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Abstract

This thesis will be a mix of di�erent problems in number theory. As such
it is split into two natural parts. The �rst part focuses on normal numbers
and construction of numbers that are normal to a given complex base. It is
written in the style of a thorough and introductory paper on that subject.
Certain classical theorems are stated without proof but with a reference in-
stead, though usually a proof is given. This part of the thesis represents the
pinnacle of the authors work during the �rst two years of his PhD study. The
work presented is greatly inspired by the work of Madritsch, Thuswaldner
and Tichy in [Madritsch et al., 2008] and [Madritsch, 2008] and contains a
generalisation of the main theorem in [Madritsch, 2008].

The second part of the thesis focuses on Diophantine approximation, mainly
on a famous conjecture by Schmidt from the 1980s. This conjecture was solved
by Badziahin, Pollington and Velani, and inspired by this An gave a di�er-
ent proof which provides a stronger result. The conjecture is concerned with
intersections of certain sets in the plane and are as such a �real problem�.
We will consider a slightly di�erent setup where the real plane is replaced by
the complex plane. Using geometrical interpretations we construct sets with
properties similar to the sets considered in the real case. We then formulate
a conjecture which can be interpreted as a complex version of Schmidt's orig-
inal conjecture. Finally we construct a variant of Schmidt's game, to show
a partial result leading us to believe that the complex version of Schmidt's
conjecture might some day be answered in the a�rmative, just as the real one
has.

Resumé

Denne afhandling indeholder forskellige matematiske problemer indenfor
feltet talteori. Det er af æstetiske årsager opdelt i to dele. Den første del
koncentrerer sig udelukkende om normale tal og konstruktioner af tal som
er normale til en given kompleks base. Afhandlingen er skrevet i samme stil
som en grundlæggende artikel indenfor feltet ville være. Enkelte klassiske læ-
resætninger bliver dog fremhævet uden bevis men med henvisninger til hvor
i litteraturen et sådant kan �ndes, det er dog undtagelsen snarere end reglen.
Første del af afhandlingen er essentielt det ypperste stykke arbejde forfatteren
�k præsteret i løbet af de første to år af hans Ph.D.-forløb. Meget af det der
præsenteres i denne del er inspireret af det store arbejde Madritsch, Thuswald-
ner og Tichy har lagt i artiklerne [Madritsch et al., 2008] og [Madritsch, 2008]
og indeholder en generalisering af hovedsætningen i [Madritsch, 2008].

Den anden del af afhandlingen fokuserer på diofantisk approksimation,
mere speci�kt på en kendt formodning fremsat af Schmidt omkring 1980. For-
modningen blev eftervist af Badziahin, Pollington og Velani, og inspireret af
dette gav An et nyt bevis for selv samme formodning der viser et stærkere
resultat. Formodningen omtaler fællesmængder af nogle specielle mængder i
planen og er derfor et �reelt problem�. Vi vil betragte en lidt anderledes op-
sætning, hvor den reelle plan bliver udskiftet med den komplekse plan. Ved
brug af geometriske fortolkninger konstruerer vi mængder med sammenligneli-
ge egenskaber og fremsætter en formodning, der kan fortolkes som en kompleks
udgave af Schmidts oprindelige formodning. Til sidst laver vi en variant af Sch-
midts spil til at vise et mindre resultat der leder os til at tro at det en dag
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vil lykkedes at eftervise at den komplekse udgave af Schmidts formodning er
sand, ganske som det er lykkedes at gøre med den reelle.



CHAPTER 1

A C K N OW L E D G E M E N T S A N D

I N T RO D U C T I O N

The author would like to thank numerous people, especially his fellow students
for everyday inspiration, encouragement and providing other motivating factors,
without which this thesis would not have seen the light of day. The author would
also like to thank his project advisor Simon Kristensen for several helpful comments
and suggestions and other types of advice. All images displayed can be found on
wikipedia and are licensed under the Creative Commons Attribution-Share Alike
3.0 Unported license, apart from a single �gure in chapter 12, which is made by the
author with tikz.

Furthermore the author would like to give a special thanks to Sanju Velani and
the number theory group at the university of York for a wonderful, yet short visit
in the winter of 2012. The visit was an inspiration to the author and the many
valuable discussions encouraged the author to consider the problem which is in the
second part of this thesis.

The author will from this point on use the word �we� instead of I. This is done
for the sole purpose of making the reader feel part of the process that is doing
mathematics. In certain key spots the author might use �the author� to underline
that this is a witty thought of the author or a remark based solely on the authors
opinion. Furthermore the author will try to the utmost of his ability to avoid
following the advice given in Sand-Jensen [2007] but might fail miserably.

Before moving on to the task at hand we list a brief introduction to each of the
remaining chapters.

Chapters 2 and 3 are quite self explanatory. They list various de�nitions re-
garding canonical number systems and provides a basic understanding of number
representations which at the end of chapter 3 allows us to state the main theorem.
Chapter 4 is also self explanatory, it provides a bunch of Lemmata, most of which
are classical, such as the Erd®s�Turán�Koksma inequality, and most of which plays
important roles later on. In chapter 5 we shift the fundamental domain by a con-
stant, essentially requiring that we only consider numbers which start with a speci�c
string of digits. Afterward we construct a Urysohn function for this shifted domain
and �nally we calculate the Fourier coe�cients of the Urysohn function. In chapter
6 we consider Weyl sums and give estimates of various exponential sums in order to
arrive at the key proposition. In chapter 7 we make use of all the corollaries derived
in chapter 6 and use these to give the needed estimates to prove the main theorem
of part one.

In the second part chapter 8 gives an introduction to Diophantine approximation
by providing a few essential theorems. Chapter 9 gives an introduction to Hausdor�
measure and dimension, tools often used in Diophantine approximation to describe
the size of a given set. In chapter 10 we consider Schmidt games and various variants
of these, while giving a short survey on why Schmidt invented them and what he used
them for. Chapter 11 contains as the title indicates a survey of various conjectures
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2 1. Acknowledgements and Introduction

in Diophantine approximation, among others Schmidt's conjecture. Chapter 12 is
dedicated entirely to Schmidt's conjecture and a complex analogue of this. Finally in
Chapter 13 we show a partial result leading us to believe that the complex analogue
of Schmidt's conjecture might be true.



Part I

Generating normal numbers over

quadratic imaginary rings
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CHAPTER 2

B A S I C D E F I N I T I O N S A N D C O N C E P T S

Throughout this thesis we let N = {1, 2, 3, . . . },Q,R,C denote the natural num-
bers, the rational numbers, the real numbers and the complex numbers respectively.
Unless otherwise mentioned, every rational p/q will be assumed to be expressed in
lowest terms. As it is standard within this subject, we will use the shorthand no-
tation e(x) = exp(2πix). We shall also make use of both Vinogradov notation and
Landau notation; the latter is also known as big-O notation. Letting f, g : X → R
be two real-valued functions de�ned on the same set, X, we say that f = O(g) if
f(x) ≤ Cg(x) holds for all x ∈ X and for some constant, C. We will sometimes
also write this in the Vinogradov notation, i.e., f � g if and only if f = O(g). In
some situations the author �nds that one type of notation is superior to the other
and vice versa, thus we will use both of them. Later on we shall introduce the ring
of integers associated to a quadratic imaginary �eld with discriminant d and it is
customary to denote these rings with the symbols Od, so in order to avoid confusion
the author stresses the reader to note that O without any index always means big-O
notation, while Od where there is an index always denotes a ring of integers.

In the �rst part of this thesis we will be constructing normal numbers over the
quadratic imaginary �elds for which the associated ring of integers is a Euclidean
domain. In the case of the real numbers and number systems over the reals, normal
numbers have been studied thoroughly.

If b ≥ 2 is an integer, it is well-known that every real number x can be expressed
in the following way:

x =
k∑

j=−∞

djb
j.

Where dj are integers from the set D = {0, 1, . . . , b− 1}. We call dj a digit and D
the set of digits and b the base. We say that x is simply normal to base b if every
possible digit occurs at the same frequency. i.e. every digit d ∈ D occurs with
probability 1/b. We say that x is normal to base b if x is simply normal to all the
bases b, b2, b3, . . . . Equivalently, this can be understood as every �nite block of n
consecutive digits occurs with probability 1/bn. Finally we say that x is normal if
it is normal to base b for every b ≥ 2.

One of the more interesting results is that almost every real number is normal
with respect to the Lebesgue measure, a result dating back to Borel in 1909. How-
ever, given a real number it is a very di�cult question to determine whether that
given number is normal or not. In fact it is not even known if π, e or log 2 is normal.
Even worse, so far (at least to the authors knowledge) no one has been able to
construct a number that is normal to two di�erent (multiplicatively independent)
bases at the same time.

There are however some methods to construct numbers that are normal to a
given base. One of the �rst results is due to Champernowne who was able to show

5



6 2. Basic de�nitions and concepts

that

0.1234567891011 . . .

is normal to base 10. This number is therefore known as Champernowne's number.
Many people have successfully extended this result. Davenport and Erd®s extended
the idea of Champernowne to the integer part of polynomials over the natural num-
bers in [Davenport and Erd®s, 1952]. Schi�er [Schi�er, 1986] extended it further
allowing his polynomials to have rational coe�cients, Nakai and Shiokawa [Nakai
and Shiokawa, 1992] allowed real coe�cients and �nally Madritsch, Thuswaldner
and Tichy managed to prove that

0.bf(1)cbf(2)cbf(3)c . . .

is normal if f is an entire function of bounded logarithmic order and bxc denotes
the expansion of the integer part of x with respect to a given base.

Madritsch later generalised this construction of normal numbers in a di�erent
direction. Namely to number systems for Gaussian integers, with the restriction
that the function f is now a polynomial. Our aim in the �rst part of this thesis is
to further generalise the result of Madritsch to number systems for other quadratic
imaginary rings which are Euclidean domains.



CHAPTER 3

D E F I N I T I O N S A N D B A S I C

P R O P E RT I E S O F N U M B E R S Y S T E M S

The Stark�Heegner Theorem states that the rings of integers in the quadratic imagi-
nary �elds of the formQ(

√
d) have unique factorisation if and only if d is one of the so

called Heegner numbers, namely d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163 }.
Not all of these are Euclidean domains however. In fact only 5 of them are, namely
when d ∈ {−1,−2,−3,−7,−11}. Since most of the results below are true for all
9 Heegner numbers we prove the most general case when it is possible. Another
reason for this is the fact that some of the results will be used in the second part of
this thesis, where the property of being a Euclidean domain is not essential as long
as we have unique factorization.

The ring of integers form a lattice in the plane very similar to the one shown
below. We shall later make use of this to shift the lattice into the standard lattice
Z2.

Figure 3.1: A typical lattice formed by the vectors ω1 and ω2, embedded in R2.

For each d we let Od denote the ring of integers in Q(
√
d). Note that the Heegner

numbers are square-free and when d is a Heegner number, Od has an integral basis
consisting of (1, c) where c = 1+

√
d

2
if d ≡ 1 (mod 4) and c =

√
d if d ≡ 2, 3

(mod 4). The image to keep in mind is the one above, where ω1 = 1 and ω2 = c. As
an example, if d = −7 then every element, w of O7 can be written as w = x+y 1+i

√
7

2
,

where x, y ∈ Z since −7 ≡ 1 (mod 4). We shall be using not only the fact that
Q(
√
d) is a �eld, but also that it is a normed vector space of two real dimensions.

However, for di�erent values of d we have di�erent spaces and each have their own
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8 3. De�nitions and basic properties of number systems

norm, which we will make use of. We continue with the example and calculate the
norm of w. We denote the norm of w by N(w), in this case it is given by x2+xy+2y2.
These facts can be found in [Lánczi, 1965]. As we shall be using the norm quite
extensively we give a full list below of the various norms. Notice however that we
will not intermix the di�erent norms in the calculations below, as we will always be
working with a single �xed d, as such we simply write N(w) for some w ∈ Q(

√
d)

and not Nd(w).

N(x+ iy) = x2 + y2, for d = −1,

N
(
x+ iy

√
2
)

= x2 + 2y2 for d = −2,

N

(
x+ y

1 + i
√

3

2

)
= x2 + xy + y2 for d = −3,

N

(
x+ y

1 + i
√

7

2

)
= x2 + xy + 2y2 for d = −7,

N

(
x+ y

1 + i
√

11

2

)
= x2 + xy + 3y2 for d = −11,

N

(
x+ y

1 + i
√

19

2

)
= x2 + xy + 5y2 for d = −19,

N

(
x+ y

1 + i
√

43

2

)
= x2 + xy + 11y2 for d = −43,

N

(
x+ y

1 + i
√

67

2

)
= x2 + xy + 17y2 for d = −67,

N

(
x+ y

1 + i
√

163

2

)
= x2 + xy + 41y2 for d = −163,

From this point on we consider d to be �xed unless otherwise mentioned. Now
for b ∈ Od we let D be a complete set of residue classes modulo b. We call the pair
(b,D) a number system in Q(

√
d), sometimes just a number system if every z ∈ Od

has a unique representation of the form

z =
∞∑
j=0

dj(z)bj,

with dj(z) ∈ D and dj(z) = 0 for j ≥ l(z), where l(z) is an integer. We call b the
base and we call dj(z) the digits of z with respect to base b and refer to D as the
set of digits. Since the representation is unique l(z) is well de�ned and we call this
the length of z in base b. We see that l(z) = max{j : dj−1(z) 6= 0}.

As an example we consider the case d = −1. Here Od is simply the Gaussian
integers, which contains the number 3. Following Gilbert [Gilbert, 1987] we see that
a possible digit set is {0,±1,±i,±1± i}. We could also use the base −1+ i in which
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case the digit set can be {0, 1}. The �rst example has a real base, but complex
digits, where as the second base has a complex base, but real digits. We choose
to focus our attention on the second type of number systems. So if we are in the
situation where D is particularly nice, namely D = {0, 1, . . . , N(b)− 1} where N(b)
denotes the norm of b, we shall refer to (b,D) as a canonical number system or a
CNS, as before we sometimes explicitly state the �eld of which the pair is a CNS,
but we usually leave it out if its clear from the context.

Obviously not all b ∈ Od can occur as the base of a CNS. This is seen by the
fact that we insist on having real digits, so if the base is real we cannot possibly
represent every complex number, but usually this is not the only restriction. The
possible bases for the Gaussian integers were found by Kátai and Szabó in [Kátai
and Szabó, 1975] who showed the following theorem.

Theorem 3.1. The pair (b,D) is a CNS in Q(i) if and only if Re(b) < 0, Im(b) =
±1.

Later the following theorem was shown by Kátai and Kovács in [Kátai and
Kovács, 1981]

Theorem 3.2. Let d ≥ 2,−d 6≡ 1 (mod 4). (b,D) is a CNS in Q(
√
−d) if and only

if

b = A± i
√
d, 0 ≤ −2A ≤ A2 + d ≥ 2, where A is an integer.

Let d ≥ 2,−d ≡ 1 (mod 4). (b,D) is a CNS in Q(
√
−d) if and only if

b = 1/2(B ± i
√
d), −1 ≤ −B ≤ 1/4(B2 + d) ≥ 2, where B is an odd integer.

In order to motivate the next few steps we return brie�y to the real case and
consider a rational p/q. It is known that no matter what positive integer b ≥ 2
we pick, p/q when represented in base b with the digits {0, 1, . . . , b − 1} will have
ultimately periodic digits and thus cannot be normal. However, we can represent
every real number in base b. So we can ask whether or not a given real number is
normal to a certain base. So far we have introduced the various rings of integers we
will be working with and the corresponding quotient �elds. But we need something
to serve the purpose of the reals. We therefore extend our number system to the
complex numbers.

It is well known that for every z ∈ C there is a (not neccesarily unique) repre-
sentation of the shape

z =

l(z)∑
j=−∞

dj(z)bj, (3.1)

We give a proof of this based on the idea in [Kátai and Szabó, 1975]

Proof of (3.1). Let z be an arbitrary complex number, z = x + iy, where x, y ∈ R.
Let bk = Uk + iVk, for k = 1, 2, . . . . We now have

z =
zbk

bk
=

(x+ iy)(Uk + iVk)

bk
=
Ck + iDk

bk
+
uk + ivk

bk
,



10 3. De�nitions and basic properties of number systems

where Ck + iDk ∈ Od is picked to be the nearest lattice point (might not be unique,
if not then pick any of the possible ones). Now setting

zk =
Ck + iDk

bk
, δk =

uk + ivk
bk

we obtain two sequences {zk}∞k=1, {δk}∞k=1. We see that |uk| , |vk| < |b|. Hence δk → 0
and thus zk → z as k →∞. Since Ck + iDk ∈ Od we have a unique representation
of the form

Ck + iDk = a∗t b
t + · · ·+ a∗o, t = t(k)

We start by proving that the sequence t(k) − k has an upper bound. Dividing the
above equation by bk we obtain

zk = a∗t b
t−k + · · ·+ a∗k + · · ·+ a∗0b

−k.

So we get

a∗t b
t−k + · · ·+ a∗k = zk −

a∗k−1

b
− · · · − a∗0

bk
,

Taking absolute values, applying the triangle inequality and using that the a∗i 's are
non-negative we arrive at

|a∗t bt−k + · · ·+ a∗k| ≤ |zk|+
a∗k−1

|b|
+ · · ·+ a∗0

|b|k

≤ |z|+ |δk|+ |b|2
(

1

|b|
+

1

|b|2
+ . . .

)
≤ |z|+ |δk|+ |b|2

∞∑
j=0

(
1

|b|

)j
≤ |z|+ |δk|+ |b|2

|b|
|b| − 1

≤ |z|+ |δk|+
|b|3

|b| − 1
.

From this is follows that
|a∗t bt−k + · · ·+ a∗k| ≤ c,

where c is a constant depending only on z and b. The fact that Od forms a lattice
ensures that the circle with center 0 and radius c contains only �nitely many integers
from Od. Since each integer has a unique representation, the number t(k)− k must
be bounded from above. Now let K be an integer such that t − k ≤ K. Then we
can write zk as

zk = a
(k)
K bK + · · ·+ a

(k)
0 +

a
(k)
−1

b
+ . . . ,

where a(k)
j ∈ {1, 2, . . . , N(b)−1} and j = K,K−1, . . . , 0,−1, . . . . LetmK ∈ {1, 2, . . . , |b| − 1}

be an integer such that a(k)
K = mK for in�nitely many k. Let SK be the subset of

those integers k satisfying this. Suppose that SK , . . . , Sl+1 is constructed such that
SK ⊇ · · · ⊇ Sl+1. Then there is a ml ∈ {1, 2, . . . |b|−1} such that for in�nitely many
k in Sl+1 we have a(k)

l = ml. Let Sl be the set consisting of such k. then Sl has



3. De�nitions and basic properties of number systems 11

in�nitely many elements. We now repeat this argument for K,K−1, . . . , 0,−1, . . . .
Let

w = mKb
K + · · ·+m0 +

m−1

b
+ . . . .

Let k1 < k2 < . . . be an in�nite sequence, such that

kv ∈ SK−v+1 v = 1, 2, . . . .

Since we have

zkv = mKb
K + · · ·+mK−v+1b

K−v+1 + a
(kv)
K−vb

K−v + . . . ,

then
lim
v→∞

zkv = w

but as zk → z for k → ∞ this means we must have z = w. Hence we have a
representation of the desired form.

We denote by bzc the integer part of z with respect to base b, where

bzc =

l(z)∑
j=0

dj(z)bj,

and we denote by {z} the fractional part of z with respect to base b, where

{z} =
−1∑

j=−∞

dj(z)bj.

Hence, every number is given by the sum of its integer part and its fractional part.
However, if the representation in base b is not unique, the integer part as well as
the fractional part is not well de�ned. This phenomenon also occurs in the real
numbers. For instance if we represent every real number in base 10 we see that
1 = 0.9999 . . . are two di�erent representations of the same number. The �rst has
integer part 1 and fractional part 0 the other has integer part 0 and fractional part
0.9999 . . . . This has nothing to do with base 10, any other integer base will share
similar properties. Moreover, there is nothing special about the number 1, either
rational will have two representations. The good thing however is, no matter which
rational we pick and what integer base we choose to represent it in, the possible
representations will either terminate after a �nite step or be eventually periodic.
Here, terminating after a �nite step simply means that we only need �nitely many
non-zero digits in the fractional part, and eventually periodic means that after a
�nite step a certain string of digits will repeat itself inde�nitely.

