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Abstract

Energy of surface states for 3D magnetic Schrödinger operators

In this dissertation, we study the Schrödinger operator with magnetic field in a three dimen-
sional domain with compact smooth boundary. Functions in the domain of the operator satisfy
(magnetic) Neumann condition on the boundary. The operator depends on the semi-classical
parameter. As this parameter becomes small, certain eigenfunctions of the operator are localized
near the boundary of the domain, hence they will be called surface states. The main result of
this dissertation is the calculation of the leading order terms of the energy and the number of
surface states when the semi-classical parameter tends to zero.

Keywords. Magnetic Schrödinger operator, Neumann boundary condition, spectral theory,
variational principle, semi-classical analysis, energy of the sum of eigenvalues.



Resume

Energi af overfladetilstande hørende til magnetiske Schrödinger operatorer i 3D

I denne afhandling studerer vi Schrödinger operatorer med magnetisk felt i et tredimensionelt
område med kompakt, glat rand. Funktioner i domænet for operatoren opfylder (magnetiske)
Neumann randbetingelser. Operatoren afhænger af en semi-klassisk parameter. Når denne pa-
rameter bliver lille, bliver nogle af egenfunktionerne for operatoren lokaliseret nær randen af
området, og derfor vil de blive kaldt overfladetilstande. Det vigtigste resultat i denne afhandling
er beregningen af det ledende ordens led i henholdsvis energi og antallet af overfladetilstande når
den semi-klassiske parameter går mod nul.

Nøgleord. Magnetisk Schrödinger operator, Neumann randbetingelse, spektral teori, semi-
klassisk analyse, energi af summen af egenværdier.
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Chapter 1

Introduction

The computation of the number and the sum of eigenvalues of Schrödinger operators in various
asymptotic regimes is a central question in mathematical physics. One motivation comes from
the problem of stability of matter (see Lieb-Solovej-Yngvason [?]). The object of study in [?] is
mainly the Pauli operator; this operator is also a Schrödinger operator with constant magnetic
field and an electric potential; it is given as follows:

H(h, b, V ) = Ph + V (x) + σ ·B , in L2(R3;C2) ,

where

Ph = (−ih∇+ A)2 = −h2∆ + ih[div(A) + 2A · ∇] + |A|2 ,
A(x1, x2, x3) = (−bx2/2, bx1/2, 0) ,

B = curlA = (0, 0, b) ,

σ = (σ1, σ2, σ3) , b > 0 , h > 0 .

Let us mention that operator Ph is the Schrödinger operator with magnetic field (B is the
magnetic field); σ is the vector of Pauli matrices; V ∈ L5/2(R3)∩L3/2(R3) is the electric potential;
h is the semi-classical parameter; b is the strength of the magnetic field.

The operator H(h, b, V ) has discrete spectrum in the interval (−∞, 0) consisting of eigenval-
ues λ1(h, b, V ), λ2(h, b, V ), etc. Let us introduce the number and the sum of these eigenvalues:

N =
∑
j

dim
(

Ker(H(h, b, V )− λj(h, b, V ))
)
, E =

∑
j

λj(h, b, V ) .

The sum E is usually called the energy of the eigenfunctions corresponding to the eigenvalues
λ1(h, b, V ), λ2(h, b, V ), etc. Under specific assumptions on the magnetic field B and the electric
potential potential V , it can be shown that the number N and the energy E are finite. The study
of the finiteness of N and E has been the object of study of numerous papers, starting probably
with the establishing of the Cwickle-Rozenblum-Lieb and Lieb-Thirring bounds, and followed up
by many important papers such as [?, ?, ?, ?]. Under the assumption V ∈ L5/2(R3)∩L3/2(R3),
the energy E is finite; this is established in [?]. A natural question is then to study the asymptotic
behaviour as h → 0+ of the energy E . This is done in [?]. The computation of E is used to
compute the ground state energy of large atoms in strong magnetic fields, and then later is
used to establish stability of matter in many important regimes. We refer the reader to [?] for
details. Another important application of the computation of the energy E is the calculation of
the quantum current. The paper [?] is about this topic.
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The analysis in [?] is generalized for various settings. Among many other papers, we mention
that such extensions hold for the case of variable magnetic fields [?] and for fractional powers of
the Laplacian [?].

This work aims at answering the same question in [?] and presented previously but for the
Schrödinger operator with magnetic field. The electric potential is removed but the operator is
defined in a domain with boundary. This leads to a similar situation as in [?], but the geometry
of the boundary will have a significant influence in the expression of the leading order terms.
Details will be discussed at a later point of this introduction.

An important problem in mathematical physics is the computation of the ground state energy
and the analysis of the tunnelling effect for various Schrödinger operators while the semi-classical
parameter h tends to 0, see Helffer [?]. In [?], while estimating the ground state energy of a
Schrödinger operator in a domain with boundary, Helffer-Mohamed observed an analogy be-
tween the semi-classical analysis of Schrödinger operators with electric potentials and that of
Schrödinger operators in domains with boundaries. Loosely speaking, this analogy can be sum-
marized by saying that ‘boundaries’ play a similar role to ‘electric potentials’. More precisely,
this analogy is established in [?] for the question of computing the ground state energy for an
operator in a domain with boundary. Guided by this analogy, several important applications to
the analysis of the Ginzburg-landau model of superconductivity are given. We refer the reader
to the monograph [?] and references therein.

It is natural to wonder whether the same type of analogy between ‘boundaries’ and ‘electric
potentials’ still exists for the question of computing the energy, as done in [?]. The paper of
Fournais-Kachmar [?] shows that the analogy between boundaries and electric potentials exists
for two dimensional domains. The goal in this dissertation is to generalize the results of [?] to
the case of three dimensional domains.

1.1 The magnetic Schrödinger operator in 2D

We present the Schrödinger operator with magnetic field in a two dimensional domain. Suppose
that Ω is an open subset of R2 with smooth boundary and A = (A1, A2) ∈ C2(Ω;R2) a given
vector field. In two dimensions, the magnetic field is the function,

B = curlA =
∂A2

∂x
− ∂A1

∂y
, (x, y) ∈ Ω. (1.1.1)

We suppose that the magnetic field is positive. More specifically, we work under the hypothesis
that

b = inf
x∈Ω

B(x) > 0 . (1.1.2)

The quadratic form

Qh(u) =

∫
Ω
|(−ih∇+ A)u|2 dx

is closed and semi-bounded. Consequently, it defines a self-adjoint operator in L2(Ω) by Friedrich’s
Theorem. This operator is the Schrödinger operator with magnetic field B given as follows:

Ph = (−ih∇+ A)2 . (1.1.3)

The domain of Ph is

D(Ph) =
{
u ∈ L2(Ω) : (−ih∇+A)ju ∈ L2(Ω), j = 1, 2, ν . (−ih∇+A)u = 0 on ∂Ω

}
,

(1.1.4)
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where ν is the unit exterior normal of the boundary ∂Ω. When Ω is bounded, it results from
the compact embedding of H1(Ω) into L2(Ω) that Ph has compact resolvent. In this case, the
spectrum of Ph is purely discrete and consists of eigenvalues of finite multiplicity. This situation is
studied in several papers in the context of the Ginzburg-Landau model of superconductivity (see
[?, ?, ?, ?]). The interest in superconductivity is the calculation of the lowest eigenvalue (ground
state energy) of Ph as the semi-classical parameter h tends to 0. Extensions to non-smooth
domains are given in [?, ?].

If Ω is not bounded and the boundary of Ω is bounded, then the essential spectrum of Ph is
known (see e.g. [?]). We describe how we locate the bottom of the essential spectrum. Indeed,
we have the inequality (see [?]),

∀ϕ ∈ C∞0 (Ω) ,

∫
Ω
|(−i∇+ A)ϕ|2 ≥

∫
Ω
hB(x)|ϕ|2dx .

Using this inequality and a‘magnetic’ version of Persson’s Lemma proved in [?], we deduce that,

inf Specess(Ph) ≥ bh.

Here b > 0 is the quantity introduced in (??).
Consequently, in any case whether Ω is bounded or not, the spectrum of the operator Ph

below bh is purely discrete. This spectrum is non-empty if the magnetic field is not too large
on the boundary of Ω. More precisely, in [?], it was proved that there is a universal constant
Θ0 ∈]0, 1[ such that the bottom of the spectrum of Ph satisfies,

λ1(h, b) = min(Θ0b
′ , b)h+ o(h) (h→ 0) ,

where b′ = min
x∈∂Ω

B(x) and b is introduced in (??). Clearly, if Θ0b
′ < b and h is sufficiently small,

then λ1(h) < bh is in the discrete spectrum.
We will work under the assumption that the set Spec(Ph) ∩ (−∞ , bh) is non-empty. Denote

the elements of this set as an increasing sequence,

Spec(Ph) ∩ (−∞ , bh) = {λ1(h, b) , λ2(h, b) , · · · } .

The sequence {λ1(h, b) , λ2(h, b) , · · · } can consist of infinite values accumulating to the bottom
of the essential spectrum. This happens when the magnetic field is constant (see [?, ?]).

Let b0 ∈ (0, 1). Since b0h < bh, then the value bh is strictly below the bottom of the essential
spectrum of Ph. Consequently, the following number

N (b0h;Ph,Ω) =
∑

λj(h)≤b0h

dim
(
ker
(
Ph − b0h)

)
is finite. When counting multiplicities, N (b0h;Ph,Ω) is the number of the eigenvalues of Ph that
are below b0h. As h → 0+, this number is approximated in [?]. This is described in the next
theorem.

Theorem 1.1.1. Suppose that Ω is has smooth and compact boundary and b0 < b. There holds,

lim
h→0

h1/2N (b0h;Ph,Ω) =
1

2π

∫∫
{(x:ξ)∈∂Ω×R : B(x)µ1(ξ)<b0}

B(x)1/2dxdξ . (1.1.5)

Here, if ξ ∈ R, the number µ1(ξ) is the lowest eigenvalue of the harmonic oscillator

−∂2
t + (t− ξ)2, in L2(R+),
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and Θ0 is the universal constant given as follows

Θ0 = inf
ξ∈R

µ1(ξ) .

Remark 1.1.2. Generalisations of Theorem ?? showing the influence of Robin boundary condi-
tions has been obtained in [?].

Let (x)− = max(−x, 0) denotes the negative part of a number x ∈ R. The energy

E(b, h,Ω) =
∑
j

(λj(h, b)− bh)−

is studied in [?]. Notice that the energy is defined for all eigenvalues below bh and not only for
those below b0h (b0 < 1). The energy is finite thanks to the Lieb-Thirring inequality. The result
obtained in [?] is recalled in the next theorem.

Theorem 1.1.3. Suppose that the domain Ω has a smooth and compact boundary. There holds,

lim
h→0

h−1/2
∑
j

(λj(h, b)− bh)− =
1

2π

∫∫
∂Ω×R

B(x)3/2

(
− b

B(x)
+ µ1(ξ)

)
−
dxdξ. (1.1.6)

Note that Theorem ?? can be obtained as a corollary of Theorem ?? (cf. [?, Remark 1.3]).
Further details about the technique which allows to pass from the energy to the number of
eigenvalues will be discussed later (see Corollary ?? and its proof in Subsection ??).

Theorems ?? and ?? remain true when the domain Ω has corners. This is established in [?].

1.2 The magnetic Schrödinger operator in 3D

In this section we define the Schrödinger operator with magnetic field in a three dimensional
domain. Let O ⊂ R3 be a bounded domain with smooth compact boundary ∂O. We will
consider both the case of interior domains Ω = O and exterior domains Ω = R3 \ O.

We consider a magnetic vector potential A ∈ C∞(Ω;R3). We write A = (A1, A2, A3). In
three dimensions, the magnetic field is a vector given by

B(x) := curl A(x) = (β23,−β13, β13), βij(x) =
∂Aj
∂xi

(x)− ∂Ai
∂xj

(x), i, j = 1, 2, 3.

With the magnetic field we associate the quantities

b := inf
x∈Ω
|B(x)|, b′ = inf

x∈∂Ω
|B(x)|, (1.2.1)

where |B(x)| =
√
β2

12(x) + β2
13(x) + β2

23(x) is the strength of the magnetic field.
We shall work under the assumption that

b := inf
x∈Ω
|B(x)| > 0. (1.2.2)

Let h > 0 be a small parameter (the so called semi-classical parameter). Consider the quadratic
form

Qh(u) =

∫
Ω
|(−ih∇+ A)u|2dx, (1.2.3)
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with domain,
D(Qh) = {u ∈ L2(Ω) : (−ih∇+ A)u ∈ L2(Ω)}. (1.2.4)

This is clearly a semi-bounded closed quadratic form. We associate by Friedrich’s theorem a
self-adjoint operator, Ph, whose domain is

D(Ph) =
{
u ∈ L2(Ω) : (−ih∇+A)ju ∈ L2(Ω), j = 1, 2, ν . (−ih∇+A)u = 0 on ∂Ω

}
,

(1.2.5)

and for all u ∈ D(Ph), we have
Phu = (−ih∇+ A)2u . (1.2.6)

Here, for x ∈ ∂Ω, ν(x) denotes the unit interior normal vector to ∂Ω at x.
If the domain Ω is bounded (interior case), it results from the compact embedding of D(Qh)

into L2(Ω) that Ph has compact resolvent. Hence the spectrum is purely discrete consisting of a
sequence of positive eigenvalues accumulating at infinity.

In the case of exterior domains, the operator Ph can have essential spectrum. In Chapter 2,
we will see that if Λ < b (b from (??)) and h is sufficiently small, then the spectrum of Ph in the
interval [0,Λh] is purely discrete.

The operator Ph is studied in several papers, mainly in the context of the Ginzburg-Landau
model of superconductivity (see [?, ?, ?, ?]). The objective was mainly the estimation of the
ground state energy as h → 0+. Compared to the situation for two dimensional domains, the
analysis of the problem in three dimensional domains is considerably more complicated. The
reason is that the boundary in 3D is a surface and has richer geometry than that in 2D.

If the magnetic field is constant and the domain Ω has a smooth boundary, it is established
that (see [?, ?]):

inf Spec Ph = hΘ0b+ o(h) , (h→ 0+) , (1.2.7)

where Θ0 ∈ (0, 1) is the universal constant introduced in (??). In such a situation, we see that
the set

Spec Ph ∩ [0,Λh] 6= ∅ .

In general, we will work under the assumption that Spec Ph ∩ [0,Λh] 6= ∅ and denote the
elements of this set as an increasing sequence of eigenvalues counting multiplicities,

Spec(Ph) ∩ (−∞ ,Λh) = {e1(h) , e2(h) , · · · } .

In this dissertation, we are interested in studying the asymptotic behaviour of the energy

E(h,B,Λ) = Tr
(
Ph − Λh

)
− =

∑
j

(ej(h)− Λh)− (1.2.8)

in the semi-classical limit h → 0. The leading order asymptotics of E(h,B,Λ) is given in
Theorem ?? below.

1.2.1 Notation

To introduce the main result, we shall need the following notation

• If x is a point on the boundary of Ω, then θ(x) denotes the angle in [0, π/2] between the
magnetic field B = curlA and the tangent plane to ∂Ω at the point x. More precisely,

∂Ω 3 x 7→ θ(x) = arcsin

(
|B(x) · ν(x)|
|B(x)|

)
∈ [0, π/2]. (1.2.9)
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• We let R+ = (0,∞), R2
+ = R× (0,∞) and R3

+ = R2 × (0,∞).

• For ξ ∈ R, we denote by µ1(ξ) the lowest eigenvalue of the harmonic oscillator

−∂2
t + (t− ξ)2 in L2(R+)

with Neumann boundary conditions at t = 0.

• For θ ∈ (0, π/2], we introduce the two-dimensional operator

L(θ) := −∂2
t − ∂2

s + (t cos(θ)− s sin(θ))2 in L2(R2
+). (1.2.10)

It is well known (see [?]) that the essential spectrum of L(θ) is the interval [1,∞), and we
shall denote by {ζj(θ)}j the countable set of eigenvalues of L(θ) in the interval [ζ1(θ), 1).

• We define the positive and negative parts of a real number x by (x)± = max(±x, 0).

• If a(h) and b(h) are positive functions of h, then a(h) � b(h) means that a(h)/b(h) → 0
as h→ 0+. Similarly, the notation a(h)� b(h) means that a(h)/b(h)→∞ as h→ 0+.

1.2.2 Main results

The main result in this thesis is :

Theorem 1.2.1. Suppose Ω is either an interior or an exterior domain with compact smooth
boundary ∂Ω. Given Λ ∈ [0, b), the following asymptotic formula holds,∑

j

(ej(h)− Λh)− =

∫
∂Ω
|B(x)|2E(θ(x),Λ|B(x)|−1)dσ(x) + o(1), as h→ 0. (1.2.11)

Here, the function E(θ, λ) is defined for (θ, λ) ∈ [0, π/2]× [0, 1) as follows,

E(θ, λ) =


1

3π2

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ if θ = 0,

sin(θ)

2π

∑
j

(ζj(θ)− λ)− if θ ∈ (0, π/2],

and dσ(x) denotes the two dimensional surface measure on the boundary ∂Ω.

Remark 1.2.2. In the case θ = π
2 , it is well known (see [?]) that the first eigenvalue ζ1(π2 ) = 1

which implies that E(π2 , λ) = 0 for any λ ∈ [0, 1).
Remark 1.2.3. In the case of θ ∈ (0, π/2), we emphasize that the sum appearing in the formula
of E(θ, λ) above, is a finite sum. Indeed, in view of Lemma ?? below, we learn that the number
of eigenvalues of L(θ), below a fixed λ ∈ [0, 1), is finite.
Remark 1.2.4. Theorem ?? is an extension to three-dimensional domains of the analogous The-
orem 1.1 in [?] established for two-dimensional domains.
Remark 1.2.5. In Lemma ?? below, we show that the function

(θ, λ) 7→ E(θ, λ),

is a continuous function as a function of two variables. Consequently, we obtain

lim
θ→0

sin(θ)

2π

∑
j

(ζj(θ)− λ)− =
1

3π2

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ.
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Notice that this formula is connected to the formula for the number of eigenvalues given in [?]:

lim
θ→0

(
sin θN (λ, θ)

)
=

1

π

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ,

where N (λ, θ) = Card{ζj(θ) : ζj(θ) ≤ λ} .
Remark 1.2.6. Assuming that the strength of the magnetic field is constant on the boundary, i.e.
|B| = b′ on ∂Ω, the asymptotic formula of Theorem ?? reads∑

j

(ej(h)− Λh)− = (b′)2

∫
∂Ω
E(θ(x),Λ(b′)−1)dσ(x) + o(1), as h→ 0. (1.2.12)

Using the technique to go from energies to densities (see [?] for details), we can differentiate
both sides of (??) with respect to Λh and get an asymptotic formula for the number of eigenvalues
of Ph below Λh. This is stated in the next corollary.

Corollary 1.2.7. Let Λ ∈ [0, b) such that (σ is the surface measure on ∂Ω):

σ
({
x ∈ ∂Ω : θ(x) ∈ (0, π/2), Λ|B(x)|−1 ∈ SpecL(θ(x))

})
= 0 . (1.2.13)

The following asymptotic formula holds true,

N (Λh;Ph,Ω) = h−1

∫
∂Ω
|B(x)|n(θ(x),Λ|B(x)|−1)dσ(x) + o(h−1) (h→ 0+) . (1.2.14)

Here, if λ ∈ [0, 1), then n(θ, λ) is given by

n(θ, λ) =


1

2π2

∫ ∞
0

(µ1(ξ)− λ)
1/2
− dξ if θ = 0,

sin(θ)N (λ;L(θ),R2
+)

2π
if θ ∈ (0, π/2].

Remark 1.2.8. The condition in (??) is satisfied when Ω is the unit ball, the magnetic field B is
constant of unit length and Λ is sufficiently close to the universal constant Θ0. Details are given
in Subsection ??.

1.3 Perspectives

We list some natural questions for future research:

1. Inspection of the number N (Λh;Ph,Ω) when the condition in (??) is violated.

2. Theorem ?? is established when the domains Ω has a smooth boundary. An interesting
question is to study the case when the domain Ω has corners or wedges (see [?]). In two
dimensions, this is done [?].

3. The inspection of the effect of the boundary conditions might be interesting. Theorem ??
is established for the operator with Neumann boundary condition. A natural question is
to consider the operator with Robin boundary condition

ν . (−ih∇+ A)u+ γu = 0 on ∂Ω,

where γ ∈ L∞(∂Ω;R).

4. The asymptotic formula in Theorem ?? holds for the energy of the eigenvalues below the
energy level b0h with b0 < 1. However, in two dimension, such a restriction on b0 does not
appear (b0 is allowed to be 1). Removing the restriction on b0 in three dimensions is an
interesting question.
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1.4 Organization of the dissertation

This thesis is organized as follows.

Chapter 2 contains basic tools in spectral theory that are needed in the subsequent chapters.

Chapter 3 is devoted to the spectral analysis of the model operator on a half-cylinder with
Neumann boundary condition on one edge and Dirichlet boundary conditions on the other edges.

Chapter 4 is devoted to the construction of the function E(θ, λ) as the limit of the energy of
the operator in the half-cylinder. Continuity properties of this function and explicit formulas of
it are given.

Chapter 5 contains the expression of the operator relative to local coordinates near the bound-
ary of the domain Ω.

Chapter 6 concludes with the proof of Theorem ?? and Corollary ??.
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Chapter 2

Spectral theory

The aim of this chapter is to review standard facts regarding the spectrum of semi-bounded
self-adjoint operators. In Section ??, we recall the min-max principle. In Section ??, we recall
variational principles to compute the sum of negative eigenvalues of semi-bounded operators. In
section ??, we recall the Cwikel-Lieb-Rosenblum and Lieb-Thirring estimates for Schrödinger op-
erators on L2(R3). Section ?? is devoted to the analysis of the harmonic oscillator on a half-axis.
In Section ??, we review some of the fundamental properties of the two-dimensional operator
in the half-plane. The model operators on the half-axis and half-plane are fundamental in un-
derstanding the spectral analysis in three dimensional domains. Gauge invariance for magnetic
Schroödinger operators is recalled in Section ??. Finally, the essential spectrum of the magnetic
Schrödinger operator (defined in (??)) is discussed in Section ??.

2.1 The min-max theorem

The celebrated min-max principle is recalled in the next theorem. The proof is given in standard
spectral theory textbooks, e.g. [?, Theorem XIII.1], [?, p. 75] and [?, Sections 1&2].

Theorem 2.1.1. Let H be a self-adjoint operator corresponding to a semi bounded quadratic
form Q(Ψ) = 〈Ψ,HΨ〉 with form domain D(Q). Let us define

µn = inf
V⊂D(Q)

dimV=n

max
Ψ∈V
‖Ψ‖=1

Q(Ψ). (2.1.1)

Then, for each fixed n, we have the alternative (a) or (b) :

(a) There are n eigenvalues (counted with multiplicity) below the bottom of the essential spectrum,
and µn is the n-th eigenvalue counted with multiplicity.

(b) The value µn is the bottom of the essential spectrum, and in that case µn = µn+1 = · · · and
there are at most n− 1 eigenvalues (counting multiplicities) below µn.

Remark 2.1.2. The value of µn in (??) can be expressed in the following form as well :

µn = sup
Ψ1,··· ,Ψn−1∈D(Q)

inf
Ψ∈span[Ψ1,··· ,Ψn−1]⊥

Ψ∈D(Q), ‖Ψ‖=1

Q(Ψ). (2.1.2)

Next, we recall a useful application of the min-max principle in comparing the number of
eigenvalues of two operators. This is taken from [?, Lemma 5.1].
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Lemma 2.1.3. Let (h1,Q1,D(Q1)) and (h2,Q2,D(Q2)) be two closed quadratic forms such that

j : D(Q1) ↪→ D(Q2)

is an isometric embedding with respect to the norms of the Hilbert spaces h1 and h2. Suppose
that there exist constants C1 and C2 such that, for all f ∈ h1,

Q1(f) ≥ C1Q2(j(f))− C2‖f‖2h1
. (2.1.3)

Denote by N1 and N2 the spectral counting functions associated with Q1 and Q2, then we have :

∀ λ ≥ 0, N1(λ) ≤ N2

(λ+ C2

C1

)
.

Proof. Suppose thatN2

(
λ+C2
C1

)
is finite, otherwise there is nothing to prove. Denote by {µj(Q1)}j

and {µj(Q2)}j the eigenvalues, defined by Theorem ??, of the self-adjoint operators associated
with the closed quadratic forms Q1 and Q2. Put

m := N2

(λ+ C2

C1

)
+ 1, (2.1.4)

and consider a vector space V ⊂ D(Q1) of dimension m. Then, for all ϕ ∈ V , we have in view
of (??) and Theorem ?? that

max
ϕ∈V

Q1(ϕ)

‖ϕ‖2h1

≥ C1 max
ϕ∈V

Q2(j(ϕ))

‖ϕ‖2h1

− C2

= C1 max
j(ϕ)∈j(V )

Q2(j(ϕ))

‖j(ϕ)‖2h2

− C2

≥ C1µm(Q2)− C2

≥ C1
λ+ C2

C1
− C2 = λ.

