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Abstract

We study the new stochastic integral introduced by Ayed and Kuo in 2008.
Our main results are two Itô formulas that extend the one presented by Ayed
and Kuo. We generalize the notion of the Itô process onto the class of instantly
independent stochastic processes and use it in the formulation of the two Itô
formulas we derive.
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1 Introduction

Let {Bt : t ≥ 0}, be a Brownian motion and {Ft : t ≥ 0} be a filtration such that Bt

is Ft-measurable for each t ≥ 0 and Bt−Bs is independent of Fs for any 0 ≤ s ≤ t. It
is a well-known fact that the Itô integral is well-defined for {Ft}-adapted stochastic
processes {f(t) : a ≤ t ≤ b} such that

∫ b
a
|f(t)|2 dt <∞ almost surely. We will denote

the class of all such processes by Lad(Ω, L2[a, b]). The space Lad(Ω, L1[a, b]) is defined
in a similar way.

If f(t) ∈ Lad(Ω, L2[a, b]) has almost surely continuous paths, the Itô integral is
equal to the following limit in probability

∫ b

a

f(t) dBt = lim
‖∆n‖→0

n∑

i=1

f(ti−1)∆Bi, (1.1)

where ∆n = {a = t0 < t1 < t2 < · · · < tn = b} is a partition of [a, b] and
∆Bi = Bti −Bti−1

(see, for example, (Kuo, 2006, Theorem 5.3.3).)
One of the crucial theorems in the Itô stochastic calculus is the Itô formula. It

can be viewed as a stochastic counterpart of the fundamental theorem of calculus.
Its most basic form is stated below.
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Theorem 1.1. For a function f ∈ C2(R), we have

f(Bb) = f(Ba) +

∫ b

a

f ′(Bt) dBt +
1

2

∫ b

a

f ′′(Bt) dt. (1.2)

In this paper, we generalize the Itô formula for the new stochastic integral in-
troduced by Ayed and Kuo (2008, 2010). We also introduce a counterpart to the Itô
process, and use it to introduce most general Itô formula for the new integral known
to date.

The remainder of this paper is organized as follows. In Sections 2 and 3 we
recall some basic facts about the new stochastic integral and the Itô formula derived
by Ayed and Kuo (2008) in their original work on the new integral. In Section 4
we introduce an instantly independent counterpart to the well-known Itô process.
Sections 5 and 6 contain our main results — Theorems 5.1 and 6.1, that is Itô
formulas for the new integral. We conclude with some examples in Section 7 and
discussion of our results in Section 8.

2 The new stochastic integral

Let {Bt : t ≥ 0} and {Ft : t ≥ 0} be defined as in Section 1. We say that a stochas-
tic process {ϕ(t) : t ≥ 0} is instantly independent with respect to the filtration
{Ft : t ≥ 0} if for each t ≥ 0, the random variable ϕ(t) and the σ-field Ft are inde-
pendent. For example ϕ(B1 − Bt), t ∈ [0, 1] is instantly independent of Ft for any
real measurable function ϕ(x). However, ϕ(B1 −Bt) is adapted for t ≥ 1.

It can be easily checked that if ϕ(t) is adapted and instantly independent with
respect to {Ft : t ≥ 0}, then ϕ(t) is deterministic. Therefore, the family of instantly
independent stochastic processes can be regarded as a counterpart to the adapted
processes.

In Ayed and Kuo (2008), the authors define a new stochastic integral for adapted
and instantly independent processes. Suppose that {f(t) : t ≥ 0} is a stochastic
process adapted to {Ft : t ≥ 0} and {ϕ(t) : t ≥ 0} is instantly independent with
respect to {Ft : t ≥ 0}. The new stochastic integral of f(t)ϕ(t) is defined as

∫ b

a

f(t)ϕ(t) dBt = lim
‖∆n‖→0

n∑

i=1

f(ti−1)ϕ(ti)∆Bi, (2.1)

whenever the limit exists in probability.
The crucial distinction between the classical Itô definition and the one proposed

by Ayed and Kuo is the fact that the evaluation point of the instantly independent
process is the right-endpoint of the sub-interval, while the evaluation point of the
adapted process is the left-endpoint, as in the definition of the Itô integral (see
Equation (1.1)). This choice of evaluation points ensures that the Itô integral is a
special case of the new stochastic integral because if ϕ(t) ≡ 1, then Equation (2.1)
reduces to Equation (1.1).

