B). This comes
about by trivializing a larger subsemigroup of unitary equivalence classes of extensions
than S above.

Extensions by K

Fix a separable unital C∗-algebra A. We consider the extensions of A by the compact op-
erators K on a separable infinite-dimensional Hilbert space H . Our present goal is to show
that the question of invertibility in the semigroup Ext(A,K) may be formulated within an-
other semigroup, i.e., the Brown-Douglas-Fillmore semigroup of unitary equivalence classes
of unital, injective ∗-homomorphisms A → B(H)/K := Q(K) which for many purposes is
easier to handle.

We still let q : B(H) → Q(K) be the quotient map.

Lemma 1.1.10. Every element of Ext(A,K) is represented by a unital ∗-homomorphism.
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Proof. Suppose ϕ : A → Q(K) is a ∗-homomorphism. If ϕ is not unital, then ϕ(1) is a
projection in Q(K) and it lifts to a projection P ∈ B(H) (see Corollary 1.1.13 below). The
projection P⊥ is of infinite rank. Pick a unital ∗-homomorphism ψ : A→ B(P⊥H). Then
ϕ′ := ϕ+q◦ψ : A→ Q(K) is a unital ∗-homomorphism. We claim that ϕ′ defines the same
element as ϕ in Ext(A,K) since q ◦ ψ is split. We briefly review the arguments needed to
see this.

It is well-known from the rudiments of K-theory that the projection 1⊕0 is Murray von
Neumann equivalent to P⊕P⊥ in the 2×2 matrices over B(H). It follows that 1⊕0⊕0⊕0 is
unitarily equivalent to P ⊕P⊥⊕0⊕0 in the square matrices over B(H) of dimension 4, i.e.,
ϕ′⊕0⊕0⊕0 is unitarily equivalent to ϕ⊕q ◦ψ⊕0⊕0. By dividing H into four orthogonal
infinite-dimensional closed subspaces, fixing the first subspace and considering the orthog-
onal complement to this, we get an isomorphism M4(B(H)) ≃M2(B(H)) which leaves the
top left corner of the matrices invariant (by composition of isomorphisms obtained in the
same way we obtained Θ earlier). It follows that there is a unitary U ∈ M2(B(H)) such
that Ad(q⊗ idM2(C)(U)) ◦ (ϕ

′ ⊕ 0) = ϕ⊕ s for some split ∗-homomorphism s. Applying Θ′

proves the claim.

Remark 1.1.11. The proof above only relies on the fact that we can lift projections from the
Calkin algebra, thus the statement could be generalized to the case where the generalized
Calkin algebra of the ideal has this property.

For the reader not familiar with the lifting of projections from the Calkin algebra, we
include the following argument - others may want to skip the next proposition and corollary.

For T ∈ B(H), σ(T ) is the spectrum of T and we define the essential spectrum of T ,
σe(T ), to be the spectrum of q(T ) in Q(K).

It is obvious that σe(T ) ⊆ σ(T ) for any T ∈ B(H).

Proposition 1.1.12. Let T ∈ B(H) be normal. The set σ(T )\σe(T ) is discrete. More
precisely it is the set of isolated eigenvalues for T with finite multiplicity.

Proof. Let λ ∈ σ(T )\σe(T ). Note that σ(T )\σe(T ) is open in σ(T ) and pick a continuous
f : σ(T ) → [0, 1] satisfying supp f ⊆ σ(T )\σe(T ) and f(x) = 1 for every x in some open
neighbourhood U of λ.

Assume that λ is not isolated in σ(T ), then the spectral projection P associated to U
is infinite since there is a sequence of pairwise disjoint open sets inside U all containing an
element from σ(T ). It follows that

0 < q(P ) ≤ q(f(T )) = f(q(T )) = 0, (1.1.5)

which is absurd.
We have established that λ is isolated in the spectrum and hence is an eigenvalue. It can-

not have infinite multiplicity because in that case the spectral projection E corresponding
to λ could be used in place of P in (1.1.5).

If λ is an isolated eigenvalue of finite multiplicity of T , choose a continuous function
f with values in [0, 1] so that f(λ) = 1 and supp f ∩ σ(T ) = {λ}. Then the spectral
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projection associated to supp f is compact and dominates f(T ), whence f(T ) is compact.
It follows that f(q(T )) = 0 and hence λ /∈ σe(T ).

Corollary 1.1.13. Any projection in Q(K) lifts to a projection in B(H).

Proof. Let r ∈ Q(K) be a projection. Take any lift p′ ∈ B(H) of r and note that p :=
(p′∗+p′)/2 is a self-adjoint lift. Now the essential spectrum of p is contained in {0, 1} so we
may find x ∈ (0, 1)\σ(p) and it follows that the characteristic function f = 1(x,∞) ∈ C(σ(p)).
The desired lift is f(p).

After this detour, we continue our effort to describe Ext(A,K).

Proposition 1.1.14. Every element of Ext(A,K) is represented by a unital, injective ∗-
homomorphism from A to the Calkin algebra.

Proof. Since A is separable and unital, there is a unital and injective ∗-homomorphism
ρ : A → B(H). Let U be a unitary from the countable Hilbert space direct sum ℓ2(H) of
copies of H to H . Now, τ := Ad(U) ◦ (

⊕

ρ) : A → B(H) is unital, injective and has no
nonzero compact operators in its range. It follows that q ◦ τ is also injective and unital
and it is obviously split. For any element in Ext(A,K) there is a unital homomorphism
ϕ : A→ Q(K) representing it, taking the direct sum with q ◦ τ and applying Θ′ we get the
desired homomorphism.

It is a theorem of D. Voiculescu that the unital split homomorphism q ◦ τ constructed
above is unique up to unitary equivalence in the sense that if τ ′ : A → B(H) is a unital
∗-homomorphism with q ◦ τ ′ injective, then q ◦ τ ′ and q ◦ τ are unitarily equivalent via a
unitary from B(H). See Theorem II.8.4.29 of [B] or [Ar]. We may consider the unitary
equivalence classes of the unital injective ∗-homomorphisms from A to Q(K) as a semigroup
called Ext(A) with the additive structure constructed in the subsection ’Additive structure’.
This is the classical Brown-Douglas-Fillmore semigroup. Voiculescu also showed that the
element q ◦ τ acts as a neutral element in this semigroup. I.e., it is unitally absorbing c.f.
[Th2]. See [Ar] for a proof. Now, in much the same way as is the case for the general
extension semigroup, it can be shown that an element [ϕ] in Ext(A) is invertible if and
only if there is a unital completely positive lift of ϕ to B(H). Again we refer to [Ar] for a
proof.

We have a natural semigroup homomorphism from Ext(A) to Ext(A,K). The above
proposition tells us that this map is surjective. It is not an isomorphism in general, see
[MT4] for a result in that direction, but we have the following result.

Proposition 1.1.15. An element in Ext(A) is invertible if and only if, it is invertible in
Ext(A,K). In particular Ext(A) is a group if and only if Ext(A,K) is a group.

Proof. Let ϕ : A → Q(K) be a unital injective ∗-homomorphism. If the corresponding
element in Ext(A) is invertible, then it is obviously invertible in Ext(A,K). Assume that it
is invertible in Ext(A,K). Then by Theorem 1.1.7 there is a completely positive contractive
lift Φ : A → B(H) of ϕ. If Φ is not unital then 1 − Φ(1) is positive, as Φ is contractive.
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Also 1 − Φ(1) ∈ K because ϕ is unital. Take any state ψ : A → C ≃ C1 ⊆ B(H), this is
completely positive by the GNS construction and so the map Φ′ : A→ B(H) given by

Φ′(a) = Φ(a) + ψ(a)(1− Φ(1)), a ∈ A,

is a unital completely positive lift of ϕ. It follows by the remark above that [ϕ] is invertible
in Ext(A).

As a sidenote we mention that if Ext(A,K) is a group, a sufficient condition for the
natural map considered above to be an isomorphism is that A has a character. This is a
consequence of Voiculescu’s theorem and the fact that the assumption ensures that lifts of
unital extensions can be chosen to be unital.

It is generally a non-trivial task to prove the existence of non-invertible extensions.
One way of attacking this problem is contained in the following result which is folk lore
allegedly originating from [V1]. Recall that a separable C∗-algebra is MF in the sense of
B. Blackadar and E. Kirchberg if it embeds in

∏

n∈NMkn(C)/∑
n∈NMkn(C)

for some sequence of natural numbers kn, n ∈ N. See e.g. Definition V.4.3.4 and Theorem
V.4.3.5 of [B].

Proposition 1.1.16. Let A be an MF C∗-algebra. If Ext(A,K) is a group, then A is
quasidiagonal.

Proof. We have a sequence of natural numbers kn, n ∈ N and an injective ∗-homomorphism

τ : A→
∏

n∈NMkn(C)/∑
n∈NMkn(C).

Put H =
⊕

nCkn. Since
∏

n∈NMkn(C) ∩K =
∑

n∈NMkn(C), (1.1.6)

we have an embedding

∏

n∈NMkn(C)/∑
n∈NMkn(C) ⊆ B(H)

/

K.

Thus τ defines an extension ofA byK. Let ρ be a section for the quotient map
∏

nMkn(C) →
∏

nMkn(C)/∑nMkn(C). By 1.1.6 the map q from B(H) to the Calkin algebra extends
∏

nMkn(C) →
∏

nMkn(C)/∑nMkn(C). Let ϕ : A → B(H) be the contractive com-

pletely positive lift of τ which exists by assumption and Theorem 1.1.7 and let Pn ∈ B(H)
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be the projection onto Ckn . Set ϕn = Ad(Pn) ◦ ϕ and τn = Ad(Pn) ◦ ρ ◦ τ and note that
ϕn is a completely positive contraction for each n. Note also that

lim sup
n

‖ϕn(a)− τn(a)‖ = 0

for all a ∈ A, because τ = q ◦ ρ ◦ τ and q ◦ ϕ = τ . In particular

lim sup
n

‖ϕn(a)‖ = ‖τ(a)‖ = ‖a‖ (1.1.7)

for all a ∈ A. Also note that for a, b ∈ A and n ∈ N
‖τn(ab)− τn(a)τn(b)‖ = ‖Pnρ(τ(ab))Pn − Pnρ(τ(a))Pnρ(τ(b))Pn‖

= ‖Pnρ(τ(ab))Pn − Pnρ(τ(a))ρ(τ(b))Pn‖

= ‖Pn (ρ(τ(ab)) − ρ(τ(a))ρ(τ(b)))Pn‖

where the second equality follows from the fact that ρ(τ(a)) is block diagonal. It follows
that

lim sup
n

‖τn(ab)− τn(a)τn(b)‖ = ‖q (ρ(τ(ab))− ρ(τ(a))ρ(τ(b))) ‖ = ‖τ(ab)− τ(a)τ(b)‖ = 0,

and hence by the triangle inequality

lim
n

‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0.

It follows from this, (1.1.7) and Voiculescu’s characterization of quasidiagonality (The-
orem V.4.2.14 of [B]) that A is quasidiagonal.

The above proposition is often used in conjunction with a result of Rosenberg (Proposi-
tion 1.2.5) stating that if the reduced group C∗-algebra of a discrete group is quasidiagonal,
then it follows that the group is amenable. Specifically, to show that a group has a reduced
group C∗-algebra which has non-invertible extensions by K, it suffices to show that the re-
duced group C∗-algebra is MF (this is oftentimes hard) and that the group is not amenable
(which is oftentimes known or easy).

Given a C∗-algebra A which has non-invertible extensions by K, one may ask if there is
another stable C∗-algbra B for which Ext(A,B) is a group. We have the following partial
answer to this question which shows that in looking for non-invertible extensions of A, the
ideal K is somehow the canonical starting point.

Proposition 1.1.17. Let A,B be C∗-algebras with A separable and B unital. If Ext(A,K)
is not a group then Ext(A,K⊗B) is not a group.

Proof. In the proof all tensorproducts will be maximal.
Suppose

0 → K → E
p
→ A→ 0 (1.1.8)
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represents an element which is not invertible in Ext(A,K). Then by II.9.6.6 in [B]

0 → K⊗ B → E ⊗ B → A⊗ B → 0 (1.1.9)

is exact, where the maps are just the identity on B tensored with the corresponding maps
from the original extension.

We can embed A as a subalgebra in A ⊗ B via ι(a) = a ⊗ 1, a ∈ A. Let E0 be the
pullback of (A,E ⊗ B) along (ι, p⊗ idB) i.e.

E0 = {(a, x) ∈ A× (E ⊗B) | ι(a) = (p⊗ idB)(x)}.

Then we have a commutative diagram with exact rows

0 // K⊗ B // E0
p′ //

χ

��

A

ι

��

// 0

0 // K⊗ B // E ⊗ B // A⊗ B // 0

where p′ and χ are just the projections on the first and second coordinate respectively.
We claim that the element of Ext(A,K ⊗ B) defined by the first row in the diagram

above is not invertible. Indeed, if it was invertible there would by Theorem 1.1.7 and
Lemma 1.1.26 exist a contractive completely positive section s for p′. Let ψ be a state on
B then the map (idE ⊗ψ) ◦ χ ◦ s is a completely positive contraction by Corollary II.9.7.3
in [B] and it is a section for p contradicting that (1.1.8) is non-invertible. To see that the
considered map is indeed a section for p, note first that p ◦ (idE ⊗ψ) = (idA⊗ψ) ◦ (p⊗ idB).
Now for a ∈ A we have

p ◦ (idE ⊗ψ) ◦ χ ◦ s(a) = (idA⊗ψ) ◦ (p⊗ idB) ◦ χ ◦ s(a) = (idA⊗ψ) ◦ ι(p′(s(a))) = a,

proving the claim.

Remark 1.1.18. From the above constructions we also get another non-invertible extension.
Indeed, the extension (1.1.9) of A ⊗max B by K ⊗ B represents a non-invertible element
of Ext(A ⊗max B,K ⊗ B). We leave the considerations needed in order to see this to the
reader.

Semi-invertibility

We will now review another notion of invertibility of extensions. It comes about by replacing
the subsemigroup of split extensions by another, larger subsemigroup which we will describe
below. In other words we trivialize a larger class of extensions hence making it easier for
an extension to be invertible. The definition of this semigroup is due to V. Manuilov and
K. Thomsen.

We will need the notion of asymptotic homomorphisms and some basic properties of
these. The material covered regarding this is from [Th4].
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Definition 1.1.19. Let A,B be C∗-algebras. An asymptotic homomorphism π from A to
B is a familily of maps πt : A → B, t ∈ [1,∞) such that t 7→ πt(a) is continuous in the
norm topology as a map from [1,∞) into B for every a ∈ A. Furthermore the family is
required to satisfy

lim
t→∞

‖πt(a)
∗ − πt(a

∗)‖ = 0,

lim
t→∞

‖πt(λa+ b)− (λπt(a) + πt(b))‖ = 0,

lim
t→∞

‖πt(ab)− πt(a)πt(b)‖ = 0

for all a, b ∈ A and λ ∈ C.
It is a crucial fact that asymptotic homomorphisms are norm bounded.

Lemma 1.1.20. Let A,B be C∗-algebras and π : A → B an asymptotic homomorphism.
For every a ∈ A the map

t 7→ πt(a)

is bounded.

Proof. By considering the unitization π′
t(a + λ1) = πt(a) + λ1, a ∈ A and λ ∈ C, where

1 denotes the unit in the unitizations of A,B respectively, we may assume that A,B are
unital and that πt(1) = 1 for all t. We leave it to the reader to check that this unitization
yields a new asymptotic homomorphism.

The maps ψt :M2(A) →M2(B), t ∈ [1,∞) defined by

ψt

((

a11 a12
a21 a22

))

=

(

πt(a11) πt(a12)
πt(a21) πt(a22)

)

are readily seen to constitute an asymptotic homomorphism.
Let a ∈ A be a positive element of norm less than 1. Then

p =

(

a −
√

(a− a2)

−
√

(a− a2) 1− a

)

is a projection.
Fix ε > 0. By the above we may pick t0 ∈ [1,∞) so that ‖ψt(p)−

1
2
(ψt(p)

∗+ψt(p))‖ ≤ ε
and ‖ψt(p)

2−ψt(p)‖ ≤ ε for t greater than t0. It follows that for t ≥ t0 the imaginary part,
y, of ψt(p) has norm less than ε. Denote by x the real part of ψt(p). Then

ψt(p)
2 − ψt(p) = x2 − y2 − x+ i(xy + yx− y)

so
‖x2 − x‖ ≤ ‖x2 − x− y2‖+ ε2 ≤ ‖ψt(p)

2 − ψt(p)‖+ ε2 ≤ ε+ ε2.

In particular ‖x‖ ≤ 1 + ε and so

lim sup
t

‖πt(a)‖ ≤ lim sup
t

‖ψt(p)‖ ≤ 1.
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From this it is clear that
lim sup

t
‖πt(b)‖ ≤ 4‖b‖,

for any b ∈ A, proving the lemma.

Remark 1.1.21. In the setting of Lemma 1.1.20 the statement can be improved to the effect
that

lim sup
t

‖πt(a)‖ ≤ ‖a‖ (1.1.10)

for a ∈ A. Indeed, π may be thought of as a ∗-homomorphism into the quotient

Cb([1,∞), B)/C0([1,∞), B).

The inequality (1.1.10) is then nothing but the fact that ∗-homomorphisms are contractions.

Another basic fact is the following which shows that for many purposes it suffices to
consider asymptotic homomorphisms given by equi-continuous families of maps.

Lemma 1.1.22. Let A,B be C∗-algebras and π : A → B an asymptotic homomorphism.
There is an equi-continuous asymptotic homomorphism π′ : A→ B satisfying

lim
t→∞

‖πt(a)− π′
t(a)‖ = 0

for all a ∈ A.

Proof. Consider the quotient C∗-algebra

Q := Cb([1,∞), B)/C0([1,∞), B).

Note that we may think of π as a ∗-homomorphism from A to Q.
From the Bartle-Graves selection theorem we obtain a continuous map S : Q →

Cb([1,∞), B) which is a section for the canonical quotient map going with Q. Put π′
t(a) =

(S ◦ π)(a)(t) for t ∈ [1,∞) and a ∈ A.
It is easily checked that this map has the desired properties.

Definition 1.1.23. Let A,B be C∗-algebras. A ∗-homomorphism ϕ : A → Q(B) is said
to be asymptotically split if there is an asymptotic homomorphism π : A → M(B) such
that q ◦ πt(a) = ϕ(a) for all a ∈ A and t ∈ [1,∞).

Let A,B be C∗-algebras with B stable. By a repetition of the argument in ’Neutral
element and invertibility’ the unitary equivalence classes of extensions corresponding to
the asymptotically split ∗-homomorphisms from A to Q(B) constitute a subsemigroup of
the unitary equivalence classes of all extensions, and so we obtain another semigroup with
a neutral element by dividing out with this subsemigroup. Two ∗-homomorphisms ϕ, ψ
define the same element in this semigroup, if there are asymptotically split homomorphisms
τi, i = 1, 2, such that ϕ ⊕ τ1 is unitarily equivalent to ψ ⊕ τ2. An extension defining an
invertible element in this semigroup is called semi-invertible.
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Several natural questions arise in this setting. The first question is whether this new
semigroup is different from Ext(A,B). In general it is; Haagerup and Thorbjrnsen have
shown that Ext(C∗

r (Fn),K) is not a group [HT] and Thomsen has shown that all extensions
of C∗

r (Fn) by K are semi-invertible [Th1]. Here C∗
r (Fn) is the reduced group C∗-algebra of

the free group Fn on n ≥ 2 generators. See Chapter 3 for a more general result.
One may also wonder if this new semigroup is in fact always a group. This question

has been answered in the negative by Manuilov and Thomsen [MT3].
Thirdly one may ask for a reason to even consider the quotient with this subsemigroup

which may seem like an artificial object to study. We will try to provide some motivation
for this in the guise of Proposition 1.1.25 below, which shows that to obtain a group of
extensions from the semigroup of unitary equivalence classes of extensions in general, it is
not only natural to trivialize the asymptotically split extensions, it is also necessary. The
result in Proposition 1.1.25 is mentioned in the introduction of [MT5]. We need a little
preparation first.

The following lemma of independent interest shows that asymptotically split extensions
of a separable C∗-algebra A have lifts which are uniformly continuous in the sense that
t 7→ Φt(a) is uniformly continuous for all a ∈ A. We simply repeat the argument from
Lemma 4.2 of [MT2].

Lemma 1.1.24. Let A,B be C∗-algebras with A separable. Let ϕ : A→ B be an asymptotic
homomorphism. There is an increasing continuous function r : [1,∞) → [1,∞) satisfying
limt→∞ r(t) = ∞ such that the asymptotic homomorphism given by ϕr(t), t ∈ [1,∞) is
uniformly continuous, i.e., such that t 7→ ϕr(t)(a) is uniformly continuous for all a ∈ A.

Proof. Suppose ϕ is equi-continuous. Let Fi, i ∈ N, be an increasing sequence of finite sets
with dense union in A. For each n ∈ N there is a δn > 0 such that

‖ϕt(a)− ϕs(a)‖ ≤ 1
n

whenever t, s ∈ [1, n] with |t− s| ≤ δn and a ∈ Fn. Choose an increasing sequence kn ∈ N,
n ∈ N, so that δn+2 ≥ 1

kn
and put N0 = 1 and Nj = 1 +

∑j
n=1 kn for j = 1, 2, . . . . Let

r : [1,∞) → [1,∞) be given by

r(t) = j +
t−Nj−1

kj
, t ∈ [Nj−1, Nj].

Clearly, r is continuous, increasing and goes to ∞ as t → ∞. Let a ∈ A and ε > 0.
By equi-continuity and definition of the Fn’s, there is an n ≥ 3

ε
and a b ∈ Fn such that

‖ϕt(a)− ϕt(b)‖ ≤ ε
3
for all t ∈ [1,∞). Choose 1 ≥ δ > 0 so that

‖ϕr(x)(b)− ϕr(y)(b)‖ ≤ ε
3

whenever x, y ∈ [1, Nn + 1] and |x− y| ≤ δ.
Suppose x, y ∈ [1,∞) with |x − y| ≤ δ. Then if x, y ∈ [1, Nn + 1] it follows from the

above that ‖ϕr(x)(a)− ϕr(y)(a)‖ ≤ ε, so we may assume that x, y ∈ [Nj, Nj+2] for a j ≥ n
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(since δ ≤ 1). Then |r(x)− r(y)| ≤ max{ 1
kj+1

, 1
kj+2

} ≤ 1
kj

≤ δj+2, but r(x), r(y) ∈ [1, j + 2]

so this implies that

‖ϕr(x)(b)− ϕr(y)(b)‖ ≤ 1
j+2

≤ 1
n
≤ ε

3
,

and so also in this case ‖ϕr(x)(a) − ϕr(y)(a)‖ ≤ ε. This proves the claim when ϕ is equi-
continuous. If ϕ is just an asymptotic homomorphism take the equi-continuous asymptotic
homomorphism ϕ′ from Lemma 1.1.22 corresponding to ϕ and find r as above for this.
Then ϕr(t), t ∈ [1,∞) will do the job. We leave the details to the reader.

When B is a C∗-algebra, recall the definition of HB given in the beginning of ’Additive
structure’. We let L(HB) denote the C

∗-algebra of adjointable operators on HB and K(HB)
denote the closed two-sided ideal in L(HB) generated by operators of the form Tx,y(z) =
x〈y, z〉, x, y, z ∈ HB. Also remember that thinking of B as a Hilbert C∗-module over itself,
we have L(B) =M(B) and K(B) = B. We refer to [JT] for the proofs of any of the facts
just mentioned.

Proposition 1.1.25. Let A,B be C∗-algebras with A separable and B stable. Suppose
ϕ : A → Q(B) is asymptotically split. It follows that ϕ represents the neutral element in
any group quotient of the semigroup of unitary equivalence classes of extensions of A by
B.

Proof. Let Φt be a uniformly continuous asymptotic homomorphism such that q◦Φt = ϕ for
all t. The existence of this is guaranteed by Lemma 1.1.24. Let (tn), n ∈ N, be a sequence
of numbers in [1,∞) converging monotonuously to ∞ such that tn − tn−1 converges to 0
as n→ ∞ and define Φ∞ : A→ L(HB) by

Φ∞(a)(bi) = (Φti(a)bi).

Let P : L(HB) → L(HB)/K(HB) be the quotient map. Then P ◦ Φ∞ =: ϕ∞ is a ∗-
homomorphism because Φ is an asymptotic homomorphism and tn → ∞ as n → ∞. For
instance, to check multiplicativity note that for a, a′ ∈ A we have

‖ϕ∞(aa′)− ϕ∞(a)ϕ∞(a′)‖ = lim sup
n

‖Φtn(aa
′)− Φtn(a)Φtn(a

′)‖ = 0.

Let Ψ∞ : A→ L(HB) be defined by

Ψ∞(a)(bi) = (Φ1(a)b1,Φt1(a)b2,Φt2(a)b3, . . . )

this also defines a ∗-homomorphism by composition with P . In fact, for a ∈ A

‖ϕ∞(a)− P ◦Ψ∞(a)‖ = lim sup
n

‖Φtn(a)− Φtn−1(a)‖ = 0

because Φ is a uniformly continuous asymptotic homomorphism and tn − tn−1 → 0 as
n→ ∞.
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Adapting the procedure in ’Additive structure’ we may find a sequence vi ∈ M(B),
i ∈ N of orthogonal isometries (v∗i vj = 0 for i 6= j) such that

∑

i

viv
∗
i = 1

in the strict topology. See Lemma 1.3.2 of [JT] for details. This gives a unitary U : HB → B
given by

U((bi)) =
∑

i

vibi

for (bi) ∈ HB.
The unitary U implements an isomorphism of L(HB) and M(B) = L(B) taking K(HB)

to B and so we also get an induced isomorphism ι : L(HB)/K(HB) → Q(B).
Consider the following adjointable operators: Let W1 : B → B ⊕HB and W2 : HB →

B ⊕HB be the inclusions on the respective factors and V : B ⊕HB → HB be the unitary
given by V ((b, (bi)) = (b, b1, b2, . . . ). Define u1 := UVW1 ∈ M(B) and u2 := UVW2U

∗ ∈
M(B). These are clearly orthogonal isometries such that u1u

∗
1 + u2u

∗
2 = 1 and hence we

can use these to define the addition of extensions. Let a ∈ A, then

‖q(u1)ϕ(a)q(u1)
∗ + q(u2)(ι ◦ ϕ

∞)(a)q(u2)
∗ − (ι ◦ ϕ∞)(a)‖

= ‖P (VW1Φ1(a)W
∗
1 V

∗ + VW2Φ
∞(a)W ∗

2 V
∗ −Ψ∞(a))‖ = 0,

since
VW1Φ1(a)W

∗
1 V

∗ + VW2Φ
∞(a)W ∗

2 V
∗ = Ψ∞(a)

for a ∈ A.
It follows that ϕ + ι ◦ ϕ∞ = ι ◦ ϕ∞ in the semigroup of unitary equivalence classes of

extensions, proving the claim.

We owe a proper explanation of the use of the word ’split’. This is given in the simple
lemma below. We have postponed the proof until now in order for us to be able to give a
unified exposition of several related results.

Lemma 1.1.26. Let A,B be C∗-algebras and let ϕ : A→ Q(B) be a ∗-homomorphism. It
follows that ϕ is split/semi-split/asymptotically split if and only if the extension

0 → B → E
p
→ A→ 0

with Busby invariant ϕ splits in the homological algebra sense via a ∗-homomorphism/completely
positive contraction/asymptotic homomorphism s : A→ E.

Proof. One direction is clear in all instances. Suppose we have a lift Φ of ϕ which is a ∗-
homomorphism/completely positive contraction/asymptotic homomorphism. Let ξ : E →
M(B) be the canonical map extending the inclusion B ⊆ E. Let a ∈ A and e ∈ E be such
that p(e) = a. Then Φ(a)− ξ(e) ∈ B since

q(Φ(a)− ξ(e)) = ϕ(a)− ϕ(a) = 0.
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Put

s(a) = e+ (Φ(a)− ξ(e)).

This is a well-defined map from A to E. Indeed, if e′ ∈ E satisfies p(e′) = a, then

e− e′ − (ξ(e)− ξ(e′)) = e− e′ − ξ(e− e′) = 0,

as e− e′ ∈ B and ξ|B = idB. Note also that

p(s(a)) = a

for all a ∈ A.
We need only see that s is a map of the desired type. Clearly, if Φ is linear, so is s. It

is also easy to see that s respects the involution if Φ does.
Note that ξ(s(a)) = Φ(a) so that

s(ab) = s(a)s(b) + Φ(ab)− ξ(s(a)s(b)) = s(a)s(b) + Φ(ab)− Φ(a)Φ(b) (1.1.11)

for all a, b ∈ A.
This proves that s is multiplicative if Φ is. If Φ is an asymptotic homomorphism simply

put a t as a subscript on Φ and s in the definition of s. Then continuity, asymptotic
linearity and asymptotic respect of the involution is clear. The asymptotic multiplicativity
follows by (1.1.11).

If Φ is a completely positive contraction, it respects the involution and hence so does s.
To check complete positivity let M = (mij) ∈Mn(A). Then by (1.1.11)

sn(M
∗M) =

(

∑

k

s(mki)
∗s(mkj)

)

+

(

∑

k

Φ(m∗
kimkj)

)

−

(

∑

k

Φ(mki)
∗Φ(mkj)

)

= sn(M)∗sn(M) + (Φn(M
∗M)− Φn(M)∗Φn(M)).

Here the subscript n means that we take the induced map on the n × n-matrices. The
first summand is clearly positive and the last summand is positive by Kadison’s inequality
(Proposition II.6.9.14 of [B]) because Φn is a positive contraction.

It also follows that s satisfies Kadison’s inequality which forces it to be contractive
(II.6.9.15 of [B]).

1.2 Groups and C∗-algebras

In this section we review the basics of group C∗-algebras. We restrict attention to the case
of countable discrete groups since it suffices for our purposes. Everything is well-known,
but many proofs are included for completeness.
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Group C∗-algebras

Let G be a discrete group. There are (at least) two natural C∗-algebras associated to G,
one universal and one concrete. We first outline a construction of the universal algebra.
Let C[G] be the algebraic group algebra. This is a ∗-algebra via the involution defined by

(

∑

i

γigi

)∗

=
∑

i

γig
−1
i ,

∑

i

γigi ∈ C[G].
If π is a unitary representation of G on some Hilbert space, then π extends to an algebraic
∗-homomorphism on C[G]. We define a norm on C[G] by

∥

∥

∥

∥

∥

∑

i

γigi

∥

∥

∥

∥

∥

:= sup
π

∥

∥

∥

∥

∥

π

(

∑

i

γigi

)∥

∥

∥

∥

∥

, (1.2.1)

where the supremum is taken over the set of all cyclic unitary representations of G.

Definition 1.2.1. For a discrete groupG the full group C∗-algebra C∗(G) is the completion
of C[G] in the norm defined in (1.2.1).

Since every unitary representation is a direct sum of cyclic representations, C∗(G) en-
joys the universal property that every unitary representation of G extends to a unique
∗-homomorphism on C∗(G).

Recall that the left regular representation is the unitary representation λ of G on ℓ2(G)
given by

(λ(g)f)(h) = f(g−1h)

for g, h ∈ G and f ∈ ℓ2(G).

Definition 1.2.2. The reduced group C∗-algebra C∗
r (G) of a discrete group G is the

completion of C[G] in the norm induced by the left regular representation λ. I.e., C∗
r (G) =

C∗(λ(G)) ⊆ B(ℓ2(G)).

Observe that both C∗(G) and C∗
r (G) are unital C∗-algebras.

The following is fundamental.

Theorem 1.2.3. Let G be a countable discrete group and H ≤ G a subgroup. The following
holds:

1. The inclusion H ⊆ G extends to an inclusion C∗(H) ⊆ C∗(G) making C∗(H) a
unital subalgebra of C∗(G).

2. The inclusion H ⊆ G extends to an inclusion C∗
r (H) ⊆ C∗

r (G) making C∗
r (H) a

unital subalgebra of C∗
r (G).

3. The characteristic function 1H of H on G extends to a conditional expectation both
on the reduced and the full group C∗-algebra level.
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Proof. Obviously we have a unital homomorphism π : C∗(H) → C∗(G) extending the
inclusion H ⊆ G.

Since C∗(H) is separable, there is, by 3.7.2 in [Pe], a state ψ on C∗(H) which has
faithful GNS-representation πψ. By restriction to H ⊆ C∗(H), we may think of ψ as a
positive definite function on H (since states are completely positive). Extend this positive
definite function to G by setting it equal to 0 outside H . If g1, . . . , gn ∈ gH , then the matrix
(ψ(g−1

i gj)) ∈Mn(C) is positive since ψ is positive definite on H . If g1, . . . , gn ∈ G, we may
assume that they are ordered by left cosets and so (ψ(g−1

i gj)) ∈Mn(C) is a block diagonal
matrix with positive blocks, hence positive. This shows that ψ is positive definite on G. By
the group version of the GNS construction, ψ determines a cyclic unitary representation
ϕ of G. The representation ϕ|H is unitarily equivalent to the unitary representation of H
determined by πψ by uniqueness of the GNS representation. It follows that on the level of
C∗-algebras ϕ ◦ π is unitarily equivalent to πψ, and hence π is injective.

In the reduced case, note that

ℓ2(G) =
⊕

Hg

ℓ2(Hg),

and that this is a decomposition where the subspaces are invariant under the action of left
translation by elements from H . There is an obvious unitary intertwining the action ofC[H ] ⊆ C[G] ⊆ C∗

r (G) on ℓ
2(Hg) with the action of C[H ] ⊆ C∗

r (H) on ℓ2(H). It follows
that for x ∈ C[H ], x has the same norm in C∗

r (H) as in C∗
r (G).

For the statement on conditional expectations, let 1H denote the characteristic function
of H on G and define a map E : C[G] → C[H ] by extending the characteristic function 1H
by linearity. Theorem 2.5.11 of [BO] tells us that E extends to unital completely positive
maps on C∗(G) and C∗

r (G) respectively if and only if 1H is a positive definite function on
G. The constant function taking the value 1 on H is positive definite on H and so, by the
argument above, 1H is positive definite on G.

It is sometimes useful to picture the conditional expectation in the reduced case to be
the map taking an (infinite) G × G-matrix to the canonical H × H submatrix. A more
precise description is perhaps to consider the projection P onto the subspace ℓ2(H) in ℓ2(G)
and let a ∈ C∗

r (G) act on ℓ
2(H) via Pa|ℓ2(H). The validity of this picture is easily checked

on C[G].
Another well-known fact is the following.

Lemma 1.2.4. Let G be a discrete group. There is a faithful tracial state τ on C∗
r (G)

given by

τ(T ) = 〈T1{1}, 1{1}〉.

Proof. One minute of hard thinking establishes the trace property on C[G] and hence on
C∗
r (G). Assume that T ∈ C∗

r (G) with τ(T
∗T ) = 0. Let (Tn) ⊆ C[G] be a sequence such

that Tn → T in norm. Now for each n ∈ N, Tn =
∑

i γingin for suitable scalars γin and
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elements of G, gin and

τ(T ∗
nTn) =

∥

∥

∥

∥

∥

∑

i

γin1{gin}

∥

∥

∥

∥

∥

2

=
∑

i

|γin|
2 → τ(T ∗T ) = 0.

So since
‖Tn1{g}‖

2 =
∑

i

|γin|
2

for any g ∈ G, we see that (Tn) converges strongly to 0 and so T = 0. Indeed, let ε > 0
and x ∈ ℓ2(G). Then

x =
∑

g∈G

γg1{g}.

Pick a finite set F ⊆ G such that xF =
∑

g∈F γg1{g} satisfies

‖x− xF‖ <
ε

supn ‖Tn‖
.

By the above we may choose N ∈ N so that n ≥ N implies that ‖TnxF‖ < ε. It follows
that for n ≥ N , ‖Tnx‖ < 2ε.

We end this section by discussing a fundamental result of Rosenberg which is used in
almost every argument for the existence of non-invertible extensions by K.

Proposition 1.2.5. Let G be a countable discrete group. If C∗
r (G) is quasidiagonal then

G is amenable.

Proof. By Voiculescu’s characterization of quasidiagonality we have unital completely pos-
itive maps ϕn : C∗

r (G) → Mkn(C) which are asymptotically multiplicative and asymptoti-
cally norm-preserving. These can be extended to all of B(ℓ2(G)) by the Arveson Extension
Theorem, Theorem 1.6.1. of [BO]. These extensions induce a unital completely positive

map ϕ : B(ℓ2(G)) →
∏

n∈NMkn(C)/∑n∈NMkn(C) with C∗
r (G) in the multiplicative do-

main (see Proposition 1.5.7. of [BO]). Let ω ∈ βN\N be a character on ℓ∞(N) which is
not evaluation at any n ∈ N. Then

τ((an)) := ω((trkn(an))

defines a trace on
∏

n∈NMkn(C)/∑n∈NMkn(C). To see that τ is well-defined, we need

to show that ker(ω) contains any sequence that is eventually 0 and so by continuity all
sequences converging to 0.

If x ∈ ℓ∞(N) is a sequence of 0’s and 1’s, ω(x) = ω(x)2, so ω(x) is either 1 or 0. In
particular if x = 1{n} and ω(x) = 1 then by Urysohn’s Lemma there is an 1 ≥ f ≥ 0 in
ℓ∞(N) with f(n) = 0 and ω(f) > 0 since ω is not evaluation at n. Then

‖f + 1{n}‖ ≥ ω(f + 1{n}) > 1
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but the norm equals 1. It follows that ω(1{n}) = 0 for all n ∈ N.
Now, m = τ ◦ϕ is a state which, when restricted to ℓ∞(G), is in fact an invariant mean

on this algebra. To see this let ψ ∈ ℓ∞(G) and g ∈ G. Note that if gψ is the translation
of ψ by g then gψ = λ(g)ψλ(g)∗ as operators on ℓ2(G), so since C∗

r (G) is contained in the
multiplicative domain of ϕ and τ is a trace

m(gψ) = τ(ϕ(λ(g)ψλ(g)∗)) = τ(ϕ(λ(g))ϕ(ψ)ϕ(λ(g)∗))

= τ(ϕ(λ(g)∗)ϕ(λ(g))ϕ(ψ)) = τ ◦ ϕ(ψ) = m(ψ)

which was the desired conclusion.

Weak containment

In this section we discuss the notion of weak containment for groups as well as for C∗-
algebras and relate the notions. The material is mostly from [BHV] and [Di].

Definition 1.2.6. Let σ be a unitary representation of G on Hσ. A function ϕ : G → C
is called a positive definite function associated to σ if there is a ξ ∈ Hσ such that

ϕ(g) = 〈σ(g)ξ, ξ〉

for all g ∈ G.

Definition 1.2.7. Let σ, π be unitary representations of G. We say that σ is weakly
contained in π and write σ ≺ π if every positive definite function associated to σ can be
approximated uniformly on finite sets by sums of positive definite functions associated to
π. I.e., for x ∈ Hσ, ε > 0 and every finite F ⊆ G there are y1, . . . , yn ∈ Hπ such that

∣

∣

∣

∣

∣

〈σ(g)x, x〉 −

n
∑

i=1

〈π(g)yi, yi〉

∣

∣

∣

∣

∣

< ε,

for every g ∈ F .

Since we only work with countable discrete groups, the above approximation property
is equivalent to the existence of a sequence of sums of positive definite functions converging
pointwise.

We need the following technicality.

Lemma 1.2.8. Let σ, π be unitary representations of G. Assume that T ∈ B(Hσ,Hπ)
satisfies Tσ(g) = π(g)T for all g ∈ G.

It follows that (Ker T )⊥ and RanT are closed, invariant subspaces for σ and π respec-
tively and that the subrepresentation of σ defined by (KerT )⊥ is unitarily equivalent to the
subrepresentation of π corresponding to RanT .
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Proof. The invariance properties are clear.
First note that T ∗π(g) = σ(g)T ∗ for all g ∈ G, so that

T ∗Tσ(g) = T ∗π(g)T = σ(g)T ∗T

and hence, |T | commutes with σ(g) for all g ∈ G.
Let U be the partial isometry from the polar decomposition of T , i.e., T = U |T |. It is

a fact that U : (Ker T )⊥ → RanT is a unitary.
For g ∈ G and x ∈ Hσ we have

π(g)U |T |x = Tσ(g)x = Uσ(g)|T |x,

which proves the claim since (Ker T )⊥ = (Ker |T |)⊥ = Ran |T |.

The next lemma is crucial. It looks like a standard reduction, but the proof is relatively
involved.

Lemma 1.2.9. Let σ, π be unitary representations of G. Assume V ⊆ Hσ satisfies that
{σ(g)x | g ∈ G, x ∈ V } is total in Hσ.

If each of the positive definite functions g 7→ 〈σ(g)x, x〉, x ∈ V , can be approximated
uniformly on finite sets by sums of positive definite functions associated to π then σ ≺ π.

Proof. Let X ⊆ Hσ be the set of vectors, x ∈ Hσ, such that g 7→ 〈σ(g)x, x〉 can be approx-
imated uniformly on finite subsets of G by sums of positive definite functions associated
to π. We prove the lemma by showing that X is a closed subspace of Hσ.

Note that X is invariant under the action of G and that it is stable under scalar
multiplication.

If x ∈ X and g1, g2 ∈ G it follows that y = σ(g1)x + σ(g2)x ∈ X . Indeed, the positive
definite function, ψ, corresponding to y satisfies

ψ(g) =

2
∑

k,m=1

〈σ(g−1
k ggm)x, x〉, g ∈ G.

Given ε > 0 and a finite set C ⊆ G the set g−1
k Cgm is finite for k,m = 1, 2. Since x ∈ X

we get x1, . . . , xn ∈ Hπ such that

∣

∣

∣

∣

∣

〈σ(g)x, x〉 −

n
∑

i=1

〈π(g)xi, xi〉

∣

∣

∣

∣

∣

≤ ε

for all g ∈
⋃2
k,m g

−1
k Cgm.

Put

ζ(g) =
n
∑

i=1

〈π(g)(π(g1)xi + π(g2)xi), π(g1)xi + π(g2)xi〉.
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Then

|ψ(g)− ζ(g)| =

∣

∣

∣

∣

∣

2
∑

k,m=1

(

〈σ(g−1
k ggm)x, x〉 −

n
∑

i=1

〈π(g−1
k ggm)xi, xi〉

)∣

∣

∣

∣

∣

≤ 4ε

for all g ∈ C.
It is straight-forward that X is a closed subset of Hσ. Indeed, let x ∈ X, since X is

closed under scalar multiplication we may assume that ‖x‖ = 1. Let C ⊆ G be finite, ε > 0
and let y ∈ X be such that ‖x− y‖ < ε. Then for g ∈ G

|〈σ(g)x, x〉 − 〈σ(g)y, y〉| ≤ |〈σ(g)x, x− y〉|+ |〈σ(g)(y − x), y〉| < ε+ ε(1 + ε). (1.2.2)

Let x1, . . . xn ∈ Hπ be such that

|〈σ(g)y, y〉 −

n
∑

i=1

〈π(g)xi, xi〉| < ε (1.2.3)

when g ∈ C.
The conclusion now follows from (1.2.2) and (1.2.3).
The hard part of the proof is to show that X is closed under addition. To see this let

x1, x2 ∈ X and put
Hi := span{σ(g)xi | g ∈ G}, i = 1, 2.

By the above Hi ⊆ X , i = 1, 2.
Let L = H1 +H2 and note that this is an invariant subspace of Hσ. Let P : L→ H⊥

1 be
the orthogonal projection in L and observe that P (H2) is dense in H⊥

1 in L. The subspace
H⊥

1 is invariant because H1 is, so for y = z + z′ ∈ L with z ∈ H1, z
′ ∈ H⊥

1

Pσ(g)y = σ(g)z′ = σ(g)Py

for g ∈ G.
Restricting P to H2 we see from Lemma 1.2.8 that the subrepresentation of σ defined

by H⊥
1 is equivalent to the subrepresentation corresponding to the orthogonal complement

of KerP in H2. From this we see that H⊥
1 ⊆ X since H2 ⊆ X . Put

y = P (x1 + x2) ∈ H⊥
1 and z = (I − P )(x1 + x2) ∈ H1.

Then y, z ∈ X and for g ∈ G

〈σ(g)(x1 + x2), x1 + x2〉 = 〈σ(g)(y + z), y + z〉 = 〈σ(g)y, y〉+ 〈σ(g)z, z〉,

so that x1 + x2 ∈ X .
This finishes the proof since V ⊆ X implies X = Hσ.

Having established Lemma 1.2.9 we get a few easy corollaries.
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Corollary 1.2.10. Let σ1, σ2, π1, π2 be unitary representations of G. Assume that σi ≺ πi,
i = 1, 2. Then σ1 ⊗ σ2 ≺ π1 ⊗ π2.

Proof. For each x1 ∈ Hσ1 , x2 ∈ Hσ2 and g ∈ G, we have

〈(σ1 ⊗ σ2)(g)(x1 ⊗ x2), x1 ⊗ x2〉 = 〈σ1(g)x1, x1)〉〈σ2(g)x2, x2〉.

The function defined by the righthand side can clearly be approximated uniformly on finite
sets by sums of positive definite functions associated to π1 ⊗ π2, so since the set of simple
tensors is total in Hσ1 ⊗Hσ2 we are done by Lemma 1.2.9.

Corollary 1.2.11. Let λ denote the left regular representation of G. If σ is a unitary
representation such that σ ≺ λ, then σ ⊗ π ≺ λ for any unitary representation π of G.

Proof. By Fell’s absorption principle, see, e.g., Theorem 2.5.5 [BO], and Corollary 1.2.10

σ ⊗ π ≺ λ⊗ π ∼ λ(dim π) ≺ λ.

The equivalence, ∼, being unitary equivalence.

We will now discuss weak containment from the C∗-algebraic viewpoint.
For a representation σ : G→ U(Hσ) we let hσ denote the corresponding ∗-homomorphism

from the full group C∗-algebra C∗(G) into B(Hσ).
Our goal will be to establish the following theorem.

Theorem 1.2.12. Let σ, π be unitary representations of the discrete group G. Then σ ≺ π
if and only if ker(hπ) ⊆ ker(hσ).

We will more or less proceed as in [Di].

Lemma 1.2.13. Every positive definite function is bounded. The action of such a function
on ℓ1(G) is a positive functional.

Proof. Let ϕ be a positive definite function. Then
(

ϕ(1) ϕ(h)
ϕ(h−1) ϕ(1)

)

is positive, so that ϕ(h−1) = ϕ(h). By taking the determinant it follows that

|ϕ(h)| ≤ ϕ(1), ∀h ∈ G.

That ϕ(f ∗ ∗ f) ≥ 0 for f ∈ ℓ1(G), is an immediate consequence of the fact that

n
∑

i,j

αiαjϕ(g
−1
j gi) ≥ 0

for any choice of n ∈ N, αi ∈ C and gi ∈ G, i = 1, . . . , n.
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The first ingredient in the proof of Theorem 1.2.12 is the following theorem. In our
discrete setup it is a mere observation, but the corresponding statement for locally compact
groups is relatively deep.

Let P1 denote the positive definite functions ϕ on G such that ϕ(1) = 1.

Theorem 1.2.14. Let (ϕi)i∈I be a net in P1 and ϕ ∈ P1. Then (ϕi) converges pointwise
to ϕ if and only if (ϕi) converges to ϕ in the weak* topology on ℓ∞(G) = ℓ1(G)∗.

We will now proceed to discuss the relationship between positive definite functions
associated to a representation of a group and the positive forms associated with the corre-
sponding ∗-representation.

Recall that ℓ1(G) ⊆ C∗(G).
The following lemma is of a completely general nature. It concerns the relationship

between a Banach ∗-algebra and its enveloping C∗-algebra, but we only treat it in our
setting.

Lemma 1.2.15. Let i : ℓ1(G) → C∗(G) be the inclusion. If ϕ is a positive functional on
ℓ1(G), there is a positive functional τ on C∗(G) such that ϕ = τ ◦ i. The map ϕ 7→ τ is a
norm-preserving bijection from the set of positive functionals on ℓ1(G) to the set of positive
functionals on C∗(G).

If M is a bounded set of positive functionals on ℓ1(G) the restriction of the above map
to M is a weak* homeomorphism onto its image.

Proof. Let ϕ be a positive functional on ℓ1(G) and let f ∈ C[G] ⊆ ℓ1(G). Then by the
CBS inequality

|ϕ(f)|2 ≤ ϕ(1)ϕ(f ∗ ∗ f) ≤ ‖ϕ‖2‖i(f)‖2,

since ‖i(f)‖ = supψ(f ∗∗f)1/2, where the sup is taken over positive functionals of norm less
than 1 by the GNS construction and definition of the norm on C∗(G). The inequality above
implies that there is a functional τ on C∗(G) such that ϕ = τ ◦ i and ‖τ‖ ≤ ‖ϕ‖. That τ
is positive follows by approximation since for a ∈ C∗(G) we have a sequence (fn) ⊆ ℓ1(G)
such that i(fn) → a so that

τ(a∗a) = lim
n
τ(i(fn)

∗i(fn)) = lim
n
ϕ(f ∗

n ∗ fn) ≥ 0.

