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A NOTE ON THE WEIGHTED KHINTCHINE-GROSHEV
THEOREM

MUMTAZ HUSSAIN? AND TATIANA YUSUPOVA

Abstract. Let W (m,n;ψ) denote the set of ψ1, . . . , ψn–approximable points in
Rmn. The classical Khintchine–Groshev theorem assumes a monotonicity condi-
tion on the approximating functions ψ. Removing monotonicity from the Khint-
chine–Groshev theorem is attributed to different authors for different cases of m
and n. It can not be removed for m = n = 1 as Duffin–Shcaeffer provided the
counter example. We deal with the only remaining case m = 2 and thereby remove
all unnecessary conditions from the Khintchine–Groshev theorem.

1. Introduction

Throughout the paper, m and n are the natural numbers and Imn is the unit cube
[0, 1]mn in Rmn. Take an mn-dimensional point X ∈ Imn, an integer vector q ∈ Zm
and consider their product qX. We may think of X = (xij) as an m × n matrix
with coefficients in I and q = (q1, . . . , qm) as a row vector, allowing this product to
be realized as the system

q1x1j + · · ·+ qmxmj (1 6 j 6 n)

of n real linear forms in m variables.
For every k ∈ N, denote by | · | the standard supremum norm on Rk. Then, given

a collection ψ of n functions ψ1, . . . , ψn : N→ R+ each tending to 0, let W (m,n;ψ)
denote the set of points X ∈ Imn such that the system of inequalities

|q1x1j + · · ·+ qmxmj + pj| < ψj(|q|) (1 6 j 6 n) (1)

has infinitely many solutions (p,q) ∈ Zn × Zm \ {0}. The functions ψ1, . . . , ψn will
be referred to as approximating functions and the points in W (m,n;ψ) are said to
be ψ-approximable.

The fundamental aim of the paper is to determine the size of the set W (m,n;ψ)
in terms of mn–dimensional Lebesgue measure λ. The measure of W (m,n;ψ) will
necessarily depend on the collection ψ and we provide a precise criterion.

In the special case ψ1 = · · · = ψn = ψ and m = 1 the set W (m,n;ψ) = W (1, n;ψ)
is well studied since the pioneering work of A. Khintchine [16, 15]. Later, Khint-
chine’s work was extended by Groshev [11] to cover the dual cases corresponding
to m > 1. The following global statement combines both works, often referred to
as the Khintchine-Groshev theorem, and provides a criterion relating the Lebesgue
measure of the set W (m,n;ψ) to the convergence or divergence of a certain series.
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2 M. HUSSAIN AND TATIANA YUSUPOVA

This series entirely depends upon the approximating function ψ. We refer the reader
to [2, 9, 11, 16, 15, 18] for the proofs as well as the subsequent improvements.

Theorem (Khintchine-Groshev). Let ψ : N→ R+. Then

λ (W (m,n;ψ)) =





0 if
∑∞

q=1 q
m−1ψ(q)n <∞,

1 if
∑∞

q=1 q
m−1ψ(q)n =∞ and ψ is monotonic.

The convergence part of the above statement follows immediately from the Borel-
Cantelli lemma from probability theory upon using a simple covering argument and
is free from any assumption on ψ. The divergence part constitutes the main sub-
stance of the Khintchine–Groshev theorem. Due to the latest effort by Beresnevich
and Velani [7] it has been shown that the monotonicity condition imposed in the
divergence part can be removed from all but the case m = n = 1. Here, the Duffin-
Schaeffer counterexample [10] shows that monotonicity is vital. We refer the reader
to [7] for further details and to [1] for a detailed account of open problems in classi-
cal theory of metric Diophantine approximation related to the Khintchine–Groshev
theorem.