Our situation is very much the same, however not everything behaves as nicely
as in the real case. Letting a denote the string a repeated inde�nitely, we can see
from [Gilbert, 1981] that the base b = (−1 +

√
7i)/2 gives rise to the following

curiosity
−3−

√
7i

8
= 0.001 = 1.010 = 11.100.

Which is a number having, not only two, but in fact three di�erent representations
within the same number system. The reason for a number having several represen-
tations is due to the fact that it falls inside the intersection of di�erent translates
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of the fundamental domain. To explain it in more detail we move on to discussing
the fundamental domain and return to this issue later.

We de�ne the fundamental domain F ′ as the set of all numbers which can be
represented with 0 in the integer part of their b-ary expansion. i.e.,

F ′ =

{
γ ∈ C | γ =

∑
k≥1

dkb
−k, dk ∈ D

}
. (3.2)

Kátai and Környei in [Kátai and Környei, 1992] showed some general results
about translates of the fundamental domain. First of all the proved that F ′ is a
compact set, and secondly that (adapted to our special case) we have⋃

a∈Od

(F ′ + a) = C.

That is, the union of translates of the fundamental domain by every integer tile
the complex plane. Furthermore they showed that the intersection of such two
translations is not too large, but in fact has Lebesgue measure zero. In particular,

λ((F ′ + a) ∩ (F ′ + c)) = 0, a, c,∈ Od, a 6= c,

where λ denotes the (2-dimensional) Lebesgue measure. Later it was shown by
Akiyama and Thuswaldner, that the fundamental domain is also arcwise connected
for all two-dimensional number systems, which su�ces for our purpose, see [Akiyama
and Thuswaldner, 2000] for more details.

Since the overlap between two translates of the fundamental domain is of Lebesgue
measure zero, the fractional part of almost every number is unique, hence the in-
teger part of almost every number is unique and we arrive at the conclusion that
the representation of almost every number is unique. Now �xing a base, b, we let
d1 . . . dl be a block of digits of length l and let N (z; d1 . . . dl;N) be the number of
occurences of the block d1 . . . dl in the �rst N digits of z. That is

N (z; d1 . . . dl;N) = #{1 ≤ n ≤ N : d1 = dn(z), . . . , dl = dn+l−1(z)}.

We call z normal in (b,D) if for every l ≥ 1 we have

sup
d1...dl

∣∣∣∣ 1

N
N (z; d1 . . . dl;N)− 1

|D|l

∣∣∣∣ = o(1).

Here, o(1) means that the expression on the left-hand-side is bounded by 1 for all
N ≥ N0, where N0 is some positive integer.

It is possible that there are more than one representation of the form (3.1) of a
given z ∈ C. If so we call z ambiguous. We have the following lemma, which urges
us to look elsewhere for normal numbers. Even though it is merely a lemma to us
it is one of the main results found in [Madritsch, 2007] and as such the proof takes
up a good amount of pages. For that reason we choose to omit it.

Lemma 3.3. Let (b,D) be a CNS. Then no number with an ambiguous representa-
tion is normal.
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Eventually we will be constructing normal numbers as a concatenation of digital
expansions of a certain sequence of numbers and we therefore need an ordering on
Od. As before we let q = N(b), and de�ne τ to be a bijection between D and
{ 0, 1, . . . , q − 1 } with τ(0) = 0. We can extend τ to Od by letting τ(d0 + d1b +
d2b

2 + · · · + dnb
n) = τ(d0) + τ(d1)q + τ(d2)q2 + · · · + τ(dn)qn. Since expressing a

number in Od in base b is unique this extension of τ is a bijection. Hence we have
that τ(Od) = N ∪ {0}, so for each a ∈ Od there exists an n ∈ N ∪ {0} such that
τ(a) = n. Since we have a natural ordering on the image of τ we can pull this
ordering back to Od, i.e., for a, c ∈ Od we de�ne an ordering on Od by

a ≤ c⇐⇒ τ(a) ≤ τ(c).

Now the formula zn = τ−1(n−1) de�nes an increasing sequence of elements from
Od. For a function f : Od → C we de�ne

θ(f) = bf(z1)cb−l(f(z1)) + bf(z2)cb−l(f(z1))−l(f(z2)) + . . . . (3.3)

which is the concatenation of the integer parts of the function values evaluated on
the sequence {zn}. Now we can �nally state the main theorem of this part of the
thesis.

Theorem 3.4. Let f(z) = αnz
n + · · · + α1z + α0 be a polynomial with coe�cients

in C. Let (b,D) be a CNS in Od, where d ∈ {−1,−2,−3,−7,−11}. Then for every
l ≥ 1 we have

sup
d1...dl

∣∣∣∣ 1

N
N (θ(f); d1 . . . dl;N)− 1

|D|l

∣∣∣∣� (logN)−1

In particular the number given by (3.3) is normal. This extends the result of
[Madritsch, 2008] by allowing us to work, not only with the canonical number sys-
tems related to the Gaussian integers, but also the others arising from the four other
rings.





CHAPTER 4

A C O L L E C T I O N O F L E MM ATA

We will need a couple of lemmata in order to prove the theorem. Most of these
represent theorems in their own right but given that we will make use of them
merely as lemmata we will call them that. The �rst lemma will help us with the
asymptotics.

Lemma 4.1. Let {an}n≥1 and {bn}n≥1 be two sequences of real numbers with 0 <
an ≤ bn for all n and suppose that limn→∞ an/bn = 0 and limn→∞ an 6= 0. Then

lim
n→∞

∑n
i=1 ai∑n
i=1 bi

= 0.

Before proving the lemma we note that the assumption limn→∞ an 6= 0 is left out
in [Madritsch et al., 2008, Lemma 3.4] which makes the proof below fail. Without
this assumption we cannot be certain that (see proof below) C(N) → ∞. The
Lemma is however corrected in [Madritsch, 2008]

Proof. Let ε > 0 be arbitrary. It follows from the assumptions that there exists
n0 ∈ N such that an/bn < ε/2 for n > n0 and thus that an < εbn/2 for n > n0. Now
let

A(N) =
N∑
n=1

an, B(N) =
N∑
n=1

bn, C(N) =
N∑

n=n0+1

bn.

Using all of this we get

A(N)

B(N)
=
A(n0) +

∑N
n=n0+1 an

B(n0) +
∑N

n=n0+1 bn
<
A(n0) + ε

2
C(N)

B(n0) + C(N)
.

Since limn→∞ an 6= 0 we also have limn→∞ bn 6= 0 so the series
∑∞

n=1 bn diverges.
Thus for N → ∞ we have C(N) → ∞ since it is the tail of a divergent series. So
we must have

lim
N→∞

A(N)

B(N)
≤ lim

N→∞

A(n0) + ε/2C(N)

B(n0) + C(N)
= ε/2.

so we end up at the desired conclusion.

Since we need to deal with blocks of a �xed length we will need to know how
the norm of a given number behaves compared to the length of the number's digital
expansion, this is covered in the next lemma.

Lemma 4.2. Let (b,D) be a CNS in Od and let q = N(b). Then

|l(z)− logq|z|2| ≤ cb,

where cb is a constant depending only on the base b and logq is the logarithm in base
q. Simply put this lemma shows that the length act like the logarithm of the norm
and thus gives us a very good estimate of the length of a given number.

15
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The above lemma is a special case of the main theorem in [Kovács and Peth®,
1992] and we choose not to prove it here.

We will need several more auxiliary results, but before giving the next lemma
we need to de�ne what the discrepancy is.

De�nition 4.3. let x1, x2, . . . , xN be a sequence of points in Rk. Then the number

DN(xn) = sup
I⊆Tk

∣∣∣∣A(I,N, xn)

N
− λk(I)

∣∣∣∣
is called the discrepancy of the given sequence. Here λk denotes the k-dimensional
Lebesgue measure, I is a Cartesian product of intervals in T and T k is the k-
dimensional torus, i.e. T k = Rk/Zk and A is the function that counts the number
of points from the sequence that are inside I. Formally we have

A(I,N, xn) =
N∑
n=1

χI({xn}),

where χI is the characteristic function of I.

As we shall also need a de�nition of the so-called star discrepancy we give the
de�nition here as well

De�nition 4.4. Let y = (y1, . . . , yk) with 0 < yi ≤ 1 for i = 1, . . . , k and denote by
[0, y) the Cartesian product of the k intervals [0, yi), i = 1, . . . , k. Then the number

D∗N(xn) = sup
y∈[0,1]k

∣∣∣∣A([0, y), N, xn)

N
− λk([0, y))

∣∣∣∣ .
is called the star discrepancy of the given sequence.

In order to estimate the discrepancy we will need the following much celebrated
lemma.

Lemma 4.5 (Erd®s�Turán�Koksma inequality). [Drmota and Tichy, 1997, The-
orem 1.21] Let x1, x2, . . . , xN be points in R2 and V an arbitrary positive integer.
Then

DN(xn) ≤
(

3

2

)2
 2

V + 1
+

∑
0<‖v‖∞≤V

1

r(v)

∣∣∣∣∣ 1

N

N∑
n=1

e(v · xn)

∣∣∣∣∣
 ,

where r(v) = (max{1, |v1|}) · (max{1, |v2|}), for v = (v1, v2) ∈ Z2, v · xn denotes
the usual Euclidean inner product in R2 and e is de�ned to be the function e(z) =
exp(2πiz).

In order to transform the exponential sum into an integral we have the following
two lemmata

Lemma 4.6. [Arkhipov et al., 2004, Lemma 5.4] Suppose that F : Rr → R is
a di�erentiable function for 0 ≤ xj ≤ Pj ≤ P for j = 1, 2, . . . , r. Assume that
the function ∂F/∂xj is piecewise monotone and of constant sign in each xj, for
j = 1, 2, . . . r and for any �xed values of the other variables. Assume furthermore
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that the number of intervals of monotonicity and constant sign does not exceed s.
Finally assume that the following holds∣∣∣∣∂F (x1, x2, . . . , xr)

∂xj

∣∣∣∣ ≤ δ, j = 1, 2, . . . , r

for some δ satisfying 0 < δ < 1. Then

P1∑
x1=0

· · ·
Pr∑
xr=0

e(F (x1, x2, . . . , xr))

=

∫ P1

0

. . .

∫ Pr

0

e(F (x1, x2, . . . , xr))dx1dx2 . . . dxr + θ1rsP
r−1

(
3 +

2δ

1− δ

)
,

for some θ1 with |θ1| ≤ 1.

Lemma 4.7. [Titchmarsh, 1986, Lemma 4.2] Let F : R → R be a di�erentiable
function such that F ′ is monotonic and F ′(x) ≥ m > 0 or F ′(x) ≤ −m < 0 for all
x ∈ [a, b]. Then ∣∣∣∣∫ b

a

e(F (x)) dx

∣∣∣∣ ≤ 4

m
.

We will now apply these last two lemmata in order to obtain the following

Lemma 4.8. Let M and N be positive integers with M much smaller than N . Let
F : C → C be such that the composition of tr with F satisfy the conditions of
Lemmata 4.6 and 4.7. Where tr(x) denotes the trace of the matrix corresponding to
multiplication by x in R2 Then∣∣∣∣∣∣

∑
M≤|z|2<M+N

e(tr(F (z))

∣∣∣∣∣∣�
√
N

m
+

N

(logN)σ/2
+ s

3− δ
1− δ

√
N(logN)σ,

for any positive real number σ.

Proof. This is a generalization of [Madritsch, 2008, Lemma 3.6] or [Gittenberger
and Thuswaldner, 2000, Lemmata 2.1 and 2.2]. We start by noting the composition
(x, y) 7→ tr(F (x+iy)) is a function from R2 to R, and hence satis�es the assumptions
of Lemma 4.6. The main idea is to cover the annulusM ≤ |z|2 < M+N by translates
of the lattice associated with the ring of integers Od, get an estimate for how many
translates are needed for this, and �nally estimate the exponential sum on each of
these. Consider the parallelograms Dv,d = {z ∈ Od | z = x+ cy,−v ≤ x ≤ v,−v ≤
y ≤ v}. We shall need to estimate a sum of the form

∑
z∈Dv,d

e(tr(F (z))) =
v∑

x=−v

v∑
y=−v

e(tr(F (x+ cy)))

We can split up the sum on the right hand side, so each variable runs over a range
allowing us to use Lemma 4.6 on each part and then joining the integrals afterwards.
However this will give us a slight error-term which can be absorbed into the error-
term of Lemma 4.6 by noting that the integration over a line where x = 0 or y = 0



18 4. A collection of lemmata

is bounded by some constant times 2v. So by choosing s big enough we can make
the following hold.

∑
z∈Dv,d

e(tr(F (z))) =
v∑

x=−v

v∑
y=−v

e(tr(F (x+ cy))) (4.1)

=

∫ v

−v

∫ v

−v
e(tr(F (x+ cy)))dxdy + 2θ1sv

(
3 +

2δ

1− δ

)
(4.2)

=

∫ v

−v

∫ v

−v
e(tr(F (x+ cy)))dxdy + 2θ1sv

(
3− 3δ + 2δ

1− δ

)
(4.3)

=

∫ v

−v

∫ v

−v
e(tr(F (x+ cy)))dxdy + 2θ1sv

(
3− δ
1− δ

)
. (4.4)

Taking absolute values allows us to apply Lemma 4.7∣∣∣∣∣∣
∑
z∈Dv,d

e(tr(F (z)))

∣∣∣∣∣∣ ≤
∫ v

−v

∣∣∣∣∫ v

−v
e(tr(F (x+ cy)))dx

∣∣∣∣ dy + 2θ1sv

(
3− δ
1− δ

)
(4.5)

≤ 2v max
−v≤y≤v

∣∣∣∣∫ v

−v
e(tr(F (x+ cy)))dx

∣∣∣∣+ 2θ1sv

(
3− δ
1− δ

)
(4.6)

≤ 8v

m
+ 2θ1sv

(
3− δ
1− δ

)
. (4.7)

Now we will begin covering the annulus with parallelograms. We start by estimating
how many parallelograms are needed to cover the annulus by giving a lower and an
upper bound. Consider a disk of radius R centered at the origin. As noted earlier
Od has an integral basis formed by (1, 1+

√
d

2
) or (1,

√
d), depending on the value

of d. Denote by c either 1+
√
d

2
or
√
d. Now notice that the lattice in Od divides

the plane into parallelograms with side lengths 1 and |c|. And that |c| ≥ 1 for
any value of d. Denote by D the diameter of such a parallelogram and notice
that it is also the length of the diagonal extending from the lower left corner to
the upper right corner. It is obvious that we can �t in bR/Dc2 parallelograms in
the �rst quadrant of the disc, and similarly in the 3rd quadrant. Consider next
the antidiagonal of the parallelogram, extending from the lower right corner to the
upper left corner. Let this have length A, now in the space remaining in the 1st and
3rd quadrant and all that of the 2nd quadrant we can �ll in bR/Ac2 parallelograms,
similarly in the 4th quadrant. This in total gives us a lower bound on the amount of
disjoint parallelograms we can place fully inside a disc, since we are only interested
in asymptotics we notice that it is comparable to C1R

2, where C1 is some constant
depending only on the diameter of the parallelogram.

As for the upper bound we simply give estimates using the areas of parallelograms
and the disc, hence the maximum amount of disjoint parallelograms needed to cover
the disc is bR2/C2c, where C2 is the a constant depending only on the area of the
parallelogram. Now consider the annulus {z ∈ C : M ≤ |z|2 ≤ M + N}, we can
estimate the amount of disjoint parallelograms that �ts inside this by using the
estimates we found for the disc. We can get an upper bound by using a packing
of disc of radius M , extending this to a cover of a disc of radius M + N and then
removing the packing. This gives us (M+N)2

C2
− C1M

2.
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As for the lower bound we do the opposite, that is we take a packing for the
disc of radius M +N and remove every parallelogram needed to cover the cocentric
disc of radius M . We then get C1(M + N)2 − M2

C2
for the lower bound. Of these

parallelograms some will be contained entirely in the annulus and some will intersect
the boundary. The ones intersecting the boundary will provide an error term which
we want to minimize, so we will not be using parallelograms of this size, instead
we will shrink them by a factor of

√
N/ logNσ. Now de�ne the sets I and B

to be the sets of parallelograms completely inside the annulus respective the set of
parallelograms intersecting the boundary. Let CI and CB denote their contributions
to the sum, respectively. Since we are looking for asymptotic estimates we can get
an upper bound on the size of I by placing each parallelogram inside a square of side
length

√
N/ logNσ, now up to some constant, there are as many parallelograms as

there are squares in I, and there are O((logNσ) of squares in I, inserting this into
the estimate (4.7) we get

CI �
√
N

m
+ s

3− δ
1− δ

√
N(logN)σ.

As for the boundary we can do the same as before, that is place squares around
each parallelogram and notice that the boundary is covered by two annuli of width
O(
√
M/(logM)σ) and O(

√
(M +N)/(log(M +N))σ). From this and the fact that

M is much smaller than N we get

CB �
N

(logNσ/2)
.

Adding these two we get the desired result.

Lemma 4.9. Let f be a k-th degree polynomial with coe�cients in any algebraic
�eld which contains the rational �eld and q be the least common multiple of its
coe�cients. If Λ(q) is a complete set of residues modulo q, then, for any ε > 0,∣∣∣∣∣∣

∑
λ∈Λ(q)

e(tr(f(λ)))

∣∣∣∣∣∣� (N(q))1−1/k+ε,

where the implied constant depends only on f and ε.

A proof of this can be found in [Hua, 1951, Theorem 1]





CHAPTER 5

T H E F U N DA M E N TA L D OM A I N A N D I T S

P R O P E RT I E S

In this chapter we follow the paper [Gittenberger and Thuswaldner, 2000] closely,
as with the preceding chapters most of the results below can also be found in
[Madritsch, 2008]. The �rst part of the following result was shown by Kátai and
Kóvacs in [Kátai and Kovács, 1981] and the second part was later shown by Kóvacs
in [Kóvacs, 1981].

Theorem 5.1. 1. For any imaginary quadratic number �eld K and a CNS (b,D).
The pair (1, b) form an integral basis for K.

2. For any algebraic number �eld K of degree n and a CNS (b,D). The n-tuple
(1, b, b2, . . . , bn−1) form an integral basis for K.

Even though we shall only need the �rst part explicitly, the second part is equally
important. In fact it is due to this result that the connection between the number
systems we work with and matrix number systems was established. Without matrix
number systems the construction below would not be possible. See [Madritsch, 2007]
for more details on this.

Now let (b,D) be a CNS in Od. Then by the above result every γ ∈ C has a
unique representation of the form γ = α + βb where α, β ∈ R. Thus we can de�ne
the map

ϕ : C→ R2, ϕ(α + βb) = (α, β)

Since the representation is unique the map is well de�ned. Now we can use ϕ to
transfer the fundamental domain to R2.

F = ϕ(F ′) =

{
γ ∈ R2 | γ =

∑
k≥1

B−kdk, dk ∈ ϕ(D)

}
,

where B is the matrix corresponding to multiplication by b in R2, represented in
the base (1, b). For every b we consider the de�ning polynomial of b

x2 + b1x+ b0.

The matrix B is then given by

B =

(
0 −b0

1 −b1

)
We notice that b0 = N(b) = q and that b1 = 2 Re(b). So the determinant of B
is b0 6= 0 and thus B is invertible, which in turn allows us to de�ne B−k. More
information about this can be found in [Scheicher and Thuswaldner, 2002].
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22 5. The fundamental domain and its properties

Before we move on we shall need to introduce the Hausdor� metric.
For any metric space (X, d) we let C(X) denote the class of all non-empty and

compact subsets of X. For each positive δ and each A ∈ C(X) we denote by Aδ the
δ-neighbourhood of A, i.e. Aδ = {x ∈ X : d(x, a) ≤ δ for some a ∈ A}. By abuse of
notation we use d for the following function from C(X)× C(X) into [0,∞):

d(A,B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}.

We call this function the Hausdor� metric on the space C(X). It can be shown
that this is a metric and in fact it turns C(X) into a complete metric space, (more
information can be found in [Falconer, 2003]). We now return to our study of the
fundamental domain.