That τ is unique is clear by density of i(ℓ1(G)) in C∗(G) and by restriction of positive
functionals on C∗(G) to ℓ1(G) we see that the map above, ϕ 7→ τ , is indeed a bijection. To
see that the map is norm-preserving consider f ∈ ℓ1(G)

|ϕ(f)| = |τ(i(f))| ≤ ‖τ‖‖f‖,

since i is a ∗-homomorphism. The other inequality was established earlier.
Let M ⊆ ℓ1(G)∗ be norm-bounded by K ∈ N. Consider a net (ϕj) in M converging

weak* to ϕ ∈ M . Fix a ∈ C∗(G) and ε > 0 and choose f ∈ ℓ1(G) such that ‖i(f)− a‖ <
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ε/K along with a j0 such that ‖ϕ(f)−ϕj(f)‖ < ε whenever j ≥ j0. Then if τj is the image
of ϕj and τ of ϕ respectively

‖τj(a)− τ(a)‖ ≤ ‖τj(i(f))− τj(a)‖+ ‖τj(i(f))− τ(i(f))‖+ ‖τ(a)− τ(i(f))‖ < 3ε

when j ≥ j0.
Clearly (ϕj) will converge weak* to ϕ if τj converge weak* to τ .

The next major step towards Theorem 1.2.12 is the following.

Theorem 1.2.16. Let A be a unital C∗-algebra and σ, π be ∗-representations of A. The
following are equivalent

1. ker(σ) ⊆ ker(π).

2. Every positive form of A associated to π, i.e., functions of the type x 7→ 〈π(x)ξ, ξ〉 is
a weak* limit of linear combinations of positive forms associated to σ.

3. Every state of A associated to π, i.e., functions as in 2. which are states, is a weak*
limit of states which are finite sums of positive forms associated with σ.

Proof. That 3. implies 2. is clear.
If 2. is true and a ∈ ker(σ) then every positive form associated with σ vanishes on a∗a.

It follows that
〈π(a∗a)ξ, ξ〉 = 0

for all ξ ∈ Hπ so that π(a) = 0 and hence 1. holds.
The last implication is somewhat harder. Assume that 1. holds. We will establish 3.
Note that each state of A associated with π vanishes on ker(σ). By restricting to a

subspace (the essential subspace) of Hσ we may assume that σ is non-degenerate, i.e., if
ξ ∈ Hσ\{0}, then there is an a ∈ A such that σ(a)ξ 6= 0.

Furthermore, by going to the quotient with ker(σ), we may assume that σ is injective
and we may thus identify A with a sub-C∗-algebra of B(Hσ) acting non-degenerately on
Hσ. Then if x ∈ A is self-adjoint and ϕ(x) ≥ 0 for every state ϕ associated with σ, then
σ(x) ≥ 0 and this implies that x is positive since σ is injective.

We complete the proof by showing that the weak* closed convex hull, C, of the set of
states associated with σ, is the set of all states on A. Assume to the contrary that this is
not the case. Then there is a state τ on A not in C and by the Hahn-Banach Theorem
there is a weak* continuous functional ω : A∗ → C and a γ ∈ R such that

Re(ω(τ)) > γ > Re(ω(ρ)) (1.2.4)

for all ρ ∈ C.
It is a well-known fact that there is an a ∈ A such that ω(η) = η(a) for all η ∈ A∗. Let

b = Re(a) then by positivity and (1.2.4) we have ρ(γ · 1 − b) ≥ 0 for all ρ ∈ C. By the
above this implies that γ · 1− b ≥ 0 so that

τ(γ · 1− b) = γ − Re(ω(τ)) ≥ 0
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contradicting (1.2.4).

Remark 1.2.17. The conclusion in the above theorem also holds if A is non-unital but we
have no need of this.

We are now ready to prove Theorem 1.2.12.

Proof of Theorem 1.2.12. The proof is basically a question of using the above results in
the right order.

That ker(hπ) ⊆ ker(hσ) is by Theorem 1.2.16 equivalent to the fact that every state
on C∗(G) associated to hσ is a weak* limit of states which are sums of positive forms
associated with hπ. This, in turn, is by Lemma 1.2.15 equivalent to the condition that
every state associated with hσ restricted to ℓ1(G) is the weak* limit of the restriction to
ℓ1(G) of states which are sums of positive forms associated to hπ.

Note that for f ∈ ℓ1(G) and ξ ∈ Hσ we have

〈hσ(f)ξ, ξ〉 =
∑

g∈G

f(g)〈σ(g)ξ, ξ〉,

so that the function in ℓ∞(G) = ℓ1(G)∗, corresponding to the functional on ℓ1(G) arising
from a positive form associated with hσ by restriction, is actually nothing but the positive
definite function associated with σ determined by ξ. The same is of course true if we
replace σ by π.

In other words the above requirement is by Theorem 1.2.14 met if and only if the
positive definite functions associated with σ taking the value 1 at 1 can be approximated
uniformly on finite sets by positive definite functions taking the value 1 at 1 which are
sums of positive definite functions associated with π.

This last requirement is equivalent to the definition of weak containment given in Defi-
nition 1.2.7 by Lemma 1.2.18 below.

We used the following elementary lemma above. The uninteresting proof is included
for completeness.

Lemma 1.2.18. Let σ, π be unitary representations of G. Then σ ≺ π if and only if every
positive definite function associated to σ defined by a unit vector can be approximated
uniformly on finite sets by functions, taking the value 1 at 1, which are sums of positive
definite functions associated to π.

Proof. Clearly, the condition in the lemma implies that σ ≺ π.
For the converse assume that σ ≺ π. Let ϕ be a positive definite function associated

with σ defined by a unit vector, C ⊆ G be finite and 1/2 > ε > 0. Choose K ≥ 1 such
that ϕ(C) is contained in the ball of radius K centered at 0. By assumption we may find
positive definite functions ψ1, . . . , ψn associated with π such that

∣

∣

∣

∣

∣

ϕ(g)−
n
∑

i=1

ψi(g)

∣

∣

∣

∣

∣

≤
ε

K + ε
,
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when g ∈ C ∪ {1}.
Put

ψ̃i(g) =
ψi(g)

∑n
i=1 ψi(1)

g ∈ G.

Then ψ̃i is a positive definite function associated with π for each i = 1, . . . , n and for g ∈ C

∣

∣

∣

∣

∣

ϕ(g)−
n
∑

i=1

ψ̃i(g)

∣

∣

∣

∣

∣

≤ ε+

∣

∣

∣

∣

∣

n
∑

i=1

ψi(g)−
n
∑

i=1

ψ̃i(g)

∣

∣

∣

∣

∣

= ε+

∣

∣

∣

∣

∣

1−
n
∑

i=1

ψi(1)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

n
∑

i=1

ψi(1)

∣

∣

∣

∣

∣

−1

·

∣

∣

∣

∣

∣

n
∑

i=1

ψi(g)

∣

∣

∣

∣

∣

≤ ε+
ε

K + ε
· 2 · (K + ε).

Clearly the sum of the ψ̃i take 1 to 1.

Lastly we draw a line to amenability for discrete groups. Recall that a group is amenable
if the canonical map C∗(G) → C∗

r (G) is an isomorphism. By Theorem 1.2.12 this is
equivalent to saying that the left regular representation of G weakly contains any other
representation. Corollary 1.2.11 says that this happens if and only if the left regular
representation weakly contains the trivial one-dimensional representation.

1.3 Special preliminaries

In this section we collect a few results of a more specialized nature not fitting into the first
couple of sections of this chapter but needed in Chapter 3. The first result is well-known
and easily established.

Lemma 1.3.1. Let A be a unital AF-algebra. The unitary group of A is path-connected
in the norm topology.

Proof. If A has finite dimension the lemma is Corollary 2.1.4 of [RLL] since A is isomorphic
to a direct sum of full matrix algebras. Assume that A is infinite-dimensional and let u ∈ A
be a unitary. Since A is the inductive limit of finite-dimensional algebras we may choose
f in a finite-dimensional subalgebra A′ containing the unit of A such that ‖f − u‖ < 1.
It follows from Proposition 2.1.11 of [RLL] that f is invertible and homotopic to u in the
group of invertible elements of A.

In A′ the element f must also be invertible and hence it is in the path-component of 1
by Proposition 2.1.8 in [RLL]. It follows that u is homotopic to 1 in the invertible elements
of A and so also in the unitaries by Proposition 2.1.8 of [RLL].

The following very plausible corollary can sometimes be useful.
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Corollary 1.3.2. If k is a compact operator on a separable Hilbert space H such that 1+k
is unitary, then 1 + k can be connected to 1 by a norm-continuous path of unitaries in
1 +K.

Proof. The statement is trivial in the finite-dimensional case, so assume H to be infinite-
dimensional.

Choose a unitary path st+ kt, t ∈ [0, 1] in U(C1+K) connecting 1+ k to 1. Note that

(1− |st|
2)1 = stkt + stk

∗
t + k∗t kt

for each t ∈ [0, 1]. This entails that |st| = 1 for every t ∈ [0, 1]. In particular, 1 + stkt is a
unitary for each t and this is the desired path if we can show that t 7→ st is continuous.

Assume that t 7→ st is not continuous at t0. For some ε > 0 there is a sequence
(tn) ⊆ [0, 1] converging to t0 such that |stn − st0 | ≥ ε for all n. Since (stn) is a sequence
in the compact set S1 we may assume that it is actually convergent to ζ ∈ S1 satisfying
|ζ − st0 | ≥ ε. Now

ktn = (ktn + stn1)− stn1 → kt0 + st01− ζ1

in norm, but the right-hand side is not compact.

We move on to show a rather technical result from [MT2] which is the very foundation
of Chapter 3. We give a self-contained and fairly detailed proof.

The following is a basic lemma, showing that in working with equi-continuous maps,
homotopies can be chosen equi-continuous as well. We let IB := C[0, 1] ⊗ B and evt :
IB → B be the ∗-homomorphism that evaluates at t ∈ [0, 1].

Lemma 1.3.3. Let A,B be C∗-algebras and π, ψ : A → B equi-continuous asymptotic
homomorphisms connected by a homotopy Φ : A → IB, i.e., Φ is an asymptotic homo-
morphism with ev0 ◦Φ = π and ev1 ◦Φ = ψ. There is then an equi-continuous asymptotic
homomorphism Φ′ : A→ IB with ev0 ◦Φ

′ = π and ev1 ◦Φ
′ = ψ.

Proof. By Lemma 1.1.22 we have an equi-continuous asymptotic homomorphism Φ̃ : A→
IB such that

lim
t
‖Φt(a)− Φ̃t(a)‖ = 0

for all a ∈ A.
Put

Φ′
t(a)(s) =











(1− 3s)πt(a) + 3sΦ̃t(a)(0) for s ∈ [0, 1
3
]

Φ̃t(a)(3s− 1) for s ∈ [1
3
, 2
3
]

(3− 3s)Φ̃t(a)(1) + (3s− 2)ψt(a) for s ∈ [2
3
, 1]

for t ∈ [1,∞) and a ∈ A.
This map is readily seen to be the desired homotopy.

We are finally ready to prove what we set out to do. The theorem is stated in greater
generality than we will need, but it makes no difference for the proof.
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Theorem 1.3.4. Let A,B be C∗-algebras, A separable and B σ-unital. Let λ : A→ Q(B)
be an equi-continuous asymptotic homomorphism such that there is a homotopy Φ′ : A →
IQ(B) with ev0 ◦Φ

′ = λ and ev1 ◦Φ
′ an asymptotically split asymptotic homomorphism.

There is then an equi-continuous asymptotic homomorphism δ : A → M(B) such that
λt = qB ◦ δt for all t, i.e., λ is asymptotically split.

Proof. The proof consists of a number of constructions needed to define the asymptotic
homomorphism we are after.

Let ψ′ : A → M(B) be the asymptotic homomorphism satisfying ev1 ◦Φ
′ = qB ◦ ψ′.

By Lemma 1.1.22 we have an equi-continuous asymptotic homomorphism ψ : A→ M(B),
such that limt→∞ ψt(a) − ψ′

t(a) = 0 in norm for each a ∈ A. It is not hard to see that
ψ and ψ′ are homotopic and hence we get an equi-continuous asymptotic homomorphism
Φ : A→ IQ(B) which is a homotopy from λ to qB ◦ ψ.2

Define a continuous (by equi-continuity of Φ) map Λ : A → Cb([1,∞), IQ(B)) by
Λ(a)(t) = Φt(a) and let Q : Cb([1,∞), IM(B)) → Cb([1,∞), IQ(B)) be the surjective
∗-homomorphism given by Q(f)(t) = idC[0,1]⊗qB(f(t)), t ∈ [1,∞). The Bartle-Graves
selection theorem provides a continuous section S for Q. Put

µst(a) = evs(S ◦ Λ(a)(t)) + s(ψt(a)− ev1(S ◦ Λ(a)(t)))

for all a ∈ A, t ∈ [1,∞) and s ∈ [0, 1]. We note that the following holds for the maps µst ,
t ∈ [1,∞), s ∈ [0, 1]

(m0) µst , t ∈ [1,∞), s ∈ [0, 1] is an equi-continuous family of maps.

(m1) µ1
t , t ∈ [1,∞) is an asymptotic homomorphism.

(m2) qB ◦ µ0
t (a) = λt(a) for all t ∈ [1,∞) and a ∈ A.

(m3) qB ◦ µ−
t , t ∈ [1,∞) is an asymptotic homomorphism into IQ(B).

Indeed, (m0) is easily verified via the continuity of Λ and S. (m1) is satisfied by definition.
By definition of the various maps S,Q and Λ we have

qB(µ
0
t (a)) = ev0(Q ◦ S ◦ Λ(a)(t)) = ev0(Λ(a)(t)) = λt(a) (1.3.1)

for all a ∈ A and t ∈ [1,∞), which establishes (m2). To see that (m3) holds, note that for
t ∈ [1,∞) and a ∈ A

qB(ψt(a)− ev1(S ◦ Λ(a)(t))) = qB(ψt(a))− qB(ψt(a)) = 0,

so that qB ◦ µst(a) = Φt(a)(s) for all t ∈ [1,∞), s ∈ [0, 1] and a ∈ A.

There is a sequence of continuous functions fi : [1,∞) → [0, 1], i = 1, 2, . . . such that

2We are a little brief here; the homotopy between ψ and ψ′ is given by sψ + (1 − s)ψ′, s ∈ [0, 1] and
we implicitly use that homotopy is an equivalence relation. Both facts are standard to establish.
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(m6) f0 = 0,

(m7) fn ≤ fn+1 for all n,

(m8) for each n ∈ N there is an mn ∈ N such that fi(t) = 1 for all i ≥ mn and t ∈ [1, n+1],

(m9) for each a ∈ A, maxi ‖µ
fi(t)
t (a)− µ

fi+1(t)
t (a)‖ → 0 as t→ ∞.

We offer the following construction of the maps fi:
Let Fn, n ∈ N be an increasing family of finite subsets of A such that ∪nFn = A. Fix

n ∈ N. Since (s, t) 7→ µst(a) is continuous for each a ∈ A, there is a δn > 0 such that

‖µst(a)− µs
′

t (a)‖ ≤
1

n
,

when |s− s′| < δn for all a ∈ Fn and t ∈ [1, n+ 1].
ChooseNn ∈ N such that 1

Nn
< δn and consider theNn continuous functions fn1, . . . , fnNn

given by

fnk(t) =











1 for t ∈ [1, n+ k
Nn

]

−t+ 1 + n + k
Nn

for t ∈ [n+ k
Nn
, n+ 1 + k

Nn
]

0 for t ≥ n+ 1 + k
Nn

In the above construction we may of course assume that δn ≥ δn+1 for all n ∈ N.
The sequence we are after is 0, f11, f12, . . . , f1N1, f21, f22, . . . , f2N2 , f31, . . . . Clearly the

conditions (m6) - (m8) are satisfied.
To see that also (m9) holds let a′ ∈ A and ε > 0 be given. Choose a ∈ ∪nFn such that

‖µst(a) − µst (a
′)‖ ≤ ε for all (s, t) ∈ [0, 1] × [1,∞), then a ∈ Fk for some k ∈ N. Choose

K ∈ N such that 1
K

≤ ε. Now if t ≥ max{k,K} then t ∈ [N,N + 1] for some integer
N ≥ max{k,K} and hence maxi |fi(t)−fi+1(t)| < δN by construction of the fi’s. It follows
that

max
i

∥

∥

∥
µ
fi(t)
t (a′)− µ

fi+1(t)
t (a′)

∥

∥

∥
< 3ε.

