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Abstract
We solve a stock-bond-cash portfolio choice problem for a risk- and ambiguity-
averse investor in a setting where the inflation rate and interest rates are
stochastic. The expected inflation rate is unobservable, but the investor may
learn about it from realized inflation and observed stock and bond prices. The
investor is aware that his model for the observed inflation is potentially mis-
specified, and he seeks an investment strategy that maximizes his expected
utility from real terminal wealth and is also robust to inflation model misspec-
ification. We solve the corresponding robust Hamilton-Jacobi-Bellman equa-
tion in closed form and derive and illustrate a number of interesting properties
of the solution. For example, ambiguity aversion affects the optimal portfolio
through the correlation of price level with the stock index, a bond, and the
expected inflation rate. Furthermore, unlike other settings with model ambi-
guity, the optimal portfolio weights are not always decreasing in the degree of
ambiguity aversion.

1 Introduction

Since the seminal work of Merton (1969, 1971), numerous studies have been devoted
to the optimal portfolio choice of a risk-averse investor under various assumptions.
The vast majority of these papers, including Merton’s papers, make the unrealis-
tic assumption that the probability distributions of all relevant random quantities
are known by the investor. Following the ideas of Knight (1921), the experimental
studies of Ellsberg (1961) and Bossaerts et al. (2010) show that individuals are not
only averse to risk (known probability distribution), but also averse to ambiguity
(unknown probability distribution). In this paper we solve the problem of a risk-
and ambiguity-averse investor who can invest in a stock (index), a long-term nom-
inal bond, and in short-term deposits (cash). Interest rates and the inflation rate
vary stochastically. The investor does not observe the expected inflation rate and is
uncertain about the correct process for the consumer price level. Using the robust
control approach of Anderson, Hansen, and Sargent (2003), we derive the optimal
investment strategy in closed form, compare it with important special cases, and
illustrate the properties of the optimal portfolio by a numerical example.
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Our paper extends the existing literature studying the impact of inflation on
portfolio choice. Campbell and Viceira (2001) and Brennan and Xia (2002), among
others, specify the price processes of tradable assets in nominal terms as well as
the inflation process and derive and study optimal dynamic portfolios of investors
with constant relative risk aversion. In these papers all relevant state variables are
assumed observable and the probability distributions of all processes are assumed
known. Bensoussan, Keppo, and Sethi (2007) assume the investor observes the con-
sumer price index with noise and, thus, the inflation rate is not fully observed, but
an estimate can be filtered from observed quantities. This estimate is then used for
determining the real wealth and real consumption. Chou, Han, and Hung (2011)
assume that the price level is fully observable but that the expected inflation rate
is unobservable to investor. All these papers disregard model uncertainty. We al-
low for an unobservable expected inflation rate and uncertainty about the relevant
consumer price index. Next, we motivate these two model features.

The inflation rate is the change in the price level of a basket of consumption
goods. Although the price level is directly observable to the investor, it is reasonable
to assume that the drift of the price level process – the expected inflation rate – is
not directly observed from the prices of consumer goods or financial assets nor from
publications of macroeconomic statistics. Using the Bayesian approach formalized by
Liptser and Shiryaev (2001), the investor learns about the process for the expected
inflation rate from observations of the price level, the stock price, and the interest
rate if the expected inflation is correlated with these variables.

We also assume that the investor is uncertain about the correct process to use for
the observed inflation process and wants to derive a portfolio strategy which is robust
to a potential model misspecification. This is a reasonable model feature because the
identification of a particular inflation process requires a substantial amount of data
(see Anderson, Hansen, and Sargent (2003) for a discussion of this issue) which might
not be available for the investor. First, the official consumer price index may reflect a
different composition of consumption goods than that preferred by the investor and
can therefore be inappropriate for the individual investor. Secondly, the composition
of the basket of goods changes over time with weights varying, new goods entering
and other goods leaving the index. Thirdly, the official consumer price index may not
appropriately reflect changes in the quality of the different goods (see the discussion
in Griliches (1961) and Prentice and Yin (2000)). We focus on uncertainty about the
inflation process, but we allow uncertainty about the inflation process to spill over
into uncertainty about the expected nominal return on the stock and the bond. Such
an effect would be in line with the discussions of Uppal and Wang (2003) and Vardas
and Xepapadeas (2012) who argue that when ambiguity is related to economy-wide
factors, the preference for robustness is the same for all processes in the model.

The investor has a reference model for the observed inflation process but he
is also aware of the fact that other models might be a better representation of
reality. As a result, he wants to derive investment rules that are robust to the
proposed type of inflation model misspecification and that perform reasonably well
across a set of plausible models. The discrepancy between the reference model and
alternative models is defined in terms of relative entropy which serves as a penalty in
the optimization procedure. This penalty measures the investor’s uncertainty about
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the reference model. Following Anderson, Hansen, and Sargent (2003), the optimal
portfolio is obtained in closed form after solving the robust Hamilton-Jacobi-Bellman
equation associated with our dynamic decision problem.

In the optimal portfolio of our model, the ambiguity aversion parameter is multi-
plied by various combinations of the correlation coefficients between the stock, bond,
inflation, and expected inflation rate. In particular, if the price level process is not
correlated with the securities then the level of uncertainty about the inflation model
misspecification does not influence the optimal portfolio. This stands in contrast
with the results of Maenhout (2004), Flor and Larsen (2011), and Branger, Larsen,
and Munk (2012), among others, where the ambiguity aversion parameter enters the
optimal portfolio independently. In these papers the agent is uncertain about the
models for tradable assets whereas in our model the ambiguity is about the inflation
process which implies that the securities can only be used as a hedge against the
inflation uncertainty if the former are correlated with the price level process.

We show that the uncertainty about the inflation process affects the investor’s
positions in both the stock and the bond. This differs from Flor and Larsen (2011)
where ambiguity about the interest rate process influences only the optimal bond
position because the bond is a perfect instrument for hedging against the interest
rate risk. When the investor is ambiguous about the inflation process, his optimal
positions in both assets are affected because neither the stock nor the bond can
perfectly hedge against the inflation risk.

In our model with ambiguity about the inflation model, a more risk-averse in-
vestor does not necessarily have smaller speculative components in his optimal port-
folio of the stock and a bond. Although in models with no ambiguity (see, for exam-
ple, Sørensen (1999) and Munk and Sørensen (2004)) the speculative components
decrease as the risk aversion increases, this is generally not so when model uncer-
tainty is introduced (see, for example, Rothschild and Stiglitz (1971), Fishburn and
Porter (1976), Meyer and Ormiston (1985), Hadar and Seo (1990), Gollier (1995)).
In our model the behavior of the speculative portfolios with respect to the risk aver-
sion depends on numerous parameter values. However, in a special case when the
price level process is positively correlated with the stock price and the stock price
is negatively correlated with the bond, then the speculative components are indeed
decreasing in risk aversion.

The optimal investment strategies with stochastic interest rates have been stud-
ied in many papers. Sørensen (1999) and Korn and Kraft (2001) provide a solution
for an investor who can invest in the stock index and a bond in a setting with the
Vasicek (1977) term structure. Campbell and Viceira (2001) and Brennan and Xia
(2002) analyze the effect of inflation on the optimal investment strategy. Koijman,
Nijman, and Werker (2011) study optimal consumption and portfolio problem taking
into account annuity risk at retirement. Van Hemert (2005) considers mortgages as a
part of a homeowner’s financial portfolio. In Munk and Sørensen (2004) the solution
is obtained for non-Markovian dynamics of the opportunity set. Munk and Sørensen
(2010) solve the problem for the investor with stochastic labor income. All processes
in these papers are assumed to be known and all parameters are observable.

By allowing both for learning about the expected inflation rate and for price
level model uncertainty, our paper combines two strands of the portfolio choice

3



literature. Gennotte (1986), Brennan (1998), Lakner (1998), and Bjørk, Davis, and
Landén (2010) assume that the expected rates of return on the risky assets are
unobserved. As mentioned above, Bensoussan, Keppo, and Sethi (2007) and Chou,
Han, and Hung (2011) investment problems with partial observability of inflation
process parameters has been studied in other papers. On the other hand, several
papers assume all parameters and variables are observable but incorporate model
uncertainty into a portfolio choice problem. Maenhout (2004) adapts the general
robust control framework of Anderson, Hansen, and Sargent (2003) to a dynamic
portfolio choice problem with power utility. He considers the simple Merton setting
with a single stock and a riskless asset with constant investment opportunities and
assumes ambiguity about the expected rate of return on the stock. In an extension,
Maenhout (2006) investigates the role of ambiguity aversion when the expected
stock return varies over time following an Ornstein-Uhlenbeck process. Liu (2010)
extends that analysis to Epstein-Zin preferences. Flor and Larsen (2011) solve the
optimal investment problem when the investor is ambiguous about the models for
the interest rate and the stock. These papers assume that all parameters and state
variables are observable.

Finally, two recent papers study portfolio choice models involving both unobserv-
ability and ambiguity, as we do. Liu (2011) considers a model with a regime-switching
expected stock return with the current regime being unobservable. Branger, Larsen,
and Munk (2012) extend the model of Maenhout (2006) to the case where the ex-
pected stock return also has an unobservable component and the investor learns
about this component based on observed stock returns and the observable com-
ponent of the expected stock return. We focus on unobservability and ambiguity
related to inflation instead of the expected stock return.

