Torsion Geometry, Superconformal Symmetry and T-duality

Andrew Swann

University of Southern Denmark swann@imada.sdu.dk

May 2008 / Bilbao

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

Outline

1 TORSION GEOMETRY

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

● ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三十三 ● ● ●

Outline

1 TORSION GEOMETRY

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 SUPERCONFORMAL SYMMETRY

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

OUTLINE

1 Torsion Geometry

Metric geometry with torsion

- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 **T-DUALITY**

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

TORSION GEOMETRY

Metric geometry with torsion

TORSION GEOMETRY

METRIC GEOMETRY WITH TORSION

- metric *g*, connection ∇ , torsion $T^{\nabla}(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ ■ $\nabla g = 0$
- $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z)$ a three-form

TORSION GEOMETRY

METRIC GEOMETRY WITH TORSION

■ metric *g*, connection ∇ , torsion $T^{\nabla}(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ = $\nabla_X = 0$

$$\nabla g = 0$$

• $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z)$ a three-form

 $\nabla = \nabla^{\rm LC} + \frac{1}{2}c$

- any $c \in \Omega^3(M)$ will do
- ∇, ∇^{LC} same geodesics/dynamics

• *strong* if
$$dc = 0$$

METRIC KT HKT

TORSION GEOMETRY

METRIC GEOMETRY WITH TORSION

■ metric *g*, connection ∇ , torsion $T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$

$$\nabla g = 0$$

•
$$c(X, Y, Z) = g(T^{\nabla}(X, Y), Z)$$
 a three-form

 $\nabla = \nabla^{\rm LC} + \tfrac{1}{2}c$

- any $c \in \Omega^3(M)$ will do
- ∇, ∇^{LC} same geodesics/dynamics

• *strong* if
$$dc = 0$$

Study *compact* simply-connected torsion geometries with

- compatible complex structures and
- small symmetry group

OUTLINE

1 Torsion Geometry

Metric geometry with torsion

KT Geometry

HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 **T-DUALITY**

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

KT Geometry

$$g, \nabla = \nabla^{\mathrm{LC}} + \frac{1}{2}c, \ c \in \Lambda^3 T^*M$$

KT geometry

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

• $\nabla I = 0$

Two form $F_I(X, Y) = g(IX, Y)$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

KT Geometry

$$g, \nabla = \nabla^{\mathrm{LC}} + \frac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT GEOMETRY

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

 $\bullet \nabla I = 0$

Two form $F_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -IdF_I$$

the Bismut connection

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

KT Geometry

$$g, \nabla = \nabla^{\mathrm{LC}} + \frac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT geometry

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

• $\nabla I = 0$

Two form $F_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -IdF_I$$

- KT geometry = Hermitian geometry + Bismut connection
- c = 0 is Kähler geometry

• strong KT is $\partial \bar{\partial} F_I = 0$

KT Geometry

$$g, \nabla = \nabla^{\mathrm{LC}} + \frac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT geometry

additionally

I integrable complex structure

$$g(IX,IY) = g(X,Y)$$

 $\bullet \nabla I = 0$

Two form $F_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -IdF_I$$

ANDREW SWANN

the Bismut connection

- c = 0 is Kähler geometry
- strong KT is $\partial \bar{\partial} F_I = 0$

Example

$$M^6 = S^3 \times S^3 = SU(2) \times SU(2)$$

Gauduchon (1991)

every compact Hermitian M^4 is conformal to strong KT

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 **T-DUALITY**

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

MAL I DOAL COMMARI

Metric KT HKT

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -AdF_A$ is independent of A

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HKT Geometry

HKT STRUCTURE

 (g, ∇, I, J, K) with (g, ∇, A) KT, A = I, J, KIJ = K = -JI

 $c = -AdF_A$ is independent of A

Martín Cabrera and Swann (2007)

 $IdF_I = JdF_I = KdF_K$

implies *I*, *J*, *K* integrable, so HKT.

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -AdF_A$ is independent of A

Martín Cabrera and Swann (2007)

 $IdF_I = JdF_J = KdF_K$

implies *I*, *J*, *K* integrable, so HKT.

Examples DIM 4 T^4 , K3, $S^3 \times S^1$ (Boyer, 1988) DIM 8 Hilbert schemes, SU(3),

nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -AdF_A$ is independent of A

Martín Cabrera and Swann (2007)

$$IdF_I = JdF_I = KdF_K$$

implies *I*, *J*, *K* integrable, so HKT.