For some evaluation formulas, the discussion of the near-martingale property,
and an isometry formula for the new integral, see Kuo et al. (2012, to appear).
Application of the formulas derived in this paper can be found in Khalifa et al. (in
preparation).
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3 The first Itô formula for the new stochastic
integral

In this section we recall, very briefly, the first Itô formula for the new integral that
was derived by Ayed and Kuo (2008).

Theorem 3.1. Let f(x) and ϕ(x) be C2-functions and θ(x, y) = f(x)ϕ(y−x). Then
the following equality holds for a ≤ t ≤ b,

θ(Bt, Bb) = θ(Ba, Bb) +

∫ t

a

∂θ

∂x
(Bs, Bb) dBs

+

∫ t

a

[
1

2

∂2θ

∂x2
(Bs, Bb) +

∂2θ

∂x∂y
(Bs, Bb)

]
ds.

(3.1)

Theorem 3.1 facilitates computation of many integrals of the new type, however
one of its main drawbacks is the fact that θ can only be a function of Bt and Bb−Bt.
There are two extensions that we wish to present in the forthcoming sections. First,
we will allow for the evaluation processes of θ to be an Itô processes and their
instantly independent counterparts. Also, we will present an Itô formula applicable
to integrals like ∫ 1

0

B1 dBt.

Note that Theorem 3.1 can be applied to the above integral, only after decomposing
the integrand as B1 = (B1 −Bt) +Bt.

4 Itô process and its counterpart

An Itô process is a stochastic process of the form

Xt = Xa +

∫ t

a

g(s) dBs +

∫ t

a

γ(s) ds, a ≤ t ≤ b, (4.1)

where Xa is an Fa-measurable random variable, g ∈ Lad(Ω, L2[a, b]), and γ ∈
Lad(Ω, L1[a, b]).

Observe that if Xa = 0, g(t) ≡ 1, and γ(t) ≡ 0, then Xt = Bt. This gives us
an idea on how to find the instantly independent counterpart to the Itô processes.
Consider

Y (t) = Y (b) +

∫ b

t

h(s) dBs +

∫ b

t

χ(s) ds, a ≤ t ≤ b, (4.2)

where Y (b) is independent of Fb, functions h ∈ L2[a, b] and χ ∈ L1[a, b] are deter-
ministic. Notice that if Y (b) = 0, h(t) ≡ 1 and χ(t) ≡ 0, then Y (t) = Bb − Bt. Thus
Y (t) is to Bb −Bt what Xt is to Bt.

For convenience, we will often use the differential notation instead of the integral
one, and so Equation (4.1) is equivalent to

dXt = g(t) dBt + γ(s) dt,
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while Equation (4.2) is equivalent to

dY (t) = −h(t) dBt − χ(t) dt.

Before we recall the Itô formula for the Itô processes (Kuo, 2006, Theorem 7.4.3),
we wish to note that using the differential notation introduced above is very easy
when combined with the fact that

(dBt)(dt) = 0, (dt)2 = 0, and (dBt)
2 = dt.

For example, (dXs)
2 = g(s)2 ds and

(
dY (t)

)2
= h(t)2 dt.