For every a ∈ Od we de�ne the domain corresponding to the elements of F
whose digit representation after the point starts with the digits of the expansion of
a. Thus we de�ne

Fa = B−l(a)(F + ϕ(a)). (5.1)

It is well known that, see for instance [Müller et al., 2001] F can be approximated
by the sets

Q0 = {z ∈ R2 | ‖z‖∞ ≤
1

2
}, and

Qk =
⋃
a∈D

B−1(Qk−1 + ϕ(a)).

The approximation satis�es the following

d(∂Qk, ∂F)� |b|−k,

where d(·, ·) denotes the Hausdor� metric, and ∂Qk denotes the boundary of the
set Qk. We need to be careful from now on, though the fundamental domain is
just a parallelogram for some bases, it can be much more obscure for other bases.
In fact it can have a fractal structure, if we pick 1 − i to be our base, we notice
that N(1 − i) = 2. Hence (1 − i, {0, 1}) is a CNS in the complex plane. But the
fundamental domain, when shifted to R2 is the famous Davis-Knuth dragon or twin
dragon which can be seen below.

As shown in [Akiyama and Thuswaldner, 2000], Qk is connected for all k. It can
also be shown that Qk can be covered by |D|k parallelograms. Furthermore there
exists a µ with 1 < µ < |b|2 such that O(µk) of these parallelograms intersect the
boundary of Qk, [Müller et al., 2001].

In order to keep track of Fa we will need a Urysohn function, which is a continu-
ous function that is identically 1 on some closed set and identically 0 on some other
disjoint closed set. In order to construct it we need tubes covering the boundary of
Fa, with certain properties. By a tube we simply mean a cylinder, i.e. a product
of intervals. We use the notion tube, since it is the standard for higher dimensions.
Speci�cly we have the following lemma which was shown for a ∈ D by Gittenberger
and Thuswaldner. We will follow their ideas in the proof.

Lemma 5.2. For all a ∈ Od and all k ∈ N there exists a lattice-parallel tube Pk,a
with the following properties:
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Figure 5.1: Davis-Knuth dragon

• ∂Fa ⊂ Pk,a for all k ∈ N.

• λ2(Pk,a) = O(µk/|b|2k).

• Pk,a consists of O(µk) lattice-parallel parallelograms, each of which has Lebesgue
measure O(|b|−2k).

Here the word lattice refers to the lattice formed by the ring of integers, Od,
and a lattice-parallel tube is thus a parallelogram with sides parallel to the vectors
forming the lattice.

Proof. This is a generalisation of [Gittenberger and Thuswaldner, 2000, Lemma 3.1].
We will construct a tube with the required properties. Let Qk,a = B−1(Qk + ϕ(a)),
then Qk,a will approximate Fa just as Qk approximates F . Denote by II ′k ,a =
∂Qk,a the boundary of Qk,a. This is seen to be a polygon, since Qk,a is a union of
parallelograms. Let Rk,a be the set consisting of the |D|k parallelograms that forms
Qk,a. Then O(µk) of these intersects the boundary II ′k ,a , hence the number of edges
in II ′k ,a is bounded by O(µk). Since every element in Rk,a has a diameter of length
c|b|−k, for some constant c the length of II ′k ,a is O(µk|b|−k). We now construct a
new polygon II ′′k ,a in the following way:

Let EII ′k,a
denote the edges of II ′k ,a , and de�ne IIk ,a by

IIk ,a =
⋃

(α1,α2)(β1,β2)∈EII ′
k,a

α2≤β2

((α1, α2)(β1, α2) ∪ (β1, α2)(β1, β2)),

where (α1, α2)(β1, α2) denotes the edge from the point (α1, α2) to the point (β1, α2).
It is easily seen that IIk ,a has lattice-parallel sides. We note that the length,

number of edges and maximal distrance from Fa is comparable for IIk ,a and Ik ,a .
Since d(IIk ,a , ∂Fa) < c′|b|−k, for some constant c′ we can de�ne the tube Pk,a by
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Pk,a = {z ∈ R2 | ‖z − IIk ,a‖∞ ≤ 2c′|b|−k},

where ‖z − IIk ,a‖∞ = infz′∈IIk,a |z − z′|∞. We see that this tube has the required
properties.

Now to each pair (k, a) we �x the corresponding polygon IIk ,a and the corre-
sponding tube Pk,a constructed in the lemma above. Let Ik ,a denote the set of inner
points in IIk ,a and de�ne fa by

fa(x, y) =
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

Ψa(x+ x1, y + y1) dx1 dy1,

where
∆ = 2c′|b|−k, (5.2)

and

Ψa(x, y) =


1 if (x, y) ∈ Ik ,a

1/2 if (x, y) ∈ IIk ,a

0 otherwise.

Thus fa is the Urysohn function which equals 1 for z ∈ Ik ,a \ Pk,a, and 0 for
z ∈ R2 \ (Ik ,a ∪ Pk,a) and linear interpolation in between. Now we move on to give
estimates for the Fourier coe�cients of this function, as we shall need these in
chapter 7.

Lemma 5.3. Let fa(x, y) =
∑

n1,n2
cn1,n2e((n1, n2) ·d (x, y)) be the Fourier expansion

of fa, where (n1, n2) ·d (x, y) denotes the inner product that comes from the quadratic
form corresponding to the given lattice. Later on when d is clear from the context we
shall supress this and simply use the notation · to denote the inner product. Then
we have the following estimates for the Fourier coe�cients

cn1,n2 = O
(

µk

∆2n2
1n

2
2

)
(n1, n2 6= 0),

cn1,0 = O
(
µk

∆n2
1

)
(n1 6= 0),

c0,n2 = O
(
µk

∆n2
2

)
(n2 6= 0),

c0,0 =
1

|b|2
.

The proof is an exercise in straight forward calculations, however it takes up
some space and is therefore given in the appendix.



CHAPTER 6

W E Y L S U M S

In the following chapter we let f denote a polynomial with coe�cients in C. As the
letter d is already used for other purposes we denote the degree of the polynomial
f by d′. Thus

f(z) = αd′z
d′ + αd′−1z

d′−1 + · · ·+ α1z + α0. with αi ∈ C and αd′ 6= 0.

We will now need a generalisation of [Nakai and Shiokawa, 1992, Lemma 2],
which in chapter 7 will be needed to give us some estimates on exponential sums.

Proposition 6.1. Let G > 0 and N ≥ 2. Let s be an integer with 1 ≤ s < d′, let
Hi, Ki be any positive constants, where i = s+ 1, . . . , d′ and let H∗s , K

∗
s be constants

such that

H∗s ≥ 23(s+2) + 22+3

(
G+ max

s<i≤d′
Hi

)
+ s

d′∑
i=s+1

Ki,

K∗s ≥ 23(s+2) + 22+3

(
G+ max

s<i≤d′
Hi

)
+ 2s

d′∑
i=s+1

Ki.

Suppose that there are integers ai and qi from Od for s < i ≤ d′ such that

1 ≤ |qi|2 ≤ (logN)Ki and

∣∣∣∣αi − ai
qi

∣∣∣∣ ≤ (logN)Hi

qiN i/2
,

but there exists no integers as and qs from Od that are relatively prime such that

1 ≤ |qs|2 ≤ (logN)K
∗
s and

∣∣∣∣αs − as
qs

∣∣∣∣ ≤ (logN)H
∗
s

qsN s/2
.

Then we have ∣∣∣∣∣∣
∑
|z|2≤N

e(tr(f(z)))

∣∣∣∣∣∣� N(logN)−G.

In order to prove the above proposition we shall need two lemmata. During
the proof of the �rst Lemma we shall need the following classic theorem due to
Minkowski, namely Minkowski's linear forms theorem, which along with a proof can
be found in [Cassels, 1959].

Theorem 6.2 (Minkowski's linear forms theorem). Let Λ be an n-dimensional lat-
tice of determinant d(Λ) and let aij(1 ≤ i, j ≤ n) be real numbers. Suppose that
cj > 0 for 1 ≤ j ≤ n, are numbers such that

c1 . . . cn ≥ |det(aij)| d(Λ).

25
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Then there is a point u = (u1, u2, . . . , un) ∈ Λ other than 0 satisfying∣∣∣∣∣
n∑
j=1

a1juj

∣∣∣∣∣ ≤ c1

and ∣∣∣∣∣
n∑
j=1

aijuj

∣∣∣∣∣ ≤ ci (2 ≤ i ≤ n).

The �rst lemma deals with approximation of complex numbers by ratios of in-
tegers from Od.

Lemma 6.3. Given any z = x + iy ∈ C and N ∈ N, there exists integers p and q
in Od with 0 < |q| ≤ N such that∣∣∣∣z − p

q

∣∣∣∣ < 2
√
−d+ 1

|q|N
. (6.1)

The result can be found in [Esdahl-Schou and Kristensen, 2010] as well as in
[Dodson and Kristensen, 2004] where a proof is given in the case of Od being the
Gaussian integers.

Proof. We split the proof into two parts depending on the value of d. For d ∈
{−1,−2} the lattice is axis-parallel and elements in Od can be written as p =
p1 + i

√
−dp2. Let z = x+ iy, p = p1 + i

√
−dp2, q = q1 + i

√
−dq2. We want to show

that the inequality ∣∣∣∣z − p

q

∣∣∣∣ < c′

|q|N
(6.2)

holds, where c′ is some constant to be chosen later, satisfying c′ < 2
√
−d+ 1. This

holds if and only if

|qz − p| < c′

N
,

which holds if and only if∣∣∣(q1 + i
√
−dq2)(x+ iy)− (p1 + i

√
−dp2)

∣∣∣ < c′

N
.

Calculating the left-hand-side we see this is true if and only if∣∣∣q1x−
√
−dq2y − p1 + i(q1y +

√
−dq2x−

√
−dp2)

∣∣∣ < c′

N
.

Which is the case if

max{|q1x−
√
−dyq2 − p1|, |

√
−dxq2 + yq1 −

√
−dp2|} <

c′√
2N

.

We will write this in a slightly di�erent manner (the purpose becomes clear in a
little while)

max{|−p1 + 0 · p2 + xq1 −
√
dyq2|, |0 · p1 −

√
dp2 + yq1 +

√
dxq2|} <

c′√
2N

. (6.3)
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Since we are trying to obtain |q| < N . The best result possible is obtained by
looking at |

√
q2

1 + dq2
2| < N and minimising q1 and q2 at the same time. This corre-

sponds to �nding the minimum absolute value of an ellipsis and is not very practical
to work with. Instead we will use the maximum norm and thereby minimising q1

and q2 seperately. As a result the constant we obtain in this way might not be the
best possible but it will su�ce. The key is using Theorem 6.2. From (6.3) it is
clear that we will need four inequalities. The linear form will be expressed in the
following way:


−1 0 x −

√
−dy

0 −
√
−d y

√
−dx

0 0 1 0
0 0 0 1



p1

p2

q1

q2

 =


−p1 + 0 · p2 + xq1 −

√
dyq2

0 · p1 −
√
dp2 + yq1 +

√
dxq2

q1

q2

 (6.4)

Before we apply Minkowski's Theorem on linear forms we summarise the relevant
inequalities. We have

|q| < N

if and only if
|q2

1 + dq2
2| < N2. (6.5)

Assuming |q1| < aN and |q2| < bN we see that

|q2
1 + dq2

2| ≤ |q1|2 + |d||q2|2 ≤ (a2 + |d|b2)N2.

So (6.5) holds if we can pick a and b such that a2 + |d|b2 = 1. We start by letting
b = a√

−d to make the expression symmetric. Thus we now need to pick a such that

1 = a2 + |d|b2 = a2 + a2 = 2a2.

Picking a = 1√
2
we see this is true. This means we can pick c3 = aN = N√

2
and

c4 = bN = N√
−2d

. The remaining two constants, c1 and c2 need to ful�ll that the
product c1c2c3c4 is greater than the absolute value of the determinant of the matrix
in (6.4). We denote this matrix A. Since A is an upper triangular matrix the
absolute value of its determinant is clearly |det(A)| =

√
−d. From (6.3) we see it is

possible to pick c1 = c2 and we want

c1c2c3c4 = c2
1

N2

2
√
−d
≥
√
−d.

So we can pick

c1 =

√
−2d

N
.

Taking another glance at (6.3) we can pick c′ =
√

2Nc1 = 2
√
−d. Now we have our

constants and applying Minkowski's Theorem on linear forms gives us a non-zero so-
lution in integers p1, p2, q1, q2. Hence (6.1) has a solution with |q| = |q1 + i

√
dq2| ≤ N .

We now let d ∈ {−3,−7,−11,−19,−43,−67,−163}. For p ∈ Od we have the
representation p = p1 + (1 + i

√
−d)/2p2, where p1, p2 ∈ Z. So the lattice is twisted,

but we can use the same procedure as above.
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Assume that ∣∣∣∣z − p

q

∣∣∣∣ < c′′

|q|N
,

where c′′ is some constant to be chosen later satisfying c′′ < 2
√
−d+ 1. This holds

if and only if

|qz − p| < c′′

N
.

Calculating the left-hand-side, we see this holds if and only if∣∣∣∣(q1 +
1 + i

√
−d

2
q2

)
(x+ iy)−

(
p1 +

1 + i
√
−d

2
p2

)∣∣∣∣ < c′′

N

which is if and only if∣∣∣∣q1x+
q2

2
x−
√
−d
2

q2y − p1 −
p2

2
+ i

(√
−d
2

q2x+ q1y +
q2

2
y −
√
−d
2

p2

)∣∣∣∣ < c′′

N
,

which is the case if

max{
∣∣∣∣q1x+

q2

2
x−
√
−d
2

q2y − p1 −
p2

2

∣∣∣∣ , ∣∣∣∣√−d2
q2x+ q1y +

q2

2
y −
√
−d
2

p2

∣∣∣∣} < c′′√
2N

.

Once more we write up the matrix
−1 −1/2 x x/2−

√
−dy/2

0 −
√
−d/2 y

√
−dx/2 + y/2

0 0 1 0
0 0 0 1



p1

p2

q1

q2

 =


−p1 − p2/2 + q1x+ q2x/2−

√
−dyq2/2

−
√
−dp2/2 + q1y +

√
−dq2x/2 + q2y/2

q1

q2


(6.6)

We once again consider |q| < N and notice that this holds if and only if∣∣∣∣(q1 +
q2

2

)2

+
−d
4
q2

2

∣∣∣∣ < N2.

Assuming once more that |q1| < aN and |q2|bN we see that

|q| ≤ |q1|2 +
1

4
|q2|2 + |q1||q2|+

−d
4
|q2|2 <

(
a2 +

b2

4
+ ab+

d

4
b2

)
N2.

We now pick a and b such that the right-hand-side is equal to N2. We start by
picking b = 2√

−d+1
a and arrive at that

1 = a2 + ab+
−d+ 1

4
b2 = a2 +

2√
−d+ 1

a2 + a2 =

(
2 +

2√
−d+ 1

)
a2.

So we can pick

a =
1√

2 + 2√
−d+1

.

As before this allows us to pick c3 = aN and c4 = bN so

c3 =
N√

2 + 2√
−d+1

.
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c4 =
N√

2 + 2√
−d+1

2√
−d+ 1

.

We note that the matrix has determinant
√
−d/2. So we can pick c1 = c2 and as

long as

c1c2c3c4 ≥
√
−d
2

(6.7)

We get a non-zero integer solution p1, p2, q1, q2. We get from picking c1 = c2 we get
from (6.7)

c2
1 ≥
√
−d
√
−d+ 1

4N2

(
2 +

2√
−d+ 1

)
,

noting that
√
−d+ 1 >

√
−d and that

√
−d > 2 we can pick

c1 = c2 =

√
−d+ 1

N
.

Thus we can choose c′′ =
√

2Nc1 so

c′′ =
√

2
√
−d+ 1.

To �nish the proof we need only let notice that c = 2
√
−d+ 1 is bigger than both

c′ = 2
√
−d and c′′ =

√
2
√
−d+ 1.

The second lemma we will need considers the case s = d′ and can be found in
[Gittenberger and Thuswaldner, 2000, Proposition 2.1]. Notice that the proof given
there is not valid in our case, but the ideas can be adopted to provide a proof that
works in the generality needed, before we can do that we shall need [Gittenberger
and Thuswaldner, 2000, Lemmata 2.3,2.4 an 2.5].

Lemma 6.4. Let h, q ∈ Od with |q| > 2, and let h and q be relatively prime. Let

S =
∑
|z|2<N

e

(
tr

(
h

q
z

))
.

Then

|S| �
√
N |q|.

Proof. We see that for �xed d there exists a residue system R modulo q satisfying

R ⊂ {z ∈ Od | |z| ≤ c|q|},

where c is some positive �xed constant depending only on the ring Od. We now
tesselate the open disc KN = {z | |z|2 < N} with translates of R. Let T be this
tesselation and de�ne

EN = {R ∈ T | R ⊂ KN},
FN = {R ∈ T | R 6⊂ KN}.

We have by [Hua, 1951, Theorem 3] that∑
z∈R

e

(
tr

(
h

q
z

))
= 0 for R ∈ EN .
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Thus

S =
∑
R∈FN

∑
z∈R∩KN

e

(
tr

(
h

q
z

))
.

But this sum has at most O(
√
N |q|) summands, so the proof is complete.

We adopt Hua's notation and let
∑c′

x denote the sum over all integers, x in a set
of the form ∩Jj=1 (aj + {y | |y|2 ≤ cjN}) with aj ∈ Od and 0 < cj < c′. The exact
values of aj, cj and c′ are not important but can be found in [Hua, 1965, Lemma 3.3
and 3.4].

Lemma 6.5. Let f(x) =
∑k

j=0 ajx
j be a polynomial of degree k and let

S =
∑
|z|2<N

e(tr(f(z))).

Then we have the estimate

|S|2k−1 ≤ cN2k−1−1|
c′∑
y1

· · ·
c′∑
yk

e(tr(y1 . . . yk−1(k!akyk + β)))|

with certain constants c and β.

Let dk(z) be the number of representations of z as a product of k non-zero
integers from Od. Then we have∑

|z|2<N

≤ N(logN)k−1

as found in [Narkiewicz, 1990, page 514]. Using [Hua, 1965, Lemma 6.1] we get the
following lemma

Lemma 6.6. For σ2 ≥ 23k − 1 the estimate

′∑
|z|2<N

dk(z) = O(N(logN)−σ2)

holds. Here the prime (′) indicates that the sum is taken over all z in the range of
summation satisfying

(logN)σ2 ≤ cdk(z).

Lemma 6.7. Let h and q be relatively prime and suppose that

f(x) =
h

q
xd
′
+ αd′−1x

d′−1 + · · ·+ α1x+ α0,

where (logN)H ≤ |q|2 ≤ Nd′(logN)−H . Then∣∣∣∣∣∣
∑
|z|2≤N

e(tr(f(z)))

∣∣∣∣∣∣� N(logN)−G, with H ≥ 2d
′+2G+ 23(d′+2).
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Proof. For ease of notation we set k = d′ and now consider di�erent cases, depending
on the value of k. For k = 1 we can apply Lemma 6.4 and obtain

S =

∣∣∣∣∣∣
∑
|z|2<N

e

(
tr

(
h

q
+ αd′−1

))∣∣∣∣∣∣ ≤ N(logN)−H/2 � N(logN)−G.