Since this is true for any vector space V of dimension m, it follows from Theorem ?? that,

µm(Q1) ≥ λ. (2.1.5)

Recalling (??), the lemma follows easily from (??).

2.2 Eigenvalues sum

In this section, we recall variational principles to compute the sum of negative eigenvalues of a
semi-bounded self-adjoint operator H on L2(R3). We will assume that

inf Specess(H) ≥ 0, (2.2.1)

and let (H)− = −1(−∞,0)(H)H denote the negative part of H.
The principle stated in Lemma ?? provides a useful characterization of Tr(H)−. In finite

dimensional spaces, it appears in [?] and [?, Section 8.6]. The proof we present is taken from [?].

Lemma 2.2.1. Let H be a self-adjoint semi-bounded operator satisfying the hypothesis (??) and
{νj}∞j=1 its min-max values defined in Theorem ??. Then, we have,

−
∞∑
j=1

(νj)− = inf
N∑
j=1

〈
ψj ,Hψj

〉
, (2.2.2)

where the infimum is taken over all N ∈ N and orthonormal families {ψ1, ψ2, · · · , ψN} ⊂ D(H).

13



Proof. Let {ψj}j=1 be an orthonormal family in D(H). We may assume that all 〈ψj ,Hψj〉 < 0
otherwise we remove all the non-negative terms. We will prove that

N∑
j=1

νj ≤
N∑
j=1

〈ψj ,Hψj〉, (2.2.3)

for all N ∈ N. Let us show (??) by induction. The case N = 1 follows directly from the min-max
Theorem ??, i.e.,

〈ψ1,Hψ1〉 ≥ ν1.

Assume that (??) holds for N − 1. Choose ϕN ∈ span[ψ1, · · · , ψN ] normalized such that

〈ϕN ,HϕN 〉 = max
ψ∈span[ψ1,···ψN ]

‖ψ‖=1

〈ψ,Hψ〉.

Note that the function ϕN exists, since we are taking the max of a continuous function over the
unit ball in a finite dimensional normed vector space, where the unit ball is compact.

By the min-max Theorem in ??, it follows that

νN ≤ 〈ϕN ,HϕN 〉.

Now, we supplement ϕN to an orthonormal basis ϕ1, · · · , ϕN for span[ψ1, · · · , ψN ].By unitary
invariance of the trace we then find

N∑
j=1

〈ϕj ,Hϕj〉 =
N∑
j=1

〈ψj ,Hψj〉 ≥ νN +
N−1∑
j=1

〈ψj ,Hψj〉 ≥ νn +
N−1∑
j=1

νj

where in the last step we have used the induction assumption. This proves (??).
Suppose that H has only finite negative eigenvalues. Denote these eigenvalues by ν1, · · · , νM

(counting multiplicities). If M ≤ N , we apply (??) with N ′ = M . Hence

N∑
j=1

〈ψj ,Hψj〉 ≥
M∑
j=1

νj .

If M > N , we apply (??) with N ′ = N and obtain

N∑
j=1

〈ψj ,Hψj〉 ≥
N∑
j=1

νj ≥
N∑
j=1

νj +
M∑

j=N+1

νj =
M∑
j=1

νj . (2.2.4)

Assume now that H has an infinite number of negative eigenvalues below 0. Choose M > N and
let ν1, · · · , νM be the first M eigenvalues. We proceed as (??) and find

N∑
j=1

〈ψj ,Hψj〉 ≥
N∑
j=1

νj ≥
M∑
j=1

νj ,

for all M > N .
Thus, in all cases, we have

N∑
j=1

〈ψj ,Hψj〉 ≥ −
∞∑
j=1

(νj)−,

14



for all N ∈ N.
We turn to prove a lower bound. By the spectral theorem, it follows that for a given integer

N we can find an orthonormal family {φn}Nn=1 such that the numbers 〈φj ,Hφj〉, are arbitrary
close to νj . It is therefore clear that −

∑
j(νj)− can be approximated well (also when it is −∞)

by
∑N

j=1〈φj ,Hφj〉. The statement of the lemma is thus proved.

Remark 2.2.2. We will often use the notation

Tr(H)− :=
∑
j

(νj)−,

since the quantity on the right hand side will be always finite in the cases we consider in this
report.

The next lemma states another variational principle. It is used in several papers, e.g. [?].

Lemma 2.2.3. Let H be a self-adjoint semi-bounded operator satisfying the hypothesis (??).
Suppose in addition that (H)− is trace class. For any orthogonal projection γ with range belonging
to the domain of H and such that Hγ is trace class, we have,

− Tr(H)− ≤ Tr(Hγ), (2.2.5)

Proof. Let us denote by {λk}k the sequence of strictly negative eigenvalues (counting multiplic-
ities) of H, and let {f−k }k∈Z− be the orthonormal basis of eigenfunctions associated with {λk}k.
Furthermore, we denote by P− = 1(−∞,0)(H) (resp. P+ = Id−P−) the orthogonal projection on
the eigenspaces of strictly negative (resp. positive) eigenvalues of H. Since the operator Hγ is
trace class, we have,

Tr(Hγ) = Tr(HγP+) + Tr(HγP−). (2.2.6)

Since the trace is cyclic, it follows that

Tr(HγP+) = Tr(P+Hγ).

Taking into account that P+ is a projector commuting with H, we get

Tr(P+Hγ) = Tr(P+P+Hγ) = Tr(P+HP+γ). (2.2.7)

The last term is clearly positive since γ ≥ 0 and the operator P+HP+ is positive. Indeed, since
the trace is cyclic, we see that

Tr(P+HP+γ) = Tr(P+HP+γ
2) = Tr(γP+HP+γ) ≥ 0,

Therefore, the proof amounts to show that Tr(P−Hγ) ≥ −Tr(H)−. As in (??), we have

Tr(P−Hγ) = Tr(P−HP−γ).

Next, consider the smallest closed spaceK defined as the direct sum of the eigenspaces associated
with the strictly negative eigenvalues {λk}k. Furthermore, let {f−k }k∈Z− be an orthonormal basis
of K and {f+

k }k∈Z+ an orthonormal basis of K⊥, such that {f+
k ∪ f

−
k }k∈Z form an orthonormal

basis of L2(R3). Hence

Tr(P−HP−γ) =
∑
k

〈P−HP−γf−k , f
−
k 〉+

∑
k

〈P−HP−γf+
k , f

+
k 〉.
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The second term on the right hand vanishes because∑
k

〈P−HP−γf+
k , f

+
k 〉 =

∑
k

〈HP−γf+
k , P−f

+
k 〉 = 0.

Using that H is self-adjoint, it follows that

Tr(P−HP−γ) =
∑
k

〈P−HP−γf−k , f
−
k 〉 =

∑
k

〈γf−k , P−HP−f
−
k 〉 =

∑
k

λk〈γf−k , f
−
k 〉.

Since λk < 0 and
0 ≤ 〈γf−k , f

−
k 〉 ≤

∥∥f−k ∥∥2
= 1,

we deduce that
λk ≤ 〈λkγf−k , f

−
k 〉 ≤ 0

Summing over k, we find ∑
k

λk ≤
∑
k

〈λkγf−k , f
−
k 〉.

Combining the foregoing relations, we obtain

−Tr(H)− :=
∑
k

λk ≤ Tr(Hγ).

The proof is thus complete.

2.3 Eigenvalue bounds

Given a vector field A ∈ L2
loc(R3;R3), the magnetic field, we consider the quadratic form

L2(R3) 3 u 7→ Q0(u) =

∫
R3

|(−i∇+A)|2dx,

with form domain

D(Q0) = {u ∈ L2(R3) : (−i∇+A)u ∈ L2(R3;R3)}.

Since Q0 is a semi-bounded closed quadratic form, it is associated to a self-adjoint operator,

H0 = (−ih∇+A)2,

with domain
D(H0) = {u ∈ L2(R3) : (−i∇+A)2u ∈ L2(R3;R3)}.

Next, let V ∈ L2
loc(R3,R) such that (V )− ∈ L3/2(R3) ∩ L5/2(R3), and consider

H = H0 + V

Under the assumptions on A and V , the operator H can be seen as a bounded perturbation of
H0. By Kato-Rellich Theorem, we deduce that H is self-adjoint, semi bounded from below with
domain D(H0). We recall in the next theorem a bound on the sum of negative eigenvalues of H
in terms of the potential V . For proofs and details we refer the reader to [?, ?].
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Theorem 2.3.1 (Lieb-Thirring inequality). Suppose that the negative part (V )− of V satisfies
(V )− ∈ L5/2(R3) then H is bounded below and its eigenvalues µn satisfy the Lieb-Thirring
inequality

∞∑
n=1

(µn)− ≤ CLT

∫
R3

(V (x))
5/2
− dx,

where CLT is a universal constant independent of A and V .

Next, we state a bound on the number of negative eigenvalues of H, see [?] for details.

Theorem 2.3.2 (Cwikel-Rosenblum-Lieb). Let (V )− ∈ L3/2(R3) and denote by N (V ) the num-
ber of negative eigenvalues of H. We have the following estimate

N (V ) ≤ CCLR

∫
R3

(V (x))
3/2
− dx,

where CCLR is a universal constant.

2.4 Harmonic Oscillator on a half-axis

Let k ∈ N and I ⊂ R is an interval, the space Bk(I) is defined as :

Bk(I) = {u ∈ L2(I) : tpu(q)(t) ∈ L2(I), ∀p, q s.t. p+ q ≤ k}, (2.4.1)

where u(q) denote the distributional derivative of order q of u. In this section, we review some
of the basic results concerning the Neumann realisation of the Harmonic Oscillator on R+.

Let q[ξ] be the closed quadratic form associated with the Neumann realisation of the operator
h[ξ] = −∂2

t + (t− ξ)2 in L2(R+). This form is given by

q[ξ] =

∫ ∞
0

[
|u′(t)|2 + (t− ξ)2|u|2

]
dt.

The domain of h[ξ] is :
D(h[ξ]) := {u ∈ B2(R+) : u′(0) = 0}.

The operator h[ξ] has compact resolvent since the embedding of B1(R+) into L2(R+) is compact.
Hence the spectrum of h[ξ] is purely discrete consisting of an increasing sequence of positive
eigenvalues {µj(ξ)}∞j=1.

The eigenvalues of h[ξ] are defined via the min-max principle by :

µj(ξ) = sup
u1,u2,··· ,un−1

inf u ∈ [span(u1, u2, · · · , un−1)]⊥;
u ∈ B1(R+)and ‖u‖L2(R+) = 1


q[ξ]u

‖u‖2L2(R+)

. (2.4.2)

It follows from analytic perturbation theory (see [?]) that, for all j ≥ 1, the function,

R 3 ξ 7→ µj(ξ)

is analytic. The proof of the next lemma can be found in [?].

Lemma 2.4.1. The lowest eigenvalue µ1(ξ) is simple and the function ϕξ is the unique L2-
normalized strictly positive eigenfunction associated to µ1(ξ).
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The lowest eigenvalue µ1(ξ) is studied in [?, ?]. We collect in the following proposition some
of the properties of µ1(ξ) as a function of ξ.

Proposition 2.4.2. The function R 3 ξ 7→ µ1(ξ) is continuous and satisfies

1. µ1(ξ) > 0, for all ξ ∈ R.

2. At −∞ we have the limit
lim

ξ→−∞
µ1(ξ) = +∞. (2.4.3)

3. At the origin the value is
µ1(0) = 1. (2.4.4)

4. At +∞ we have
lim

ξ→+∞
µ1(ξ) = 1. (2.4.5)

5. µ1 admits a unique minimum Θ0 at some ξ0 ∈ (0, 1),

Θ0 := inf
ξ∈R

µ1(ξ) = µ1(ξ0) < 1. (2.4.6)

The following assertion about the second eigenvalue µ2(ξ) of h[ξ] is taken from [?].

Lemma 2.4.3. The second eigenvalue µ2(ξ) satisfies,

µ2(ξ) > 1, ∀ ξ ∈ R.

Remark 2.4.4. As a consequence of Proposition ??, we have

µ1(ξ) < 1, ∀ ξ ∈ R+, µ1(ξ) > 1, ∀ ξ ∈ R, (2.4.7)

Moreover, the integral ∫ ∞
0

(1− µ1(ξ))dξ =

∫
R

(µ1(ξ)− 1)−dξ, (2.4.8)

is finite and positive.

For later reference, we include Agmon-type estimates on the eigenfunction u1(t; ξ) (cf. [?,
Theorem 2.6.2]).

Lemma 2.4.5. Let λ ∈ [0, 1). For all ε ∈ (0, 1), there exists a constant Cε such that, for all
ξ ∈ R+ satisfying µ1(ξ) ≤ λ, we have∥∥∥∥e ε(t−ξ)22 u1(t, ξ)

∥∥∥∥2

H1
(
{t∈R+ : (t−ξ)2≥Cε}

) ≤ Cε. (2.4.9)

Based on Proposition ?? and Remark ??, we derive

Lemma 2.4.6. Let µ1(ξ) be defined as in (??). We have that∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ =

4

3

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ

and that the integrals are finite for all λ ∈ [0, 1].
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Proof. In view of (??) and Lemma ??, we observe that,∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ =

∫ ∞
0

∫ √(µ1(ξ)−λ)−

−
√

(µ1(ξ)−λ)−

(
λ− µ1(ξ)− τ2

)
dτdξ

Performing the change of variable σ =
τ√

(µ1(ξ)− λ)−
, we find that

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ =

∫ 1

−1
(1− σ2)dσ

∫ ∞
0

(
µ1(ξ)− λ

)3/2
− dξ =

4

3

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ.

(2.4.10)

Recall the constant Θ0 from (??). It is easy to see that∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ ≤ (λ−Θ0)1/2

∫ ∞
0

(µ1(ξ)− λ)−dξ <∞.

Taking into account Remark ?? completes the proof of the lemma.

2.5 Model operator in the half-plane

An important model operator that we meet frequently in this thesis is the operator L(θ), θ ∈
[0, π/2], defined by

L(θ) := −∂2
t − ∂2

s + (cos(θ)t− sin(θ)s)2, in L2(R2
+), (2.5.1)

with Neumann boundary conditions at t = 0. Let us recall some fundamental spectral properties
of L(θ) when θ ∈ (0, π/2) (see [?] for details and references). We denote by ζ1(θ) the infimum of
the spectrum of L(θ) :

ζ1(θ) := inf Spec(L(θ)). (2.5.2)

The function (0, π/2) 3 θ 7→ ζ1(θ) is monotone increasing and the essential spectrum

SpecessL(θ) = [1,∞).

Moreover, there exists a countable set of eigenvalues of L(θ), (ζj(θ))j∈N in [ζ1(θ), 1). The asso-
ciated normalized sequence of eigenfunctions will be denoted by (uθ,j)j∈N and satisfies,

L(θ)uθ,j = ζj(θ)uθ,j , (2.5.3)

〈uθ,j , uθ,k〉L2(R2
+) = δj,k. (2.5.4)

Let us denote by N (1,L(θ)) the number of eigenvalues of L(θ) strictly below 1. It was proved
in [?] that N (1,L(θ)) is finite for all θ ∈ (0, π/2) and that the number of eigenvalues below the
essential spectrum is bounded.

Lemma 2.5.1. Let θ ∈ (0, π/2]. There exists a constant C such that

∀θ ∈ (0, π/2), N (1,L(θ)) ≤ C

sin(θ)
.

Here the constant Θ0 is defined in (??).
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A lower bound on N (1,L(θ)) was recently proved in [?] :

∀θ ∈ (0, π/2), N (1,L(θ)) ≥ 1−Θ0 cos θ

2 sin(θ)
+

1

2
.

This was a direct consequence of the estimate

ζj(θ) ≤ Θ0 cos(θ) + (2j − 1) sin(θ),

which was also established in [?]. Using the technique of ‘Agmon estimates’, it is proved in [?,
Theorem 1.1] that the eigenfunctions of L(θ) decays exponentially at infinity. For later use, we
record this as

Lemma 2.5.2. Let θ ∈ (0, π/2). Given λ ∈ (0, 1) and α ∈ (0,
√

1− λ), there exists a positive
constant Cθ,α such that, for all eigenpair (ζ(θ), uθ) of L(θ) with ζ(θ) < λ, we have

Qθ(eα
√
t2+s2uθ) ≤ Cα,θ ‖uθ‖2L2(R+) ,

where Qθ is the quadratic form associated with L(θ).

2.5.1 Discussion of the condition (??)

The condition (??) is closely related to the behaviour of the functions (0, π/2) 3 θ 7→ ζj(θ). In
this concern, we recall the following two results.

Lemma 2.5.3. [?] The functions θ 7→ ζj(θ) are increasing and continuous on (0, π/2). Moreover,

ζ1(0) = Θ0 and ∀ θ ∈ [0, π/2) , ζ1(θ) < 1 .

The second Lemma is taken from [?].

Lemma 2.5.4. Let N ≥ 1 be an integer and suppose that there exists θ∗ ∈ (0, π/2) such that the
following assumptions are satisfied

1. ζN (θ∗) < 1;

2. The eigenvalues {ζj(θ∗)}1≤n≤N are simple.

Define
θmax,N := sup{θ ∈ (0, π/2], ζN (θ) < 1}.

Then for all 1 ≤ j ≤ N , the functions θ 7→ ζj(θ) are strictly increasing on (0, θmax,N).

It is pointed in [?] that, to each N , there is θ∗ such that the two conditions of Lemms ?? are
satisfied. Thus, for every N , the conclusion of Lemma ?? is true. In particular, when N = 2 we
get,

δ = min

(
ζ2(0)− ζ1(0)

2
,

1−Θ0

2

)
> 0 .

By continuity of the functions ζ1(θ) and ζ2(θ), there exists ε0 ∈ (0, θmax,2) such that for all
θ ∈ [0, ε0],

ζ2(θ) ≥ ζ1(θ) + δ ≥ Θ0 + δ.

Take Λ ∈ (Θ0,Θ0 + δ). That way we get that

∀ θ ∈ [0, π/2] , ζ2(θ) ≥ Θ0 + δ > Λ ,
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and ζ1(θ) = Λ has at most one solution in [0, θmax,1]. Notice here that θmax,1 = π/2 is a
consequence of Lemma ??.

Returning back the condition (??) and the above discussion, we see that when the magnetic
field is constant of unit length and the domain Ω is the unit ball, the set

Σ = {x ∈ ∂Ω : θ(x) ∈ (0, π/2), Λ|B(x)|−1 ∈ SpecL(θ(x))
}

consists of at most one great circle (defined by the solution θ of ζ1(θ) = Λ). That way the set Σ
has measure zero relative to the surface measure and the condition (??) is satisfied.

2.6 Gauge invariance

Proposition 2.6.1. (Gauge transformation) Let φ ∈ H2(Ω), A is a given magnetic potential and
Ph,A := (−ih∇+A)2. Then, we get the unitary equivalence of Ph,A and Ph,A+∇φ. Moreover, u
is an eigenfunction of PhA if and only if e−iφ/hu is an eigenfunction of PhA+∇φ, and the associated
eigenvalues are equal.

Proof. The proof follows easily by observing that e−iφPh,Aeiφ = Ph,A+∇φ.

Remark 2.6.2. Suppose that A1 and A2 are two regular magnetic potentials satisfying

curl A1 = curl A2.

If Ω is simply connected, it follows that there exists φ ∈ H2
loc(Ω) such that A1 = A2 +∇φ, and

the operators Ph,A1 and Ph,A2 are unitary equivalent. Consequently, we see that the magnetic
field is unchanged by the change of gauge.

2.7 Essential spectrum of Schrödinger operators

Recall the Schrödinger operator Ph defined in (??). If Ω is the complement of a bounded domain
of R3, the operator Ph can have an essential spectrum. In this case, we need to know the bottom
of the essential spectrum of Ph. Persson’s Lemma gives a characterisation of the bottom of the
essential spectrum of Schrödinger operators with magnetic field (see for instance [?, ?]). The
next theorem was proved in [?] in the case of domains with boundaries.

Theorem 2.7.1. [Persson’s Lemma] Let Ω be an unbounded domain with Lipschitz boundary.
Then the bottom of the essential spectrum of the Neumann realisation of the Schrödinger operator
can be expressed as:

inf Specess(Ph + V )

= sup
K⊂Rd

[
inf

‖ϕ‖L2(Ω)=1,ϕ 6=0

{∫
Ω

(|(−ih∇+ A)ϕ|2 + V |ϕ|2)dx, ϕ ∈ C∞0 (Ω ∩ Kc)
}]
, (2.7.1)

where the infimum is taken over all the compacts K ⊂ Rd and Kc = Rd \ K.

The following theorem has been established in [?, Theorem 3.1].

Theorem 2.7.2. There exist constants C and h0 > 0 such that, for all h ∈ (0, h0], we have :∫
Ω
|(h∇− iA)ϕ|2 ≥

∫
Ω

(h|B(x)| − Ch5/4)|ϕ|2dx, ∀ϕ ∈ C∞0 (Ω). (2.7.2)
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Combining Theorems ?? and ??, we deduce

Corollary 2.7.3. Let Ω be an exterior domain. Then, there exists a constant C > 0 such that
for all h ∈ (0, h0], we have

inf SpecessPh ≥ h(b− Ch1/4),

where b is the constant introduced in (??).

Proof. Since Ω is an exterior domain, it is therefore the exterior of some compact domain K0 ⊂
R3, i.e. Ω = Kc0. Applying Lemma ?? with K = K0 and V = 0 yields the assertion of the
corollary.

Remark 2.7.4. If Λ ∈ [0, b) then Λ + Ch1/4 < b for h sufficiently small. Therefore, by Corollary
??, it is easy to see that the spectrum of Ph below Λh is purely discrete.
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Chapter 3

Model operator in the half-space

The main goal in this chapter is to establish sharp bounds on the number and the sum of eigen-
values of a magnetic Schrödinger operator in a three dimensional strip with infinite hight. The
bounds will be valid when the area of the base of the domain tends to infinity. Preliminary results
will be introduced in Section ??. The aforementioned bounds will be presented in Section ??.

3.1 Auxiliary Lemmas

The next lemma (cf. [?]) gives the infimum of the spectrum of the Schrödinger operator in
L2(R3) with unit constant magnetic field.

Lemma 3.1.1. Given θ ∈ [0, π/2]. Let

Pθ = −∂2
t − ∂2

s + (−i∂r + t cos(θ)− s sin(θ))2

be the self-adjoint operator in L2(R3) generated by the quadratic form

Qθ(u) =

∫
R3

(
|∂tu|2 + |∂su|2 + |(−i∂r + t cos(θ)− s sin(θ))u|2

)
drdsdt

Then,
inf SpecPθ = 1.

Proof. Since curl
{

(t cos(θ) − s sin(θ), 0, 0)
}

= (0, cos(θ), sin(θ)) is a normalized vector, we can
perform a rotation of angle θ (in the (s, t) coordinates) in order to reduce the problem to that
with magnetic vector potential (t, 0, 0). It suffices then to look at the bottom of the spectrum of

P̃θ = −∂2
t − ∂2

s + (−i∂r + t)2

After a partial Fourier transform in the variables s and r, the operator P̃θ can be thus written
as the direct sum (see [?]) : ∫ ⊕

(ξ,τ)∈R2

−∂2
t − ∂2

s + (ξ + t)2dξdτ.

We are thus reduced to analyse the infimum over (ξ, τ) ∈ R2 of the union of the spectra of the
operators

Pθ,ξ,τ = −∂2
t + τ2 + (ξ + t)2, (ξ, τ) ∈ R2.
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By translation x = ξ+ t, this infimum is obtained as the infimum over τ ∈ R of the union of the
spectra of the operators

−∂2
x + x2 + τ2 in L2(R)

This is nothing but the infimum of the spectrum of the harmonic oscillator −∂2
x + x2 in L2(R)

which is 1. The statement of the lemma is thus proved.

We will henceforth use the following notations:

1. Given η ∈ R and a self-adjoint operator H and EH(η) is the spectral measure associated
with H, we shall denote by

N (η;H,Ω) := dim ran EH((−∞, η)) (3.1.1)

If the spectrum below η is discrete, then N (η;H,Ω) coincides with the number of eigen-
values (counting multiplicities) below η.

2. If the spectrum below η is discrete and {λj(H)}j are the eigenvalues of H below η, then
we denote by

E(η;H,Ω) := Tr
(
H− η

)
− =

∑
j

(λj(H)− η)− (3.1.2)

the sum (the energy) of eigenvalues below η.