When ψ contains more then one approximating function, not everything is known.
The case m = 1 (simultaneous approximation) is described by Harman ([12]), who
showed that while the monotonicity assumption allows us to prove stronger results, it
can be interchanged with a condition on the relationship between functions and the
statement analogous to the Khintchine-Groshev theorem remains true. Schmidt’s
quantitative theorem, provides the measure criterion for m > 3; neither Harman’s
nor Schmidt’s result covers the m = 2 case. By adapting the arguments of Beres-
nevich and Velani in [7], we will show that no restrictions are necessary in the m = 2
case. In doing so, we are able to establish the following best possible statement.

Theorem 1. Let ψ : N→ R+, m > 1, n > 1. Then

λ
(
W (m,n;ψ)

)
= 1 if

∞∑

q=1

qm−1ψ1(q) · · ·ψn(q) =∞.

The corresponding convergence case follows once more upon application of Borel–
Cantelli Lemma and is free from any assumption on the choices of m,n and the
approximating functions. Note also that the proof given here will not be valid for
the m = 1 case, as one needs some more assumptions on the functions ψ1, . . . , ψn as
shown by Harman.

For the sake of completeness we mention that a Hausdorff measure version of The-
orem 1 can be straightforwardly established using the Mass Transference Principle
of [4] along with the ‘slicing’ technique [5]. The slicing technique is broad ranging
and has been successfully employed in various related settings for a similar purpose
[8, 13, 14].

Our paper will be structured as follows. In Section 2, we reduce the proof of
Theorem 1 to establishing the analogous statement for a certain subset of W (m,n;ψ)
and then to a ‘quasi-independence on average’ statement. In Section 3, we establish
various key measure theoretic estimates and in doing so completes the proof of
Theorem 1.



A NOTE ON THE WEIGHTED KHINTCHINE-GROSHEV THEOREM 3

Notation. Throughout, the symbols� and� will be used to indicate an inequality
with an unspecified positive multiplicative constant. If a � b and a � b we write
a � b, and say that the quantities a and b are comparable. We will denote by ϕ the
Euler’s well known totient function.

2. Preliminaries

Consider the set

W ′(m,n;ψ) := {X ∈ Imn : system of inequalities (1) holds

for infinitely many (p,q) ∈ Zn × Zm \ {0} with gcd(p,q) = 1},
where gcd(p,q) denote the greatest common divisor of p1, . . . , pn, q1, . . . , qm. The
set W ′(m,n;ψ) differs from W (m,n;ψ) only by the coprimeness condition imposed
on p and q, and so we clearly have that W ′(m,n;ψ) ⊂ W (m,n;ψ). In addition,
there is no loss of generality in assuming that

ψi(q) < c for all q ∈ N, i = 1, . . . , n, and c > 0 . (2)

To see this, suppose for the moment that this was not the case; i.e. for some i
statement (2) is false. Let

ψ̂ : q → ψ̂(q) := min {c, ψi(q)} .
It is easily verified that if

∑
qm−1ψ1(q) · · ·ψi(q) · · ·ψn(q) diverges then

∑
qm−1ψ1(q)

· · · ψ̂(q) · · ·ψn(q) diverges. Furthermore, W ′(m,n;ψ1, . . . , ψ̂, . . . , ψm) ⊂ W ′(m,n;ψ)

and so it suffices to establish Theorem 1 for ψ̂ as defined above.
The limsup nature of the sets W (m,n;ψ) and W ′(m,n;ψ) is vital for the measure

theoretic investigations we shall perform below. As such, it will be useful to express
them in a limsup form. For any point δ := (δ1, . . . , δn) ∈ Rn with δi > 0 for 1 ≤ i ≤ n
and for any q ∈ Zm \ {0}, let

B(q, δ) := {X ∈ Imn : |q1 x1i + . . .+ qm xmi + pi| < δi

for all i = 1, . . . , n and some p ∈ Zn}.
Furthermore, let

B′(q, δ) := {X ∈ Imn : |q1 x1i + . . .+ qm xmi + pi| < δi

for all i = 1, . . . , n and some p ∈ Zn with gcd(p,q) = 1} .
Once more, the set B′(q, δ) differs from B(q, δ) by only the coprimeness condition.
It is easily verified that

W (m,n;ψ) = lim sup
|q|→∞

B(q, ψ(|q|))

and
W ′(m,n;ψ) = lim sup

|q|→∞
B′(q, ψ(|q|)).

