Torsion Geometry, Superconformal Symmetry and T-duality

Andrew Swann

University of Southern Denmark
swann@imada.sdu.dk
May 2008 / Bilbao

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

Outline

1 Torsion Geometry
■ Metric geometry with torsion

- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right) \mathrm{a}$ three-form

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right)$ a three-form

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c
$$

- any $c \in \Omega^{3}(M)$ will do
- $\nabla, \nabla^{\text {LC }}$ same geodesics/dynamics
- strong if $d c=0$

Torsion Geometry

METRIC GEOMETRY WITH TORSION

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right) \mathrm{a}$ three-form

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c
$$

- any $c \in \Omega^{3}(M)$ will do
- $\nabla, \nabla^{\mathrm{LC}}$ same geodesics/dynamics
- strong if $d c=0$

Study compact simply-connected torsion geometries with

■ compatible complex structures and

- small symmetry group

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT GEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $F_{I}(X, Y)=g(I X, Y)$

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT GEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $F_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d F_{I}
$$

the Bismut connection

KT Geometry

$g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M$

KT GEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $F_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d F_{I}
$$

- KT geometry = Hermitian geometry + Bismut connection
- $c=0$ is Kähler geometry
- strong KT is $\partial \bar{\partial} F_{I}=0$

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT gEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $F_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d F_{I}
$$

- KT geometry $=$ Hermitian geometry + Bismut connection
- $c=0$ is Kähler geometry
- strong KT is $\partial \bar{\partial} F_{I}=0$

> EXAMPLE
> $M^{6}=S^{3} \times S^{3}=S U(2) \times S U(2)$

GAUDUCHON (1991)

every compact Hermitian M^{4} is conformal to strong KT
the Bismut connection

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- (g, ∇, A) KT, $\quad A=I, J, K$
- $I J=K=-J I$
$c=-A d F_{A}$ is independent of A

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$
- $I J=K=-J I$
$c=-A d F_{A}$ is independent of A

Martín Cabrera and Swann (2007)

$$
I d F_{I}=J d F_{J}=K d F_{K}
$$

implies I, J, K integrable, so НКТ.

HKT Geometry

HKT structure

(g, ∇, I, J, K) with
■ $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$

- $I J=K=-J I$
$c=-A d F_{A}$ is independent of A
Martín Cabrera and Swann (2007)

$$
I d F_{I}=J d F_{J}=K d F_{K}
$$

implies I, J, K integrable, so НКТ.

Examples
Dim $4 T^{4}, \mathrm{~K} 3, S^{3} \times S^{1}$ (Boyer, 1988)

Dim 8 Hilbert schemes, SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$
- $I J=K=-J I$
$c=-A d F_{A}$ is independent of A

Martín Cabrera and

 SWANN (2007)$$
I d F_{I}=J d F_{J}=K d F_{K}
$$

implies I, J, K integrable, so HKT.

Examples
Dim $4 T^{4}, \mathrm{~K} 3, S^{3} \times S^{1}$ (Boyer, 1988)

Dim 8 Hilbert schemes, SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperKähler nor homogeneous?

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality
■ T-duality as a Twist Construction

- HKT Examples

■ General HKT with Circle Symmetry

Superconformal Quantum Mechanics

N particles in 1 dimension

$$
H=\frac{1}{2} P_{a}^{*} g^{a b} P_{b}+V(x)
$$

Standard quantisation

$$
P_{a} \sim-i \frac{\partial}{\partial x^{a}}, \quad a=1, \ldots, N
$$

Superconformal Quantum Mechanics

N particles in 1 dimension
Standard quantisation

$$
H=\frac{1}{2} P_{a}^{*} g^{a b} P_{b}+V(x) \quad P_{a} \sim-i \frac{\partial}{\partial x^{a}}, \quad a=1, \ldots, N
$$

Michelson and Strominger (2000); Papadopoulos (2000)

■ operator D with $[D, H]=2 i H \Longleftrightarrow$ vector field X with $L_{X} g=2 g \& L_{X} V=-2 V$
■ K so $\operatorname{span}\{i H, i D, i K\} \cong \mathfrak{s l}(2, \mathbb{R}) \Longleftrightarrow X^{b}=g(X, \cdot)$ is closed

- then $K=\frac{1}{2} g(X, X)$.