Based on the variational principle, we include

Lemma 3.1.2. Let Ω be a subset of R3. Suppose that P is a positive self-adjoint operator on
L2(Ω) such that the spectrum below 1 is discrete. Let λ ∈ [0, 1) and ς ∈ R such that −λ ≤ ς <
1− λ. Then we have

E(λ+ ς;P,Ω) ≤ E(λ;P,Ω) + ςN (λ+ ς;P,Ω), (3.1.3)

where N (·;P,Ω) and E(·;P,Ω) are introduced in (??) and (??) respectively.

Proof. Let {λk}Nk=1 be the family of eigenvalues below λ + ς for P and {gk}Nk=1 are associated
(normalized) eigenfunctions. Let us define the trial density matrix γ : L2(Ω) 3 f 7→ γf ∈ L2(Ω),

γf =
∑

1≤k≤N
〈f, gk〉gk.

For all normalized f ∈ L2(Ω), it follows by Bessel’s inequality that

0 ≤ 〈γf, f〉L2(Ω) ≤ ‖f‖2L2(Ω) = 1.

By Lemma ??, we deduce that

− E(λ;P,Ω) := −Tr
(
P − λ

)
− ≤ Tr

(
(P − λ)γ

)
. (3.1.4)

It is easy to see that

Tr
(
(P − λ)γ

)
=

∑
1≤k≤N

(λk − λ) =
∑

1≤k≤N
(λk − λ− ς) + ς

∑
1≤k≤N

1. (3.1.5)

Therefore, (??) reads

Tr
(
(P − λ)γ

)
= −E(λ+ ς;P,Ω) + ςN (λ+ ς;P,Ω). (3.1.6)

Inserting this into (??), we finally get,

−E(λ;P,Ω) ≤ −E(λ+ ς;P,Ω) + ςN (λ+ ς;P,Ω)

which is the assertion of the lemma.
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In order to state Lemma ?? below, we need to define the reflected magnetic Schrödinger
operator in L2(R3) associated with the Neumann Schrödinger operator in L2(R3

+).
Given θ ∈ [0, π/2], we consider the magnetic field

F̃θ(r, s, t) := (0, 0, |t| cos(θ)− s sin(θ)), (r, s, t) ∈ R3. (3.1.7)

Let
P̃θ = (−i∇+ F̃θ)

2 in L2(R3), (3.1.8)

be the self-adjoint operator generated by the quadratic form

Q̃θ(u) :=

∫
R3

|(−i∇+ F̃θ)u|2drdsdt, (3.1.9)

with form domain

D(Q̃θ) :=
{
u ∈ L2(R3) : (−i∇+ F̃θ)u ∈ L2(R3)

}
. (3.1.10)

We let β = (0, cos(θ), sin(θ)) denote the constant magnetic field generated by the vector poten-
tial :

Fθ(r, s, t) = (0, 0, t cos(θ)− s sin(θ)), (r, s, t) ∈ R3
+. (3.1.11)

Furthermore, let
PNθ = (−i∇+ Fθ)

2 in L2(R3
+), (3.1.12)

be the self-adjoint (Neumann) Schrödinger operator associated with the quadratic form

QNθ (u) :=

∫
R3

+

|(−i∇+ Fθ)u|2drdsdt, (3.1.13)

defined for all functions u in the form domain

D(QNθ ) :=
{
u ∈ L2(R3

+) : (−i∇+ Fθ)u ∈ L2(R3
+)
}
. (3.1.14)

The next lemma allows us to compare the eigenvalue counting function and the energy of eigen-
values for a perturbation of PNθ in the half space R3

+ with the corresponding functions for P̃θ in
the whole space R3.

Lemma 3.1.3. Let U be a positive bounded potential in L2(R3) verifying U(·, ·,−t) = U(·, ·, t).
Assume that the spectrum of PNθ + U below λ is discrete. Then, we have

N (λ;PNθ + U,R3
+) ≤ CCLR

∫
R3

(U−)3/2drdsdt

and
E(λ;PNθ + U,R3

+) ≤ CLT

∫
R3

(U−)5/2drdsdt

Proof. Given n ∈ N. Let {uj}nj=1 be an orthonormal family of eigenfunctions with corresponding
eigenvalues {µj}nj=1 associated with the operator PNθ +U in L2(R3

+). We define the extension to
R3 of the function uj by :

ũj(r, s, t) =

{
1√
2
uj(r, s, t) t ≥ 0

1√
2
uj(r, s,−t) t < 0.

(3.1.15)
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Since {uj}nj=1 are normalized and pairwise orthogonal, we get for all 1 ≤ j, k ≤ n,

〈ũj , ũk〉L2(R3) = 〈uj , uk〉L2(R3
+) = δj,k, (3.1.16)

where δj,k is the Kronecker symbol.
The bilinear form associated with Q̃θ + U is defined on the form domain by:

ãθ,U(u, v) =

∫
R3

(
(−i∇+ F̃θ)u(−i∇+ F̃θ)v + Uuv

)
drdsdt.

Here the magnetic field F̃θ is the same as in (??).
It is easy to see that the functions {ũj}j belong to the form domain D(Q̃θ). Indeed, by

construction we have
Q̃θ(ũj) = QNθ (uj). (3.1.17)

Using the definition of ũj in (??) and the fact that the potential U is symmetric in the t-variable,
we obtain for all 1 ≤ j, k ≤ n,

ãθ,U(ũj , ũk) = 〈uj , (PNθ + U)uk〉L2(R3
+). (3.1.18)

Since the {uj}nj=1 are eigenfunctions of PNθ + U, we get using (??),

ãθ,U(ũj , ũk) = δj,kµk, (3.1.19)

for all 1 ≤ j, k ≤ n.
Let µ̃n be the n-th eigenvalue of P̃θ + U defined by the min-max principle. Owing to (??)

and (??) we find,

µ̃n = inf
v1,···vn∈D(Q̃θ)

max
v∈[v1,··· ,vn]

‖v‖=1

ãθ,U(v, v) ≤ max
v∈[ũ1,··· ,ũn]

ãθ,U(v, v) = µn,

This yields
N (λ;PNθ + U,R3

+) ≤ N (λ; P̃θ + U,R3), (3.1.20)

and
E(λ;PNθ + U,R3

+) ≤ E(λ; P̃θ + U,R3). (3.1.21)

The lemma follows by applying Theorem ?? (resp. Theorem ??) to the right-hand side of (??)
(resp. (??)).

3.2 Schrödinger operator in a half-cylinder

Consider a positive real numbers L, and define the domain

ΩL =
(
− L

2
,
L

2

)2
××R+. (3.2.1)

In this section, we will analyse the magnetic Schrödinger operator

PLθ = (−i∇+ Fθ)
2 in L2(ΩL) (3.2.2)

with Neumann boundary conditions at t = 0, and Dirichlet boundary conditions at r ∈ {−L
2 ,

L
2 }

and s ∈ {−L
2 ,

L
2 }. Here, for θ ∈ [0, π/2], Fθ is the magnetic potential introduced in (??).
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The operator PLθ is the Friedrich’s extension in L2(ΩL) associated with the semi-bounded
quadratic form

QLθ (u) =

∫
ΩL
|(−i∇+ Fθ)u|2drdsdt . (3.2.3)

The form domain of QLθ is :

D(QLθ ) =
{
u ∈ L2(ΩL) : (−i∇+ Fθ)u ∈ L2(ΩL), u

(
− L

2
, ·, ·
)

= u
(L

2
, ·, ·
)

= 0,

u
(
·,−L

2
, ·
)

= u
(
·, L

2
, ·
)

= 0
}
. (3.2.4)

The following lemma rules out the existence of essential spectrum of PLθ below some λ ∈ [0, 1).

Lemma 3.2.1. Let θ ∈ (0, π/2]. The infimum of the essential spectrum of PLθ satisfies

inf SpecessP
L
θ ≥ 1.

Here, it is used the convention that the infimum of an empty set is +∞ in the case of purely
discrete spectrum.

Proof. Since any compactly supported function u ∈ C∞0 (ΩL) can be extended by 0 to R3, we get
by Lemma ?? the following inequality∫

ΩL
|(−i∇+ Fθ)u|2drdsdt ≥

∫
ΩL
|u|2drdsdt, ∀u ∈ C∞0 (ΩL).

Apply then Lemma ?? with K = [−L/2, L/2]× [−L/2, L/2]×{0} leads to the desired conclusion.

The next lemma establishes super-additivity properties of the counting function and the sum
of eigenvalues for PLθ .

Lemma 3.2.2. For all n ∈ N, λ ∈ [0, 1) and L > 0, we have,

N (λ;PnLθ ,ΩnL)

n2L2
≥
N (λ;PLθ ,Ω

L)

L2
(3.2.5)

and
E(λ;PnLθ ,ΩnL)

n2L2
≥
E(λ;PLθ ,Ω

L)

L2
. (3.2.6)

Proof. Let j, k ∈ N such that 0 ≤ j, k ≤ n− 1. Let us define the domain

ΩL
j,k :=

((−n+ 2j)L

2
,
(−n+ 2j + 2)L

2

)
×
((−n+ 2k)L

2
,
(−n+ 2k + 2)L

2

)
× R+.

We next consider the self-adjoint operator PLθ,j,k generated by the quadratic form

QLθ,j,k(u) =

∫
ΩLj,k

|(−i∇+ Fθ)u|2drdsdt, (3.2.7)

with domain,

D(QLθ,j,k) =
{
u ∈ L2(ΩL) : (−i∇+ Fθ)u ∈ L2(ΩL

j,k),

u
((−n+ 2j)L

2
, ·, ·
)

= u
((−n+ 2j + 2)L

2
, ·, ·
)

= 0,

u
(
·, (−n+ 2k)L

2
, ·
)

= u
(
·, (−n+ 2k + 2)L

2
, ·
)

= 0
}
. (3.2.8)
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Taking boundary conditions into account, we observe that for all u =
∑

j,k uj,k ∈ ⊕j,kD(QLθ,j,k),

QnLθ (u) =
∑
j,k

QLθ,j,k(ui,j).

This implies that, in the sense of quadratic forms,

PnLθ ≤
⊕

j,k
PLθ,j,k. (3.2.9)

Hence, we get by the min-max principle that,∑
j,k

N (λ;PLθ,j,k,Ω
L
j,k) ≤ N (λ;PnLθ ,ΩnL), ∀ 1 ≤ j, k ≤ n. (3.2.10)

Since the operator PLθ,j,k is unitarly equivalent to PLθ by magnetic translation invariance, we have
that,

N (λ;PLθ,j,k,Ω
L
j,k) = N (λ;PLθ ,Ω

L), ∀ 1 ≤ j, k ≤ n.

Therefore, the inequality (??) becomes,

n2N (λ;PLθ ,Ω
L) ≤ N (λ;PnLθ ,ΩnL).

This gives (??) upon dividing both sides by L2.
Similarly, the inequality (??) follows from (??) and magnetic translation invariance.

We show in the next lemma a rough bound on the number and the sum of eigenvalues of PLθ
in terms of L2.

Lemma 3.2.3. Let L > 0. There exists a constant C such that for all λ ∈ [0, 1) and θ ∈ [0, π/2],
it holds true that

N (λ;PLθ ,ΩL)

L2
≤ C√

1− λ
, (3.2.11)

and
E(λ;PLθ ,ΩL)

L2
≤ C√

1− λ
, (3.2.12)

where N (λ;PLθ ,ΩL) and E(λ;PLθ ,ΩL) are defined in (??) and (??) respectively.

Proof. Let (ψ1(t), ψ2(t)) be a partition of unity on R+ with ψ2
1(t) + ψ2

2(t) = 1 and:{
ψ1(t) = 1 if 0<t<1,
ψ1(t) = 0 if t>2. (3.2.13)

Let T > 1 be a large number to be chosen later. We consider the following two sets

ΩT
1 =

{
(r, s, t) ∈

(
− L

2
,
L

2

)2
× R+ : 0 < t < 2T

}
,

and
ΩT

2 =
{

(r, s, t) ∈
(
− L

2
,
L

2

)2
× R+ : t > T

}
.

We define the partition of unity (ψ1,T (t), ψ2,T (t)) by

ψ1,T (t) = ψ1

(
t

T

)
, ψ2,T (t) = ψ2

(
t

T

)
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We have ψ′k,T (t) = 1
T ψ
′
k(

t
T ). Thus we deduce that there exists a constant C0 > 0 so that

2∑
k=1

|ψ′k(t)|2 ≤
C0

T 2
. (3.2.14)

By the IMS formula, we find for all u ∈ D(QLθ )

QLθ (u) =
2∑

k=1

QLθ (ψk,Tu)−
∫

ΩL
UT (t)|u|2drdsdt, (3.2.15)

where

UT (t) =
2∑

k=1

|ψ′k,T (t)|2.

Using (??), we further get

QLθ (u) ≥
2∑

k=1

QLθ (ψk,Tu)− C0

T 2

∫
ΩL
|u|2drdsdt. (3.2.16)

Let us denote by PLθ,1 and PLθ,2 the self-adjoint operators associated with the following quadratic
forms :

QLθ,1(u) =

∫
ΩT1

[
|∂tu|2 + |∂su|2 + |(−i∂r + t cos(θ)− s sin(θ))u|2

]
drdsdt, (3.2.17)

D(QLθ,1) :=
{
u ∈ L2(ΩT

1 ) : (−i∇+ Fθ)u ∈ L2(ΩT
1 ), u(2T, ·, ·) = 0,(

− L

2
, ·, ·
)

= u
(L

2
, ·, ·
)

= 0, u
(
·,−L

2
, ·
)

= u
(
·, L

2
, ·
)

= 0
}
, (3.2.18)

and
QLθ,2(u) =

∫
ΩT2

[
|∂tu|2 + |∂su|2 + |(−i∂r + t cos(θ)− s sin(θ))u|2

]
drdsdt, (3.2.19)

D(QLθ,2) :=
{
u ∈ L2(ΩT

2 ) : (−i∇+ Fθ)u ∈ L2(ΩT
2 ), u(T, ·, ·) = 0,(

− L

2
, ·, ·
)

= u
(L

2
, ·, ·
)

= 0, u
(
·,−L

2
, ·
)

= u
(
·, L

2
, ·
)

= 0
}
, (3.2.20)

respectively.
It is clear from (??) that,

QLθ (u) ≥ QLθ,1(ψ1,Tu) +QLθ,2(ψ2,Tu)− C0

T 2

∫
ΩL
|u|2drdsdt. (3.2.21)

Consider the isometry

j : L2(ΩL) 7→ L2(ΩT
1 )⊕ L2(ΩT

2 ) (3.2.22)
u 7→ (ψ1,Tu, ψ2,Tu). (3.2.23)

Let us define the quadratic form qLθ on D(QLθ,1)⊕D(QLθ,2) by

qLθ (u1, u2) = QLθ,1(u1) +QLθ,1(u2).
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Then, (??) reads

QLθ (u) ≥ qLθ (j(u))− C0

T 2

∫
ΩL
|u|2drdsdt.

Applying Lemma ?? yields

N (λ;PLθ ,Ω
L) ≤ N (λ+ C0T

−2;PLθ,1 ⊕ PLθ,2,Ω
L). (3.2.24)

It follows that

N (λ;PLθ ,Ω
L) ≤ N (λ+ C0T

−2;PLθ,1,Ω
T
1 ) +N (λ+ C0T

−2;PLθ,2,Ω
T
2 ). (3.2.25)

The Dirichlet boundary conditions imposed at r ∈
{
− L

2 ,
L
2

}
, s ∈

{
L
2 ,

L
2

}
and t = T ensures that

the estimate (??) remains true if we replace ΩT
2 by R3 in the definition of QLθ,2. More precisely,

N (λ;PLθ ; ΩL) ≤ N (λ+ C0T
−2;PLθ,1,Ω

T
1 ) +N (λ+ C0T

−2;Pθ,R3) (3.2.26)

where Pθ is the self-adjoint operator introduced in Lemma ??.
By Lemma ??, we know that the first eigenvalue of the Schrödinger operator with constant

unit magnetic field in L2(R3) is equal to 1. We thus have

Qθ(u) =

∫
R3

[
|∂tu|2 + |∂su|2 + |(−i∂r + t cos(θ)− s sin(θ))u|2

]
drdsdt

≥
∫
R3

|u|2drdsdt.
(3.2.27)

Choose T = 2

√
C0

1− λ
, it holds that 1 > λ+ C0T

−2 and

Qθ(u) > (λ+ C0T
−2)

∫
R3

|u|2drdsdt.

This clearly givesN (λ+C0T
−2;Pθ,R3) = 0. Thus, it remains to estimateN (λ+C0T

−2;PLθ,1,Ω
T
1 ).

To do this, we introduce a potential V satisfying{
V ≥ 0,
supp V ⊂ R3

+ \ ΩT
1 .

(3.2.28)

Under these assumptions on V , we may write for all u ∈ D(QLθ,1),∫
ΩT1

∣∣(−i∇+ Fθ)u
∣∣2drdsdt =

∫
ΩT1

∣∣(−i∇+ Fθ)u
∣∣2drdsdt+

∫
R3

+

V (x)|u|2drdsdt. (3.2.29)

Here, we have extended u by 0 to the whole of R3
+ in the last integral. Therefore, it follows from

the min-max principle that :

N (λ+ C0T
−2;PLθ,1,Ω

T
1 ) = N (λ+ C0T

−2;PLθ,1 + V,ΩT
1 ). (3.2.30)

Since any function u that belongs to the form domain of QL1,L2

θ can be extended by 0 to the half
space R3

+, we get using the bound in (??) and the min-max principle that

N (λ+ C0T
−2;PLθ,1 + V,ΩT

1 ) ≤ N (λ;PNθ + V1,R3
+), (3.2.31)
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where
V1 = V − C0

T 2
.

Define the potential in R3
+

V (r, s, t) :=

(
1 +

C0

T 2

)
1R3

+\ΩT1
.

It is easy to check that V satisfies the assumptions in (??). To V we associate the reflected
potential in R3 defined by

Ṽ (r, s, t) :=

(
1 +

C0

T 2

)
1R3\Ω̃T1

,

with
Ω̃T

1 =
{

(r, s, t) ∈
(
− L

2
,
L

2

)2
× R : |t| < 2T

}
.

In view of Lemma ??, we have,

N (λ;PNθ + V1,R3
+) ≤ CCLR

∫
R3

(
λ− Ṽ1

)3/2
+
drdsdt (3.2.32)

where
Ṽ1 = Ṽ − C0

T 2
.

Next, we compute the integral∫
R3

(
λ− Ṽ1

)3/2
+
drdsdt = 2λ3/2

∫
Ω̃T1

drdsdt = 4λ3/2L2T.

Inserting this in (??), we obtain

N (λ;PNθ + V1,R3
+) ≤ 4CCLRλ

3/2L2T. (3.2.33)

Combining the estimates (??),(??),(??) and (??) gives (??) upon inserting the choice T =

2
√

C0
1−λ .
In a similar fashion, we can prove (??) by following the steps of the proof of (??), and using

Lemma ?? (the energy case).
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Chapter 4

The large area limit

Consider θ ∈ [0, π/2] and a positive L. Recall the self-adjoint operator PLθ defined in (??). In
accordance with the definition of E in (??), we write, for λ ∈ [0, 1),

E(λ;PLθ ,Ω
L) =

∑
j

(
ζLj (θ)− λ

)
−,

where {ζLj (θ)}j denote the eigenvalues of PLθ .
In Section ??, we are interested in the behaviour of E(λ;PLθ ,Ω

L) as L approach ∞. We will
obtain a function E(θ, λ) (see Theorem ?? below) such that the leading order asymptotics

E(λ;PLθ ,Ω
L) ∼ E(θ, λ)L2

holds true as L → ∞. The approach we use is borrowed from [?, ?], where several limiting
functions related to the Ginzburg-Landau functional are constructed. In Section ??, we derive
a few properties of the limiting function found in Section ??. Explicit formulas are computed
in Section ?? using the spectral decomposition of the model operators of the half-axis and the
half-plane.

4.1 The function E(θ, λ)

In this section, we prove the following theorem.

Theorem 4.1.1. Let θ ∈ [0, π/2] and λ ∈ [0, 1). There exists a constant E(θ, λ) such that

lim inf
L→∞

E(λ;PLθ ,Ω
L)

L2
= lim sup

L→∞

E(λ;PLθ ,Ω
L)

L2
= E(θ, λ). (4.1.1)

Moreover, for all λ0 ∈ [0, 1), there exist constants L0 and C0 such that,

E(θ, λ)− 2C0

L2/3
≤
E(λ;PLθ ,Ω

L)

L2
≤ E(θ, λ), (4.1.2)

for all θ ∈ [0, π/2], λ ∈ [0, λ0], L ≥ 2L0.

Remark 4.1.2. The constants C0 and L0 are independent of the (λ, θ, L) ∈ [0, λ0] × [0, π/2] ×
[2L0,∞).
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Remark 4.1.3. We point out that explicit formulas of E(θ, λ) will be given ahead in Section ??.
This was an alternative approach before we are able to compute it explicitly. The reason we keep
it is that it helps in studying properties of E(θ, λ).

The proof of Theorem ?? relies on the following lemma, which is proved in [?, Lemma 2.2].

Lemma 4.1.4. Consider a decreasing function d : (0,∞) → (−∞, 0] such that the function
f : (0,∞) 3 L 7→ d(L)

L ∈ R is bounded.
Suppose that there exist constants C > 0, L0 > 0 such that the estimate

f(nL) ≥ f((1 + a)L)− C
(
a+

1

a2L2

)
, (4.1.3)

holds true for all a ∈ (0, 1), n ∈ N, L ≥ L0. Then f(L) has a limit A as L→∞. Furthermore,
for all L ≥ 2L0, the following estimate holds true,

f(L) ≤ A+
2C

L2/3
. (4.1.4)

In order to use the result of Lemma ??, we establish the estimate in the Lemma ?? below.

Lemma 4.1.5. Let λ0 ∈ [0, 1), θ ∈ [0, π/2]. There exist constants C0 > 0 and L0 ≥ 1 such that,
for all L ≥ L0, λ ∈ [0, λ0], n ∈ N and a ∈ (0, 1), we have,

E(λ;PnLθ ,ΩnL)

n2L2
≤
E(λ;P

(1+a)L
θ ,Ω(1+a)L)

(1 + a)2L2
+ C0

(
1

a2L2
+ a

)
.

Furthermore, the function
L 7→ E(λ;PLθ ,Ω

L)

is monotone increasing.

Proof. Let n ≥ 2 be a natural number. If a ∈ (0, 1) and j = (j1, j2) ∈ Z2, let

Ka,j = Ij1 × Ij2 ,

where
∀ p ∈ Z , Ip =

(
2p+ 1− n

2
− (1 + a)

2
,

2p+ 1− n
2

+
(1 + a)

2

)
.

Consider a partition of unity (χj)j of R2 such that:∑
j

|χj |2 = 1 , 0 ≤ χj ≤ 1 in R2 , suppχj ⊂ Ka,j , |∇χj | ≤
C

a
, (4.1.5)

where C is a universal constant. We define χj,L(r, s) = χj
(
r
L ,

s
L

)
. We thus obtain a new partition

of unity {χj,L}j∈J such that suppχj,L ⊂ Ka,j,L, with

Ka,j,L = {(Lr, Ls) : (r, s) ∈ Ka,j} .

Let J = {j = (j1, j2) ∈ Z2 : 0 ≤ j1, j2 ≤ n − 1} and KnL =
(
−nL

2 ,
nL
2

)2. Then the family
{Ka,j,L}j∈J is a covering of KnL, and is formed of exactly n2 squares with side length L.
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We restrict the partition of unity {χj,L}j∈J to the set KnL =
(
−nL

2 ,
nL
2

)2. Let QnLθ be the
quadratic form defined in (??) and {fk,n}Nk=1 be any orthonormal set in D(QnLθ ). By the IMS
formula and the fact that

∑
j χ

2
j,L = 1, we have

N∑
k=1

(
QnLθ (fk,n)− λ ‖fk,n‖2L2(ΩnL)

)
=

N∑
k=1

∑
j∈J

{(
QnLθ (χj,Lfk,n)− λ ‖χj,Lfk,n‖2L2(ΩnL)

)
− ‖ |∇χj,L| fk,n‖2L2(ΩnL)

}
(4.1.6)

where ΩnL = KnL × R+ is as defined in (??). Using the bound on |∇χj | in (??) we obtain

N∑
k=1

(
QnLθ (fk,n)− λ ‖fk,n‖2L2(ΩnL)

)
≥

N∑
k=1

∑
j∈J

(
QnLθ (χj,Lfk,n)−

(
λ+

C

a2L2

)
‖χj,Lfk,n‖2L2(ΩnL)

)
.