This paper if organized as follows. In Section 2 we formulate the portfolio choice
problem. In Section 3 we provide the optimal solution, discuss it, and compare it
with optimal solutions to other relevant models. In Section 4 we analyze the optimal
portfolios in a numerical example based on estimates of all model parameters. In
particular, to determine a reasonable range for the ambiguity aversion parameter,
we compute the so-called detection-error probabilities. The proofs of some results
are given in the Appendix.

2 Mathematical Formulation

Let (Ω,F ,P) be a complete probability space with a right-continuous filtration
{Fs}s∈[0,T ]. All stochastic processes introduced below are defined on this proba-
bility space. We consider an investor who can trade in a stock (index), zero-coupon
bonds, and a money market account (cash).

According to the Vasicek (1977) model, the nominal short-term interest rate
follows an Ornstein-Uhlenbeck process

drt = κ(r̄ − rt)dt− σrdBP
t (2.1)

where κ > 0 is the degree of mean reversion, r̄ > 0 is the long-run mean of the
interest rate, σr > 0 is the interest rate volatility, and BP

t is a standard Brownian
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motion. Let qr be the market price of interest rate risk which is assumed to be
constant. With this dynamics for the short-term interest rate, the price Pt of a
nominal zero-coupon bond paying one unit of account at time T̄ is given by

Pt = e−a(T̄−t)−bκ(T̄−t)rt

where the functions a and bκ are

bκ(x) = 1
κ
(1− e−κx), (2.2)

a(x) =
(
r̄ +

σrqr
κ
− σ2

r

2κ2

)
(x− bκ(x)) +

σ2
r

4κ
bκ(x)2.

From Ito’s lemma, the dynamics of the price of such a bond is

dPt = Pt

(
(rt + q)dt+ σPdB

P
t

)
,

where q = qrσP is the expected excess return on the bond and σP = σrbκ(T̄ − t) is
the bond price volatility.1 Note that because interest rates are driven by a one-factor
model, an unconstrained investor would not benefit from trading in more than one
bond, and the investor can obtain exactly the same utility no matter which bond
he trades in.

The agent can also invest in a stock index with nominal price St modeled by

dSt = St

(
(rt + α)dt+ σSdB

S
t

)
(2.3)

where the positive constants α and σS are the expected excess return and volatility,
respectively, and BS

t is a standard Brownian motion.
Let Xt denote the nominal value of the investor’s portfolio at time t. The evolu-

tion of the portfolio value is

dXt = rt(Xt −ΘS
t −ΘP

t )dt+ ΘS
t

dSt
St

+ ΘP
t

dPt
Pt

= Xt

(
(rt + αΠS

t + qΠP
t )dt+ σSΠS

t dB
S
t + σPΠP

t dB
P
t

)

where ΘS
t and ΘP

t represent the amounts of wealth invested in the stock and the
bond, respectively. Equivalently, ΠS

t and ΠP
t represent the fractions of wealth in-

vested in the stock and the bond, respectively, so that 1−ΠS
t −ΠP

t is the fraction of
wealth invested in the bank account that provides a return given by the short-term
interest rate. Thus, the control (strategy) is represented by (ΠS

t ,Π
P
t ).

Let Zt be the price level of the consumption good or a basket of consumption
goods. Define the price level process

dZt = βtZtdt+ σZZtdB
Z
t (2.4)

1For simplicity of notation we suppress the dependence of σP on T̄ − t.
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with the unobserved drift parameter (the expected inflation rate) given by

dβt = λ(β̄ − βt)dt+ σβdB
β
t (2.5)

where λ > 0 is the degree of mean reversion, β̄ > 0 is the long-run mean of the ex-
pected inflation rate, σZ is the price level process volatility, σβ is the volatility of the
expected inflation rate, and BZ

t , B
β
t are standard Brownian motions. The Brownian

motions BZ
t , B

S
t , B

P
t , B

β
t are assumed to be correlated with the correlation matrix



1 ρZS ρZP ρZβ
ρZS 1 ρSP ρSβ
ρZP ρSP 1 ρPβ
ρZβ ρSβ ρPβ 1


 .

We assume that the correlation coefficients take values in the interval (−1, 1). The
process (2.4) and Ornstein-Uhlenbeck process (2.5) are quite common in modeling
the price level and the expected inflation rate, respectively, see for example, Brennan
and Xia (2002) and Bensoussan, Keppo, and Sethi (2009). However, in Brennan
and Xia (2002) the expected inflation rate is assumed to be observable, whereas in
Bensoussan, Keppo, and Sethi (2009) the expected inflation rate is constant, but
the price level is assumed to be unobservable.

Since the Brownian motions BZ
t , B

S
t , B

P
t , B

β
t are assumed to be correlated, the

investor can obtain an estimate β̂t of the unobserved expected inflation rate βt based
on the observed processes St, Zt, rt using Bayesian learning. According to Liptser
and Shiryaev (2002), the Equations (2.1), (2.3), (2.4), and (2.5) as observed by the
investor are (see Appendix A)

dZt = β̂tZtdt+ ZtσZdB̂
Z
t , (2.6)

dSt = St

(
(rt + α)dt+ σS(ρZSdB̂

Z
t +

√
1− ρ2

ZSdB̂
S
t )
)
, (2.7)

drt = κ(r̄ − rt)dt− σr
(
R3dB̂

Z
t +R4dB̂

S
t +R5dB̂

P
t

)
, (2.8)

dβ̂t = λ(β̄ − β̂t)dt+ AZσZdB̂
Z
t + ASσSdB̂

S
t + APσPdB̂

P
t , (2.9)

where (B̂Z
t , B̂

S
t , B̂

P
t )T is an FS,Z,rt -adapted Brownian motion with the filtration FS,Z,rt =

σ{Sτ , Zτ , rτ |τ ≤ t} and

AP =
m(R1R4 −R2R3) + σZσβR2R5R8

σPσZR2R5

, AS =
−R1m+ σZσβR2R7

σSσZR2

,

AZ =
σZσβR6 +m

σ2
Z

, R1 = ρZS, R2 =
√

1− ρ2
ZS, R3 = ρZP ,

R4 =
ρSP − ρZSρZP√

1− ρ2
ZS

, R5 =
√

1−R2
3 −R2

4, R6 = ρZβ, R7 =
ρSβ − ρZSρZβ√

1− ρ2
ZS

,

R8 =
ρPβ −R3R6 −R4R7

R5

, R9 =
√

1−R2
6 −R2

7 −R2
8.

Here m is the limit value (as t → ∞) of the deterministic variance given by mt =
E[(βt − β̂t)2|FS,Z,rt ] and it can be shown that

m =
−K̄2 +

√
K̄2

2 − 4K̄1K̄3

2K̄1

,

6



where

K̄1 =
(R2R5)2 + (R1R5)2 + (R1R4 −R2R3)2

(σZR2R5)2
,

K̄2 = 2λ+
2σZσβ

(
ρZβ(R2R5)2 −R1R2R

2
5R7 + (R1R4 −R2R3)R2R5R8

)

(σZR2R5)2
,

K̄3 = σ2
β(ρ2

Zβ +R2
7 +R2

8)− σ2
β.

We assume that learning was long enough and take the variance to be equal to m.2
Equations (2.6)–(2.9) constitute the reference model of the investor.

As it was mentioned in the Introduction, our investor is uncertain about the
probability distribution for the observed processes (2.6)–(2.9). In other words, he
realizes that the reference model is only an approximation of reality, and he wants
to consider a set of plausible, alternative models which we now specify. Let et be
an FS,Z,rt -progressively measurable process (valued in R) and define the Radon-
Nikodým derivative process

ξet = E
[dPe
dP

∣∣∣FS,Z,rt

]

= exp
(
−
∫ t

0

((1 + k2
S + k2

P )e2
s

2
ds− es(dB̂Z

s + kSdB̂
S
s + kPdB̂

P
s )
))

(2.10)

where kS and kP are constants. According to Girsanov’s theorem, the process



B̃Z
t

B̃S
t

B̃P
t


 =




∫ t
0
esds+ B̂Z

t

kS
∫ t

0
esds+ B̂S

t

kP
∫ t

0
esds+ B̂P

t




is a Brownian motion with respect to probability measure Pe.
According to this model misspecification, we rewrite the equations for the wealthXt,

the price level process Zt, the short-term interest rate rt, and the estimate of ex-
pected inflation β̂t in the form

dXt = Xt

(
rt + αΠS

t + qΠP
t − (σSΠS

t a1 + σPΠP
t a2)et

)
dt

+K1dB̃
Z
t +K2dB̃

S
t +K3dB̃

P
t , (2.11)

dZt = Zt

(
(β̂t − σZet)dt+ σZdB̃

Z
t

)
, (2.12)

drt =
(
κ(r̄ − rt)− a3et

)
dt− σrR3dB̃

Z
t − σrR4dB̃

S
t − σrR5dB̃

P
t , (2.13)

dβ̂t =
(
λ(β̄ − β̂t)− a4et

)
dt+ AZσZdB̃

Z
t + ASσSdB̃

S
t + APσPdB̃

P
t , (2.14)

where for simplicity we introduced the following notation a1 = R1 + kSR2, a2 =
R3 +kSR4 +kPR5, a3 = −σra2, a4 = AZσZ +kSASσS +kPAPσP , K1 = σSΠS

t XtR1 +
σPΠP

t XtR3, K2 = σSΠS
t XtR2 +σPΠP

t XtR4, and K3 = σPΠP
t XtR5. These equations

2The same assumption was made by Scheinkman and Xiong (2003), Dumas, Kurshev, and Uppal
(2009), and Branger, Larsen, and Munk (2012).
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represent alternative models indexed by the process et. The investor is uncertain
about which model from the set (2.11)–(2.14) is the true model and wants to derive
robust investment rules that work reasonably well for all these models.

Since the processes in (2.6)–(2.9) are assumed to be correlated, the ambiguity
about the inflation might translate into the inflation-specific ambiguity about the
other processes. The constants kS and kP determine whether the price level un-
certainty influences the stock price and interest rate processes. In particular, we
have

dSt = St

[(
rt + α− σS(R1 + kSR2)et

)
dt+ σS(R1dB̃

Z
t +R2dB̃

S
t )
]
.

Thus, if kS = −ρZS/
√

1− ρ2
ZS, then there is no ambiguity about the stock price

(a1 = 0). If in addition kP = R1R4−R2R3

R2R5
, then there is also no uncertainty about the

interest rate process (a2 = 0). Any other values of kS and kP imply that uncertainty
about the price level spills over into uncertainty about the expected nominal stock
return and about the expected nominal bond return. This setting is similar to Uppal
and Wang (2002) and Vardas and Xepapadeas (2012) where the cases with equal
and different component perturbations to a Brownian motion are considered. Here,
equal perturbations mean that ambiguity is related to economy-wide factors and,
thus, the preference for robustness is the same for all processes.

We consider an agent with CRRA (constant relative risk aversion) utility, who
wants to derive an investment strategy for the time interval [0, T ] in order to maxi-
mize the expected utility from real terminal wealth XT/ZT . Let us denote the state
variables by y , (x, z, r, β̂) and the optimal investment strategy by Π , (ΠS

t ,Π
P
t ).

Therefore, we define the reward functional realized when choosing an alternative
model specified by e as

we(t, y,Π) =
1

1− γE
Pe
t,y

[(XT

ZT

)1−γ]
, (2.15)

and the value function as

v(t, y) = sup
Π∈U [t,T ]

inf
e∈E[t,T ]

(
we(t, y,Π) + EPe

t,y

[ ∫ T

t

e2
s

2Ψ(s, Ys)
ds
])

(2.16)

where the parameter γ > 0, γ 6= 1 is the constant relative risk aversion and
∫ T

t

e2
s

2Ψ(s,Xs, Zs, rs, β̂s)
ds

is the penalty term for deviating from the reference model.3 To obtain wealth-
independent optimal portfolio weights, and also for analytical tractability, we follow
Maenhout (2004) by assuming that Ψ(t, y) = θ

(1−γ)v(t,y)
, where θ > 0 is called the

ambiguity aversion parameter.4 A large value of Ψ corresponds to a small penalty,
which means that the investor is more uncertain about the model.

3To simplify the notation, we write Π instead of {(ΠS
s ,Π

P
s )}s∈[t,T ] and e instead of {es}s∈[t,T ].

The expectation operator with respect to the probability measure Pe is defined as EPe

t,y[·] ,
EPe

[·|Xt = x, Zt = z, rt = r, β̂t = β̂].
4For a critique of this approach, see Pathak (2002).
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We define the space U of admissible strategies {Πs}s∈[0,T ], taking values in R2,
as strategies that satisfy the following conditions

1. Π : [0, T ]× Ω→ R2 is an FS,Z,rt -progressively measurable process;

2. Under Π, for any x ∈ (0,∞), the wealth equation (2.11) admits a unique
strong solution;

3. The integrability conditions necessary for the expectation operator in (2.15)
to be well defined are satisfied;

4. Xt ≥ 0, a.s., t ∈ [0, T ].

The space E [0, T ] is defined to be the space of FS,Z,rt -progressively measurable pro-
cesses et such that the process (2.10) is a Radon-Nikodým derivative.

3 Solution

The problem (2.16) is difficult to solve directly. We derive and solve a corresponding
highly non-linear second-order partial differential equation that the value function
v(t, y) should satisfy, the so-called robust Hamilton-Jacobi-Bellman (HJB) equation,
see Anderson, Hansen, and Sargent (2003). Let π = (πS, πP ) be the vector of frac-
tions of wealth invested at time t ∈ [0, T ] in the stock (πS) and the bond (πP ), then
the corresponding robust HJB equation is

sup
π∈R2

inf
e∈R

{
vt + z

(
β̂ − σZe

)
vz + x

(
r + απS + qπP − [σSπ

Sa1 + σPπ
Pa2]e

)
vx

+
(
κ(r̄ − r)− a3e

)
vr +

(
λ(β̄ − β̂)− a4e

)
vβ̂ + 1

2
(zσZ)2vzz

+ σZxz
(
σSπ

SρZS + σPπ
PρZP

)
vzx − σZσrzρZPvzr + σ2

ZAZzvzβ̂

+ 1
2
x2
(
(σSπ

S)2 + (σPπ
P )2 + 2σSσPπ

SπPρSP
)
vxx

− σrx
(
σPπ

P + σSπ
SρSP

)
vxr + σβx

(
σSπ

SρSβ + σPπ
PρPβ

)
vxβ̂ + 1

2
σ2
rvrr

− σrσβρPβvrβ̂ + 1
2

(
(AZσZ)2 + (ASσS)2 + (APσP )2

)
vβ̂β̂ +

e2

2Ψ

}
= 0.

We assume that the value function is sufficiently smooth and that the HJB equation
admits a classical solution.

Proposition 3.1. The solution to problem (2.16) is of the form

v(t, x, z, r, β̂) =
1

1− γ
(x
z

)1−γ
h(t, r, β̂).

The function h(t, r, β̂) is given by

h(t, r, β̂) = exp
(
−(1− γ)bλ(T − t)β̂ + (1− γ)bκ(T − t)r + c(t)

)
,

where bκ is defined in (2.2) (bλ is defined similarly), and the function c(t) solves the
ordinary differential equation (B.5) in Appendix B. The worst-case shock is

e∗ = θ
(
σSπ

Sa1 + σPπ
Pa2 − σZ + a3bκ(T − t)− a4bλ(T − t)

)
(3.1)
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and the optimal investments in the stock and the bond, respectively are

πS1 = πSspec + πSinfl + πSratebκ(T − t) + πSunobsbλ(T − t),
πP1 = πPspec + πPinfl + πPratebκ(T − t) + πPunobsbλ(T − t),

where

πSspec =
1

σSK

(
α
γ + θa2

2

γσS
− qγρSP + θa1a2

γσP

)
,

πSinfl =
σZ(θa1 − (1− γ)ρZS)(γ + θa2

2)− σZ(θa2 − (1− γ)ρZP )(γρSP + θa1a2)

γσSK
,

πSrate =
θσra2(a1 − a2ρSP )

γσSK
,

πSunobs =
1

γσSK

[
θγa4(a1 − a2ρSP )

− σβ(1− γ)
(

(γ + θa2
2)ρSβ − (γρSP + θa1a2)ρPβ

)]
,

πPspec =
1

σPK

(
q
γ + θa2

1

γσP
− αγρSP + θa1a2

γσS

)
,

πPinfl =
σZ(θa2 − (1− γ)ρZP )(γ + θa2

1)− σZ(θa1 − (1− γ)ρZS)(γρSP + θa1a2)

γσPK
,

πPrate =
θσra2(a2 − a1ρSP )

γσPK
+
σr(γ − 1)

γσP
,

πPunobs =
1

γσPK

[
γθa4(a2 − a1ρSP )

− σβ(1− γ)
(

(γ + θa2
1)ρPβ − (γρSP + θa1a2)ρSβ

)]
,

and

K = γ(1− ρ2
SP ) + θ(a2

1 + a2
2 − 2a1a2ρSP ).

Proof. See Appendix B.

We analyze the portfolio given in Proposition 3.1 for the case when the investor’s
uncertainty about the price level also means that he is ambiguous about the stock
price and the interest rate process, namely, we assume kS = kP = 0 and, thus,
a1 = ρZS and a2 = ρZP . A similar analysis for the case when the agent is uncertain
about the inflation only, which means that a1 = a2 = 0, follows easily.

The optimal wealth allocation to the available securities consists of four com-
ponents. First, we discuss the speculative components πSspec and πPspec which involve
weighted combinations of expected excess returns on the stock (α) and the bond (q).
Similarly to other models with stochastic interest rates (Sørensen (1999), Korn and
Kraft (2001), Flor and Larsen (2011) among others), we also have that if the ex-
pected excess return on the stock increases, then the stock becomes more attractive
which corresponds to the increase in πSspec. On the other hand, the increase in the
expected excess return on the bond makes the bond more attractive for the investor
and the value of πPspec becomes larger. Another difference between the speculative
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components is that πSspec is constant (because q = qrσP , see Section 2) whereas πPspec
is time-dependent (σP = σrb(T̄ − t)).

The terms πSinfl and πPinfl represent the hedge against the inflation risk. The in-
vestor includes this hedge in the portfolio to protect the real value of his wealth. In-
terestingly, even if the stock (bond) is not correlated with the inflation, it still can be
used as the hedge if it is correlated with the bond (stock) which in turn is correlated
with the inflation. On the other hand, these terms vanish if the available securities
cannot be used to hedge against the inflation risk (for the stock ρZS = ρZP = 0 or
ρZS = ρSP = 0, and for the bond ρZP = ρZS = 0 or ρZP = ρSP = 0). The terms
also vanish if the inflation is locally deterministic (σZ = 0) and if ρZS − ρZPρSP = 0
(for the stock) and ρZP − ρZSρSP = 0 (for the bond).5 This property of the optimal
portfolio is similar to Bensoussan, Keppo and Sethi (2009) where the optimal port-
folio includes the hedge against inflation risk if the stock price is correlated with the
inflation.