Finally, we can recall the well-known Itô formula for the Itô processes.
Theorem 4.1. Suppose that Xt is as in Equation (4.1) and f(x) is a C2-function.
Then for any a ≤ t ≤ b,

f(Xt) = f(Xa) +

∫ t

a

f ′(Xs) dXs +
1

2

∫ t

a

f ′′(Xs) (dXs)
2 . (4.3)

5 The Itô formula for instantly independent Itô
processes

As we have seen, the elementary Itô formula (Equation (1.2)) for the Brownian mo-
tion can be generalized to be applicable to Itô processes (Equation (4.3)). Our goal is
to generalize Theorem 3.1 in a similar way to how Theorem 4.1 generalizes Theorem
1.1 in classical Itô calculus. That is, we will show that it is possible to change f(Bt)
and ϕ(Bb − Bt) into f(Xt) and ϕ

(
Y (t)

)
where Xt is as in Equation (4.1) and Y (t)

is as in Equation (4.2). Note that due to the way the Itô integral can be computed
(see Equation (1.1)), it is clear that the process Y (t) is instantly independent of
{Ft : t ≥ 0}. Therefore we can integrate functions of the form f(Xt)ϕ

(
Y (t)

)
using

the new integral. This observation leads us to the following theorem.
Theorem 5.1. Suppose that θ(x, y) = f(x)ϕ(y), where f, ϕ ∈ C2(R). Let Xt be as
in Equation (4.1) and Y (t) be as in Equation (4.2). Then, for a ≤ t ≤ b,

θ(Xt, Y
(t)) = θ(Xa, Y

(a))

+

∫ t

a

∂θ

∂x
(Xs, Y

(s)) dXs +
1

2

∫ t

a

∂2θ

∂x2
(Xs, Y

(s)) (dXs)
2

+

∫ t

a

∂θ

∂y
(Xs, Y

(s)) dY (s) − 1

2

∫ t

a

∂2θ

∂y2
(Xs, Y

(s))
(
dY (s)

)2
.

(5.1)

Proof. Throughout this proof, we will use the standard notation introduced earlier,
namely ∆n = {a = t0 < t1, · · · < tn−1 < tn = t} and ∆Xi = Xti−Xti−1

. To establish
the formula in Equation (5.1), we begin by writing the difference θ

(
Xt, Y

(t)
)
−

θ
(
Xa, Y

(a)
)
in the form of a telescoping sum.

θ
(
Xt, Y

(t)
)
− θ

(
Xa, Y

(a)
)

=
n∑

i=1

[
θ
(
Xti , Y

(ti)
)
− θ

(
Xti−1

, Y (ti−1)
)]

=
n∑

i=1

[
f (Xti)ϕ

(
Y (ti)

)
− f

(
Xti−1

)
ϕ
(
Y (ti−1)

)]
.

(5.2)
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Since for k > 2, (∆Xi)
k = (∆Yi)

k = o(∆ti), we can use the second order Taylor
expansion of f and ϕ to obtain

f (Xti) ≈ f
(
Xti−1

)
+ f ′

(
Xti−1

)
(∆Xi) + 1

2
f ′′
(
Xti−1

)
(∆Xi)

2 ,

ϕ
(
Y (ti−1)

)
≈ ϕ

(
Y (ti)

)
+ ϕ′

(
Y (ti)

)
(−∆Yi) + 1

2
ϕ′′
(
Y (ti)

)
(−∆Yi)

2 .
(5.3)

Putting Equations (5.2) and (5.3) together, we have

θ
(
Xt, Y

(t)
)
− θ

(
Xa, Y

(a)
)

≈
n∑

i=1

[(
f
(
Xti−1

)
+ f ′

(
Xti−1

)
(∆Xi) + 1

2
f ′′
(
Xti−1

)
(∆Xi)

2)ϕ
(
Y (ti)

)

− f
(
Xti−1

) (
ϕ
(
Y (ti)

)
+ ϕ′

(
Y (ti)

)
(−∆Yi) + 1

2
ϕ′′
(
Y (ti)

)
(−∆Yi)

2)]