(4.1.7)

For j ∈ J , we define the trial density matrix γ : L2(Ka,j,L) 3 f 7→ γjf ∈ L2(Ka,j,L),

γjf = χj,L

N∑
k=1

〈
χj,Lf, fk,n

〉
fk,n.

We will show that 0 ≤ γj ≤ 1 in the sense of quadratic forms. Indeed, we have

〈γjf, f〉L2(Ka,j,L) =

N∑
k=1

∣∣〈f, χj,Lfk,n〉∣∣2 ≥ 0

On the other hand, using that {fk,n}k is an orthonormal set in L2(ΩnL), it follows that for any
normalized f ∈ L2(ΩnL) we have

〈γjf, f〉L2(Ka,j,L) =
N∑
k=1

∣∣〈f, χj,Lfk,n〉∣∣2
≤ ‖χj,Lf‖2

≤ ‖f‖2 = 1.

Moreover, we note that γj is a finite-rank operator constructed so that we can write

Tr
[(

PnLθ −
(
λ+

C

L2a2
)
)
γj

]
=

N∑
k=1

(
QnLθ (χj,Lfk,n)− (λ+

C

L2a2
) ‖χj,Lfk,n‖2L2(ΩnL)

)
. (4.1.8)

In view of the definition of the energy in (??), we have

−E
(
λ+

C

L2a2
;P

(1+a)L
θ ,Ω(1+a)L

)
= −Tr

(
P

(1+a)L
θ − (λ+

C

L2a2
)
)
−
.

Notice that each χj,L is supported in a square with side length (1 + a)L. Hence, using magnetic
translation invariance and Lemma ??, we deduce that

− E
(
λ+

C

L2a2
;P

(1+a)L
θ ,Ω(1+a)L

)
≤ Tr

[(
PnLθ −

(
λ+

C

L2a2
)
)
γj

]
, ∀ j ∈ J . (4.1.9)
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Combining (??), (??) and (??), we obtain

N∑
k=1

(
QnLθ (fk,n)− λ ‖fk,n‖2L2(ΩnL)

)
≥ −n2E

(
λ+

C

L2a2
;P

(1+a)L
θ ,Ω(1+a)L

)
(4.1.10)

for all orthonormal family {fk,n}Nk=1 and N ∈ N. Therefore we conclude, in view of Lemma ??,
that

E(λ;PnLθ ,ΩnL) ≤ n2E
(
λ+

C

L2a2
;P

(1+a)L
θ ,Ω(1+a)L

)
. (4.1.11)

Let L0 ≥ C/(a
√

1− λ0), then λ + Ca−2L−2 < 1 for all L ≥ L0. Applying Lemma ?? with

ς =
C

a2L2
, we find,

E
(
λ+

C

a2L2
;P

(1+a)L
θ ,Ω(1+a)L

)
−E
(
λ;P

(1+a)L
θ ,Ω(1+a)L

)
≤ C

L2a2
N
(
λ+

C

a2L2
;P

(1+a)L
θ ,Ω(1+a)L

)
,

for all L ≥ L0. By (??), it follows that

E
(
λ+

C

a2L2
;P

(1+a)L
θ ,Ω(1+a)L

)
≤ E

(
λ;P

(1+a)L
θ ,Ω(1+a)L

)
+
C

a2
,

for all L ≥ L0 and λ ∈ [0, λ0]. Inserting this into (??), we get,

E(λ;PnLθ ,ΩnL) ≤ n2E
(
λ;P

(1+a)L
θ ,Ω(1+a)L

)
+
Cn2

a2
, (4.1.12)

Dividing both sides by n2L2, we find

E(λ;PnLθ ,ΩnL)

n2L2
≤
E
(
λ;P

(1+a)L
θ ,Ω(1+a)L

)
L2

+
C

L2a2
, (4.1.13)

We infer from (??) the following upper bound,

E(λ;PnLθ ,ΩnL)

n2L2
≤
E
(
λ;P

(1+a)L
θ ,Ω(1+a)L

)
(1 + a)2L2

+ C

(
a+

1

a2L2

)
, (4.1.14)

for all L ≥ L0 and λ ∈ [0, λ0]. This proves the first assertion of the lemma.
To obtain monotonicity of E(λ;PLθ ,ΩL), we consider L′ ≥ L > 0. Since the extension by zero

of a function in the form domain PLθ is contained in the form domain of PL′θ and the values of
both forms coincide for such a function, we may write in the sense of quadratic forms

PL
′

θ ≤ PLθ .

On account of Lemma ??, it follows that,

−Tr
(
PL
′

θ − λ
)
− ≤ −Tr

(
PLθ − λ

)
−.

This shows that E(λ;PLθ ,Ω
L) is monotone increasing with respect to L, thereby proving the

statement of the lemma.
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Proof of Theorem ??. Let f(L) = −E(λ;PLθ ,Ω
L)

L2 . Thanks to Lemma ??, we know that the func-
tions f(L) and d(L) = −E(λ;PLθ ,Ω

L) satisfy the assumptions in Lemma ??. Consequently, f(L)
has a limit as L→∞. Let us define

E(θ, λ) := − lim
L→∞

f(L).

By Lemma ??, there exists L0 > 0 such that

E(θ;λ) ≤
E(λ;PLθ ,Ω

L)

L2
+

2C0

L2/3
, (4.1.15)

for all L ≥ 2L0 and λ ∈ [0, λ0] .
It remains to establish the upper bound. According to Lemma ??, we know that the energy

satisfies
E(λ;PnLθ ,ΩnL1,nL2)

n2L2
≥
E(λ;PLθ ,Ω

L)

L2
.

Letting n→∞ gives us

E(θ, λ) ≥
E(λ;PLθ ,Ω

L)

L2
.

This, together with (??), completes the proof of Theorem ??.

4.2 Properties of the function E(θ, λ)

Let PLθ , QLθ and ΩL be as defined in (??), (??) and (??) respectively. In Theorem ??, we proved
the existence of a limiting function E(θ, λ) ∈ [0,∞) defined for θ ∈ [0, π/2] and λ ∈ [0, 1). We
aim in this section to study the properties of E(θ, λ) as a function of θ and λ.

Lemma 4.2.1. Let λ0 ∈ [0, 1). There exists L∗ > 0 such that for all L ≥ L∗, the function

[0, π/2]× [0, λ0] 3 (θ, λ) 7→
E(λ;PLθ ,Ω

L)

L2

is continuous. Moreover, to every δ > 0 there corresponds η, L∗ > 0 such that for all L ≥ L∗,
(ε, ν) ∈ (0, η) × (0, η) and (θ, λ) ∈ [0, π/2] × [0, λ0] satisfying (θ + ε, λ + ν) ∈ [0, π/2] × [0, λ0],
there holds, ∣∣∣E(λ+ ν;PLθ+ε,Ω

L)

L2
−
E(λ;PLθ ,Ω

L)

L2

∣∣∣ ≤ δ/2.
Proof. We introduce a partition of unity of R,

ζ2
1 + ζ2

2 = 1, supp ζ1 ⊂ [0, 1], supp ζ2 ⊂ [1/2,∞) (4.2.1)

and
|ζ ′p| ≤ C ′, p = 1, 2. (4.2.2)

Let δ > 0. For reasons that will be clarified later, we set

L∗ = max

{( 4C ′

1− λ0

)1/2
,
( 4C ′C

δ
√

(1− λ0))/2

)1/2
}
, (4.2.3)

where C ′ and C are the constants appearing in (??) and (??) respectively. We put further,

ζp,L∗(r, s, t) = ζp(t/L
∗), p = 1, 2, (r, s, t) ∈ R3

+.
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Next, let {fk}Nk=1 be an orthonormal family of compactly supported functions in D(QL∗θ+ε). We
have the following IMS decomposition formula

N∑
k=1

(
QL∗θ+ε(fk)− (λ+ ν) ‖fk‖2L2(ΩL∗ )

)
=

N∑
k=1

2∑
p=1

{(
QL∗θ+ε(ζp,L∗fk)− (λ+ ν) ‖ζp,L∗fk‖2L2(ΩL∗ )

)
− ‖ |∇ζp,L∗ | fk‖2L2(ΩL∗ )

}
. (4.2.4)

To estimate the last term we use the bound on ∇ζp in (??), and get, after inserting ζ2
1,L∗+ζ2

2,L∗ =
1, that

N∑
k=1

(
QL∗θ+ε(fk)− (λ+ ν) ‖fk‖2

)
≥

N∑
k=1

2∑
p=1

(
QL∗θ+ε(ζp,L∗fk)− (λ+ ν + C ′(L∗)−2) ‖ζp,L∗fk‖2

)
.

(4.2.5)
Since the function ϕ = ζ2,L∗fk ∈ C∞0 (ΩL∗) is compactly supported in ΩL∗ , it can be extended
by zero to all of R3. Therefore, selecting

|ν| < λ0 − λ
4

,

we infer from Lemma ?? and the choice of L∗ in (??) that the following inequality holds

QL∗θ+ε(ζ2,L∗fk) ≥
∫

ΩL∗
|ζ2,L∗fk|2drdsdt > (λ+ ν + C ′(L∗)−2)

∫
ΩL∗
|ζ2,L∗fk|2drdsdt. (4.2.6)

Consequently, we find that the term corresponding to p = 2 on the right hand side of (??) is
strictly positive and can be neglected for a lower bound. What remains is to estimate the term
corresponding to p = 1 in (??). Using the pointwise inequality (with % arbitrary)

|(−i∇+ Fθ+ε)ζ1,L∗fk|2 ≥ (1− %)|(−i∇+ Fθ)ζ1,L∗fk|2 − %−1|(Fθ − Fθ+ε)ζ1,L∗fk|2,

where Fθ is the same as in (??), we obtain,

QL∗θ+ε(ζ1,L∗fk)

≥ (1− %)

∫
ΩL∗
|(−i∇+ Fθ+ε)ζ1,L∗fk|2drdsdt− %−1

∫
ΩL∗
|(Fθ+ε − Fθ)ζ1,L1fk|2drdsdt. (4.2.7)

Using the bounds

| cos(θ + ε)− cos(θ)| ≤ |ε| , | sin(θ + ε)− sin(θ)| ≤ |ε| ,

we get
|Fθ+ε(r, s, t)− Fθ(r, s, t)| ≤ |ε| (|s|+ |t|) , ∀ (r, s, t) ∈ R3

+ .

Taking the support of ζ1,L∗ into consideration, we infer from (??) the following bound,

QL∗θ+ε(ζ1,L∗fk) ≥ (1− %)

∫
ΩL∗
|(−i∇+ Fθ)ζ1,L∗fk|2drdsdt− %−1ε2(L∗)2

∫
ΩL∗
|ζ1,L∗fk|2drdsdt.
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Inserting this into (??), we get, using the bound on |ζ ′1,L∗ |, that

N∑
k=1

(
QL1,L∗

θ+ε (fk)− (λ+ ν) ‖fk‖2L2(ΩL1,L
∗

)

)
≥

N∑
k=1

(
(1− %)QL1,L∗

θ (ζ1,L∗fk)− (λ+ ν + ε2%−1(L∗)2 + C ′(L∗)−2) ‖ζ1,L∗fk‖2L2(ΩL1,L
∗

)

)
.

(4.2.8)

We choose % = |ε| and define the trial density matrix L2(R3) 37→ γf ∈ L2(R3),

γf =
N∑
k=1

〈f, ζ1,L∗fk〉ζ1,L∗fk.

It is clear that 0 ≤ γ ≤ 1 in the sense of quadratic forms. By Lemma ?? we see that

− E
(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
;PL

∗
θ ,ΩL∗

)
≤ Tr

[(
PL
∗

θ −
(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
))
γ
]

:=

(
QL∗θ (ζ1,L∗fk)−

(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
)
‖ζ1,L∗fk‖L2(ΩL∗ )

)
(4.2.9)

Inserting this into (??), we obtain

N∑
k=1

(
QL∗θ+ε(fk)− (λ+ ν) ‖fk‖L2(ΩL∗ )

)
≥ −(1− |ε|)E

(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
;PL

∗
θ ,ΩL∗

)
. (4.2.10)

Consequently, it follows from Lemma ?? that,

E(λ+ ν;PL
∗

θ+ε,Ω
L∗) ≤ (1− |ε|)E

(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
;PL

∗
θ ,ΩL∗

)
. (4.2.11)

Fix |ε| < 1−λ0
4(1+(L∗)2)

. Applying Lemma ?? with ς =
|ε|((L∗)2 + λ) + ν + C ′(L∗)−2

1− |ε|
, we get,

E
(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
;PL

∗
θ ,ΩL∗

)
≤ E(λ;PL

∗
θ ,ΩL∗)

+
|ε|((L∗)2 + λ) + ν + C ′(L∗)−2

1− |ε|
N
(λ+ ν + |ε|(L∗)2 + C ′(L∗)−2

1− |ε|
;PL

∗
θ ,ΩL∗

)
. (4.2.12)

Plugging (??) into (??), we obtain from (??) that

E(λ+ ν;PL
∗

θ+ε,Ω
L∗) ≤ (1− |ε|)E(λ;PL

∗
θ ,ΩL∗)

+
C√

(1− λ0)/2
(|ε|(λ+ (L∗)2) + ν + C ′(L∗)−2)(L∗)2, (4.2.13)
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where C is the constant from (??). Interchanging the roles of θ and θ + ε we arrive at∣∣∣E(λ+ ν;PL
∗

θ+ε,Ω
L∗)− E(λ;PL

∗
θ ,ΩL∗)

∣∣∣
≤ |ε|E(λ;PL

∗
θ ,ΩL∗) +

C√
(1− λ0)/2

(|ε|(λ+ (L∗)2) + |ν|+ C ′(L∗)−2)(L∗)2. (4.2.14)

Dividing both sides by (L∗)2, we get,∣∣∣∣E(λ+ ν;PL
∗

θ+ε,Ω
L∗)

(L∗)2
−
E(λ;PL

∗
θ ,ΩL∗)

(L∗)2

∣∣∣∣
≤ |ε|

E(λ;PL
∗

θ ,ΩL∗)

(L∗)2
+
C(|ε|((L∗)2 + λ) + |ν|+ C ′(L∗)−2)√

(1− λ0)/2

≤ η
E(λ;PL

∗
θ ,ΩL∗)

L1L∗
+
C(η((L∗)2 + λ+ 1) + C ′(L∗)−2)√

(1− λ0)/2
.

Using the estimate in (??), we further obtain∣∣∣∣∣E(λ+ ν;PL
∗

θ+ε,Ω
L∗)

(L∗)2
−
E(λ;PL

∗
θ ,ΩL∗

(L∗)2

∣∣∣∣∣ ≤ C(η((L∗)2 + λ+ 2) + C ′(L∗)−2)√
(1− λ0)/2

. (4.2.15)

Selecting η < δ
√

(1−λ0)/2

4C(λ+2+(L∗)2)
, we conclude that (recall the choice of L∗ in (??)),∣∣∣∣E(λ+ ν;PL

∗
θ+ε,Ω

L∗)

(L∗)2
−
E(λ;PL

∗
θ ,ΩL∗)

(L∗)2

∣∣∣∣ ≤ δ/2,
thereby proving the assertion of the lemma.

We have the following corollary of Lemma ??.

Corollary 4.2.2. Given λ0 ∈ [0, 1), the function

[0, π/2]× [0, λ0] 3 (θ, λ) 7→ E(θ;λ)

is continuous.

Proof. In view of Theorem ??, there exist constants C0 and L0 such that for all L ≥ 2L0 and
(ν, ε) satisfying λ+ ν ∈ [0, λ0] and θ + ε ∈ [0, π/2], one has

|E(θ + ε, λ+ ν)− E(θ, λ)| ≤
|E(λ+ ν;PLθ+ε,Ω

L)− E(λ;PLθ ,Ω
L)|

L2
+

2C0

L2/3
. (4.2.16)

Choose L ≥ max{2L0, L
∗, (4C0/δ)

3/2} with L∗ from (??). Hence, we infer from Lemma ?? that
there exists η > 0 such that for all |(ε, ν)| ≤ η satisfying θ + ε ∈ [0, π/2] and λ+ ν ∈ [0, λ0], we
have

|E(θ + ε, λ+ ν)− E(θ, λ)| ≤ δ/2 + δ/2 = δ.

This completes the proof.

We will prove
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Lemma 4.2.3. Let θ ∈ [0, π/2]. The function

[0, 1) 3 λ 7→ E(θ, λ)

is locally Lipschitz. More precisely, given λ0 > 0, there exists a constant C0 (independent of θ)
such that,

∀ θ ∈ [0, π/2], ∀ λ1, λ2 ∈ [0, λ0] , |E(λ1, θ)− E(λ2, θ)| ≤ C0|λ1 − λ2| .

Proof. Fix λ0 ∈ [0, 1), and let λ1, λ2 ∈ [0, λ0] be such that λ1 < λ2. Let L > 0 and PLθ be as
defined in (??). We infer from Lemma ?? that

E(λ2;PLθ ,Ω
L)− E(λ1;PLθ ,Ω

L) ≤ (λ2 − λ1)N (λ2;PLθ ,Ω
L).

In view of (??), there exists a constant C0 independent of θ such that

N (λ2;PLθ ,Ω
L) ≤ C0L

2.

This implies
E(λ2;PLθ ,Ω

L)− E(λ1;PLθ ,Ω
L) ≤ C0L

2(λ2 − λ1). (4.2.17)

According to Theorem ??, we have

E(θ, λ) = lim
L→∞

E(λ2;PLθ ,Ω
L)

L2
.

Dividing both sides of (??) by L2, we get, after taking L→∞,

E(θ, λ2)− E(θ, λ1) ≤ C0(λ2 − λ1). (4.2.18)

Interchanging the roles of λ1 and λ2, we further get

|E(θ, λ2)− E(θ, λ1)| ≤ C0|λ2 − λ1|, (4.2.19)

which gives the assertion of the lemma.

Remark 4.2.4. Another alternative proof of the Lipschitz property uses the explicit formula of
E(θ, λ) appearing in the statement of Theorem ??. The proof of these formulas will be given
ahead in the next section. In fact, when θ ∈ (0, π/2), the spectrum of L(θ) (the two-dimesional
operator defined in (??)) strictly below 1 is purely discrete then the function

[0, 1) 3 λ 7→ E(θ, λ) =
sin(θ)

2π

∑
j

(ζj(θ)− λ)−

can be seen as a finite sum of affine functions in λ, from which the Lipschitz property follows
easily.

4.3 Explicit formulas of E(θ, λ)

Recall the constant E(θ, λ) defined in (??). The aim of this section is to provide an explicit
formula for E(θ, λ) using the eigenvalues of the Neumann Schrödinger operator on the half-space
R3

+ defined in (??). We shall consider the cases θ = 0 and θ ∈ (0, π/2] independently. Indeed,
the construction of eigenprojectors in the case θ = 0 is similar in spirit to the two-dimensional
case (cf. [?, Section 4]), whereas in the case θ ∈ (0, π/2], the projectors are constructed using the
spectral decomposition of the two-dimensional model operator on the half-space (see (??) below
for the precise definition).
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4.3.1 E(θ, λ) in the case θ = 0

We start by recalling the family of one-dimensional harmonic oscillators h[ξ], ξ ∈ R, defined by :

h[ξ)] = −∂2
t + (t− ξ)2 in L2(R+). (4.3.1)

on their common Neumann domain:{
v ∈ H2(R+), (t− ξ)2v ∈ L2(R+), v′(0) = 0

}
.

The spectral properties related to this operator are discussed in Section ??.
We denote by (uj(·; ξ))∞j=1 the orthonormal family of real-valued eigenfunctions of the oper-

ator h[ξ], i.e., 
h[ξ]uj(t; ξ) = µj(ξ)uj(t; ξ),

u′j(0; ξ) = 0,∫
R+

uj(t; ξ)
2dt = 1.

(4.3.2)

Here µj are defined via the min-max principle in (??).
Next, we consider the Schrödinger operator (??) in the particular case θ = 0, i.e.,

PN0 = −∂2
t − ∂2

s + (−i∂r + t)2 in L2(R3
+). (4.3.3)

with Neumann boundary conditions at t = 0.
Let (ξ, τ) ∈ R2. We denote by Fr→ξ (resp. Fs→τ ) the unitary partial Fourier transform with

respect to the r variable (resp. s variable).
We define the bounded function R3

+ 3 (r, s, t) 7→ vj(r, s, t; ξ, τ) by :

vj(r, s, t; ξ, τ) =
1√
2π
e−iξre−iτsuj(t; ξ). (4.3.4)

Next, we introduce the operators Πj(ξ, τ) on the functions vj :

L2(R3
+) 3 ϕ 7→ (Πj(ξ, τ)ϕ)(r, s, t) = vj(r1, s1, t1; ξ, τ)

∫
R3

+

vj(r2, s2, t2; ξ, τ)ϕ(r2, s2, t2)dr2ds2dt2

(4.3.5)

In terms of quadratic forms, we write〈
ϕ,Πj(ξ, τ)ϕ

〉
L2(R3

+)
=
∣∣∣〈ϕ, vj(·; ξ, τ)

〉
L2(R3

+)

∣∣∣2
= 2π

∣∣∣〈Fr→−ξ[(Fs→−τϕ(·, ·, t)
)
(−τ)

]
(−ξ), uj(t; ξ)

〉
L2(R+)

∣∣∣2 (4.3.6)

We state in the next lemma useful properties of the family {Πj(ξ, τ)}(j,ξ,τ)∈N×R2 .

Lemma 4.3.1. For all ϕ ∈ L2(R3
+), we have〈

PN0 Πj(ξ, τ)ϕ,ϕ
〉
L2(R3

+)
= (µj(ξ) + τ2)

〈
Πj(ξ, τ)ϕ,ϕ

〉
L2(R3

+)
, (4.3.7)

∑
j

∫
R2

〈
ϕ,Πj(ξ, τ)ϕ

〉
L2(R3

+)
dξdτ = 2π ‖ϕ‖2L2(R3

+) . (4.3.8)

Moreover, for any cut-off function χ ∈ C∞0 (R2), we have

Tr(χΠθ,jχ) = (2π)−1

∫
R2

χ2(r, s)drds. (4.3.9)
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Proof. Let (τ, ξ) ∈ R2. By the definition of vj in (??), we find,

PN0 vj(r, s, t; ξ, τ) = (µj(ξ) + τ2)vj(r, s, t; ξ, τ).

Using the definition in (??) immediately gives (??).
Using the fact that uj(·; ξ) is an orthonormal basis of L2(R+) for all ξ ∈ R, we find, using

the representation in (??),∑
j

〈
ϕ,Πj(ξ, τ)ϕ

〉
L2(R3

+)
= 2π

∫
R+

∣∣∣Fr→−ξ[(Fs→−τϕ(·, ·, t)
)
(−τ)

]
(−ξ)

∣∣∣2dt.
Integrating in ξ and τ , it follows that∫

R2

∑
j

〈
ϕ,Πj(ξ, τ)ϕ

〉
L2(R3

+)
dξdτ = 2π ‖ϕ‖2L2(R3

+) ,

upon applying Plancherel identity twice.
It remains to prove (??). In fact, we have

Tr
(
χΠθ,jχ

)
= (2π)−1

∫
R3

+

χ2(r, s)|uj(t; ξ)|2drdsdt = (2π)−1

∫
R2

χ2(r, s)drds.

The proof of the lemma is thus complete.

We will prove

Theorem 4.3.2. Given λ ∈ (0, 1), the following formula holds true :

E(0, λ) =
1

3π2

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ, (4.3.10)

where µ1(ξ) is defined in (??).

Proof. We start by obtaining an upper bound on E(0, λ). Let L > 0. Pick an arbitrary positive
integer N and let {f1, · · · , fN} be any L2 orthonormal set in D(PL0 ). In view of (??) and (??),
we have the following splitting (recall the domain ΩL from (??)),

N∑
j=1

〈
fj , (P

L
0 − λ)fj

〉
L2(ΩL)

=
1

2π

N∑
j=1

∞∑
p=1

∫
R2

〈
fj , (P

N
0 − λ)Πp(ξ, τ)fj

〉
L2(R3

+)
dξdτ

=
1

2π

N∑
j=1

∞∑
p=1

∫
R2

(µp(ξ) + τ2 − λ)
〈
fj ,Πp(ξ, τ)fj

〉
L2(R3

+)
dξdτ ,

where we have extended fj by 0 to R3
+ \ ΩL. Since λ < 1, Lemma ?? gives that µp(ξ) + τ2 > λ

for p ≥ 2 and (τ, ξ) ∈ R2. Hence, we obtain

N∑
j=1

〈
fj , (P

L
0 − λ)fj

〉
L2(ΩL)

≥ − 1

2π

∫
R2

(
µ1(ξ) + τ2 − λ

)
−

N∑
j=1

〈fj ,Π1(ξ, τ)fj
〉
L2(R3

+)
. (4.3.11)
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Since {fj}Nj=1 is an orthonormal family in L2(ΩL), we deduce that

N∑
j=1

〈
fj ,Π1(ξ, τ)fj

〉
L2(R3

+)
=

N∑
j=1

∣∣∣〈v1, fj〉
∣∣∣2 ≤ ∫

ΩL
|v1(r, s, t)|2drdsdt

=
1

2π

∫
ΩL
|u1(t; ξ)|2drdsdt =

1

2π
L2.

(4.3.12)

The last equality comes from the fact that the function u1(·; ξ) is normalized in L2(R+) for all
ξ. Substituting (??) into (??) yields

N∑
j=1

〈
fj , (P

L
0 − λ)fj

〉
L2(ΩL)

≥ − L2

4π2

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ,

uniformly with respect to N and the orthonormal family {fj}Nj=1. Then, on account of Definition
(??) and Lemma ??, we have

E(λ,PL0 ; ΩL)

L2
≤ 1

4π2

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ.

Letting L→∞, we infer from (??) and Lemma ?? the following upper bound,

E(0, λ) ≤ 1

3π2

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ. (4.3.13)

We give the proof of the lower bound on E(0, λ). Let M(ξ, τ) be the characteristic function of
the set {

(ξ, τ) ∈ R2 : λ− µ1(ξ)− τ2 ≥ 0
}

We consider the trial density matrix

γ =

∫
R2

M(ξ, τ)Π1(ξ, τ)dξdτ.

It is clear that γ ≥ 0. We will prove that γ ≤ 2π. Consider g ∈ L2(ΩL). Using that 0 ≤M ≤ 1,
we see that 〈

g, γg
〉
L2(R3

+)
≤
∫
R2

∣∣〈g, v1〉
∣∣2dξdτ ≤∑

j

∫
R2

∣∣〈g, vj〉∣∣2dξdτ = 2π ‖g‖2 .

The last step follows by Plancherel’s identity and the that fact that uj(·, ξ) is an orthonormal
basis of L2(R+) for all ξ.

Recall the quadratic form QLθ from (??), it easy to check that

QL0 (v1) =
L2

2π
(µ1(ξ) + τ2). (4.3.14)

We calculate, using (??),

Tr
[(
PL0 − λ)γ

]
=

∫
R2

M(ξ, τ)
(
QL0 (v1)− λ ‖v1‖2L2(ΩL)

)
dξdτ

=
L2

2π

∫
R2

M(ξ, τ)(µ1(ξ) + τ2 − λ)dξdτ

= −L
2

2π

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ.
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In view of Lemma ??, we get

−Tr
(
PL0 − λ

)
− ≤

1

2π
Tr
(
(PL0 − λ)γ

)
= − L2

4π2

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ.

This gives
E(λ;PL0 ,Ω

L)

L2
≥ 1

4π2

∫
R2

(
µ1(ξ) + τ2 − λ

)
−dξdτ.

Letting L→∞, it follows from Lemma ?? that

E(0, λ) ≥ 1

3π2

∫ ∞
0

(µ1(ξ)− λ)
3/2
− dξ. (4.3.15)

Combining this with (??) proves the desired formula.

4.3.2 E(θ, λ) in the case θ ∈ (0, π/2]

The purpose of this subsection is to provide an explicit formula for E(θ, λ) in the case θ ∈ (0, π/2]
(λ ∈ [0, 1)). However, we have not been able to compute it directly like in the case θ = 0. Our
approach is to find alternative limiting functions (see below (??)), which can be constructed
and computed explicitly using the eigenprojectors on the eigenfunctions of the two-dimensional
model operator from (??). Afterwards, what remains is to establish a connection with E(θ, λ).

Let us define the function R3
+ 3 (r, s, t) 7→ vθ,j(r, s, t; ξ) by

vθ,j(r, s, t; ξ) =
1√
2π
eiξruθ,j

(
s− ξ

sin(θ)
, t
)
, (4.3.16)

where {uθ,j}j are the eigenfunctions from (??). We define the projectors πθ,j by

(
πθ,j(ξ)

)
ϕ(s1, t1) = uθ,j

(
s1 −

ξ

sin(θ)
, t1

)∫
R2

+

uθ,j

(
s2 −

ξ

sin(θ)
, t2

)
ϕ(s2, t2)ds2dt2. (4.3.17)

We then introduce a family of operators Πθ,j by

L2(R3
+) 3 f 7→ Πθ,jf(r1, s1, t1)

=

∫
R
vθ,j(r1, s1, t1; ξ)

{∫
R3

+

vθ,j(r2, s2, t2; ξ)f(r2, s2, t2)dr2ds2dt2

}
dξ (4.3.18)

In terms of quadratic forms, we have

L2(R3
+) 3 f 7→ 〈Πθ,jf, f〉L2(R3

+) =

∫
R

∣∣∣〈vθ,j(·, ξ), f〉L2(R3
+)

∣∣∣2dξ
=

∫
R

〈
F−1
ξ→r
(
πj,θ(ξ)(Fr→ξf(·, s, t)(ξ))

)
(r), f(r, s, t)

〉
L2(R3

+)
dξ,

(4.3.19)
Since the Fourier transform is a unitary transform and πθ,j(ξ) is a projection, it follows that the
operators Πθ,j are indeed projections.
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Lemma 4.3.3. Let f ∈ L2(R3
+) and PNθ be the operator defined in (??). We have〈

PNθ Πθ,jf, f
〉
L2(R3

+)
= ζj(θ)

〈
Πθ,jf, f

〉
L2(R3

+)
. (4.3.20)

〈∑
j

Πθ,jf, f
〉
L2(R3

+)
≤ ‖f‖2L2(R3

+) . (4.3.21)

Moreover, for any smooth cut-off function χ ∈ C∞0 (R2), it holds true that

Tr(χΠθ,jχ) =
sin(θ)

2π

∫
R2

χ2(r, s)drds. (4.3.22)

Proof. Applying the operator PNθ to the function vθ,j , we find

PNθ vθ,j(r, s, t; ξ) = ζj(θ)vθ,j(r, s, t; ξ).

The assertion (??) then follows from the definition of Πθ,j in (??).
To prove (??), we rewrite (??) as〈

Πθ,jf, f
〉
L2(R3

+)
=

∫
R

〈
πθ,j(ξ)

(
Fr→ξf(·, s, t)

)
(ξ),

(
Fr→ξf(·, s, t)(ξ)

)〉
L2(R2

+)
dξ. (4.3.23)

It can be easily shown that
∑

j πθ,j is a projection. Hence, by Plancherel’s identity, we see that〈∑
j

Πθ,jf, f
〉
L2(R3

+)
≤
∫
R2

+

∫
R
|Fr→ξf(·, s, t)|2dξdsdt =

∫
R3

+

|f(r, s, t)|2drdsdt.

We come to the proof of (??). For this, we notice that

Tr
(
χΠθ,jχ

)
=

1

2π

∫
R3

+

χ2(r, s)
(∫

R

∣∣eiξruθ,j(s− ξ

sin(θ)
, t
)∣∣2dξ)drdsdt.

Performing the change of variable ν = s− ξ
sin θ and using that the functions {uθ,j}j are normalized,

we get

Tr
(
χΠθ,jχ

)
=

1

2π
sin(θ)

∫
R2

χ2(r, s)drds

∫
R2

+

|uθ,j(ν, t)|2dνdt =
1

2π
sin(θ)

∫
R2

χ2(r, s)drds.

(4.3.24)
Thereby completing the proof of the lemma.

Let a > 0. In order to define F (θ, λ) below, we need to introduce the cut-off function
χa ∈ C∞0 (R2), which satisfies

0 ≤ χa ≤ 1, in R2, supp χa ∈
(
− 1 + a

2
,
1 + a

2

)2
, χa = 1 in

(
− 1

2
,
1

2

)2
, |∇χa| ≤ Ca−1.

(4.3.25)
Let L > 0. Setting

χa,L(r, s) = χa

(
r

L
,
s

L

)
, (r, s) ∈ R2, (4.3.26)

and,

µa =

∫
R2

χ2
a(r, s)drds. (4.3.27)

45



Recall that the negative part of a self-adjoint operator is defined via the spectral theorem and
the function R 3 x 7→ (x)−. We define

F1(θ, λ) := lim inf
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
, F2(θ, λ) := lim sup

L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2

(4.3.28)
where PNθ is the self-adjoint operator given in (??). We now formulate the main theorem of this
section.

Theorem 4.3.4. Let θ ∈ (0, π/2], λ ∈ [0, 1) and E(θ, λ) as introduced in (??). We have the
following explicit formula of E(θ, λ)

E(θ, λ) =
1

2π
sin(θ)

∑
j

(ζj(θ)− λ)−, (4.3.29)

where the {ζj(θ)}j are the eigenvalues from (??).

The proof of Theorem ?? is split into two lemmas.

Lemma 4.3.5. Let a > 0 be sufficiently small, λ ∈ [0, 1) and θ ∈ (0, π/2]. The following formula
holds true

F1(θ, λ) = F2(θ, λ) =
1

2π
µa sin(θ)

∑
j

(ζj(θ)− λ)−, (4.3.30)

where F1(θ, λ), F2(θ, λ) are the functions defined in (??) and µa is the constant defined in (??).

Proof. Let PNθ be the self-adjoint operator given in (??),and let {g1, · · · , gN} be any orthonormal
set in D(PNθ ). It follows from Lemma ?? that

N∑
k=1

〈
χa,Lgk, (P

N
θ −λ)χa,Lgk

〉
L2(R3

+)
≥ −

∑
j

(ζj(θ)−λ)−

N∑
k=1

〈
χa,Lgk,Πθ,jχa,Lgk

〉
L2(R3

+)
. (4.3.31)

Since {gk}Nk=1 is an orthonormal family in L2(R3
+) and performing a similar calculation to that

in(??), we deduce that

N∑
k=1

〈
χa,Lgk,Πθ,jχa,Lgk

〉
L2(R3

+)
=

∫
R

N∑
k=1

|〈gk, vj,θχa,L〉L2(R3
+)

∣∣2dξ ≤ 1

2π
µaL

2 sin(θ).

Implementing this in (??), we obtain

N∑
k=1

〈
χa,Lgk, (P

N
θ − λ)χa,Lgk

〉
L2(R3

+)
≥ − 1

2π
L2µa sin(θ)

∑
j

(ζj(θ)− λ)−. (4.3.32)

By the variational principle in Lemma ??, we find

Tr
(
χa,L(PNθ − λ

)
χa,L)− ≤

1

2π
L2µa sin(θ)

∑
j

(ζj(θ)− λ)−. (4.3.33)

Dividing by L2 on both sides, we get after passing to the limit L→∞,

lim sup
L→∞

Tr
(
χa,L(PNθ − λ

)
χa,L)−

L2
≤ 1

2π
µa sin(θ)

∑
j

(ζj(θ)− λ)−. (4.3.34)
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To prove a lower bound, we consider the density matrix

γ =
∑

{j : ζj(θ)≤λ}

Πθ,j . (4.3.35)

It is easy to see that γ ≥ 0, and in view of (??), it follows that

〈f, γf〉L2(R3
+) ≤ ‖f‖

2
L2(R3

+) . (4.3.36)

Next, we observe that

Tr
(
χa,L(PNθ − λ)χa,LΠθ,j

)
=

∫
R

∫
R3

+

(
|(−i∇+ Fθ)χa,Lvθ,j |2 − λ|χa,Lvθ,j |2

)
drdsdtdξ

≤
∫
R

∫
R3

+

{
χ2
a,L(r, s)

(
|(−i∇+ Fθ)vθ,j |2 − λ|vθ,j |2

)
+ |∇χa,L(r, s)|2|vθ,j |2

}
drdsdtdξ, (4.3.37)

where the last step follows by Cauchy Schwarz inequality. Performing the change of variable
ν = s− ξ

sin(θ) in (??), we arrive at

Tr
(
χa,L(PNθ −λ)χa,Lγ

)
≤ sin(θ)

2π

∑
{j : ζj(θ)≤λ}

{
(ζj(θ)−λ)µaL

2 +

∫
R2

|∇χa(r, s)|2drds
}
, (4.3.38)

where µa is the constant from (??). Dividing both sides by L2 both sides, we see that

Tr
(
χa,L(PNθ − λ)χa,Lγ

)
L2

≤ 1

2π
sin(θ)

∑
{j : ζj(θ)≤λ}

{
µa(ζj(θ) − λ) + L−2

∫
R2

|∇χa|2drds
}
.

(4.3.39)

Here we point out that the number N (λ;L(θ),R2
+) is controlled by C/ sin(θ) according to

Lemma ??. Using the variational principle, it follows that

−
Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≤ − 1

2π
µa sin(θ)

∑
j

(ζj(θ) − λ)− + C(2π)−1L−2

∫
R2

|∇χa|2drds.

Taking the limit L→∞, we deduce that

lim inf
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≥ 1

2π
µa sin(θ)

∑
j

(ζj(θ)− λ)−.

This together with (??) and the definitions of F1(θ, λ) and F2(θ, λ) in (??) yields the desired
formula.

Our next goal is to establish a connection between the functions F1(θ, λ) and F2(θ, λ) obtained
in Lemma ?? and E(θ, λ) from (??).

Theorem 4.3.6. Let θ ∈ (0, π/2] and λ ∈ (0, 1). It holds true that

F1(θ, λ) = F2(θ, λ) = µaE(θ, λ).

where µa is the constant from (??).
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Proof. Let L� `� 1. We consider the domain

Ωj,k,` = (j`, (j + 1)`)× (k`, (k + 1)`)× R+, (j, k) ∈ Z2.

We will denote by NB the number of boxes of the form Ωj,k,` intersecting suppχa,L :

NB = ]{(j, k) ∈ Z2 : suppχa,L ∩ Ωj,k,` 6= ∅}. (4.3.40)

Recall the magnetic field Fθ defined in (??), we consider the self-adjoint operator P`θ,j,k generated
by the quadratic form

Q`θ,j,k(u) =

∫
Ωj,k,`

|(−i∇+ Fθ)u|2drdsdt,

with domain,

D(Q`θ,j,k) =
{
u ∈ L2(Ωj,k,`) : (−i∇+ Fθ)u ∈ L2(Ωj,k,`),

u(j`, ·, ·) = u((j + 1)`, ·, ·) = 0, u(·, k`, ·) = u(·, (k + 1)`, ·) = 0
}
. (4.3.41)

Since any function that belongs to the form domain
⊕

j,k D(Q`θ,j,k) lies in the form domain
D(QNθ ) and the values of both quadratic forms coincide for such a function, we have the operator
inequality

χa,L(PNθ − λ)χa,L ≤
⊕
j,k

χa,L(P`θ,j,k − λ)χa,L, (4.3.42)

in the sense of quadratic forms. As a consequence, the min max principle allows us to write,

− Tr(χa,L(PNθ − λ)χa,L)− ≤ −
∑
j,k

Tr(χa,L(P`θ,j,k − λ)χa,L)−. (4.3.43)

Let Sjk ∈ N be the number of eigenvalues of P`θ,j,k, {λm}
Sjk
m=1, that are below λ and let {fs}

Sjk
m=1 ∈

D(Q`θ,j,k) be associated (normalized) eigenfunctions. We consider the density matrix

γj,kf =

Sjk∑
m=1

〈f, fm〉fm, f ∈ L2(Ω`
jk).

Next, we compute

Tr
(
χa,L(P`θ,j,k − λ)χa,Lγj,k

)
=

Sjk∑
m=1

(Q`θ,j,k(χa,Lfm)− λ‖χa,Lfm‖2)

=

Sjk∑
m=1

{
(λm − λ)‖χa,Lfm‖2 + ‖|∇χa,L|fm‖2

}
, (4.3.44)

where the last step follows since {fm}
Sjk
m=1 are eigenfunctions.

Let us denote by x?j,k,` the point belonging to the interval (j`, (j+ 1)`)× (k`, (k+ 1)`) where
the function χ2

a,L attains its minimum :

χ2
a,L(x?j,k,`) = min

(r,s)∈(j`,(j+1)`)×(k`,(k+1)`)
χ2
a,L(r, s).
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It follows that

Tr
(
χa,L(P`θ,j,k − λ)χa,Lγj,k

)
≤ χ2

a,L(x?j,k,`)

Sjk∑
m=1

(λm − λ) +

Sjk∑
m=1

‖|∇χa,L|fm‖2, (4.3.45)

where have used that the term
∑Sjk

m=1(λm−λ) is negative. Inserting this into (??) and using the
bound |∇χa,L| ≤ C(aL)−1, we find

Tr
(
χa,L(P`θ,j,k − λ)χa,Lγj,k

)
≤ χ2

a,L(x?j,k,`)

Sjk∑
m=1

(λm − λ) + SjkC(aL)−2.

By (??), we have Sjk ≤ C`2. Using (??), we obtain

Tr
(
χa,L(P`θ,j,k − λ)χa,Lγj,k

)
≤ χ2

a,L(x?j,k,`)(−E(θ, λ) + C`−2/3)`2 + C`2(aL)−2. (4.3.46)

By (??) and Lemma ??, it follows that

− Tr
(
χa,L(PNθ − λ)χa,L

)
− ≤

∑
j,k

Tr
(
χa,L(PNθ − λ)χa,Lγj,k

)
≤
{∑

j,k

χ2
a,L(x?j,k,`)`

2
}

(−E(θ, λ) + C`−2/3) + CNB`
2(aL)−2. (4.3.47)

The sum
∑

j,k χ
2
a,L(x?j,k,`)`

2 is a (lower) Riemannian sum. Thus, we have∣∣∣∑
j,k

χ2
a,L(x?j,k,`)`

2 −
∫
R2

χ2
a,L(r, s)drds(= µaL

2)
∣∣∣ ≤ C`L.

Substituting this into (??), we obtain

−Tr
(
χa,L(PNθ − λ)χa,L

)
− ≤ E(θ, λ)L2

(
− µa +C`L−1

)
+C`−2/3(µaL

2 +C`L) +CNB`
2(aL)−2.

Dividing both sides by L2, we get

−
Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≤ E(θ, λ)

(
− µa +C`L−1

)
+C`−2/3(µa +C`L−1) +CNB`

−2a−2L−4.

We make the following choice of `,
` = Lη, η < 1.

Since NB ∼ ((1 + a))2L2`−2 as L→∞, we get, after taking L→∞ the following lower bound

lim inf
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≥ E(θ, λ)µa. (4.3.48)

It remains to prove the upper bound. By the variational principle and the fact that the trace is
cyclic, we see that

−Tr
(
χa,L(PNθ − λ)χa,L

)
− = inf

0≤γ≤1
Tr
(
(PNθ − λ)χa,Lγχa,L

)
.

Since the function χa,L is supported in
(
− (1+a)L

2 , (1+a)L
2

)2, it follows that
− Tr

(
χa,L(PNθ − λ)χa,L

)
− ≥ inf

0≤γ̃≤1
Tr
[
(P

(1+a)L
θ − λ)γ̃

]
. (4.3.49)
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By Theorem ??, we know that

inf
0≤γ̃≤1

Tr
[
(P

(1+a)L
θ − λ)γ̃

]
= −E(λ;P(1+a)L

θ ,Ω(1+a)L) ≥ −((1 + a)L)2E(θ, λ).

Substituting in (??) yields that

−Tr
(
χa,L(PNθ − λ)χa,L

)
− ≥ −((1 + a)L)2E(θ, λ).

We conclude that, when L→∞,

lim sup
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≤ E(θ, λ)(1 + a)2. (4.3.50)

Combining (??) and (??), we obtain

µaE(θ, λ) ≤ lim inf
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2

≤ lim sup
L→∞

Tr
(
χa,L(PNθ − λ)χa,L

)
−

L2
≤ (1 + a)2E(θ, λ) (4.3.51)

We select a sufficiently small so that µa ∼ (1 + a)2. Recall the definition of F1(θ, λ) and F2(θ, λ)
in (??), we deduce that

F1(θ, λ) = F2(θ, λ) = µaE(θ, λ),

thereby completing the proof of Lemma ??.

Proof of Theorem ??. The proof follows easily from Lemma ?? and Lemma ??.

4.3.3 Dilation

Let us define the unitary operator

Uh,b : L2(R3
+) 3 u 7→ Uh,bu(z) = h3/4b−3/4u(h1/2b−1/2z) ∈ L2(R3

+), (4.3.52)

Let h, b > 0 and θ ∈ [0, π/2]. We introduce the self-adjoint operator

PNθ,h,b = (−ih∇+ bFθ)
2, in L2(R3

+), (4.3.53)

with Neumann boundary conditions at t = 0. With PNθ being the operator from (??), it is easy
to check that

PNθ,h,b = hbUh,bP
N
θ U
−1
h,b . (4.3.54)

For j ∈ N and (ξ, τ) ∈ R2, we introduce the family of projectors

Πj(ξ, τ ;h, b) = Uh,bΠj(ξ, τ)U−1
h,b (4.3.55)

and, for θ ∈ (0, π/2],
Πθ,j(h, b) = Uh,bΠθ,jU

−1
h,b (4.3.56)

where, Πj(ξ, τ) and Πθ,j are introduced in (??) and (??) respectively. We deduce the following
two generalizations of Lemma ?? and Lemma ??.
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Lemma 4.3.7. For all ϕ ∈ L2(R3
+), we have〈

PN0,h,b(Πj(ξ, τ ;h, b)ϕ), ϕ
〉
L2(R3

+)
= hb(µj(ξ) + τ2)

〈
Πj(ξ, τ ;h, b)ϕ,ϕ

〉
L2(R3

+)
, (4.3.57)

∑
j

∫
R2

〈
ϕ,Πj(ξ, τ ;h, b)ϕ

〉
L2(R3

+)
dξdτ = 2π ‖ϕ‖2L2(R3

+) . (4.3.58)

Moreover, for any smooth cut-off function χ ∈ C∞0 (R2), it holds true that

Tr(χΠj(ξ, τ ;h, b)χ) = bh−1(2π)−1

∫
R2

χ2(r, s)drds. (4.3.59)

Lemma 4.3.8. Let f ∈ L2(R3
+), we have〈

PNθ,h,bΠθ,j(h, b)f, f
〉
L2(R3

+)
= hbζj(θ)

〈
Πθ,j(h, b)f, f

〉
L2(R3

+)
, (4.3.60)

〈∑
j

Πθ,j(h, b)f, f
〉
L2(R3

+)
≤ ‖f‖2L2(R3

+) . (4.3.61)

Moreover, for any smooth cut-off function χ ∈ C∞0 (R2), it holds true that

Tr(χΠθ,j(h, b)χ) = bh−1(2π)−1sin(θ)

∫
R2

χ2(r, s)drds. (4.3.62)
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Chapter 5

Boundary coordinates

The aim of this chapter is to approximate the quadratic form defined in (??):

D(Qh) 3 u 7→ Qh(u) :=

∫
Ω
|(−ih∇+ A)u|2dx

under the assumption that u is supported near the boundary ∂Ω and the magnetic potential A
is C∞(Ω;R3). To achieve this, we need to introduce a system of coordinates valid near a point
of the boundary. This is the subject of Section ??. These coordinates are used in [?] and then in
[?] in order to estimate the ground state energy of a magnetic Schrödinger operator with large
magnetic field (or with ‘small’ semi-classical parameter). In section ??, we perform a rotation in
order to obtain a reduced form of the metric (in the new coordinates). Having this in hand, we
proceed to approximate the quadratic form in Section ??.

5.1 Local coordinates

We denote the standard coordinates on R3 by x = (x1, x2, x3). The standard Euclidean metric
is given by

g0 = dx2
1 + dx2

2 + dx2
3. (5.1.1)

Consider a point x0 ∈ ∂Ω. Let Vx0 be a neighbourhood of x0 such that there exist local boundary
coordinates (r, s) inW = Vx0 ∩∂Ω, i.e., there exist an open subset U of R2 and a diffeomorphism
φx0 : W → U, φx0(x) = (r, s), such that φx0(x0) = 0 and Dφx0(x0) = Id2 where Id2 is the 2× 2
identity matrix. Then for t0 > 0 small enough, we define the coordinate transformation Φ−1

x0
as

U×(0, t0) 3 (r, s, t) 7→ x := Φ−1
x0

(r, s, t) = φ−1
x0

(r, s) + tν, (5.1.2)

where ν is the interior normal unit vector at the point φ−1
x0

(r, s) ∈ ∂Ω. This defines a diffeomor-
phism of U×(0, t0) onto Vx0 and its inverse Φx0 defines local coordinates on Vx0 , Vx0 3 x 7→
Φx0(x) = (r(x), s(x), t(x)) such that

t(x) = dist (x, ∂Ω).

It is easily to be seen that the Φx0 are constructed so that

Φx0(x0) = 0, DΦx0(x0) = Id3, (5.1.3)
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where Id3 denotes the 3×3 identity matrix. For convenience, we will henceforth write (y1, y2, y3)
instead of (r, s, t). Let us consider the matrix

g := gx0 = (gpq)
3
p,q=1,

gpq =

〈
∂x

∂yp
,
∂x

∂yq

〉
〈X,Y 〉 =

∑
1≤p,q≤3

gpqX̃pỸq,

(5.1.4)

where X =
∑
p

X̃p
∂

∂yp
and Y =

∑
q

Ỹq
∂

∂yq
.

We point out that we may express the matrix g = (gpq)
3
p,q=1, whose coefficients are defined in

(??), as
g = (gpq)

3
p,q=1 = (DΦ−1

x0
)T (DΦ−1

x0
). (5.1.5)

Next, we define the map :
y 7→ ũ(y) := u(Φ−1

x0
(y)) . (5.1.6)

The Euclidean metric (??) transforms to

g0 =
∑

1≤p,q≤3

gpqdyp ⊗ dyq

= dy3 ⊗ dy3 +
∑

1≤p,q≤2

[
Gpq(y1, y2)− 2y3Kpq(y1, y2) + y2

3Lpq(y1, y2)
]
dyp ⊗ dyq,

where

G =
∑

1≤p,q≤2

Gpqdyp ⊗ dyq =
∑

1≤p,q≤2

〈
∂x

∂yp
,
∂x

∂yq

〉
dyp ⊗ dyq,

K =
∑

1≤p,q≤2

Kpqdyp ⊗ dyq =
∑

1≤p,q≤2

〈
∂ν

∂yp
,
∂x

∂yq

〉
dyp ⊗ dyq,

L =
∑

1≤p,q≤2

Lpqdyp ⊗ dyq =
∑

1≤p,q≤2

〈
∂ν

∂yp
,
∂ν

∂yq

〉
dyp ⊗ dyq

are the first, second and third fundamental forms on ∂Ω.
Note that if x ∈ Vx0 ∩ ∂Ω, i.e, t(x) = 0, g0 reduces to

g0 = dy3 ⊗ dy3 +G. (5.1.7)

Let us denote by g−1 := (gpq)3
p,q=1 the matrix inverse of (gpq)

3
p,q=1. By virtue of (??), we may

assume, by taking Vx0 small enough, that

1

2
Id3 ≤ (gpq)3

p,q=1 ≤ 2 Id3 (5.1.8)

Let y0 be such that Φ−1
x0

(y0) ∈ Vx0 ∩ ∂Ω. We will prove that there exists a uniform constant
c > 0 such that

(1− 2c|y − y0|)g−1(y0) ≤ g−1(y) ≤ (1 + 2c|y − y0|)g−1(y0). (5.1.9)
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Proof of (??). By Taylor expansion, we have

g−1(y) = g−1(y0) +R (5.1.10)

where R is given by

R :=

O(|y − y0|) O(|y − y0|) 0
O(|y − y0|) O(|y − y0|) 0

0 0 1

 . (5.1.11)

Notice that the constants implicit in (??) depends for instance on the point x0 of the boundary,
in particular on the derivatives ∂2

xiφx0 , i = 1, 2, 3. In a neighbourhood of x0, these derivatives
are uniformly bounded. We thus get

|g−1(y)− g−1(y0)| ≤ ‖R‖ Id3 = cy0 |y − y0|Id3 , (5.1.12)

with cx0 a constant depending on the point x0. However, since the boundary is compact, we can
cover the boundary by a finite collection of neighbourhoods of points (xj) (see Subsection ??
below). In each neighbourhood, we get an estimate of the type (??) with constant cxj . Defining
c = max cxj , we get,

|g(y)− g(y0)| ≤ c|y − y0|Id3 . (5.1.13)

This way, c does not vary as the point x0 traces ∂Ω. Using (??), the claim follows from (??).

Let |g| = det(g). The Lebesgue measure transforms to dx = det(g)1/2dy. The Taylor
expansion of det(g)1/2 in Vx0 gives us :

(1 + 2c|y − y0|)|g|1/2(y0) ≤ |g|1/2(y) ≤ (1 + 2c|y − y0|)|g|1/2(y0). (5.1.14)

Again the constant c appearing in (??) can be chosen uniformly by compactness and regularity
of ∂Ω. The magnetic potential A = (A1,A2,A3) is transformed to a magnetic potential in the
new coordinates Ã = (Ã1, Ã2, Ã3) given by

Ãp(y) =

3∑
k=1

Ak(Φ
−1
x0

(y))
∂xk
∂yp

, p = 1, 2, 3. (5.1.15)

The magnetic field is given by

B =
∑

1≤j<k≤3

B̃jkdyj ∧ dyk,

where

B̃jk =
∂Ãk

∂yj
− ∂Ãj

∂yk

For y ∈ Φx0(Vx0), we define
B̃(y) = B(Φ−1

x0
(y)).

By the fact that

A = A1dx1 + A2dx2 + A3dx3 = Ã1dy1 + Ã2dy2 + Ã3dy3,

it follows that ∑
1≤j<k≤3

Bjkdxj ∧ dxk =
∑

1≤j<k≤3

B̃jkdyj ∧ dyk.
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Consequently, we get
B̃(y) = |g|−1/2(B̃23, B̃31, B̃12).

The approximation of the magnetic potential in the new coordinates is done by replacing Ã by
its linear part at y0, which we denote Ãlin = (Ãlin

1 , Ãlin
2 , Ãlin

3 ), so that

|Ãp(y)− Ãlin
p (y)| ≤ C|y − y0|2, (5.1.16)

for all p = 1, 2, 3, where

Ãlin(y) = Ã(y0) +

3∑
p=1

(yp − y0p)
∂Ã

∂yp
(y0). (5.1.17)

The following identity (cf. [?, formula (7.23)]) gives the strength of the magnetic field expressed
in the new coordinates,

|B̃(y0)|2 = |g(y0)|−1

[ 3∑
p,q=1

gpq(y0)αpαq

]
, (5.1.18)

where α = (α1, α2, α3) is given by

α1 =
∂Ã3

∂y2
(y0)− ∂Ã2

∂y3
(y0),

α2 =
∂Ã1

∂y3
(y0)− ∂Ã3

∂y1
(y0),

α3 =
∂Ã2

∂y1
(y0)− ∂Ã1

∂y2
(y0).

(5.1.19)

It follows from (??) that det
(
DΦ−1

x0

)
= |g|1/2.

The next Lemma expresses, in terms of the new coordinates, the quadratic form and the
L2-norm of a function u supported in a neighbourhood of x0.

Lemma 5.1.1. Let u ∈ D(Ph) such that suppu ⊂ Vx0. We have

Qh(u) =

∫
Vx0

|(−ih∇+ A)u|2dx

=

∫
R3

+

3∑
p,q=1

gpq(−ih∇yp + Ãp) ũ (−ih∇yq + Ãq) ũ |g|1/2dy,
(5.1.20)

and,

‖u‖2L2(Ω) =

∫
Ω
|u(x)|2dx =

∫
R3

+

|g|1/2|ũ(y)|2dy. (5.1.21)

5.2 Diagonalization of the metric and gauge transformation

Recall the Jacobian matrix g := gx0 introduced in (??) and valid in Vx0 . Let y0 be such that
Φ−1
x0

(y0) ∈ Vx0 ∩ ∂Ω. The goal in this section is to get a simplified expression of the quadratic
form

L2(Vx0) 3 u 7→ Qlin
h (u) :=

∫
R3

+

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãlin
p ) ũ (−ih∇yq + Ãlin

q ) ũ |g(y0)|1/2dy

(5.2.1)
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where Ãlin is the magnetic potential from (??), and ũ is associated to u by (??).
The matrix (g(y0)) being symmetric, in view of (??), it can be orthogonally diagonalized,

and such a diagonalization amounts to a rotation of the coordinate system. Namely, there is an
orthogonal matrix P (with P−1 = P T ) and a diagonal matrix D such that g(y0) = PDP−1. In
other words, there are a, b, λ1, λ2 ∈ R such that

P :=

 a1 a2 0
−a2 a1 0

0 0 1

 (5.2.2)

with a2
1 + a2

2 = 1, and

D :=

λ1 0 0
0 λ2 0
0 0 1

 , (5.2.3)

By virtue of (??), it is easy to see that λ1, λ2 > 0.
Thus g can be written as

g :=

 λ1a
2
1 + λ2a

2
2 (−λ1 + λ2)a1a2 0

(−λ1 + λ2)a1a2 λ2a
2
1 + λ1a

2
2 0

0 0 1

 . (5.2.4)

Let y′ = yP−1 = (a1y1 + a2y2,−a2y1 + a1y2, y3) and

Âlin(y′) = P Ãlin(y′P ) =

 a1Ã
lin
1 (y′P ) + a2Ã

lin
2 (y′P )

−a2Ã
lin
1 (y′P ) + a1Ã

lin
2 (y′P )

Ãlin
3 (y′P )

 (5.2.5)

Easy manipulations leads to

Qlin
h (u) =

∫
R3

+

λ−1
1

∣∣(−ih∂y′1 + Âlin
1 )ũ(y′P )

∣∣2(λ1λ2)1/2dy′

+

∫
R3

+

λ−1
2

∣∣(−ih∂y′2 + Âlin
2 )ũ(y′P )

∣∣2(λ1λ2)1/2dy′ +

∫
R3

+

∣∣(−ih∂y′3 + Âlin
3 )ũ(y′P )

∣∣2(λ1λ2)1/2dy′.

(5.2.6)

Recall (??), we have
curly (Ãlin(y)) = (α1, α2, α3).

where α1, α2, α3 are defined in (??). It follows that

P−1curly (Ãlin(y)) :=

a1α1 − a2α2

a2α1 + a1α2

α3

 (5.2.7)

It is straightforward to show that

curly′ (Â
lin(y′)) = P−1curly (Ãlin(y)).

This shows that the strength of the magnetic field is conserved under orthogonal diagonalization,
i.e,

|curly′ (Â
lin(y′))| = |curly (Ãlin(y))| = (α2

1 + α2
2 + α2

3)1/2 = |B̃(y0)|.
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Moreover, by (??), we may work henceforth with the diagonalized form of the metric and assume
that the matrix (gx0(y0)) is a diagonal matrix, i.e.,

g(y0) =

λ1 0 0
0 λ2 0
0 0 1

 (5.2.8)

It follows that |g(y0)|1/2 =
√
λ1λ2.

Next, we perform the change of variables z = (z1, z2, z3) =
(
λ

1/2
1 y1, λ

1/2
2 y2, y3

)
and denote

by
ŭ(z) := ũ(y) = ũ

(
λ
−1/2
1 z1, λ

−1/2
2 z2, z3

)
. (5.2.9)

It is easy to check that ∫
R3

+

|g(y0)|1/2|ũ(y)|2dy =

∫
R3

+

|ŭ(z)|2dz. (5.2.10)

Moreover, the quadratic form in (??) becomes

Qlin
h (u) =

3∑
p=1

∫
R3

+

|(−ih∇zp + Fp) ŭ|2 dz (5.2.11)

where F = (F1,F2,F3) is the magnetic potential given by

F1(z) = λ
−1/2
1 Ãlin

1 (λ
−1/2
1 z1, λ

−1/2
2 z2, z3)

F2(z) = λ
−1/2
2 Ãlin

2 (λ
−1/2
1 z1, λ

−1/2
2 z2, z3)

F3(z) = Ãlin
3 (λ

−1/2
1 z1, λ

−1/2
2 z2, z3).

Let β = (β1, β2, β3) = curlz(F(z)) and note that the coefficients of β and α (see (??)) are
related by

β1 = λ
−1/2
2 α1, β2 = λ

−1/2
1 α2, β3 = (λ1λ2)−1/2α3.

The relation (??) gives that

|β| = |curlz(F(z))| = (β2
1 + β2

2 + β2
3)1/2 = |B̃|(y0). (5.2.12)

Recall the magnetic field from (??), and note that for any θ ∈ [0, π/2], we have

curl(Fθ) = (0, cos(θ), sin(θ)).

Next we perform a rotation in the (z1, z2)-variables chosen so that the image of (β1, β2, β3) is
the vector |B̃(y0)|(0, cos(θ0), sin(θ0)) where θ0 := θ̃(y0) is given by

θ0 := θ̃(y0) = arcsin

(
|β3|
|β|

)
. (5.2.13)

We emphasize here that (??) is compatible with the definition of θ(x) given in (??), i.e., θ̃(y0) =
θ(Φ−1

x0
(y0)). Moreover, the image of the magnetic potential by the rotation in the (z1, z2)-

variables, still denoted F(z), satisfies

curlzF(z) = |B̃(y0)|curlzFθ0(z).

From this relation and the discussion in Section ??, it follows that there exists a smooth function
φ0 such that

F(z) = b0Fθ0(z) +∇φ0, b0 := |B̃(y0)| (5.2.14)

From this and (??), we deduce the following lemma.
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Lemma 5.2.1. Let Qlin
h be as defined in (??) and u ∈ L2(Vx0). Then, there exists a function φ0

such that
Qlin
h (u) =

∫
R3

+

|(−ih∇z + b0Fθ0) eiφ0/hŭ|2 dz, (5.2.15)

where, for θ ∈ [0, π/2], Fθ is the magnetic potential defined in (??), b0 := |B̃(y0)| and, to a
function u we associate ŭ by means of (??) and (??).

5.3 Approximation of the quadratic form

Let `, T > 0 (`, T will depend on h and tend to 0 as h→ 0). Consider the sets

Q0,`,T = (−`/2, `/2)2 × (0, T ), Q0,` = (−`/2, `/2)2 × {0}, (5.3.1)

such that Φ−1
x0

(
(−`/2, `/2)2×(0, T )

)
⊂ Vx0 . Consider a function u ∈ L2(Vx0) such that ũ, defined

in (??), satisfies
supp ũ ∈ Q0,`,T . (5.3.2)

We will approximate Qh(u) from (??) via the quadratic form in the half-space corresponding to
a constant magnetic field.

Lemma 5.3.1. Let Fθ be the magnetic potential given in (??) and let y0 ∈ Q0,`. There exists
a constant C > 0 (independent of y0) and a function φ := φy0 ∈ C∞(Q̃0,`,T ) such that, for all
ε ∈ (0, 1] satisfying ε ≥ (`+ T ) and for all u satisfying (??) one has∣∣∣Qh(u)−

∫
Q̃0,`,T

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz
∣∣∣

≤ Cε
∫
Q̃0,`,T

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz + C(`2 + T 2)2ε−1

∫
Q̃0,`,T

|ŭ|2 dz, (5.3.3)

and,

(1− C(`+ T ))

∫
Q̃0,`,T

|ŭ|2 dz ≤ ‖u‖2L2(Vx0 ) ≤ (1 + C(`+ T ))

∫
Q̃0,`,T

|ŭ|2 dz. (5.3.4)

Here b0 = |B̃(y0)|, θ0 = θ̃(y0), and to a function v(x) we associate the function v̆(z) by means
of (??) and (??).

Proof. By (??), we have

Qh(u) =

∫
Q0,`,T

3∑
p,q=1

gpq(−ih∇yp + Ãp) ũ (−ih∇yq + Ãq)ũ |g|1/2dy.

Using (??) and (??), it follows that for some constant c1 > 0

(1− c1(`+ T ))

{∫
Q0,`,T

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãp) ũ (−ih∇yq + Ãq) ũ |g(y0)|1/2dy
}

≤ Qh(u) ≤ (1+c1(`+T ))

{∫
Q0,`,T

3∑
p,q=1

gpq(y0)(−ih∇yp+Ãp) ũ (−ih∇yq + Ãq) ũ |g(y0)|1/2dy
}
.

(5.3.5)
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Let Hp(y) = Ãp(y)− Ãlin
p (y), we get using (??) that,∫

R3
+

|HpuHqu||g(y0)|1/2dy ≤ C(`2 + T 2)4

∫
R3

+

|u|2|g(y0)|1/2dy. (5.3.6)

Writing Ãp = Hp + Ãlin
p , we have the following estimate of Cauchy-Schwarz type∣∣∣∣∣∣2<

∫
R3

+

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãlin
p ) ũHqũdy

∣∣∣∣∣∣
≤ ε

∫
R3

+

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãlin
p ) ũ(−ih∇yq + Ãlin

q ) ũdy

+ ε−1

∫
R3

+

3∑
p,q=1

gpq(y0)Hp ũHq ũdy, (5.3.7)

for any ε > 0.
Recall the quadratic form Qlin

h defined in (??). Using (??) and (??), it follows that there
exists a constant c2 > 0 such that

(1− ε)Qlin
h (u)− c2(`2 + T 2)2ε−1

∫
R3

+

|ũ|2 |g(y0)|1/2dy

≤
∫
R3

+

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãp) ũ (−ih∇yq + Ãq) ũ |g(y0)|1/2dy

≤ (1 + ε)Qlin
h (u) + c2(`2 + T 2)2ε−1

∫
R3

+

|ũ|2 |g(y0)|1/2dy, (5.3.8)

for any ε > 0.
From Lemma ??, it follows that

(1− ε)
∫
R3

+

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz − c2(`2 + T 2)2

∫
R3

+

|ŭ|2dz

≤
∫
R3

+

3∑
p,q=1

gpq(y0)(−ih∇yp + Ãp) ũ (−ih∇yq + Ãq) ũ |g(y0)|1/2dy

≤ (1 + ε)

∫
R3

+

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz + c2(`2 + T 2)2ε−1

∫
R3

+

|ŭ|2 dz. (5.3.9)

for any ε > 0. Choose ε ≥ (` + T ). Inserting (??) into (??), we obtain that for some constant
c4 > 0

(1− c3ε)

∫
R3

+

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz − c3(`2 + T 2)2ε−1

∫
R3

+

|ŭ|2dz

≤ Qh(u) ≤ (1 + c3ε)

∫
R3

+

|(−ih∇z + b0Fθ0)eiφ0/h ŭ|2 dz + c3(`2 + T 2)2ε−1

∫
R3

+

|ŭ|2 dz. (5.3.10)

Thus establishing (??).
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To prove (??), we use (??) and (??) and we see that for some constant c4 > 0, we have

(1 − c4(` + T ))

∫
Q0,`,T

|g(y0)|1/2|ũ|2dy ≤ ‖u‖2L2(Vx0 ) ≤ (1 + c4(` + T ))

∫
Q0,`,T

|g(y0)|1/2|ũ|2dy.

(5.3.11)

Now, (??) yields (??). Choose C = max{c3, c4}.
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Chapter 6

Proof of Theorem ??

Our goal in this chapter is to establish the asymptotics of the sum of eigenvalues of the operator
Ph stated in Theorem ??. This will be done by establishing matching lower and and upper
bounds. The variational principle for the sum of eigenvalues discussed earlier in Chapter 2 will
play a key role.

Section ?? is devoted to obtain a lower bound. We shall see that the bulk does not contribute
to the principal term and the analysis is restricted to the boundary. Locally near a point of the
boundary, the quadratic form can be approximated by a quadratic form of the half-space operator
with constant magnetic field.

Section ?? is devoted to the proof of a matching upper bound. Finally, in Section ??, we
prove Corollary ?? which provide an asymptotic formula for the number of eigenvalues of the
operator Ph.

6.1 Lower bound

6.1.1 Splitting into bulk and surface terms

Let
h1/2 � ς � 1. (6.1.1)

be a positive number to be chosen later (see (??) below) as a positive power of h. We consider
smooth real-valued functions ψ1 and ψ2 satisfying

ψ2
1(x) + ψ2

2(x) = 1 in Ω, (6.1.2)

where

ψ1(x) :=

{
1 if dist(x, ∂Ω) < ς/2
0 if dist(x, ∂Ω) > ς,

(6.1.3)

and such that there exists a constant C1 > 0 so that
2∑

k=1

|∇ψk|2 ≤ C1ς
−2. (6.1.4)

Let {fj}Nj=1 be any L2 orthonormal set in D(Ph) and Qh be the quadratic form introduced in
(??). To prove a lower bound for

∑
j(ej(h)−Λh)−, we use the variational principle in Lemma ??.

Namely, we seek a uniform lower bound (with respect to N) of
N∑
j=1

(
Qh(fj)− Λh

)
.
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The following Lemma shows that the bulk contribution is negligible compared to the expected
leading order term.

Lemma 6.1.1. Let Λ ∈ [0, b) with b from (??). The following lower bound holds true

N∑
j=1

(
Qh(fj)− Λh

)
≥

N∑
j=1

(
Qh(ψ1fj)− (Λh+ C1h

2ς−2) ‖ψ1fj‖2L2(Ω)

)
, (6.1.5)

where {fj}Nj=1 is an L2 orthonormal set in D(Ph) and ψ1 is the function from (??).

Proof. By the IMS formula, we find

Qh(fj) =

2∑
k=1

(
Qh(ψkfj)− h2 ‖|∇ψk|fj‖2L2(Ω)

)
.

Using the fact that ψ2
1 + ψ2

2 = 1 and the bound on |∇ψk| in (??), it follows that

N∑
j=1

(
Qh(fj)− Λh

)
≥

2∑
k=1

N∑
j=1

(
Qh(ψkfj)− (Λh+ C1h

2ς−2) ‖ψkfj‖2L2(Ω)

)
. (6.1.6)

Let us now examine the term corresponding to k = 2 in the right hand side of (??). Using the
inequality (??) for u := ψ2fj , we see that∫

Ω
|(−ih∇+ A)ψ2fj |2dx ≥ h(b− Ch1/4)

∫
Ω
|ψ2fj |2dx.

We write

h(b− Ch1/4)

∫
Ω
|ψ2fj |2dx = hΛ

∫
Ω
|ψ2fj |2dx+ h(b− Λ− Ch1/4)

∫
Ω
|ψ2fj |2dx.

This yields, in view of (??),

Qh(ψ2fj) ≥ (Λh+ C1h
2ς−2)

∫
Ω
|ψ2fj |2dx. (6.1.7)

This gives that the bulk term in (??) is positive, and the lemma follows.

6.1.2 Partition of unity of the boundary

Recall the cut-off function ψ1 from (??), which is supported near a neighborhood of the boundary
∂Ω. Let

O1 := supp ψ1 = {x ∈ Ω : dist(x, ∂Ω) ≤ ς}, (6.1.8)

where ς is, as introduced in (??).
Given a point x of the boundary, we let Φ−1

x be the coordinate transformation valid near a
small neighbourhood of x (these coordinates are introduced in Section ??). To each x ∈ ∂Ω,
there exists δx > 0 such that

Φ−1
x : Ω̃δx → Ox,

where,
Ω̃δx := (−δx, δx)2 × (0, δx), Ox = Φ−1

x (Ω̃δx).
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Next, we consider the subset Ωδx of Ω̃δx to be

Ωδx :=

(
−δx

2
,
δx
2

)2

× (0, δx),

and a covering of O1 by open sets {Ox}x∈∂Ω. Using the compactness of the boundary, it follows
that there exist an integer K and an index set J = {1, · · · ,K}, such that the sets {Oxl}l∈J
form a finite covering of O1. For ease of notation, we write δl (respectively Ol,Φl) instead of δxl
(respectively Oxl ,Φxl). We emphasize here that the δl’s are fixed and independent of h. Thus,
by choosing ς = ς(h) sufficiently small (see (??) below), we may assume that

ς � δ0 := min
l∈J

δl. (6.1.9)

Next, we choose {χl}l∈J to be non-negative, smooth, compactly supported functions such that∑
l∈J

χ2
l (x) ≡ 1 in O1, supp χl ⊂ Ol, (6.1.10)

and such that there exists a constant C2 > 0 (independent of h) so that∑
l∈J
|∇χl(x)|2 ≤ C2, (6.1.11)

for all x ∈ Ω.
Consider the lattice {Fmς }m∈Z2 of R2 generated by the square:

Fς =
(
− ς

2
,
ς

2

)2
.

If m ∈ Z2, denote by (rm, sm) = ςm ∈ R2 the center of the square Fmς so that we can write

Fmς =
(
− ς

2
+ rm,

ς

2
+ rm

)
×
(
− ς

2
+ sm,

ς

2
+ sm

)
.

