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Abstract

Modelling of inhomogeneous spatial point patterns is a challenging re-
search area with numerous applications in diverse areas of science. In re-
cent years, the focus has mainly been on the class of reweighted second-order
stationary point processes that is characterized by the mathematically attrac-
tive property of a translation invariant pair correlation function. Motivated
by examples where this model class is not adequate, we extend the class of
reweighted second-order stationary processes. The extended class consists of
hidden second-order stationary point processes for which the pair correlation
function g(u,v) is a function of u = v, where = is a generalized subtraction
operator. For the reweighted second-order stationary processes, the subtrac-
tion operator is simply u = v = u — v. The processes in the extended class are
called hidden second-order stationary because, in many cases, they may be de-
rived from second-order stationary template processes. We review and discuss
different types of hidden second-order stationarity. Alternatives to reweighted
second-order stationarity are retransformed and locally rescaled second-order
stationarity. Permutation tests for the different types of hidden second-order
stationarity are developed. A test for local anisotropy is also derived. We
illustrate our approach by a detailed analysis of three point patterns.

Keywords: Inhomogeneity; Intensity reweighted stationarity; Local scaling;
Second-order stationarity; Spatial point processes; Transformation

1 Introduction

Modelling inhomogeneous spatial point patterns with interaction is an active and
developing research area of spatial statistics (Mgller and Waagepetersen, 2007). Var-
ious model classes for such point patterns have been suggested (Baddeley et al., 2000;
Hahn et al., 2003; Jensen and Nielsen, 2000), differing in the specification of how the
interaction between points depends on the local intensity of points. The most im-
portant model classes appear to be the intensity reweighted, the retransformed and



the locally rescaled second-order stationary point processes (Illian et al., 2008, Chap-
ter 4.10). As we shall see, they can all be regarded as hidden second-order stationary.
Although statistical inference procedures have been developed for all three model
classes, cf. Nielsen and Jensen (2004); Prokesové et al. (2006); Hahn (2007); Mgller
and Waagepetersen (2007) and references therein, the focus has in recent years been
on intensity reweighted second-order stationary point processes, cf. Guan (2008a,b,
2009a,b); Guan and Loh (2007); Guan and Shen (2010); van Lieshout (2011); Mgller
and Waagepetersen (2007); Waagepetersen (2007); Waagepetersen and Guan (2009).
For ease of exposition, we will exclusively consider spatial point processes in
the plane. Any model of how the interaction between points in a point process X
depends on the local intensity of points can be regarded as a kind of mean-variance
relationship. Let A(u) be the intensity function of the process. Then, A(u)du is
the mean number of points in an infinitesimal region around u with area du. The
interaction between points is determined by the second-order product density A
of X. For u # v, A®(u,v) dudv may be interpreted as the probability that there is
a point from X in each of the infinitesimal regions around u and v of area du and
dv, respectively. The interaction is described by the 'mean-variance’ relationship

AP (u,0) = g(u, V) A(u)A(v), (1)

where g(u,v) is the so-called pair correlation function of X. The model class of
reweighted second-order stationary point processes is characterized by translation
invariance of the pair correlation function

9(u,v) = g(u—v). (2)

Processes obtained by independent thinning of stationary processes are reweighted
second-order stationary. But there are a number of important point processes that
do not satisfy the assumption of reweighted second-order stationarity. One example
is processes with hard core distance depending on location. Another example is
cluster processes with non-stationary parent process, cf. Hellmund et al. (2008) and
Prokesova (2010). However, as we will see later, the pair correlation functions of re-
transformed and locally rescaled second-order stationary point processes do possess
a similar property as (2).

In the present paper, we develop specific procedures for checking the three dif-
ferent types of hidden second-order stationarity mentioned above and illustrate how
these procedures work in practice. The permutation test developed in the present
paper is a generalization of the recent method published in Hahn (2012), where
K-functions estimated on two individual point patterns are compared.

In Section 2, we give a number of examples of point patterns with different types
of interaction structure. Section 3 contains a very brief summary of the necessary
concepts on spatial point processes needed in the following, while Section 4 dis-
cusses the three types of hidden second-order stationarity considered: reweighted,
retransformed and locally rescaled second-order stationarity. For each type of hid-
den second-order stationarity, examples of point process models having this type of
interaction structure are given and estimators of the so-called template K-functions
are derived. Permutation tests for hidden second-order stationarity are developed
in Section 5, and interesting conclusions for the examples are reached in Section 6.
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In Section 7, perspectives and future research are discussed. Some derivations are
deferred to two appendices.

The proposed estimators and tests have been implemented in an R-package that
complements the R-library spatstat (Baddeley and Turner, 2006). The programs
and data used in the analysis are available for download.

2 Examples of inhomogeneous point patterns

2.1 The bronze data

Figure 1 shows a longitudinal section of a bronze sinter filter that has earlier been an-
alyzed in Hahn et al. (1999) and Hahn (2007). The bronze data show a pronounced
direction of inhomogeneity. This is due to the way the specimen was produced: the
gradient in the present probe was achieved by successive sedimentation of bronze
powders with varying diameter, see Bernhardt et al. (1997). The centers of the par-
ticle sections form a non-stationary point pattern. Because of the way the material
has been constructed, it is reasonable to assume that the point intensity depends
only on one coordinate. Observe also that the interaction structure appears locally
scaled in the sense that the local point pattern in dense regions will, after upscaling,
appear similar to the local point pattern in sparse regions. This hypothesis of local
scaling is justified by the way the material was made.

Figure 1: Left part: Portion of a longitudinal section of a bronze sinter filter with a gradient in
particle size and number (courtesy B. Kieback and R. Bernhard, Dresden). Middle part: Centres
of particle profiles. Right part: Two enlargements from the top and the bottom of the specimen,
containing about the same number of points, show similar geometry. (From Hahn et al. (2003) by
permission. Copyright (© Applied Probability Trust 2003.)

2.2 The Beilschmiedia data

As part of a large-scale study of biodiversity, the positions of 3604 Beilschmiedia
pendula trees in the tropical rain forest of Barro Colorado Island have been recorded,
see Figure 2. The Beilschmiedia data comes with additional covariate information
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Figure 2: Locations of 3604 Beilschmiedia pendula trees in a 1000m x 500 m plot in the Central
American tropical rain forest.

on the altitude and norm of the altitude gradient. These data have been analyzed
in Mgller and Waagepetersen (2007), see also Hubbel and Foster (1983), Condit
et al. (1996) and Condit (1998). The covariates influence the local intensity of the
point pattern. In Mgller and Waagepetersen (2007), this dependency is described
by a log-linear model for the intensity. The interaction is described by a reweighted
second-order stationary Cox process, indicating that there is strong clustering in the
point pattern.

2.3 The Scholtzia data

Figure 3 depicts a point pattern of 171 individuals of Scholtzia aff. involucrata in
the Australian bush. The pattern has been analyzed in Prokesova et al. (2006), data
are from Armstrong (1991). The point intensity is increasing in the North-South
direction. For this point pattern, it is less clear how the interaction depends on the
local intensity if there is an interaction at all. In Prokesova et al. (2006), a locally
scaled area interaction model was used, but since the interaction is not very strong,
a model based on location dependent thinning of a stationary process might provide
an equally satisfactory description of the data.

3 Spatial point processes

A spatial point process X on R? is a locally finite random subset of R2. A realization
of such a process is a spatial point pattern x = {z;}. In some cases, the process is
concentrated on a bounded region of the plane R2.

