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Previous SYMPLECTIC

THE DELZANT PICTURE

Compact symplectic

—
toric manifolds

Delzant polytopes

(M?", @) symplectic with a Hamiltonian action of G = T™:
moment map G-invariant y: M — g* = R" with

dp, X) =X 2w

> b;(M) =0 = each symplectic T"-action is Hamiltonian

VXeg.

» dim(M/T"™) equals dimension of target space of u

» image is Delzant polytope

UuM)=A={aeR" |{(a,ux) <A, k=1,...,m}

> stabiliser of any point is a (connected) subtorus of dimension

n — rank dyu
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Previous HyPERKAHLER

HyPERKAHLER MANIFOLDS

(M, g, w1, w5, wk) is hyperKdihler if each (g, wa = g(A-, -)) is Kédhler
andIJ =K =—]I
Then dim M = 4n and g is Ricci-flat, holonomy in Sp(n) < SU(2n)

Ricci-flatness implies:

if M is compact, then any Killing vector field is parallel so the
holonomy of M reduces

So take (M, g) non-compact and complete instead

Swann (2016) and Dancer and Swann (2017), following Bielawski
(1999), Bielawski and Dancer (2000), Goto (1994) and Anderson et al.

(1989)
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Previous HyPERKAHLER

Hypertoric is complete hyperKihler M*" with tri-Hamiltonian
G = T" action: have G-invariant map (hyperKdhler moment map)

p=(urpy,px): M > R>@4g° d(pa, X) =X 1w

» dim(M/T™) is 3n, the dimension of target space of y

> stabiliser of any point is a (connected) subtorus of dimension
n-— % rank dyu

> Locally (Lindstrém and Rocek, 1983)
9= (V71,06 + Vij(duidy] + dy}d;[’j +dpkdul),

with (V;;) positive-definite, and harmonic on each a + R* ® v
> u(M) = R3" with configuration of flats (possibly infinitely
many) H(ug, Ar) = {a e ImH ® R" | (a, ux) = A¢}

» n=1V(p) =c+ Z(ZHp —ql)7% ¢ = 0, V(p) < +oo at some p
qeQCR3
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G, MANIFOLDS
M’ with ¢ € Q3(M) pointwise of the form
@ = €123 — €145 — €167 — €246 — €275 — €347 — €356,
eijk = e NejNeg
Specifies metric g = ef + e+ e?, orientation vol = ej3345¢7 and
four-form

*(Q = €4567 — €2345 — €2367 — €3146 — €3175 — €1256 — €1247
via
69X, Y)vol =X 1so)A(Y 2p)A @
There is also a cross-product
9XxY,Z) = 9(X,Y,Z)
with X X Y1X,Y
Holonomy of g is in G, when d¢ = 0 = d *¢, a parallel G,-structure
Then g is Ricci-flat
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Gy MuLTI-HAMILTONIAN

MULTI-HAMILTONIAN ACTIONS

Joint work with Thomas Bruun Madsen

(M, @) manifold with closed @ € QP (M) preserved by G = T"
This is multi-Hamiltonian if it there is a G-invariant v: M — AP~!g*
with

dv,Xa N AXp1) = a(Xy, .., Xpoq, +)

forall X; € g

> taken >p—2
» vinvariant <= « pulls-back to 0 on each T"-orbit

> b;(M) =0 = each T"-action preserving « is
multi-Hamiltonian

For (M, ¢) a parallel G,-structure, can take & = ¢ and/or o = *¢
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Gy MuLTI-HAMILTONIAN

MUuULTI-HAMILTONIAN PARALLEL G>-MANIFOLDS

PrROPOSITION
Suppose (M, @) is a parallel G;-manifold with T"-symmetry
multi-Hamiltonian for a = ¢ and/or a = x¢. Then2 < n < 4.

q: dimension of orbit space M7 /T"
k: dimension of target of multi-moment map A?R" and/or A’R"

n q a k note
2 5 ¢ 1 Madsen and Swann (2012)
3 4 3
*@p 1
o &*p 4 toric
4 3 ¢ 6 Baraglia (2010)
*p 4
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Gy Toric Gy
Toric G,

DEFINITION

A toric G, manifold is a parallel G,-structure (M, ¢) with an action

of T? multi-Hamiltonian for both ¢ and *¢

Let Uj, Uy, Us generate the T3-action, then ¢(Uy, U, Us) = 0, with

multi-moment maps (v, ) = (v, vo, v3, ): M — R*
dvi=UiAUp 59 = (U xUp)° (ijk)=(123)
d'U:Ul/\UQ/\Ug_I*(p

Recall ¢ = e123 — €145 — €167 — €246 — €275 — €347 — €356

If U; are linearly independent at p, then there is a G,-basis so that

Span{Uj, U,, Us} = Span{Es, E¢, E;}. The repeated cross-products of

the U; then generate TM and (dv, dp) is of full rank 4, so
(v, ) induces a local diffeomorphism

M,y/T® — R*
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Gy SINGULAR

THE FLAT MODEL

M =S'xC?