We let Il = {m ∈ Z2 : Fmς ∩ (− δl
2 ,

δl
2 )2 6= ∅}. If m ∈ Il and η > 0, we will write

Fm,lη =
(
−η

2
+ rm,

η

2
+ rm

)
×
(
−η

2
+ sm,

η

2
+ sm

)
, Qm,lη := Fm,lη × (0, ς). (6.1.12)

Let a � 1 to be chosen later as a positive power of h (see (??) below). We introduce a new
partition of unity of the square (− δl

2 ,
δl
2 )2 by smooth functions {ϕ̃m,l}m∈Il with the following

properties∑
m∈Il

ϕ̃2
m,l ≡ 1 in

(
− δl

2
,
δl
2

)2
, supp ϕ̃m,l ⊂ Fm,l(1+a)ς , ϕ̃m,l = 1 in Fm,l(1−a)ς , (6.1.13)

and such that there exists a constant C3 > 0 so that∑
m∈Il

|∇ϕ̃m,l|2 ≤ C3(aς)−2. (6.1.14)
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Construction of the partition of unity. Let a > 0. We consider a non-negative function χa ∈
C∞0 (R2) satisfying the following properties

0 ≤ χa ≤ 1, supp χa ⊂
(
− 1

2
− a, 1

2
+ a
)2

χa ≡ 1 in
(
− 1

2
+ a,

1

2
− a
)2
, |∇χa| ≤ C.

We can construct ϕ̃m,l in the following way. For each m ∈ Il, we consider the function

γm(r, s, t) = χa

((r − rm, s− sm)

ς

)
. We then set

ϕ̃m,l :=
γm√∑
k∈Il γ

2
k

.

It is easy to check that the functions ϕ̃m,l satisfy the properties in (??).

We set
ϕm,l(x) = ϕ̃m,l(Φl(x)).

Let ym,l be an arbitrary point of Qm,l(1+a)ς . As we did in Section ??, we may assume, after
performing a diagonalization, that gl(ym,l) (gl is a short notation for gxl) is a diagonal matrix
given by

gl(ym,l) =

λm,l,1 0
0 λm,l,2 0
0 0 1

 . (6.1.15)

For y = (y1, y2, y3) ∈ R3
+, we denote y⊥ = (y1, y2) ∈ R2. Applying (??) with y0 := ym,l =

(y⊥m,l, 0) ∈ Fm,l(1+a)ς × {0}, we immediately see that

∣∣|gl|1/2(y)− λ1/2
m,l,1λ

1/2
m,l,2

∣∣ ≤ cςλ1/2
m,l,1λ

1/2
m,l,2. (6.1.16)

Similarly, we can show that for some constant c′ > 0∣∣|gl|−1/2(y)− λ−1/2
m,l,1λ

−1/2
m,l,2

∣∣ ≤ c′ςλ−1/2
m,l,1λ

−1/2
m,l,2. (6.1.17)

We also note that we can approximate the function χ̃2
l within the domain Qm,l(1+a)ς by χ̃

2
l (ym,l).

Indeed, by Taylor expansion, we obtain that for some positive constant c5 > 0∣∣χ̃2
l (y)− χ̃2

l (ym,l)
∣∣ ≤ c5ς. (6.1.18)

Put z = (z1, z2, z3) = (λ
1/2
m,l,1y1, λ

1/2
m,l,2y2, y3) and denote by

Q̃m,l(1+a)ς :=
(
−
ςm,l,1

2
,
ςm,l,1

2

)
×
(
−
ςm,l,2

2
,
ςm,l,2

2

)
× (0, ς), ςm,l,k =

λ
1/2
m,l,k(1 + a)ς

2
, k = 1, 2.

(6.1.19)
In the following lemma, we apply localization formulas to restrict the analysis into small boxes
where we can approximate the quadratic form using Lemma ??.

Lemma 6.1.2. Let Λ ∈ [0, b) with b from (??), Fθ the magnetic potential given in (??) and
ym,l ∈ Fm,l(1+a)ς × {0}. There exist a function φm,l := φym,l ∈ C∞(Q̃m,l(1+a)ς) and a constant C̃ > 0
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such that for all ε ∈ (0, 1] satisfying ε� ς one has

N∑
j=1

(
Qh(ψ1fj)− Λh

)
≥ (1− C̃ε)

N∑
j=1

∑
l∈J

∑
m∈Il

{∫
Q̃m,l

(1+a)ς

|(−ih∇z + bm,lFθm,l) e
iφm,l/hϕ̆m,lψ̆1χ̆lf̆j |2dz

− Λ1(h, a, ς, ε)

∫
Q̃m,l

(1+a)ς

|ϕ̆m,lψ̆1χ̆lf̆j |2 dz
}
, (6.1.20)

where

Λ1(h, a, ς, ε) =
(Λh+ C̃h2(aς)−2)(1 + C̃ς) + C̃ς4ε−1

1− C̃ε
, (6.1.21)

bm,l = |B̃(ym,l)|, θm,l = θ̃(ym,l) and to a function v(x), we associate the function v̆(z) by means
of (??).

Proof. According to Lemma ??, the lemma follows if we can prove a lower bound on the right-
hand side of (??). We start by estimating Qh(ψ1fj). Using the IMS decomposition formula, it
follows that

Qh(ψ1fj) =
∑
l∈J

(
Qh(χlψ1fj)− h2 ‖|∇χl|ψ1fj‖2L2(Ω)

)
. (6.1.22)

Using (??), and implementing (??), we get

Qh(ψ1fj)− (Λh+ C1h
2ς−2) ‖ψ1fj‖2L2(Ω)

≥
∑
l∈J

(
Qh(ψ1χlfj)−

(
Λh+ (C1 + C2)h2ς−2

)
‖ψ1χlfj‖2L2(Ω)

)
, (6.1.23)

where we used that ς−2 � 1.
Applying the IMS formula once again, we find, using that a� 1,

Qh(ψ1χlfj) =
∑
m∈Il

{
Qh(ϕm,lψ1χlfj)− h2 ‖|∇ϕm,l|ψ1χlfj‖2L2(Ω)

}
≥
∑
m∈Il

{
Qh(ϕm,lψ1χlfj)− (C1 + C2 + C ′3)h2(aς)−2 ‖ϕm,lψ1χlfj‖2L2(Ω)

}
. (6.1.24)

The last inequality follows from (??) and C ′3 := C3 supl∈J ‖DΦl‖2. Inserting this into (??), it
follows that

Qh(ψ1fj)− (Λh+ C1h
2ς−2) ‖ψ1fj‖2L2(Ω)

≥
∑
l∈J

∑
m∈Il

(
Qh(ϕm,lψ1χlfj)−

(
Λh+ (C1 + C2 + C ′3)h2(aς)−2

)
‖ϕm,lψ1χlfj‖2L2(Ω)

)
, (6.1.25)

Applying Lemma ?? with y0 replaced by ym,l, u = ϕm,lψ1χlfj , ` = (1 + a)ς, T = ς, we then
deduce that there exists a function φm,l := φym,l ∈ C∞(Q̃m,l(1+a)ς) such that, for all ε ∈ (0, 1]
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satisfying ε� ς, one has

Qh(ψ1fj)− (Λh+ C1h
2ς−2) ‖ψ1fj‖2L2(Ω)

≥ (1− Cε)
∑
l∈J

∑
m∈Il

∫
Q̃m,l

(1+a)ς

|(−ih∇z + bm,lFθm,l) e
iφm,l/hϕ̆m,lψ̆1χ̆lf̆j |2dz

−
(
(Λh+ (C1 + C2 + C ′3)h2(aς)−2)(1 + 3Cς) + 25Cς4ε−1

)∑
l∈J

∑
m∈Il

∫
Q̃m,l

(1+a)ς

|ϕ̆m,lψ̆1χ̆lf̆j |2 dz,

(6.1.26)

where C is the constant from Lemma ??. Put C̃ = max
{
C1 + C2 + C ′3, 25C

}
. Inserting (??)

into (??) yields the desired estimate of the lemma.

6.1.3 Leading order term

For h, b > 0 and θ ∈ [0, π/2], we recall the operator PNθ,h,b from (??). Let us rewrite (??) as

N∑
j=1

(Qh(fj)− Λh) ≥ I1 + I2, (6.1.27)

where

I1 = (1− C̃ε)×
N∑
j=1

∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

〈
eiφm,l/hϕ̆m,lχ̆lψ̆1f̆j ,

(
PNθm,l,h,bm,l − Λ1(h, a, ς, ε)

)
eiφm,l/hϕ̆m,lχ̆lψ̆1f̆j

〉
, (6.1.28)

and

I2 = (1− C̃ε)×
N∑
j=1

∑
l∈J

∑
m∈Il
θm,l=0

〈
eiφm,l/hϕ̆m,lχ̆lψ̆1f̆j ,

(
PNθm,l,h,bm,l − Λ1(h, a, ς, ε)

)
eiφm,l/hϕ̆m,lχ̆lψ̆1f̆j

〉
. (6.1.29)

Below in (??), the parameters a, ς and ε are chosen so that, when h is sufficiently small, one has

h−1Λ1(h, a, ς, ε) < b, (6.1.30)

where b is defined in (??).
We begin by estimating I1. Using Lemma ??, we see that

I1 ≥ −h(1− C̃ε)
∑
l∈J

∑
m∈Il

θm,l∈[0,π/2)

bm,l
∑
k

(
ζk(θm,l)− h−1b−1

m,lΛ1(h, a, ς, ε)
)
−×

N∑
j=1

〈
eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j ,Πθm,l,k(h, bm,l)e

iφm,l/hψ̆1χ̆lϕ̆m,lf̆j

〉
L2(Q̃m,l

(1+a)ς
)
. (6.1.31)
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Here, for θ ∈ (0, π/2] and b > 0, {ζk(θ)}k are the eigenvalues from (??) and Πθ,k(h, b) is the
projector defined in (??). Using (??) and that dz = λ

1/2
m,l,1λ

1/2
m,l,2dy, we obtain that for some

constant C4 > 0

N∑
j=1

〈
eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j ,Πθm,l,k(h, bm,l)e

iφm,l/hψ̆1χ̆lϕ̆m,lf̆j

〉
L2(Q̃m,l

(1+a)ς
)

≤ (1 + C4ς)
N∑
j=1

〈fj , H(m, l, k, h, bm,l, θm,l)fj〉L2(Ω). (6.1.32)

Here H(m, l, k, h, bm,l, θm,l) is the positive operator given by,

H(m, l, k, h, bm,l, θm,l) := ψ1χlϕm,lUΦlVz→ye
iφm,lΠθm,l,k(h, bm,l)e

iφm,lV −1
z→yU

−1
Φl
ψ1χlϕm,l,

where, for a function v, Vz→y is defined by

(Vz→yv)(y) = v(λ
1/2
m,l,1y1, λ

1/2
m,l,2y2, y3), (6.1.33)

and, for a function u, the transformation UΦl is given by

(UΦlu)(x) = u(Φl(x)). (6.1.34)

Since {fj}Nj=1 is an orthonormal family in L2(Ω), we deduce that

N∑
j=1

〈fj , H(m, l, k, h, bm,l, θm,l)fj〉L2(Ω) ≤ Tr(H(m, l, k, h, bm,l, θm,l)). (6.1.35)

Combining (??), (??) and (??), and using that ε� ς (see (??) below), we obtain that for some
constant C5 > 0

I1 ≥ −(1− C5ε)h
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

bm,l
∑
k

(
ζk(θm,l)− h−1b−1

m,lΛ1(h, a, ς, ε)
)
−×

Tr(H(m, l, k, h, bm,l, θm,l)). (6.1.36)

It is straightforward to show that

Tr(H(m, l, k, h, bm,l, θm,l))

= b
3/2
m,lh

−3/2

∫
R

∫
R3

+

|gl(y)|1/2ψ̃2
1(y)χ̃2

l (y)ϕ̃2
m,l(y1, y2, 0)|Vz→y

(
vθm,l,k(h

−1/2b
1/2
m,lz; ξ)

)
|2dydξ,

(6.1.37)

where, for θ ∈ [0, π/2], vθ,k(·, ξ) is the function defined in (??). Using (??) and (??), and that
|ψ1(x)| ≤ 1 for all x ∈ Ω, it follows that

Tr(H(m, l, k, h, bm,l, θm,l)) ≤ (2π)−1(1 + cς)(χ̃2
l (ym,l) + c5ς)λ

1/2
m,l,1λ

1/2
m,l,2h

−3/2b
3/2
m,l×∫

R

∫
R3

+

ϕ̃2
m,l(y1, y2, 0)|uθm,l,k(h

−1/2b
1/2
m,lλ

1/2
m,l,2y2 −

ξ

sin(θm,l)
, h−1/2b

1/2
m,ly3)|2dydξ, (6.1.38)
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where, for θ ∈ [0, π/2], the functions {uθ,k}k are introduced in (??). Performing the translation
ν = h−1/2b

1/2
m,lλ

1/2
m,l,2y2 − ξ

sin(θm,l)
and using that the function uθm,l,k is normalized, we find∫

R

∫
R3

+

ϕ̃2
m,l(y1, y2, 0)|uθm,l,k(h

−1/2b
1/2
m,lλ

1/2
m,l,2y2 −

ξ

sin(θm,l)
, h−1/2b

1/2
m,ly3)|2dydξ

= sin(θm,l)

∫
R2

ϕ̃2
m,l(y1, y2, 0)dy1dy2

∫
R2

+

|uθm,l,k(ν, h
−1/2b

1/2
m,ly3)|2dy3dν

= h−1/2b
1/2
m,lsin(θm,l)

∫
R2

|ϕ̃m,l|2dy1dy2.

(6.1.39)

Inserting this into (??), we deduce that

Tr(H(m, l, k, h, bm,l, θm,l))

≤ (2π)−1h−1bm,lλ
1/2
m,l,1λ

1/2
m,l,2(χ2

l (ym,l) + c5ς)(1 + cς) sin(θm,l)

∫
R2

|ϕ̃m,l|2dy1dy2. (6.1.40)

Using that the function ϕ̃m,l is less than one and supported in the square Fm,l(1+a)ς (the set defined
in (??)), we see that

Tr(H(m, l, k, h, bm,l, θm,l))

≤ (2π)−1h−1bm,lλ
1/2
m,l,1λ

1/2
m,l,2

(
χ2
l (ym,l) + c5ς

)
(1 + cς) sin(θm,l)(1 + a)2ς2. (6.1.41)

Substituting (??) into (??), we obtain that for some positive constant C6 > 0

I1 ≥ −(1− C6ε)(1 + a)2
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
k

(
ζk(θm,l)− h−1b−1

m,lΛ1(h, a, ς, ε)
)
−×

b2m,lλ
1/2
m,l,1λ

1/2
m,l,2(χ2

l (ym,l) + c5ς)ς
2. (6.1.42)

Recalling (??), this reads

I1 ≥ −(1− C6ε)(1 + a)2×∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

E
(
θm,l, h

−1b−1
m,lΛ1(h, a, ς, ε)

)
b2m,lλ

1/2
m,l,1λ

1/2
m,l,2

(
χ2
l (ym,l) + c5ς

)
ς2. (6.1.43)

We now proceed in a similar manner to get a lower bound of I2. By virtue of Lemma ??, it
follows that

I2 ≥ −h(2π)−1(1− C̃ε)
∑
l∈J

∑
m∈Il
θm,l=0

bm,l

∫
R2

∑
k

(
µk(ξ) + τ2 − h−1b−1

m,lΛ1(h, a, ς, ε)
)
−×

N∑
j=1

〈
eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j ,Πk(h, bm,l; ξ, τ)eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j

〉
L2(Q̃m,l

(1+a)ς
)
dξdτ, (6.1.44)
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where, for (ξ, τ) ∈ R2 and b > 0, {µk(ξ)}k are the eigenvalues from (??) and Π1(ξ, τ ;h, b) is the
projector defined in (??). Using Lemma ??, it follows that

I2 ≥ −h(2π)−1(1− C̃ε)
∑
l∈J

∑
m∈Il
θm,l=0

bm,l

∫
R2

(
µ1(ξ) + τ2 − h−1b−1

m,lΛ1(h, a, ς, ε)
)
−×

N∑
j=1

〈
eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j ,Π1(h, bm,l; ξ, τ)eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j

〉
L2(Q̃m,l

(1+a)ς
)
dξdτ. (6.1.45)

Using (??) and that dz = λ
1/2
m,l,1λ

1/2
m,l,2dy, we obtain

N∑
j=1

〈
eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j ,Π1(h, bm,l; ξ, τ)eiφm,l/hψ̆1χ̆lϕ̆m,lf̆j

〉
L2(Q̃m,l

(1+a)ς
)

≤ (1 + C4ς)
N∑
j=1

〈fj , H ′(m, l, k, h, bm,l; ξ, τ)fj〉L2(Ω). (6.1.46)

Here H ′(m, l, k, h, bm,l; ξ, τ) is the positive operator given by,

H ′(m, l, h, bm,l; ξ, τ) := ψ1χlϕm,lUΦlVz→ye
−iφm,lΠ1(ξ, τ ;h, bm,l)e

iφm,lV −1
z→yU

−1
Φl
ψ1χlϕm,l

where UΦl and Vz→y are the same as defined in (??) and (??) respectively. Since {fj}Nj=1 is an
orthonormal family in L2(Ω), we deduce that

N∑
j=1

〈fj , H ′(m, l, k, h, bm,l; ξ, τ)fj〉L2(Ω) ≤ Tr
(
H ′(m, l, k, h, bm,l; ξ, τ)

)
. (6.1.47)

Inserting (??) and (??) into (??) yields

I2 ≥ −h(1− C5ε)(2π)−1
∑
l∈J

∑
m∈Il
θm,l=0

bm,l×

∫
R2

(
µ1(ξ) + τ2 − h−1b−1

m,lΛ1(h, a, ς, ε)
)
−Tr(H ′(m, l, h, bm,l; ξ, τ))dξdτ. (6.1.48)

It is easy to see that

Tr(H ′(m, l, h, bm,l; ξ, τ))

= b
3/2
m,lh

−3/2

∫
R3

+

|gl(y)|1/2ψ̃2
1(y)χ̃2

l (y)ϕ̃2
m,l(y1, y2, 0)|Vz→y(v1(h−1/2b

1/2
m,lz; ξ, τ))|2dy, (6.1.49)

where the function v1 is defined in (??). Using (??), (??), and that |ψ1(x)| ≤ 1 for all x ∈ Ω, it
follows that

Tr(H ′(m, l, h, bm,l; ξ, τ)) ≤ (2π)−1(1 + cς)(χ̃2(ym,l) + c5ς)λ
1/2
m,l,1λ

1/2
m,l,2h

−3/2b
3/2
m,l×∫

R3
+

ϕ̃2
m,l(y1, y2, 0)|u1(h−1/2b

1/2
m,ly3, ξ)|2dy, (6.1.50)
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Using that the function u1(·; ξ) (from (??)) is normalized in L2(R+), we get

Tr(H ′(m, l, h, bm,l; ξ, τ)) ≤ (2π)−1h−1bm,lλ
1/2
m,l,1λ

1/2
m,l,2(χ2

l (ym,l) + c5ς)(1 + cς)(1 + a)2ς2. (6.1.51)

Inserting (??) in (??) yields

I2 ≥ −h(1− C6ε)(4π
2)−1

∑
l∈J

∑
m∈Il
θm,l=0

b2m,lλ
1/2
m,l,1λ

1/2
m,l,2(χ̃2

l (ym,l) + Cς)(1 + a)2ς2×

∫
R2

(
µ1(ξ) + τ2 − h−1b−1

m,lΛ1(h, a, ς, ε)
)
−
dξdτ. (6.1.52)

Using (??), it follows that

I2 ≥ −(1 − C6ε)(1 + a)2
∑
l∈J

∑
m∈Il
θm,l=0

E
(

0,Λ1(h, a, ς, ε)
)
b2m,lλ

1/2
m,l,1λ

1/2
m,l,2

(
χ2
l (ym,l) + c5ς

)
ς2.

(6.1.53)

Inserting (??) and (??) into (??), we obtain

N∑
j=1

(
Qh(fj)− Λh

)
≥ −(1− C6ε)(1 + a)2×

∑
l∈J

∑
m∈Il

b2m,lλ
1/2
m,l,1λ

1/2
m,l,2

(
χ2
l (ym,l) + c5ς

)
E
(
θm,l, h

−1b−1
m,lΛ1(h, a, ς, ε)

)
ς2. (6.1.54)

Using the fact that for all λ0 ∈ (0, 1) the function (0, λ0] × [0, π/2] 7→ E(θ, λ) is bounded by
Lemma ??, we see that the term

Cς(1 + a)2
∑
l∈J

∑
m∈Il

b2m,lλ
1/2
m,l,1λ

1/2
m,l,2E

(
θm,l, h

−1b−1
m,lΛ1(h, a, ς, ε)

)
ς2

is bounded by Cς
∑

l∈J
∑

m∈Il λ
1/2
m,l,1λ

1/2
m,l,2ς

2 ∼ Cς|∂Ω|. This leads to

N∑
j=1

(
Qh(fj)− Λh

)
≥ −(1− C6ε)(1 + a)2×

∑
l∈J

∑
m∈Il

λ
1/2
m,l,1λ

1/2
m,l,2χ̃

2
l (ym,l)b

2
m,lE

(
θm,l, h

−1b−1
m,lΛ1(h, a, ς, ε)

)
ς2 +O(ς). (6.1.55)

By (??), we have λ1/2
m,l,1λ

1/2
m,l,2 = |gl(ym,l)|1/2. Recall that bm,l = |B̃(ym,l)| and θm,l = θ̃(ym,l). For

y = (y⊥, 0) ∈ Fm,lς × {0}, we define the function

G(y) := |gl(y)|1/2χ̃2
l (y)|B̃(y)|2E

(
θ̃(y), h−1|B̃(y)|−1Λ1(h, a, ς, ε)

)
. (6.1.56)

We pick ym,l ∈ Fm,lς × {0} so that

min
y∈Fm,lς ×{0}

G(y) = G(ym,l).
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Then the right-hand side of (??) is a lower Riemann sum. Hence, we find∑
m∈Il

|gl(ym,l)|1/2χ̃2
l (ym,l)b

2
m,lE

(
θm,l, h

−1bm,lΛ1(h, a, ς, ε, η)
)
ς2 =

∑
m∈Il

G(ym,l)ς
2 ≤∫

(−δl,δl)2

G(y1, y2, 0)dy1dy2 =

∫
∂Ω
χ2
l (x)|B(x)|2E

(
θ(x), h−1|B(x)|−1Λ1(h, a, ς, ε)

)
dσ(x).

(6.1.57)

Plugging this into (??), and using that
∑

l∈J χ
2
l (x) = 1, we obtain

N∑
j=1

(
Qh(fj)− Λh

)
≥ −(1− C6ε)(1 + a)2

∫
∂Ω
|B(x)|2E

(
θ(x), h−1|B(x)|−1Λ1(h, a, ς, ε)

)
dσ(x) +O(ς). (6.1.58)

We make the following choice of ε, a and ς,

ε = h1/4, a = h1/16 ς = h3/8. (6.1.59)

This choice yields that for some constant C7 > 0, one has

h−1Λ1(h, a, ς, ε, η) ∼ Λ + C7h
1/8

1− C̃h1/4
as h→ 0.

The function [0, 1)× [0, π/2] 7→ E(θ, λ) is Lipschitz according to Lemma ??. This gives∣∣∣E(θ(x), h−1Λ1(h, a, ς, ε)|B(x)|−1)− E(θ(x),Λ|B(x)|−1
)∣∣∣ ≤ C8h

1/8b−1, (6.1.60)

for some constant C8 > 0 and b is the same as in (??). It follows that for some constant C9 > 0,
we have

N∑
j=1

(
Qh(fj)− Λh

)
≥ −(1 + C9h

1/8)

∫
∂Ω
|B(x)|2E

(
θ(x),Λ|B(x)|−1)

)
dx+O(h1/8), (6.1.61)

uniformly with respect to N and the orthonormal family {fj}j . Finally, Lemma ?? yields the
desired lower bound.