Of course we can arrange that mn < mn+1 for all n ∈ N.

For each n ∈ N define compact sets Ln, Sn ⊆M(B) as follows

Ln = {µst (a) | s ∈ [0, 1], a ∈ Fn, t ∈ [1, n+ 1]}

and

Sn ={µst(a) + αµst(b)− µst (a+ αb) | s ∈ [0, 1], a, b ∈ Fn,

t ∈ [1, n+ 1], α ∈ C, |α| ≤ n}

∪{µst(ab)− µst (a)µ
s
t(b) | s ∈ [0, 1], a, b ∈ Fn, t ∈ [1, n+ 1]}

∪{µst(a
∗)− µst (a)

∗ | s ∈ [0, 1], a ∈ Fn, t ∈ [1, n+ 1]}.
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Here the sets Fn ⊆ A are chosen as above.
By Corollary II.4.2.5 and Proposition II.4.3.2 of [B] there is an increasing, almost idem-

potent (in the sense of [B]) quasi-central approximate unit for B. It follows that we may
find elements Xn

i ∈ B, i = 0, 1, . . . , n = 1, 2, . . . such that (Xn
i )i≥0 is a decreasing sequence

with Xn
i = 0 when i ≥ mn for each n, and 0 ≤ Xn

i ≤ 1 for all i, n and for each n

(i) Xn
i X

n
i+1 = Xn

i+1 for all i,

(ii) ‖Xn
i x− x‖ ≤ 1

n
+ ‖qB(x)‖ for i = 0, 1, . . . , mn − 1 and x ∈ Sn,

(iii) ‖Xn
i y − yXn

i ‖ ≤ 1
n
for all i and y ∈ Ln.

Furthermore, we may assume that Xn+1
i Xn

k = Xn
k for all k and all i < mn+1.

Indeed, for each n and each i < mn, X
i
n is an element of the aforementioned approximate

unit. Then (i) and the extra assumption Xn+1
i Xn

k = Xn
k for all k, i, can be fulfilled thanks

to the fact that our approximate unit is almost idempotent, (ii) can be satisfied by Lemma
1.5.4 in [Pe] whereas (iii) is just the quasi-centrality of the approximate unit.

For any n pick numbers t0, t1, . . . , tmn+1 ∈ [n, n + 1] such that n = t0 < t1 < t2 <
· · · < tmn+1 = n + 1 and define for each i = 0, 1, 2, . . . , mn a norm-continuous path
X(t, i), t ∈ [n, n + 1] by putting X(t, i) = Xn

i for t ≤ ti, letting X(t, i) run through a
parametrization of the straight line between Xn

i and Xn+1
i as t runs through [ti, ti+1] and

putting X(t, i) = Xn+1
i for t ≥ ti+1. For i > mn put X(t, i) = 0 for all t ∈ [n, n+ 1]. Then

(m10) X(t, i)X(t, i+ 1) = X(t, i+ 1) for all t ∈ [n, n+ 1] and all i = 0, 1, . . . ,

(m11) ‖X(t, i)x−x‖ ≤ 1
n
+ ‖qB(x)‖ for all t ∈ [n, n+1], x ∈ Sn and all i = 0, 1, . . . , mn−1,

(m12) ‖X(t, i)y − yX(t, i)‖ ≤ 1
n
for all y ∈ Ln, t ∈ [n, n+ 1] and y ∈ Ln.

For t ∈ [1,∞) set Λt0 =
√

1−X(t, 0) and Λtj =
√

X(t, j − 1)−X(t, j) for j ≥ 1. Note
that (m10) ensures that

|i− j| ≥ 2 ⇒ ΛtjΛ
t
i = 0 (1.3.2)

for all t ∈ [1,∞). Note also that for every t ∈ [1,∞)

∞
∑

j=0

(

Λtj
)2

= 1. (1.3.3)

We are finally ready to define a candidate for our asymptotic homomorphism δ. Indeed,
for t ∈ [1,∞) define δt : A→M(B) by

δt(a) =

∞
∑

j=0

Λtjµ
fj(t)
t (a)Λtj.

Observe that the sum is finite for any t as X(t, i) vanishes for i big. Note also that t 7→ δt(a)
is norm-continuous for any a ∈ A.
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Combining the facts Λtj ∈ B, j = 1, 2, . . . and qB(Λ
t
0) = 1 for all t ∈ [1,∞) with (m2)

and (m6) we see that
qB ◦ δt(a) = qB ◦ µ0

t (a) = λt(a)

for all a ∈ A and t ∈ [1,∞).
It remains to show that δ is actually an equi-continuous asymptotic homomorphism.

To do this we will need the following estimates
∥

∥

∥

∥

∥

∞
∑

j=0

Λtjgj(t)Λ
t
j+i

∥

∥

∥

∥

∥

≤ sup
j

‖gj(t)‖ (1.3.4)

valid for any t ∈ [1,∞), any sequence of functions gj : [1,∞) → M(B), j = 1, 2, . . . and
any i = 0, 1, 2, . . . . These estimates immediately establish equi-continuity of δ by (m0).

To prove (1.3.4) let i and such a sequence of functions be given and fix t ∈ [1,∞). Then
by the CBS inequality ([B], Proposition II.7.1.4)

∥

∥

∥

∥

∥

∞
∑

j=0

Λtjgj(t)Λ
t
j+i

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

N
∑

j=0

Λtjgj(t)Λ
t
j+i

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

N
∑

j=0

Λtjgj(t)gj(t)
∗Λtj

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

N
∑

j=0

(

Λtj+i
)2

∥

∥

∥

∥

∥

≤ sup
j

‖gj(t)‖
2.

We only prove that δ is asymptotically multiplicative since linearity and self-adjointness
follows similarly.

To finish the proof it suffices by equi-continuity of δ to consider a, b ∈ Fn and show that
δt(a)δt(b)− δt(ab) → 0 in norm as t→ ∞.

By (1.3.2) we have

δt(a)δt(b) =
∞
∑

j=0

Λtjµ
fj(t)
t (a)

(

Λtj
)2
µ
fj(t)
t (b)Λtj

+

∞
∑

j=0

Λtjµ
fj(t)
t (a)ΛtjΛ

t
j+1µ

fj+1(t)
t (b)Λtj+1

+
∞
∑

j=0

Λtj+1µ
fj+1(t)
t (a)Λtj+1Λ

t
jµ

fj(t)
t (b)Λtj

for any t.
By approximating the squareroot function on [0, 1] with polynomials and invoking (m12)

we see that limt supj ‖Λ
t
j+iµ

fj(t)
t (b)−µ

fj(t)
t (b)Λtj+i‖ = 0 for i = −1, 0, 1. Using this, the fact

that sups,t ‖µ
s
t (a)‖ < ∞ and (1.3.4), we see that the above expression is asymptotically

equivalent to
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∞
∑

j=0

Λtjµ
fj(t)
t (a)µ

fj(t)
t (b)

(

Λtj
)2

Λtj +

∞
∑

j=0

Λtjµ
fj(t)
t (a)µ

fj+1(t)
t (b)ΛtjΛ

t
j+1Λ

t
j+1

+
∞
∑

j=1

Λtjµ
fj(t)
t (a)µ

fj−1(t)
t (b)Λtj

(

Λtj−1

)2
.

Invoking (m9) and (1.3.4) again, we see that this expression is again asymptotically
equivalent to

∞
∑

j=0

Λtjµ
fj(t)
t (a)µ

fj(t)
t (b)

(

Λtj
)2

Λtj +
∞
∑

j=0

Λtjµ
fj(t)
t (a)µ

fj(t)
t (b)Λtj

(

Λtj+1

)2

+

∞
∑

j=1

Λtjµ
fj(t)
t (a)µ

fj(t)
t (b)Λtj

(

Λtj−1

)2
,

which in turn, via (m11), (m3), (m8), (m1) and (1.3.4), is equivalent to

∞
∑

j=0

Λtjµ
fj(t)
t (ab)

(

Λtj
)2

Λtj +
∞
∑

j=0

Λtjµ
fj(t)
t (ab)Λtj

(

Λtj+1

)2

+

∞
∑

j=1

Λtjµ
fj(t)
t (ab)Λtj

(

Λtj−1

)2
.

Indeed, for ε > 0, ‖µ1
t (a)µ

1
t (b)− µ1

t (ab)‖ ≤ ε for t big by (m1). By (m3)

sup
j

‖qB(µ
fj(t)
t (a)µ

fj(t)
t (b)− µ

fj(t)
t (ab))‖ ≤ ε

for t big. It follows from (m11) that

‖(X(t, j − 1)−X(t, j))(µ
fj(t)
t (a)µ

fj(t)
t (b)− µ

fj(t)
t (ab))‖ ≤ ε (1.3.5)

for n big, t ∈ [n, n + 1], and j < mn. And so by use of the C∗-identity, we may replace
X(t, j − 1) − X(t, j) by Λtj in (1.3.5). Putting all of this together remembering (m8) we
have the desired equivalence. We leave the remaining details.

By (1.3.2) and (1.3.3)

Λt0 = Λt0

(

(

Λt0
)2

+
(

Λt1
)2
)

and Λtj = Λtj

(

(

Λtj−1

)2
+
(

Λtj
)2

+
(

Λtj+1

)2
)

for j ≥ 1, which by the above shows that δt(a)δ(b) is asymptotically equivalent to

∞
∑

j=0

Λtjµ
fj(t)
t (ab)Λtj = δt(ab),

as we wanted to prove.





Chapter 2

On reduced amalgamated free

products of C∗-algebras and the

MF-property

This chapter consists of [Se].

2.1 Introduction

Since Anderson [An] found the first example of a C∗-algebra with non-invertible extensions
by the compact operators K on a separable Hilbert space, several new examples of C∗-
algebras with this property have been discovered. Here invertibility is in the sense of
Brown, Douglas and Fillmore, see, e.g., [Ar]. Most notably Haagerup and Thorbjørnsen
[HT] showed that there is a non-invertible extension of C∗

r (Fn) by K where C∗
r (Fn) is the

reduced group C∗-algebra of the free group Fn on n ∈ {2, 3, · · · } ∪ {∞} generators, thus
providing the first ’non-artificial’ example of such an algebra.

This paper grew out of an investigation of the extensions of the reduced group C∗-
algebras of the so-called torus knot groups which are the one-relator groups with presen-
tations 〈a1, a2 | ak1a

−m
2 〉, k,m ∈ N. Somehow these groups seemed to be the natural next

step upwards from the free group case as they only have one relation and can be realized
as an amalgamated free product of copies of Z.

The main result of the paper is an inclusion of the group C∗-algebra of an amalgamated
free product of Abelian groups into an algebra which is MF in the sense of Blackadar and
Kirchberg, [BK]. Since the MF property passes to C∗-subalgebras this result gives the first
examples of reduced amalgamated free products of C∗-algebras with amalgamation over
an infinite-dimensional C∗-subalgebra which are MF, c.f., the recent work of Li and Shen
[LS]. See [V] for more on reduced amalgamated free products and their relation to free
probability.

Since almost none of the treated groups are amenable, we get the existence of non-
invertible extensions of the corresponding reduced group C∗-algebras by K as easy corol-

37



38
CHAPTER 2. ON REDUCED AMALGAMATED FREE PRODUCTS OF

C∗-ALGEBRAS AND THE MF-PROPERTY

laries.

Acknowledgements

It is a pleasure to thank my advisors Steen Thorbjørnsen and Klaus Thomsen for many
helpful discussions and suggestions during the preparation of this manuscript. A special
thanks goes to Uffe Haagerup for various indispensable inputs. Part of this manuscript
was written while visiting Nate Brown at the Pennsylvania State University and I wish to
express my gratitude for the hospitality shown to me there.

2.2 Preliminaries

Most of the paper is concerned with the reduced group C∗-algebras of discrete groups and
we recall some standard facts.

If G is a discrete group we let C∗
r (G) denote the reduced group C∗-algebra associated to

G, i.e., the unital C∗-subalgebra of B(ℓ2(G)) generated by the left-regular representation.
We let L(G) := C∗

r (G)
′′ be the group von Neumann algebra. The algebra L(G), and hence

also C∗
r (G), is endowed with a faithful tracial state which can be realized as the vector

state corresponding to any 1{g} ∈ ℓ2(G), g ∈ G, where 1{g} is the characteristic function
corresponding to the singleton {g}.

If H is a subgroup of G, then C∗
r (H) is a unital subalgebra of C∗

r (G). If we have a
family of discrete groups Gi, i ∈ I with a common subgroup H we denote by ⋆HGi their
amalgamated free product. If there is no amalgamation (i.e., if H = {1}), we simply write
⋆Gi for the free product.

We will need the following elementary observation on reduced group C∗-algebras.

Lemma 2.2.1. Let Gi, i ∈ N be discrete groups such that Gi ⊆ Gi+1 for all i and let G
be the (direct) union of the Gi. Then we have an isomorphism of C∗-algebras

lim
k
C∗
r (∪

k
i=1Gi) ≃ C∗

r (G),

where the inductive limit is taking with respect to the natural inclusions C∗
r (∪

k
i=1Gi) →

C∗
r (∪

k+1
i=1Gi).

Proof. We have the standard inclusions of C∗-algebras corresponding to the inclusion of
subgroups which for each k make the following diagram commute

C∗
r (∪

k
i=1Gi)

��

// C∗
r (G)

C∗
r (∪

k+1
i=1Gi)

88qqqqqqqqqq

The induced ∗-homomorphism ϕ : limk C
∗
r (∪

k
i=1Gi) → C∗

r (G) is readily seen to be an
isomorphism.
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It is a standard fact that if a C∗-algebra A is MF but not quasidiagonal, then A has
an extension by K which is not invertible in the sense of Brown, Douglas and Fillmore.
By a result of Rosenberg (see Theorem V.4.2.13 in [B] for an elegant proof) C∗

r (G) is not
quasidiagonal if G is a non-amenable group. Thus to prove the existence of a non-invertible
extension of C∗

r (G) by K, i.e., that the extension semigroup, Ext(C∗
r (G)), is not a group,

one needs only establish the MF-property of the algebra and realize that the group is not
amenable.

2.3 The result

Our main result will be a consequence of several lemmas which we prove below. The first
lemma is a mere observation.

Lemma 2.3.1. Let A,B be unital C∗-algebras with a surjective ∗-homomorphism π : A→
B and a state ϕ : B → C. Let ϕ̃ = ϕ ◦ π, then the GNS-representation corresponding to ϕ̃
is unitarily equivalent to πϕ ◦ π where πϕ is the GNS-representation corresponding to ϕ.

Proof. It suffices to show that (πϕ ◦π,Hϕ, 1B) is a GNS-triple for ϕ̃. Clearly, 1B is a cyclic
vector and

ϕ̃(a) = ϕ(π(a)) = 〈πϕ(π(a))1B, 1B〉

when a ∈ A. This proves the claim.

We briefly introduce a notion from harmonic analysis that will prove useful to us.
For a unitary representation σ of a (discrete) groupG, we let hσ denote the ∗-homomorphism

on the full group C∗-algebra, C∗(G), that extends σ.

Definition 2.3.2. If σ, τ are unitary representations of the discrete group G, we say that
σ is weakly contained in τ and write σ ≺ τ if ker hτ ⊆ ker hσ.

We refer to the books [Di] and [BHV] for the basics of this concept.
The following result which is interesting in its own right, is an important ingredient in

our proof. The result is in fact an immediate consequence of the so-called ’continuity of
induction’ due to J.M.G. Fell applied to the trivial representation of the subgroup H , see,
e.g., [BHV] Theorem F.3.5. We give a self-contained proof below.

Proposition 2.3.3. Let G be a discrete group with a normal subgroup H. The canonical
quotient map q : G → G/H extends to a ∗-homomorphism π : C∗

r (G) → C∗
r (G/H) if and

only if H is amenable.

