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Motivation Duals Geometry with Torsion

An Example of T-duality
HyperKihler M* T duality  Strong HKT wH
ds* =V (dr+w)* + Vyydx'dd |«  ds®=V(dPT +yydxidx)
dV = x3dw onX:a% c=—dr Ndw
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Motivation Duals Geometry with Torsion

An Example of T-duality
HyperKihler M* T duality  Strong HKT wH
ds* =V (dr+w)* + Vyydx'dd |«  ds®=V(dPT +yydxidx)
dV = x3dw onX:a% c=—dr Ndw

@ Gibbons, Papadopoulos, and Stelle, 1997
e Callan, Harvey, and Strominger, 1991
@ Bergshoeff, Hull, and Ortin, 1995
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Motivation Duals Geometry with Torsion

An Example of T-duality
HyperKihler M* T duality  Strong HKT wH
ds* =V (dr+w)* + Vyydx'dd |«  ds®=V(dPT +yydxidx)
dV = x3dw onX:a% c=—dr Ndw

@ Gibbons, Papadopoulos, and Stelle, 1997
e Callan, Harvey, and Strominger, 1991
@ Bergshoeff, Hull, and Ortin, 1995

For circle actions have:

R—1/R andhere W= (M/S") xS
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Motivation Duals Geometry with Torsion

Geometry with Torsion

Metric geometry with torsion
@ metric g
@ connection V
e Vg=0
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Geometry with Torsion

Metric geometry with torsion
@ metric g
@ connection V
e Vg=0

°o (XY, 2)= g(TV(X, Y),2)=g(VxY-VyX—-[X,Y],Z)isa
three-form
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Geometry with Torsion

Metric geometry with torsion
@ metric g
@ connection V
e Vg=0

°o (XY, 2)= g(TV(X, Y),2)=g(VxY-VyX—-[X,Y],Z)isa
three-form

Have
v=vCiic

@ Anyce Q3 (M) will do

e Vand V'€ have the same
geodesics/dynamics

Andrew Swann Twists, Torsion and T-duality



Motivation Duals Geometry with Torsion

Geometry with Torsion

Metric geometry with torsion
@ metric g

@ connection V

o Vg =0
° C(X; Y)Z) = g(TV(X, Y),Z) = g(VXY_vYX_ [X, Y],Z) isa
three-form |
Have
_vlC 1
VEVTaage Definition
e Any ce Q3 (M) will do The geometry is strongif dc=0 J

e Vand V'€ have the same
geodesics/dynamics
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Motivation Duals Geometry with Torsion

KT Geometry

Metric geometry
& V=Vtlcce N3T*M
KT geometry
additionally

o [integrable complex

structure
o g(X,IY)=g(X,Y)
e VI=0

Here I: TM — TM with
P=-1 N;=0

where N;(X,Y) =
UX,IY] - I[IX, Y] - I[X, IY] - [X, Y]



Motivation Duals Geometry with Torsion

KT Geometry
Metric geometry Given (g, I) the connection V is
g V=Ve+ %C' ceN’T*M unique: ¢ = —IdF;, where
KT geometry Fi(X,Y) = gUX,Y)
additionally e KT geometry is just

Hermitian geometry

O Ml el together with the Bismut

structure .
connection V
- B SHES Y e c¢=0is Kéhler geometry
e VI=0 .
‘ @ strong KT geometry is
Here I: TM — TM with 00Fr =0

@ Gauduchon, 1991: every
compact Hermitian M* is
conformal to strong KT

P=-1 N;=0

where N;(X,Y) =
UX,IY] - I[IX, Y] - I[X, IY] - [X, Y]



Motivation Duals Geometry with Torsion

HKT geometry

HKT structure

(g V,1,],K) such that
@ each (g,V,A)isKT,A=1,],K
@ [J=K=-]JI
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Motivation Duals Geometry with Torsion

HKT geometry

HKT structure

(g V,1,],K) such that
@ each (g,V,A)isKT,A=1,],K
@ [J=K=-]JI

Motto
HKT geometry is a quaternionic analogue of Kdhler geometry
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Motivation Duals Geometry with Torsion