Suppose now that k > 1. We start by noting that the calculations done in (4.7)

remains valid if the summation is shifted to be of the shape
∑c′

x .
Following the idea in Hua's proof of [Hua, 1965, Lemma 3.6] we apply Lemma

6.5 to estimate |S|2k−1

|S|2k−1 ≤ cN2k−1−k

∣∣∣∣∣
c′∑
y1

· · ·
c′∑
yk

e(tr(y1 . . . yk−1(k!akyk + β)))

∣∣∣∣∣
≤ cN2k−1−k

c′∑
y1

· · ·
c′∑

yk−1

∣∣∣∣∣
c′∑
yk

e(tr(y1 . . . yk−1(k!akyk + β)))

∣∣∣∣∣
� N2k−1−k

c′∑
y1

· · ·
c′∑

yk−1

∣∣∣∣∣k!y1 . . . yk−1

c′∑
yk

e(tr(akyk + β))

∣∣∣∣∣
Using (4.7) we can estimate the inner sum

� N2k−1−k
c′∑
y1

· · ·
c′∑

yk−1

∣∣∣∣k!y1 . . . yk−1

(√
N +

N

(logN)σ/2
+
√
N(logN)σ

)∣∣∣∣
By setting

ζ = k!y1 . . . yk−1 (6.8)

we have |ζ|2 ≤ M = c′kk!Nk−1. For a �xed ζ 6= 0 the number of solutions to
equation (6.8) is less than or equal to dk−1(ζ). For ζ = 0 the number of solutions is
O(Nk−2). We now get

|S|2k−1 � N2k−1−k

 ′∑
|ζ|2≤M

dk−1(ζ) +Nk−2

(√N +
N

(logN)σ/2
+
√
N(logN)σ

)
Using Lemma 6.6 we see that

� N2k−1−k (N(logN)−σ2 +Nk−2
)(√

N +
N

(logN)σ/2
+
√
N(logN)σ

)
� N2k−1−1

Taking the 2k−1th root concludes the proof.

We will apply the last lemma recursively and therefore we need a tool to rewrite
it, which is the following lemma.

Lemma 6.8. [Korobov, 1992, Lemma 26] Let f1 and f2 be real-valued functions
de�ned on a �nite set M . Then∑

x∈M

e(f1(x) + f2(x)) =
∑
x∈M

e(f1(x)) + 2πθ
∑
x∈M

|f2(x)|,
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for some θ with |θ| ≤ 1.

Corollary 6.9. Let g(x) = αd′x
d′ + αd′−1x

d′−1 + · · · + α1x + α0 ∈ C[X]. If there
exist h, q ∈ Od[X] relatively prime and∣∣∣∣αd′ − h

q

∣∣∣∣ ≤ (logN)H

|q| ≤ Nd′/2
,

with (logN)H+G ≤ |q| ≤ Nd′/2(logN)−H and H ≥ 2d
′+1G+ 23(d′+2)−1, then∣∣∣∣∣∣

∑
|z|2≤N

e(tr(g(z)))

∣∣∣∣∣∣� N(logN)−G

We �rst show that the corollary follows from the lemmata, and then we prove
the proposition.

of Corollary 6.9. Using �rst Lemma 6.8 and then the estimate in Lemma 6.7 to-
gether with the assumption of the corollary we get∣∣∣∣∣∣

∑
|z|2≤N

e(tr(g(z)))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|z|2≤N

e
(

tr
(
αd′z

d′ + αd′−1z
d′−1 + · · ·+ α1z + α0

))∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
|z|2≤N

e
(

tr
((
αd′−1z

d′−1 + · · ·+ α1z + α0

)))∣∣∣∣∣∣
+

∣∣∣∣∣∣2π
∑
|z|2≤N

∣∣∣∣tr((αd′ − h

q

)
zd
′
)∣∣∣∣
∣∣∣∣∣∣

� N(logN)−G +N1/2.

Proof of Proposition 6.1. The proof goes much along the same lines as that of
[Madritsch, 2008, Proposition 5.1], which is inspired by [Nakai and Shiokawa, 1992,
Lemma 2]. We consider the di�erent possible values for s. The case s = d′ is dealt
with in Corollary 6.9, so assume that s < d′. Denote by k the least common multiple
of qs+1, . . . , qd′ . Obviously k ∈ Od since Od is a unique factorisation domain. Denote
by Q the integer such that

|k|2Q ≤ N < |k|2(Q+ 1).

From our assumptions we now get that

1 ≤ |k|2 ≤ (logN)K , where K =
d′∑

i=s+1

Ki,

and
N(logN)−K � Q� N/|k|2.
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Now sinceOd is a Euclidean domain, for every s ∈ Od there exist unique q, r ∈ Od
with |r|2 < |k|2 such that s = qk + r. Thus there exists a complete residue system
R modulo k with

R ⊂ {z ∈ Od | |z| ≤ |k|}.

We will use this system to tessellate the open disc D, de�ned by D = {z : |z|2 < N},
with translates of R. Let

T = {t ∈ Od | (R + tk) ∩D 6= ∅},
I = {t ∈ T | R + tk ⊂ D}.

Since there are O(
√
N) points on the circumference of D and O(|k|) points inside

R, there will be O(
√
N |k|) on a neighbourhood of the circumference. So we get∑

|z|2≤N

e(tr(f(z))) =
∑
t∈I

∑
r∈R

e(tr(f(tk + r))) +O(
√
N |k|).

Notice that if the assumption of Od being Euclidean is weakened to that of only
having unique factorisation, it might still be possible to �nd a complete set of
residues such that z = tk + r, but where r is not unique. In this situation we
will however pick up an error term since we would be summing up over all possible
residues. There is, as far as the author can tell no simple way to control the size of
this error term, hence we limit ourselves to the case where Od is Euclidean.

Now we will want to perform Abel summation, in order to do this we need an
ordering on I. For x, y ∈ I, we de�ne

x ≺ y ⇔

{
|x| < |y| or

|x| = |y| and arg(x) < arg(y).

From the polar representation of every complex number it is clear that this ordering
is well de�ned. Let M = |I|, and let σ be a bijection from the set {1, 2, . . . ,M} to
I such that σ(1) = 0, and σ(|I|) = max I where the maximum is taken with respect
to the newly de�ned ordering on I. Now de�ne

σ(x) ≺ σ(y)⇔ x ≤ y.

Then we have

∑
|z|2≤N

e(tr(f(z))) =
M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r))) +O(
√
N |k|). (6.9)

Before we perform Abel summation we de�ne the following quantities for ease of
notation. Let

ψr(x) =
d′∑

i=s+1

γi(xk + r)i, γi = αi −
ai
qi
,

ϕr(x) =
s∑
i=1

αi(xk + r)i, Tr(l) =
l∑

n=1

e(tr(ϕr(σ(n)))).

Using the linearity of the trace we get
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M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r)))

=
∑
r∈R

M∑
n=1

e

(
tr

(
d′∑
i=1

αi(σ(n)k + r)i

))

=
∑
r∈R

M∑
n=1

e

(
tr

(
s∑
i=1

αi(σ(n)k + r)i +
d′∑

i=s+1

αi(σ(n)k + r)i

))

=
∑
r∈R

M∑
n=1

e

(
tr

(
ϕr(σ(n)) +

d′∑
i=s+1

(
γi +

ai
qi

)
(σ(n)k + r)i

))

=
∑
r∈R

M∑
n=1

e (tr (ϕr(σ(n)))) e

(
tr

(
d′∑

i=s+1

(
γi +

ai
qi

)
(σ(n)k + r)i

))

=
∑
r∈R

M∑
n=1

e (tr (ϕr(σ(n)))) e

(
tr

(
d′∑

i=s+1

γi(σ(n)k + r)i

))
e

(
tr

(
d′∑

i=s+1

ai
qi

(σ(n)k + r)i

))

=
∑
r∈R

M∑
n=1

e (tr (ϕr(σ(n)))) e (tr (ψr(σ(n)))) e

(
tr

(
d′∑

i=s+1

ai
qi

(σ(n)k + r)i

))
.

Then we note that σ(n)k + r runs over the entire set of possible residues r, so we
can relabel these as r in the last sum

=
∑
r∈R

e

(
tr

(
d′∑

i=s+1

ai
qi
ri

))
M∑
n=1

e (tr (ϕr(σ(n)))) e (tr (ψr(σ(n))))

=
∑
r∈R

e

(
tr

(
d′∑

i=s+1

ai
qi
ri

))
M∑
n=1

e (tr (ψr(σ(n)))) (Tr(n)− Tr(n− 1))

=
∑
r∈R

e

(
tr

(
d′∑

i=s+1

ai
qi
ri

))

·

(
e(tr(ψr(σ(M))))Tr(M) +

M∑
n=1

(
e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1))))

)
Tr(n)

)
.

Taking absolute values in all of the above we get the following estimate

�

∣∣∣∣∣∑
r∈R

(
|Tr(M)|+

M∑
n=1

|e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1))))||Tr(n)|

)∣∣∣∣∣ .
Since the trace is a linear functional we get

d

dx
tr(f(x)) = tr

(
df

dx

)
.

We notice that tr(a)� |a| for a ∈ C and |σ(n)− σ(n+ 1)| � N1/2 for 1 < n ≤M ,
so by applying the mean value theorem we get

|e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1))))| � |k|
d′∑

i=s+1

|γi|N i/2−1 � |k|(logN)H

N
,
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where H = max{Hi | i = 1, 2, . . . , s}. Combining this with the above calculation
we get

M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r)))�
∑
r∈R

(
|Tr(M)|+ |k|(logN)H

N

M∑
n=1

|Tr(n)|

)
. (6.10)

In order to complete the proof we need only show that

|Tr(n)| � N

|k|(logN)G+H
. (6.11)

Since Tr(n) is an exponential sum with n terms, |Tr(n)| is at most n, so we can
assume that

n� N

|k|(logN)G+H
. (6.12)

We split the estimation of Tr(n) into two cases, according to whether or not there
exists a and q relatively prime such that

(logN)H
′ ≤ |q|2 ≤ N s(logN)−H

′
(6.13)

and ∣∣∣∣ksαs − a

q

∣∣∣∣ ≤ 1

|q|2
,

with H ′ = 23(s+2) + 2s+3(G+H) + sK.
Assuming such a and q exist we �rst notice that n ≤M = |I| ≤ |D| ≤ C2N

2. In
other words, n is bounded from above by the number of integer points in the disc
D, which in turn is clearly bounded by the area of the disc up to some constant.
This gives us the upper bound

n ≤ C2N
2,

for some explicit constant C2. Taking logarithms now yield

log n ≤ logC2 + 2 logN.

We let h′ = 23(s+2) + 2s+2(G+H). By taking h′ powers we obtain

(log n)h
′
≤ (logC2 + 2 logN)h

′
. (6.14)

Now from the de�nition of H ′ and (6.13) it follows that we have

(log n)h
′
≤ (logN)H

′
≤ |q|2.

At the same time we get from (6.12)

C1
N

(logN)G+H
≤ n,

for some explicit constant C1, where we absorbed |k| into it. Taking s powers we
get

Cs
1N

s

(logN)s(G+H)
≤ ns,
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and using (6.14) we get

Cs
1N

s

(logN)s(G+H) (logC2 + logN)h
′ ≤

ns

(log n)h′
.

Now from the de�nition of H ′ and h′ it follows that

Cs
1N

s

(logN)s(G+H) (logC2 + logN)h
′ ≥

N s

(logN)H′
.

Combining these last two inequalities and using (6.13) yields that

|q|2 ≤ N s

(logN)H′
≤ ns

(log n)h′

Lemma 6.7 now implies that

|Tr(n)| � |n(log n)−(G+H)|

� N

|k|(logN)G+H
.

And so (6.11) holds subject to assumption (6.13). Assume now that there are no
a, q such that (6.13) holds. Then by Lemma 6.3 we �nd a, q such that 0 ≤ |q|2 ≤
N s(logN)−H

′
we have that

|ksαs −
a

q
| < 2d3/2

|q|
√

(N s(logN)−H′
=

2d3/2(logN)H
′/2

|q|N s/2
. (6.15)

Since (6.13) does not hold we must have 1 ≤ |q|2 ≤ (logN)H
′
and therefore we have

|ksq|2 = |k|2s|q|2 ≤ (logN)sK(logN)H
′ ≤ (logN)K

∗
s .

Dividing (6.15) by |k|s we get

|αs −
a

ksq
| ≤ 2d3/2(logN)H

′/2

|ksq|N s/2
≤ (logN)H

∗
s

|ksq|N s/2
,

where H∗s is chosen so the last inequality holds. But this contradicts the assumption
on αs in the proposition, thus (6.11) holds.

Now using (6.9) and (6.10) we obtain

∑
|z|2≤N

e(tr(f(z)))�
∑
r∈R

(
|Tr(M)|+ |k|(logN)H

N

M∑
n=1

|Tr(n)|

)
+
√
N |k|

�
∑
r∈R

(
N

|k|(logN)G+H
+

1

(logN)G
M

)
+
√
N |k|

� N

(logN)G
,

which proves the proposition.



CHAPTER 7

P R O O F O F T H E M A I N T H E O R E M

We dedicate, as indicated by the name, this entire chapter to proving the main
theorem. We start out with de�ning some essential parameters and prove useful
connections between them. Using these parameters we rewrite the problem into one
of estimating exponential sums. Finally we use Proposition (6.1) or Lemma (6.7) to
calculate these exponential sums, depending on their type. In order to do so we will
need to consider sums according to the b-adic length of their arguments. Essentially
we divide these into three cases; those of short length, those of medium length and
those of long length, since a di�erent technique is required for each case.

From this point on we �x N and the block d1 . . . dl. We also de�ne a by

a =
l∑

i=1

dib
l−i (7.1)

We restate the main theorem of this part of the thesis here to remind us what
we need to show.

Theorem 7.1. Let f(z) = αnz
n + · · · + α1z + α0 be a polynomial with coe�cients

in C. Let (b,D) be a CNS in Od, where d ∈ {−1,−2,−3,−7,−11}. Then for every
l ≥ 1 we have

sup
d1...dl

∣∣∣∣ 1

N
N (θ(f); d1 . . . dl;N)− 1

|D|l

∣∣∣∣� (logN)−1

7.1 Essential parameters

Let m be the unique positive integer such that∑
n≤m−1

`(f(zn)) < N ≤
∑
n≤m

`(f(zn)), (7.2)

where zn = τ−1(n− 1) for n ≥ 1. We let M and J denote the maximum norm and
the maximum length of the (b,D)-ary expansion of bf(zn)c for n ≥ 1, respectively.
In other words,

M = max
n≤m
|zn|2, J = max

n≤m
`(f(zn)).

We now use Lemma 4.2 to obtain a relationship between m and M .

|log|b|2 max
n≤m
|zn|2 − `(max

n≤m
zn)| = |log|b|2 M − `(zm)|

= |log|b|2 M − blog|b|2 mc| ≤ c.

Hence we have
M � m,

where � means both � and � holds simultanously.
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Now we consider the connection between M and J and we start by noting that
|f(z)| � |z|d′ . For some absolute constant c1, Lemma 4.2 implies that

|log|b|2 max
n≤m
|f(zn)|2 − J | = |log|b|2 max

n≤m
|zn|2d

′ − J |+ c1

= |log|b|2 M
d′ − J |+ c1,

and so

M � |b|2J/d′ ≤ c.

From (7.2) we get the following relation between M and N:

N = mJ +O(m) = c0M log|b|2 M +O(M),

where c0 is a positive constant depending only on d and b.
Now we want to split the sum on the right hand side of (7.2) into parts where

f(zn) has the same b-ary length. Let Il, Il+1, . . . , IJ ⊂ {1, 2, . . . ,m} be a partition
of the set {1, 2, . . . ,m} such that

n ∈ Ij ⇔ `(f(zn)) = j.

In order to estimate the size of these subsets we de�ne some more parameters.
De�ne Mj, where j = l, l + 1, . . . , J to be the least integer such that any z ∈ C of
norm greater than or equal to Mj has length at least j, i.e.,

Mj = max
`(z)<j

|z|2 = max
n<|b|2(j−1)

|zn|2.

Using the same arguments as we did when we found a relation between M and
b we now get Mj � |b|2j/d

′
. Finally de�ne Xj by

Xj = M −Mj. (7.3)

7.2 Rewriting the problem

Using the parameters we de�ned above we can rewrite our problem. Let N (f(zn))
be the number of occurences of the block d1 . . . dl in the b-ary expansion of the
integer part of f(zn). Then we have

|N (θq(f); d1 . . . dl, N)−
∑
n≤m

N (f(zn))| ≤ 2lm.

So, it su�ces to show ∑
n≤m

N (f(zn)) =
N

|D|l
+O

(
N

logN

)
. (7.4)

To count the occurences of d1 . . . dl in bf(zn)c properly we use the indicator function
of Fa, where a is the number de�ned in (7.1) and Fa is then de�ned as in (5.1).

For a �xed n ∈ {1, 2, . . . ,m} we write out f(zn) in its b-ary expansion, i.e.,

f(zn) = arb
r + · · ·+ a0 + a−1b

−1 + . . . ,
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where ai ∈ D for i = r, r − 1, . . . , we see that

I({b−j−1f(zn)}) = 1⇔ d1 . . . dl = aj−1 . . . aj−l,

where {x} denotes the fractional part of x. Now since every Ij, where l ≤ j ≤ J ,
consist of exactly those n such that f(zn) has b-ary expansion of length at least j,
we get ∑

n≤m

N (f(z)) =
∑
l≤j≤J

∑
n∈Ij

N (f(z)) =
∑
l≤j≤J

∑
n∈Ij

I
({

f(zn)

bj+1

})
.

For every j there may be elements z ∈ Od with |z|2 < Mj but `(z) ≥ j. We want to
ignore these in the calculations to come, so we need to show that they provide an
error-term which is small enough to be disregarded. From Lemma 4.2∑

n∈Ij

1 =
∑

|zn|2<Mj

1 +
∑

Mj≤|zn|2<M

1.

Lemma 4.1 now gives us that that the �rst sum can be considered as an error-term
and so we are left with ∑

Mj≤|zn|2<M

1.

Thus we can assume that no z has `(z) ≥ j and |z|2 < Mj. In order to estimate
I(z) we make use of various sets and functions introduced in Lemma 5.2 and we
note that Fa can be covered by a set Ik ,a and an axis-parallel tube Pk,a. Thus the
question at hand is reduced to estimating how often the sequence {b−j−1f(zn)}n∈Ij
hits each of these sets. The �rst one Ik ,a is characterized by the Urysohn function
fa also introduced in Lemma 5.2. As for the axis-parallel tube Pk,a we de�ne

Ej = #

{
n ∈ Ij

∣∣∣∣ ϕ(f(zn)

bj+1

)
∈ Pk,a

}
,

where #{A} denotes the amount of elements in the set A. For every j ∈ {l, l +
1, . . . , J} we get ∑

n∈Ij

I
(
f(zn)

bj+1

)
=
∑
n∈Ij

fa

(
ϕ

(
f(zn)

bj+1

))
+O(Ej). (7.5)

We consider the terms on the right right hand side seperately. We start with fa,
from Lemma 5.3 we get

fa

(
ϕ

(
f(zn)

bj+1

))
= |b|−2`(a) +

∑
06=v∈Z2

c(v1, v2)e

(
v ·d ϕ

(
f(zn)

bj+1

))
, (7.6)

where v = (v1, v2) and c(·, ·) is the Fourier coe�cients of fa. We split the sum into
those v with |v|∞ ≤ ∆−1 and the rest. For |v|∞ > ∆−1 we can apply Lemma 5.3
and estimate the exponential function trivally to get∑

n∈Ij

fa

(
ϕ

(
f(zn)

bj+1

))
(7.7)

� Xj

|b|2l
+Xjµ

k∆2 + µk
∑

0<|v|∞≤∆−1

1

r(v)

∑
n∈Ij

e

(
v ·d ϕ

(
f(zn)

bj+1

))
.
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Here, Xj is as de�ned in (7.3). To estimate Ej we use Lemma 5.2 to split Pk,a into a
family Rj of µk rectangles. Since the discrepancy is de�ned on a rectangle we can
now use the Erd®s�Turán�Koksma-inequality to get

Ej �
∑
R∈Rj

Xjλ2(R) +XjDXj({xn}) (7.8)

� Xj

∑
R∈Rj

λ2(R) +
2

H + 1
+

∑
0<|v|∞≤H

1

r(v

∣∣∣∣∣∣ 1

Xj

∑
n∈Ij

e

(
v ·d ϕ

(
f(zn)

bj+1

))∣∣∣∣∣∣
 .

Even if some of the rectangles in Rj overlap, it follows from Lemma 5.2 property
(3) that ∑

R∈Rj

λ2(R)�
(
µ

|b|2

)k
.

So we can simplify (7.8) to

Ej � Xj

((
µ

|b|2

)k
+

µk

H + 1
(7.9)

+
µk

Xj

∑
0<|v|∞≤H

1

r(v)

∑
n∈Ij

e

(
v ·d ϕ

(
f(zn)

bj+1

)) .

As we can see, the exponential sums in (7.7) and (7.9) are of the same type, so
we de�ne

S(v, j) =
∑
n∈Ij

e

(
v ·d ϕ

(
f(zn)

bj+1

))
. (7.10)

We now insert (7.7), (7.9) and (7.10) into (7.5) in order to obtain

∑
n∈Ij

I
(
f(zn)

bj+1

)
� Xj

|b|2l
+Xjµ

k∆2 + µk
∑

0<|v|∞≤∆−1

1

r(v)
S(v, j)

+Xj

( µ

|b|2

)k
+

µk

H + 1
+
µk

Xj

∑
0<|v|∞≤H

1

r(v)
S(v, j)

 .

By rearranging we get

∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣ (7.11)

� Xj

(
µk∆2 +

µk

H + 1
+

(
µ

|b|2

)k)
+ 2

∑
0<|v|∞≤H

µk

r(v)
S(v, j).
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The next thing we want to do is to transfer the exponential sum from Z2 to Od
and we use the same idea as Gittenberger and Thuswaldner. Hence we let V denote
the Vandermonde matrix

V =

(
1 1
b b̄

)
.

Now let
ω(z) = (tr(z), tr(bz))T = Wϕ(z),

where T denotes the transposed vector and W = V V T . Using this notation we get

v · ϕ
(
f(z)

bj+1

)
= vW−1ω

f(z)

bj+1
= tr

(
(ṽ1 + bṽ2)

f(z)

bj+1

)
,

where (ṽ1, ṽ2) = vW−1. Using that |Ij| � Xj and the de�nition of Xj we can now
transfer (7.10) to

S(v, j) =
∑
n∈Ij

e

(
tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

))
(7.12)

�
∑

Mj≤|zn|2<Mj+Xj

e

(
tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

))
.

We assume that k and H, which we will choose later on depending on j, are such
that ∆−1, H � logN . This is possible since ∆ depends on k as seen in (5.2). Now
we will want to consider the sums S(v, j) according to the size of j. We therefore
split the size of j into three intervals

l ≤ j ≤ l + Cl log logN, (7.13)

l + Cl log logN < j ≤ J − Cu log logN, (7.14)

J − Cu log logN < j ≤ J, (7.15)

where Cl and Cu are su�ciently large constants. We refer to there as short, medium
and long b-ary expansions, respectively.

7.3 Estimation of medium length b-ary expansions

We start with the easiest of the three cases and therefore consider those j satisfying
(7.14). First we assume that there are integers a, q ∈ Od satisfying∣∣∣∣ ṽ1 + bṽ2

bj
αd′ −

a

q

∣∣∣∣ ≤ 1

|q|2
, (7.16)

and

(logXj)
H ≤ |q|2 ≤ Xd′

j (logXj)
−H ,

with G = 3 and H = 2d
′+2G+ 23(d′+2). Then we apply Lemma 6.7 to get

S(v, j)� Xj(logXj)
−G.
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Now if j satis�es (7.14) then (7.16) holds. Since by Lemma 6.3 there are a, q ∈ Od
such that

(a, q) = 1, 1 ≤ |q|2 ≤ Xd′

j (logXj)
−H ,

and ∣∣∣∣ ṽ1 + bṽ2

bj
αd′ −

a

q

∣∣∣∣ ≤ (logXj)
H

|q|Xd′/2
j

≤ 1

|q|2
.

We now split this case into two subcases depending on the size of |q|2. Assume �rst
that 2 ≤ |q|2 ≤ (logXj)

H . Then we have∣∣∣∣ ṽ1 + bṽ2

bj
αd′

∣∣∣∣ > 1

|q|
− 1

|q|2
≥ 1

2|2|
� (logXj)

−H ,

and thus by the assumption ∆−1 � logN we must have

|b|j � |(ṽ1 + bṽ2)αd′|(logXj)
H � (logN)(logXj)

H ,

Taking logarithms and dividing by log|b| we get a contradiction with (7.14) for
su�ciently large Cl. For z ∈ C we write

‖z‖ = min
n∈Z
||z|2 − n|.

Now, for q ∈ Od, if |q|2 = 1 then we must have q = 1 and ‖(ṽ1 + bṽ2)αd′‖ <
Xd′
j (logXj)

−2H . If |(ṽ1 + bṽ2)b−jαd′|2 >
√

2/2 then we get

|b|2j � |(ṽ1 + bṽ2)αd′| � logN,

this contradicts (7.14) for Cl large enough. On the other hand, if |(ṽ1+bṽ2)b−jαd′|2 <√
2/2 we get

|(ṽ1 + bṽ2)b−jαd′|2 =
∥∥(ṽ1 + bṽ2)b−jαd′

∥∥ < Xd′

j (logXj)
−2H ,

which implies that

|b|2j � |(ṽ1 + bṽ2)αd′|2Xd′

j (logXj)
−2H .

This contradicts (7.14) for Cu su�ciently large. Thus for j such that (7.14) holds
we get

S(v, j)� Xj(logXj)
−G. (7.17)

Inserting this into (7.11) gives us∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣� (7.18)

Xj

µk∆2 +
µk

V + 1
+

(
µ

|b|2

)k
+

µk

(logXj)3

 ∑
0<|v|∞≤∆−1

+
∑

0≤|v|∞≤V

 1

r(v)

 .

Now we can choose k and H so that ∆−1, H � logN as we claimed earlier. For
if j satis�es (7.14), using the de�nition of ∆ given in (5.2) we set

k = Ck log logXj, H = µk logXj, and ∆−1 =
(logXj)

Ck log|b|

2c∆

. (7.19)
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Where Ck is an arbitrary constant. Furthermore we de�ne Cµ > 1 to be such that
Cµµ = |b|2. Then we have for those j satisfying (7.14) that∣∣∣∣∣∣

∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣ (7.20)

� Xj((logXj)
−1 + (logXj)

−2(log logXj)
2)� Xj

j
.

We now move on to prove the same estimate for larger and smaller j.

7.4 Estimation related to long b-ary expansions

In this section we focus entirely on those j satisfying (7.15). We will start with the
same assumptions on ∆−1 and H, i.e., ∆−1, H � logN . For those j where (7.16)
holds, we get by Lemma 6.7

S(v, j) ≤ Xj(logXj)
−G.

If (7.16) does not hold, then for every j satisfying (7.15) with |b|j/d′ � Xj � |b|J/d
′
,

we have

0� |ṽ1 + bṽ2||b|−j/2d
′ � |f ′(z)| � |ṽ1 + bṽ2||b|J−j−j/2d

′
(7.21)

� |ṽ1 + bṽ2||b|−j/2d
′
(logN)C̃2 .

We will use these inequalities to apply Lemma 4.8 with

F = tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

)
,

m = |ṽ1 + bṽ2||b|−j/d
′
, and δ = |ṽ1 + bṽ2||b|−j/d

′
(logN)C̃2 . So for j as in (7.15) and

for σ = 2G we get

S(v, j)�
√
Xj

|ṽ1 + bṽ2||b|−j/d′
+

Xj

(logXj

σ/2

+ s
3− δ
1− δ

√
Xj(logXj)σ (7.22)

�
√
Xj|b|j/d

′

ṽ1 + bṽ2|
+

Xj

(logXj)G
.

We now insert this into (7.11) which yields∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣� Xj

(
µk∆2 +

2µk

H + 1
+

(
µ

|b|2

)k
(7.23)

+
µk

Xj

 ∑
0<‖v‖∞≤∆−1

+
∑

0<‖v‖∞≤H

 1

r(v)

(√
Xj|b|j/d

′

|ṽ1 + bṽ2

+
Xj

(logXj)3

) .

Now we de�ne k,H and ∆−1 as follows

k = max

(
1,

1/2 logXj + log 4C2
∆ − j/d′ log|b|

logCµ

)
, H = µk logXj, ∆−1 =

|b|k

2c∆

.
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Which gives us

µk∆2 =
|b|j/d′√
Xj

, µk ≤ |b|2k �
(

Xj

|b|2j/d′
) log|b|

logCµ

,

(
µ

|b|2

)k
=

1

Ck
µ

� |b|
j/d′√
Xj

.

We also get the following estimate

|ṽ1 + bṽ2| = |(1, b)(v1, v2)tW−1| � |(v1, v2)t| �
√
v1v2.

By inserting the above into (7.23) gives us∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣ (7.24)

�
√
Xj|b|j/d

′
+
Xj

j
+

(
Xj

|b|2j/d′
) log|b|

logCµ

(
√
Xj|b|j/d

′
+Xj(logXj)

−3),

for j satisfying (7.15).

7.5 Iterative estimates for the short b-ary

expansions

We now consider the last case, namely those j satisfying (7.13). This is the hardest
case and will take some time. Notice that in this case our assumptions on H and
∆−1 we have

|ṽ1 + bṽ2| � |b|j.
We use the ideas of Nakai and Shiokawa, namely applying Proposition 6.1 it-

eratively. If there is no such s as assumed in the proposition, we instead apply
Lemmata 4.8 and 4.9.

By we assumption in (7.13) we immediately get

|b|j ≤ (logN)Cl log|b|+o(1). (7.25)

We now de�ne g to be the polynomial

g(z) =
ṽ1 + bṽ2

bj
f(z),

so it has the coe�cients

βi =
ṽ1 + bṽ2

bj
αi, i = 0, 1, . . . , d′. (7.26)

Now we start applying Proposition 6.1. We �rst assume that 1 ≤ s < d′. Then
we set

Hd′ = H∗d′ + C1 log|b|+ 1, H∗d′ = 23(d′+2) + 2d
′+3G,

and inductively de�ne H∗r , Hr, and hr, where 1 ≤ r < d′, by the following

H∗r = 23(r+2) + 2r+3(G+Hr+1) + 2r
d′∑

i=r+1

Hr,

Hr = H∗r + 2(C1 log|b|+ 1),
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and

hr = H∗r + C1 log|b|+ 1.

Now let j satisfy (7.13 and assume that there are coprime pairs (ad′ , qd′), . . . , (as+1, qs+1)
of integers, i.e., pairs of elements from Od such that

1 ≤ |q|2 ≤ (logXj)
2hr and

∣∣∣∣αr − ar
qr

∣∣∣∣ ≤ (logXj)
hr

|qr|Xr/2
j

(s < r ≤ d′),

but there is no pair (as, qs) such that

1 ≤ |qs|2 ≤ (logXj)
2hs and

∣∣∣∣αs − as
qs

∣∣∣∣ ≤ (logXj)
hs

|qs|Xs/2
j

.

We denote the set of all j satisfying these conditions by Js. It follows from (7.25)
and (7.26) that for every j ∈ Js we have

1 ≤ |bjqr| ≤ (logXj)
2Hr and

∣∣∣∣βr − (ṽ1 + bṽ2)ar
bjqr

∣∣∣∣ ≤ (logXj)
Hr

|bjqr|Xr/2
j

,

for s < r ≤ d′, but there is no pair (As, Qs) of coprime integers such that

1 ≤ |Qs| ≤ (logXj)
2H∗s and

∣∣∣∣βr − As
Qs

∣∣∣∣ ≤ (logXj)
H∗s

|Qs|Xs/2
j

,

since if there were such As and Qs, we would have

1 ≤ |(ṽ1 + bṽ2)Qs|2 ≤ (logXj)
2H∗s+t ≤ (logXj)

2hs ,

together with (7.25) we end up with∣∣∣∣αs − bjAs
ṽ1 + bṽ2Qs

∣∣∣∣ ≤ (logXj)
H∗s+C1 log|b|+1

|(ṽ1 + bṽ2)Qs|Xs/2
j

≤ (logXj)
hs

|ṽ1 + bṽ2)Qs|Xs/2
j

,

which contradicts the assumption that j ∈ Js. So we can apply Proposition 6.1 with
Hi, H

∗
i and Ki = 2Hi, K∗i = 2H∗i which gives us

S(v, j)� Xj(logXj)
−G,

for all j ∈ J1

⋃
· · ·
⋃

Jd. We denote by J0 the set of all positive integers j satisfying
(7.13) with j /∈ J1

⋃
· · ·
⋃

Jd. It remains to estimate S(v, j) for such j. In order to
do so we shall apply Lemmata 4.8 and 4.9. For j ∈ J0 there exist coprime pairs
(ar, qr) of integers such that

1 ≤ |qr|2 ≤ (logXj)
2hr

∣∣∣∣αr − ar
qr

∣∣∣∣ ≤ (logXj)
hr

|qr|Xr/2
j

for 1 ≤ r ≤ d′.

We now set Ωr = αr − ar/qr for r = 1, . . . , d′, and a = gcd(a1, . . . , ad′) and q =
lcm(q1, . . . , qd′). Furthermore, for r = 1, . . . , d′ we de�ne cr by the equation

ar
qr

=
a

q
cr
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This allows us to rewrite the exponential sum in the following way

S(v, j) =
∑
n∈Ij

e

(
tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

))

=
∑

λ∈r(bj+1q)

e

(
tr

(
v̂a

bj+1q

d′∑
k=1

ckλ
k

))

×
∑
µ

∃n∈Ij :µq+λ=zn

e

(
tr

(
v̂

bj+1

d′∑
k=1

Ωk(µq + λ)k

))
,

where r(bj+1) denotes a complete system of residues modulo bj+1q and v̂ = ṽ1 + bṽ2.
We start by considering the second sum. Let R0 = R0(j, q) = {(bj+1q) · (α+βi) :

0 ≤ α, β ≤ 1} and let T0 be the set of translation vectors such that R0 tiles Z2, i.e.,
T0 = {(bj+1q)z : z ∈ Z[i]}. Furthermore we de�ne

T = {t ∈ T0 | (R0 + t) ∩ {zn | n ∈ Ij} 6= ∅}. (7.27)

We then have |T | � Xj|bj+1q|−2. Furthermore, we let T denote the area covered
by the translates of R0 by elements of T , i.e.,

T =
⋃
t∈T

(R0 + t).

For a �xed λ ∈ R0 ∩ Z[i] we then get

∑
µ

∃n∈Ij :µq+λ=zn

e

(
tr

(
v̂

bj+1

d′∑
k=1

Ωk(µq + λ)k

))

≤
∑
µ∈T

e

(
tr

(
v̂

bj+1

d′∑
k=1

Ωk(µq + λ)k

))
.

We now de�ne Fλ by

Fλ(x, y) = e

(
tr

(
v̂

bj+1

d′∑
k=1

Ωk((x+ iy)q + λ)k

))
.

Then we have

∂Fλ(x, y)

∂x
� ∂Fλ(x, y)

∂y
� v̂

|b|j
d′∑
k=1

k|q|(logXj)
Hk

qkX
k/2
j

X
(k−1)/2
j

� v̂

|b|j
X
−1/2
j |q|(logXj)

H∗1 .

We will use the same idea as in the proof of Lemma 4.8, so we �rst consider a single
square. Let Dν = {z = x + iy ∈ Od : −ν ≤ x, y ≤ ν}. We now apply Lemma 4.7
which yields∑

x+iy∈Dν

Fλ(x, y) =
v∑

x=−ν

ν∑
y=−ν

Fλ(x, y) =

∫ ν

−ν

∫ ν

−ν
Fλ(x, y) dx dy +O(ν).
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Now we again want to split T into squares. We notice that we have assumed that
|Ij| = Xj so we can consider Ij as an annulus, namely {z ∈ C : Mj ≤ |z|2 < M}.
So we choose a σ > 0 and tessellate T by squares of sidelength

√
|T |/(log|T |)σ.

Then we glue all the the squares in the interior of T together and estimate their
contribution on the boundary to the error term. This gives us∑

x+iy∈T

Fλ(x, y) =

∫∫
T
Fλ(x, y) dx dy +O

(
|T |

(log|T |)σ/2

)
.

We now put all of this together and we get

S(v, j) =
∑
n∈Ij

e

(
tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

))

=
∑

λ∈r(bjq)

e

(
tr

(
νa

bjq

d′∑
k=1

ckλ
k

)){∫∫
T
Fλ(x, y) dx dy +O

(
|T |

(log|T |)σ/2

)}

=
∑

λ∈r(bjq)

e

(
tr

(
νa

bjq

d′∑
k=1

ckλ
k

))
1

|bj+1q|2

∫∫
Mj≤|z|2<M

G(z) dz +O
(

Xj

(logXj)σ

)
,

where

G(z) = e

(
tr

(
v̂

bj+1

d′∑
k=1

Ωkz
k

))
.

Finally, we de�ne quotients of integers Ri/Q, where Ri, Q ∈ Od, for i = 1, . . . , d′ by

Ri

Q
=

v̂

bj
aci
q
.

We note that

N(v̂q) = N(bj+1Riqi/ai) � N(bj+1Riα
−1
i ) � N(bj+1Ri)� N(bj+1),

So by estimating the integral trivially and applying Lemma 4.9 we get

S(v, j) =
∑
n∈Ij

e

(
tr

(
(ṽ1 + bṽ2)

f(zn)

bj+1

))
(7.28)

� |b
jq|2

N(Q)
(N(Q))1−1/d′+ε Xj

|bjq|2
+

Xj

(logXj)σ
(7.29)

� Xj((N(v̂−1bj+1))−1/d′+ε + (logXj)
/σ). (7.30)

By plugging this into (7.11) we obtain∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣ (7.31)

� Xj

(
µk∆2 +

2µk

H + 1
+

(
µ

|b|2

)k

+ µk

 ∑
0<‖v‖∞≤∆−1

+
∑

0<‖v‖∞≤H

 1

r(v)

(
(N(v̂−1bj+1))−1/d′+ε

+(logXj)
−σ)
))
.
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Setting σ, k and H to the same values as in (7.19) and using (5.2) we get

σ = G , k = Ck log logXj, H = µk logXj, and ∆−1 =
(logXj)

Ck log|b|

2c∆

,

where Ck is an arbitrary constant. We see that

|ṽ1 + bṽ2| = |(1, b)(v1, v2)tW−1| � |(v1, v2)| � r(v).

We now split up into two cases depending on the size of d′.

• d′ = 1: We note that ∆−1, H � logN and so we get∑
0<‖v‖∞ logN

1

r(v)
(N(v̂−1bj+1))−1+ε �

∑
0<‖v‖∞≤logN

|ṽ1 + bṽ2|
|b|(2−ε)(j+1)/d′

� (logN)4

|b|2j/d′
.

• d′ ≥ 2: In this case we have

r(v)−1 � |ṽ1 + bṽ2|−1 � |ṽ1 + bṽ2|−2/d′ .

Using this together with the fact that ∆−1, H � logN yields us∑
0<‖v‖∞≤logN

1

r(v)
(N(v̂−1bj+1))−1/d′+ε �

∑
0<‖v‖∞≤logN

1

|b|(2−ε)(j+1)/d′

� (logN)2

|b|2j/d′
.

So in any case we have∑
0<‖v‖∞≤logN

1

r(v)
(N(v̂−1bj+1))−1/d′+ε � (logN)4

|b|2j/d′
.

Putting this into (7.31) gives us∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣ (7.32)

� Xj

(
(logXj)

−1 +
(logXj)

4 logXj

|b|2j/d′
)
� Xj

j
+Xj

(logN)5

|b|2j/d′
.

7.6 Summing up

Now all that is left is to sum everything up using the estimates we obtained in
the last section. So putting (7.20), (7.24) and (7.32) together while considering the
corresponding intervals we arrive at

∑
l≤j≤J

∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣� S1 + S2 + S3, (7.33)
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where

S1 =
∑
l≤j≤J

Xj

j
,

S2 =
∑

l≤j≤l+Cl log logN

Xj
(logN)5

|b|2j/d′
,

S3 =
∑

J−Cu log logN≤j≤J

√
Xj|b|j/d

′

+

(
Xj

|b|2j/d′
) log|b|

logCµ

(
√
Xj|b|j/d

′
+Xj(logXj)

−3).

Firstly, it is easy to see that
S1 �M.

Secondly, after a quick estimation we also see

S2 �
∑

l≤j≤l+Cl log logN

M
(logN)5

|b|2j/d′
�M

(logN)5

|b|2/d′(Cl log logN)
�M,

assuming Cl ≥ 5. For the last sum we have the following estimate:

S3 �
∑

J−Cu log logN≤j≤J

√
M |b|j/d′ +

(
M

|b|2j/d′
) log|b|

logCµ

(
√
M |b|j/d′ +M)

�
√
M |b|J/d′ +

(
M

|b|2J/d′
) log|b|

logCµ

(
√
M |b|J/d′ +M)�M.