=
n∑

i=1

[(
f ′
(
Xti−1

)
ϕ
(
Y (ti)

)
(∆Xi) + 1

2
f ′′
(
Xti−1

)
ϕ
(
Y (ti)

)
(∆Xi)

2)

−
(
f
(
Xti−1

)
ϕ′
(
Y (ti)

)
(−∆Yi) + 1

2
f
(
Xti−1

)
ϕ′′
(
Y (ti)

)
(−∆Yi)

2)]

=
n∑

i=1

[
∂θ

∂x

(
Xti−1

, Y (ti)
)

∆Xi +
1

2

∂2θ

∂x2

(
Xti−1

, Y (ti)
)

(∆Xi)
2

+
∂θ

∂y

(
Xti−1

, Y (ti)
)

∆Yi −
1

2

∂2θ

∂y2

(
Xti−1

, Y (ti)
)

(∆Yi)
2

]
.

(5.4)

Finally, as ‖∆n‖ → 0, the expression in Equation (5.4) converges to the right-hand
side of Equation (5.1), hence the theorem holds.

Arguments similar to the ones in the proof of Theorem 5.1 can be used to prove
the following corollary. It introduces a purely deterministic part that depends only
on t.

Corollary 5.2. Suppose that θ(t, x, y) = τ(t)f(x)ϕ(y), where f, ϕ ∈ C2(R) and
τ ∈ C1([a, b]). Let Xt be as in Equation (4.1) and Y (t) be as in Equation (4.2). Then

θ(t,Xt, Y
(t)) = θ(a,Xa, Y

(a)) +

∫ t

a

∂θ

∂s
(s,Xs, Y

(s)) ds

+

∫ t

a

∂θ

∂x
(s,Xs, Y

(s)) dXs +
1

2

∫ t

a

∂2θ

∂x2
(s,Xs, Y

(s)) (dXs)
2

+

∫ t

a

∂θ

∂y
(s,Xs, Y

(s)) dY (s) − 1

2

∫ t

a

∂2θ

∂y2
(s,Xs, Y

(s))
(
dY (s)

)2
.

6 The Itô formula for more general processes

As we have already mentioned in Section 3, upon appropriate decomposition of
the integrand, it is possible to use the new definition of the stochastic integral to
compute the integral of processes that are not instantly independent, for example∫ 1

0
B1 dBt. Our next goal is to establish an Itô formula for such processes. Note that
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using the notation of Equation (4.2), with h(s) ≡ 1 and χ(s) ≡ 0, on the interval
[0, 1], we have

Y (a) =

∫ 1

0

1 dBt = B1 −B0 = B1.

Thus, Y (a) is to Y (t) what B1 is to B1 − Bt. Hence, we wish to establish an Itô
formula for θ

(
Xt, Y

(a)
)
, with Xt and Y (t) as defined in Equations (4.1) and (4.2).

Keeping in mind that the definition of the new integral does not allow processes
that are anticipating and not instantly independent, we have to impose an additional
structure on function θ in order to move freely between Y (a) and Y (t). Following
the ideas of Kuo et al. (2012, to appear), we use functions whose Maclaurin series
expansion has infinite radius of convergence. Such approach gives us the additional
structure we need in order to apply the new theory of stochastic integration.

Theorem 6.1. Suppose that θ(x, y) = f(x)ϕ(y), where f ∈ C2(R), and ϕ ∈ C∞(R)
has Maclaurin expansion with infinite radius of convergence. Let Xt be as in Equation
(4.1) and Y (t) be as in Equation (4.2). Then, for a ≤ t ≤ b,

θ(Xt, Y
(a)) = θ(Xa, Y

(a))

+

∫ t

a

∂θ

∂x

(
Xs, Y

(a)
)
dXs +

1

2

∫ t

a

∂2θ

∂x2

(
Xs, Y

(a)
)

(dXs)
2

−
∫ t

a

∂2θ

∂x∂y

(
Xs, Y

(a)
)

(dXs)
(
dY (s)

)
.