The process is said to be first-order stationary if its intensity function A(s) is
constant. We will mainly be interested in processes that do not possess this property.
For instance, the intensity may take a parametric form, depending on an unknown
vector 3 of parameters, such as a log-linear form

A(s; 8) = exp(B - 2(s)),
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Figure 3: Locations of 171 individuals of Scholtzia aff. involucrata in the Australian bush on a
22m X 22m square. Data from Armstrong (1991), by kind permission.

where z(s) is a vector of covariates evaluated at s € R%. This parametric form was
used in Waagepetersen (2007) for the Beilschmiedia data.
The interaction between points can be described by the pair correlation function

g(u,v) = ———. (3)

The process is said to be second-order stationary if it is first-order stationary and
its pair correlation function is translation invariant, i.e.

9(u,v) = g(u —v). (4)

For any non-negative measurable function f on R? x R?, we have, cf. e.g. Mgller
and Waagepetersen (2003, p. 31),

EZ Z f(u,v):/]R2 RQf(u,v))\(Q)(u,v)dudv. (5)

ueX veX\{u}

If X is second-order stationary, it follows for arbitrary subsets A, B C R? that

E Z Z 1(u—v€B):/\2|A|/Bg(u)du, (6)

ueX 4 veX\{u}

where 1(-) is the indicator function, |A| denotes the area of A and X4 = X N A.
In particular, if |A| > 0, we have under the assumption of second-order stationarity
that

ﬁEZ ST 1(flu—v] <) = AK(r), (7)

ueX 4 veX\{u}

where

K(r) = / g (s)

is the so-called K-function of X and B(O,r) is the circular disk with radius r,
centred at O. Since the mean number of points from X in A is AA|, it follows
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from (7) that AK(r) can be interpreted as the mean number of further points at a
distance at most r from a typical point of X.

In the following section, we will discuss various ways of introducing inhomo-
geneity into a number of well-known point process models. A wide class of cluster
processes is the Cox processes driven by a non-negative process A = {A(u)}, such
that conditional on A, X is a Poisson process with intensity function A, cf. Cox
(1955), Mgller and Waagepetersen (2003), Illian et al. (2008) and references therein.
The intensity function and pair correlation function of a Cox process have the fol-
lowing form

Au) =EA(u),  g(u,v) = E(A(u)A(v))/[E(A (W) E(A(v))].

In particular, we will consider Neyman-Scott processes (Neyman and Scott, 1958)

for which
A(u) = aZk‘(c, u). (9)

Here, o > 0, ® is a Poisson point process with intensity function p, say, and k(c, -)
is a probability density for a two-dimensional continuous random variable. These
processes are Poisson cluster processes that can be constructed as X = U.co X,
where {X.} are independent and identically distributed, the number of points in X.
is Poisson distributed with parameter o and the points in X, are independent and
identically distributed with density k(c,-). The special case of the Thomas process
(Thomas, 1949) is obtained by letting k(c, u) = ¢(u—c; o) where ¢(+; o) is the density
of the two-dimensional normal distribution with mean 0 and covariance matrix 1.
Another important subclass is the Matérn cluster processes (Matérn, 1960) for which
k(c,u) = 1(|lu — || < r)/[7r?]. Usually the Thomas and Matérn cluster processes
are considered in the case where the Poisson process @ is first-order stationary with
intensity k, say, but we will here also study the case of non-stationary ®. The
intensity function and pair correlation function of the Neyman-Scott process with
random intensity given in (9) take the form

Au) = 04/]R2 p(x)k(x,u)dz,

_ fRQ p(x)k(z,u)k(z,v)dx
Jge p(x)k(z,w)de [o p(2)k(z,v)de

We will also in the following section give examples of how to introduce inhomo-
geneity into point process models with repulsion between points. One of the models
to be considered is the Matérn hard core process. Such a process can be obtained
by thinning of a homogeneous Poisson process ¢ with intensity  in the following
manner

g(u,v) + 1.

X={ze®|U,<U,foralye®with 0 < |y —z| <r},

where {U, | x € ®} is a sequence of independent and identically uniformly distributed
random variables on [0, 1], independent of ®, and r is the hard core distance. If we
parameterize the process by r and the scale invariant parameter n = k7r? and let

),

T,(u) = |B(O,7) U Blu,r)| = mr¥y (—

r



say, then the intensity function and the pair correlation function of the Matérn hard
core process are

_ 1 — exp(—n) u—v)

A(u) 2 ) g(u,v) = gl(

where

= 100 = exp() = (1 = expl=mm ()
) = 1= 2 @ - D = e

4 Hidden second-order stationarity

Below, we will define and discuss different models for hidden second-order stationar-
ity of inhomogeneous spatial point processes X and provide examples of inhomoge-
neous point process models that possess the types of hidden second-order stationarity
under consideration. In all cases considered, the pair correlation function is of the
form

9(u, v) = go(u =), (10)
where ~: R? x R? — R? is a generalized subtraction operator, satisfying
u=v=—(v=u). (11)

In the case of reweighted and retransformed second-order stationarity, = also fulfils
U=v+v-w=u-—w. (12)

In the case of locally rescaled second-order stationarity, (12) holds locally.

In a number of cases, the process X may be derived from a second-order station-
ary template process Xy with pair correlation function gqg. For this reason, we will
generally denote the function go in (10) the template g-function and

Ky(r) = /B(O,r) go(r) du

the template K -function.

4.1 Reweighted second-order stationarity

A point process X with intensity function \ is said to be reweighted second-order
stationary, if the second-order product density of X is of the following form (Bad-
deley et al., 2000)

A (u, ) = go(u — v)A(w)A(v), (13)

or, equivalently, X has pair correlation function g(u,v) = go(u — v). Here, the
subtraction operator = is simply

U=v:i=u—v. (14)

One way of constructing a reweighted second-order stationary point process X
with intensity function A, bounded from above by A,.x, is to apply location depen-
dent thinning to a second-order stationary process Xy with intensity An.« and pair
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template reweighted retransformed rescaled

Figure 4: Realizations of reweighted, retransformed and locally rescaled second-order stationary
point processes, sharing (up to a scale factor) the same template process, which is a homogeneous
Matérn hard core process Xy with shape parameter n = 10. The three inhomogeneous processes
have all the same intensity function, depicted as a gray value image.

correlation function go(u,v) = go(u — v) identical to the pair correlation function
of X. The reweighted second-order stationary process is obtained as

x = {vex,|v, < 2
{rexole<5 2}

)\max

where {U, | v € Xy} is a sequence of independent and identically uniformly dis-
tributed random variables on [0, 1], independent of Xq. If Xq is Poisson, then the
thinned process X is also Poisson. Note that a reweighted second-order stationary
process with unbounded intensity function cannot be obtained by such a thinning.

Figure 4 shows a realization of a reweighted second-order stationary process
(second from the left), obtained by thinning of a homogeneous Matérn hard core
process. A realization of this template is, up to a scale factor, shown to the left
in Figure 4. Note the Poisson-like appearance of the sparse part of the reweighted
second-order stationary process.

A wide class of point processes satisfying (13) is Cox processes with random
intensity function A given by

log A(u) = x(u) + ¥(u),

where z = {x(u)} is a deterministic function and ¥ = {W(u)} is a strictly stationary
process.

Examples of point processes that do not satisfy the assumption of reweighted
second-order stationarity are processes with location dependent hard core distance
and cluster processes with non-stationary parent process, see also Prokesova (2010).
Let us first consider the processes with location dependent hard core. Let us assume
that there exists a positive, non-constant function r(u) satisfying A (u,v) = 0
for all v € B(u,r(u))\{u} and r(u) is maximal having this property. Since 7(u)
is non-constant, we can find uj,us such that r(u;) < r(ug). Then, there exists
v € B(uy,r(uz))\{uy} with A®(uy,v) > 0 but

)\(2)(U27U +us —up) =0
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since v + ug — uy € B(ug, r(u2))\{uz}. Then, g(u,v) is not translation invariant.

Cluster processes with non-stationary parent process have been considered for
modelling species in forest communities. For instance, in Shimatani and Kubota
(2004), a Thomas process with an inhomogeneous Poisson point process with inten-
sity p as parent process is used. The pair correlation function takes the following
form in this case

g(u,v) = Jeo P(@)p(u — x5 0)p(v — 2;0) dw
7 fR2 p(r)p(u —r;0)dr fR2 p(x)p(v —x;0)da

+1. (15)

The pair correlation function given in (15) is obviously not always translation in-
variant, but will be in the special case where p is constant.
It can be shown, using (5), that (13) implies that the template K-function sat-

isfies
u—ol|l <r

ueX 4 vEX\{u}

An unbiased estimate of the template K-function is therefore under reweighted
second-order stationarity simply

\W—UH<M
a3 |Z 2 Aw)

ueX 4 veX\{u}

If observation is available only inside A, then the following edge-corrected unbiased
estimate may be used

u—vll <r
S S )

ueX 4 veXa\{u}
This estimator can be written in the form

1(Jlu — v|| < r)wa(u,v)
SACES DYDY oA (18)

ueX 4 veX g \{u}

with translational edge correction

|A]

wA(U,U) = m,

cf. Mgller and Waagepetersen (2007, Section 6.2). An alternative for the case of
isotropic pair correlation, as given in Baddeley et al. (2000), uses Ripley’s (1976)
isotropic edge correction factor

i) — OB u—vl)) _ 2rju—u
’ L(OB(u, ||lu —v|) MA)  L(OB(u,||lu—v|)NA)’

(19)

where L(0B(u,|ju — v||) N A) is the length inside A of the boundary of the ball
around u through v.



4.2 Retransformed second-order stationarity

Let X, be a second-order stationary process with intensity \o. Let h : R? — R?
be a one-to-one differentiable transformation and let Jh™' be the Jacobian of the
inverse transformation. Then, X = h(X) has intensity function A(-) = A\gJh™!(")
and, using (5), it follows that X has pair correlation function

g(u,v) = go(h™" (u) — h™' (v)), (20)

where go(u,v) = go(u — v) is the pair correlation function of X,.

Motivated by this, a point process X with intensity function A is said to be
retransformed second-order stationary if we can find a one-to-one differentiable (up
to a set of Lebesgue measure zero) transformation h : R? — R? such that

AMu) = N Jh ™ (u) (21)
for some A\g > 0 and
A (,0) = go (1 (u) — A~ (0)) Mw)A() (22)

for some function gy on R% Then, \¢ and gy are the intensity and pair correlation
function of the second-order stationary process X, = h~'(X). For retransformed
second-order stationary point processes, the generalized subtraction operator is given
by

uzv="h"tu)-ht). (23)

If the template process X is Poisson, then the transformed process X = h(Xy) is
also Poisson.

Figure 4 shows a realization of a retransformed second-order stationary process
(second from the right), obtained by transformation of a homogeneous Matérn hard
core process. Note the local anisotropy, especially in the dense part of the process
where the nearest neighbour tends to be located in the vertical direction.

Retransformed second-order stationary point processes constitute a natural model
class primarily in the case where the observed point pattern is the result of a physical
transformation (stretching/squeezing) of a second-order stationary point process. In
Appendix A, transformations are constructed for the case where A\ depends on one
coordinate only or on the distance to a reference point.

A wide class of point processes satisfying (22) is Cox processes with random
intensity function given by

A(u) = Jh™ (u) Ao (R (),

where h is a one-to-one differentiable transformation and Ay = {Ag(u)} is a strictly
stationary process.

Transformation of Markov point processes has been considered in Jensen and
Nielsen (2000, 2001). As an example, let X be a pairwise interaction process with
density with respect to the unit rate Poisson process of the form

#
fxo(@) o 8° T A(llw = ol)). (24)

u,vET
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Then, it can be shown that the density of X = h(Xg) with respect to the unit rate
Poisson process is given by

#
oc g [T 07" (w) TT ~UIp~H (w) = 27 w))). (25)

uex u,veT

Note that if v(d) = 1 for d > r, then X, is Markov with respect to the relation
u~v & u—v| <

In this case, the transformed process will be Markov with respect to an induced
relation
u~v & || (u) - A )] <

For further details, see Jensen and Nielsen (2000). Note also that the template
process X, with density specified in (24) is not strictly second-order stationary
because the process is defined on a bounded subset of R2.

For a retransformed second-order stationary process, Xo = h™1(X) is second-
order stationary with Ay and gq as intensity and pair correlation function. It follows
that the template K-function Ky(r f B(O u)du of a retransformed second-
order stationary process X satlsﬁes

Kor) = et o 2 N =) <)
ueX 4 veX\{u}
An unbiased estimate of the template K-function is therefore
KO0 = g AQ Do U@ —r W)l < ).
0 uex veX\{u}

If observation is available only inside A, then the following edge-corrected estimate
of the template K-function may be used

1! () — B~ @) < 1)
R X -

0 weXa el anu) Hw)—h1(0))]

4.3 Locally rescaled second-order stationarity

Let X, be an isotropic second-order stationary process with intensity 1 and pair
correlation function gg. Let ¢ > 0. Then, the scaled process X = cXj has intensity
A = ¢ 2 and second-order product density of the form

A® (u,v) = go(VAllu = o)) X°. (27)

In this subsection, we will study point processes that locally have the prop-
erty (27). These processes are called locally rescaled second-order stationary. As
we shall see, it is generally only possible to derive approximate results for the lo-
cally rescaled second-order stationary point processes. This is in contrast to what
is obtainable for reweighted and retransformed second-order stationary processes.
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A point process X with intensity function A is said to be locally rescaled second-
order stationary if its second-order product density is of the form

dx(u,v)

)\(2)(% U) = go(m

(u—v))A(u)A(v), (28)
where d) is the locally scaled distance

dx(u,v) :/[ }\/)\(w) dw.

Note that if A is constant on [u,v], then d) is proportional to Euclidean distance
and (28) reduces to (27). In case go(u — v) = go(|lu — v]|), (28) simplifies to

A (u,v) = go(da(u, v))A(w)A(v). (29)

Note that if X is a second-order stationary point process with intensity A and pair
correlation g(u—v), then X is locally rescaled second-order stationary with template
pair correlation function go(u) = g(u/V/\).

The subtraction operator is given by

u=v:= (u—v)d\(u,v)/||Ju— . (30)

The operator (30) clearly fulfils u=v = —(v = u), but the transitive property (12)
will in general only hold approximately and locally for u,v,w so close that X is
approximately constant on the triangle spanned by w,v,w. If indeed X is constant
on the triangle, (12) holds exactly for this choice of triplet.

Let us construct a locally scaled version of a stationary and isotropic Neyman-
Scott process Xgy. For X, we have a Poisson distributed number of offsprings with
parameter o around each parent and the offsprings are distributed according to
the probability density k(|| - —u||) around a parent at position u. The intensity of
parents in X is taken to be a~! such that the intensity of X, becomes o la = 1.
Let c(z) > 0, z € R? be a scaling function. This function is used to change the
intensity function of the parents as well as the distribution of the offsprings around
the parents. The resulting process ® of parents is Poisson with intensity function
ale(x) 2. If w € @, the number of offsprings around wu is Poisson distributed
with parameter o and, conditional on this number, the offsprings around wu are
independent and identically distributed with density

c(u)2k(c(u) v —ul]), veR%.

Let us assume that the scaling function is slowly varying compared to the interaction
range. For instance, suppose that there exists r > 0 such that k(||u||) = 0 for ||u|| > r
and the scaling function satisfies

c(v) = c(u) for all u € R* v € B(u, c(u)r).