By inserting this into (7.33) we get

∑
l≤j≤J

∣∣∣∣∣∣
∑
n∈Ij

I
(
f(zn)

bj+1

)
− Xj

|b|2l

∣∣∣∣∣∣�M � N

logN
,

which proves the main theorem.

Remark 7.2. As the reader should now be aware every single relevant calculation in
the above should hold if we lessen the restriction of being Euclidean to that of having
unique factorisation, apart from a single place, i.e., in the proof of Proposition 6.1.
In fact, as was pointed out by M. Risager during the authors quali�cation exam, if
6.1 could be shown to hold without any assumption of being Euclidean, it would be
possible to generalise the main result to any imaginary quadratic �eld.





Part II

Diophantine approximation and

Schmidt's conjecture
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CHAPTER 8

I N T RO D U C T I O N T O D I O P H A N T I N E

A P P ROX I M AT I O N

Simply put, Diophantine approximation is the study of how well it is possible to
approximate real numbers with rational numbers. We all know that the reals can be
constructed as a complete metric space having the rationals as a dense subset, where
the metric on the reals extends that of the rationals. Hence every real number can be
approximated arbitrarily well by a rational, in the sense that given any real number
x and any positive ε, we can �nd p ∈ Z and q ∈ N such that |x− p/q| < ε. However
this approximation does not tell us a lot about the complexity of the rational used.
The standard thing to do is to assign a weight to each rational and then see how
well it is possible to approximate a given real number with rationals having a small
weight. Usually one chooses the weight of p/q to be q. If we now ask the same
question of how well we can approximate a given real, it is easy to see that given
any x ∈ R and any positive integer q there is an integer p which is closest to qx,
hence we end up with |qx− p| < 1. But this is a very crude estimate and in fact we
can say a lot more in general using Dirichlet's theorem. For the sake of completeness
we state Dirichlet's theorem here. Note that p/q need not be in reduced form in
Dirichlet's theorem nor in the two corollaries.

Theorem 8.1. For every real number x and any positive integer N ≥ 1, there exists
a rational p/q with denominator satisfying 1 ≤ q ≤ N , such that∣∣∣∣x− p

q

∣∣∣∣ < 1

qN
.

The following corollary is sometimes more interesting to work with, even though
the bound is no longer uniform.

Corollary 8.2. For every real number x and any positive integer q ≥ 1, there exists
an integer p such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
.

Or put in another way

Corollary 8.3. For every irrational number x there are in�nitely many rationals
such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
.

Some natural questions to ask at this point is, can we do anything about the
exponent 2 and can we do anything about the constant 1 to gain more information?
The exponent 2 is the approximation exponent or irrationality exponent and we
shall not go into too much detail on it. Except to say that almost all real numbers
have approximation exponent 2, so we will focus on changing the constant 1 in the
numerator on the right hand side, and see what information we can get. We start
by recalling the following theorem due to Hurwitz.
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Theorem 8.4 (Hurwitz). For every irrational number x there are in�nitely many
rationals such that ∣∣∣∣x− p

q

∣∣∣∣ < 1√
5q2

.

It turns out that there are actually real numbers x where∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q2

holds in�nitely often for some positive constant c depending only on x. The set
of numbers for which there is a positive constant c, such that the above inequality
holds is called the badly approximable numbers and we denote them by Bad. We
shall often make use of ‖·‖ to indicate the distance to the nearest integer, using this
terminology we can multiply the above inequality with q to obtain

‖qx‖ ≥ c

q
.

The set Bad is of Lebesgue measure zero, yet it is a rather large set in some
other sense, as it has Hausdor� dimension 1, more information on what this means
is given in chapter 9. This fact implies that the set is uncountable. The fact that
the set Bad is of Lebesgue measure zero is due to Borel [Borel, 1909]. Later Jarník
used the theory of continued fractions to show that Bad has Hausdor� dimension 1
[Jarník, 1929]. We shall not replicate their proofs here, but instead consider how to
generalise the notion of being badly approximable to the n-dimensional Euclidean
space and give higher dimensional results.

One possible way of generalising badly approximable numbers to higher dimen-
sions is to consider what the correct analogue of Dirichlet's theorem would look like
in several dimensions.

In order to do so we shall need a version Minkowski's convex body theorem,
which we now state and prove.

Theorem 8.5 (Minkowski 1896). Let S be a convex set in Rn that is symmetric
around 0, bounded and with volume λ(S). Assume that λ(S) > 2n. Then S contains
a non-zero integer point.

Proof. The following neat proof is due to Mordell and can be found in [Schmidt,
1980]. For every positive integer m let Sm denote the set of points in S with rational
coordinates and common denominator m. As m → ∞ we see that the amount of
points in Sm will be asymptotically equal to λ(S)mn, which for certain large m is
bigger than (2m)n since λ(S) > 2n. As a consequence we must have two distinct
points (a1/m, a2/m, . . . , an/m) and (b1/m, b2/m, . . . , bn/m) both lying in Sm and
satisfying

ai ≡ bi mod 2m i = 1, 2, . . . , n. (8.1)

By symmetry and convexity we see that

g =
1

2
(a1/m, a2/m, . . . , an/m)− 1

2
(b1/m, b2/m, . . . , bn/m)

is in S. It follows from (8.1) that g has integer coe�cients, and it is obviously
non-zero, being a non-zero scaling of the di�erence of two distinct points.
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We shall now proof the higher dimensional version of Dirichlet's theorem.

Theorem 8.6. Given n real numbers α1, α2, . . . , αn and a natural number N there
exists integers p1, p2, . . . , pn, q with 1 ≤ q ≤ N such that∣∣∣∣αi − pi

q

∣∣∣∣ ≤ 1

qN1/n
for i = 1, 2, . . . , n.

Proof. Let α be a �xed real number and consider the set

S =

{
(x, y1, y2, . . . , yn) ∈ Rn+1 : −N + 1/2 ≤ x ≤ N + 1/2, |αx− yi| ≤

1

N1/n

}
We can calculate the volume of this set easily by noticing that it is a product of
intervals. We see that x can range through an interval of length 2N and each yi can
range through an interval of length 2/N1/n centered around αx. Hence

λ(S) = 2N
n∏
i=1

2

N1/n
= 2n+1,

where |S| denotes the volume of S.
Applying Minkowski's convex body theorem now gives us the existence of a

non-trivial point with integer coe�cients inside S and we are done.

We note that since q ≤ N we must have

Corollary 8.7. For every real n-tuple (x1, x2, . . . , xn) any N ≥ 1 and any positive
integer N ≥ q ≥ 1, there exists an n-tuple of integer (p1, p2, . . . , pn) such that∣∣∣∣xi − pi

q

∣∣∣∣ ≤ 1

q1+1/n
for 1 ≤ i ≤ n.

This allows us to extend our notion of badly approximable to several dimensions.
We let Badn denote the set of badly approximable vectors in Rn. i.e those x ∈ Rn

satisfying ∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q1+1/n
,

for some c = c(x) > 0 and for all p ∈ Zn, q ∈ N. Or more suitable for our purposes,
those x ∈ Rn satisfying

‖qx‖ ≥ c

q1/n
,

for some c = c(x) > 0 and for all q ∈ N.
We will now show that Badn has Lebesgue measure zero using a theorem of

Khintchine dating back to 1926, known in the litterature simply as Khintchine's
Theorem [Khintchine, 1926].

Theorem 8.8 (Khintchine's Theorem). Let Ψ1, . . . ,Ψn : N → (0, 1] and suppose
that Ψ(q) =

∏n
i=1 Ψi(q) is non-increasing. If the sum

∑∞
q=1 Ψ(q) is convergent, then

for almost all n-tuples (α1, . . . , αn) there are only �nitely many q with

‖qαi‖ < Ψi(q) i = 1, 2, . . . , n. (8.2)

But if the sum
∑∞

q=1 Ψ(q) is divergent, then for almost all n-tuples (α1, . . . , αn) there
are in�nitely many q satisfying the condition (8.2).



56 8. Introduction to Diophantine approximation

We shall not prove Khintchine's Theorem here, but a proof can be found in
[Bugeaud, 2004]. Note however that the notation di�ers slightly, and we have chosen
to use the notation from [Schmidt, 1980].

With Khintchine's Theorem it is now easy to show the following

Corollary 8.9. The set Badn has Lebesgue measure zero.

Proof. For each c > 0 let Badn(c) denote the set of x ∈ Rn for which there are
in�nitely many p ∈ Zn and q ∈ N.∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q1+1/n
.

It is now clear that Badn =
⋃
c>0 Badn(c). Now consider the sequence {cj}∞j=1

where cj = 1/j we see that Badn = ∪∞j=1 Badn(cj). Now we let j be any positive
integer and let Ψj(q) = cjq

−1/n. Then

∞∑
q=1

n∏
j=1

cjq
−1/n =

∞∑
q=1

cnj q
−1

is divergent. So by Khintchine's Theorem, for almost all n-tuples (α1, . . . , αn) there
are in�nitely many q with

‖qαj‖ < Ψj(q) i = 1, 2, . . . , n.

That is , almost all n-tuples are not in Badn(cj), and so Badn(cj) is a Lebesgue
null set. Taking the union over all j completes the proof.

As a �nal comment from the author before moving on to the next chapter, the
reader should be aware that the title �Zur Metrischen Theorie der diophantischen
Approximationen.� was very popular in the later part of the 1920s and has been
used by both Khintchine and Jarník.



CHAPTER 9

H A U S D O R F F M E A S U R E A N D

D I M E N S I O N

Hausdor� dimension is a useful tool in Diophantine approximation, as it intuitively
gives us some information about the size of a given set. Usually the sets studied in
Diophantine approximation are of Lebesgue measure zero, meaning Lebesgue mea-
sure will not give us any new information or any way of distinguishing between
two given sets. We proceed to give a short and self-contained account of the Haus-
dor� measure and dimension. More details and further references can be found in
[Falconer, 2003]

9.1 Hausdor� measure

Let us consider a set E ⊂ Rn. And for any set V ∈ Rn, let |V | denote the diameter
of the set V , i.e. |V | = supx,y∈V {|x− y|}, where |x− y| is the standard Euclidean
norm on Rn of the vector x− y. Given any positive δ, and an index set I which is
�nite or countable, we say that the collection {Vi ⊂ Rn | i ∈ I} is a δ-cover of E if
|Vi| < δ and E ⊂ ∪i∈IVi. Let

Hs
δ(E) = inf

{∑
i∈I

|Vi|s
}
,

where the in�mum is taken over all possible δ-covers of the set E. This set function
is an outer measure on Rn and as δ → 0 we notice that there are less possible
δ-covers, hence Hs

δ(E) increases to a possibly in�nite limit given by

Hs(E) = lim
δ→0
Hs
δ(E) = sup

δ>0
Hs
δ(E) ∈ [0,∞].

As we notice from its construction of covers Hs(E) ≤ Hs(F ) for any E ⊂ F . The
set function Hs is indeed subadditive and a regular outer measure. Restricting
this to the σ-algebra of Hs measurable sets we obtain the s-dimensional Haus-
dor� measure. We should note that Hs measurable sets contain among others, the
Lebesgue-measurable sets. If s is a positive integer, say n, then the n-dimensional
Hausdor� measure and the n-dimensional Lebesgue measure are comparable. This
is quite obvious from the construction of covers and it is an elementary fact that we
will come back to in a bit. Another important fact about the Hausdor�-measure is
that for any s, Hs is unchanged under isometries and behaves very well by scaling;
in fact, for any λ ≥ 0 we have that Hs(λE) = λsHs(E).

9.2 Hausdor� dimension

For a �xed set E we can consider Hs(E) as a function of s and see what happens
as s increases. For s = 0, Hs is simply the counting measure. We see that if E is
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a �nite set Hs(E) is going to be zero for s > 0. We also see that if E is an in�nite
set, then Hs(E) is either 0 or ∞, except for possibly one value of s. In essence this
means that there is at most one value of s where Hs is �nite, no matter if E is �nite
or not. We will make a short justi�cation of the last fact. It follows directly from
the de�nition using covers that there is a δ-cover of E such that∑

i∈I

|Vi|s ≤ Hs
δ(E) + 1 ≤ Hs(E) + 1 ≤ ∞.

Now suppose that Hs0(E) > 0 and s = s0 + ε, where ε > 0. Then for each Vi we
have |Vi|s = |Vi|s0+ε ≤ δε |Vi|s0 . So we see that∑

i∈I

|Vi|s =
∑
i∈I

|Vi|s0+ε ≤ δε
∑
i∈I

|Vi|s0 .

Thus we arrive at

Hs
δ(E) = Hs0+ε

δ (E) =
∑
i∈I

|Vi|s0+ε ≤ δε
∑
i∈I

|Vi|s0 ≤ δε(Hs0(E) + 1).

The conclusion of the above calculations is

0 ≤ Hs(E) = Hs0+ε(E) = lim
δ→0
Hs0+ε
δ (E) ≤ lim

δ→0
δε(Hs0(E) + 1) = 0.

So for all values of s bigger than s0 we have Hs(E) = 0. Now suppose once more
that Hs0(E) > 0. If for any ε > 0 we have Hs0−ε(E) > 0, then by the above we see
that Hs0(E) = 0, a clear contradiction. Hence Hs0−ε(E) = ∞. So for any in�nite
set E ⊂ Rn there is a unique non-negative number s0 such that

Hs(E) =

{
∞, 0 ≤ s < s0,

0, s0 < s <∞.

This critical exponent s0 is called the Hausdor� dimension of the set E and we
denote it by dimH(E). The Hausdor� dimension has certain nice properties and we
list a few of them, which are valid for sets in Rn.

(i) If E ⊂ F then dimH(E) ≤ dimH(F ).

(ii) dimH(E) ≤ n.

(iii) If E has positive Lebesgue measure, then dimH(E) = n.

(iv) If dimH(E) < n then E has Lebesgue measure 0.

(v) dimH ∪∞j=1Ej = sup{dimH(Ej) | j ∈ N}.

The properties (ii)− (iv) are the noteworthy ones for us in this thesis. They tell
us that when we consider a given set in Rn of Lebesgue measure 0, the biggest a set
can get is one having Hausdor� dimension n, that of the ambient space. When this
happens to be the case for a set E we say that E has full dimension.

There are di�erent ways of determining the Hausdor� dimension of a given set
and there are methods developed for particular types of sets. We will not delve too
much into the di�erent methods but focus solely on one which serves our purpose,
namely Schmidt games, which will be introduced in the next chapter.



CHAPTER 10

S C H M I D T G A M E S

Schmidt's game was introduced in 1965 in a paper by Wolfgang Schmidt (though not
published till 1966) [Schmidt, 1966]. It is an important tool when studying certain
types of sets of numbers, as it can give information about their Hausdor� dimension.
The game is played between two players usually refered to in the literature as Black
and White, or Alice and Bob. We shall choose the latter names for our players and
describe how the game is played in much the same way as McMullen does, since we
will be using his terminologi later on. Alice and Bob take turns in choosing a nested
sequence of closed Euclidean balls in Rn

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ B3 . . . ,

whose diameter satisfy, for �xed 0 < α, β < 1,

|Ai| = α |Bi| and |Bi+1| = β |Ai| . (10.1)

Notice that since the radii of the balls tend to 0 and all the balls are closed in Rn

and hence compact, the intersection will be a unique point which we denote by x.
We say E ⊂ Rn is an (α, β)-winning set if Alice has a strategy that ensures that
x ∈ E. We say E is α-winning if it is (α, β)-winning for all 0 < β < 1. Finally we
say that E is a winning set if it is α-winning for some α > 0. Winning sets have
many useful properties. We list the ones that are most important to us here.

1. Any winning set in Rn has Hausdor� dimension n.

2. A countable intersection of α-winning sets is α-winning.

3. The image of a winning set under a bi-Lipschitz homeomorphism of Rn is
again winning.

In Schmidt's original paper from 1965, Schmidt describes the games and uses
them to prove several interesting results. For instance property 1 and 2 above. He
also showed that the set of badly approximable numbers is winning and states that
similar results hold in higher dimensions.

In his paper, [McMullen, 2010], McMullen suggests two variants of Schmidt's
game. The �rst is to change (10.1) to

|Ai| ≥ α |Bi| and |Bi+1| ≥ β |Ai| .

If the game is played like this, and Alice has a winning strategy for the set E. We
say that E is an (α, β)-strong winning set. The rest of the terminology is made
in the same manner by putting strong in front. The second variant is the absolute
version. Here the sequence of balls chosen need no longer only be nested, but should
satisfy the following

B1 ⊃ (B1 \ A1) ⊃ B2 ⊃ (B2 \ A2) ⊃ B3 . . . (10.2)
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60 10. Schmidt Games

On top of this we must have for �xed 0 < β < 1/3

|Bi+1| ≥ β |Bi| and |Ai| ≤ β |Bi| . (10.3)

Notice that the radii of the balls here do not have to tend to 0, so there is not
necessarily a unique point in the intersection. Therefore we say that Alice has a
winning strategy for the set E if she can play such that E contains any point from
the intersection of all the Bi. If this is the case for all 0 < β < 1/3, we say that
E is an absolutely winning set. The important thing to note in this variant of the
game is that Alice has very little control over Bob's choices. Essentially she can
only prevent him from picking his favorite ball in each turn.

We will not always be playing games on all of Rn but sometimes restrict ourselves
to certain subsets. We therefore require some more terminology.

De�nition 10.1. Given a closed set K ⊂ Rn and a set S ⊂ K we say that S is
winning onK if Alice has a winning strategy for the set S with the further restriction
that every ball should now be placed with center in K. i.e., Bob picks B1 with center
b1 ∈ K, then Alice picks A1 with center a1 ∈ K ∩ B1 and the game is played in
exactly the same manner as before, apart from this restriction. The fact that K is
closed and the centres bi ∈ K for all i ensures that ∩Bi ⊂ K.

In other words, we completely ignore every point in Rn \ K when playing the
game.

10.1 Hyperplane absolute winning sets

Based on the ideas of McMullen another variant of the game was invented by Broder-
ick, Fishman, Kleinbock, Reich and Weiss in [Broderick et al., 2012]. They observed
that many sets of interest to people in the Diophantine approximation branch tended
to be sets that avoided certain hyperplanes. As such they are almost guarenteed not
to be absolutely winning, since Alice can only block a single ball each turn and not
an entire hyperplane. Thus Bob could come up with a strategy ensuring that his
next ball would always be placed on this very hyperplane. The variant they propose
is to change the game, so that Alice instead of blocking a ball, blocks a small neigh-
bourhood of a hyperplane. To make this more precise, we let k ∈ {0, 1, . . . , n− 1},
where n is the dimension of the ambient space (Rn). We let 0 < β < 1/3, and de�ne
the k-dimensional β-absolute game in the following way. Bob initially picks x1 ∈ Rn

and r1 > 0 de�ning the closed ball B(x1, r1). At each stage of the game, after Bob
has chosen xi, ri, Alice chooses an a�ne subspace of dimension k and removes its
ε(i)-neighbourhood, denoted by Ai = Lε(i) from Bi = B(xi, ri). Then Bob chooses
xi+1 and ri+1 such that ri+1 ≥ βri and

Bi+1 ⊂ (Bi \ Ai) .

A set E is said to be k-dimensionally β-absolute winning if Alice has a strategy
guarenteeing that ∩iBi intersects E. In the special case that k = n− 1 we say that
E is a Hyperplane Absolute Winning set, or a HAW set. In order to show just how
strong the HAW property is we need to recall a few de�nitions from measure theory.
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10.2 Measures on Rn

We begin with the notion of being absolutely decaying, a concept introduced by
Kleinbock, Lindenstrauss and Weiss in [Kleinbock et al., 2004], though in a slightly
di�erent manner than given here.

De�nition 10.2. If µ is a locally �nite Borel measure on Rn and C, γ > 0 we say
that µ is (C, γ)-absolutely decaying if there exists ρ0 > 0 such that, for all 0 < ρ < ρ0,
all x ∈ suppµ, all a�ne hyperplanes L ⊂ Rn and all ε > 0, one has

µ
(
B(x, ρ) ∩ L(ε)

)
< C(ε/ρ)γµ (B(x, ρ)) .