(6.1)

Proof. We will derive the formula in Equation (6.1) symbolically using the differen-
tial notation introduced earlier. That is, we need to establish that

dθ(Xt, Y
(a)) =

∂θ

∂x

(
Xt, Y

(a)
)
dXt +

1

2

∂2θ

∂x2

(
Xt, Y

(a)
)

(dXt)
2

− ∂2θ

∂x∂y

(
Xt, Y

(a)
)

(dXt)
(
dY (t)

)
.

(6.2)

To simplify the notation, we will write D = d
(
θ
(
Xt, Y

(a)
))
. Let us consider

D = d
(
f(Xt)ϕ

(
Y (a)

))

= d
(
f(Xt)

∞∑

n=0

ϕ(n)(0)

n!

(
Y (a)

)n)

= d
(
f(Xt)

∞∑

n=0

ϕ(n)(0)

n!

(
Y (a) − Yt + Yt

)n)
.

Applying the binomial theorem and the fact that Y (a)−Yt = Y (t) allows us to rewrite
D as

D = d
(
f(Xt)

∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)(
Y (t)

)k
(Yt)

n−k
)

=
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
d
(
f(Xt) (Yt)

n−k (Y (t)
)k)

. (6.3)
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Note that Zt = f(Xt)Y
n−k
t as a product of Itô processes is an Itô process itself, hence

we can use the Itô formula from Theorem 5.1 to evaluate the differential under the
sum in Equation (6.3). We take η(z, y) = zyk to obtain ηz(z, y) = yk, ηzz(z, y) = 0,
ηy(z, y) = kzyk−1 and η(z, y)yy = k(k − 1)zyk−2 which yields

d
(
η
(
Zt, Y

(t)
))

=
(
Y (t)

)k
d(Zt) + kZt

(
Y (t)

)k−1
dY (t)

− 1
2
k(k − 1)Zt

(
Y (t)

)k−2 (
dY (t)

)2
.

(6.4)

Using the Itô product rule for Itô processes, we easily see that dZt can be expressed
as

dZt = f(Xt) d
(
Y n−k
t

)
+ Y n−k

t df(Xt) + (df(Xt))
(
dY n−k

t

)

= f(Xt)
[
(n− k)Y n−k−1

t dYt + 1
2
(n− k)(n− k − 1)Y n−k−2

t (dYt)
2]

+ Y n−k
t

[
f ′(Xt) dXt + 1

2
f ′′(Xt) (dXt)

2]

+ (n− k)f ′(Xt)Y
n−k−1
t (dXt) (dYt)

= f(Xt)(n− k)Y n−k−1
t dYt

+ 1
2
(n− k)(n− k − 1)f(Xt)Y

n−k−2
t (dYt)

2 + f ′(Xt)Y
n−k
t dXt

+ 1
2
f ′′(Xt)Y

n−k
t (dXt)

2 + (n− k)f ′(Xt)Y
n−k−1
t (dXt) (dYt) .

(6.5)

Putting together Equations (6.3), (6.4) and (6.5), we see that in order to complete
this proof, we have to evaluate

D = f(Xt)
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
(n− k)Y n−k−1

t

(
Y (t)

)k
dYt

+
1

2
f(Xt)

∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
(n− k)(n− k − 1)Y n−k−2

t

(
Y (t)

)k
(dYt)

2

+ f ′(Xt)
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
Y n−k
t

(
Y (t)

)k
dXt

+
1

2
f ′′(Xt)

∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
Y n−k
t

(
Y (t)

)k
(dXt)

2

+ f ′(Xt)
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
(n− k)Y n−k−1

t

(
Y (t)

)k
(dXt) (dYt)

+ f(Xt)
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
kY n−k

t

(
Y (t)

)k−1
dY (t)

− f(Xt)
1

2

∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
k(k − 1)Y n−k

t

(
Y (t)

)k−2 (
dY (t)

)2

= f(Xt)Σ1 dYt + 1
2
f(Xt)Σ2 (dYt)

2 + f ′(Xt)Σ3 dXt + 1
2
f ′′(Xt)Σ3 (dXt)

2

+ f ′(Xt)Σ1 (dXt) (dYt) + f(Xt)Σ4 dY
(t) − f(Xt)

1
2
Σ5

(
dY (t)

)2
.