Then, the locally scaled Neyman-Scott process X approximately satisfies (29), as
shown in Appendix B.
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A locally scaled version of a Matérn hard core process can be constructed as
follows. Let c¢(z) > 0, x € R?, be a scaling function and let ® be a Poisson process
with intensity function a~'c(x)™2. The locally scaled Matérn hard core process is
now defined by

X={ze®|U, <U,foralye ®with 0 < d.—2(z,y) :/ c(w) tdw < r}.

[z.y]

In Hahn (2007, p. 55 — 56), the intensity and pair correlation functions of X are
derived. Under the assumption of a slowly varying scaling function, (29) is approx-
imately fulfilled. A realization of a locally scaled Matérn hard core process is show
in Figure 4 (right). Note that this process has a locally isotropic appearance.

Local scaling of the pairwise interaction process X, with density (24) is consid-
ered in Hahn et al. (2003). The locally scaled process X is obtained by considering
the specified density (24) of the template X, as a density with respect to an inho-
mogeneous Poisson process with intensity A and substitute the Euclidean distances
with scaled distances d,. The resulting density of X with respect to the unit rate
Poisson process becomes

#
) o< B T Aw) [T v(dalu, v)

uex u,VET

We can develop estimates of the template K-function Ko(r) = | BOw) go(u)du
evaluated at r if X is 'slowly varying’ in the locally scaled balls

By(u,r) = {v € R? : dy(u,v) <1}

centred at u with radius r. We focus on the case where go(u —v) = go(||lu—v||). We
thus require that By (u,r) (u,r/+/A(u)) and

Av) = A(u), for all v € By(u,r).
Then, the template K-function at r is approximately
Ko E Z Z 1(dy(u,v) <),
ueX a4 veX\{u}

where p(A) is the mean number of points from X in A. An approximately unbiased
estimate of the template K-function takes the form

[?(() Z Z 1(dy(u,v) <r).
ueXA veX\{u}

If observation is available only inside A, we suggest to use the following estimate of
the template K-function

[A(é Z Z 1(dx(u,v) < r)wa(u,v), (31)
ueXA veX 4\ {u}
where w4 is Ripley’s edge correction as given in Equation (19), cf. Hahn (2007,
Section 4.2.2).
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5 Testing hidden second-order stationarity

5.1 Tests based on the K-function

In this section, we present a general method to test the hypothesis that a given
point pattern can be ascribed to a reweighted, retransformed or locally rescaled
second-order stationary point process model. The tests are based on estimates of
the corresponding template K-functions. Under the hidden second-order station-
arity in question, the mean of the estimators (18), (26) or (31) of the appropriate
template K-function does not depend on the choice of the observation window, in
particular not on the local intensity. However under an alternative type of hidden
second-order stationarity, the means of the — now inappropriate — estimators do
differ, as shown in Figures 5 and 6 for inhomogeneous versions of Matérn hard core
and cluster point processes. Only retransformed and locally rescaled point processes
seem to be vice versa indistinguishable in that way. The idea of the test is to com-
pare estimates of the template K-function obtained in regions of different intensity.
Similarly, Illian et al. (2008, p. 282) suggest to compare reweighted pair correlation
functions estimated in subwindows with constant intensity, without giving a formal
test. Explorative methods of comparing local K-functions (or L-functions) have ear-
lier been described without the development of a formal test (Getis and Franklin,
1987; Anselin, 1989, 1995; Cressie and Collins, 2001b,a), under the heading of local
indicators of spatial association (LISA).

The test described below is a generalization of the method presented in Hahn
(2012) for comparison of the K-functions estimated on two individual point patterns.

Let A denote the observation window.

1. Determine m = my + mqy disjoint quadrats A;,..., A,, C A. The indices
are chosen with increasing mean intensity, i.e. Ay < Ay < ..., < A, where
N = u(A)/|A;]. Let I = {1,...,m;} and Iy = {m; +1,...,m; +my} denote
the index sets of the quadrats with low and high intensity.

2. On the quadrats, obtain estimates K; (r),..., Km(r) of the template K-function
under the null hypothesis, using an unbiased estimator.

3. Let
Ki(r) ! K;(r) 1,2
r) = — . =
[ m; 4 7 r), 1 )
J€L;
and
1 ~ _
) = —— S (Rylr) = Ki(r)?
! JEIL;

denote mean and empirical variance of the K-function estimates on the two
subsets. Since the estimators used are unbiased, EX; = EK, under the null
hypothesis.
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Figure 5: Left: Realizations of reweighted, retransformed and locally rescaled second-order sta-
tionary Matérn hard core point processes (top to bottom) with the same template and same
intensity function. Right: means and 90% pointwise envelopes of the estimated reweighted, re-
transformed and locally rescaled K-functions (left to right), estimated from 500 realizations on
the subwindows of high and low intensity (red and blue), together with the Poisson K-function
(dashed). Mean number of points per pattern: 555.

4. Calculate the test statistic

(&) - Ka)
T(I, L) = /0 (s%(r)/Tm + S%(T)/mQ)

dr. (32)

5. The significance of the studentized distance T between K; and K, is assessed
by a permutation test. This idea originates from Diggle et al. (1991, 2000),
but the test statistic suggested there may lead to size distortion of the test,
in particular when the variance of the K-estimates for the two subsets is very
different, see Hahn (2012).

The p-value is then obtained by ranking 7'(1, I3) among all possible outcomes
T(I7,13), with I7 running through all subsets of I with cardinality m4, and

s =1I\1.
Thus, (mlg;m) partitions of I have to be considered if my # mo; for symmetry
reasons, only (mlglm) /2 partitions have to be generated if m; = my.

For larger samples, with m > 20, an exact permutation test would create an enor-
mous computational load and should therefore be replaced by a bootstrap test. To

15



'3' 4 A0
S

Ko (O]

0 10 20 30 40 50 60

000 005 010 015 0.20 000 005 010 015 0.20

At)
Ky (1)

Aw)

Ko (1)

0.15
1
0.15
1

0.10
1

0 10 20 30 40 50 60

000 005 010 015 0.20 0.00 005 010 015 0.20

At)
Ky (1)

Aw)

Ko (1)

0.15
1
0.15
1

0.10
I
0.10
I

0.05
I
0.05
I

0 10 20 30 40 50 60

0.00
1
0.00
1

T T T T T T T T T T T T T T T
000 005 010 015 0.20 0.00 005 010 015 0.20 0 1 2 3 4

Figure 6: Hidden second-order stationary Matérn cluster point processes and estimates of tem-
plate K-functions, as in Figure 5; mean number of points per pattern: 1665.

this end, a predefined number npee of subsets I7 and I = I\ I} is randomly gen-
erated. The bootstrap p-value is then obtained from the rank of the observed test
statistic among the simulated outcomes T'(17, I).

To achieve the best performance of the test in terms of size and power, the
estimators K; should have approximately the same variance. The variance depends
largely on the number of points; therefore, the quadrats Ay, ..., A,, should contain
roughly the same number of points. If this is not feasible, we recommend to use the
test statistic

Ty 1) e o 2 (Ea(r) = Kolr))dr
ba2)e OTO T%(s%(r)/ml + sg(r)/mg)dr
instead of T to increase the robustness against heteroskedasticity (Hahn, 2012), at
the cost of a loss in power when testing regular point patterns.

An important parameter that influences the power of the tests is the upper
integration bound ry. It should ideally be chosen such that the most significant
differences between the subpatterns under the alternative are covered. For model
tests based on similar statistics, it is usually recommended to set ry = 1.25/v/\.
This choice goes back to Ripley (1979) and has been thoroughly investigated by Ho
and Chiu (2006). In an exemplary simulation study with inhomogeneous regular
and clustered point patterns (not shown here), we found g = 1.25/y/Ag with \g =
max;eq A(x) to yield more powerful tests in connection with the reweighted K-

(33)

16



function than ro = 2.5/)¢. For tests based on the rescaled K-function, this is to be
replaced by rg = 1.25, since the template then has unit intensity.

5.2 Directional diagnostics

It is virtually impossible to distinguish between retransformed and locally rescaled
second-order stationary models with the above described test, see Figures 5 and 6.
Still, these two approaches to generate inhomogeneity lead to different point pro-
cesses if applied to the same stationary template process: while the locally rescaled
version is locally isotropic, the retransformed second-order stationary point pattern
exhibits local anisotropy. The K-function is intrinsically isotropic, and therefore not
capable to capture this difference.

Transformation generally results in local anisotropy, except if the point process
is Poisson. This fact is traditionally exploited in geology to determine the strain
rocks with distinguishable particles have been exposed to. Fry (1979) suggests to
consider the direction of all segments connecting pairs of particle centres; however,
he assumes stationarity. Similarly, Stoyan and Benes (1991) propose to use the so-
called point-pair rose density to describe anisotropy in a stationary point process.

In the present case of retransformed second-order stationary point processes, one
may study the nearest neighbour orientation: if the transformation is contractive
and an isotropic point pattern Xy is locally “squeezed” along one direction, nearest
neighbours will preferably occur in that direction. Local “stretching”, on the other
hand, leads to a preference of nearest neighbour orientation perpendicular to the
transformation direction. However, this only holds for regular point patterns, as
already pointed out by Fry (1979). As shown in Figure 7, the effect of strain on
clustered patterns is quite different: If the clusters themselves consist of indepen-
dent points, the process behaves locally almost like a Poisson point process. The
— very vague — difference in the rose of nearest neighbour orientations for the two
subpatterns is due to a change in the shape of the clusters. In the case of clus-
ter point processes, nearest neighbour orientations are not suitable as a basis for
a test, however, in case of regular point patterns, they provide a valuable tool for
explorative data analysis and visualization.
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Figure 7: Realizations of retransformed second-order stationary point processes (cf. Figs. 5 and 6),
and corresponding rose densities of nearest neighbour orientations. The patterns are shown with
segments connecting nearest neighbour pairs; arrow: reference zero direction. Plots of nearest
neighbour orientation rose density on the subwindows of high and low intensity (red and blue) show
means and 90% pointwise envelopes based on edge corrected kernel estimates from 500 simulated
realizations.
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A better test statistic is the directional K-function, defined as the integral of
the pair correlation function over a sector, ¢f. Ohser and Stoyan (1981). Since
the sign of direction does not matter in orientational analysis, we consider double
sectors instead, and define the orientational template K-function with respect to
the reference direction vector 7 as

Ko(rin, 6) = / go(wdu, 0<8<m/2, (34)
S(0,rm,d)

with
S(0,7,n,0) ={u € R : ||ul| <7, [(n,u)] > |Jul| cos 5},
where (1, u) denotes the scalar product of  and u, |n| = 1. The angle § gives half
the sector width, thus Ko(r;n, 7/2) = Ko(r).
Under the hypothesis of local rescaling, the orientational template K-function

may be estimated analogously to (31), however, the edge correction has to be
adapted:

IA(()(rn, = Z Z 1(dy(u,v) <)

uEXA veXa\{u}

~1([(n, (v = u))| > [lv = ul[ cos )wa(u, v,7,8), (35)

P ey = Ll =) sl
AU 00 = Fe o —ul) 1 A) ~ T(Cla o — ul) 1 A)
and for d > 0
Clu.d) = {w € Rt w —ul = d, |(n,w—u)| > |w—ul cos 5}
Under the assumption that By (u,r) ~ B(u,r/y/A(u) and

Av) = A(u), for all v € By(u,r),

this edge correction ensures approximate unbiasedness in the isotropic case (29).

In order to find a powerful statistic for a test of locally rescaled against retrans-
formed second-order stationarity, consider again transformation of a stationary point
process along one direction 7. The transformation has an opposite effect on the ori-
entational K-functions with respect to the direction 7 and the orthogonal direction
n*; therefore, we suggest to use the difference

AKai(r31,0) = Ko(r;n,8) — Ko(rsn™, 0)
= /B(O )QD(U)(1(|<77,U>I > [lul| cos &) = 1(|(n, u)| < ||ullsind))du.  (36)
Redenbach et al. (2009) considered a closely related statistic for detecting anisotropy
in 3D point processes and found it to be slightly more powerful than the distribution
of nearest neighbour distances restricted to a subset of orientations. Obviously, it

does not make sense to consider sectors with § > /4 here. If go(u) = go(||ul),
AKgir(r;m,0) = 0, compare also with Figure 8.
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Figure 8: Realizations of retransformed (top row) and locally rescaled (bottom row) point pro-
cesses, and corresponding A Ky -functions. Arrows indicate the reference direction; sector width
was set to 20 = 7w/2. Plots of the AKy;-functions estimated on the subwindows of high and
low intensity (red and blue) show means and 90% pointwise envelopes based on 500 simulated
realizations.

A test of locally rescaled second-order stationarity can now be constructed as
described in the previous Section 5.1, by replacing estimates of Ky with estimates
of AKg;,. The reference direction n may be chosen arbitrarily, but for maximum
power against the alternative of retransformed second-order stationarity, it is a good
idea to let 1 represent the gradient direction of the transformation, which is directly
linked to the gradient of the intensity function.

The hypothesis of retransformed second-order stationarity with respect to a
known transformation h can be tested as described above, using the correspond-
ing statistic Ko(r;n,d). Estimates of this statistic are obtained from the back-
transformed point pattern, which is a realization of a second-order stationary point
process under the hypothesis. This approach is taken in the analysis of the bronze
data in Section 6.1.

6 Data analysis

6.1 The bronze data

The bronze pattern represents centres of sphere profiles in a dense packing, with
sphere diameter varying along one direction (identified as the z-direction in what fol-
lows). This gives rise to expect that the data are well described by a locally rescaled
second-order stationary model. As a first step in the analysis of this point pattern,
the intensity function, depicted in Figure 9, was estimated by kernel smoothing
of the x-coordinate. We used the function rhohat from the R-library spatstat
(Baddeley and Turner, 2006).

For the tests of locally rescaled second-order stationarity as described in Sec-
tion 5, we first split the original window into two parts containing the same number
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Figure 9: Intensity function used in the analysis of the bronze point pattern, size 18 mm x 7 mm.
Top: point pattern with background shaded according to kernel density estimate of the intensity.
Bottom: intensity estimated on parallel slices of 1 mm width, and kernel estimate.