If the bond price is correlated with the inflation (which is usually the case), the
uncertainty about the latter introduces an extra term πSrate in πS and an additional
term in the component πPrate. These terms vanish if there is no ambiguity (θ = 0),
or the interest rate is locally deterministic (σr = 0), or ρZP − ρZSρSP = 0. This is in
contrast with Flor and Larsen (2011) where stock price and interest rate (not infla-
tion) model ambiguity does not introduce additional terms to the stock investment.
It should also be pointed out that the influence of these components on the optimal
portfolio decreases to zero when the investment horizon T − t approaches zero.

The terms πSunobs and πPunobs arise from unobservability of the stochastic expected
inflation rate. These components appear because the expected inflation rate is as-
sumed to be stochastic and unobservable. The terms disappear if the expected in-
flation rate is deterministic. The presence of terms that hedge against changes in
unobserved parameters is common for the portfolio choice problems (see for exam-
ple Lakner (1998), Bjørk, Davis, and Landen (2010), Branger, Larsen, and Munk
(2012)).

In contrast to Maenhout (2006), where the ambiguity aversion parameter is sim-
ply added to the risk aversion parameter, the ambiguity aversion parameter θ in
our model is multiplied by various combinations of the correlation coefficients ρZS,
ρZP , and ρSP . In particular, if the inflation is uncorrelated with the risky assets
(ρZS = ρZP = 0), then the model uncertainty does not influence the optimal port-
folio because the securities cannot be used in hedging against the inflation model
misspecification. The same explanation holds for the case when a1 = a2 = 0, which
means that the price level ambiguity does not translate into the uncertainty about
the stock price and the interest rate.

Next, we compare the optimal portfolio given in Proposition 3.1 with solutions to
similar investment problems. To make the paper self-contained we briefly describe
each model and provide the corresponding solutions. The following portfolios are
optimal for the investor who wants to maximize the expected utility of:

• terminal wealth (Sørensen 1999, Korn and Kraft 2001). All variables (stock,
bond, and interest rate) are assumed observable with known dynamics. The

5The hedge against the inflation risk is also zero if θ = 1−γ, but since empirical studies support
γ > 1 and θ has to be positive, this is unlikely to be the case.
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model is implicitly stated in real terms as inflation is not modeled. The optimal
portfolio is

πS2 =
ασP − qσSρSP
γσ2

SσP (1− ρ2
SP )

,

πP2 =
qσS − ασPρSP
γσ2

PσS(1− ρ2
SP )︸ ︷︷ ︸

speculative

+
γ − 1

γ

b(T̄ − t)
b(T − t)︸ ︷︷ ︸
hedge

.

The optimal stock investment πS2 is represented by the speculative component
only. On the other hand, the proportion πP2 of wealth invested in the bond
consists of both a speculative and an interest rate hedge component.

• terminal wealth with stock price model ambiguity (Flor and Larsen 2011). All
variables are observable, inflation is not modeled. The investor in uncertain
about the drift of the stock price with associated ambiguity aversion parameter
θS. The optimal portfolio weights in the stock and the bond, respectively, are

πS3 =
ασP − qσSρSP

(γ + θS)σ2
SσP (1− ρ2

SP )
,

πP3 =
qσS

(
γρ2

SP + (γ + θS)(1− ρ2
SP )
)
− αγσPρSP

γ(γ + θS)σ2
PσS(1− ρ2

SP )︸ ︷︷ ︸
speculative

+
γ − 1

γ

b(T̄ − t)
b(T − t)︸ ︷︷ ︸
hedge

.

The introduced uncertainty about the stock price process alters the speculative
components of πS3 and πP3 . It also follows that the component of πP3 that hedges
the interest rate risk does not change when the uncertainty is introduced.

• terminal wealth with bond price model ambiguity (Flor and Larsen 2011). All
variables are observable, inflation is not modeled. The investor in uncertain
about the drift of the bond price with associated ambiguity aversion parameter
θP . Then the optimal investment strategy is

πS4 =
ασP − qσSρSP
γσ2

SσP (1− ρ2
SP )

,

πP4 =
qσS

(
(γ + θP )ρ2

SP + γ(1− ρ2
SP )
)
− α(γ + θP )σPρSP

γ(γ + θP )σ2
PσS(1− ρ2

SP )︸ ︷︷ ︸
speculative

+
γ − 1

γ + θP

b(T̄ − t)
b(T − t)︸ ︷︷ ︸

hedge

+
θP

γ + θP
.

In contrast with the previous model (stock price process ambiguity), the uncer-
tainty about the bond price process influences only the components of πP4 , the
optimal wealth allocation in the bond. The optimal investment in the stock πS4
is the same as πS2 . Comparison of πP3 and πP4 shows that the hedge component
of πP4 hedges both the interest rate risk and the model uncertainty; see Flor
and Larsen (2011) for a discussion of this issue.
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• real terminal wealth with inflation model ambiguity. The investor is uncertain
about the price level dynamics, but can observe the expected inflation rate.
This is our model except that the expected inflation rate in our model is
assumed unobservable. The solution is the same as in Proposition 3.1 but
with m = 0, which in turn means that only components πSunobs and πPunobs
change.6 This also implies that these components do not depend on the price
level process volatility σZ .

• real terminal wealth with no ambiguity, but an unobserved, stochastic expected
inflation rate). This is our model without ambiguity. The solution is the same
as in Proposition 3.1 but with θ = 0.

A comparison of the models shows that different sources of ambiguity influence
different components in the optimal portfolio. Since only bonds are used in hedging
the interest rate risk, the ambiguity about the stock price process does not influ-
ence the hedge (compare πP2 and πP3 ). In our model, if the tradable assets are not
correlated with the inflation, they cannot be used in hedging against the inflation
and, therefore, the uncertainty about the price level process has no effect on the
optimal portfolio. On the other hand, the ambiguity about the bond price process
adds an extra term to the bond portfolio (not to the stock portfolio) and this term
represents the hedge against the model uncertainty (see πP4 ). If the uncertainty is
about the price level process, then extra terms appear in both the stock portfolio
and the bond portfolio (see πS1 and πP1 ).

As it is usually the case, the speculative component of the optimal portfolio
decreases as the investor’s risk aversion increases (see for example the models in
Sørensen (1999), Munk and Sørensen (2004), Flor and Larsen (2011) among others).
On the other hand, pessimistic deteriorations in beliefs do not necessarily decrease
the demand for the risky assets.7 Since in our model the investor chooses the financial
strategy that is optimal under the worst-case probability distribution for the inflation
process, the speculative demand for the risky assets does not necessarily decrease
when the investor’s risk aversion increases. In particular, if the price level process
is misspecified, then dπSspec

dγ
< 0 and dπPspec

dγ
< 0 are equivalent to the following two

values being positive

γ2(1− ρ2
SP )
( α
σS
− q

σP
ρSP

)
+ θρZP

(
γ(1− ρ2

SP ) +K
)( α

σS
ρZP −

q

σP
ρZS

)
,

γ2(1− ρ2
SP )
( q

σP
− α

σS
ρSP

)
+ θρZS

(
γ(1− ρ2

SP ) +K
)( q

σP
ρZP −

α

σS
ρZS

)
,

respectively, where K is defined in Proposition 3.1. Therefore, the behavior of the
speculative portfolios πSspec and πPspec, as functions of the ambiguity aversion param-
eter γ, depend on parameter values.

6To obtain the optimal portfolio, one should append fourth column (0, 0, 0, σβR9)T to Λ, use
(σβR6, σβR7, σβR8, σβR9) as the fourth row, and consider Brownian motion (WZ

t ,W
S
t ,W

P
t ,W

β
t )T

instead of (B̂Zt , B̂
S
t , B̂

P
t )T. In the HJB equation, this change is equivalent to setting m = 0 and

using σ44 = σ2
β . As far as the optimal portfolio is concerned, this change is the same as taking the

variance m of β̂t to be zero.
7See Rothschild and Stiglitz (1971), Fishburn and Porter (1976), Meyer and Ormiston (1985),

Hadar and Seo (1990), Gollier (1995), and the references in these papers.
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In our model, assuming that the Sharpe ratio of the stock ( α
σS
) is greater than

that of the bond ( q
σP

), the speculative portfolio πSspec decreases when γ increases
if the inflation is positively correlated with the stock price or, more generally, if
α/σS
q/σP

> ρZS
ρZP

. Similarly, conditions that ensure that the speculative demand in the
bond is a decreasing function of the ambiguity aversion parameter γ can be deduced.

4 Numerical Example

Since the optimal robust portfolio and the corresponding worst-case model depend
on the preference parameter θ, some tools of its estimation are necessary.8 We assume
that the investor has measurements of St, Zt, β̂t over some finite time interval of
length N . As suggested by Anderson, Hansen, and Sargent (2003), the parameter
θ should be chosen in such a way that the approximating model and the worst-
case model are sufficiently similar, which makes it difficult for the investor to use a
likelihood ratio test in choosing either model based on the time series of length N .

4.1 Detection-Error Probabilities

In this section we follow the procedure suggested by Maenhout (2006), namely,
we apply Fourier inversion to find the detection-error probability εN(θ) which is
then used to determine how similar the reference and the worst-case models are.
Anderson, Hansen, and Sargent (2003) suggest using θ such that εN(θ) is not less
than 0.1. This choice will make it difficult for the robust investor to distinguish the
two models statistically.