Here L(ε) denotes the ε-neighbourhood of the hyperplane L. We say that µ is
absolutely decaying if it is (C, γ)-absolutely decaying for some positive C and some
positive γ. Intuitively this means that the measure µ is not concentrated on any
hyperplane.

De�nition 10.3. A measure µ is called D-Federer (or D-doubling) if there exists
ρ0 > 0 such that

µ (B(x, 2ρ)) < Dµ (B(x, ρ))∀x ∈ suppµ,∀0 < ρ < ρ0.

We say that µ is Federer if it is D-Federer for some D > 0.

Measures that are both absolutely decaying and Federer are said to be absolutely
friendly, a notion coined in [Pollington and Velani, 2005]. An important thing to
note is that the Federer condition always holds when the measure is Ahlfors regular.

De�nition 10.4. µ is said to be δ-Ahlfors regular, if there exists positive δ, c1, c2, ρ0

such that
c1ρ

δ ≤ µ (B(x, ρ)) ≤ c2ρ
δ ∀x ∈ suppµ,∀0 < ρ < ρ0.

We say that µ is Ahlfors regular if it is δ-Ahlfors regular for some positive δ.
It can easily be shown that if µ is a δ-Ahlfors regular measure, then the Hausdor�
dimension of suppµ is equal to δ. There are many examples of measures that
are both absolutely decaying and Ahlfors regular, for instance limit measures of
irreducible families of contracting self-similar transformations of Rn satisfying the
open set condition. The open set condition, as well as much of the base study on
fractals and measures supported on fractals, are due to Hutchinson and the work in
his famous paper [Hutchinson, 1981]. The reader may also consult [Falconer, 2003]
for more background information.

To show how strong the HAW property is we list a few de�nitions and some
theorems given in [Broderick et al., 2012].

De�nition 10.5. Given E ⊂ Rn we say that E is strongly (resp. strongly C1,
strongly a�nely incompressible) on K if the following holds

dimH

(
∞⋂
i=1

f−1
i (E) ∩K

)
= dimH(U ∩K),

for any open set U ⊂ Rn with U∩K 6= ∅ and any sequence {fi} of bi-Lipschitz maps
(resp. C1 di�eomorphisms, a�ne nonsingular maps) of U onto (possibly di�erent)
open subsets of Rn.
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We note that if E is strongly C1 incompressible, then E behaves as well as
any open set, with respect to the Hausdor� dimension, when intersected with any
su�ciently nice fractal. Here su�ciently nice means those supporting an Ahlfors
regular measure which is absolutely decaying, two concepts we shall de�ne in a
short while. The main theorem of [Broderick et al., 2012] is the following, stating
in particular that Badn is strongly C1 incompressible.

Theorem 10.6. [Broderick et al., 2012, Theorem 1.1] Let µ be a measure on Rn

which is absolutely decaying and Ahlfors regular. Then Badn is strongly C1 incom-
pressible on K = suppµ.

For our purpose the following corollary is of interest.

Corollary 10.7. [Broderick et al., 2012, Corollary 5.4] Let µ be absolutely decaying
and Ahlfors regular, and let E ⊂ Rn be k-dimensionally absolute winning. Then E
is strongly C1 incompressible on suppµ.

As the corollary is interesting to us we shall now replicate the proof of it as given
in [Broderick et al., 2012] and explain the various concepts needed. The following
lemma provides a condition on a set K to estimate the Hausdor� dimension from
below of S ∩K when S is any set which is winning on K. The lemma is a modi�ed
version of a corollary found in Schmidt's paper [Schmidt, 1966, Corollary 1]. First
a bit of notation. For K ⊂ Rn, x ∈ K, ρ > 0 and 0 < β < 1, let NK(β, x, ρ) denote
the maximum number of disjoint balls of radius βρ centered on K and contained in
B(x, ρ).

Lemma 10.8. [Broderick et al., 2012, Lemma 4.1] Suppose there exists positive
M, δ, ρ0 and β0 such that

NK(β, x, ρ) ≥Mβ−δ,

for all x ∈ K, ρ < ρ0 and β < β0. Then dimH(S ∩K ∩ U) ≥ δ for all open sets U
with U ∩K 6= ∅ and any set S, which is winning on K.

Note that the condition in the lemma can be satis�ed with δ = dimH K whenever
K supports an Ahlfors regular measure.

We shall use this lemma to prove another lemma which gives us an estimation
from below on the Hausdor� dimension of the support of an absolutely decaying
measure.

Lemma 10.9. [Broderick et al., 2012, Lemma 5.2] Let µ be (C, γ)-absolutely decay-
ing, let K = suppµ, and let S ⊂ Rn be winning on K. Then dimH(S ∩K ∩U) ≥ γ
for any open set U with K ∩ U 6= ∅.

Proof. For any β < 1, let k be chosen such that for some su�ciently small but
�xed ρ we have infx∈K NK(β, x, ρ) ≥ k. For any x ∈ K we can pick k disjoint
balls of radius βρ inside the ball B(x, ρ). For each of these balls pick a hyperplane
neighbourhood of width 2β contained in the ball around x of radius (1− β)ρ. The
total measure of these hyperplane neighbourhoods is at most kC(2β)γ/(1 − β)γ of
the measure of the ball B(x, (1− β)ρ). So if k < (1− β)γ/C(2β)γ, there is a point
of K outside the union of these hyperplane neighbourhoods and in B(x, (1− β)ρ).
This point can be the center of a new βρ-ball in B(x, ρ) and we will now have
k + 1 disjoint balls, since each hyperplane neighbourhood contains a ball. Hence
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we must have NK(β, x, ρ) ≥ (1 − β)γ/C(2β)γ, so for su�ciently small β we get
NK(β, x, ρ) ≥ Mβ−γ for some constant M . Applying Lemma 10.8 yields us the
estimate.

Similar arguments to the one above allowed Fishman in [Fishman, 2009] to prove
the following

Lemma 10.10. [Fishman, 2009, Theorem 5.1] Let µ be δ-Ahlfors regular, let K =
suppµ, and let S ⊂ Rn be winning on K. Then dimH(S∩K∩U) = δ = dimH(K∩U)
for every open set U ⊂ Rn with U ∩K 6= ∅.

Note that a more specialized version of the above theorem was proven indepen-
dently in [Esdahl-Schou and Kristensen, 2010, Theorem 1].

We shall need another theorem before we can conclude that Corollary 10.7 holds.
We choose not to prove the theorem though, as it is beyond the scope of this thesis.

Theorem 10.11. [Broderick et al., 2012, Theorem 2.4] Let S ⊂ Rn be k-dimensionally
absolute winning, U ⊂ Rn open, and f : U → Rn a C1 nonsingular map. Then
f−1(S)∪U c is k-dimensionally absolute winning. Consequently, any k-dimensionally
absolute winning set is strongly C1 incompressible.

Combining Theorem 10.11 with 10.10 we can prove Corollary 10.7.
We continue with a short historical survey.





CHAPTER 11

A S U RV E Y O F FA M O U S C O N J E C T U R E S

I N D I O P H A N T I N E A P P ROX I M AT I O N

Littlewood's conjecture is (at least to the knowledge of the author) still an open
problem. It was suggested by Littlewood in the 1930s and can be explained quite
simply. If ‖x‖ denotes the distance between x and the nearest integer. Then Little-
wood's conjecture states that for any two real numbers x and y we have

lim inf
q→∞

q ‖qx‖ ‖qy‖ = 0.

We shall not delve too deeply into why Littlewood's conjecture is interesting,
other than the fact that after roughly 80 years of several mathematicians trying
to attack it, it has remained unsolved. In fact it has led to other conjectures both
solved and unsolved. It is worth noting that Borel in 1909 (before the conjecture was
made) showed that the set of points (x, y) ∈ R2 that violates Littlewood's conjecture,
which we denote by the exceptional set, is of Lebesgue measure zero. Much later
Einsiedler, Katok and Lindenstrauss showed that the exceptional set has Hausdor�
dimension zero, see [Einsiedler et al., 2006]. The work done to achieve this result is
part of what earned Lindenstrauss his Field's medal in 2010.

Note that if the exceptional set had positive dimension, it would be non-empty
and the conjecture would have been answered in the negative straight away. But
since it has dimension zero, we are in some sense, none the wiser. It can still be
uncountable, though everyone hopes that it is empty.

Somewhere in between this, namely in the 1980s Wolfgang Schmidt proposed
a famous conjecture, which in essence shows why Littlewood's conjecture is such
a hard nut to crack. Schmidt showed that if his conjecture is false, then there
is a counterexample to Littlewood's conjecture. Schmidt's conjecture was solved
in 2010 by Badziahin, Pollington and Velani, see [Badziahin et al., 2011]. Later
another proof was given by An in 2012, [An, 2013], which improves the result of
Badziahin, Pollington and Velani.

So much for the history lesson. The rest of this thesis is concerned with ex-
plaining what Schmidt's conjecture actually states and what exactly was shown by
Badziahin, Pollington and Velani, what An managed to improve upon, and �nally
to consider an analogue of Schmidt's conjecture in the complex case.

11.1 Schmidt's conjecture

For any 0 ≤ i, j ≤ 1 with i+ j = 1, let Bad(i, j) denote the set of points (x, y) ∈ R2

for which max{‖qx‖1/i , ‖qy‖1/j} > c/q for all q ∈ N, where c = c(x, y) is a positive
constant.

Schmidt noted that if there were just two pairs (i, j) and (i′, j′) with i 6= i′

such that Bad(i, j) ∩ Bad(i′, j′) = ∅, then he would have a counter-example to
Littlewood's conjecture. After observing this Schmidt's original question was the
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following: Is the intersection of Bad(1/3, 2/3) and Bad(2/3, 1/3) non-empty? This
is a very speci�c problem and there is nothing special about 1/3 and 2/3. So it
seemed natural to quickly consider the following question, which became known
commonly as Schmidt's conjecture: Is Bad(i, j) ∩Bad(i′, j′) = ∅ ?

Badziahin, Pollington and Velani managed to show that any �nite intersection
of sets of the type Bad(i, j) is non-empty and in fact have full dimension. They also
managed to show that certain in�nite intersections had full dimension as long as
they satis�ed a technical condition. An was able to remove the technical condition
and in fact show that any countable in�nite intersection would, not only have full
dimension, but be a winning set.



CHAPTER 12

A C O M P L E X A N A L O G U E O F

S C H M I D T ' S C O N J E C T U R E

In this chapter we will study an analogue of Schmidt's conjecture, not in R2 but
instead in quadratic imaginary �elds, where the associated ring of integers is a
unique factorization domain. As already mentioned, there are 9 such �elds and
they are described by the following 9 numbers known as the Heegner-Stark numbers
d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}. For each d we let Od denote the
ring of integers associated with the �eld Q(

√
d). We now consider the inequality∣∣∣∣z − p

q

∣∣∣∣ ≥ C(z)

|q|2
, for all p, q ∈ Od, q 6= 0. (12.1)

We shall refer to p/q as rationals, and call the set of z ∈ C for which this
inequality holds for the set of badly approximable complex numbers with respect to
Od and we denote it by Badd. Hopefully this will not cause any confusion with the
sets Badn, even though it is merely a dummy index that puts the notations apart.
The reason why we require unique factorization of the associated ring of integers is
twofold. To ensure that there is no ambiguity in the choice of q in the inequality
(12.1) and also because we shall need unique factorization in the proof of the main
theorem, which is yet to be stated.

We now consider the set Bad(i, j) in the real case again and notice that if
(x, y) ∈ Bad(i, j), then max{‖qx‖1/i , ‖qy‖1/j} > c/q. Assume that ‖qx‖1/i > c/q.
Then we have the following

‖qx‖1/i >
c

q
which implies

‖qx‖ > ci

qi

which gives us

|qx− p| > ci

qi
for some p ∈ Od

so by dividing by q we get

∣∣∣∣x− p

q

∣∣∣∣ > ci

q1+i
.

If we consider this geometrically, then (x, y) ∈ Bad(i, j) is trying to avoid every
rectangle with sides of size � q−(1+i) and q−(1+j), which has volume q−(1+i)−(1+j) =
q−3.

However, if we tried using the same approach for the complex numbers, as An
used in the real case, we would quickly run into trouble. The complex numbers
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behave di�erently than the real numbers when it comes to approximation. It turns
out that the right volume for a rectangle is not q−3 but q−4. The reason behind this
is that we want the proper analogues of the theorems of Dirichlet, Khintchine and
Jarník. We have already seen the complex version of Dirichlet's Theorem, namely
Lemma 6.3. The complex version of Khintchine's theorem is due to LeVeque, [LeV-
eque, 1952] who in 1952 combined the original ideas of Khintchine, using continued
fractions and some ideas from hyperbolic geometry was able to show the following.
See [Dodson and Kristensen, 2004] for further references.

Theorem 12.1. Suppose |q|2Ψ(|q|) is decreasing. Let ‖qz‖ denote the distance from
qz to the nearest element of Od. Then the Lebesgue measure of the set W ?(Ψ) is
null or full according as the sum

∞∑
|q|=1

|q|3 Ψ(|q|)2

converges or diverges. Where

W ?(Ψ) = {z ∈ C | ‖qz‖ < |q|Ψ(|q|) for in�nitely many q ∈ Z(i)}.

The theorem generalises to the cases where the Gaussian integers is replaced by
one of the remaining ring of integers Od, a result due to Sullivan. See [Sullivan,
1982] for more details.

We can now easily conclude the following

Theorem 12.2. The set Badd has Lebesgue measure 0.

Proof. As in the real case we let cj = 1/j and de�ne Badd(c) in the same manner
as in the the proof of Corollary 8.9. For each �xed j we consider the function
Ψ(q) =

cj

|q|2 We then see that the sum

∞∑
|q|=1

|q|3
c2
j

|q|4
=

∞∑
|q|=1

c2
j

|q|

is divergent and thus the set {z ∈ C | ‖qz‖ < |q|Ψ(|q|) for in�nitely many q ∈ Z(i)}
has full Lebesgue measure. Hence Badd(cj) is a null set, and taking the union over
all j we see that Badd is a null set.

The complex analogue of Jarníks theorem in the case of the Gaussian integers
could, as noted in [Dodson and Kristensen, 2004, page 329], be seen as easy conse-
quences of the work of [Bishop and Jones, 1997] or [Fernandez and Melián, 1995].
However a self-contained proof can be found in [Dodson and Kristensen, 2004]. The
slightly more general case where the Gaussian integers are replaced by Od can be
found in [Esdahl-Schou and Kristensen, 2010].

If we return to the concept of a complex analogue of Schmidt's conjecture and
the idea of avoiding rectangles we can now for each 0 < i, j < 1 with i + j = 1
consider the z ∈ C for which

max

{∣∣∣∣Re

(
z − p

q

)∣∣∣∣1/(1+2i)

,

∣∣∣∣Im(z − p

q

)∣∣∣∣1/(1+2j)
}
>

c

|q|
for all p, q ∈ Od, q 6= 0.

(12.2)
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We denote the set of z ∈ C satisfying the inequality (12.2) by Badd(i, j). We
note that in the case where i = j = 1/2 has already been shown to be winning
in [Esdahl-Schou and Kristensen, 2010]. We also note that unlike in the real case,
where i = 1, j = 0 or vice versa Bad(i, j) corresponds to Bad×{0}, respectively
{0} ×Bad. We do not have that in the complex case.

It follows from [Kristensen et al., 2006, Theorem 2] that Badd(i, j) is of full
dimension, but what can we say about the intersections? Using the same approach
as in the reals one might show that Badd(i, j) is winning for every pair of i and j
satisfying 0 ≤ i, j ≤ 1 and i+ j = 1. Using the fact that any countable intersection
of winning sets is again winning and hence has full dimension would answer the
following conjecture in the a�rmative.

Conjecture 12.3. The set Badd(i, j) is winning for all i, j with 0 ≤ i, j ≤ 1 and
i+ j = 1.

One might even show thatBadd(i, j) is not only winning but perhaps hyperplane
absolutely winning, in which case the following stronger conjecture would be true.

Conjecture 12.4. The set Badd(i, j) is hyperplane absolute winning for all i, j
with 0 ≤ i, j ≤ 1 and i+ j = 1.

We shall now assume that i ≥ j. That is we consider rectangles which are
tall and thin. One of the standard tools to show that something is winning is the
following lemma known as the simplex lemma or the Davenport trick.

Lemma 12.5. For every β ∈ (0, 1) and for every k ∈ N let

Uk,i =

{
p

q
: p, q ∈ Od and β−

(k−1)
1+2i ≤ |q| < β−

k
1+2i

}
Then for all x ∈ C and for k big enough, there is only one point in Uk,i∩B(x, βk−1r)
as long as r satis�es 0 < r < 1

2
β.

Proof. ∣∣∣∣pq − p′

q′

∣∣∣∣ ≥ 1

|qq′|
> R−2k.

But the diameter of B(x, βk−1r) is 2βk−1r < βk−1β = βk ≤ β2k/(1+2i) = R−2k, where
we used that for i ≥ j we have 1 + 2i ≥ 2. So for k big enough so the result
follows.

The lemma is the key ingredient in what is known as the Davenport method.
Simply put the Davenport method is a way of constructing a Cantor type set within
the set we are interested in. Davenport originally used this method to show that
certain sets contained continuum many points. The method works as follows:

Consider a square of size R−n × R−n and call this Bn and split this up into
R2 smaller squares of size R−(n+1) × R−(n+1). Consider the rational points with
denominator at least R−(n+1). If there is only one such point inside Bn it falls within
one of the smaller squares. Place a square neighbourhood of size R−(n+1) ×R−(n+1)

around the point and remove the squares that intersect this neighbourhood. Assume
that not all of the R2 squares have been removed, then any of the remaining ones
will be used in the Cantor set construction. Within each of the squares that we
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did not remove we can continue this process. If there are two points inside Bn we
place neighbourhoods around each of the points and continue in the same manner.
If there is three or more points we could risk that the points were spread out all over
Bn and that their neighbourhoods would cover everything. This is where the lemma
comes in, if there is three or more points that are not colinear, pick any three of
them. Their convex hull forms a triangle and estimating the volume of this triangle
will show that it is simply too big to �t inside Bn, so the points have to be colinear.
Now we place a neighbourhood around each point on the line passing through these
points and remove any of the squares intersecting this neighbourhood. Even though
Davenport used this method only to show continuum many points with certain
properties (i.e. simultanously badly approximable points in R2), the method can
give us much more. If enough squares survive this elimination process at each step,
we end up with a Cantor type set of which we can easily estimate the Hausdor�-
dimension, which gives us a lower bound on the Hausdor�-dimension of the set we
are interested in. Often this method is all that is required to show full dimension.

This lets us believe that the above conjectures are true since there is only one
problematic point at each step and hence it should be easy to win the Schmidt
game, even in the absolute version. There is a slight problem though. If we consider
a square of size R−2k × R−2k we need not only avoid a rectangle centered around
the sole point inside the square, but also the part of the rectangles coming from
neighbouring squares, which intersect the square we are considering.

Figure 12.1 describes the situation quite well. The rectangle made up of fully
drawn lines comes from a point inside the square we are considering, where as the
rectangle made up of dashes lines comes from a point in the square above the one we
consider. Potentially a situation like this can happen, but it can get alot worse. A
rough upper estimate of how many rectangles we might end up having to deal with
is given by simply dividing the height of the rectangle with the height of the square.
So we might risk having as many as R−(1+2j)n/R−2n points each of which generates
a rectangle which will intersect the square we are considering. If i = j = 1/2 there
is no problem, but as soon as i > j we can potentially have as many as Rεn points,
where ε is some positive constant. That is simple too many points to consider all
at once. It seems that with the tools avaliable to us we have little to no chance of
proving any of the conjectures. We can however show a partial result. We present
this in the next chapter.
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Figure 12.1: An unfortunate, yet very likely situation





CHAPTER 13

A PA RT I A L R E S U LT

Before things become too technical let us note that the problems we encountered
was the fact that neighbouring squares could contain points generating rectangles
that intersect the square we were considering. We shall get around this problem
by changing our setup to that of [Kristensen et al., 2006]. For each �xed i and j
instead of considering squares of size R−2n × R−2n we consider rectangles of size
R−(1+2i)2n × R−(1+2j)2n. We will show a version of the Davenport trick, forcing
problematic points to lie on a line and hence avoiding a neighbourhood around each
point translates to avoiding a neighbourhood of the line. This enables us to show
that Badd(i, j) has full dimension and is stable under intersection with suitably
nice fractals. We proceed by giving the necessary terminology needed for showing
this, essentially following the ideas in [Kristensen et al., 2006, Example 2.3]. Note
however that we use w as a dummy index instead of i as we shall need that letter
later on.

Let (X, d) be the product space of the t metric spaces (Xw, dw). Let (Ω, d) be a
compact subspace of X which contains the support of a non-atomic �nite measure
m. Let R = {Rα ∈ X : α ∈ J} be a family of subsets Rα indexed by an in�nite
countable set J . We call Rα a resonant set and notice that each resonant set can
be split into its t components Rα,w ⊂ (Xw, dw). We let β : J → R+, α 7→ βα be a
positive function on J and we assume that the number of α ∈ J with βα bounded
above is �nite, this last assumption is known as the Northcott property, named after
Douglas Northcott who showed that this assumption holds for algebraic numbers.
We let ρw : R+ → R+, r 7→ ρw(r) be a real positive function such that ρw(r) → 0
as r → ∞ and that ρw is decreasing for r large enough. We also assume that
ρ1(r) ≥ ρ2(r) ≥ · · · ≥ ρt(r) for large r. Given Rα. Let

Fα(ρ1, . . . , ρt) = {x ∈ X : dw(xw, Rα,w) ≤ ρw(βα) for all 1 ≤ w ≤ t},

denote the rectangular (ρ1, . . . , ρt)-neighbourhood of Rα and now consider the set

Bad ∗(R, β, ρ1, . . . , ρt)

= {x ∈ Ω : ∃c(x) > 0 such that x /∈ c(x)Fα(ρ1, . . . , ρt) for all α ∈ J}.

For l1, . . . , lt ∈ R+ and c ∈ Ω we let

F (c; l1, . . . , lt) = {x ∈ X : dw(xw, cw) ≤ lw for all 1 ≤ w ≤ t},

denote the closed rectangle centred at c with sidelengths determined by l1, . . . , lt. For
any k > 1 and n ∈ N we let Fn denote a generic rectangle F (c; ρ1(kn), . . . , ρt(k

n))∩Ω,
in Ω centered at a point c ∈ Ω. We let B(c, r) denote the closed ball with centre c
and radius r. We shall need no less than �ve conditions on the measure m and the
functions ρw in order for this framework to work out the way we want it to.

A There exists a strictly positive constant δ such that for any c ∈ Ω we have

lim inf
r→0

logm(B(c, r))

log r
= δ.
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This is a weaker notion than that of being δ-Ahlfors regular and for our purpose
Ahlfors regularity will su�ce.

B For k > 1 su�ciently large, any integer n ≥ 1 and any w ∈ {1, . . . , t}, we have
the following bounds

λlw(k) ≤ ρw(kn)

ρw(kn+1)
≤ λuw(k),

where λlw and λuw are lower and upper constants tending to in�nity as k does.

C There exists constants 0 < a ≤ 1 ≤ b and l0 > 0 such that

a ≤ m(F (c; l1, . . . , lt))

m(F (c′; l1, . . . , lt))
≤ b

for any c, c′ ∈ Ω and any l1, . . . , lt ≤ l0. This ensures that the measure of two
rectangles of the same �size� but with di�erent centres is not too di�erent.

D There exist strictly positive constants D and l0 such that

m(2F (c; l1, . . . , lt))

m(F (c; l1, . . . , lt))
≤ D

for any c ∈ Ω and any l1, . . . , lt ≤ l0. This is simply the D-Federer condition for
rectangles.

E For k > 1 su�ciently large and any integer n ≥ 1

m(Fn)

m(Fn+1)
≥ λ(k),

where λ(k)→∞ as k →∞.

We now have the following theorem

Theorem 13.1. [Kristensen et al., 2006, Theorem 3] For 1 ≤ w ≤ t, let (Xw, dw)
be a metric space and (Ωw, dw,mw) be a compact measure subspace of Xw where
the measure mw is δw-Ahlfors regular. Let (X, d) be the product space of the spaces
(Xw, dw) and let (Ω, d,m) be the product measure space of the measure spaces (Ωw, dw,mw).
Let the functions ρw satisfy condition B. For k ≥ k0 > 1, suppose there exists some
θ ∈ R+ so that for n ≥ 1 and any rectangle Fn there exists a disjoint collection
C(θFn) of rectangles 2θFn+1 contained within θFn satisfying the following two con-
ditions

#C(θFn) ≥ κ1

t∏
w=1

(
ρw(kn)

ρw(kn+1)

)δw
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and

#

{
2θFn+1 ⊂ C(θFn) : min

α∈J(n+1)
dw(cw, Rα,w) ≤ 2θρw(kn+1) for any 1 ≤ w ≤ t

}
≤ κ2

t∏
w=1

(
ρw(kn)

ρw(kn+1)

)δw
,

where 0 < κ2 < κ1 are absolute constants independent of k and n, and where J(n) =
{α ∈ J : kn−1 ≤ βα < kn}. Furthermore suppose that dimH(∪α∈JRα) <

∑t
w=1 δ

w.
Then

dimH Bad ∗(R, β, ρ1, . . . , ρt) =
t∑

w=1

δw.

We shall not go into the proof of this theorem as it is quite technical. We shall
instead apply it on the sets Badd(i, j).

Proposition 13.2. The sets Badd(i, j) have dimension 2 for all 0 < i, j < 1 with
i+ j = 1.

Proof. Let I = [0, 1] and assume that i ≤ j. Let ρ1(r) = r−(1+2i), ρ2(r) = r−(1+2j)

and let

X = Ω = I2, J = {(p, q) ∈ Od ×Od \ {0} : |p| ≤ |q|},
α = (p, q) ∈ J, βα = |q| , Rα = (Re(p/q), Im(p/q)).

d1 = d2 is the standard Euclidean metric on I and m1 = m2 is the one-dimensional
Lebesgue measure on I. Hence d is the product metric on I2 and m is the two-
dimensional Lebesgue measure on I2. Clearly the Lebesgue measure is Ahlfors
regular with δ1 = δ2 = 1, and the functions ρ1, ρ2 satisfy condition B. We shall now
establish the existence of the collection C(θFn), where Fn is any rectangle of size
2k−n(1+2i)×2k−n(1+2j). We note thatm(θFn) = 4θ2k−4n. We shall now give establish
a version of the Davenport trick to help us on the way. Assume that there are at least
three rational points a = p1/q1, b = p2/q2, c = p3/q3 with kn ≤ |q1| , |q2| , |q3| < kn+1

lying inside θFn. Suppose they do not lie on a line and thus form a triangle T . The
area of the triangle can be calculated using the so-called shoelace formula, which is
based solely on the geometry of the complex numbers and therefore not dependant
on the value of d.

m(T ) =
i

4

∣∣∣∣∣∣
a ā 1
b b̄ 1
c c̄ 1

∣∣∣∣∣∣ ≥ 1

4
k−4(n+1)

setting θ to any value < 1/4k−2 we see that m(T ) > m(θFn) but that is not
possible as T ⊂ θFn. Hence the triangle cannot exist. So if there are two or
more rational points inside θFn with denominators between kn and kn+1 they must
lie on a line, L. We now partition the rectangle θFn into rectangles 2θFn+1 of
size 4k−(n+1)(1+2i) × 4k−(n+1)(1+2j) and denote by C(θFn) the collection of rectangles
2θFn+1 we obtain. We now have that

#C(θFn) ≥ 2θk−n(1+2i)

4θk−(n+1)(1+2i)

2θk−n(1+2j)

4θk−(n+1)(1+2j)
≥ k4

16
.
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The Davenport trick also shows us that

#

{
2θFn+1 ⊂ C(θFn) : min

α∈J(n+1)
dw(cw, Rα,w) ≤ 2θρw(kn+1) for any 1 ≤ w ≤ 2

}
(13.1)

≤ #{2θFn+1 ⊂ C(θFn) : 2θFn+1 ∩ L 6= ∅}, (13.2)

where L is any line passing through θFn. As we have assumed that i ≤ j the quantity
on the right hand side can be shown to be less than or equal to (2θk−n(1+2j))/(4θk−(n+1)(1+2j))
which is seen to be less than k4/32. This ensures that the collection of rect-
angles satisfy the conditions required. Which in turn allows us to use Theorem
13.1 to conclude that dimH Badd(i, j) ∩ I2 = 2. Since I2 ⊂ R2 we conclude that
dimH Badd(i, j) = 2 and thus have full dimension.

It is possible to tweak the framework of [Kristensen et al., 2006] even more and
show that Badd(i, j) behaves well under intersection with suitably nice fractals, i.e.
those being the support of a Ahlfors regular measure which is absolutely decaying.
We shall not do that though as it would require another two theorems to justify
the result. Instead we will show that Badd(i, j) is winning in yet another variant
of Schmidt's game.

13.1 A new game

Just as we have de�ned the k-dimensionally β-absolute game we can for each �xed
pair of i and j de�ne the k-dimensionally (β, i, j)-absolute game. We explain how
it works in the case k = n− 1 which we call the hyperplane (β, i, j)-absolute game.

Bob initially picks x1 ∈ R2 and r1 > 0 de�ning the closed rectangle with centre
x1 and sidelengths r1+2i

1 , r1+2j
1 , denoted by B1. At each stage of the game, after Bob

has chosen xk, rk Alice chooses a hyperplane and removes an ε(k)-neighbourhood of
it, denoted by Ak from Bk. Where 0ε(k) ≤ βrk. Then Bob chooses xk+1 and rk+1

such that rk+1 ≥ βrk and
Bk+1 ⊂ (Bk \ Ak) .

A set E is said to be hyperplane (β, i, j)-absolute winning if Alice has a strategy
that ensures that ∩kBk intersects E.

Essentially the only di�erence between the hyperplane absolute game and this
is the fact that we play on rectangles rather than balls. Indeed the case where
i = j = 1/2 reduces to the original hyperplane absolute game, only that the original
radius is changed from r1 to r2

1.

Theorem 13.3. The set Badd(i, j) is hyperplane (β, i, j)-absolute winning

Before we show this we have extracted the Davenport trick from Proposition
13.2 and modi�ed it to �t into the (β, i, j)-game. We will from now on assume that
i ≥ j.

Lemma 13.4. For every β ∈ (0, 1) and for every k ∈ N let

Uk,i =

{
p

q
: p, q ∈ Od and β−

(k−1)
1+2i ≤ |q| < β−

k
1+2i

}
Then there exists a line L containing Uk,i ∩Bk.
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Proof of Theorem 13.3. Let β < 1/3, let i, j be �xed and assume once more that
i ≥ j. When the hyperplane β-absolute game begins, Alice makes dummy moves
untill the radius, r, is small enough to be less than 1

2
β−1. We then set c = β2r.

Now let Blk be the subsequence of moves where the radius rlk �rst satis�es the
inequalities: βk−1r ≥ rlk > βkr. Alice continues to make dummy moves outside
this subsequence, and on the turns in this subsequence Alice can choose the line as
described by the above lemma, denoted by Lk and pick

Alk+1 = Lβ
k+1r
k .

Here the right hand side denotes the βk+1r-neighbourhood of the line Lk. By choice
of c we have

βk+1r = cβk−1.

Now since |q| ≥ β−
(k−1)
1+2i we immediately get that the right hand side of the above

has to be bigger than c |q|1+2i. Thus Alice can black out the entire rectangular
neighbourhood in her next turn.

At this time it is not entirely clear what a game of this type would bring to the
table. Clearly we cannot hope to show any theorems on the intersections between
sets winning the (β, i, j)-game and the (β′, i′, j′)-game, at least not in general. This
is also true for the modi�ed Schmidt games invented by Kleinbock and Weiss in
[Kleinbock and Weiss, 2010], and for this very reason they could not prove Schmidt's
conjecture with that setup. We can get a nice intersection theorem for fractals
though, as we have already mentioned earlier in this chapter.

As a concluding remark the author would like to stress that much of the structure
of the sets Badd(i, j) is still unknown, as long as (i, j) 6= (1/2, 1/2). We can show
full dimension of Badd(i, j) and get the best possible intersection properties when
it comes to suitably nice fractals. Yet we still cannot show that the set is winning
in Schmidt's original game, only in this modi�ed (i, j) version.





A P P E N D I X

Proof of Lemma 5.3. We start by the additional assumption that IIk ,a consists of
only one parallelogram with lattice-parallel sides and denote the lower left corner by
(α1, β1) and the upper right corner by (α2, β2). First we note that (n1, n2) ·d (x, y) =
(n1, n2)A(x, y), where A as before is the matrix that transforms our lattice to the
standard lattice Z2. Now we begin with the case n1 = n2 = 0 and note that Ψa

agrees with the indicator function of Ik ,a almost everywhere, hence using Fubini's
Theorem:

c0,0 =

∫
R2

fa(x, y)e(0) d(x, y)

=

∫
R2

1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

Ψa(x+ x1, y + y1) dx1 dy1 d(x, y)

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

Ψa(x+ x1, y + y1) d(x, y) dx1 dy1

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1Ik,a (x+ x1, y + y1) d(x, y) dx1 dy1

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1S(x+ x1, y + y1) detAd(x, y) dx1 dy1

= detA
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

∫
R

1(α1−x1,α2−x1)(x)1(β1−y1,β2−y1)(y) dx dy dx1 dy1

= detA
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

(α2 − α1)(β2 − β1) dx1 dy1

= detA(α2 − α1)(β2 − β1)

where S is the square with lower left and upper right corners given by (α1, β1),
respectively (α2, β2).
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In the case that n1 6= 0 we have

cn1,0 =

∫
R2

fa(x, y)e(−(n10)A(xy)) d(x, y)

=

∫
R2

1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

Ψa(x+ x1, y + y1)e(−(n10)A(xy)) dx1 dy1 d(x, y)

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

Ψa(x+ x1, y + y1)e(−(n10)A(xy)) d(x, y) dx1 dy1

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1Ik,a (x+ x1, y + y1)e(−(n10)A(xy)) d(x, y) dx1 dy1

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1S(x+ x1, y + y1)e(−n1x) detAd(x, y) dx1 dy1

= detA
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

∫
R

1(α1−x1,α2−x1)(x)1(β1−y1,β2−y1)(y)e(−n1x) dx dy dx1 dy1

= detA
β2 − β1

∆

∫ ∆/2

−∆/2

∫
R

1(α1−x1,α2−x1)(x)e(−n1x) dx dx1

= detA
β2 − β1

∆

∫ ∆/2

−∆/2

[
−1

2πin1

e(−n1x)

]α2−x1

x=α1−x1
dx1

= detA
β2 − β1

∆

∫ ∆/2

−∆/2

−1

2πin1

(e(n1(α2 − x1))− e(n1(α1 − x1))) dx1

= detA
β2 − β1

∆

([
−1

2πin1

−1

2πin1

e(n1α2)e(−n1x1)

]∆/2

−∆/2

−
[
−1

2πin1

−1

2πin1

e(n1α1)e(−n1x1)

]∆/2

−∆/2

)
= detA

β2 − β1

∆

−1

4π2n2
2

(e(n1α2)− e(n1α1)) (e(−n1∆/2)− e(n1∆/2)) .

Analogously we �nd for n2 6= 0 that

c0,n2 = detA
α2 − α1

∆

−1

4π2n2
1

(e(n2β2)− e(n2β1)) (e(−n2∆/2)− e(n2∆/2)) .

Now for n1, n2 6= 0 we have
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cn1,n2 =

∫
R2

fa(x, y)e(−(n1n2)A(xy)) d(x, y)

=

∫
R2

1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

Ψa(x+ x1, y + y1)e(−(n1n2)A(xy)) dx1 dy1 d(x, y)

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1Ik,a (x+ x1, y + y1)e(−(n1n2)A(xy)) d(x, y) dx1 dy1

=
1

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R2

1S(x+ x1, y + y1)e(−(n1x+ n2y)) detAd(x, y) dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

∫
R

1(α1−x1,α2−x1)(x)1(β1−y1,β2−y1)(y)e(−(n1x+ n2y)) dx dy dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

∫
R

1(α1−x1,α2−x1)(x)1(β1−y1,β2−y1)(y)e(−(n1x+ n2y)) dx dy dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

1(β1−y1,β2−y1)(y)e(−n2y)

∫
R

1(α1−x1,α2−x1)(x)e(−n1x) dx dy dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫
R

1(β1−y1,β2−y1)(y)e(−n2y)

[
−1

2πin1

e(−n1x)

]α2−x1

x=α1−x1
dy dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

[
−1

2πin2

e(−n2y)

]β2−y1
y=β1−y1

[
−1

2πin1

e(−n1x)

]α2−x1

x=α1−x1
dx1 dy1

=
detA

∆2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

(
−1

2πin2

(e(−n2β2 + n2y1)− e(−n2β1 + n2y1))

)
·
(
−1

2πin1

(e(−n1α2 + n1x1)− e(−n1α1 + n1x1))

)
dx1 dy1

=
− detA

4∆2π2

∫ ∆/2

−∆/2

1

n1

(e(−n1α1 + n1x1)− e(−n1α1 + n1x1)) dx1

·
∫ ∆/2

−∆/2

1

n2

(e(−n2β1 + n2y1)− e(−n2β1 + n2y1)) dy1

=
− detA

4∆2π2

([
1

n1

1

2πin1

e(−n1α2 + n1x1)

]∆/2

x1=−∆/2

−
[

1

n1

1

2πin1

e(−n1α1 + n1x1)

]∆/2

x1=−∆/2

)

·

([
1

n2

1

2πin2

e(−n2β2 + n2y1)

]∆/2

y1=−∆/2

−
[

1

n2

1

2πin2

e(−n2β1 + n2y1)

]∆/2

y1=−∆/2

)

=
− detA

4∆2π2

(
1

2πin2
1

(
e(−n1α2 + n1∆/2)− e(−n1α2 − n1∆/2)

− e(−n1α1 + n1∆/2) + e(−n1α1 − n1∆/2)
))

·
(

1

2πin2
2

(
e(−n2β2 + n2∆/2)− e(−n2β2 − n2∆/2)

− e(−n2β1 + n2∆/2) + e(−n2β1 − n2∆/2)
))

.

=
detA

16∆2π4n2
1n

2
2

(
e(−n1α2)− e(−n1α1))(e(n1∆/2)− e(−n1∆/2))

)
·
(
e(−n2β2)− e(−n2β1))(e(n2∆/2)− e(−n2∆/2))

)
.
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So we see that

cn1,n2 = O
(

1

∆2n2
1n

2
2

)
, (n1, n2 6= 0),

cn1,0 = O
(

1

∆2n2
1

)
, (n1 6= 0),

c0,n2 = O
(

1

∆2n2
2

)
, (n2 6= 0),

c0,0 = detA(α2 − α1)(β2 − β1).

(13.3)

From equation (13.3) it is obvious that the contribution to the Fourier coe�cients
from each rectangle depends only on the vertices of the rectangle. Since the cases
n1 6= 0, n2 6= 0 and n1, n2 6= 0 are quite similar we only consider the last of these.
For n1, n2 6= 0 observer that the Fourier coe�cients are of the form

cn1,n2 = C(n1, n2)
∑
αi,βi

sgn((αi, βi))e(n1αi + n2βi),

where the sum is taken over all vertices (αi, βi) of the parallelogrammical subdo-
mains, and where sgn is the sign of the given vertex, which is taken to be positive
if the vertex is the upper right or lower left vertex of such a parallelogram, and
negative if it is the upper left or lower right vertex. Now with this convention it
is easily seen that the contributions from all vertices that are not vertices in IIk ,a
cancel. Hence in the general setting we can estimate the Fourier coe�cients with the
amount of vertices in IIk ,a times the contribution from each parallelogram. There
are O(µk) vertices in IIk ,a so we get

cn1,n2 = O(
µk

∆2n2
1n

2
2

) (n1, n2 6= 0).

As already meantioned we can treat the other cases in a similar fashion and arrive
at the desired result.
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