Examples DIM 4 T^4 , K3, $S^3 \times S^1$ (Boyer, 1988) DIM 8 Hilbert schemes SU(3)

DIM 8 Hilbert schemes, *SU*(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperKähler nor homogeneous?

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 **T-DUALITY**

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

SUPERCONFORMAL QUANTUM MECHANICS

N particles in 1 dimension

$$H = \frac{1}{2} P_a^* g^{ab} P_b + V(x)$$

Standard quantisation

$$P_a \sim -i rac{\partial}{\partial x^a}, \quad a=1,\ldots,N$$

ANDREW SWANN TORSION, SUCOSY, T-DUALITY

SUPERCONFORMAL QUANTUM MECHANICS

N particles in 1 dimension Standard quantisation

$$H = \frac{1}{2} P_a^* g^{ab} P_b + V(x) \qquad P_a \sim -i \frac{\partial}{\partial x^a}, \quad a = 1, \dots, N$$

Michelson and Strominger (2000); Papadopoulos (2000)

- operator *D* with $[D,H] = 2iH \iff$ vector field *X* with $L_Xg = 2g \& L_XV = -2V$
- *K* so span{*iH*, *iD*, *iK*} \cong $\mathfrak{sl}(2, \mathbb{R}) \iff X^{\flat} = g(X, \cdot)$ is closed

• then
$$K = \frac{1}{2}g(X, X)$$
.

Choose a superalgebra containing $\mathfrak{sl}(2,\mathbb{R})$ in its even part.

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 SUPERCONFORMAL SYMMETRY

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 **T-DUALITY**

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

ANDREW SWANN TORSION, SUCOSY, T-DUALITY

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\blacksquare \ \mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$
$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{O} + \mathbb{C}^{4}_{S}$$

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\blacksquare \ \mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$
$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$
$$[S^{a}, Q^{a}] = D,$$

$$[S^1, Q^2] = -\frac{4\alpha}{1+\alpha}R_+^3 - \frac{4}{1+\alpha}R_-^3$$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\blacksquare \ \mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$

$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$

$$[S^{a}, Q^{a}] = D,$$

$$[S^{1}, Q^{2}] = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

Simple for $\alpha \neq -1, 0, \infty$.

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_{+} + \mathfrak{sl}(2, \mathbb{C})_{-}$$

$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{Q}$$

$$[S^{a}, Q^{a}] = D,$$

$$[S^{1}, Q^{2}] = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

Simple for $\alpha \neq -1, 0, \infty$.

 Over C, isomorphisms between the cases α^{±1}, −(1 + α)^{±1}, −(α/(1 + α))^{±1}.

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$
$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$
$$[S^{a}, Q^{a}] = D,$$
$$\mathfrak{sl}(S^{1}, Q^{2}) = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

 Over C, isomorphisms between the cases α^{±1}, -(1 + α)^{±1}, -(α/(1 + α))^{±1}.

Real form

$$\mathfrak{g}_0 = \mathfrak{sl}(2,\mathbb{R}) + \mathfrak{su}(2)_+ + \mathfrak{su}(2)_-$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple for $\alpha \neq -1, 0, \infty$.

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- **The Superalgebras** $D(2, 1; \alpha)$
- Geometric Structure

T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

 \leftrightarrow

SUPERCONFORMAL GEOMETRY

$\mathcal{N}=4B$ quantum mechanics

with $D(2,1;\alpha)$ superconformal symmetry

HKT manifold M

with *X* a special homothety of type (a, b)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

$$L_X g = ag,$$
$$L_{IX} J = bK,$$

•
$$L_X I = 0, L_{IX} I = 0, ...$$

 \leftrightarrow

SUPERCONFORMAL GEOMETRY

$\mathcal{N}=4B$ quantum mechanics

with $D(2, 1; \alpha)$ superconformal symmetry

HKT manifold M

with *X* a special homothety of type (a, b)

$$L_X g = ag,$$
$$L_{IX} J = bK,$$

•
$$L_X I = 0, L_{IX} I = 0, ...$$

$$\alpha = \frac{a}{b} - 1$$
Action of
$$\mathbb{R} \times SU(2)$$

rotating I, J, K

SUPERCONFORMAL GEOMETRY

$\mathcal{N}=4B$ quantum mechanics

with $D(2, 1; \alpha)$ superconformal symmetry

- $\alpha = \frac{a}{b} 1$ • Action of
 - $\mathbb{R} \times SU(2)$ rotating *I*, *J*, *K*

HKT manifold M

with *X* a *special homothety of type* (a, b)

For $a \neq 0$

 \leftrightarrow

- *M* is non-compact
- $\mu = \frac{2}{a(a-b)} ||X||^2$ is an *HKT potential*

$$F_I = \frac{1}{2}(dd_I + d_J d_K)\mu = \frac{1}{2}(1 - J)dId\mu.$$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

SUPERCONFORMAL GEOMETRY II

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

ANDREW SWANN TORSION, SUCOSY, T-DUALITY

SUPERCONFORMAL GEOMETRY II

EXAMPLE

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, $\alpha = -2$.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, $\alpha = -2$.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$.