The following statement helps us to reduce the proof of Theorem 1 to showing that
W ′(m,n;ψ) is of positive Lebesgue measure.

Lemma 2. For any m, n > 1 and ψ : N→ R+,

λ(W ′(m,n;ψ)) > 0 =⇒ λ(W ′(m,n;ψ)) = 1.
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The proof of Lemma 2 follows on combining Theorem 4 of [6] and Lemma 2.2 of
[17] as described in [6]. It can also be proven using the “cross-fibering principle”
described in [3], which allowed the authors to establish a Zero-One Law in the mul-
tiplicative setup. The technique is very general and can have a number of different
applications. For the proof of Lemma 2 using cross-fibering principle we refer the
reader to [19].

Now, in order to prove positive measure, we make use of the following lemma
which is a generalisation of the divergent part of the Borel-Cantelli lemma, tailored
to our needs.

Lemma 3. Let Ek ⊂ Imn be a sequence of measurable sets such that
∑∞

k=1 λ(Ek) =∞.
Then

λ(lim sup
k→∞

Ek) > lim sup
N→∞

(∑N
s=1 λ(Es)

)2

∑N
s,t=1 λ(Es ∩ Et)

.

3. proof of theorem 1

In view of Lemma 3, the desired statement λ(W ′(m,n;ψ)) > 0 will follow upon
showing that the sets B′(q, ψ(|q|)) are quasi-independent on average and that the
sum of their measures diverges. Essentially, we shall prove the following statement,
which we include for clarity and completeness.

Proposition 4 (Quasi-independence on average). Let m > 1, n > 1 and ψ : N →
R+ satisfy ψi(q) < 1/2 for all q ∈ N and all i = 1, . . . , n and

∑∞
q=1 q

m−1ψ1(q) · · ·
ψn(q) =∞. Then, ∑

q∈Zm\{0}
λ
(
B′(q, ψ(|q|))

)
= ∞ , (3)

and there exists a constant C > 1 such that for N sufficiently large,
∑

|q(1)|6N
|q(2)|6N

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

6 C
( ∑

|q(1)|6N
λ
(
B′(q(1), ψ(|q(1)|))

))2
.

(4)

We first estimates the measure of B′(q, δ). Given δ ∈ Rn with δi > 0 for every i,
q ∈ Zm \ {0} and p ∈ Zn, let

B(q,p, δ) := {X ∈ Imn : |q1x1i + · · ·+ qmxmi + pi| < δi}.
Our estimate is a consequence of the following Lemmas (5, 6 and 7) which are
adapted from [7] to the current setup. The proofs are almost identical therefore we
leave the details for the reader.

Lemma 5. Let m > 1, n > 1 and let δ ∈ (0, 1/2)n and q ∈ Zm \ {0}. Then, for
any l| gcd(q)

∑

p∈Zn

λ (B(q, lp, δ)) =

(
2

l

)n
δ1 · · · δn.
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Lemma 6. Let m > 1, n > 1 and let δ ∈ (0, 1/2)n and q ∈ Zm \ {0}. Then,

λ (B′(q, δ)) = 2nδ1 · · · δn
∏

p|d
(1− p−n) .

The product is over prime divisors p of d := gcd(q) and is defined to be one if d = 1.

The following is a consequence of examining the product term in Lemma 6 and
provides us the estimate we want for the measure of B′(q, δ).

Lemma 7. Let m > 1, n > 1 and let q ∈ Zm \{0}, d := gcd(q) and δ ∈ (0, 1/2)n.
If n = 1, then

λ (B′(q, δ1)) = 2δ1
ϕ(d)

d
.