(6.6)

In order to simplify D in Equation (6.6), we need to evaluate the 5 sums denoted
above by Σi, with i ∈ {1, 2, . . . , 5}.
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Σ1 : The first sum is given by

Σ1 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
(n− k)Y n−k−1

t

(
Y (t)

)k
. (6.7)

Note that for n = k the expression under the sum is equal to zero, so we have

Σ1 =
∞∑

n=1

ϕ(n)(0)

n!

n−1∑

k=0

(
n

k

)
(n− k)Y n−k−1

t

(
Y (t)

)k
.

Now, since 1
n!

(
n
k

)
(n− k) = 1

(n−1)!

(
n−1
k

)
, we get

Σ1 =
∞∑

n=1

ϕ(n)(0)

(n− 1)!

n−1∑

k=0

(
n− 1

k

)
Y

(n−1)−k
t

(
Y (t)

)k
,

and application of the binomial theorem yields

Σ1 =
∞∑

n=1

ϕ(n)(0)

(n− 1)!

(
Yt + Y (t)

)n−1
.

Since, by definition, Yt + Y (t) = Y (a) and
∑∞

n=1
ϕ(n)(0)
(n−1)!

xn−1 = ϕ′(x), we obtain

Σ1 = ϕ′
(
Y (a)

)
. (6.8)

Σ2 : The second sum we have to evaluate is

Σ2 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
(n− k)(n− k − 1)Y n−k−2

t

(
Y (t)

)k
. (6.9)

Due to the n− k and n− k− 1 factors, the terms with k = n and k = n− 1 do not
contribute to the sum, hence

Σ2 =
∞∑

n=2

ϕ(n)(0)

n!

n−2∑

k=0

(
n

k

)
(n− k)(n− k − 1)Y n−k−2

t

(
Y (t)

)k
.

Since 1
n!

(
n
k

)
(n− k)(n− k − 1) = 1

(n−2)!

(
n−2
k

)
, we have

Σ2 =
∞∑

n=2

ϕ(n)(0)

(n− 2)!

n−2∑

k=0

(
n− 2

k

)
Y n−k−2
t

(
Y (t)

)k
.

Using the binomial theorem, we obtain

Σ2 =
∞∑

n=2

ϕ(n)(0)

(n− 2)!

(
Yt + Y (t)

)n−2
.

Using the facts that ϕ′′(x) =
∑∞

n=2
ϕ(n)(0)
(n−2)

xn−2 and Yt + Y (t) = Y (a) we get

Σ2 = ϕ′′
(
Y (a)

)
. (6.10)

8



Σ3 : Using the same reasoning as previously, we can write the next sum appearing
in Equation (6.6) as

Σ3 =
∞∑

n=0

ϕ(n)(0)

n!

∞∑

k=0

(
n

k

)
Y n−k
t

(
Y (t)

)k

=
∞∑

n=0

ϕ(n)(0)

n!

(
Yt + Y (t)

)n

= ϕ
(
Y (a)

)
. (6.11)

Σ4 : Now, we evaluate the following sum

Σ4 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
kY n−k

t

(
Y (t)

)k−1
.