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{H}P(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \operatorname{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

ANDREW SWANN TORSION, SUCOSY, T-DUALITY

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

Discrete quotient

$$M = (\mu^{-1}(1) \times \mathbb{R}) / \mathbb{Z}(\varphi, 2)$$

with g_1 is HKT with special isometry *X*

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{H}P(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

Discrete quotient

$$M = (\mu^{-1}(1) \times \mathbb{R}) / \mathbb{Z}(\varphi, 2)$$

with g_1 is HKT with special isometry *X*

In this case $dX^{\flat} = 0$ $b_1(M) \ge 1$

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

- *X* generating a circle action on *M*
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \,\lrcorner\, F_{\theta}$

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \,\lrcorner F_{\theta}$

$\begin{array}{c} P \\ \stackrel{\pi}{\swarrow} Y \\ M \\ W \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のへで

Definition

A *twist* W of M with respect to X is $W := P / \langle X' \rangle$

Transverse locally free lifts always exist for $X \,\lrcorner\, F_{\theta}$ exact.

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- $X' = \tilde{X} + aY$ a lift of Xgenerating a free circle action, $da = -X \,\lrcorner\, F_{\theta}$

$M \qquad \begin{array}{c} P \\ M \\ W \end{array}$

DUALLY

M is a twist of *W* with respect to $X_W = (\pi_W)_* Y$, $\theta_W = \frac{1}{a} \theta$

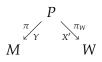
◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

DEFINITION

A *twist* W of M with respect to X is $W := P / \langle X' \rangle$

Transverse locally free lifts always exist for $X \,\lrcorner\, F_{\theta}$ exact.

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \,\lrcorner F_{\theta}$



Dually

M is a twist of *W* with respect to $X_W = (\pi_W)_* Y$, $\theta_W = \frac{1}{a} \theta$

Definition

A *twist* W of M with respect to X is $W := P / \langle X' \rangle$

Transverse locally free lifts always exist for $X \,\lrcorner\, F_{\theta}$ exact.

Definition

Tensors α on α_W on M and W are \mathcal{H} -related, $\alpha_W \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H} = \ker \theta$

$$d\alpha_W \sim_{\mathcal{H}} d\alpha - F_{\theta} \wedge \frac{1}{a} X \,\lrcorner\, \alpha$$
 if invariant

OUTLINE

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

TWISTING HKT

Twist by

 $g_W \sim_{\mathcal{H}} g$, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

ANDREW SWANN TORSION, SUCOSY, T-DUALITY

TWISTING HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_I^W \sim_{\mathcal{H}} IdF_I + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

 $c = -IdF_I = -JdF_J = -KdF_K$

TWISTING HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_I^W \sim_{\mathcal{H}} IdF_I + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

$$c = -IdF_I = -JdF_I = -KdF_K$$

PROPOSITION

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton*

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

Twist by

 $g_W \sim_{\mathcal{H}} g$, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_I^W \sim_{\mathcal{H}} IdF_I + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

$$c = -IdF_I = -JdF_I = -KdF_K$$

PROPOSITION

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_I^W \sim_{\mathcal{H}} IdF_I + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

$$c = -IdF_I = -JdF_I = -KdF_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_{I}^{W} \sim_{\mathcal{H}} IdF_{I} + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

$$c = -IdF_I = -JdF_J = -KdF_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

$$F_{\theta} = dX^{\flat}$$
 is an instanton

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $F_I^W \sim_{\mathcal{H}} F_I$, etc.