The worst-case model considered by the robust investor is given by (2.11)–(2.14)
with et = e∗t , where e∗t is defined in (3.1). Define the Radon-Nikodým derivatives
Ξ1,t , EP

[
dPe∗

dP

∣∣FS,Z,rt

]
and Ξ2,t , EPe∗

[
dP
dPe∗
∣∣FS,Z,rt

]
and consider the logarithm of

these derivatives,

ξ1,t , ln Ξ1,t

= −
∫ t

0

(
e∗sdB̂

Z
s + kSe

∗
sdB̂

S
s + kP e

∗
sdB̂

P
s

)
− 1 + k2

S + k2
P

2

∫ t

0

(e∗s)
2ds,

ξ2,t , ln Ξ2,t

=

∫ t

0

(
e∗sdB̂

Z
s + kSe

∗
sdB̂

S
s + kP e

∗
sdB̂

P
s

)
+

1 + k2
S + k2

P

2

∫ t

0

(e∗s)
2ds.

Based on the sample with size N , the decision maker will discard the reference model
mistakenly for the worst-case model if ξ1,N > 0. On the other hand, if the worst-case
model is true, then it will be rejected erroneously if ξ2,N > 0 (or ξ1,N < 0). According
to this, we define the detection error probability

εN(θ) = 1
2

Pr(ξ1,N > 0 | P,F0) + 1
2

Pr(ξ1,N < 0 | Pe∗ ,F0).

8Note that the ambiguity aversion parameter depends on the precise model set-up and source
of ambiguity and therefore has to be estimated on a case-by-case basis.
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It can then be shown that (see Appendix C)

εN(θ) = 1
2
− 1

2
erf
(√K̃

2

)
,

where K̃ =
1

2

∫ N

0

(e∗s)
2ds and erf(x) =

2√
π

∫ x

0

e−t
2

dt. Note that we obtained a

closed-form expression for the detection-error probability, in contrast to Maenhout
(2006) and Branger, Larsen, and Munk (2012) who rely on numerical techniques of
solving differential equations.

4.2 Model Parameters

For the numerical analysis of our model, we apply the parameters estimated by
Brennan and Xia (2002) from a time series for 25 years. For concreteness, we assume
that the bond the investor trades in at any date is a zero-coupon bond maturing
10 years later. This implies a constant bond price volatility σP = σrbκ(10). The
assumed parameter values are shown in Table 1.9

Table 1: Parameter values in our numerical example.

σS σZ σβ σr σP λ β̄ qr

0.158 0.013 0.014 −0.019 −0.143 0.027 0.054 0.209

κ α ρSZ ρSβ ρZP ρSP ρPβ ρZβ

0.060 0.054 ±0.300 −0.024 −0.300 0.106 −0.695 ±0.300

In Table 2 we present the detection-error probabilities for different values of the
risk aversion parameter γ and the ambiguity aversion parameter θ for N = 25 years
and T = 10 years. It can be shown that ∂εN (θ)

∂N
< 0 regardless of the parameter values

so that the detection-error probability decreases when the data sample increases.
Furthermore, lim

N→∞
εN(θ) = 0. In the following example we choose γ = 4 and θ = 5.

With this choice of θ the detection-error probability is greater than 0.1.

9Since Brennan and Xia (2002) estimate the parameters for real interest rates, we accordingly
adjust their parameters to be applicable in our model. Although ρSZ and ρZβ were not estimated
by Brennan and Xia (2002), we perform the analysis for their values equal to 0.3 and −0.3. These
values of ρSZ were used in Bensoussan, Keppo, and Sethi (2009). Estimations of Fama and Schwert
(1977), Gultekin (1983), Ferson and Harvey (1991), and Moerman and van Dijk (2010) also show
that these correlation coefficients can be quite different. Similarly, we take ρZP to be equal to -0.3
because bond prices are negatively correlated with inflation.
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Table 2: Detection-error probabilities εN (θ) for different values of γ and θ for N = 25
years and T = 10 years.

θ 1 2 3 4 5 6 7 8

γ = 2 0.3915 0.3069 0.2425 0.1937 0.1567 0.1285 0.1067 0.0897
γ = 4 0.4101 0.3322 0.2669 0.2133 0.1701 0.1356 0.1083 0.0867
γ = 6 0.4165 0.3415 0.2763 0.2212 0.1755 0.1383 0.1085 0.0847
γ = 8 0.4198 0.3464 0.2813 0.2254 0.1783 0.1397 0.1084 0.0835

4.3 Optimal Portfolios

Next, we analyze the optimal portfolios πS1 , πP1 and their components. To better
understand the influence of the unobservability of the expected inflation rate and
ambiguity about the inflation process, the optimal portfolios are compared with the
following special cases provided in Section 3:

• the expected inflation rate is observed;

• there is no ambiguity about the price level process.

We also discuss the influence of the ambiguity aversion parameter θ and the risk
aversion parameter γ on the optimal portfolio.

Figure 1 illustrates the optimal portfolios πS1 and πP1 with the corresponding
components given in Proposition 3.1. The figure shows that if the stock price is
positively correlated with the inflation (ρZS = 0.3), the investor should decrease
his optimal stock holdings as his investment horizon T − t decreases which is in line
with typical investment advice. On the other hand, if ρZS = −0.3, the stock becomes
more attractive for the investor as T−t decreases. The most influential time-varying
component in his stock portfolio is πSunobsbλ(T − t) that adjusts the optimal portfolio
due to unobservability of the stochastic expected inflation rate. It is worth pointing
out that the speculative component is the largest in the portfolio.

The optimal bond position is an increasing function of the investment horizon
T − t both when ρZS = 0.3 and when ρZS = −0.3. The components πPratebκ(T − t)
and πPunobsbλ(T − t) of the portfolio significantly adjust the optimal wealth allocation
in the bond. However, this influence weakens over time because, as it was pointed
out in Section 3, these components decrease to zero as the remaining investment
horizon shortens. As a result, the optimal bond position changes from long to short
as the investment horizon becomes smaller.

Comparing the optimal stock and bond portfolios we see that the time-varying
components have more effect on the bond holdings than on the stock holdings.
Interestingly, the speculative components for the stock and the bond portfolios are
of opposite sign regardless of the correlation between the stock and the inflation.

Figure 2 shows the optimal portfolios πS1 and πP1 when the expected inflation rate
is observed by the investor. As it was pointed out in Section 3, only the components
πSunobs and πPunobs are affected by the change in the assumption. Compared to the
unobservable case, the investor should invest less (more) in the stock if ρZS = 0.3
(ρZS = −0.3). At the same time, the optimal investment in the bond is smaller when
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(a) Optimal stock portfolio and
its components (ρSZ = 0.3)

(b) Optimal bond portfolio and
its components (ρSZ = 0.3)

(c) Optimal stock portfolio and
its components (ρSZ = −0.3)

(d) Optimal bond portfolio and
its components (ρSZ = −0.3)

Figure 1: Optimal wealth allocation πS1 in the stock (green line on the left plots) with
its components and optimal wealth allocation πP1 in the bond (green line on the right
plots) with its components. The top plots are for ρSZ = 0.3 and the bottom plots are for
ρSZ = −0.3. Red line is the speculative component. Blue line is the hedge against the price
level process Zt. Dashed blue line represents the model ambiguity adjustment. Dashed red
line represents the component that arises from unobservable stochastic expected inflation
rate βt.
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(a) Optimal stock portfolio and
its components (ρSZ = 0.3)

(b) Optimal bond portfolio and
its components (ρSZ = 0.3)

(c) Optimal stock portfolio and
its components (ρSZ = −0.3)

(d) Optimal bond portfolio and
its components (ρSZ = −0.3)

Figure 2: Optimal wealth allocation πS1 in the stock (green line on the left plots) with its
components and optimal wealth allocation πP1 in the bond (green line on the right plots)
with its components when the expected inflation rate is observable. The top plots are for
ρSZ = 0.3 and the bottom plots are for ρSZ = −0.3. Red line is the speculative component.
Blue line is the hedge against the price level process Zt. Dashed blue line represents the
model ambiguity adjustment. Dashed red line represents the component that arises from
stochastic expected inflation rate βt.

the expected inflation rate is observed. The rest of the analysis of Figure 2 is similar
to that done for Figure 1.

The optimal portfolios for the investor with no ambiguity about the price level
process are shown in Figure 3. The behavior of the optimal portfolios and the cor-
responding components in Figure 3 is similar to that in Figure 1 and Figure 2 so
that the above discussion applies. However, since the component πSrate in the optimal
stock portfolio becomes zero, this portfolio is heavily dominated by the speculative
component. The corresponding component πPrate in the bond portfolio is not zero
because it includes the hedge against the interest rate risk that does not vanish
when the investor is ambiguous about the inflation.

For the ease of exposition Figure 4 shows the optimal portfolios for an investor
who is

• ambiguous about the price level and does not observe the expected inflation
rate (Figure 1);

18



(a) Optimal stock portfolio and
its components (ρSZ = 0.3)

(b) Optimal bond portfolio and
its components (ρSZ = 0.3)

(c) Optimal stock portfolio and
its components (ρSZ = −0.3)

(d) Optimal bond portfolio and
its components (ρSZ = −0.3)

Figure 3: Optimal wealth allocation πS1 in the stock (green line on the left plots) with its
components and optimal wealth allocation πP1 in the bond (green line on the right plots)
with its components when there is no ambiguity about the inflation process. The top plots
are for ρSZ = 0.3 and the bottom plots are for ρSZ = −0.3. Red line is the speculative
component. Blue line is the hedge against the price level process Zt. Dashed blue line
represents the model ambiguity adjustment. Dashed red line represents the component
that arises from unobservable stochastic expected inflation rate βt.
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• ambiguous about the price level and observes the expected inflation rate (Fig-
ure 2);

• not ambiguous about the price level and does not observe the expected inflation
rate (Figure 3).