Notice that substitution j = n− k together with the fact that
(
n
n−j
)

=
(
n
j

)
yields

Σ4 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

j=0

(
n

n− j

)
(n− j)Y j

t

(
Y (t)

)n−j−1

=
∞∑

n=0

ϕ(n)(0)

n!

n∑

j=0

(
n

j

)
(n− j)Y j

t

(
Y (t)

)n−j−1
,

and this is the same sum we have evaluated in Equation (6.7), hence

Σ4 = ϕ
(
Y (a)

)
. (6.12)

Σ5 : The last sum needed is

Σ5 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

k

)
k(k − 1)Y n−k

t

(
Y (t)

)k−2
.

Using the substitution j = n− k and the fact that
(
n
n−j
)

=
(
n
j

)
again, we obtain

Σ5 =
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

n− j

)
(n− j)(n− j − 1)Y j

t

(
Y (t)

)n−j−2

=
∞∑

n=0

ϕ(n)(0)

n!

n∑

k=0

(
n

j

)
(n− j)(n− j − 1)Y j

t

(
Y (t)

)n−j−2
.

And this sum appears in Equation (6.9), thus

Σ5 = ϕ′′
(
Y (a)

)
. (6.13)
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Now, putting together Equations (6.6), (6.8), (6.10), (6.11), (6.12) and (6.13) we
obtain

D = f(Xt)Σ1 dYt + 1
2
f(Xt)Σ2 (dYt)

2 + f ′(Xt)Σ3 dXt + 1
2
f ′′(Xt)Σ3 (dXt)

2

+ f ′(Xt)Σ1 (dXt) (dYt) + f(Xt)Σ4 dY
(t) − 1

2
f(Xt)Σ5

(
dY (t)

)2

= f(Xt)ϕ
′ (Y (a)

)
dYt + 1

2
f(Xt)ϕ

′′ (Y (a)
)

(dYt)
2 + f ′(Xt)ϕ

(
Y (a)

)
dXt

+ 1
2
f ′′(Xt)ϕ

(
Y (a)

)
(dXt)

2 + f ′(Xt)ϕ
′ (Y (a)

)
(dXt) (dYt)

+ f(Xt)ϕ
′ (Y (a)

)
dY (t) − 1

2
f(Xt)ϕ

′′ (Y (a)
) (
dY (t)

)2
.

Since dYt = −dY (t), we have

D = − f(Xt)ϕ
′ (Y (a)

)
dY (t) + 1

2
f(Xt)ϕ

′′ (Y (a)
) (
dY (t)

)2

+ f ′(Xt)ϕ
(
Y (a)

)
dXt + 1

2
f ′′(Xt)ϕ

(
Y (a)

)
(dXt)

2

− f ′(Xt)ϕ
′ (Y (a)

)
(dXt)

(
dY (t)

)
+ f(Xt)ϕ

′ (Y (a)
)
dY (t)

− 1
2
f(Xt)ϕ

′′ (Y (a)
) (
dY (t)

)2

= ∂θ
∂x

(
Xt, Y

(a)
)
dXt + 1

2

∂2θ

∂x2

(
Xt, Y

(a)
)

(dXt)
2

− ∂2θ

∂x∂y

(
Xt, Y

(a)
)

(dXt)
(
dY (t)

)
.

And this completes the proof.

As with Corollary 5.2, we can easily deduce, that if we had a component of θ
that is deterministic and depends only on t, the following Corollary will hold.

Corollary 6.2. Suppose that θ(t, x, y) = τ(t)f(x)ϕ(y), where τ ∈ C1(R), f ∈
C2(R), and ϕ ∈ C∞(R) has Maclaurin expansion with infinite radius of convergence.
Let Xt be as in Equation (4.1) and Y (t) be as in Equation (4.2). Then

θ(t,Xt, Y
(a)) = θ(a,Xa, Y

(a)) +

∫ t

a

∂θ

∂t

(
s,Xs, Y

(a)
)
ds

+

∫ t

a

∂θ

∂x

(
s,Xs, Y

(a)
)
dXs +

1

2

∫ t

a

∂2θ

∂x2

(
s,Xs, Y

(a)
)