If n > 1, then
6

π2
2nδ1 · · · δn 6 λ (B′(q, δ)) 6 2nδ1 · · · δn . (5)

We now turn our attention to estimating the measure of the pairwise intersection
of the sets B′(q, δ) i.e., the intersection of two sets B′(q(1), δ(1)) and B′(q(2), δ(2)) for

q(1),q(2) ∈ Zm \ {0} and δ(1), δ(2) ∈ Rn with δ
(1)
i , δ

(2)
i > 0 ∀ i. Naturally, there are

two possibilities to be discussed; the case when q(1) and q(2) are parallel and the
case when they are not parallel. In the latter case, the following lemma, which can
be found in [18], provides the relevant result. For an alternative proof using torus
geometry see [9, p. 83-86].

Lemma 8. Let m, n > 1 and let q(1),q(2) ∈ Zm \ {0} and δ(1) := (δ
(1)
1 , . . . , δ

(1)
n ),

δ(2) := (δ
(2)
1 , . . . , δ

(2)
n ) ∈ (0, 1/2)n. Then,

λ
(
B(q(1), δ(1))

)
= 2nδ

(1)
1 · · · δ(1)n

and

λ
(
B(q(1), δ(1))∩B(q(2), δ(2))

)
= λ

(
B(q(1), δ(1))

)
·λ
(
B(q(2), δ(2))

)
if q(1) ∦ q(2).

Here, the notation q(1) ∦ q(2) means that q(1) is not parallel to q(2). To deal with
the case that q(1) ‖ q(2), that is, q(1) and q(2) are parallel, we prove the following
statement.

Lemma 9. Let m > 1, n > 1. There is a constant C > 0 such that for δ(1), δ(2) ∈
(0, 1/2)n and q(1),q(2) ∈ Zm \ {0} satisfying q(1) 6= ±q(2)

λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
6 C

n∏

i=1

δ
(1)
i δ

(2)
i . (6)

Proof. In view of Lemma 8, we only need to deal with the situation that q(1) and
q(2) are parallel.

It can be verified via geometric considerations that the left hand side of (6) is the
product of the measures of the intersection on each axis; that is

λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
=

n∏

i=1

λ
(
B′(q(1), δ

(1)
i ) ∩B′(q(2), δ

(2)
i )
)
.

Indeed, as the vectors q(1) and q(2) are parallel, the setsB′(q(1), δ(1)) andB′(q(2), δ(2))
can be visualized as n-dimensional boxes, which are orientated the same way in the
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Euclidian space, and the measure of their intersection can be thought of as the n-
dimensional volume of the intersection of these boxes. The upshot of this is that we
can restrict our attention to the case n = 1 and we will write δ for δ1.

Since the statement of Theorem 1 was only previously unverified in the casem = 2,
we will provide the argument for this value of m. However, we stress that the same
techniques are valid for m > 2, but do require some more tedious calculations.

Let us consider the two sets of lines

q
(1)
1 x1 + q

(1)
2 x2 = −p1 and q

(2)
1 x1 + q

(2)
2 x2 = −p2 with p1, p2 ∈ Z.

The sets B′(q(1), δ(1)) and B′(q(2), δ(2)) correspond to δ(1)

|q(1)|2 –neighborhood of the first

line and δ(2)

|q(2)|2 –neighborhood of the second line respectively. Where, | · |2 denotes

the standard Euclidean norm. Denote by 0 < γ 6 π the angle between these lines
and the positive direction of the x1–axis. The aim is to estimate the measure of the
intersection of the neighborhoods of these lines.

Suppose that 0 < γ < π/4. For the other values of γ the argument will be similar.
For the sake of convenience we will rotate each line, including the boundaries of δ(i)-
neighborhoods, clockwise by the angle γ around the point of its intersection with
the x2–axis (when π/4 < γ < π/2 we rotate the lines anti-clockwise and proceed

similarly). This procedure will remove the q
(i)
1 coordinates from our inequalities at

the cost of altering the measure of the neighborhoods we are working with. The sets
B′(q(1), δ(1)) and B′(q(2), δ(2)) become

S1 = S(q(1), δ(1)) = {X ∈ I2 : |x2q(1)2 − p1| <
δ(1)

cos γ

for some p1 ∈ Z, gcd(p1, q
(1)
1 , q

(1)
2 ) = 1}

and

S2 = S(q(2), δ(2)) = {X ∈ I2 : |x2q(2)2 − p2| <
δ(2)

cos γ

for some p2 ∈ Z, gcd(p2, q
(2)
1 , q

(2)
2 ) = 1},

respectively. Furthermore, λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
= λ (S1 ∩ S2) .