6.2 Upper bound

Let ς > 0 be as in (??) and Fm,lς be the set defined in (??) with l ∈ J and m ∈ Il being
the indices corresponding to the partitions {χl}l∈J and {ϕ̃m,l}m∈Il introduced in (??) and (??)
respectively. Let {ym,l} be a finite family of points in Fm,lς ×{0} to be specified later at the end
of this section. To each point ym,l we associate bm,l = |B̃(ym,l)| and θm,l = θ̃(ym,l) defined in
(??) and (??) respectively (with y0 replaced by ym,l). Let y ∈ Qm,l(1+a)ς (see the definition of the
set in (??)) and λm,l,1, λm,l,2 be the diagonal components of the matrix gl(ym,l) from (??). We
put z = (λ

1/2
m,l,1y1, λ

1/2
m,l,2y2, y3). Let (ξ, τ) ∈ R2. Recall the notation from (??) and define the

functions

f̃j,l,m(y, ξ;h) := h−3/4b
3/4
m,lvj,θm,l

(
h−1/2b

1/2
m,lz; ξ

)(
ϕ̃m,lχ̃lψ̃1

)
(y) if θm,l ∈ (0, π/2]

g̃l,m(y; ξ, τ, h) := (2π)−1/2h−3/4b
3/4
m,lv1

(
h−1/2b

1/2
m,lz; ξ, τ

)(
ϕ̃m,lχ̃lψ̃1

)
(y) if θm,l = 0.
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where vj,θ(·; ξ), v1(·; ξ, τ) and ψ̃1 are the functions in (??), (??) and (??) respectively.
Recall the coordinate transformation Φl valid near a neighborhood of the point xl (see Sub-

section ??). Let x = Φ−1
l (y). We define fj,l,m(x, ξ;h) := f̃j,l,m(y, ξ;h) and gl,m(x, ξ, τ ;h) :=

g̃l,m(y, ξ, τ ;h). With Λ ∈ [0, b), we put

Mj,m,l = 1{
(j,m,l)∈N×Il×J : ζj(θm,l)−b−1

m,lΛ≤0
}

and
M ′m,l,ξ,τ = 1{

(j,m,l,ξ,τ)∈N×Il×J×R2 : µ1(ξ)+τ2−b−1
m,lΛ≤0

}.
Note that b−1

m,lΛ ≤ b−1Λ < 1. Hence the condition µ1(ξ) + τ2 − b−1
m,lΛ ≤ 0 implies, in view of

Proposition ?? , that there exists a constant K > 0 (independent of m, l) such that

(ξ, τ) ∈ Iξ,τ := (0,K)× (−1, 1). (6.2.1)

Define, for f ∈ L2(Ω),

(γ1f)(x) =
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

Mj,m,l

∫
R

〈
f, fj,l,m(·, ξ;h)

〉
fj,l,m(x, ξ;h)dξ,

and

(γ2f)(x) =
∑
l∈J

∑
m∈Il
θm,l=0

∫
R2

M ′m,l,ξ,τ
〈
f, gl,m(·, ξ, τ ;h)

〉
gl,m(x, ξ, τ ;h)dξdτ.

We have the following lemma.

Lemma 6.2.1. Let f ∈ L2(Ω) and define the operator γ by

γf = γ1f + γ2f.

There exists a constant C10 > 0 such that the quadratic form associated to γ satisfies

0 ≤ 〈γf, f〉L2(Ω) ≤ (1 + C10ς) ‖f‖2L2(Ω) . (6.2.2)

Proof. Consider f ∈ L2(Ω). It is easy to see that 〈γf, f〉 ≥ 0. Next, using that Mj,m,l ≤ 1, we
see that 〈

f, γ1f
〉
L2(Ω)

≤
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

∫
R

∣∣∣〈f, fj,l,m(x, ξ;h)
〉
L2(Ω)

∣∣∣2dξ. (6.2.3)

By (??), we have ∣∣∣〈f, fj,l,m(x, ξ;h)
〉
L2(Ω)

∣∣∣2 =
∣∣∣ ∫

R3
+

f̃ f̃j,l,m(y, ξ;h)|gl|1/2 dy
∣∣∣2. (6.2.4)

Approximating |gl|1/2 using (??), it follows that there exists a constant C11 > 0 such that∣∣∣〈f, fj,l,m(x, ξ;h)
〉
L2(Ω)

∣∣∣2 ≤ (1 + C11ς)λm,l,1λm,l,2

∣∣∣ ∫
R3

+

f̃ χ̃lψ̃1ϕ̃m,l
(
Uh,bm,lvj,θm,l(z; ξ)

)
dy
∣∣∣2

= (1 + C11ς)
∣∣∣ ∫

R3
+

f̆ χ̆lψ̆1ϕ̆m,l(Uh,bm,lvj,θm,l(z; ξ)
)
dz
∣∣∣2.

(6.2.5)
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Here, the transformation Uh,bm,l is defined in (??) and for a function u, ŭ is associated to u using
(??) and (??).

Substituting (??) into (??), we find

〈
f, γ1f

〉
L2(Ω)

≤ (1+C11ς)
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

∣∣∣ ∫
R3

+

f̆ χ̆lψ̆1ϕ̆m,lUh,bm,lvj,θm,l(z; ξ)
)
dz
∣∣∣2dξ. (6.2.6)

In a similar fashion, one can show that〈
f, γ2f

〉
L2(Ω)

≤ (1 + C11ς)
∑
l∈J

∑
m∈Il
θm,l=0

∑
j

∫
R

∣∣∣ ∫
R3

+

f̆ χ̆lψ̆1ϕ̆m,l(2π)−1/2(Uh,bm,lvj(z; ξ, τ)
)
dz
∣∣∣2dξdτ.

Next, we recall the definition of vj,θ(·; ξ) from (??) (resp. vj from (??)) and use the fact that
{vj,θm,l}j (resp. uj(·, ξ) for all ξ ∈ R) is an orthonormal set of eigenfunctions, we thus find

〈
f, γf

〉
L2(Ω)

≤ (1 + C11ς)
∑
l∈J

∑
m∈Il

∫
R3

+

∣∣χ̆lψ̆1ϕ̆m,lf̆(z)
∣∣2dz. (6.2.7)

By the change of variables z = (λ
1/2
m,l,1y1, λ

1/2
m,l,2y2, y3) and implementing 1 = |gl(y)|1/2|gl(y)|−1/2,

we see that∫
R3

+

∣∣χ̆lψ̆1ϕ̆m,lf̆(z)
∣∣2dz = λ

1/2
m,l,1λ

1/2
m,l,2

∫
R3

+

|gl|−1/2(y)|gl|1/2(y)
∣∣χ̃lψ̃1ϕ̃m,lf̃(y)

∣∣2dy.
We approximate |gl|−1/2(y) using (??), we obtain that for some constant C12 > 0∫

R3
+

∣∣χ̆lψ̆1ϕ̆m,lf̆(z)
∣∣2dz ≤ (1 + C12ς)

∫
R3

+

|gl|1/2
∣∣χ̃lψ̃1ϕ̃m,lf̃(y)

∣∣2dy
= (1 + C12ς)

∫
Ω

∣∣χlϕm,lψ1f(x)
∣∣2dx. (6.2.8)

Here we have used (??) in the last step.
Implementing (??) into (??), and using (??) and (??), we get the claim of the lemma.

By the variational principle in Lemma ??, an upper bound of the sum of eigenvalues of Ph
below Λh follows if we can prove an upper bound on

(1 + C12ς)
−1Tr

[
(Ph − Λh)γ

]
= (1 + C12ς)

−1
(

Tr
[
(Ph − Λh)γ1

]
+ Tr

[
(Ph − Λh)γ2

])
We start by estimating

Tr
[
(Ph − Λh)γ1

]
:=
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

Mj,m,l

∫
R

(
Qh(fj,l,m(x, ξ;h))− Λh ‖fj,l,m(x, ξ;h)‖2

)
dξ.

(6.2.9)
Here we recall the quadratic form Qh defined in (??).

By (??), we have ∫
Ω
|fj,l,m(x, ξ;h)|2dx =

∫
R3

+

|gl|1/2(y)|f̃j,l,m(y, ξ;h)|2dy (6.2.10)
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Recall the transformation Vz→y introduced in (??). It follows from (??) and (??) that there
exists a constant C13 > 0 such that∫

Ω
|fj,l,m(x, ξ;h)|2dx

≥ (χ̃2
l (ym,l)− C13ς)λ

1/2
m,l,1λ

1/2
m,l,2b

3/2
m,lh

−3/2

∫
R3

+

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
ϕ̃m,lψ̃1(y)|2dy,

(6.2.11)

Let us write the last integral as∫
Qm,l

(1+a)ς

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
ϕ̃m,lψ̃1|2dy =

∫
Qm,l

(1+a)ς

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
|2dy

+

∫
Qm,l

(1+a)ς

[
− 1 + ϕ̃2

m,lψ̃
2
1

]
|Vz→y

(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
|2dy. (6.2.12)

As we shall work on the support of Mj,m,l in view of (??), we may restrict ourselves to the
indices (j,m, l) satisfying ζj(θm,l) ≤ Λb−1

m,l < Λb−1. Using Lemma ??, it follows that for all
α ∈
√

1− Λb−1, there exists a constant C14 > 0 such that∫
Qm,l

(1+a)ς

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)(
ϕ̃m,lψ̃1

)
(y)|2dz

≥ (1− e−C14αςh−1/2
)

∫
Qm,l

(1+a)ς

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
|2dy, (6.2.13)

where we have used (??) and (??).
Implementing (??) in (??), we obtain∫
Ω
|fj,l,m(x, ξ;h)|2dx

≥ (1− e−C14αςh−1/2
)(χ̃2

l (ym,l)− C13ς)λ
1/2
m,l,1λ

1/2
m,l,2b

3/2
m,lh

−3/2×∫
Qm,l

(1+a)ς

|Vz→y
(
vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

)
|2dy. (6.2.14)

As in (??), we find∫
R

∫
Qm,l

(1+a)ς

|vj,θm,l(h
−1/2b

1/2
m,lz; ξ)|

2dydξ = (2π)−1(1 + a)2ς2 sin(θm,l). (6.2.15)

Substituting this in (??), we deduce that∫
R

∫
Ω
|fj,l,m(x, ξ;h)|2dxdξ

≥ (1− e−C14αςh−1/2
)(χ̃2

l (ym,l)− C13ς)(1 + a)2ς2λ
1/2
m,l,1λ

1/2
m,l,2h

−1bm,l(2π)−1 sin(θm,l). (6.2.16)
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Let us estimate Qh(fj,l,m). Applying Lemma ?? with u = fj,l,m, we find, for all ε� ς,

Qh(fj,l,m)

≤ (1 + Cε)

∫
Q̃m,l

(1+a)ς

∣∣(−ih∇z + bm,lFθm,l)e
iφm,l/h f̆j,l,m

∣∣2 dz + Cς4ε−1

∫
Q̃m,l

(1+a)ς

|f̆j,l,m|2 dz

≤ (1 + Cε)h−3/2b
3/2
m,l

∫
Q̃m,l

(1+a)ς

(ϕ̆m,lψ̆1χ̆l)
2
∣∣(−ih∇z + bm,lFθm,l)vj,θm,l(h

−1/2b
1/2
m,lz; ξ)

∣∣2 dz
+ h−3/2b

3/2
m,l

∫
Q̃m,l

(1+a)ς

(
|∇(ψ̆1χ̆lϕ̆m,l)|2 + Cς4ε−1ϕ̆2

m,lψ̆
2
1χ̆

2
l

)∣∣vj,θm,l(h−1/2b
1/2
m,lz; ξ)

∣∣2dz, (6.2.17)

where C is the constant from Lemma ?? and the set Q̃m,l(1+a)ς is defined in (??).
By (??), (??), (??), and approximating χ̃2

l using (??), it follows that for some constant
C15 > 0,

Qh(fj,l,m)

≤ h−3/2b
3/2
m,l(χ̃

2
l (ym,l) + C15ε)

∫
Qm,l

(1+a)ς

|(−ih∇z + bm,lFθm,l) vj,θm,l(h
−1/2b

1/2
m,lz; ξ)|

2 dz

+ C15h
−3/2b

3/2
m,l(ς

4ε−1 + h2(aς)−2)

∫
Q̃m,l

(1+a)ς

|vj,θm,l(h
−1/2b

1/2
m,lz; ξ)|

2 dz. (6.2.18)

Performing the integration over ξ ∈ R, we get∫
R
Qh(fj,l,m)dξ ≤ λ1/2

m,l,1λ
1/2
m,l,2b

2
m,l(2π)−1(1 + a)2ς2 sin(θm,l)×{

(χ̃2
l (ym,l) + C15ε)ζj(θm,l) + C15h

−1b−1
m,l(ς

4ε−1 + h2(aς)−2)
}
. (6.2.19)

This combined with (??) yields, in view of (??),

Tr
[
(Ph − Λh)γ1

]
≤
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

Mj,m,lλ
1/2
m,l,1λ

1/2
m,l,2b

2
m,lς

2(2π)−1 sin(θm,l)(1 + a)2×

{
(χ̃2
l (ym,l) + C15ε)ζj(θm,l) + C15h

−1b−1
m,l(ς

4ε−1 + h2(aς)−2)

− Λb−1
m,l(1− e

−C14αςh−1/2
)(χ̃2

l (ym,l)− C13ς)
}

= −(1 + a)2
∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

χ̃2
l (ym,l)λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,lς

2
{∑

j

(2π)−1 sin(θm,l)
(
ζj(θm,l)− Λb−1

m,l

)
−

}

+ I
(1)
rest,

where

I
(1)
rest = (1 + a)2

∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

∑
j

Mj,m,lς
2λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,l(2π)−1 sin(θm,l)×

{
C15

(
εζj(θm,l) + h−1b−1

m,l(ς
4ε−1 + h2(aς)−2

)
+ Λb−1

m,l

(
e−C14αςh−1/2

(χ̃2
l (ym,l)− C13ς) + C13ς

)}
.

(6.2.20)
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By virtue of Lemma ??, (??) reads

Tr
[
(Ph − Λh)γ1

]
≤ −(1 + a)2

∑
l∈J

∑
m∈Il

θm,l∈(0,π/2]

χ̃2
l (ym,l)λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,lς

2E(θm,l,Λb
−1
m,l) + I

(1)
rest.

(6.2.21)
It remains to estimate

Tr
[
(Ph − Λh)γ2

]
:=

∑
l∈J

∑
m∈Il
θm,l=0

M ′m,l,ξ,τ

∫
R

(
Qh(gl,m(x, ξ, τ ;h)) − Λh ‖gl,m(x, ξ, τ ;h)‖2

)
dξ.

(6.2.22)

We start by estimating ‖gl,m(x, ξ, τ ;h)‖2. It follows from (??) (??) and (??) that there exists a
constant C13 > 0 such that∫

Ω
|gl,m(x, ξ, τ ;h)|2dx

≥ (2π)−1(χ̃2
l (ym,l)− C13ς)λ

1/2
m,l,1λ

1/2
m,l,2b

3/2
m,lh

−3/2

∫
R3

+

|Vz→y
(
v1(h−1/2b

1/2
m,lz; ξ)

)
ϕ̃m,lψ̃1(y)|2dy

= (2π)−2(χ̃2
l (ym,l)− C13ς)λ

1/2
m,l,1λ

1/2
m,l,2b

3/2
m,lh

−3/2

∫
R3

+

|u1(h−1/2b
1/2
m,ly3; ξ)ϕ̃m,lψ̃1(y)|2dy, (6.2.23)

where the function u1(·, ξ) is introduced in (??). Let us write the last integral as∫
Qm,l

(1+a)ς

|u1(h−1/2b
1/2
m,ly3; ξ)ϕ̃m,lψ̃1|2dy =

∫
Qm,l

(1+a)ς

|u1(h−1/2b
1/2
m,ly3; ξ)|2dy

+

∫
Qm,l

(1+a)ς

[
− 1 + ϕ̃2

m,lψ̃
2
1

]
|u1(h−1/2b

1/2
m,ly3; ξ)|2dy. (6.2.24)

Due to the support of ψ̃1, we note that the integral on the right hand side is restricted to the
set where y3 ≥ ς/2. Recalling (??) and selecting ς as in (??), one has for h sufficiently small,

(b1/2h−1/2ς − ξ)2 ≥ (b1/2h−1/2 ς

2
− ξ)2 � 1

16
bh−1ς2 � 1. (6.2.25)

Using this and Lemma ??, we obtain for some constant C16 > 0∫
Qm,l

(1+a)ς

|u1(h−1/2b
1/2
m,ly3; ξ)

(
ϕ̃m,lψ̃1

)
(y)|2dy

≥ (1− e−C16ς2h−1
)

∫
Qm,l

(1+a)ς

|u1(h−1/2b
1/2
m,ly3; ξ)|2dy, (6.2.26)

where we have used (??) and (??).
Implementing (??) in (??), we obtain∫
Ω
|gl,m(x, ξ, τ ;h)|2dx

≥ (2π)−2(1− e−C16ς2h−1
)(χ̃2

l (ym,l)−C13ς)λ
1/2
m,l,1λ

1/2
m,l,2b

3/2
m,lh

−3/2

∫
Qm,l

(1+a)ς

∣∣u1(h−1/2b
1/2
m,ly3; ξ)

∣∣2dy.
(6.2.27)
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Using the same arguments that have led to (??), one can show that

Qh(gl,m) ≤ h−3/2b
3/2
m,l(2π)−1

(
χ̃2
l (ym,l)+C15ε

)∫
Qm,l

(1+a)ς

|(−ih∇z+bm,lFθm,l) v1(h−1/2b
1/2
m,lz; ξ)|

2 dz

+ C15h
−3/2b

3/2
m,l(2π)−1

(
ς4ε−1 + h2(aς)−2

)∫
Qm,l

(1+a)ς

|v1(h−1/2b
1/2
m,lz; ξ)|

2 dz

≤
∑
l∈J

∑
m∈Il
θm,l=0

λ
1/2
m,l,1λ

1/2
m,l,2b

2
m,l(1 + a)2ς2(2π)−2×

{
(χ̃2
l (ym,l) + C15ε)(µ1(ξ) + τ2) + C15h

−1b−1
m,l(ς

4ε−1 + h2(aς)−2)
}
. (6.2.28)

Integrating in ξ and τ and taking into account (??), it follows that (recall (??))

Tr
[
(Ph − Λh)γ2

]
≤
∑
l∈J

∑
m∈Il
θm,l=0

M1,m,l,ξ,τλ
1/2
m,l,1λ

1/2
m,l,2b

2
m,l(2π)−2ς2(1 + a)2×

∫
R2

(
(χ̃2
l (ym,l) + C15ε)(µ1(ξ) + τ2) + C15h

−1b−1
m,l(ς

4ε−1 + h2a−2ς−2)

− Λb−1
m,l(1− e

−C16ς2h−1
)(χ̃2

l (ym,l)− C13ς)
)
dξdτ

= −(1 + a)2
∑
l∈J

∑
m∈Il
θm,l=0

χ̃2
l (ym,l)λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,lς

2(2π)−2

∫
R2

(
µ1(ξ) + τ2 − Λb−1

m,l

)
−dξdτ

+ I
(2)
rest, (6.2.29)

where

I
(2)
rest =

∑
l∈J

∑
m∈Il
θm,l=0

M ′m,l,ξ,τλ
1/2
m,l,1λ

1/2
m,l,2b

2
m,l(2π)−2ς2(1 + a)2

∫
R2

(
C15ε(µ1(ξ) + τ2)

+ C15h
−1b−1

m,l(ς
4ε−1 + h2a−2ς−2)− Λb−1

m,l

(
e−C16ς2h−1

(χ̃2
l (ym,l)− C13ς) + C13ς

))
dξdτ. (6.2.30)

In view of Lemma ??, the estimate (??) reads

Tr
[
(Ph − Λh)γ2

]
≤ −(1 + a)2

∑
l∈J

∑
m∈Il
θm,l=0

χ̃2
l (ym,l)λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,lς

2(2π)−2E(0,Λb−1m,l) + I
(2)
rest. (6.2.31)

Combining (??) and (??), and recalling (??), we obtain

Tr

[
(Ph − Λh)

γ

1 + C10ς

]
≤ −(1 + C10ς)

−1
{

(1 + a)2
∑
l∈J

∑
m∈Il

χ̃2
l (ym,l)λ

1/2
m,l,1λ

1/2
m,l,2b

2
m,lE(θm,l,Λb

−1
m,l) + I

(1)
rest + I

(2)
rest

}
.

(6.2.32)

By (??), we have λ1/2
m,l,1λ

1/2
m,l,2 = |gl(ym,l)|1/2. For y = (y1, y2, 0) ∈ Fm,lς × {0}, we define the

function
v(y) := |gl(y)|1/2χ̃2

l (y)|B̃(y)|2E
(
θ̃(y), |B̃(y)|−1Λ

)
(6.2.33)
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We choose the points ym,l ∈ Fm,lς × {0} so that

max
y∈Fm,lς ×{0}

v(y) = v(ym,l).

Then the right-hand side of (??) is an upper Riemann sum. We thus get∑
m∈Il

|gl(ym,l)|1/2χ̃2
l (ym,l)b

2
m,lE

(
θm,l, b

−1
m,lΛ

)
ς2 =

∑
m∈Il

v(ym,l)ς
2 ≥∫

(−δl,δl)2

v(y1, y2, 0)dy1dy2 =

∫
∂Ω
χ2
l (x)|B(x)|2E

(
θ(x), |B(x)|−1Λ

)
dσ(x). (6.2.34)

Using the upper bound estimate in Lemma ??, together with the fact that |B| is bounded on
∂Ω and that

∑
l∈J
∑

m∈Il ς
2λ

1/2
m,l,1λ

1/2
m,l,2 ∼ |∂Ω|, we find

|I(1)
rest|+ |I

(2)
rest| = O(ε+ h−1ς4ε−1 + h(aς)−2). (6.2.35)

The choice in (??) yields
|I(1)

rest|+ |I
(2)
rest| = O(h1/8).

Inserting this and (??) into (??), and using (??), we obtain

Tr
[
(Ph − Λh)

γ

1 + C10ς

]
≤ −(1 + C10h

3/8)−1(1 + h1/8)2

∫
∂Ω
|B(x)|2E

(
θ(x),Λ|B(x)|−1

)
dσ(x) +O(h1/8).

The upper bound then follows from Lemmas ?? and ??.

6.3 Proof of Corollary ??

Let us start by computing the left and right derivatives of the function (0, 1) 3 λ → E(θ, λ),
since we shall need these quantities later in the proof. Using the formula of E(θ, λ) given in
Theorem ??, we find

∂E

∂λ+
(θ, λ) =


1

2π2

∫ ∞
0

(µ1(ξ)− λ)
1/2
− dξ if θ = 0,

sin(θ)

2π
card{j : ζj(θ) ≤ λ} if θ ∈ (0, π/2],

(6.3.1)

and

∂E

∂λ−
(θ, λ) =


1

2π2

∫ ∞
0

(µ1(ξ)− λ)
1/2
− dξ if θ = 0,

sin(θ)

2π
card{j : ζj(θ) < λ} if θ ∈ (0, π/2].

(6.3.2)

Let ε > 0. Using Corollary ?? and recall the notation from (??), we deduce that

Tr (Ph − (Λ + ε)h)− − Tr (Ph − Λh)− ≥ εhN (Λh;Ph,Ω). (6.3.3)

On the other hand, by the formula in (??), we have

Tr (Ph − (Λ + ε)h)− − Tr (Ph − Λh)−

=

∫
∂Ω
|B(x)|2

(
E(θ(x), (Λ + ε)|B(x)|−1)− E(θ(x),Λ|B(x)|−1)

)
dσ(x) + o(1), as h→ 0.
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Implementing this into (??), then taking lim suph→0+
, we see that

lim sup
h→0+

hN (Λh;Ph,Ω) ≤
∫
∂Ω
|B(x)|E(θ(x), (Λ + ε)|B(x)|−1)− E(θ(x),Λ|B(x)|−1)

ε|B(x)|−1
dσ(x).

We recall here that |B(x)| > 0 for all x ∈ ∂Ω. Taking the limit ε → 0+, we deduce using (??),
and Lebesgue’s dominated convergence Theorem, that

lim sup
h→0+

hN (Λh;Ph,Ω) ≤
∫
∂Ω
|B(x)| ∂E

∂λ+

(
θ(x),Λ|B(x)|−1

)
dσ(x). (6.3.4)

Replacing ε by −ε in (??) and following the same arguments that led to (??), we find

lim inf
h→0+

hN (Λh;Ph,Ω) ≥
∫
∂Ω
|B(x)| ∂E

∂λ−

(
θ(x),Λ|B(x)|−1

)
dσ(x). (6.3.5)

It follows by the assumption (??) that∫
∂Ω
|B(x)| ∂E

∂λ+

(
θ(x),Λ|B(x)|−1

)
dσ(x) =

∫
∂Ω
|B(x)| ∂E

∂λ−

(
θ(x),Λ|B(x)|−1

)
dσ(x). (6.3.6)

Combining (??) and (??) we obtain

lim
h→0+

hN (Λh;Ph,Ω) =

∫
∂Ω
|B(x)| ∂E

∂λ+

(
θ(x),Λ|B(x)|−1

)
dσ(x). (6.3.7)

Denote n(θ, λ) :=
∂E

∂λ+
(θ, λ). We have thus proven the statement of the corollary.

Remark 6.3.1. Notice that if Λ does not satisfy the condition in (??), the proof of Corollary ??
still gives us,∫

∂Ω
|B(x)| ∂E

∂λ−

(
θ(x),Λ|B(x)|−1

)
dσ(x) ≤ lim inf

h→0+

N (Λh,Ph,Ω)

≤ lim sup
h→0+

N (Λh,Ph,Ω) ≤
∫
∂Ω
|B(x)| ∂E

∂λ+

(
θ(x),Λ|B(x)|−1

)
dσ(x). (6.3.8)
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