Standard flat ¢ = idx(dzll +dz,; + dz;3) + Re(dzy3)
Preserved by T° = S! x T? < S x SU(3)

Stabilisers T? at S' x {0} and T! at S X (z; = 0 = zj,i # j)
Multi-moment maps

4 —ip) = zmizezs,  Ava = |zl — |zs)5 4wz = |z)° — |z

Topologically M/T3 C3/T? = C(S°)/T? = C(S°/T?) = C(S*) = R?
The ring P(Rﬁ)T of invariant polynomials has basis p, v1, v5, v3 and
t = |z3|%. By Schwarz (1975) any smooth invariant function on C3/T?
is a smooth function of these five invariant polynomials. However,
they satisfy

H(t +2w)(t — 2v3) = V2 + 1%, t > max{0, —2v,, 2v3} (S)

The linear projection (¢, v, 1) — (v, i) is a homeomorphism of this
set on to R*
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Gy SINGULAR

GENERAL PICTURE

ProrosIiTION

All isotropy groups of the T® action are connected and act on the
tangent space as maximal tori in (a) 1 X SU(3), (b) 15 X SU(2) or (c) 17

Local tangent space models are flat model around (a) S* x (0, 0, 0) or
(b) S* X (1,0,0). (b) is the Hopf fibration, topologically rigid.

At (a) (full), v, and v; agree with the flat model to order 3, v; and u to
order 4. Analysis of the singularity (S) and degree arguments give

THEOREM

Let M be a full toric G;-manifold, then M/T? is homeomorphic to a
smooth four-manifold. Moreover, the multi-moment map (v, i) induces
a local homeomorphism M/T® — R*.

Configuration data: lines in (1 = constant) of rational slope. Any
intersection is triple, with an integrality condition.
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Gy SMOOTH

SMOOTH BEHAVIOUR
My — My/T? is a principal torus bundle with connection one-forms
0; € QI(MO) satisfying QZ(UJ) = 5,']', QI(X) =0VXLU, Uy, Us
On M,, put

= . . = -1 = i
B=(9(U;,U;)) and V =B E adjB

THEOREM

1
g=——0"adj(V) 0 + dv'adj(V)dv + det(V) dy?

detV
Q= det(V) dV123 U d,udvt ad](V) 0 + Gk eijde
l’j’
1 )
#p = Ouzsdjt + o G (dv* adj(V) 6)° + det(V) dp 'Gk 0;dvii
l’]’
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Gy SMOOTH

THEOREM (CONTINUED)

Such (g, @, *@) defines a parallel G,-structure if and only if
V € C®(My/T?, S*R3) is a positive-definite solution to

>\ OV ) .
Z =0 j=12,3 (divergence-free)

and

LV)+0Q@dV)=0 (elliptic)

7 7
L=+ Y Ve
oz 2, I 9oy,

where

and Q is a quadratic form with constant coefficients

L and Q are preserved up to scale by GL(3, R) change of basis; this
specifies Q uniquely

ANDREW SWANN Toric GEOMETRY OF G2-MANIFOLDS



Gy SMOOTH

Cf. Chihara (2018)

PROPOSITION

Solutions V' to the divergence-free equation are given locally

by A € C®(M,/T?, S?R3) via

?Aj  PA Ak

v vz T avidw

_ 0%A . A Ay 0PAkk
ovjove  Ovidvk  Ow?  Ov;0v;

Vii =

Vij

(ijk)=(123)
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Gy SMOOTH

DIAGONAL SOLUTIONS

V = diag(Vy, Vo, V3) (divergence-free) and off-diagonal terms in
(elliptic)

Wi_o MW 4
61/,- an 81/1'
Either V = diag(Vi(vz, pt), Va(vs, ), V3(v1, p)) linear in each variable
E.g. V = uls, u > 0, full holonomy G,:

1
g=—(0%+ 03+ 02) + p*(dv? + dvi + dv2) + pPdp®
U
do; = dvj Advi  (ijk) = (123)
Or get elliptic hierarchy V5 = V3(p), Vo = Va(vs, ), Vi = Vi(va, v3, 1)

9*Vs 9*V, 9*V, 9*V; *V; 9*V;
SN +V2—2 =0 VA WA Y
op? op? 3 0,2 op? 20v,2 " 7 ous?

Eg Va=p, Vo=p®- 31/32, Vi =2 — 15p2v§ = 51/22
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Gy SMOOTH
COMPLETE EXAMPLES

The flat model S* x C3

Bryant and Salamon (1989) metrics and their generalisations by
Brandhuber et al. (2001) and Bogoyavlenskaya (2013) on $* x R*:
complete, cohomogeneity one with symmetry group

SU(2) x SU(2) x S' x Z/2 > T?

— only one-dimensional stabilisers.
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