This measure can be estimated as the product of the number of points, which

are sufficiently close to each other, and the measure of intersecting (δ(i)/q
(i)
2 cos γ)-

neighborhoods at each point, i.e.

λ (S1 ∩ S2) 6
1

cos γ
min

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}
·N,

where N is the number of pairs p1, p2 for which the following conditions hold for
given q(1), q(2):

{
0 6 p1 < q

(1)
2 , 0 6 p2 < q

(2)
2 , gcd(p1, q

(1)
1 , q

(1)
2 ) = 1, gcd(p2, q

(2)
1 , q

(2)
2 ) = 1 :

∣∣∣∣∣
p1

q
(1)
2

− p2

q
(2)
2

∣∣∣∣∣ <
2

cos γ
max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}}
.
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This condition is equivalent to
{

0 6 p1 < q
(1)
2 , 0 6 p2 < q

(2)
2 , gcd(p1, q

(1)
1 , q

(1)
2 ) = 1, gcd(p2, q

(2)
1 , q

(2)
2 ) = 1 :

∣∣∣p1 · q(2)2 − p2 · q(1)2

∣∣∣ < 2q
(1)
2 q

(2)
2

cos γ
max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}}
. (7)

Note that |p1 · q(2)2 − p2 · q(1)2 | is non-zero as otherwise the coprimeness condition
would be contravened. To see this, suppose to the contrary that

|p1 · q(2)2 − p2 · q(1)2 | = 0. (8)

Note that as the vectors q(1) and q(2) are parallel, it is possible to choose a vector
q∗ such that q(1) = kq∗ for some k ∈ Z and q(2) = lq∗ for some l ∈ Z with
gcd(k, l) = 1. Neither k nor l can be equal to 1, as if that happens it means that
one of the vectors q(i) is a multiple of the other one, say, q(2) = lq(1) and (8) only

holds when p2 = lp1, which contradicts the assumption of coprimeness of q
(2)
1 , q

(2)
2

and p2. Now, (8) trivially holds if p1 = p2 = 0. In this case both

gcd(q
(1)
1 , q

(1)
2 ) = gcd(kq∗1, kq

∗
2) = k 6= 1

and
gcd(q

(2)
1 , q

(2)
2 ) = gcd(lq∗1, lq

∗
2) = l 6= 1,

which contradicts the definition of B′. Therefore, suppose that p1 6= 0 (the proof will

be the same for p2 6= 0). Then p1q
(2)
2 − p2q(1)2 = 0 if and only if p1 · lq∗2 − p2 · kq∗2 = 0.

Taking the last expression modulo k we get

p1 · l ≡ 0 mod k,

which is equivalent to
p1 ≡ 0 mod k

as k and l are coprime. This gives us p1 = kp∗ with p∗ 6= 0 and gcd(p1, q
(1)
1 , q

(1)
2 ) =

gcd(kp∗, kq∗1, kq
∗
2) = k 6= 1, which again contradicts the coprimality condition.

Therefore, there are no such values of p1 and p2 for which (8) holds.

With this in mind we see that the expression |p1 · q(2)2 − p2 · q(1)2 | can take at most

2q
(1)
2 q

(2)
2

gcd(q
(1)
2 , q

(2)
2 ) cos γ

max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}

integer values in (7) and each value can be obtained gcd(q
(1)
2 , q

(2)
2 ) times. This means

that

N 6 2q
(1)
2 q

(2)
2

cos γ
max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}
6 4q

(1)
2 q

(2)
2 max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}

since cos γ > 1/
√

2 (due to the choice of γ). Thus, the measure of the intersection

λ (S1 ∩ S2)� q
(1)
2 q

(2)
2 max

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}
min

{
δ(1)

q
(1)
2

,
δ(2)

q
(2)
2

}
= δ(1) · δ(2),

and for n > 1

λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
6 C

n∏

i=1

δ
(1)
i δ

(2)
i ,
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as required. �
In view of the fact that B′(q, ψ(|q|)) ⊆ B(q, ψ(|q|)), to complete the proof of

Theorem 1 it remains to establish Proposition 4. The following two lemmas enable
us to accomplish this.