Then

$$IdF_{I}^{W} \sim_{\mathcal{H}} IdF_{I} + \frac{1}{a}X^{\flat} \wedge IF_{\theta}$$

For HKT need

$$c = -IdF_I = -JdF_J = -KdF_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

 $F_{\theta} = dX^{\flat}$ *is* an instanton

Many simply-connected examples when $b_2(S) \ge 1$ E.g., $Q = k \mathbb{CP}(2)$

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$
- Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$
- Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

 N_1 a K3 surface F_{θ} self-dual, primitive

Generalises to torus actions

TORSION SUPERCONFORMAL T-DUAL SUMMARY TWE

TWIST HKT CIRCLE

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

 N_1 a K3 surface F_{θ} self-dual, primitive

Generalises to torus actions

HKT nilmanifold $M = G/\Gamma$

TORSION SUPERCONFORMAL T-DUAL SUMMARY T

TWIST HKT CIRCLE

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

 N_1 a K3 surface F_{θ} self-dual, primitive

Generalises to torus actions

HKT nilmanifold $M = G/\Gamma$ \mathfrak{g}^* basis e_1, \ldots, e_n with

$$de_{i+1} \in \Lambda^2 \operatorname{span}\{e_1,\ldots,e_i\}$$

TORSION SUPERCONFORMAL T-DUAL SUMMARY

TWIST HKT CIRCLE

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

 N_1 a K3 surface F_{θ} self-dual, primitive

Generalises to torus actions

HKT nilmanifold $M = G/\Gamma$ \mathfrak{g}^* basis e_1, \ldots, e_n with

$$de_{i+1} \in \Lambda^2 \operatorname{span}\{e_1,\ldots,e_i\}$$

Barberis, Dotti Miatello, and Verbitsky (2007)

I, J, K are Abelian

 $de_{i+1} \in S^2 E \cap \Lambda^2 \operatorname{span} \{e_1, \ldots, e_i\}$

TORSION SUPERCONFORMAL T-DUAL SUMMARY

TWIST HKT CIRCLE

GENERAL HKT WITH CIRCLE SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- *N*₂ with an HKT circle symmetry *X*
- $[F_{\theta}] \in H^2(N_1, \mathbb{Z}), F_{\theta} \in S^2 E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

 N_1 a K3 surface F_{θ} self-dual, primitive

Generalises to torus actions

HKT nilmanifold $M = G/\Gamma$ \mathfrak{g}^* basis e_1, \ldots, e_n with

$$de_{i+1} \in \Lambda^2 \operatorname{span}\{e_1,\ldots,e_i\}$$

BARBERIS, DOTTI MIATELLO, AND VERBITSKY (2007)

I, J, K are Abelian

 $de_{i+1} \in S^2 E \cap \Lambda^2 \operatorname{span} \{e_1, \ldots, e_i\}$

Proposition

Every HKT nilmanifold may be obtained by successive twists of a torus T^{4n} .

Summary

D(2,1; α) superconformal symmetry realised by HKT with
 ℝ × SU(2) action

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *D*(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds

- *D*(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

- *D*(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with *α* = −1

- D(2, 1; α) superconformal symmetry realised by HKT with R × SU(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with *α* = −1
- construct other compact HKT manifolds by further twists

Summary

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with *α* = −1
- construct other compact HKT manifolds by further twists
- non-instanton twists by tori

$$\sum_{i,j} (a^{-1})_{ij} X_i \wedge IF_j \qquad \text{independent of } I$$

gives further non-compact HKT examples

References I

- M. L. Barberis and A. Fino. New strong HKT manifolds arising from quaternionic representations, May 2008. eprint arXiv:0805.2335[math.DG].
- M. L. Barberis, I. Dotti Miatello, and M. Verbitsky. Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry, December 2007. eprint arXiv:0712.3863[math.DG].
- C. P. Boyer. A note on hyperHermitian four-manifolds. *Proc. Amer. Math. Soc.*, 102:157–164, 1988.
- P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. *Ann. Sc. Norm. Sup. Pisa*, 18:563–629, 1991.

References

References II

- F. Martín Cabrera and A. F. Swann. The intrinsic torsion of almost quaternion-hermitian manifolds. preprint PP-2007-06, Department of Mathematics and Computer Science, University of Southern Denmark, July 2007. eprint arXiv:math.DG/0707.0939, Ann. Inst. Fourier (to appear).
- J. Michelson and A. Strominger. The geometry of (super) conformal quantum mechanics. *Comm. Math. Phys.*, 213(1): 1–17, 2000. ISSN 0010-3616.
- G. Papadopoulos. Conformal and superconformal mechanics. *Classical Quantum Gravity*, 17(18):3715–3741, 2000. ISSN 0264-9381.
- Y. S. Poon and A. F. Swann. Superconformal symmetry and hyperKähler manifolds with torsion. *Commun. Math. Phys.*, 241(1):177–189, 2003.

References

References III

M. Verbitsky. Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, March 2003. eprint arXiv:math.DG/0303129.