It is clear from the figure that an ambiguity-averse investor who does not observe
the expected inflation rate invests more in the bond compared to an investor who
either observes the expected inflation rate or is not ambiguous about the price level.
In this setting the optimal bond investment is the smallest when the investor is not
ambiguous about the price level. Interestingly, this is true for both ρSZ = 0.3 and
ρSZ = −0.3. On the other hand, a change in the correlation ρSZ also changes the
attitude of an ambiguous investor toward the stock investment, making him invest
less (more) in the stock over time when ρSZ = 0.3 (ρSZ = −0.3). However, if the
investor is not ambiguous about the price level process, then he decreases his stock
holdings with time for both values of the correlation.

Figure 5 illustrates how the optimal portfolios πS1 and πP1 depend on the ambi-
guity aversion parameter θ. As one can see from the figure, the more the investor
is ambiguity-averse, the more he invests in the bond. On the other hand, higher
values of the ambiguity aversion parameter lead to higher (lower) values of the stock
investment if ρZS = 0.3 (ρZS = −0.3).

Note that some of the components of the optimal portfolios are increasing in θ and
other components are decreasing in θ. This is in contrast to Maenhout (2006) where
the ambiguity aversion parameter is simply added to the risk aversion parameter and,
thus, the optimal portfolio is decreasing in θ. On the other hand, our findings are
similar to the model of Flor and Larsen (2011) in which the speculative component
of the bond portfolio decreases in θ if the investor is ambiguous about the bond
price dynamics only and increases in θ if the investor is uncertain about the stock
price process only.

Figure 6 shows the optimal portfolios πS1 and πP1 as functions of the risk aversion
parameter γ. As discussed in Section 3, the impact of γ on the speculative com-
ponents of the optimal portfolios depend on parameter values. It follows from the
figure that the same applies for the (total) optimal portfolios. The more risk-averse
investor invests less in the stock and more in the bond if the correlation between
the stock price and inflation is ρZS = 0.3. On the other hand, if ρZS = −0.9, then
the more risk-averse investor invests more in the stock.
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(a) Optimal stock portfolios
(ρSZ = 0.3)

(b) Optimal bond portfolios
(ρSZ = 0.3)

(c) Optimal stock portfolios
(ρSZ = −0.3)

(d) Optimal bond portfolios
(ρSZ = −0.3)

Figure 4: Optimal wealth allocation πS1 in the stock (left plots) and optimal wealth
allocation πP1 in the bond (right plots) under different assumptions on the expected inflation
rate and ambiguity. The top plots are for ρSZ = 0.3 and the bottom plots are for ρSZ =
−0.3. Green line is the optimal portfolio when the expected inflation rate is unobserved and
there is ambiguity about the price level process. Red line is the optimal portfolio when the
expected inflation rate is observable and there is ambiguity about the price level process.
Blue line is the optimal portfolio when the expected inflation rate is unobservable and
there is no ambiguity about the price level process.
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(a) Optimal stock portfolio and
its components (ρSZ = 0.3)

(b) Optimal bond portfolio and
its components (ρSZ = 0.3)

(c) Optimal stock portfolio and
its components(ρSZ = −0.3)

(d) Optimal bond portfolio and
its components (ρSZ = −0.3)

Figure 5: Optimal wealth allocation πS1 in the stock (green line on the left plots) with its
components and optimal wealth allocation πP1 in the bond (green line on the right plots)
with its components as functions of the ambiguity aversion parameter θ. The value of the
investment horizon T − t is 10 years. The top plots are for ρSZ = 0.3 and the bottom plots
are for ρSZ = −0.3. Red line is the speculative component. Blue line is the hedge against
the price level process Zt. Dashed blue line represents the model ambiguity adjustment.
Dashed red line represents the component that arises from unobservable stochastic expected
inflation rate βt.
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(a) Optimal stock and optimal
bond portfolios (ρSZ = 0.3)

(b) Optimal stock and optimal
bond portfolios (ρSZ = −0.9)

Figure 6: Optimal wealth allocation πS1 in the stock (green line) and optimal wealth
allocation πP1 in the bond (red line) as functions of the risk aversion parameter γ. The
value of the investment horizon T − t is 10 years. The left plot is for ρSZ = 0.3 and the
right plot is for ρSZ = −0.9.

5 Conclusion

In this paper we solve the problem of optimal portfolio choice under the assumptions
that the investor is ambiguous about the price level process and that the expected
inflation rate is unobservable in a setting with stochastic interest rates. The optimal
wealth allocation in the stock index and a zero-coupon bond is obtained in closed
form. We show that the influence of the ambiguity aversion parameter on the optimal
portfolio depends on the correlation between the state variables. The uncertainty
about the price level process influences the optimal positions in both the stock index
and the bond. We also show that when there is ambiguity about the model for the
inflation process, the more risk-averse investor does not necessarily invest less in the
speculative portfolios. The optimal portfolio is illustrated by a numerical example.

A Optimal Filtering

To keep the same notation as in Liptser and Shiryaev (2001), we rewrite the Equa-
tions (2.3), (2.4), and (2.5) in the following form




dZt
Zt

dSt
St

drt


 =






0
rt + α
κ(r̄ − rt)




︸ ︷︷ ︸
A0

+




1
0
0




︸ ︷︷ ︸
A1

βt


dt

+




0
0
0




︸ ︷︷ ︸
B1

dW β
t +




σZ 0 0
σSR1 σSR2 0
−σrR3 −σrR4 −σrR5




︸ ︷︷ ︸
B2



dWZ

t

dW S
t

dW P
t



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and

dβt = ( λβ̄︸︷︷︸
a0

+ (−λ)︸ ︷︷ ︸
a1

βt)dt+ σβR9︸ ︷︷ ︸
b1

dW β
t + [σβR6 σβR7 σβR8]︸ ︷︷ ︸

b2



dWZ

t

dW S
t

dW P
t


 ,

where (WZ
t ,W

S
t ,W

P
t ,W

β
t )T is a standard Brownian motion relative to the filtration

Ft and the coefficients Ri, i = 1, ..., 9 are defined in such a way that



dBZ
t

dBS
t

dBP
t

dBβ
t


 =




1 0 0 0
R1 R2 0 0
R3 R4 R5 0
R6 R7 R8 R9







dWZ
t

dW S
t

dW P
t

dW β
t




and

R1 = ρZS, R2 =
√

1− ρ2
ZS, R3 = ρZP , R4 =

ρSP − ρZSρZP√
1− ρ2

ZS

,

R5 =
√

1−R2
3 −R2

4, R6 = ρZβ, R7 =
ρSβ − ρZSρZβ√

1− ρ2
ZS

,

R8 =
ρPβ −R3R6 −R4R7

R5

, R9 =
√

1−R2
6 −R2

7 −R2
8.

Assuming that for a ∈ R the conditional distribution P (β0 ≤ a|Z0, S0, r0) is
Gaussian P-a.s. with mean β̂0 = E[β0|Z0, S0, r0], and variance m0 = E[(β0 − β̂0)2|
Z0, S0, r0] (equivalently, the distribution of β0 is conditionally Gaussian), we have
from Theorem 12.6 in Liptser and Shiryaev (2001) that the conditional distribution
P (βt ≤ a|FS,Z,rt ) is also Gaussian P-a.s.10

Therefore, applying Theorem 12.7 in Liptser and Shiryaev (2001) we have that
the observed expected inflation rate β̂t = E[βt|FS,Z,rt ] satisfies

dβ̂t = ( λβ̄︸︷︷︸
a0

+ (−λ)︸ ︷︷ ︸
a1

β̂t)dt

+
{[

σZσβρZβ, σSσβρSβ, −σrσβρPβ
]

︸ ︷︷ ︸
b◦B

+mt [1, 0, 0]︸ ︷︷ ︸
AT

1

}

×



σZ σSR1 −σrR3

0 σSR2 −σrR4

0 0 −σrR5



−1 


σZ 0 0
σSR1 σSR2 0
−σrR3 −σrR4 −σrR5



−1

︸ ︷︷ ︸
(B◦B)−1

×








dZt
Zt
dSt
St

drt


−






0
rt + α
κ(r̄ − rt)




︸ ︷︷ ︸
A0

+




1
0
0




︸ ︷︷ ︸
A1

β̂t


dt



,

10It is easy to check that the assumptions of the theorem are satisfied because entries in all
matrices are constant.
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where mt = E[(βt − β̂t)2|FS,Z,rt ] is deterministic and

b ◦B = b1B
T
1 + b2B

T
2 = [0, 0, 0] + [σβR6, σβR7, σβR8]



σZ σSR1 −σrR3

0 σSR2 −σrR4

0 0 −σrR5




=
[
σZσβρZβ, σSσβρSβ, −σrσβρPβ

]
,

(B ◦B)−1 = (B1B
T
1 +B2B

T
2 )−1 = (B2B

T
2 )−1 = (BT

2 )−1(B2)−1

where

(BT
2 )−1 =




1
σZ
− R1

σZR2

R1R4−R2R3

σZR2R5

0 1
σSR2

− R4

σSR2R5

0 0 − 1
σrR5


 .