Lemma 10. Let m > 1, n > 1 and ψi(Q) < 1/2 for all Q ∈ N, i = 1, . . . , n. Then
with q ∈ Zm \ {0} and N ∈ N,

∑

|q|6N
λ
(
B′(q, ψ(|q|))

)
�

N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q) . (9)

Proof. The proof splits into two cases: n > 1 and n = 1. We begin by considering
the easy case n > 1. By (5) and the fact that the number of integer points q ∈ Zm
with |q| = Q is comparable to Qm−1 (see [18, p. 39]), we have that

∑

q∈Zm\{0}, |q|6N
λ
(
B′(q, ψ(|q|))

)
�

∑

q∈Zm\{0}, |q|6N
ψ1(|q|) · · ·ψn(|q|)

�
N∑

Q=1

∑

|q|=Q
ψ1(|q|) · · ·ψn(|q|)

�
N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q) .

This establishes (9) in the case n > 1. The case n = 1 is very similar to the
corresponding proof in [7] and therefore omitted. �

A clear implication of Lemma 10 is that
∑

q∈Zm\{0} λ
(
B′(q, ψ(|q|))

)
= ∞; in

other words, statement (3) holds subject to the conditions of Proposition 4. The
truth of inequality (4) is a consequence of the following lemma.

Lemma 11. Let m > 1, n > 1, ψi(Q) < 1/2 for all Q ∈ N and
∑
Qm−1ψ1(Q) · · ·

ψn(Q) = ∞. Then with q(1),q(2) ∈ Zm \ {0} and N sufficiently large,
∑

|q(1)|6N, |q(2)|6N
λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

�
( N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q)
)2

.

(10)

Proof. We can express the left hand sum of (10) as
∑

|q(1)|6N, |q(2)|6N
λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)
= M1 +M2,

where
M1 =

∑

|q(1)|6N, |q(2)|6N
q(2)=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

and
M2 =

∑

|q(1)|6N, |q(2)|6N
q(2) 6=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)
.
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We first deal with the case M1. Since the sum
∑
Qm−1ψ1(Q) · · ·ψn(Q) diverges,

there exists a positive integer N0 such that
∑N

Q=1Q
m−1ψ1(Q) · · ·ψn(Q) > 1 for all

N > N0. Then, by Lemma 10 it follows that for N > N0

M1 = 2
∑

|q(1)|6N
λ
(
B′(q(1), ψ(|q(1)|))

)
�

N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q)

<
( N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q)
)2

.

Now we need to obtain a similar estimate for M2. In view of Lemma 9, it follows
that

M2 =
N∑

Q=1

N∑

l=1

∑

|q(1)|=Q, |q(2)|=l
q(2) 6=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

�
N∑

Q=1

N∑

l=1

∑

|q(1)|=Q, |q(2)|=l
ψ1(|q(1)|) · · ·ψn(|q(1)|) · ψ1(|q(2)|) · · ·ψn(|q(2)|)

=
N∑

Q=1

N∑

l=1

ψ1(Q) · · ·ψn(Q) · ψ1(l) · · ·ψn(l)
∑

|q(1)|=Q
1

∑

|q(2)|=l
1

�
N∑

Q=1

N∑

l=1

Qm−1ψ1(Q) · · ·ψn(Q) · lm−1ψ1(l) · · ·ψn(l)

�
( N∑

Q=1

Qm−1ψ1(Q) · · ·ψn(Q)
)2
.

This completes the proof of Lemma 11 and hence the proof of Theorem 1. �
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