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Abstract

The class of moving average models offers a flexible modeling framework for
Gaussian random fields with many well known models such as the Matérn
covariance family and the Gaussian covariance falling under this framework.
Moving average models may also be viewed as a kernel smoothing of a Lévy ba-
sis, a general modeling framework which includes several types of non-Gaussian
models. We propose a new one-parameter spatial correlation model which
arises from a power kernel and show that the associated Hausdorff dimen-
sion of the sample paths can take any value between 2 and 3. As a result, the
model offers similar flexibility in the fractal properties of the resulting field as
the Matérn model.

Keywords: correlation function; Hausdorff dimension; moving average; power
kernel; random field.

1 Introduction

In this note we consider isotropic Gaussian random fields that can be described as
a kernel smoothing of a Gaussian measure. That is, let X = {X(s) : s ∈ R2} be the
real valued random field given by

X(s) =

∫

R2

k(‖s− u‖)L(du), (1.1)

where k is a deterministic kernel function which is a function of u only via the
Euclidean distance ‖s − u‖ between s and u, and L is the centered, homogeneous
Gaussian measure on the Borel subsets of R2. That is, L is given by L(du) ∼
N (0, σ2du), for σ2 > 0, where du denotes the Lebesgue measure on R2. The Gaus-
sian distribution of the measure is carried over to the random field such that X is
again a Gaussian random field with mean zero and an isotropic covariance function
Cov(X(s1), X(s2)) = Cov(‖s1 − s2‖). This model is typically known as a moving
average model (Matérn, 1986; Yaglom, 1987; Oliver, 1995; Cressie and Pavlicová,
2002), and it is a special case of the linear spatio-temporal Lévy model proposed in
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Jónsdóttir et al. (2008). Hellmund et al. (2008) show that any stationary Gaussian
random field with a continuous and integrable covariance function can be generated
by a kernel smoothing of a homogeneous Gaussian measure.

More generally, the Gaussian measure in (1.1) may be replaced by a homogeneous
Lévy basis. Multivariate stochastic processes that arise as a kernel smoothing of a
Lévy basis have recently been considered in various modeling situations. Jónsdóttir
et al. (2008) propose stochastic space-time growth models for planar objects where
the stochastic term of the growth rate is modeled with such a process. Hellmund et al.
(2008) discuss models for doubly stochastic point processes where the underlying
spatial intensity measure is given by a kernel smoothing of a spatial Lévy basis,
while Jónsdóttir et al. (2011) investigate this framework in an application to brain
imaging. Processes on the sphere are studied in Hansen et al. (2011) in the context
of modeling three dimensional star-shaped random sets and statistical inference for
such models is discussed in Ziegel (2012).

The covariance structure of the random field X determines the Hausdorff dimen-
sion of the graph Gr X = {(t,X(t)) : t ∈ R2} which characterizes the roughness or
the smoothness of the field. For a random field in R2, the Hausdorff dimension of
the graph varies between 2 and 3, with the lower limit corresponding to a smooth,
differentiable surface, while the upper limit corresponds to an excessively rough,
space-filling surface (Falconer, 1990). The concept dates back to Hausdorff (1919)
and the literature contains a rich discussion of Hausdorff dimension and the esti-
mation thereof for Gaussian random fields over general Euclidean spaces, cf. Adler
(2010), Xue and Xiao (2011), Gneiting et al. (2012), and references therein.

In Section 2, we investigate the fractal properties of the random field model
in (1.1), as described by the Hausdorff dimension, for a number of parametric mod-
els for the kernel function k. Results for the Matérn covariance family, Gaussian
covariances, and correlation functions arising from uniform kernels are briefly re-
viewed. For power kernels, we show that the modeling framework may yield fields
associated with any Hausdorff dimension between 2 and 3 for negative powers, or
a Hausdorff dimension of 2 for positive powers. A few inferential aspects of the
power kernel model are listed in Section 3 and the note then closes with a discussion
section.

2 Fractal properties of moving average Gaussian
random fields

2.1 Preliminaries

Results of Jónsdóttir et al. (2008) imply that the random field X in (1.1) has
mean zero as the measure L has zero mean. Similarly, X has a constant variance
Var(X(s)) = 2πσ2c2, where c2 =

∫∞
0
r k(r)2 dr. To obtain the covariance function,

we use polar decomposition and Jónsdóttir et al. (2008, Eq. (11)) to find that

Cov(X(s1), X(s2))

= 2σ2

∫ ∞

0

r k(r)

∫ π

0

k
(√

r2 − 2r‖s1 − s2‖ cosϕ+ ‖s1 − s2‖2
)

dϕ dr.
(2.1)
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In general, the random field is stationary if the covariance function depends on the
spatial separation vector s1 − s2 only and it is isotropic if the covariance function
depends on the distance ‖s1− s2‖ only, which is the case in (2.1). Furthermore, the
correlation function of X becomes

C(h) =
1

π c2

∫ ∞

0

r k(r)

∫ π

0

k
(√

r2 + h2 − 2rh cosϕ
)

dϕ dr. (2.2)

Assume, for some α, that

α = sup
{
β > 0 : [C(0)− C(h)] = o(hβ), h ↓ 0

}

= inf
{
β > 0 : hβ = o([C(0)− C(h)]), h ↓ 0

}

Then, with probability one, the Hausdorff dimension of the graph Gr X isD(Gr X) =
3 − α/2, where α is called the fractal index of X (Adler, 2010). If, in the equa-
tion above, the supremum is smaller than the infimum, then the Hausdorff di-
mension of the graph will be determined by the upper bound inf { β > 0 : hβ =
o([C(0)− C(h)]), h ↓ 0 }, see Theorem 3.8 in Xiao (2007).

In the following, we study the behavior of [C(0)−C(h)] for a number of paramet-
ric models for the isotropic kernel function k in (1.1). An overview over the models
discussed below is given in Table 1.

2.2 Models of varying Hausdorff dimension

The model in (1.1) may yield the Matérn covariance family (Matérn, 1986; Guttorp
and Gneiting, 2006) with correlation function

C(h) =
(λh)ν

2ν−1Γ(ν)
Kν(λh),

where λ > 0 is a spatial scale parameter, ν > 0 is a smoothness parameter, Γ(·)
denotes the gamma function, and Kν(·) is the modified Bessel function of the second
kind. The Matérn family is closed under convolution in that the correlation functions
above results from (1.1) by applying the kernel function

k(r) =
λ
ν+3
2

π2
ν+1
2 Γ(ν+1

2
)
r
ν−1
2 K ν−1

2
(λr)

(Matérn, 1986; Gneiting et al., 2010; Jónsdóttir et al., 2011). The smoothness pa-
rameter ν defines the Hausdorff dimension of the graph Gr X which equals the
maximum of 2 and 3− ν, see e.g. Adler (2010) and Goff and Jordan (1988).

Hansen et al. (2011) prove that the surface of a three dimensional particle which
radial function is given by a kernel smoothing of a Gaussian measure with a power
kernel will obtain any desired Hausdorff dimension. In the planar case, this power
kernel is given by

k(r) =

{
r−q − 1, 0 < r ≤ 1

0, otherwise
(2.3)
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for 0 < q < 1. The associated correlation function (2.2) takes the form

C(h) =
1

πc2

∫ 1

0

r[r−q − 1]

∫

Ah(r)

[g(h, r, ϕ)−q − 1] dϕ dr,

where g(h, r, ϕ) =
√
r2 + h2 − 2rh cosϕ and Ah(r) = {ϕ ∈ [0, π] : g(h, r, ϕ) ∈

(0, 1] }. While the correlation function is not available in closed form, it can be
shown that the Hausdorff dimension of Gr X is equal to 2 + q, see Theorem 2.1
below. The parameter q is thus a smoothness parameter which here defines the
fractal properties of the resulting sample paths similar to the parameter ν in the
Matérn model above.

Theorem 2.1. Let C be the correlation function in (2.2) with k the power kernel
in (2.3) for 0 < q < 1. Then it holds that

[
C(0)− C(h)

]
∼ aq h

2(1−q), h→ 0,

where

aq =
π2q2

2(1− q)3(2− q)
Γ(1− 1

2
q)2Γ(q)

Γ(1
1
q)2Γ(1− q) .

Proof. Let 0 ≤ h ≤ 1 and 0 < r < 1. Then,

C(0)−C(h)

π c2
=

∫ 1

0

r[r−q − 1]
{∫ π

0

[r−q − 1] dϕ−
∫

Ah(r)

[g(h, r, ϕ)−q − 1] dϕ
}

dr.

For 0 < r < 1 − h it holds that Ah(r) = [0, π], whereas Ah(r) ⊂ [0, π], for 1 − h <
r < 1. Hence, we conduct the integration with respect to r in a two-step procedure.
First, note that a Taylor expansion around zero implies that ((1−h)−q−1) = O(h).
Furthermore, for h small enough, say h < h0, the integral difference within the curly
brackets is smaller than one. Now, for h < h0, an application of the First Mean
Value Theorem for Integration yields that there exists t ∈ (1− h, 1) such that

∫ 1

1−h
r [r−q − 1]

{∫ π

0

[r−q − 1] dϕ−
∫

Ah(r)

[g(h, r, ϕ)−q − 1] dϕ
}

dr

= h t [t−q − 1]
{∫ π

0

[t−q − 1] dϕ−
∫

A(t)

[g(h, t, ϕ)−q − 1] dϕ
}

≤ h [(1− h)−q − 1]

= O(h2).

For the remaining integral term, applying the substitution r = hx yields
∫ 1−h

0

r
[
r−q − 1

] ∫ π

0

[
r−q − g(h, r, ϕ)−q

]
dϕ dr

= h2(1−q)
∫ 1−h

h

0

x
[
x−q − hq

] ∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ dx.
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For x→ 0 we obtain
∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ

= πx−q −
∫ π

0

g(1, x, ϕ)−q dϕ = πx−q +O(x0) ∼ πx−q.

Furthermore, for x→∞ a Taylor expansion of (1 + y)−q/2 around y = 0 yields
∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ = x−q

∫ π

0

[
1− g(1, x−1, ϕ)−q

]
dϕ ∼ −π q2

4
x−q−2.

Hence, we get the following limit result

∫ 1−h
h

0

x
[
x−q − hq

] ∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ dx

−−−−→
h→0

∫ ∞

0

x1−q
∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ dx.

It follows from Hansen et al. (2012, Thm. 2) that
∫ ∞

0

x1−q
∫ π

0

[
x−q − g(1, x, ϕ)−q

]
dϕ dx =

π

2(1− q)2
Γ(1− 1

2
q)2Γ(q)

Γ(1
1
q)2Γ(1− q) .

This result, together with

c2 =

∫ 1

0

r[r−q − 1]2dr =
q2

2(2− q)(1− q) ,

concludes the proof.

2.3 Models of fixed Hausdorff dimension

The power kernel in (2.3) may also be considered for positive powers. That is, let

k(r) =

{
1− rq, 0 < r ≤ 1

0, otherwise
(2.4)

for q > 0. The associated correlation function (2.2) is here given by

C(h) =
1

πc2

∫ 1

0

r[1− rq]
∫

Ah(r)

[1− g(h, r, ϕ)q] dϕ dr,

with g(h, r, ϕ) and Ah(r) defined as above. To calculate the fractal index of X under
this model, similar arguments as in the proof of Theorem 2.1 show that

q2π

2(q + 1)(q + 2)

[
C(0)− C(h)

]
∼ O(h2) +

∫ 1−h

0

r[1− rq]
∫ π

0

[
g(h, r, ϕ)q − rq

]
dϕdr.
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For the remaining integral, the First Mean Value Theorem for Integration yields
that
∫ 1−h

0

r[1− rq]
∫ π

0

[
g(h, r, ϕ)q − rq

]
dϕdr ≤ (1− h)2

∣∣∣
∫ π

0

[
g(h, r, ϕ)q − rq

]
dϕ
∣∣∣.