Choose a superalgebra containing $\mathfrak{s l}(2, \mathbb{R})$ in its even part.

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality
■ T-duality as a Twist Construction

- HKT Examples

■ General HKT with Circle Symmetry

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
■ $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$

Simple for $\alpha \neq-1,0, \infty$.

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one continuous family

$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$

$$
\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}
$$

- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$
- Over C, isomorphisms between the cases
$\alpha^{ \pm 1},-(1+\alpha)^{ \pm 1}$, $-(\alpha /(1+\alpha))^{ \pm 1}$.

Simple for $\alpha \neq-1,0, \infty$.

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one continuous family

$D(2,1 ; \alpha)$

$\square \mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$

- $\mathfrak{g}_{0}=$
$\mathfrak{s l l}(2, \mathbb{C})+\mathfrak{s l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$
- Over \mathbb{C}, isomorphisms between the cases

$$
\begin{aligned}
& \alpha^{ \pm 1},-(1+\alpha)^{ \pm 1}, \\
& -(\alpha /(1+\alpha))^{ \pm 1} .
\end{aligned}
$$

- Real form
$\mathfrak{g}_{0}=\mathfrak{s l}(2, \mathbb{R})+$
$\mathfrak{s u}(2)_{+}+\mathfrak{s u}(2)_{-}$.
- Over \mathbb{R},
isomorphisms for $\alpha^{ \pm 1}$

Simple for $\alpha \neq-1,0, \infty$.

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

Superconformal Geometry

$\mathcal{N}=4 B$ QUANTUM
MECHANICS
with $D(2,1 ; \alpha)$
superconformal
symmetry

HKT MANIFOLD M

with X a special homothety of type (a, b)

$$
\begin{aligned}
& L_{X} g=a g \\
& L_{I X} J=b K \\
& L_{X} I=0, L_{I X} I=0, \ldots
\end{aligned}
$$

Superconformal Geometry

$\mathcal{N}=4 B$ QUANTUM
MECHANICS
with $D(2,1 ; \alpha)$
superconformal
symmetry

HKT MANIFOLD M

with X a special homothety of type (a, b)

$$
\begin{aligned}
& L_{X} g=a g \\
& L_{I X} J=b K \\
& L_{X} I=0, L_{I X} I=0, \ldots
\end{aligned}
$$

- $\alpha=\frac{a}{b}-1$
- Action of $\mathbb{R} \times S U(2)$ rotating I, J, K

Superconformal Geometry

$\mathcal{N}=4 B$ QUANTUM MECHANICS
with $D(2,1 ; \alpha)$ superconformal symmetry

- $\alpha=\frac{a}{b}-1$
- Action of $\mathbb{R} \times S U(2)$ rotating I, J, K

HKT MANIFOLD M

with X a special homothety of type (a, b)

$$
\begin{aligned}
& L_{X} g=a g \\
& L_{I X} J=b K \\
& L_{X} I=0, L_{I X} I=0, \ldots
\end{aligned}
$$

For $a \neq 0$

- M is non-compact
- $\mu=\frac{2}{a(a-b)}\|X\|^{2}$ is an HKT potential

$$
F_{I}=\frac{1}{2}\left(d d_{I}+d_{J} d_{K}\right) \mu=\frac{1}{2}(1-J) d I d \mu .
$$

Superconformal Geometry II

Example
 $$
\begin{aligned} & M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\ & a=2, b=-2, \alpha=-2 \end{aligned}
$$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / \operatorname{SU}(2)$ a QKT orbifold (of special type).