We first evaluate b ◦B +mtA
T
1 which yields

b ◦B +mtA
T
1 =

[
σZσβρZβ +mt, σSσβρSβ, −σrσβρPβ

]

Now we multiply vector b ◦B +mtA
T
1 by matrix (BT

2 )−1 to obtain
(
b ◦B +mtA

T
1

)
(BT

2 )−1

=
[
σβρZβ +

mt

σZ
,
−mtR1 + σZσβR2R7

σZR2

,
mt(R1R4 −R2R3) + σZσβR2R5R8

σZR2R5

]

= [σZAZ , σSAS, σPAP ],

where

AP =
mt(R1R4 −R2R3) + σZσβR2R5R8

σPσZR2R5

, AS =
−R1mt + σZσβR2R7

σSσZR2

,

AZ =
σZσβρZβ +mt

σ2
Z

.

The following vector defines a Brownian motion (see Liptser and Shiryaev (2001),
Vol.2, p.35) relative to filtration FS,Z,rt




σZ 0 0
σSR1 σSR2 0
−σrR3 −σrR4 −σrR5



−1





dZt
Zt
dSt
St

drt


−






0
rt + α
κ(r̄ − rt)


+




1
0
0


 β̂t


 dt





=




1
σZ

0 0

− R1

σZR2

1
σSR2

0
R1R4−R2R3

σZR2R5
− R4

σSR2R5
− 1
σrR5






dZt
Zt
− β̂tdt

σSdB
S
t

−σrdBP
t




=




1
σZ

(
dZt
Zt
− β̂tdt

)

− R1

σZR2

(
dZt
Zt
− β̂tdt

)
+ 1

R2
dBS

t

R1R4−R2R3

σZR2R5

(
dZt
Zt
− β̂tdt

)
− R4

R2R5
dBS

t + 1
R5
dBP

t


 =



dB̂Z

t

dB̂S
t

dB̂P
t


 (A.1)
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where (B̂Z
t , B̂

S
t , B̂

P
t )T is the Brownian motion. From this equality we easily obtain

that dBS
t = R2dB̂

S
t +R1dB̂

Z
t , dBP

t = R5dB̂
P
t +R4dB̂

S
t +R3dB̂

Z
t .

Thus, we have

dβ̂t = λ(β̄ − β̂t)dt+ AZσZdB̂
Z
t + ASσSdB̂

S
t + APσPdB̂

P
t .

Therefore, the filtered equations can be written in terms of the Brownian motion
(A.1) as

dZt = Zt

(
β̂tdt+ σZdB̂

Z
t

)
,

dSt = St

(
(rt + α)dt+ σS(R1dB̂

Z
t +R2dB̂

S
t )
)
,

drt = κ(r̄ − rt)dt− σr
(
R5dB̂

P
t +R4dB̂

S
t +R3dB̂

Z
t

)
.

B Robust HJB Equation

We rewrite equations for wealth Xt, price level process Zt, short-term interest rate
rt, and drift β̂t in matrix form



dZt
dXt

drt
dβ̂t


 =




Ztβ̂t
Xt(rt + αΠS

t + qΠP
t )

κ(r̄ − rt)
λ(β̄ − β̂t)


 dt+




ZtσZ 0 0
K1 K2 K3

−σrR3 −σrR4 −σrR5

AZσZ ASσS APσP






dB̂Z

t

dB̂S
t

dB̂P
t




We introduce perturbations to this system by adding a drift
∫ t

0
esds(1, kS, kP )T

to the Brownian motion (B̂Z
t , B̂

S
t , B̂

P
t )T. The resulting vector (B̃Z

t , B̃
S
t , B̃

P
t )T is a

Brownian motion under probability measure Pe. The perturbed system of equations
is




dZt
dXt

drt
dβ̂t


 =




Zt(β̂t − σZet)
Xt

(
rt + αΠS

t + qΠP
t − K1+kSK2+kPK3

Xt
et

)

κ(r̄ − rt) + σr(R3 + kSR4 + kPR5)et
λ(β̄ − β̂t)− (AZσZ + kSASσS + kPAPσP )et




︸ ︷︷ ︸
M

dt

+




ZtσZ 0 0
K1 K2 K3

−σrR3 −σrR4 −σrR5

AZσZ ASσS APσP




︸ ︷︷ ︸
Λ



dB̃Z

t

dB̃S
t

dB̃P
t


 .

According to Anderson, Hansen, and Sargent (2003), we evaluate the symmetric
matrix

Σ = ΛΛT =




σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44



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where we defined σ11 = (ZtσZ)2, σ22 = X2
t

(
(σSΠS

t )2 + (σPΠP
t )2 + 2σSσPΠS

t ΠP
t ρSP

)
,

σ33 = σ2
r , σ44 = (σZAZ)2 + (σSAS)2 + (σPAP )2, σ12 = σZXtZt

(
σSΠS

t R1 + σPΠP
t R3

)
,

σ13 = −σZσrZtR3, σ14 = σ2
ZAZZt, σ34 = −σrσβρPβ, σ23 = −σrXt

(
σPΠP

t +σSΠS
t ρSP

)
,

σ24 = σβXt

(
σSΠS

t ρSβ + σPΠP
t ρPβ

)
.

We denote the Hessian and the gradient of the value function v with respect to
state variables z, x, r and β̂, respectively as

∂2v

∂xi∂xj
,




vzz vzx vzr vzβ̂
vzx vxx vxr vxβ̂
vzr vxr vrr vrβ̂
vzβ̂ vxβ̂ vrβ̂ vβ̂β̂


 ,

( ∂v
∂xi

)
,




vz
vx
vr
vβ̂


 .

Let π = (πS, πP ) be the vector of fractions of wealth invested at time t ∈ [0, T ] in
the stock (πS) and the bond (πP ), then according to Anderson, Hansen, and Sargent
(2003), the robust HJB equation is

vt + sup
π∈R2

inf
e∈R

(
MT
( ∂v
∂xi

)
+ 1

2
trace

(
Σ

∂2v

∂xi∂xj

)
+

e2

2Ψ

)
= 0.

In particular,

sup
π∈R2

inf
e∈R

{
vt + z

(
β̂ − σZe

)
vz + x

(
r + απS + qπP − [σSπ

Sa1 + σPπ
Pa2]e

)
vx

+
(
κ(r̄ − r)− a3e

)
vr +

(
λ(β̄ − β̂)− a4e

)
vβ̂ + 1

2
(zσZ)2vzz

+ σZxz
(
σSπ

Sn1 + σPπ
Pn2

)
vzx − σZσrzn2vzr + σ2

ZAZzvzβ̂

+ 1
2
x2
(
(σSπ

S)2 + (σPπ
P )2 + 2σSσPπ

SπPn4

)
vxx

− σrx
(
σPπ

P + σSπ
Sn4

)
vxr + σβx

(
σSπ

Sn5 + σPπ
Pn6

)
vxβ̂ + 1

2
σ2
rvrr

− σrσβn6vrβ̂ + 1
2

(
(AZσZ)2 + (ASσS)2 + (APσP )2

)
vβ̂β̂ +

e2

2Ψ

}
= 0,

(B.1)

where n1 = ρZS, n2 = ρZP , n3 = ρZβ, n4 = ρSP , n5 = ρSβ, and n6 = ρPβ.
To find the infimum over e, we take the derivative with respect to e and set it

equal to zero.

d

de

(
− zσZevz − x(σSπ

Sa1 + σPπ
Pa2)evx − a3evr − a4evβ̂ +

e2

2Ψ

)
= 0.

The value e∗ that gives the infimum is

e∗ = Ψ
(
zσZvz + x(σSπ

Sa1 + σPπ
Pa2)vx + a3vr + a4vβ̂

)
.

To simplify the notation we use φ = 1 − γ. Let us look for a solution in the
form v(t, z, x, r, β̂) = 1

φ

(
x
z

)φ
h(t, r, β̂) and assume that Ψ = θ

h

(
x
z

)−φ. Plugging these
functions into e∗ we obtain

e∗ = θ
(
σSπ

Sa1 + σPπ
Pa2 − σZ +

a3

φ

hr
h

+
a4

φ

hβ̂
h

)
.
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Plugging v(t, z, x, r, β̂), e∗ into (B.1) and dividing by 1
φ

(
x
z

)φ we have

sup
π∈R2

{
ht − φβ̂h+ φ

(
r + απS + qπP

)
h+ κ

(
r̄ − r

)
hr + λ

(
β̄ − β̂

)
hβ̂

+
φ(φ+ 1)σ2

Z

2
h− φ2σZ

(
σSπ

Sn1 + σPπ
Pn2

)
h+ φσZσrn2hr

− φσ2
ZAZhβ̂ +

φ(φ− 1)

2

(
(σSπ

S)2 + (σPπ
P )2 + 2σSσPπ

SπPn4

)
h

− φσr
(
σPπ

P + σSπ
Sn4

)
hr + φσβ

(
σSπ

Sn5 + σPπ
Pn6

)
hβ̂ +

σ2
r

2
hrr

− σrσβn6hrβ̂ + 1
2

(
(AZσZ)2 + (ASσS)2 + (APσP )2

)
hβ̂β̂

− φθ

2
h
(
σSπ

Sa1 + σPπ
Pa2 − σZ +

a3

φ

hr
h

+
a4

φ

hβ̂
h

)2}
= 0.

(B.2)

The values of πS and πP that give the supremum in (B.2) are

πS = A+B hr
h

+ C
hβ̂
h
,

πP = D + E hr
h

+ F
hβ̂
h
,

(B.3)

where

A =
ασP (1− φ+ θa2

2) + qσS
(
(φ− 1)n4 − θa1a2

)

(φ− 1)σ2
SσP

(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
)

+
σZσSσP

(
(φn1 − θa1)(φ− 1− θa2

2)− (φn2 − θa2)((φ− 1)n4 − θa1a2)
)

(φ− 1)σ2
SσP

(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) ,

B =
θ
(
(φ− 1)a1a3 − φσra2

2n4 − (φ− 1)a2a3n4 + φσra1a2

)

φ(φ− 1)σS
(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) ,

C =
θ(φ− 1)a4(a1 − a2n4) + φσβ

(
(1− φ+ θa2

2)n5 − ((1− φ)n4 + θa1a2)n6

)

φ(φ− 1)σS
(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) ,

D =
qσS(1− φ+ θa2

1) + ασP
(
(φ− 1)n4 − θa1a2

)

(φ− 1)σ2
PσS

(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
)

+
σZσPσS

(
(φn2 − θa2)(φ− 1− θa2

1)− (φn1 − θa1)((φ− 1)n4 − θa1a2)
)

(φ− 1)σ2
PσS

(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) ,

E =
θ(φ− 1)(a2a3 − a1a3n4) + φ(φ− 1)σr(1− n2

4)− φθσr(a2
1 − a1a2n4)

φ(φ− 1)σP
(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) ,

F =
θ(φ− 1)a4(a2 − a1n4) + φσβ

(
(1− φ)(n6 − n4n5) + θ(a2

1n6 − a1a2n5)
)

φ(φ− 1)σP
(
(φ− 1)(1− n2

4)− θ(a2
1 + a2

2 − 2a1a2n4)
) .

Substituting the values of πS, πP given in (B.3) into the Equation (B.2) and
dividing by h, we obtain

ht + (φr − φβ̂ + C1)h+ (−κr + C2)hr + (−λβ̂ + C3)hβ̂

+ C4hrr + C5hrβ̂ + C6hβ̂β̂ + C7
h2
r

h
+ C8

h2
β̂

h
+ C9

hrhβ̂
h

= 0,
(B.4)
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where

C1 =
φσ2

Z

2

(
1 + φ− θ

)
+ φ
(
αA+ qD

)

+
φ(φ− 1)

2

(
σ2
SA

2 + σ2
PD

2 + 2σSσPn4AD
)
− φ2σZ

(
σSn1A+ σPn2D

)

− φθ

2

(
σSa1A+ σPa2D

)2
+ φθ

(
σSa1A+ σPa2D

)
σZ ,

C2 = κr̄ + σZσrn2

(
φ− θ

)
+ φ
(
αB + qE

)

− φθ
(
σSa1A+ σPa2D

)(
σSa1B + σPa2E

)

+ φ(φ− 1)
(
σ2
SAB + σ2

PDE + σSσPn4(AE +BD)
)
− φσr

(
σPD + σSn4A

)

− φ2σZ
(
σSn1B + σPn2E

)

− φθ
(a3

φ

(
σSa1A+ σPa2D

)
− σZ

(
σSa1B + σPa2E

))
,

C3 = λβ̄ −
(
σZσβn3 +m

)(
φ− θ

)
+ φ
(
αC + qF

)
− φ2σZ

(
σSn1C + σPn2F

)

+ φ(φ− 1)
(
σ2
SAC + σ2

PDF + σSσPn4(AF + CD)
)

+ φσβ
(
σSn5A+ σPn6D

)
− φθ

(
σSa1A+ σPa2D

)(
σSa1C + σPa2F

)

− φθ
(a4

φ

(
σSa1A+ σPa2D

)
− σZ

(
σSa1C + σPa2F

))

C4 =
σ2
r

2
,

C5 = − σrσβn6,

C6 = 1
2

(
(AZσZ)2 + (ASσS)2 + (APσP )2

)
,

C7 = − φθ

2

(σrn2

φ

)2

+
φ(φ− 1)

2

(
σ2
SB

2 + σ2
PE

2 + 2σSσPn4BE
)

− φσr
(
σSn4B + σPE

)
− φθ

2

(
σSa1B + σPa2E

)2 − θa3

(
σSa1B + σPa2E

)
,

C8 = − φθ

2

(σZσβn3 +m

φσZ

)2

+
φ(φ− 1)

2

(
σ2
SC

2 + σ2
PF

2 + 2σSσPn4CF
)

+ φσβ
(
σSn5C + σPn6F

)
− φθ

2

(
σSa1C + σPa2F

)2 − θa4

(
σSa1C + σPa2F

)
,

C9 = φ(φ− 1)
(
σ2
SBC + σ2

PEF + σSσPn4(BF + CE)
)
− φσr

(
σPF + σSn4C

)

+ φσβ
(
σSn5B + σPn6E

)
− φθ

(
σSa1B + σPa2E

)(
σSa1C + σPa2F

)

− θa4

(
σSa1B + σPa2E

)
− θa3

(
σSa1C + σPa2F

)
.

The function h(t, r, β̂) that solves (B.4) is given by

h(t, r, β̂) = exp
(
ã(t)β̂ + b̃(t)r + c(t)

)
,

where functions ã, b̃, c are the solution to the following system of ordinary differential
equations




ã′ − φ− λã = 0, ã(T ) = 0,

b̃′ + φ− κb̃ = 0, b̃(T ) = 0,

c′ + C1 + C2b̃+ C3ã+ (C4 + C7)b̃2 + (C6 + C8)ã2 + (C5 + C9)ãb̃ = 0, c(T ) = 0.

(B.5)
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Solving this system of equations for functions ã(t) and b̃(t), one can obtain

ã(t) =
φ

λ

(
e−λ(T−t) − 1

)
,

b̃(t) = −φ
κ

(
e−κ(T−t) − 1

)
.

One can also solve for function c(t) and obtain the closed form solution. We do not
state the solution here because it is not used in this paper.

C Detection-Error Probability

Define the conditional characteristic functions

f1(ω, t,N) = EP[exp(iωξ1,N) | FS,Z,rt ] = EP[Ξiω
1,N | FS,Z,rt ],

f2(ω, t,N) = EQ[exp(iωξ1,N) | FS,Z,rt ] = EQ[Ξiω
1,N | FS,Z,rt ]

= EP[exp(iωξ1,N) exp(ξ1,N)|FS,Z,rt ] = EP[Ξiω+1
1,N |FS,Z,rt ],

where i =
√
−1 and ξ1,t = ln ξe

∗
t .

Since the conditional characteristic functions are martingales, the Feyman - Kac
theorem implies that functions f1 and f2 satisfy

∂f1

∂t
+

1

2
Ξ2

1,t(e
∗
t )

2 ∂
2f1

∂Ξ2
1,t

= 0, f1(ω,N,N) = Ξiω
1,N , (C.1)

∂f2

∂t
+

1

2
Ξ2

1,t(e
∗
t )

2 ∂
2f2

∂Ξ2
1,t

= 0, f2(ω,N,N) = Ξiω+1
1,N . (C.2)

Let us look for a solution in form f1(ω, t,N) = Ξiω
1,te

D(t). Substituting the trial
solution into (C.1) and dividing the result by Ξiω

1,te
D(t) yields

D′(t) + 1
2
iω(iω − 1)(e∗t )

2 = 0, D(N) = 0.

Solving this equation we obtain

D(t) = −1

2
ω2

∫ N

t

(e∗s)
2ds− 1

2
iω

∫ N

t

(e∗s)
2ds.

Therefore,

f1(ω, t,N)

= exp
(
iω
[
−Bt −

∫ N

t

(e∗s)
2

2
ds− 1 + k2

S + k2
P

2

∫ t

0

(e∗s)
2ds
]
− ω2

∫ N

t

(e∗s)
2

2
ds
)

where Bt =
∫ t

0

(
e∗sdB̂

Z
s + kSe

∗
sdB̂

S
s + kP e

∗
sdB̂

P
s

)

Similarly, we use f2(ω, t,N) = Ξiω+1
1,t eE(t) as a trial solution, which after substi-

tution into (C.2) and division by Ξiω+1
1,t eE(t) yields

E ′(t) + 1
2
iω(iω + 1)(e∗t )

2 = 0, E(N) = 0.
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Solving this ordinary differential equation we obtain

E(t) = −1

2
ω2

∫ N

t

(e∗s)
2ds+

1

2
iω

∫ N

t

(e∗s)
2ds.

Thus,

f2(ω, t,N) = exp
(
iω
[
−Bt −

1 + k2
S + k2

P

2

∫ t

0

(e∗s)
2ds+

1

2

∫ N

t

(e∗s)
2ds
]

−Bt −
1 + k2

S + k2
P

2

∫ t

0

(e∗s)
2ds− 1

2
ω2

∫ N

t

(e∗s)
2ds
)
.

It is obvious that

Re
(f1(ω, 0, N)

iω

)
= − 1

ω
exp
(
−1

2
ω2

∫ N

0

(e∗s)
2ds
)

sin
(1

2
ω

∫ N

0

(e∗s)
2ds
)
,

Re
(f2(ω, 0, N)

iω

)
=

1

ω
exp
(
−1

2
ω2

∫ N

0

(e∗s)
2ds
)

sin
(1

2
ω

∫ N

0

(e∗s)
2ds
)
.

Therefore, the detection-error probability (see formula 861.22 in Dwight, 1973) is

εN(θ) =
1

2
− 1

2π

∫ ∞

0

(
Re
[f2(ω, 0, N)

iω

]
− Re

[f1(ω, 0, N)

iω

])
dω

= 1
2
− 1

2
erf
(√K̃

2

)
,

where K̃ = 1
2

∫ N
0

(e∗s)
2ds and erf(x) = 2√

π

∫ x
0
e−t

2
dt.
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