(dXs)
2

−
∫ t

a

∂2θ

∂x∂y

(
s,Xs, Y

(a)
)

(dXs)
(
dY (s)

)
. (6.14)

7 Examples

To illustrate the usage of the new Itô formulas introduced in previous sections, we
will establish simpler versions of Theorems 5.1 and 6.1 for functions of Brownian
motion. Let Xa = Ba, g(t) ≡ 1, and γ(t) ≡ 0, so that the process Xt becomes Bt.
Also, let Y (b) = 0, h(t) ≡ 1, and χ(t) ≡ 0, so that the process Y (t) becomes Bb−Bt.
Using the above in Theorem 5.1 gives us the following corollary.
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Corollary 7.1. Suppose that θ(x, y) = f(x)ϕ(y), where f, ϕ ∈ C2(R). Then

θ(Bt, Bb −Bt) = θ(Ba, Bb −Ba)

+

∫ t

a

∂θ

∂x
(Bs, Bb −Bs) dBs +

1

2

∫ t

a

∂2θ

∂x2
(Bs, Bb −Bs) ds

−
∫ t

a

∂θ

∂y
(Bs, Bb −Bs) dBs −

1

2

∫ t

a

∂2θ

∂y2
(Bs, Bb −Bs) ds.

Similarly, Theorem 6.1 becomes

Corollary 7.2. Suppose that θ(x, y) = f(x)ϕ(y), where f ∈ C2(R), and ϕ ∈ C∞(R)
has Maclaurin expansion with infinite radius of convergence. Then

θ(Bt, Bb −Ba) = θ(Ba, Bb −Ba) +

∫ t

a

∂θ

∂x
(Bt, Bb −Ba) dBs

+
1

2

∫ t

a

∂2θ

∂x2
(Bt, Bb −Ba) ds+

∫ t

a

∂2θ

∂x∂y
(Bt, Bb −Ba) ds.

Example 7.3. Applying Corollary 7.2 on the interval [0, 1] to a function θ(x, y) =
xn+1

n+1
ym, with m,n ∈ N, we obtain

∫ 1

0

Bn
t B

m
1 dBt =

Bm+n+1
1

n+ 1
−Bm−1

1

∫ 1

0

Bn−1
t

(n
2
B1 +mBt

)
dt.

This shows, how we can express the integral of an anticipating process in terms of
a random variable and a Riemann integral of a stochastic process.

8 Conclusions

We have derived two Itô formulas for Itô processes and their instantly independent
counterparts. Our results are applicable in a variety of situations and extend the
result of Ayed and Kuo (2008). Below, we compare the two formulas derived in this
paper as Theorems 5.1 and 6.1.

Notice that there are 4 main components to the Itô formula in the setting of
the new stochastic integral, namely, x, y, f(x) and ϕ(y). In both formulas derived
above, x is an Itô process and f ∈ C2(R). This assumptions are natural because the
new stochastic integral is an extension of the stochastic integral of Itô, and putting
ϕ(y) ≡ 1 shows that our formulas are in fact extensions of the classical result cited
earlier as Theorems 1.1 and 3.1.

The main differences between Theorem 5.1 and Theorem 6.1 are the properties of
y and ϕ(y). In Theorem 5.1, the process substituted for y is an instantly independent
process that arises in a similar way as the Itô processes do in the theory of adapted
processes. This allows us to work with functions ϕ ∈ C2(R). In Theorem 6.1, we
have derived a formula that allows us to work with random variables that arise from
the instantly independent Itô processes in the place of y. However, this extension
comes at a price of an additional smoothness conditions on the function ϕ. That
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is ϕ has to have infinite radius of convergence of its Maclaurin series expansion. In
many applications, such a requirement should not be too restrictive.

One of the applications of the formulas established in this paper is a solution of
a class of linear stochastic differential equations with anticipating initial conditions
that is presented in an upcoming paper by Khalifa et al. (in preparation).
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