HKT geometry

HKT structure

(g V,1,],K) such that
@ each (g,V,A)isKT,A=1,],K
@ [J=K=-]JI

Motto

HKT geometry is a quaternionic analogue of Kdhler geometry

@ most commonly encountered
hypercomplex structures (M, I, ], K) admit
an HKT metric — but not all.

o there is a good potential theory
Fr=101-paidp
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Motivation Duals Geometry with Torsion

HKT geometry

HKT structure

(g V,1,],K) such that
@ each (g,V,A)isKT,A=1,],K
@ [J=K=-]JI

Motto

HKT geometry is a quaternionic analogue of Kdhler geometry

@ most commonly encountered Example
hypercomplex structures (M, 1, ], K) admit G=SU@B) = M®
an HKT metric — but not all. . . .

bi-invariant g is

e there is a good potential theory strong HKT

Fr=101-paidp
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Twist Lifting Transforming

Twist

@ X generating a circle action on M
e (P,0) Z, M an invariant principal S'-bundle

e X' alift of X generating a free circle action
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Twist Lifting Transforming

Twist

@ X generating a circle action on M
e (P,0) Z, M an invariant principal S'-bundle

e X' alift of X generating a free circle action

Definition

P
] 7 7 % Tw
A twist W of M with respect to X is / >\
M

, w
W= P/(X')
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Twist Lifting Transforming

Twist

@ X generating a circle action on M
e (P,0) Z, M an invariant principal S'-bundle

e X' alift of X generating a free circle action

Definition

P
] 7 7 % Tw
A twist W of M with respect to X is / >\
M w

W= P/(X')

The twist carries

@ circle action generated by
XW = (77: W) * Y

e principal bundle P, X’ connection
Ow = %49
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fting Transforming

@ X generating a circle action on M
e (P,0) Z, M an invariant principal S'-bundle

e X' alift of X generating a free circle action

Definition P
. . . n w
A twist W of M with respect to X is / >\
! M W
W= P/(X")
The twist carries
e circle action generated by Dually
Xw = ()Y M is a twist of W with
e principal bundle P, X’ connection respect to Xy
Ow = %46

Andrew Swann Twists, Torsion and T-duality
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© Twist Constructions

o Lifting Actions
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Twist Lifting Transforming

Lifting Group Actions

@ X avector field on M
o P M aprincipal
S'-bundle, generator Y

@ 0 aconnectionin P,
curvature 7* Fy = df

o LyFy=0
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Twist Lifting Transforming

Lifting Group Actions

X avector field on M
P L M aprincipal
S'-bundle, generator Y

6 a connection in P,
curvature 7* Fy = df

LxFp=0

Put

X =X.F=FX:
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Twist Lifting Transforming

Lifting Group Actions

X avector field on M
P L M aprincipal
S'-bundle, generator Y

Lemma

There is an X' on P preserving 0

and projecting to X if and only if
is exact.

Lifts are parameterised by R.

6 a connection in P,
curvature 7* Fy = df

LxFp=0

Put

X =X.F=FX:
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Twist Lifting Transforming

Lifting Group Actions

@ X avector field on M
Lemma

o P M aprincipal

T j X P ]
S'_bundle, generator Y here is an X' on P preserving 0

and projecting to X if and only if
is exact.
Lifts are parameterised by R.

@ 0 aconnectionin P,
curvature 7* Fy = df

o LyFy=0
Proof.
Put Let X be the horizontal lift of X.
Then
X =X.F=FX: X = %t ay
with da=-X?. O
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Twist Lifting Transforming

Lifting Circle Actions

Call an S'-action generated by X F-Hamiltonian if X preserves
Fe Q?(M) and X _ F is exact.

Proposition (cf. Lashof, May, and Segal, 1983)

Suppose F € Q% (M) is a closed 2-form with integral periods. For each
F-Hamiltonian S -action and each principal circle bundle P — M
with ¢, (P) ® R = [F] there is a locally free circle action on P covering
the action on M and an invariant principal connection 0 such that
Fy=F.

General circle actions on CP(n) can not be lifted to free circle
actions on P.
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© