Toric Geometry of G_2 -manifolds

Andrew Swann

Department of Mathematics & Centre for Quantum Geometry of Moduli Spaces University of Aarhus

Auckland, February 2018

OUTLINE

Previous constructions Symplectic geometry HyperKähler geometry

G_2 manifolds

Multi-Hamiltonian actions Toric G_2 Singular behaviour Smooth behaviour

 (M^{2n}, ω) symplectic with a *Hamiltonian* action of $G = T^n$: *moment map G*-invariant $\mu: M \to \mathfrak{g}^* \cong \mathbb{R}^n$ with

$$d\langle \mu, X \rangle = X \, \lrcorner \, \omega \qquad \forall \, X \in \mathfrak{g} \, .$$

- $b_1(M) = 0 \implies$ each symplectic T^n -action is Hamiltonian
- ightharpoonup dim (M/T^n) equals dimension of target space of μ
- image is Delzant polytope

$$\mu(M) = \Delta = \{ a \in \mathbb{R}^n \mid \langle a, u_k \rangle \leqslant \lambda_k, \ k = 1, \dots, m \}$$

stabiliser of any point is a (connected) subtorus of dimension $n - \operatorname{rank} d\mu$

HyperKähler manifolds

 $(M, q, \omega_I, \omega_I, \omega_K)$ is hyperKähler if each $(q, \omega_A = q(A \cdot, \cdot))$ is Kähler and IJ = K = -II

Then dim M = 4n and g is Ricci-flat, holonomy in $Sp(n) \leq SU(2n)$

Ricci-flatness implies:

if M is compact, then any Killing vector field is parallel so the holonomy of M reduces

So take (M, q) non-compact and complete instead

Swann (2016) and Dancer and Swann (2017), following Bielawski (1999), Bielawski and Dancer (2000), Goto (1994) and Anderson et al. (1989)

Hypertoric is complete hyperKähler M^{4n} with tri-Hamiltonian $G = T^n$ action: have G-invariant map (hyperKähler moment map)

$$\mu = (\mu_I, \mu_J, \mu_K) \colon M \to \mathbb{R}^3 \otimes \mathfrak{g}^* \qquad d\langle \mu_A, X \rangle = X \, \lrcorner \, \omega_A$$

- ▶ $\dim(M/T^n)$ is 3*n*, the dimension of target space of μ
- ► stabiliser of any point is a (connected) subtorus of dimension $n \frac{1}{3}$ rank $d\mu$
- ► Locally (Lindström and Roček, 1983)

$$g=(V^{-1})_{ij}\theta_i\theta_j+V_{ij}(d\mu^i_Id\mu^j_I+d\mu^i_Jd\mu^j_J+d\mu^i_Kd\mu^j_K),$$

with (V_{ij}) positive-definite, and harmonic on each $a + \mathbb{R}^3 \otimes v$

- ▶ $\mu(M) = \mathbb{R}^{3n}$ with configuration of flats (possibly infinitely many) $H(u_k, \lambda_k) = \{a \in \text{Im } \mathbb{H} \otimes \mathbb{R}^n \mid \langle a, u_k \rangle = \lambda_k \}$
- ► n = 1: $V(p) = c + \sum_{q \in Q \subset \mathbb{R}^3} (2\|p q\|)^{-1}$, $c \ge 0$, $V(p) < +\infty$ at some p

G₂ MANIFOLDS

 M^7 with $\varphi \in \Omega^3(M)$ pointwise of the form

$$\varphi = e_{123} - e_{145} - e_{167} - e_{246} - e_{275} - e_{347} - e_{356},$$

$$e_{ijk} = e_i \wedge e_j \wedge e_k$$

Specifies metric $g = e_1^2 + \cdots + e_7^2$, orientation vol = $e_{1234567}$ and

four-form

$$*\varphi = e_{4567} - e_{2345} - e_{2367} - e_{3146} - e_{3175} - e_{1256} - e_{1247}$$

via

$$6g(X,Y)\operatorname{vol} = (X \mathrel{\lrcorner} \varphi) \land (Y \mathrel{\lrcorner} \varphi) \land \varphi$$

There is also a cross-product

$$g(X \times Y, Z) = \varphi(X, Y, Z)$$

with $X \times Y \perp X$. Y

Holonomy of q is in G_2 when $d\varphi = 0 = d * \varphi$, a parallel G_2 -structure Then q is Ricci-flat

MULTI-HAMILTONIAN ACTIONS

Joint work with Thomas Bruun Madsen

 (M,α) manifold with closed $\alpha \in \Omega^p(M)$ preserved by $G=T^n$ This is multi-Hamiltonian if it there is a *G*-invariant $\nu: M \to \Lambda^{p-1} \mathfrak{g}^*$ with

$$d\langle v, X_1 \wedge \cdots \wedge X_{p-1} \rangle = \alpha(X_1, \dots, X_{p-1}, \cdot)$$

for all $X_i \in \mathfrak{g}$

- ightharpoonup take n > p 2
- \triangleright v invariant $\iff \alpha$ pulls-back to 0 on each T^n -orbit
- \blacktriangleright $b_1(M) = 0 \implies$ each T^n -action preserving α is multi-Hamiltonian

For (M, φ) a parallel G_2 -structure, can take $\alpha = \varphi$ and/or $\alpha = *\varphi$

Multi-Hamiltonian parallel G_2 -manifolds

Proposition

Suppose (M, φ) is a parallel G_2 -manifold with T^n -symmetry multi-Hamiltonian for $\alpha = \varphi$ and/or $\alpha = *\varphi$. Then $2 \le n \le 4$.

q: dimension of orbit space M^7/T^n *k*: dimension of target of multi-moment map $\Lambda^2 \mathbb{R}^n$ and/or $\Lambda^3 \mathbb{R}^n$

n	q	α	k	note
2	5	φ	1	Madsen and Swann (2012)
3	4	φ	3	
		$*\varphi$	1	
		$\varphi \& *\varphi$	4	toric
4	3	φ	6	Baraglia (2010)
		$*\varphi$	4	

Toric Geometry of G_2 -manifolds

Toric G_2

DEFINITION

A toric G_2 manifold is a parallel G_2 -structure (M, φ) with an action of T^3 multi-Hamiltonian for both φ and $*\varphi$

Let U_1, U_2, U_3 generate the T^3 -action, then $\varphi(U_1, U_2, U_3) = 0$, with multi-moment maps $(v, \mu) = (v_1, v_2, v_3, \mu) : M \to \mathbb{R}^4$

$$dv_i = U_j \wedge U_k \perp \varphi = (U_j \times U_k)^b \quad (i j k) = (1 2 3)$$

$$d\mu = U_1 \wedge U_2 \wedge U_3 \perp *\varphi$$

Recall $\varphi = e_{123} - e_{145} - e_{167} - e_{246} - e_{275} - e_{347} - e_{356}$ If U_i are linearly independent at p, then there is a G_2 -basis so that $Span\{U_1, U_2, U_3\} = Span\{E_5, E_6, E_7\}$. The repeated cross-products of the U_i then generate TM and $(dv, d\mu)$ is of full rank 4, so (ν, μ) induces a local diffeomorphism

$$M_0/T^3 \to \mathbb{R}^4$$

THE FLAT MODEL

$$M=S^1 \times \mathbb{C}^3$$

Standard flat $\varphi=\frac{i}{2}dx(dz_{1\overline{1}}+dz_{2\overline{2}}+dz_{3\overline{3}})+\operatorname{Re}(dz_{123})$
Preserved by $T^3=S^1 \times T^2 \leqslant S^1 \times SU(3)$
Stabilisers T^2 at $S^1 \times \{0\}$ and T^1 at $S^1 \times (z_i=0=z_j, i\neq j)$
Multi-moment maps

$$4(v_1 - i\mu) = z_1 z_2 z_3, \quad 4v_2 = |z_2|^2 - |z_3|^2, \quad 4v_3 = |z_3|^2 - |z_1|^2$$

Topologically $M/T^3 = \mathbb{C}^3/T^2 = C(S^5)/T^2 = C(S^5/T^2) = C(S^3) = \mathbb{R}^4$ The ring $P(\mathbb{R}^6)^{T^2}$ of invariant polynomials has basis μ , ν_1 , ν_2 , ν_3 and $t = |z_3|^2$. By Schwarz (1975) any smooth invariant function on \mathbb{C}^3/T^2 is a smooth function of these five invariant polynomials. However, they satisfy

$$t(t + 2\nu_2)(t - 2\nu_3) = \nu_1^2 + \mu^2, \quad t \ge \max\{0, -2\nu_2, 2\nu_3\}$$
 (S)