Further, a Taylor approximation of f(h) = g(h, r, ϕ)q − rq around h = 0 shows that
∫ π

0

[
g(h, r, ϕ)q − rq

]
dϕ = O(h2).

The graph Gr X for the resulting random field X thus has Hausdorff dimension 2
independent of the value of q.

A smooth, differentiable surface may also be obtained with a Gaussian kernel,

k(r) =
1

2πω2
exp

(
− r2

2ω2

)
,

with mean zero and variance ω2. The correlation function is here given by C(h) =
exp(−h2/(4ω2)), see e.g. Matérn (1986), from which it can easily be seen that
D(Gr X) = 2 as for the power kernel in (2.4) above.

Both Jónsdóttir et al. (2011) and Hansen et al. (2011) consider a bounded uni-
form kernel which here takes the form k(r) = 1{r ≤ R}/(πR2) for R > 0, where
1{·} denotes the indicator function. As shown e.g. in Jónsdóttir et al. (2011), the
correlation function (2.2) becomes

C(h) =
[ 2

π
arccos

( h

2R

)
− 1

2πhR2

√
4R2 − h2

]
1{h ≤ 2R}

from which it directly follows that D(Gr X) = 2.5. This result coinsides with the
corresponding result on the sphere (Hansen et al., 2011).
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Table 1: The kernel functions k(r) discussed in this note, the respective parameters, the
resulting correlation functions C(h), and the associated Hausdorff dimension of the sample
paths D(Gr X).

k(r) Parameter C(h) D(Gr X)

λ
ν+3
2 r

ν−1
2

π2
ν+1
2 Γ(ν+1

2 )
K ν−1

2
(λr) λ > 0, ν > 0

(λh)ν

2ν−1Γ(ν)
Kν(λh) max{2, 3− ν}

1{r ∈ (0, 1]}[r−q − 1] q ∈ (0, 1)
1

πc2

∫
rk(r)

∫

Ah(r)

[g(h, r, ϕ)−q − 1]dϕdr 2 + q

1{r ≤ R}/[πR2] R ≥ 0 1{h ≤ 2R}
[

2

π
arccos

(
h

2R

)
−
√

4R2 − h2
2πhR2

]
2.5

1{r ∈ (0, 1]}[1− rq] q > 0
1

πc2

∫
rk(r)

∫

Ah(r)

[1− g(h, r, ϕ)q]dϕdr 2

1

2πω2
exp

(
− r2

2ω2

)
ω ≥ 0 exp

(
− h2

4ω2

)
2

3 Inferential aspects of the power kernel model

Moving average models based on the power kernels in (2.3) and (2.4) are simple
in the sense that they only have two parameters, the smoothness parameter q and
the variance of the underlying measure σ2. However, inference methods such as
maximum likelihood inference are somewhat complicated by the lack of a closed form
for the correlation function. An approximative inference for both the kernel and the
underlying measure could be provided by the general Bayesian inference framework
described in Wolpert and Ickstadt (1998). The advantage of this framework is its
flexibility, the method does not rely on the Gaussian assumption, while its downside
is the computational complexity. For the negative power kernel, there is a direct
link between the fractal properties of the field and the smoothness parameter q. In
this case, q can be estimated by applying any of the methods for estimating the
fractal dimension of spatial data described in Gneiting et al. (2012). The variance
parameter σ2 may then be estimated e.g. by applying the method of moments.

When the data is observed on a lattice, inference is often performed using the
spectral representation of the data, see e.g. Fuentes and Reich (2010) and references
therein. The spectral density of the random field X in (1.1) under the power kernel
in (2.3) is given by

f(ω) =
πσ2

4

q2

(2− q)(1− q)
( +∞∑

n=0

(−1)n
( 1

(n+ 1− q/2)
− 1

n+ 1

) ‖ω‖2n
22nn!Γ(n+ 1)

)2
.