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

Superconformal Geometry II

Example

$M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n)$
$a=2, b=-2, \alpha=-2$.

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is
hyperKähler with special homothety $\alpha=-2$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is
hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathbb{H}} \mu\right)^{2}
$$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathrm{H}} \mu\right)^{2}
$$

Discrete quotient

$$
M=\left(\mu^{-1}(1) \times \mathbb{R}\right) / \mathbb{Z}(\varphi, 2)
$$

with g_{1} is HKT with special isometry X

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / \operatorname{SU}(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathrm{H}} \mu\right)^{2}
$$

Discrete quotient

$$
M=\left(\mu^{-1}(1) \times \mathbb{R}\right) / \mathbb{Z}(\varphi, 2)
$$

with g_{1} is HKT with special isometry X

In this case

- $d X^{b}=0$
- $b_{1}(M) \geqslant 1$

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-DuAlity

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

T-duality as a Twist

- X generating a circle action on M
■ $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle

T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
■ $X^{\prime}=\tilde{X}+a Y$ a lift of X
generating a free circle action, $d a=-X\lrcorner F_{\theta}$

T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant
 principal S^{1}-bundle
- $X^{\prime}=\tilde{X}+a Y$ a lift of X generating a free circle action, $d a=-X\lrcorner F_{\theta}$

Definition

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

Transverse locally free lifts always exist for $X\lrcorner F_{\theta}$ exact.

T-duality as a Twist

- X generating a circle action on M
■ $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- $X^{\prime}=\tilde{X}+a Y$ a lift of X generating a free circle action, $d a=-X\lrcorner F_{\theta}$

Dually

M is a twist of W with respect to $X_{W}=\left(\pi_{W}\right)_{*} Y, \theta_{W}=\frac{1}{a} \theta$

DEFINITION

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

Transverse locally free lifts always exist for $X\lrcorner F_{\theta}$ exact.

T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- $X^{\prime}=\tilde{X}+a Y$ a lift of X generating a free circle action, $d a=-X\lrcorner F_{\theta}$

DEFINITION

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

Transverse locally free lifts always exist for $X\lrcorner F_{\theta}$ exact.

Dually

M is a twist of W with respect to $X_{W}=\left(\pi_{W}\right)_{*} Y, \theta_{W}=\frac{1}{a} \theta$

DEFINITION

Tensors α on α_{W} on M and W are \mathcal{H}-related, $\alpha_{W} \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H}=\operatorname{ker} \theta$
$\left.d \alpha_{W} \sim_{\mathcal{H}} d \alpha-F_{\theta} \wedge \frac{1}{a} X\right\lrcorner \alpha$ if invariant

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-DUALITY

- T-duality as a Twist Construction
- HKT Examples
- General HKT with Circle Symmetry

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need

$$
c=-I d F_{I}=-J d F_{J}=-K d F_{K}
$$

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need
$c=-I d F_{I}=-J d F_{J}=-K d F_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need

$$
c=-I d F_{I}=-J d F_{J}=-K d F_{K}
$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need

$$
c=-I d F_{I}=-J d F_{J}=-K d F_{K}
$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$

Twisting HKT

Twist by

$$
g_{\mathcal{W}} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need

$$
c=-I d F_{I}=-J d F_{J}=-K d F_{K}
$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$
$F_{\theta}=d X^{b}$ is an instanton

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad F_{I}^{W} \sim_{\mathcal{H}} F_{I}, \text { etc. }
$$

Then

$$
I d F_{I}^{W} \sim_{\mathcal{H}} I d F_{I}+\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

For HKT need

$$
c=-I d F_{I}=-J d F_{J}=-K d F_{K}
$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$
$F_{\theta}=d X^{b}$ is an instanton
Many simply-connected examples when $b_{2}(S) \geqslant 1$ E.g., $Q=k \mathrm{CP}(2)$

Outline

1 Torsion Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure

3 T-duality

- T-duality as a Twist Construction
- HKT Examples

■ General HKT with Circle Symmetry

General HKT with Circle Symmetry

■ $M=N_{1} \times N_{2}$

- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$
Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$
Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

Generate simply-connected examples

Example

N_{1} a K3 surface
F_{θ} self-dual, primitive
Generalises to torus actions

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$
Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

Generate simply-connected examples

Example

N_{1} a K3 surface
F_{θ} self-dual, primitive
Generalises to torus actions

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$ Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

Generate simply-connected examples

Example

N_{1} a K3 surface
F_{θ} self-dual, primitive
Generalises to torus actions

HKT nilmanifold $M=G / \Gamma$
\mathfrak{g}^{*} basis e_{1}, \ldots, e_{n} with

$$
d e_{i+1} \in \Lambda^{2} \operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}
$$

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$ Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

Generate simply-connected examples

Example

N_{1} a K3 surface
F_{θ} self-dual, primitive
Generalises to torus actions

General HKT with Circle Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT circle symmetry X
■ $\left[F_{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{\theta} \in S^{2} E$ Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with circle symmetry

Generate simply-connected examples

Example

N_{1} a K3 surface
F_{θ} self-dual, primitive
Generalises to torus actions

HKT nilmanifold $M=G / \Gamma$
\mathfrak{g}^{*} basis e_{1}, \ldots, e_{n} with

$$
d e_{i+1} \in \Lambda^{2} \operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}
$$

Barberis, Dotti Miatello, and Verbitsky (2007)

I, J, K are Abelian

$$
d e_{i+1} \in S^{2} E \cap \Lambda^{2} \operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}
$$

Proposition

Every HKT nilmanifold may be obtained by successive twists of a torus $T^{4 n}$.

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

- $\alpha=-1$ comes from previous examples via change of potential and twist

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

- $\alpha=-1$ comes from previous examples via change of potential and twist
■ construct non-homogeneous compact simply-connected examples with $\alpha=-1$

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times \operatorname{SU}(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

- $\alpha=-1$ comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with $\alpha=-1$
■ construct other compact HKT manifolds by further twists

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

- $\alpha=-1$ comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with $\alpha=-1$
■ construct other compact HKT manifolds by further twists
- non-instanton twists by tori

$$
\sum_{i, j}\left(a^{-1}\right)_{i j} X_{i} \wedge I F_{j} \quad \text { independent of } I
$$

gives further non-compact HKT examples

References I

M. L. Barberis and A. Fino. New strong HKT manifolds arising from quaternionic representations, May 2008. eprint arXiv:0805. 2335 [math.DG].
M. L. Barberis, I. Dotti Miatello, and M. Verbitsky. Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry, December 2007. eprint arXiv:0712. 3863 [math.DG].
C. P. Boyer. A note on hyperHermitian four-manifolds. Proc. Amer. Math. Soc., 102:157-164, 1988.
P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. Ann. Sc. Norm. Sup. Pisa, 18:563-629, 1991.

References II

F. Martín Cabrera and A. F. Swann. The intrinsic torsion of almost quaternion-hermitian manifolds. preprint PP-2007-06, Department of Mathematics and Computer Science, University of Southern Denmark, July 2007. eprint arXiv:math.DG/0707.0939, Ann. Inst. Fourier (to appear).
J. Michelson and A. Strominger. The geometry of (super) conformal quantum mechanics. Comm. Math. Phys., 213(1): 1-17, 2000. ISSN 0010-3616.
G. Papadopoulos. Conformal and superconformal mechanics. Classical Quantum Gravity, 17(18):3715-3741, 2000. ISSN 0264-9381.
Y. S. Poon and A. F. Swann. Superconformal symmetry and hyperKähler manifolds with torsion. Commun. Math. Phys., 241(1):177-189, 2003.

References III

M. Verbitsky. Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, March 2003. eprint arXiv:math.DG/0303129.