The linear projection $(t, v, \mu) \mapsto (v, \mu)$ is a homeomorphism of this set on to \mathbb{R}^4

GENERAL PICTURE

Proposition

All isotropy groups of the T^3 action are connected and act on the tangent space as maximal tori in (a) $1 \times SU(3)$, (b) $1_3 \times SU(2)$ or (c) 1_7

Local tangent space models are flat model around (a) $S^1 \times (0,0,0)$ or (b) $S^1 \times (1, 0, 0)$. (b) is the Hopf fibration, topologically rigid. At (a) (full), v_2 and v_3 agree with the flat model to order 3, v_1 and μ to order 4. Analysis of the singularity (S) and degree arguments give

THEOREM

Let M be a full toric G_2 -manifold, then M/T^3 is homeomorphic to a smooth four-manifold. Moreover, the multi-moment map (v, μ) induces a local homeomorphism $M/T^3 \to \mathbb{R}^4$.

Configuration data: lines in (μ = constant) of rational slope. Any intersection is triple, with an integrality condition.

SMOOTH BEHAVIOUR

 $M_0 \to M_0/T^3$ is a principal torus bundle with connection one-forms $\theta_i \in \Omega^1(M_0)$ satisfying $\theta_i(U_i) = \delta_{ii}$, $\theta_i(X) = 0 \ \forall X \perp U_1, U_2, U_3$ On M_0 , put

$$B = (g(U_i, U_j))$$
 and $V = B^{-1} = \frac{1}{\det B} \operatorname{adj} B$

Theorem

$$\begin{split} g &= \frac{1}{\det V} \theta^t \operatorname{adj}(V) \, \theta + dv^t \operatorname{adj}(V) \, dv + \det(V) \, d\mu^2 \\ \varphi &= -\det(V) \, dv_{123} + d\mu dv^t \operatorname{adj}(V) \, \theta + \bigotimes_{i,j,k} \theta_{ij} dv_k \\ *\varphi &= \theta_{123} d\mu + \frac{1}{2 \det(V)} \big(dv^t \operatorname{adj}(V) \, \theta \big)^2 + \det(V) \, d\mu \, \bigotimes_{i,j,k} \theta_i dv_{jk} \end{split}$$

THEOREM (CONTINUED)

Such $(q, \varphi, *\varphi)$ defines a parallel G_2 -structure if and only if $V \in C^{\infty}(M_0/T^3, S^2\mathbb{R}^3)$ is a positive-definite solution to

$$\sum_{i=1}^{3} \frac{\partial V_{ij}}{\partial v_i} = 0 \qquad j = 1, 2, 3 \qquad \text{(divergence-free)}$$

and

$$L(V) + Q(dV) = 0$$
 (elliptic)

where

$$L = \frac{\partial^2}{\partial \mu^2} + \sum_{i,j} V_{ij} \frac{\partial^2}{\partial \nu_i \partial \nu_j}$$

and Q is a quadratic form with constant coefficients

L and Q are preserved up to scale by $GL(3,\mathbb{R})$ change of basis; this specifies Q uniquely

Cf. Chihara (2018)

Proposition

Solutions V to the divergence-free equation are given locally $bv A \in C^{\infty}(M_0/T^3, S^2\mathbb{R}^3)$ via

$$\begin{split} V_{ii} &= \frac{\partial^2 A_{jj}}{\partial v_k^2} + \frac{\partial^2 A_{kk}}{\partial v_j^2} - 2 \frac{\partial^2 A_{jk}}{\partial v_j \partial v_k} \\ V_{ij} &= \frac{\partial^2 A_{ik}}{\partial v_j \partial v_k} + \frac{\partial^2 A_{jk}}{\partial v_i \partial v_k} - \frac{\partial^2 A_{ij}}{\partial v_k^2} - \frac{\partial^2 A_{kk}}{\partial v_i \partial v_j} \end{split}$$

$$(ijk) = (123)$$

DIAGONAL SOLUTIONS

 $V = \operatorname{diag}(V_1, V_2, V_3)$ (divergence-free) and off-diagonal terms in (elliptic)

$$\frac{\partial V_i}{\partial v_i} = 0 \qquad \frac{\partial V_i}{\partial v_j} \frac{\partial V_j}{\partial v_i} = 0 \quad (i \neq j)$$

Either $V = \text{diag}(V_1(v_2, \mu), V_2(v_3, \mu), V_3(v_1, \mu))$ linear in each variable E.g. $V = \mu 1_3$, $\mu > 0$, full holonomy G_2 :

$$g = \frac{1}{\mu}(\theta_1^2 + \theta_2^2 + \theta_3^2) + \mu^2(dv_1^2 + dv_2^2 + dv_3^2) + \mu^3 d\mu^2$$
$$d\theta_i = dv_j \wedge dv_k \quad (ijk) = (123)$$

Or get elliptic hierarchy $V_3 = V_3(\mu)$, $V_2 = V_2(\nu_3, \mu)$, $V_1 = V_1(\nu_2, \nu_3, \mu)$

$$\frac{\partial^{2} V_{3}}{\partial \mu^{2}} = 0 \quad \frac{\partial^{2} V_{2}}{\partial \mu^{2}} + V_{3} \frac{\partial^{2} V_{2}}{\partial v_{3}^{2}} = 0 \quad \frac{\partial^{2} V_{1}}{\partial \mu^{2}} + V_{2} \frac{\partial^{2} V_{1}}{\partial v_{2}^{2}} + V_{3} \frac{\partial^{2} V_{1}}{\partial v_{3}^{2}} = 0$$

E.g.
$$V_3 = \mu$$
, $V_2 = \mu^3 - 3v_3^2$, $V_1 = 2\mu^5 - 15\mu^2v_3^2 - 5v_2^2$

COMPLETE EXAMPLES

The flat model $S^1 \times \mathbb{C}^3$

Bryant and Salamon (1989) metrics and their generalisations by Brandhuber et al. (2001) and Bogoyavlenskaya (2013) on $S^3 \times \mathbb{R}^4$: complete, cohomogeneity one with symmetry group $SU(2) \times SU(2) \times S^1 \times \mathbb{Z}/2 \supset T^3$

— only one-dimensional stabilisers.

References I

- Anderson, M. T., Kronheimer, P. B., and LeBrun, C. (1989), 'Complete Ricci-flat Kähler manifolds of infinite topological type', *Comm. Math. Phys.* 125 (4): 637–42.
- Baraglia, D. (2010), 'Moduli of coassociative submanifolds and semi-flat G_2 -manifolds', J. Geom. Phys. 60 (12): 1903–18.
- Bielawski, R. (1999), 'Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian \mathbb{R}^n -action', *Math. Ann.* 314 (3): 505–28.
- Bielawski, R. and Dancer, A. S. (2000), 'The geometry and topology of toric hyperkähler manifolds', *Comm. Anal. Geom.* 8 (4): 727–60.
- Bogoyavlenskaya, O. A. (2013), 'On a new family of complete Riemannian metrics on $S^3 \times \mathbb{R}^4$ with holonomy group G_2 ', Sibirsk. *Mat. Zh.* 54 (3): 551–62.

References II

- Brandhuber, A. et al. (2001), 'Gauge Theory at Large N and New G_2 Holonomy Metrics', $Nuclear\ Phys.\ B\ 611\ (1-3)$: 179-204.
- Bryant, R. L. and Salamon, S. M. (1989), 'On the construction of some complete metrics with exceptional holonomy', *Duke Math. J.* 58: 829–50.
- Chihara, R. (2018), G_2 -metrics arising from non-integrable special Lagrangian fibrations, Jan., arXiv: 1801.05540 [math.DG].
- Dancer, A. S. and Swann, A. F. (2017), 'Hypertoric manifolds and hyperKähler moment maps', in S. Chiossi et al. (eds.), *Special Metrics and Group Actions in Geometry* (Springer INdAM Series, 23; Springer, Cham), 107–27.
- Goto, R. (1994), 'On hyper-Kähler manifolds of type A_{∞} ', Geometric and Funct. Anal. 4: 424–54.

References III

- Lindström, U. and Roček, M. (1983), 'Scalar tensor duality and N = 1, 2 nonlinear σ -models', Nuclear Phys. B 222 (2): 285–308.
- Madsen, T. B. and Swann, A. F. (2012), 'Multi-moment maps', *Adv. Math.* 229: 2287–309.
- Schwarz, G. W. (1975), 'Smooth functions invariant under the action of a compact Lie group', *Topology*, 14: 63–8.
- Swann, A. F. (2016), 'Twists versus modifications', *Adv. Math.* 303: 611–37.