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An Example of T-duality

HyperKähler M4

ds2 = V−1(dτ+ω)2 +Vγijdxidxj

dV =∗3dω

T duality

on X = ∂
∂τ

Strong HKT W 4

ds2 = V (d2τ+γijdxidxj)
c =−dτ∧dω

Gibbons, Papadopoulos, and Stelle, 1997

Callan, Harvey, and Strominger, 1991

Bergshoeff, Hull, and Ortín, 1995

For circle actions have:

R ↔ 1/R and here W = (M/S1)×S1
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Geometry with Torsion

Metric geometry with torsion

metric g

connection ∇
∇g = 0

c(X ,Y ,Z) = g(T∇(X ,Y ),Z) = g(∇X Y −∇Y X − [X ,Y ],Z) is a
three-form

Have
∇=∇LC + 1

2 c

Any c ∈Ω3(M) will do

∇ and ∇LC have the same
geodesics/dynamics

Definition

The geometry is strong if dc = 0
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KT Geometry

Metric geometry
g, ∇=∇LC + 1

2 c, c ∈Λ3T∗M

KT geometry

additionally

I integrable complex
structure

g(IX , IY ) = g(X ,Y )

∇I = 0

Here I : TM → TM with

I2 =−1 NI = 0

where NI (X ,Y ) =
[IX , IY ]− I[IX ,Y ]− I[X , IY ]− [X ,Y ]

Given (g, I) the connection ∇ is
unique: c =−IdFI , where
FI (X ,Y ) = g(IX ,Y )

KT geometry is just
Hermitian geometry
together with the Bismut
connection ∇
c = 0 is Kähler geometry

strong KT geometry is
∂∂̄FI = 0

Gauduchon, 1991: every
compact Hermitian M4 is
conformal to strong KT
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HKT geometry

HKT structure

(g,∇, I , J ,K ) such that

each (g,∇,A) is KT, A = I , J ,K

IJ = K =−JI

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

most commonly encountered
hypercomplex structures (M , I , J ,K ) admit
an HKT metric — but not all.

there is a good potential theory
FI = 1

2 (1− J)dIdρ

Example

G = SU(3) = M8,
bi-invariant g is
strong HKT
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Twist

X generating a circle action on M

(P,θ)
π−→ M an invariant principal S1-bundle

X ′ a lift of X generating a free circle action

Definition

A twist W of M with respect to X is

W := P/〈X ′〉 M W

P
π

Y
πW

X ′

The twist carries

circle action generated by
XW = (πW )∗Y

principal bundle P,X ′ connection
θW = 1

aθ

Dually

M is a twist of W with
respect to XW
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Lifting Group Actions

X a vector field on M

P
π−→ M a principal

S1-bundle, generator Y

θ a connection in P,
curvature π∗Fθ = dθ

LX Fθ = 0

Put

Xθ := X yFθ = Fθ(X , ·)

Lemma

There is an X ′ on P preserving θ
and projecting to X if and only if
Xθ is exact.
Lifts are parameterised by R.

Proof.

Let X̃ be the horizontal lift of X .
Then

X ′ = X̃ +aY

with da =−Xθ.
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Lifting Circle Actions

Call an S1-action generated by X F-Hamiltonian if X preserves
F ∈Ω2(M) and X yF is exact.

Proposition (cf. Lashof, May, and Segal, 1983)

Suppose F ∈Ω2
Z

(M) is a closed 2-form with integral periods. For each
F-Hamiltonian S1-action and each principal circle bundle P → M
with c1(P)⊗R= [F] there is a locally free circle action on P covering
the action on M and an invariant principal connection θ such that
Fθ = F.

General circle actions on CP(n) can not be lifted to free circle
actions on P.

Andrew Swann Twists, Torsion and T-duality
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Transformation Rules

Definition

Tensors α on αW on M and W are said to be H -related if their
pull-backs agree on H = kerθ

For p-forms
π∗

WαW =π∗α−θ∧π∗( 1
a X yα)

For metrics

π∗
W gW =π∗g −2θ∨π∗( 1

a X [)+π∗( 1
a2 ‖X‖2)θ2

Lemma

dαW is H -related to a form on M if and only if LXα= 0. Then
dαW ∼

H
dα−Fθ∧ 1

a X yα.
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Almost Hermitian Twist

Definition

Let (M ,g,FI ) be an almost Hermitian structure invariant under X .
This has twist (W ,gW ,FW

I ) where

gW ∼
H

g

FW
I ∼

H
FI

Proposition

If I is integrable then IW is integrable if and only if Fθ ∈Λ1,1

the forms c =−IdFI are related by

cW ∼H c− 1
a X [∧ IFθ
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Transformation Rules II

Corollary

If (M ,g, I , J ,K ) is hyperHermitian (resp. HKT) then
(W ,gW , IW , JW ,KW ) is hyperHermitian (resp. HKT) if and only if

Fθ ∈
⋂

A=I ,J ,K
Λ1,1

A

i.e. Fθ is an instanton

Generalises Joyce, 1992, and Grantcharov and Poon, 2000

Corollary

For M KT (resp. HKT) and Fθ an instanton, W is strong if and only if

dc = 1
a (dX [+X yc− 1

a‖X‖2Fθ)∧Fθ
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From a HyperKähler Metric

g = 1
V ϕ

2 +Vh
hyperKähler, c = 0

hyperKähler isometry X
ϕ(X) = 1, LXϕ= 0
X [ = V−1ϕ, V =
‖X‖−2

dX [ ∈ ⋂
A=I ,J ,K

Λ1,1
A

Taking Fθ =λdX [ 6= 0 gives an
HKT twist if X yFθ =−λd‖X‖2

is exact, so λ=λ(‖X‖2).