Figure 10: Partition of the bronze point pattern into two sets of 9 quadrats as used in the tests
on reweighted and locally rescaled second-order stationarity.

of points. Each part was then subdivided into 9 quadrats, with number of points
ranging from 34 to 42, see Figure 10. R

For the test of locally rescaled second-order stationarity, Kés) was determined
on the interval [0, ro] with 79 = 1.25 on each quadrat. For the test on reweighted
second-order stationarity, we used estimates [A(éw) on [0,0.4], which corresponds
roughly to rg = 1.25/y/sup A. The K-function estimates are shown in Figure 11.
The locally rescaled K-functions are quite similar on the test set with high intensity
(red) and with low intensity (blue). Accordingly, the results of the permutation test
are non significant: with the test statistic 7" given in (32), the test yields a p-value
of p = 0.28, and with the more robust statistic 7' given in (33), we obtain p = 0.34.
By contrast, the corresponding tests on reweighted second-order stationarity are
highly significant, namely p = 0.002 when T is applied, and p = 0.001 when T is
used. In order to test retransformed second-order stationarity, an appropriate back-
transformation ~A~! has to be determined. When the intensity A only depends on
one coordinate, a very simple approach consists in rank-transforming that coordi-
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colours correspond to Figure 10; the dashed line represents the Poisson K-function, K (r) = 7r2.
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Figure 12: Left: The bronze pattern, transformed back to homogeneity on the original window,
is split into_two sets of quadrats containing approximately the same number of points. Right:
Estimates K, ét) on the quadrats, and mean of Két) on the two test sets, with colours corresponding
to the left figure.

nate. That approach is taken e.g. by Fleischer et al. (2006a,b). Since we anyway
had estimated A before, we estimated h~! from the integral of the estimated inten-
sity A along the z-axis, mapping the observation window onto itself (Figure 12),
see also Appendix A. Estimates of K of the original pattern x are then simply
obtained by estimating the stationary K function on the backtransformed pattern
h~1(x), cf. (26). The test results were non significant (p = 0.33 and p = 0.35),
using ro = 0.5 as upper bound, which corresponds to 1.2/ \/X, where X\ = 5.4 is the
estimate for the stationary intensity from the backtransformed pattern. This result
was expected, since the K-function cannot detect anisotropy. A plot of segments
connecting nearest neighbours however reveals the distinct local anisotropy in the
backtransformed pattern (Figure 13).

The test of retransformed second-order stationarity given in Section 5.2 under-
pins this finding, yielding highly significant results (p = 0.001 with test statistic T,
and p = 0.0005 with T). For this test, we estimated the difference AKg;, between
orientational template K-functions, evaluated on bisectors of width 26 = 7/2 cen-
tred around the x- and y-direction. The resulting estimates of the A Ky;,-functions
are shown in Figure 14, left part. Carried out on the original pattern, the same type
of test gave non significant results with p > 0.89 (Figure 14, right part).
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Figure 13: Pairs of nearest neighbours in the backtransformed bronze pattern. Apparently, the
preferred nearest neighbour direction changes along the z-direction.
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Figure 14: Difference of orthogonal orientational template K-functions, estimated on quadrats,
and means over test sets, for the backtransformed pattern (left) and the original pattern (right).

6.2 The Beilschmiedia data

The Beilschmiedia pattern exhibits extreme differences in local plant density and
strong clustering. It is believed that the density is heavily influenced by the terrain
covariates altitude and norm of the altitude gradient. Therefore, Waagepetersen
(2007) and Mpgller and Waagepetersen (2007) fit inhomogeneous cluster point pro-
cesses to these data. They use a log-linear model for the intensity as a function of
the covariates, and estimate the intensity by a Bayesian approach and maximum
likelihood, respectively (Figure 15).

For the test of reweighted second-order stationarity, we partitioned the pattern
into 4 x 8 quadrats. Only quadrats with more than 30 points were included in the
test. In lack of a natural intensity gradient, we used the observed number of points
to assign the remaining quadrats to two test sets (Figure 16).

The number of points in the quadrats used for the test varies hugely, from 32
to 404. Therefore, we only considered the more robust test statistic 7. The re-
sults are highly significant (p = 0.001 and p = 0.0002); the estimated template
K-functions indicate strong clustering for most of the quadrats with many points,
and repulsion on most of the quadrats with fewer points, see Figure 17.

This result does not necessarily imply that the Beilschmiedia pattern cannot
be described by a reweighted second-order stationary point process, but could also
be due to an inappropriate intensity estimate. We therefore also investigated a
nonparametric intensity estimate. Kernel estimators with constant bandwidth seem
to be ruled out by the strongly varying intensity. We applied an adaptive estimate
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Figure 15: Bayesian (top) and maximum likelihood (bottom) intensity estimate for the
Beilschmiedia data set,as in Mgller and Waagepetersen (2007). The plot is subdivided into 8 x 4
quadrats.

available in the R-library spatstat as function adaptive.density. This estimator
was originally suggested by Ogata et al. (2003), and is based on Voronoi tessellations
of randomly thinned patterns. The intensity estimate used in the test is shown in
Figure 18. The corresponding test result was non significant (p = 0.16).

In order to make the estimate more robust in cases of strong inhomogeneity, an
optional renormalisation of K () is implemented in the R package spatstat. With
the recommended parameter normpower=2; it amounts to rescaling the estimated
intensity function A on the evaluation window or quadrat B by a factor 0(5\, Xp) =
Yuexy 1/ (IBJA(w)). If X is proportional to A, the mean value of the correction

factor becomes Ec(X, Xz) = A()/A(.), which follows by application of Campbell’s
formula. Therefore, renormalisation can also improve K@) in the case of systematic
proportional error of A\. With renormalised estimates of Ky, the test yielded non
significant p-values p > 0.85 in all three cases.

6.3 The Scholtzia data

At the first glance, the Scholtzia pattern may appear as a realization of a locally
scaled point process — the point patterns on the quadrats in Figure 19 (right part)
could be taken to represent scaled versions of the same template process. With only
171 points, the data set is almost too small for a statistical analysis that requires
subdivision. Nevertheless, we applied the tests of locally rescaled and reweighted
second-order stationarity to the point pattern, based on only four quadrats in each
test set, and using the test statistic 7. A kernel estimate A was used for the intensity
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Figure 16: Two test sets of quadrats that were used in the analysis of the Beilschmiedia data set.
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Figure 17: IA((S“J) using Bayesian (left) and maximum likelihood (right) intensity estimate, eval-
uated on the test quadrats. Colours correspond to Figure 16, fat lines: mean over the test sets.
Dashed line: K-function for a Poisson point process.

function (left part of Figure 19), namely the estimator provided by the function
density from the R-library spatstat, with default parameters. With the division
into quadrats, we tried to follow the estimated intensity while sticking to simple
geometrical shapes. R

When using the original A estimates in the calculation of the estimates K§)
and I?éw), the tests yielded significant results with p = 0.03. Both [?(()5) and [?(()w)
lie above the Poisson- K-function K (r) = mr?, when estimated on the quadrats with
high intensity (marked red in Figure 20), and below 772 for the quadrats with low
intensity (blue). This is possibly due to a bias of )\ as is typical for kernel estimators,
resulting in overestimation of A in regions where X is low, and underestimation of
high \. Since A appears in the denominator of K, the K-function tends to be
underestimated in regions of low intensity and vice versa. After renormalisation,
the difference between the two subsets became non significant, with p = 0.29 and
p = 0.26, respectively, for the tests of locally rescaled or reweighted second-order
stationarity, see Figure 20. The estimates are now very close to the Poisson-K-
function.

Although the initial significance turned into non significance by using a more
robust estimator for the K-functions, one might still question the hypothesis that
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Figure 18: Nonparametric intensity estimate for the Beilschmiedia data, as used in the present
paper.

)/

Figure 19: Left: nonparametric estimate for the intensity function of the Scholtzia as used in
the model tests, right: partition into quadrats for the tests on reweighted and locally rescaled
second-order stationarity.

the Scholtzia pattern is hidden second-order stationary. This case shows that one
should be cautious when assigning an observed inhomogeneous point pattern to one
of the models just based on its visual appearance. While working on the paper
Prokesova et al. (2006), the authors were convinced that the Scholtzia pattern is
well described by a locally rescaled second-order stationary model.

7 Discussion

For the bronze and Scholtzia point patterns analyzed in the data section, the divi-
sion of the point pattern into quadrats with roughly the same number of points was
done in an ad hoc manner. In the more difficult case of the Beilschmiedia pattern
where the inhomogeneity is pronounced and does not follow a given direction, it is
more challenging to find an appropriate subdivision of the pattern. We took a prag-
matic approach and partitioned the observation window into quadrats of equal area,
excluding quadrats with too few points. An alternative is automatic partitioning,
using a Voronoi tessellation based on an inhomogeneous point process with inten-
sity A, proportional to the intensity A of the point process in question, that is, A,
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Figure 20: Estimates for the template K-function of the Scholtzia pattern, assuming different
models for the inhomogeneity, obtained on the high intensity subplot (red) and the low inten-
sity subplot (blue) as shown in Figure 19. The dashed line stands for the Poisson-K-function.
Top: locally rescaled template K-function, bottom: reweighted. Left: using \ as is, right: with
renormalised intensity estimate A

is chosen such that A(u)/A,(u) = ¢ for all points u in the observation window. Lo-
cally scaled repulsive Strauss processes as described in Hahn et al. (2003) or locally
scaled Matérn hard core point processes would constitute natural candidates, since
Voronoi tessellations with respect to such point processes consist of cells of roughly
the same size in the stationary case. Voronoi cells with respect to a stationary germ
point process have mean area that is inversely proportional to the intensity of the
germ point process. This inverse proportionality approximately carries over if the
germ points form a locally scaled inhomogeneous point process, given the intensity
is fairly slowly varying. If A can be considered roughly constant in the vicinity of
an arbitrary germ point u, the Voronoi cell V' (u) belonging to u would contain an
expected number A(u)|V (u)| = A(u)/A;(u) = ¢ of points.

For each of the three types of hidden second-order stationarity considered in the
present paper, the estimate of the template K-function depends on the intensity
function of the inhomogeneous process or the transformation involved. As empha-
sized by the results in the data section, the resulting inference is very sensitive to the
quality of the estimate of the intensity function. The bronze data went smoothest,
because it is regular and the estimate of the intensity function has a small variance.
For the Beilschmiedia data, a parametric model for the intensity function based
on auxiliary variables about the terrain topology (Waagepetersen, 2007; Mgller and

26



Waagepetersen, 2007) did not provide a fully satisfactory intensity estimate which
may be seen from direct simulations of the fitted model. A nonparametric inten-
sity estimate was more appropriate. The hypothesis of reweighted second-order
stationarity was rejected, when using the parametric intensity estimate, while ac-
cepted when using the nonparametric estimate. Two-step estimation procedures
(Waagepetersen and Guan, 2009) are also very sensitive to the quality of the inten-
sity function estimate. The same phenomenon is known from the stationary case.
A renormalisation procedure may improve the quality of the intensity function
estimate, as discussed in the last paragraph of Section 6.2. An interesting future
research topic would be a systematic study of such renormalisation procedures.
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A Constructions of transformations

If the intensity function of the resulting inhomogeneous process only depends on one
coordinate or on the distance to a reference point, then there is a transformation
with the same property that is differentiable (up to a set of Lebesgue measure zero)
and one-to-one on a rectangular respectively circular sampling window.

To see this, let us first suppose that the intensity function depends on one coor-
dinate only, A(x,y) = s(x), say. It is then natural to focus on transformations h of
the form h(z,y) = (t(x),y). Then, the requirement Jh~! oc A is equivalent to

(1) (z) o< s(x),

t () = b/x s(v)dv + ¢,

zo

for some real constants xg, b and c. The transformation h is determined by the addi-
tional requirement of being one-to-one on a rectangular sampling window [z, 1] X
[Y0, 1] in which case

b= (21 — 30) U s(v)dv} R

For instance, if
A ifr<a
Mz, y) = { Ny if 2> a,

where zg < a < xq, then

(z) = b1 (T — xo) + 0o if x < a,
= bAi1(a — xg) + bAo(z —a) + xy if x > a,

27



where
1 — Zo

- A(a — xo) + Ao —a)

As another important example, let us suppose that the intensity only depends
on the distance to the origin, A(z,y) = s(\/2? + y?), say. Here, it is natural to seek
a solution among transformations h of the form

hz,y) =t (\/.CEQ - y2> \/f;’—%)y?

These transformations only change the distance to the origin. The transformation ¢
then satisfies the following equation

tHr) - (Y (r) ocr - s(r).

This equation can be used to express t in terms of s. We find

b

/0 "o s(0)du x /0 )Y (0)do

t=1(r)
= / udu
t=1(0)
- (0
— 5 ]

1) = [b /0 ' vs(v)dv—l—c] v

for some real constants b and c¢. The transformation is fully specified, if we require
that A is one-to-one on a circular sampling window B(O, R), then

It follows that

1

b= R VORvs(v)dv}_ -

s(r) = Ao exp(=pr),

For instance, if

then

r > 0.

1—ePr(Br+1) ]1/2
) )

t7H(r)=R L — e BR(BR + 1

In the more general case where \(z,y) = s(y/22 + (v - y)?), v > 0, we can rescale
the transformation obtained for v = 1. If this transformation is called h;, then the
transformation for general ~y is obtained as follows

1

hy(z,y) = ﬁhl(fﬂ,v “Y).
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B Locally scaled Neyman-Scott processes

The locally scaled Neyman-Scott process has intensity function

AMu) = a/ a te(z)? - e(z) ?k(c(x) Hu — z]))de ~ c(u) 2
R2
and second-order product density
AP (u, v)

—a? [ a7leta)ola) hicle) ! u = alDklele) o - al)ds + A

u—v

~ ac(u) “e(v) /R k(llyIDEly + Ndy + A(u)A(v),

Cuv

where ¢, , = (c(u) 4 ¢(v))/2, say. It follows that the pair correlation function of the
locally scaled Neyman-Scott process satisfies

o)~ [ K(DE(ly +

lu — o]

u—v

)dy + 1

Cuw

:go( )7

Cuw

where gq is the pair correlation function of Xy, and (29) is approximately satisfied.

References

Anselin, L. (1989). What is special about spatial data? Alternative perspectives
on spatial data analysis. In Spring 1989 Symposium on Spatial Statistics, Past,
Present and Future, Department of Geography, Syracuse University.

Anselin, L. (1995). Local indicators of spatial association — LISA. Geographical
Analysis 27(2), 93-115.

Armstrong, P. (1991). Species patterning in heath vegetation of the northern sand-
plain. Honours thesis, Murdoch University, Western Australia.

Baddeley, A. and R. Turner (2006). Modelling spatial point patterns in R. In
A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan (Eds.), Case Studies
wn Spatial Point Pattern Modelling, Volume 185 of Lecture Notes in Statistics, pp.
23-74. New York: Springer-Verlag. ISBN: 0-387-28311-0.

Baddeley, A. J., J. Mgller, and R. Waagepetersen (2000). Non- and semi-parametric
estimation of interaction in inhomogeneous point patterns. Statistica Neer-
landica 54(3), 329-350.

Bernhardt, R., F. Meyer-Olbersleben, and B. Kieback (1997). Fundamental inves-
tigation on the preparation of gradient structures by sedimentation of different
powder fractions under gravity. In D. Hui (Ed.), Proc. of the jth Int. Conf. on
Composite Engineering, July 6-12 1997, ICCE//, Hawaii, pp. 147-148.

29



Condit, R. (1998). Tropical Forest Census Plots. Berlin, Germany and Georgetown,
Texas: Springer-Verlag and R. G, Landes Company.

Condit, R., S. P. Hubbell, and R. B. Foster (1996). Changes in tree species abun-
dance in a neotropical forest: impact of climate change. Journal of Tropical
Ecology 12, 231-256.

Cox, D. R. (1955). Some statistical methods connected with series of events. Journal
of the Royal Statistical Society, Series B (Methodological) 17(2), 129-164.

Cressie, N. and L. B. Collins (2001a). Analysis of spatial point patterns using
bundles of product density LISA functions. Journal of Agricultural, Biological,
and Environmental Statistics 6(1), 118-135.

Cressie, N. and L. B. Collins (2001b). Patterns in spatial point locations: Local
indicators of spatial association in a minefield with clutter. Nawval Research Lo-
gistics 48, 333-347.

Diggle, P. J., N. Lange, and F. M. Benes (1991). Analysis of variance for repli-
cated spatial point patterns in clinical neuroanatomy. Journal of the American
Statistical Association 86(415), 618-625.

Diggle, P. J., J. Mateu, and H. E. Clough (2000). A comparison between parametric
and non-parametric approaches to the analysis of replicated spatial point patterns.
Advances in Applied Probability 32(2), 331-343.

Fleischer, F.; M. Beil, M. Kazda, and V. Schmidt (2006a). Analysis of spatial point
patterns in microscopic and macroscopic biological image data. In A. Baddeley,
P. Gregori, J. Mateu, R. Stoica, and D. Stoyan (Eds.), Case studies in spatial
point processes models, Number 185 in Lecture Notes in Statistics, pp. 235-260.
New York: Springer.

Fleischer, F., S. Eckel, I. Schmidt, V. Schmidt, and M. Kazda (2006b). Point process
modelling of root distribution in pure stands of Fagus sylvatica and Picea abies.
Canadian Journal of Forest Research 36, 227-237.

Fry, N. (1979). Random point distributions and strain measurement in rocks.
Tectonophysics 60(1), 89-105.

Getis, A. and J. Franklin (1987). Second-order neighborhood analysis of mapped
point patterns. Ecology 68(3), 473-477.

Guan, Y. (2008a). On consistent nonparametric intensity estimation for inhomoge-
neous spatial point processes. Journal of the American Statistical Association 104,
1238-1247.

Guan, Y. (2008b). Variance estimation for statistics computed from inhomogeneous
spatial point processes. Journal of the Royal Statistical Society, Series B 70(1),
175-190.

30



Guan, Y. (2009a). Fast block variance estimation procedures for inhomogeneous
spatial point processes. Biometrika 96(1), 213-220.

Guan, Y. (2009b). On nonparametric variance estimation for second-order statistics
of inhomogeneous spatial point processes with a known parametric intensity form.
Journal of the American Statistical Association 104 (488), 1482-1491.

Guan, Y. and J. M. Loh (2007). A thinned block bootstrap variance estimation
procedure for inhomogeneous spatial point patterns. Journal of the American
Statistical Association 102(480), 1377—-1386.

Guan, Y. and Y. Shen (2010). A weighted estimating equation approach for inho-
mogeneous spatial point processes. Biometrika 97(4), 867-880.

Hahn, U. (2007). Global and Local Scaling in the Statistics of Spatial Point Processes.
Habilitationsschrift, Universitdt Augsburg.

Hahn, U. (2012). A studentized permutation test for the comparison of spatial point
patterns. Journal of the American Statistical Association 107(498), 754-764.

Hahn, U., E. B. V. Jensen, M. N. M. van Lieshout, and L. S. Nielsen (2003). In-
homogeneous spatial point processes by location-dependent scaling. Advances in
Applied Probability 35, 319-336.

Hahn, U., A. Micheletti, R. Pohlink, D. Stoyan, and H. Wendrock (1999). Stereolog-
ical analysis and modelling of gradient structures. Journal of Microscopy 195(2),
113-124.

Hellmund, G., M. Prokesova, and E. B. V. Jensen (2008). Lévy based Cox point
processes. Advances in Applied Probability 40(3), 603-629.

Ho, L. P. and S. N. Chiu (2006). Testing the complete spatial randomness by
Diggle’s test without an arbitrary upper limit. Journal of Statistical Computation
and Simulation 76(7), 585-591.

Hubbel, S. P. and R. B. Foster (1983). Diversity of canopy trees in a neotropical
forest and implications for conservation. In S. L. Sutton, T. C. Whitmore, and
A. C. Chadwick (Eds.), Tropical Rain Forest: Ecology and Management, pp. 25—
41. Blackwell Scientific Publications.

[lian, J., A. Penttinen, H. Stoyan, and D. Stoyan (2008). Statistical analysis and
modelling of spatial point patterns. Statistics in Practice. Chichester: John Wiley
& Sons Ltd.

Jensen, E. B. V. and L. S. Nielsen (2000). Inhomogeneous Markov point processes
by transformation. Bernoulli 6, 721-782.

Jensen, E. B. V. and L. S. Nielsen (2001). A review on inhomogeneous spatial point
processes. In I. V. Basawa, C. C. Heyde, and R. L. Taylor (Eds.), Selected Proc.
Symp. Inference for Stoch. Processes, Number 37 in IMS Lecture Notes Monogr.
Ser. Beachwood, OH, pp. 297-318. Institute of Mathematical Statistics.

31



Matérn, B. (1960). Spatial variation. Meddelanden fran Statens skogsforskningsin-
stitut 49(5), 1-144. Second edition: Matérn (1986).

Moller, J. and R. P. Waagepetersen (2003). Statistical Inference and Simulation for
Spatial Point Processes. Boca Raton, Florida: Chapman & Hall / CRC.

Mpoller, J. and R. P. Waagepetersen (2007). Modern statistics for spatial point
processes. Scandinavian Journal of Statistics 34, 643—684.

Neyman, J. and E. L. Scott (1958). Statistical approach to problems of cosmology.
Journal of the Royal Statistical Society, Series B (Methodological 20(1), 1-43.

Nielsen, L. S. and E. B. V. Jensen (2004). Statistical inference for transformation
inhomogeneous point processes. Scandinavian Journal of Statistics 31(1), 131—
142.

Ogata, Y., K. Katsura, and M. Tanemura (2003). Modelling heterogeneous space—
time occurrences of earthquakes and its residual analysis. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 52(4), 499-509.

Ohser, J. and D. Stoyan (1981). On the second-order and orientation analysis of
planar stationary point processes. Biometrical Journal 23(6), 523-533.

Prokesova, M. (2010). Inhomogeneity in spatial Cox point processes — location
dependent thinning is not the only option. Image Analysis €& Stereology 29(3),
133-141.

Prokesova, M., U. Hahn, and E. B. V. Jensen (2006). Statistics for locally scaled
point patterns. In A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan
(Eds.), Case Studies in Spatial Point Pattern Modelling, Number 185 in Lecture
Notes in Statistics, pp. 99-123. New York: Springer-Verlag.

Redenbach, C., A. Sérkka, J. Freitag, and K. Schladitz (2009). Anisotropy analysis
of pressed point processes. AStA Advances in Statistical Analysis 93(3), 237-261.

Ripley, B. D. (1976). The second-order analysis of stationary point processes. Jour-
nal of Applied Probability 13, 255-266.

Ripley, B. D. (1979). Tests of 'randomness’ for spatial point patterns. Journal of
the Royal Statistical Society, Series B (Methodological) 41(3), 368-374.

Shimatani, K. and Y. Kubota (2004). Spatial analysis for continuously changing
point patterns along a gradient and its application to an abies sachalinensis pop-
ulation. Fcological Modelling 180, 359-369.

Stoyan, D. and V. Benes (1991). Anisotropy analysis for particle systems. Journal
of Microscopy 164(2), 159-168.

Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology.
Biometrika 36(1/2), 18-25.

32



van Lieshout, M. N. M. (2011). A J-function for inhomogeneous point processes.
Statistica Neerlandica 65(2), 183-201.

Waagepetersen, R. P. (2007). An estimating function approach to inference for
inhomogeneous Neyman-Scott processes. Biometrics 63, 252—258.

Waagepetersen, R. P. and Y. Guan (2009). Two-step estimation for inhomogeneous
spatial point processes, simulation study. Journal of the Royal Statistical Society,
Series B 71(3), 685-702.

33