To see this, recall the definition of the spectral density under an isotropic moving
average model

f(ω) =
1

(2π)2

∫

R2

Cov(‖s‖)e−iω·sds =
1

(2π)2
Var(X)

[ ∫

R2

k(‖s‖)e−iω·sds
]2
,
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where Cov(‖s‖) = Var(X)
∫
R2 k(‖u‖)k(‖s + u‖)du. Polar decomposition, formula

10.32.1 of Digital Library of Mathematical Functions (2011), and Wolfram Function
Site (2001), respectively, yield

∫

R2

k(‖s‖)e−iω·sds =

∫ 1

0

rk(r)

∫ 2π

0

exp(−ir‖ω‖ cos θ)dθdr

= 2π

∫ 1

0

r(r−q − 1)J0(r‖ω‖)dr

=
2π

2− q 1F2

(
1− q

2
; 1, 2− q

2
;−‖ω‖

2

4

)
− 2π‖ω‖−1J1(‖ω‖),

where J0 and J1 are Bessel functions and 1F2 is a generalized hypergeometric func-
tion.

For the positive power kernel in (2.4), the spectral density becomes

f(ω) =
πσ2q2

(2 + q)(1 + q)

[
‖ω‖−1J1(‖ω‖)−

1

2 + q
1F2

(
1 +

q

2
; 1, 2 +

q

2
;−‖ω‖

2

4

)]2
. (3.1)

When q = 2, the density in (3.1) equals f(ω) = 4πσ2‖ω‖−4J2(‖ω‖)2/3. As J2(r)2 =
O(r−1) when r →∞ (Digital Library of Mathematical Functions, 2011, formula 10.7.8)
it follows that the sample paths of X are differentiable for q = 2, see Section 1.4.1.
in Adler (2010) and Theorem 3.2 in Potthoff (2010), or Corollary 5.3.17 in Scheuerer
(2009).

4 Discussion

Kernel smoothing of a Lévy basis offers a general and flexible framework for mul-
tivariate stochastic processes. We consider a special case, moving average Gaussian
random fields, and show that smoothing of a power kernel with a Gaussian measure
results in fields whose graph can attain any Hausdorff dimension between 2 and 3
for negative powers and a Hausdorff dimension equal to 2 for positive powers. Even
though the correlation function is not available in closed from, this one-parameter
correlation model offers an appealing alternative to the Matérn family which also
provides fields with varying associated Hausdorff dimension.

We have here focused on isotropic covariance models. Isotropy, along with sta-
tionarity, are clearly not always realistic assumptions. Under the Gaussian assump-
tion, the correlation function depends only on the associated kernel function. A natu-
ral extension of the current framework to non-isotropic or non-stationary covariance
models thus involves applying non-isotropic or spatially varying kernel functions.
Extensions in this direction for similar models are discussed in Higdon et al. (1999)
and Paciorek and Schervish (2006), where the Euklidean distance between location
is replaced by a spatially varying Mahalanobis distance, and in Vianna Neto et al.
(2012), where non-stationary is obtained through spatially varying covariates. The
power kernel model is especially appealing for such extensions in that the kernel
function itself is a very simple function and it is thus straightforward to obtain the
desired variability in the kernel.
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Similarly, the Gaussian assumption can easily be relaxed by considering non-
Gaussian Lévy basis, see Jónsdóttir et al. (2008). An example where a gamma basis
is utilized can be found in Wolpert and Ickstadt (1998). While non-Gaussian theory
on the Hausdorff dimension remains elusive, the results of Hansen et al. (2011)
indicate that the smoothness of the surface of a Gamma random field is likely to
correspond to that of a Gaussian random field with the same correlation structure.
Shieh and Xiao (2010) provide results for the Hausdorff dimension of the sample
paths of self-similar stable random fields which might provide insight in this case.
However, the random fields obtained using the kernel functions in Table 1 with a
non-Gaussian Lévy basis are generally not self-similar. Results regarding regularity
of the sample paths for non-Gaussian random fields are given in Scheuerer (2010).
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