Proof. Suppose π : C∗
r (G) → C∗

r (G/H) extends q. We have a natural inclusion ι : C∗
r (H) →

C∗
r (G) and since π ◦ ι(h) = 1 for all h ∈ H we get a ∗-homomorphism π ◦ ι : C∗

r (H) → C
that sends all group elements to 1. In other words the trivial representation of H is weakly
contained in the left regular representation of H and consequently, H is amenable.
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Conversely assume that H is amenable. We wish to find a ∗-homomorphism π :
C∗
r (G) → C∗

r (G/H) that will make

C∗(G)

��

// C∗
r (G/H)

C∗
r (G)

99r
r

r
r

r

commute.
By Proposition 8.5 of [P] we may find a net of unit vectors (fi) ⊆ ℓ2(H) such that

1 = lim(fi ∗ f̃i)(h)

for all h ∈ H . The function f̃i is given by f̃i(h) = fi(h−1), h ∈ H and ∗ denotes convolution.
Define a net of unit vectors in ℓ2(G) by

gi(k) =

{

fi(k) if k ∈ H

0 if k /∈ H

Then
1H(k) = lim(gi ∗ g̃i)(k)

for all k ∈ G. We wish to define a state ψ on C∗
r (G) which is equal to 1H on G. To see

that this is possible let
∑

n γnkn ∈ C[G], then
〈(

∑

n

γnkn

)

gi, gi

〉

=
∑

n

γn
∑

k∈G

gi(k
−1
n k)gi(k)

=
∑

n

γn
∑

k∈G

gi(k)gi(knk)

=
∑

n

γn(gi ∗ g̃i)(k
−1
n )

→
∑

n

γn1H(kn).

Since gi is a unit vector in ℓ2(G) for each i, it follows from the CBS-inequality that 1H may
be extended to a map on C∗

r (G). This extension is clearly a state.
We may consider the canonical map µ : C∗(G) → C∗

r (G). By composition we get a
state ϕ = ψ ◦ µ on C∗(G) which is nothing but the state on C∗(G) which equals 1H on G.
The GNS-representation of this state is unitarily equivalent to the map in the top row of
the diagram above and so the previous lemma tells us that the map we are looking for is
the GNS-representation of ψ.

Note that if H = G, Proposition 2.3.3 reduces to a well-known characterization of
amenability.

Like Proposition 2.3.3 above, the following result is also due to Fell.
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Lemma 2.3.4. Let λ denote the left regular representation of the discrete group G. If σ
is a unitary representation such that σ ≺ λ, then σ⊗π ≺ λ for any unitary representation
π of G.

Proof. By Fell’s absorption principle, see, e.g., Theorem 2.5.5 of [BO], and Proposition
F.3.2 of [BHV]

σ ⊗ π ≺ λ⊗ π ∼ λ(dim π) ≺ λ.

The equivalence, ∼, being unitary equivalence.

For a discrete Abelian group G we will let Ĝ denote the unitary dual of G. That is, Ĝ
is the set of unitary equivalence classes of irreducible unitary representations of G. These
are by Schur’s Lemma all one-dimensional and so Ĝ may be identified with the character
space of C∗(G), i.e., C∗(G) ≃ C(Ĝ). The unitary dual is a compact Hausdorff group in
the topology of pointwise convergence on G (= the weak* topology from C∗(G)) under
pointwise multiplication.

Lemma 2.3.5. Let G be a discrete Abelian group. If G is countable then Ĝ is metrizable.

Proof. This is all very standard. If G is countable, C(Ĝ) = C∗(G) is separable. Take a
dense sequence fn, n ∈ N in C(Ĝ) and define a metric d on Ĝ by

d(x, y) =
∑

n

1

2n‖fn‖
|fn(x)− fn(y)|.

One easily checks, by use of Urysohn’s Lemma, that d is indeed a metric. To see that d
induces the right topology on Ĝ let xλ → x in Ĝ and let ε > 0, then

d(xλ, x) ≤

N
∑

n=1

1

2n‖fn‖
|fn(xλ)− fn(x)| +

ε
2

for a suitable N independent of λ and so limλ d(xλ, x) = 0. The identity map on Ĝ is then a
continuous bijection from a compact space to a Hausdorff space, hence a homeomorphism.

Remark 2.3.6. The converse of Lemma 2.3.5 is of course true but we will not need it in the
following.

Theorem 2.3.7. Let Gi, i ∈ I be a finite or countably infinite collection of countable
discrete Abelian groups with a common subgroup H. Let G denote the amalgamated
free product ⋆HGi of the Gi’s with amalgamation over H. Then we have an injective
∗-homomorphism

C∗
r (G) → C∗

r (⋆(Gi/H))⊗ L∞(Ĥ),

where the algebra of equivalence classes of measurable essentially bounded functions is with
respect to Haar measure on Ĥ.
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Proof. Since G/H = ⋆(Gi/H), Proposition 2.3.3 gives a unital ∗-homomorphism ρ :
C∗
r (G) → C∗

r (⋆(Gi/H)). Consequently, ρ determines a unitary representation of G which
is weakly contained in the left regular representation.

It is a classical result in harmonic analysis that the restriction map gives a homeomor-
phic isomorphism of compact Hausdorff groups

Ĝi/{ω ∈ Ĝi | ω(h) = 1, h ∈ H} → Ĥ.

See, e.g., Theorem 4.39 in [F].
Now, since a surjective continuous map between compact metric spaces admits a Borel

section (see for instance [BR] for an elegant proof of this classical fact), we have, by Lemma
2.3.5 a Borel section for the quotient map

Ĝi → Ĝi/{ω ∈ Ĝi | ω(h) = 1, h ∈ H}.

Let ei : Ĥ → Ĝi be the Borel map obtained by composition of the maps just considered,
i.e., ei(ω) is a (measurable) choice of an extension of ω to a character on all of Gi.

Consider the group homomorphism σi from Gi to the unitary group of L∞(Ĥ) given by
sending g ∈ Gi to the function

ω 7→ (ei(ω))(g)

for ω ∈ Ĥ.
Since σi(h) = σj(h) for all i, j and h ∈ H , we get an induced unitary representation σ of

G and by Lemma 2.3.4 we then get a ∗-homomorphism ψ : C∗
r (G) → C∗

r (⋆(Gi/H))⊗L∞(Ĥ)
by considering the tensor product of the unitary representation corresponding to ρ with σ.

We show that ψ is injective by considering the trace. Indeed, consider the tensor
product of the standard trace τ on C∗

r (⋆(Gi/H)) and the normalized Haar measure m on
L∞(Ĥ). By composing this tensor product with ψ we get a trace on C∗

r (G). We claim that
this trace is equal to the canonical faithful trace on C∗

r (G) which will ensure the injectivity
of ψ. To see that this is true, it suffices to show that

τ ⊗m(ψ(g)) =

{

0 if g 6= 1

1 if g = 1

for g ∈ G ⊆ C∗
r (G).

Clearly, the equation above is satisfied for g = 1. The equation is obviously also satisfied
if ρ(g) 6= 1.

If ρ(g) = 1 and g 6= 1, then g ∈ H\{1} so by the Gelfand-Raikov Theorem (Theorem
3.34 of [F]) there is ω0 ∈ Ĥ such that ω0(g) 6= 1 and so by invariance of Haar measure

τ ⊗m(ψ(g)) = m(σ(g)) =

∫

Ĥ

ω(g) dm(ω) = ω0(g)

∫

Ĥ

ω(g) dm(ω),

which implies that τ ⊗m(ψ(g)) = 0.



2.3. THE RESULT 43

The representation σ in the proof of Theorem 2.3.12 may seem like a somewhat myste-
rious object but in concrete cases it may have a nice description as the following example
shows.

Example 2.3.8. Consider the torus knot group Γk,m = 〈a1, a2 | a
k
1a

−m
2 〉 from the introduc-

tion. This can be realized as the amalgamated free product Z ⋆Z Z where the subgroup
embeds in the first factor by multiplication by k and in the second by multiplication by m.
Let for r ∈ N, ϕr : T = Ẑ → C be given by ϕr(e

it) = eit/r, t ∈ [0, 2π) and consider the
unitary representation ζ of 〈a1, a2 | a

k
1a

−m
2 〉 on L2(T) given by

ζ(a1) = ϕk and ζ(a2) = ϕm

where the functions ϕr are identified with the multiplication operators they induce on
L2(T). This naturally occuring representation is exactly (a choice of) the representation σ
in the proof above.

The following result is an immediate consequence of Theorem 2.3.7 and [HLSW].

Theorem 2.3.9. Let Gi, i ∈ I be a finite or countably infinite collection of countable
discrete Abelian groups with a common subgroup H. Then C∗

r (⋆HGi) is MF.

Proof. Since the class of MF algebras is stable under inductive limits it suffices to show
the claim when I is finite by Lemma 2.2.1.

Suppose I is finite. Then

C∗
r (⋆(Gi/H)) = ⋆CC∗

r (Gi/H),

where the right-hand side is the reduced free product with respect to the standard traces
on the group C∗-algebras, furthermore this right-hand side is MF by Theorem 3.3.3 of
[HLSW]. From Theorem 2.3.7 we get an inclusion

C∗
r (⋆HGi) ⊆ C∗

r (⋆(Gi/H))⊗ L∞(Ĥ).

It follows from this and Proposition 3.3.6 of [BK] that C∗
r (⋆HGi) is MF since abelian

C∗-algebras are nuclear and MF and C∗-subalgebras of MF algebras are MF.

As mentioned in the introduction the above result is related to the theory of C∗-
extensions via the following lemma.

Lemma 2.3.10. Let I be a possibly infinite set with |I| ≥ 2, Gi, i ∈ I be a collection
of countable discrete groups with a common normal subgroup H of index greater than or
equal to 2 in each Gi. Then ⋆HGi is amenable if and only if I has cardinality 2 and H is
amenable with index 2 in each Gi.

Proof. If I has cardinality |I| = 2, H is amenable and has index 2 in both groups Gi, we
see that ⋆HGi is an extension of amenable groups whence ⋆HGi is amenable.

Obviously amenability of ⋆HGi forces H to be amenable too.
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If the cardinality of I is greater than or equal to 3 then ⋆(Gi/H) contains a subgroup
isomorphic to one of the following groupsZp1 ⋆ Zp2 ⋆ Zp3, Z ⋆ Zp1 , F2,

where each integer pi ≥ 2.
Each of these groups is non-amenable. The first one by Proposition 14.2 of [P], the

second one has the non-amenable group (again by Proposition 14.2 [P]) Z3 ⋆ Zp1 as homo-
morphic image and hence cannot itself be amenable. Finally everyone knows that F2 is not
amenable. From this it follows that ⋆(Gi/H) and hence ⋆HGi is not amenable when we
are dealing with 3 or more groups.

If |I| = 2, and at least one of the indices is strictly greater than 2, ⋆(Gi/H) contains a
subgroup isomomorphic to one of the following

F2, Zp1 ⋆ Z, Zp1 ⋆ Zp2 , Z2 ⋆ (Z2 ⊕ Z2) = 〈a, b, c | a2 = b2 = c2 = cbc−1b−1 = 1〉,

where p1 ≥ 2 and p2 ≥ 3.
We have already noted that the first three groups are non-amenable. The last group

is non-amenable because the subgroup generated by the elements abab and acac is isomo-
morphic to F2. We leave the tedious but straightforward argument to the reader. This
completes the proof.

Corollary 2.3.11. Let I be a countable or finite set with |I| ≥ 2, Gi, i ∈ I a collection of
countable, discrete Abelian groups with a common subgroup H which has index greater than
or equal to 2 in each Gi. Then the BDF semigroup of extensions by K, Ext(C∗

r (⋆HGi)), is
a group if and only if 2 = |I| = |Gi/H| for both i ∈ I.

Proof. Combine Theorem 2.3.9 and Lemma 2.3.10 with the fact that Ext(C∗
r (⋆HGi)) is a

group if C∗
r (⋆HGi) is nuclear, see, e.g., [Ar].

The proof of Theorem 2.3.7 has some von Neumann algebra flavour to it. Indeed,
in the proof we use a measurable section of a certain surjective map. In the example
following the proof this corresponds to taking k’th roots in C which cannot possibly be
done continuously.

Exploring this von Neumann aspect we get an isomorphism on the level of von Neumann
algebras. A result which may be known to experts. The precise statement is as follows.

Theorem 2.3.12. Let Gi, i ∈ I be a finite or countably infinite collection of countable
discrete Abelian groups with a common subgroup H. Set ⋆HGi = G. Then we have an
isomorphism of von Neumann algebras

L(G)
∼
−→ L(⋆(Gi/H))⊗̄L∞(Ĥ),

where the tensor product is the spatial tensor product of von Neumann algebras.
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Proof. The injective ∗-homomorphism from Theorem 2.3.7 extends to a normal ∗-homomorphism
ψ : L(G) → L(⋆(Gi/H))⊗̄L∞(Ĥ) on the von Neumann algebra level.

Injectivity of ψ follows in exactly the same way as it did in the proof of Theorem 2.3.7
since the trace is also faithful on the von Neumann algebra level.

For surjectivity of ψ note first that the algebra 1⊗L∞(Ĥ) is in the image of ψ. Indeed,
combining the classical theorems of Stone-Weierstrass and Gelfand-Raikov, we see that the
algebra generated by ψ(H) is norm dense in 1 ⊗ C(Ĥ) which in turn is strongly dense
in 1 ⊗ L∞(Ĥ) ⊆ B(ℓ2(⋆(Gi/H)) ⊗ L2(Ĥ)). On the other hand, for any b ∈ ⋆(Gi/H) ⊆
L(⋆(Gi/H)) there is a unitary c ∈ L∞(Ĥ) such that b⊗c is in the image of ψ. It follows that
the image of ψ contains anything of the form a⊗ b where a ∈ L(⋆(Gi/H)) and b ∈ L∞(Ĥ)
and thus ψ is surjective.

2.4 More Examples of MF Algebras

The ideas from the last section can be used to give some new examples of reduced group
C∗-algebras with the MF property.

The simple strategy above is basically reducing the MF question of amalgamated free
products of groups to the same question with no amalgamation. More precisely given a
collection of discrete groups (Gi) with a common normal subgroup H the idea is to find a
nuclear algebra with the MF property (i.e., an NF algebra) A such that

C∗
r (⋆HGi) ⊆ C∗

r (⋆(Gi/H))⊗ A,

and then from this deduce that the left-hand side is MF if C∗
r (⋆(Gi/H)) is.

Executing the strategy, of course, requires a candidate for the algebra A and in the
same breath a candidate for the map realizing the inclusion. This is where the real work
lies. In the following we will discuss this line of attack in the case of a tower of groups.

Proposition 2.4.1. Suppose H ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gn are discrete groups with H
amenable and normal in each Gi. Then we have an inclusion of C∗-algebras

C∗
r (⋆HGi) ⊆ C∗

r (⋆(Gi/H))⊗min C
∗
r (Gn).

Proof. The proof is very similar to that of Theorem 2.3.7 so we will be brief. Note that the
free product of the group inclusions gives a map ⋆HGi → Gn ⊆ C∗

r (Gn). This representation
tensored with the representation ⋆HGi → (⋆HGi)/H = ⋆(Gi/H) ⊆ C∗

r (⋆(Gi/H)) is weakly
contained in the left regular representation (Proposition 2.3.3 and Lemma 2.3.4) and so
gives a map between the C∗-algebras in question. The injectivity of this map is established
by considering the trace once again.

To use this observation to get new examples of MF algebras, we need to know that each
C∗
r (Gi/H) is an ASH algebra so that we can invoke [HLSW] and we need to know that

C∗
r (Gn) is NF. The last condition is related to the well known (and somewhat notorious)

conjecture of Rosenberg stating that C∗
r (G) is quasidiagonal for any countable discrete
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amenable group G. Indeed, if C∗
r (Gn) is NF it must be quasidiagonal by Voiculescu’s

characterization of quasidiagonality and the Choi-Effros Lifting Theorem and Gn must be
amenable.

In other words to get concrete examples, Gn must be an amenable group for which
Rosenberg’s conjecture holds. Unfortunately Rosenberg’s conjecture has not, to the knowl-
edge of the author, been established in very many cases. Obvious classes for which the
conjecture holds are the abelian and the finite groups. Another concrete example based on
what we have done so far is the following.

Example 2.4.2. Let S∞ be the group of permutations on N with finite support. It has a
normal subgroup A∞ consisting of the finitely supported even permutations. By Lemma
2.3.10 the group S∞ ⋆A∞

S∞ is amenable and clearly C∗(S∞) is NF (it is in fact AF), so
by Proposition 2.4.1 S∞ ⋆A∞

S∞ has a group C∗-algebra which is MF and the discussion
above tells us that S∞ ⋆A∞

S∞ satisfies Rosenberg’s conjecture. Note that we do not have
to invoke the results of [HLSW] since the quotient S∞ ⋆A∞

S∞/A∞ is the infinite dihedral
group which is amenable and residually finite and hence has a group C∗-algebra which is
MF. See details below.

We will call a group MF if its reduced group C∗-algebra is MF. Using standard ter-
minology from group theory a group G is then residually MF if there are MF groups Gn,
n ∈ N, such that G ⊆

∏

nGn.