The twist is strong HKT if and only if

dc = 1
a (dX [+X yc− 1

a‖X‖2Fθ)∧Fθ,

da =λd‖X‖2

which says

0 = λ
a (1− λ

a ‖X‖2)dX [∧dX [

and gives λ constant.

This is a twist via a trivial bundle
with non-flat connection.
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Obtaining Lie Groups

U (CP(2)) = (V− \ 0)/{±1} carries a
hyperKähler metric:

U (CP(2)) = {A ∈ M3(C) :
A2 = 0,rankA = 1}

FI = i∂∂̄ρ, ρ(A) = k TrAA∗

(FJ + iFK )([A,ξ], [A,η]) =
Tr(A[ξ,η]) the KKS form

Z-action generated by A 7→ 2A is
triholomorphic but not an isometry,
but M =U (CP(2))/Z is HKT with

g = 1
ρ gU − 1

2ρ2 (dHρ)2

Topologically
U (CP(2))/Z= SU(3)

U(1) ×S1.

The S1 acts as HKT
isometries.

b2(CP(2)) = 1 generated
by [ωCP(2)]

P,θ pull-back to
M =U (CP(2))/Z of the
circle bundle with
Fθ =π∗ωCP(2)

Twist of U (CP(2))/Z: strong
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Twisting a Torus

M = T 2n invariant
Hermitian (g, I)

X a generator for a circle

Fθ an invariant integral
two-form with X yFθ = 0

The twist W of M is a compact
nilmanifold Γ\G where g has
commutators given by

[A,B] = Fθ(A,B)Y ,

Y central.

Can repeatedly twist using
different central Xi and closed
two-forms Fi.

Each stage is KT if each Fi is
type (1,1)

Final twist is strong KT if
F2

1 +F2
2 +·· ·+F2

r = 0

Dim 4 g= (0,0,0,12) =
R+h3

Dim 6 (05,12) =R3 +h3,
(04,12,34) = 2h3

General g=Rk + r h3
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Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

(05,12), (04,12,34), (04,12,14+23), (04,13+42,14+23)

Instanton twists miss the last two and indeed higher-dimensional
examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with
g= (06,13−24+56,12−2.23+3.34) are irreducible and lie in a
15-dimensional family of invariant strong KT structures.

Andrew Swann Twists, Torsion and T-duality



Motivation Twist Examples Summary HKT Strong KT Other

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

(05,12), (04,12,34), (04,12,14+23), (04,13+42,14+23)

Instanton twists miss the last two and indeed higher-dimensional
examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with
g= (06,13−24+56,12−2.23+3.34) are irreducible and lie in a
15-dimensional family of invariant strong KT structures.

Andrew Swann Twists, Torsion and T-duality



Motivation Twist Examples Summary HKT Strong KT Other

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

(05,12), (04,12,34), (04,12,14+23), (04,13+42,14+23)

Instanton twists miss the last two and indeed higher-dimensional
examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with
g= (06,13−24+56,12−2.23+3.34) are irreducible and lie in a
15-dimensional family of invariant strong KT structures.

Andrew Swann Twists, Torsion and T-duality



Motivation Twist Examples Summary HKT Strong KT Other

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

M = N2n−2 ×T 2 as a Kähler product

let T 2 be generated by X1,X2 = IX1

twist using F1, F2 supported on N2n−2

Proposition

The T 2 twist is KT if (F1 + iF2)0,2 = 0.

Get strong KT if F1 ∧ IF1 +F2 ∧ IF2 = 0.

Remark

All known strong KT structures on nilmanifolds may be obtained via
iterations of the above twist constructions starting from a flat torus.

Andrew Swann Twists, Torsion and T-duality
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Non-toral Base

Twisting M6 = N4 ×T 2

integrability condition (F1 + iF2)0,2 = 0

if not instantons then (F1 + iF2)0,2 is a global holomorphic form
on N4

Take N4 a K3 surface, with Kähler forms
ωI , ωJ , ωK . Integrability,

F1 + iF2 =α+λ1ωI +λ2(ωJ + iωK )

with α ∈Λ1,1
I ∩ (ωI )⊥. Strong,

α∧ ᾱ= 4(|λ1|2 −2|λ2|2)volg

Also, [F1], [F2] ∈ H2(N ,Z) ⊂ H2(N ,R)

Theorem

For linearly independent
primitive Fi satisfying the
conditions to the left, twist
W 6 of M6 = N4 ×T 2 is a
compact simply-connected
strong KT manifold.
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Other Generalisations

Non-toral fibres: can twist N ×M whenever M has a circle
action using a two-form F on N . Get for example S2-bundles
over N .

n-torus twists: are governed by daij =−Xi yFj. Wider variety of
phenomena.

multiple twists: are not the same as n-torus twists.
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Summary

T-duality may be realised as a twist construction

based on a double principal bundle M ←− P −→ W with
common Ehreshmann connection H

defining forms are H -related

twisting by instantons preserves KT and HKT geometries

strong structures may be obtained
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Exterior derivative of the torsion form

dcW ∼H dc− 1
a dX [∧ IFθ+ 1

a X [∧d(IFθ)

−Fθ∧ 1
a X yc+Fθ∧ 1

a2 ‖X‖2IFθ−Fθ∧ 1
a X [∧X y IFθ
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