Proposition 2.4.3. Suppose G is a discrete group and that there is a sequence of discrete
groups (Gn)n∈N and surjective homomorphisms ϕn : G → Gn satisfying that kerϕn is
amenable for each n and that

⋂

n∈I

kerϕn = {1},

whenever I is an infinite subset of N.
It follows that we have an embedding

π : C∗
r (G) →

∞
∏

n=1

C∗
r (Gn)

/

∞
∑

n=1

C∗
r (Gn).

Proof. Lemma 2.3.3 ensures the existence of the ∗-homomorphism π. As usual the injec-
tivity follows by considering the trace.

Fix a character ω on ℓ∞(N) such that ω is not evaluation at any point n ∈ N. Note
that ker(ω) contains any sequence that is eventually 0 and so by continuity all sequences
converging to 0. In fact if x ∈ ℓ∞(N) is a sequence of 0’s and 1’s, ω(x) = ω(x)2, so ω(x) is
either 1 or 0. In particular if x = 1{n} and ω(x) = 1 then by Urysohn’s Lemma there is an
1 ≥ f ≥ 0 in ℓ∞(N) with f(n) = 0 and ω(f) > 0 since ω is not evaluation at n. Then

‖f + 1{n}‖ ≥ ω(f + 1{n}) > 1

but the norm equals 1. It follows that ω(1{n}) = 0 for all n ∈ N.
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Let τn denote the standard trace on C∗
r (Gn). The equation

τ((xn)) = ω((τn(xn)))

defines a trace on
∏∞

n=1C
∗
r (Gn) which drops to

∞
∏

n=1

C∗
r (Gn)

/

∞
∑

n=1

C∗
r (Gn)

since the ideal is killed by τ .
We consider the trace τ ◦ π on C∗

r (G). Let g ∈ G. Then

τ ◦ π(g) = τ((ϕn(g))) = ω(τn(ϕn(g))), (2.4.1)

where ϕn is the quotient map G→ Gn.
Since (τn(ϕn(g))) is a sequence of 0’s and 1’s (2.4.1) equals 0 or 1 by the reasoning

above. If (2.4.1) is 1 then τn(ϕn(g)) = 1 for infinitely many n which in turn implies that
ϕn(g) = 1 for infinitely many n and so g = 1 by assumption. In short

τ ◦ π(g) =

{

1 if g = 1

0 if g 6= 1
.

It follows that τ ◦ π is exactly the usual faithful trace on C∗
r (G) and so π is injective.

Corollary 2.4.4. Suppose G is an amenable residually MF group. It follows that G is MF
and hence satisfies Rosenberg’s conjecture.

Proof. Let Gn, n ∈ N be MF groups such that G ⊆
∏

nGn. We may assume that each Gn

is amenable and hence
∏k

nGn is MF. Now, the maps G ⊆
∏

nGn →
∏k

nGn satisfies the
hypothesis of Proposition 2.4.3. An application of Corollary 3.4.3 of [BK] shows that G is
MF.

For instance all amenable residually finite groups satisfy Rosenberg’s conjecture as can
also easily be observed since their group C∗-algebras are even residually finite dimensional.

In the setting of Proposition 2.4.1 with Gn amenable and, say residually finite, we can
conclude that the group ⋆HGi is MF. We end the exposition by giving an example of an
MF group which is a free product of non-abelian groups with infinite amalgamation.

Example 2.4.5. Consider the set

G =











1 x y
0 I z
0 0 1





∣

∣

∣

∣

∣

x, z ∈ Zn, y ∈ Z


for n ∈ N. This is a (non-Abelian) group under matrix multiplication called the discrete
Heisenberg group. It has a normal subgroup isomorphic to Zn+1 consisting of the matrices



48
CHAPTER 2. ON REDUCED AMALGAMATED FREE PRODUCTS OF

C∗-ALGEBRAS AND THE MF-PROPERTY

with x = 0 in the above presentation. Taking the quotient with this, we get Zn, so in
particular G is amenable. Let for k ∈ N, Gk be the normal subgroup of G given by

Gk =











1 kx ky
0 I kz
0 0 1





∣

∣

∣

∣

∣

x, z ∈ Zn, y ∈ Z


.

This has finite index in G and it follows that G is residually finite and hence satisfies
Rosenberg’s conjecture. Furthermore G ⋆Gk

G is an MF group for each k, note here that
the subgroup we amalgamate over is infinite and non-Abelian.

The infinite dihedral group provides another example of a residually finite amenable
group and the Baumslag-Solitar groups B(1, m) := 〈a, b | a−1ba = bm〉, m ∈ N also have
these properties and so we could form suitable amalgamated free products of these to get
more MF groups.



Chapter 3

Extensions of the reduced group

C∗-algebra of a free product of

amenable groups

This chapter is the paper [ST] written jointly with Klaus Thomsen. Nothing has been
changed.

3.1 Introduction

The stock of examples of C∗-algebras for which the semi-group of extensions by the compact
operators is not a group is still growing. The latest newcomers consist of a series of
reduced free products of nuclear C∗-algebras, cf. [HLSW]. This stresses the necessity
of finding a way to handle the many extensions without inverses. In joint work with
Vladimir Manuilov the second-named author has proposed a way to amend the definition
of the semi-group of extensions of a C∗-algebra by a stable C∗-algebra in such a way that
nothing is changed in the case of nuclear algebras where the usual theory already works
perfectly, and such that at least some of the extensions which fail to have inverses in the
usual sense become invertible in the new, slightly weaker sense. This new semi-group grew
out of investigations of the relation between the E-theory of Connes and Higson and the
theory of C∗-extensions, [MT1]. The change consists merely in trivializing not only the
split extensions, but also the asymptotically split extensions; those for which there are
asymptotic homomorphisms consisting of right inverses for the quotient map, cf. [MT1].
When an extension can be made asymptotically split by addition of another extension
we say that the extension is semi-invertible, and the resulting group of semi-invertible
extensions, taken modulo asymptotically split extensions, is an abelian group with a close
connection to the E-theory of Connes and Higson, [CH]. In some, but not all cases where
the usual semi-group of extensions is not a group the alternative definition does give a
group; i.e. all extensions are semi-invertible, cf. [MT1],[Th1],[MT3]. Specifically, in [MT1]
this was shown to be the case when the quotient is a suspended C∗-algebra and in [Th1]

49
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when the quotient is the reduced group C∗-algebra C∗
r (Fn) of a free group with finitely

many generators, and the ideal is the C∗-algebra K of compact operators. This gave the
first example of a unital C∗-algebra for which all extensions by the compact operators
are semi-invertible, but not all invertible; by the result of Haagerup and Thorbjørnsen,
[HT], there are non-invertible extensions of C∗

r (Fn) by K when n ≥ 2. The purpose of
the present note is to show that the situation in [Th1] is not exceptional at all. This is
done by showing that all extensions of a reduced group C∗-algebra C∗

r (G) by any stable
σ-unital C∗-algebra are semi-invertible when G is the free product of a countable collection
of discrete countable and amenable groups. The basic idea of the proof is identical to
that employed in [Th1]. The crucial improvement over the argument from [Th1] is that
the explicitly given homotopy of representations of Fn from [C] is replaced by results of
Dadarlat and Eilers from [DE]. The pairing in the first variable of the usual extension
group Ext−1 with KK-theory and Cuntz’ results on K-amenability from [C] remain key
ingredients.

In [Th1] the inverse of an extension, modulo asymptotically split extensions, could be
taken to be invertible in the usual sense, i.e. to admit a completely positive contractive
splitting. This turns out to be possible also in the more general situation considered
here, and as a consequence it follows that the obvious map from the usual KK-theory
group Ext−1(C∗

r (G), B) to the group of all extensions, taken modulo asymptotically split
extensions, is surjective. By combining results of Cuntz, Tu and Thomsen it follows that
C∗
r (G) satisfies the universal coefficient theorem of Rosenberg and Schochet, and from this

it follows easily that the map is also injective. Hence the group of extensions of C∗
r (G) by

B, taken modulo the asymptotically split extensions, can be calculated from K-theory by
use of the UCT.

3.2 The results

For a C∗-algebra B we let M(B) denote the multiplier algebra of B and Q(B) denotes the
generalized Calkin algebra M(B)/B.

The main result of the paper is the following.

Theorem 3.2.1. Let (Gi)i∈N be a countable collection of discrete countable amenable
groups and let G = ⋆iGi be their free product. Let B be a stable σ-unital C∗-algebra.
For every extension ϕ : C∗

r (G) → Q(B) there is an invertible extension ϕ′ : C∗
r (G) → Q(B)

such that ϕ⊕ ϕ′ is asymptotically split.

More explicitly the conclusion is that there is an extension ϕ′, a completely positive
contraction ψ : C∗

r (G) → M(B) and an asymptotic ∗-homomorphism π = (πt)t∈[1,∞) :
C∗
r (G) → M(B), in the sense of Connes and Higson, cf. [CH], such that ϕ′ = qB ◦ ψ and

ϕ⊕ ϕ′ = qB ◦ πt for all t ∈ [1,∞), where qB :M(B) → Q(B) is the quotient map.
If only one of the Gi’s in Theorem 3.2.1 is non-trivial or if G = Z2 ⋆ Z2, the conclusion

of the theorem is trivial and can be improved because G is then amenable. It seems very
plausible that such cases are exceptional; indeed it follows from [HLSW] that there is a
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non-invertible extension of C∗
r (G) by the compact operators whenever G is the free product

of finitely many non-trivial groups each of which is either abelian or finite and G 6= Z2 ⋆Z2.

As in [Th1] we will prove Theorem 3.2.1 by use of results from [MT2]. Recall that
two extensions ϕ, ϕ′ : A→ Q(B) are strongly homotopic when there is a ∗-homomorphism
A→ C[0, 1]⊗Q(B) giving us ϕ when we evaluate at 0 and ϕ′ when we evaluate at 1. By
Lemma 4.3 of [MT2] it suffices then to establish the following

Theorem 3.2.2. Let (Gi)i∈N be a countable collection of discrete countable amenable
groups and let G = ⋆iGi be their free product. Let B be a stable σ-unital C∗-algebra.
For every extension ϕ : C∗

r (G) → Q(B) there is an invertible extension ϕ′ : C∗
r (G) → Q(B)

such that ϕ⊕ ϕ′ is strongly homotopic to a split extension.

We proceed to give a couple of definitions and list some lemmas needed in the proof of
Theorem 3.2.2.

The following notion from harmonic analysis proves very useful.

Definition 3.2.3. Let A be a C∗-algebra and ϕ, ψ be ∗-representations of A on some
Hilbert spaces. Then ϕ is weakly contained in ψ if kerψ ⊆ kerϕ.

If σ, π are unitary representations of a locally compact group then σ is weakly contained
in π if and only if the representation of the full group C∗-algebra corresponding to σ is
weakly contained in the representation corresponding to π. An equivalent definition of
weak containment in this case, is that every positive definite function associated to σ can
be approximated uniformly on compact subsets by finite sums of positive definite functions
associated to π. See sections 3.4 and 18.1 of [Di] for details.

A proof of the following lemma can be found in [BHV].

Lemma 3.2.4. Let σ, π be unitary representations of a locally compact group. Assume that
σ is weakly contained in the left regular representation λ. It follows that σ ⊗ π is weakly
contained in λ.

For any discrete group G we denote in the following the canonical surjective ∗-homomor-
phism C∗(G) → C∗

r (G) from the full to the reduced group C∗-algebra by µ.
Besides the main results of [C] we shall also need the following technical lemma which

is a slight reformulation of Cuntz’ definition of K-amenability. See [C] for the proof.

Lemma 3.2.5. Let H be an infinite-dimensional separable Hilbert space and let G be a
countable discrete K-amenable group. Then there exist ∗-homomorphisms σ, σ0 : C

∗
r (G) →

B(H) such that σ◦µ, hτ⊕σ0◦µ : C∗(G) → B(H) are unital, σ◦µ(a)−(hτ ⊕ σ0 ◦ µ) (a) ∈ K

for all a ∈ C∗(G), and [σ ◦ µ, hτ ⊕ σ0 ◦ µ] = 0 in KK (C∗(G),C), where hτ : C∗(G) →
C ⊆ B(H) is the ∗-homomorphism going with the trivial one-dimensional representation τ
of G and K is the ideal of compact operators on H.
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The next lemma gives us the appropriate substitute for the homotopy of representations
of Fn which was a crucial tool in [Th1]. The proof is easy, thanks to the results of Dadarlat
and Eilers in [DE].

Lemma 3.2.6. Let (Gi)i∈N be a countable collection of discrete countable amenable groups
and let G = ⋆iGi be their free product. Let µ : C∗(G) → C∗

r (G) be the canonical surjection
and let hτ : C∗(G) → C be the character corresponding to the trivial one-dimensional
representation of G. There are then a separable infinite-dimensional Hilbert space H, ∗-
homomorphisms σ, σ0 : C

∗
r (G) → B(H) and a path ζs : C

∗(G) → B(H), s ∈ [0, 1], of unital
∗-homomorphism such that

a) ζ0 = σ ◦ µ;

b) ζ1 = hτ ⊕ σ0 ◦ µ;

c) ζs(a)− ζ0(a) ∈ K, a ∈ C∗(G), s ∈ [0, 1], and

d) s 7→ ζs(a) is continuous for all a ∈ C∗(G).

Proof. Being amenable Gi has the Haagerup Property. See the discussion in 1.2.6 of
[CCJJV]. It follows then from Propositions 6.1.1 and 6.2.3 of [CCJJV] that also G has
the Haagerup Property. Since the Haagerup Property implies K-amenability by [Tu] we
conclude that G is K-amenable. We can therefore pick ∗-homomorphisms σ, σ0 : C

∗
r (G) →

B(H) as in Lemma 3.2.5. By adding the same unital and injective ∗-homomorphism to
σ and σ0 we can arrange that both σ and σ0 are injective and have no non-zero compact
operator in their range. Since µ|C∗

r (Gi) : C
∗(Gi) → C∗

r (Gi) is injective it follows then that
σ ◦ µ|C∗(Gi) and (hτ ⊕ σ0 ◦ µ)|C∗(Gi) are admissible in the sense of Section 3 of [DE] for
each i. Thus Theorem 3.12 of [DE] applies to show that there is a norm-continuous path
uis, s ∈ [1,∞), of unitaries in 1 +K such that

lim
s→∞

∥

∥σ ◦ µ|C∗(Gi)(a)− uis (hτ ⊕ σ0 ◦ µ) |C∗(Gi)(a)u
i
s
∗∥
∥ = 0

for all a ∈ C∗(Gi) and

σ ◦ µ|C∗(Gi)(a)− uis (hτ ⊕ σ0 ◦ µ) |C∗(Gi)(a)u
i
s
∗
∈ K

for all a ∈ C∗ (Gi) and all s ∈ [1,∞). Since the unitary group of 1 + K is connected in
norm there are therefore norm-continuous paths of unital ∗-homomorphisms ζjs : C

∗(Gj) →
B(H), s ∈ [0, 1], j ∈ N, such that

aj) ζj0 = σ ◦ µ|C∗(Gj);

bj) ζj1 = σ0 ◦ µ|C∗(Gj) ⊕ hτ |C∗(Gj);

cj) ζjs (a)− ζj0(a) ∈ K, a ∈ C∗(Gj), s ∈ [0, 1],
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for each j. The universal property of the free product construction gives us then a path
of unital ∗-homomorphisms ζs : C∗(G) → B(H), s ∈ [0, 1], with the stated properties,
a)-d).

Our proof of Theorem 3.2.2 uses the notion of absorbing ∗-homomorphisms.

Definition 3.2.7. Let A andB be separable C∗-algebras withB stable. A ∗-homomorphism
π : A → M(B) is said to be absorbing if it holds that for any ∗-homomorphism ϕ : A →
M(B) there is a sequence of unitaries Un ∈M(B), n ∈ N, such that

lim
n

‖Un (π(a)⊕ ϕ(a))U∗
n − π(a)‖ = 0

for all a ∈ A and
Un (π(a)⊕ ϕ(a))U∗

n − π(a) ∈ B,

for all n ∈ N and all a ∈ A.

We will also need the notion of a unitally absorbing ∗-homomorphism which is defined
similarly, but with A and π both unital, and π is only required to absorb unital morphisms.
We refer to [Th2] for the precise statement and for the proof of the fact that (unitally)
absorbing homomorphisms exist.

We shall also need the following lemma which is a unital version of Lemma 2.2 in [Th3].
The proof is the same.

Lemma 3.2.8. Let A be a separable unital C∗-algebra, D ⊆ A a unital nuclear C∗-
subalgebra and B a stable separable C∗-algebra. Let π : A→M(B) be a unitally absorbing
∗-homomorphism. It follows that π|D : D → M(B) is unitally absorbing.

Lemma 3.2.9. In the setting of Theorem 3.2.1 it holds that every extension ϕ : C∗(G) →
Q(B) of C∗(G) by B is invertible. If ϕ is unital, it is invertible in the semi-group of unitary
equivalence classes of unital extensions, modulo the unital split extensions.

Proof. Assume first that ϕ is unital. For each i ∈ N the C∗-algebra C∗
r (Gi) = C∗(Gi) is

nuclear and hence the unital extensions ϕi = ϕ|C∗(Gi) : C∗ (Gi) → Q(B) are all invert-
ible. There are therefore unital extensions ψi : C

∗ (Gi) → Q(B) and ∗-homomorphisms
πi : C

∗ (Gi) → M(B) such that ϕi ⊕ ψi = qB ◦ πi, i ∈ N. Let ωi : C
∗(Gi) → C denote the

∗-homomorphism corresponding to the trivial unitary representation of Gi. By replacing πi
with πi+ωiπi(1)

⊥ we may assume that πi is unital. The universal property of the free prod-
uct gives us a unital extension ψ = ⋆iψi : C

∗(G) → Q(B) and a unital ∗-homomorphism
π = ⋆iπi : C

∗(G) → M(B). Since ϕ ⊕ ψ = qB ◦ π, this completes the proof of the unital
case.

Now let ϕ be a general extension. Again consider ϕi = ϕ|C∗(Gi) : C∗ (Gi) → Q(B).
Then ϕi(1) = ϕj(1) = p for all i, j ∈ N, so the extensions ϕ̃i := ϕi + ωip

⊥ are all unital.
As above we get ψ : C∗(G) → Q(B) and a unital ∗-homomorphism π : C∗(G) → M(B)
such that (⋆iϕ̃i)⊕ψ = qB ◦π. Since ⋆iϕ̃i and ϕ⊕

(

⋆iωip
⊥
)

are equal in Ext(C∗(G), B) this
completes the proof.
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The next lemma will allow us to focus the proof of Theorem 3.2.2 to the case where B
is separable.

Lemma 3.2.10. Let A be a separable C∗-algebra. Suppose that for any stable separable C∗-
algebra B, it holds that for every extension ϕ : A→ Q(B) there is an invertible extension
ϕ′ : A → Q(B) such that ϕ ⊕ ϕ′ is strongly homotopic to a split extension. Then this
conclusion also holds with the separable and stable B replaced by any stable and σ-unital
C∗-algebra.

Proof. Consider D ⊗K, where D is σ-unital, along with an extension

0 → D ⊗K → E
p
→ A→ 0.

Since A is separable and D ⊗ K σ-unital we can find a separable C∗-subalgebra E ′
0 ⊆ E

such that p(E ′
0) = A and such that E ′

0 contains an approximate unit for D ⊗ K. There
is then a separable C∗-subalgebra D0 of D such that (D ⊗K) ∩ E ′

0 ⊆ D0 ⊗ K. Similarly,
there is a separable C∗-subalgebra D1 ⊆ D such that D0 ⊆ D1 and E

′
0 (D0 ⊗K) ⊆ D1⊗K.

In fact, we can recursively find a sequence {Dn} of separable C∗-subalgebras of D such
that E ′

0 (Dn ⊗K) ⊆ Dn+1 ⊗ K. Then D∞ =
⋃

nDn and E0 = C∗ (E ′
0, D∞ ⊗K) ⊆ E are

separable. Furthermore D∞⊗K = ker p|E0 by construction and p(E0) = A so that we have
an extension

0 → D∞ ⊗K → E0
p
→ A→ 0

of separable C∗-algebras. Since D∞ ⊗ K contains an approximate unit for D ⊗ K the
inclusion D∞ ⊗ K ⊆ D ⊗ K extends to an injective ∗-homomorphism M (D∞ ⊗K) ⊆
M(D ⊗K) and we get an embedding ι : Q(D∞ ⊗K) → Q(D ⊗K).

Now, by construction the Busby invariant ϕ of the original extension has the form
ϕ = ι ◦ ϕ′, where ϕ′ : A → Q(D∞ ⊗ K) is the Busby invariant of the last extension. By
assumption there is an invertible extension ψ′ : A → Q(D∞ ⊗ K) such that ϕ′ ⊕ ψ′ is
strongly homotopic to a split extension (by D∞ ⊗K). It follows that ϕ⊕ ι ◦ ψ′ is strongly
homotopic to a split extension by D ⊗K. Note that ι ◦ ψ′ is invertible.

Proof of Theorem 3.2.2. By Lemma 3.2.10 we can assume that B is separable.
In order to control the images of the unit for the extensions we consider, we need a

result of Skandalis which we first describe. Note that the unital inclusion i : C → C∗(G)
has a left-inverse hτ : C∗(G) → C given by the trivial one-dimensional representation τ .
Therefore the map

i∗ : Ext−1(C∗(G), SB) → Ext−1(C, SB) = K0(B)

is surjective. We put this into the six-term exact sequence of Skandalis, 10.11 in [S], whose
proof can be found in [MT4]. Using the notation from [MT4] we obtain the following
commuting diagram with exact rows:

0 // Ext−1
unital (C

∗(G), B) // Ext−1(C∗(G), B) // K0(Q(B))

Ext−1
unital (C

∗
r (G), B) //

µ∗

OO

Ext−1(C∗
r (G), B) //

µ∗

OO

K0(Q(B))

(3.2.1)
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Recall that G is K-amenable as observed in the proof of Lemma 3.2.6. By [C] this
implies that µ∗ : Ext−1 (C∗

r (G), B) → Ext−1 (C∗(G), B) is an isomorphism.
Let ϕ : C∗

r (G) → Q(B) be a unital extension. Let π1 : C∗
r (G) → Q(B) be a unitally

absorbing split extension (whose existence is guaranteed by [Th2] since both C∗
r (G) and B

are separable) and set ϕ′ = ϕ ⊕ π1. It follows from Lemma 3.2.9 and a diagram chase in
(3.2.1) that there is an invertible unital extension ϕ′′ : C∗

r (G) → Q(B) such that

[ϕ′ ◦ µ⊕ ϕ′′ ◦ µ] = 0 (3.2.2)

in Ext−1
unital (C

∗(G), B). Since C∗(Gi) is nuclear µ|C∗(Gi) : C∗(Gi) → C∗
r (Gi), i ∈ N, is a

∗-isomorphism and it follows from Lemma 3.2.8 that π1|C∗

r (Gi) : C
∗
r (Gi) → Q(B) is unitally

absorbing for each i ∈ N. Hence π1 ◦ µ|C∗(Gi) : C∗(Gi) → Q(B) is a unitally absorbing
split extension. It follows therefore from (3.2.2) that (ϕ′ ◦ µ⊕ ϕ′′ ◦ µ) |C∗(Gi) is a unitally
split extension for each i. As in the proof of Lemma 3.2.9 this implies that ϕ′ ◦ µ⊕ ϕ′′ ◦ µ
is unitally split. There is therefore a unitary representation γ : G→M(B) such that

qB ◦ hγ = ϕ′ ◦ µ⊕ ϕ′′ ◦ µ, (3.2.3)

where hγ : C
∗(G) →M(B) is the ∗-homomorphism defined by γ.

Consider the homotopy ζs from Lemma 3.2.6. Let νs : G → B(H) be the unitary
representation defined by ζs so that ζs = hνs. It follows from the property a) of Lemma
3.2.6 that ν0 is weakly contained in the left-regular representation of G and from b) that
ν1 is a direct sum τ ⊕ λ0 where λ0 is a representation of G which is weakly contained in
the left-regular representation of G. Consider the unitary representations

γ ⊗ νs : G→M(B)⊗ B(H) ⊆M(B ⊗K), s ∈ [0, 1].

Then qB⊗K◦hγ⊗νs : C
∗(G) → Q(B⊗K), s ∈ [0, 1], is a norm-continuous path of extensions.

Note that

qB⊗K ◦ hγ⊗ν1 = qB⊗K ◦ hγ⊗τ ⊕ qB⊗K ◦ hγ⊗λ0 = (ϕ′ ⊕ ϕ′′) ◦ µ⊕ qB⊗K ◦ hγ⊗λ0 .

Since γ ⊗ ν0 and γ ⊗ λ0 are weakly contained in the left-regular representation of G by
Lemma 3.2.4 it follows from an argument almost identical with one used in [Th1] that each
qB⊗K ◦ hγ⊗νs factors through C∗

r (G) and hence the family qB⊗K ◦ hγ⊗νs, s ∈ [0, 1] defines
a strong homotopy connecting the split extension qB⊗K ◦ hγ⊗ν0 : C∗

r (G) → Q(B ⊗ K) to
the direct sum ϕ′ ⊕ ϕ′′ ⊕ qB⊗K ◦ hγ⊗λ0 . For completeness we include the argument: Let
s ∈ [0, 1] and x =

∑

j cjgj ∈ CG, where cj ∈ C and gj ∈ G. Then

hγ⊗νs(x) =
∑

j

cjγ (gj)⊗ ν0 (gj) +
∑

j

cjγ (gj)⊗∆(gj) , (3.2.4)

where ∆ (gj) = νs (gj)−ν0 (gj). Note that ∆ (gj) ∈ K by c). Since ν0 is weakly contained in

the left regular representation we can use Lemma 3.2.4 to conclude that
∥

∥

∥

∑

j cjγ (gj)⊗ ν0 (gj)
∥

∥

∥
≤
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‖x‖C∗

r (G) and hence

∥

∥

∥

∥

∥

qB⊗K

(

∑

j

cjγ (gj)⊗ ν0 (gj)

)∥

∥

∥

∥

∥

≤ ‖x‖C∗

r (G) .

To handle the second term in (3.2.4) note that M(B)⊗K/B ⊗K ≃ Q(B)⊗K so
∥

∥

∥

∥

∥

qB⊗K

(

∑

j

cjγ (gj)⊗∆(gj)

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑

j

cj (ϕ
′ ⊕ ϕ′′) (gj)⊗∆(gj)

∥

∥

∥

∥

∥

Q(B)⊗K

.

Since ϕ′⊕ϕ′′ : C∗
r (G) → Q(B) is injective (because ϕ′ contains the unitally absorbing split

extension π1) and (ϕ′ ⊕ ϕ′′)⊗ idK isometric,
∥

∥

∥

∥

∥

∑

j

cj (ϕ
′ ⊕ ϕ′′) (gj)⊗∆(gj)

∥

∥

∥

∥

∥

Q(B)⊗K

=

∥

∥

∥

∥

∥

∑

j

cjλ (gj)⊗∆(gj)

∥

∥

∥

∥

∥

C∗
r (G)⊗K

.

And
∥

∥

∥

∥

∥

∑

j

cjλ (gj)⊗∆(gj)

∥

∥

∥

∥

∥

C∗

r (G)⊗K

=

∥

∥

∥

∥

∥

∑

j

cjλ (gj)⊗ νs (gj)−
∑

j

cjλ (gj)⊗ ν0 (gj)

∥

∥

∥

∥

∥

≤ 2 ‖x‖C∗
r (G) ,

by Fell’s absorbtion principle or Lemma 3.2.4. Inserting these estimates into (3.2.4) yield
the conclusion that

‖qB⊗K ◦ hγ⊗νs(x)‖ ≤ 3 ‖x‖C∗
r (G) ,

proving that qB⊗K ◦ hγ⊗νs factors through C∗
r (G) as claimed.

It remains to reduce the general case of a possibly non-unital extension to the case
of a unital extension. Let ϕ : C∗

r (G) → Q(B) be an arbitrary extension. From Lemma
3.2.9 and K-amenability we get an invertible extension ϕ′ : C∗

r (G) → Q(B) such that
[ϕ ◦ µ⊕ ϕ′ ◦ µ] = 0 in Ext−1(C∗(G), B). In particular,

p = (ϕ ◦ µ⊕ ϕ′ ◦ µ) (1)

is a projection which represents 0 in K0(Q(B)). Since K0(M(B)) = 0 we see [1−p]+ [p] =
[1] = 0 in K0(Q(B)) so we find that also p⊥ = 1 − p represents 0 in K0(Q(B)). Since
Mk(Q(B)) ≃ Q(B) for all k this implies that

p⊕ 1 ∼ 0⊕ 1 and p⊥ ⊕ 1 ∼ 0⊕ 1

in M2(Q(B)), where ∼ is Murray-von Neumann equivalence. It follows that

p⊕ 1⊕ 0 ∼ 1⊕ 0⊕ 0 and p⊥ ⊕ 0⊕ 1 ∼ 0⊕ 1⊕ 1
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in M3(Q(B)). So there is a unitary w ∈M4(Q(B)) contained in the connected component
of the unit in the unitary group of M4(Q(B)) such that

w (p⊕ 1⊕ 0⊕ 0)w∗ = 1⊕ 0⊕ 0⊕ 0.

Let χ : C∗
r (G) → Q(B) be a unital split extension. It follows that

w ((ϕ ◦ µ⊕ ϕ′ ◦ µ)⊕ χ ◦ µ⊕ 0⊕ 0)w∗ = ψ0 ⊕ 0⊕ 0⊕ 0 (3.2.5)

for some unital extension ψ0 : C∗(G) → Q(B). It follows from (3.2.5) that ψ0 factors
through C∗

r (G), i.e. there is a unital extension ψ : C∗
r (G) → Q(B) such that ψ0 = ψ◦µ. Via

an isomorphismM4(Q(B)) ≃M2(Q(B)) which leaves the upper lefthand corner unchanged,
we see that there is an invertible extension ϕ′′ : C∗

r (G) → Q(B) and a unitary u in the
connected component of 1 such that

Ad u ◦ (ϕ⊕ ϕ′′) = ψ ⊕ 0

as ∗-homomorphisms C∗
r (G) → Q(B). Since ψ is unital the first part of the proof gives us

an invertible (unital) extension ψ′ : C∗
r (G) → Q(B) such that ψ⊕ψ′ is strongly homotopic

to a split extension. Since

ϕ⊕ ϕ′′ ⊕ ψ′ = Ad(u∗ ⊕ 1) ◦ (ψ ⊕ 0⊕ ψ′),

we conclude that ϕ⊕ϕ′′ ⊕ψ′ is strongly homotopic to a split extension. Note that ϕ′′ ⊕ψ′

is invertible.

Let A be a separable C∗-algebra and B a stable σ-unital C∗-algebra. Following [MT1]
we let Ext−1/2(A,B) denote the group of unitary equivalence classes of semi-invertible
extensions of A by B. There is then an obvious map

Ext−1(A,B) → Ext−1/2(A,B)

which in [Th1] was shown to be an isomorphism when B = K and A = C∗
r (Fn). We can

now extend this conclusion as follows.

Theorem 3.2.11. Let (Gi)i∈N be a countable collection of discrete countable amenable
groups and let G = ⋆iGi be their free product. Let B be a stable σ-unital C∗-algebra.
It follows that C∗

r (G) satisfies the UCT and that the natural map Ext−1(C∗
r (G), B) →

Ext−1/2(C∗
r (G), B) is an isomorphism.

Proof. It follows from Theorem 3.2.1 that the map Ext−1(C∗
r (G), B) → Ext−1/2(C∗

r (G), B)
is surjective. To conclude that the map is also injective note that the six-term exact
sequence of K-theory arising from an asymptotically split extension has trivial boundary
maps and the resulting group extensions are split. Hence the injectivity of the map we
consider will follow if we can show that C∗

r (G) satisfies the UCT. Since G is K-amenable
C∗
r (G) is KK-equivalent to C∗(G), cf. [C], so we may as well show that C∗(G) satisfies the
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UCT. We do this in the following three steps: Since the class of C∗-algebras which satisfies
the UCT is closed under countable inductive limits we need only show that C∗ (⋆i≤nGi)
satisfies the UCT. Next observe that it follows from [Th3] that an amalgamated free product
A ⋆C B of unital separable C∗-algebras A and B is KK-equivalent to the mapping cone of
the inclusion C ⊆ A⊕ B. Thus A ⋆C B will satisfy the UCT when A and B do. Since

C∗ (⋆i≤nGi) ≃ C∗ (G1) ⋆C C
∗ (G2) ⋆C · · · ⋆C C

∗(Gn)

we can apply this observation n− 1 times to conclude that C∗ (⋆i≤nGi) satisfies the UCT
if each C∗(Gi) does. And this follows from [Tu] because Gi is amenable.
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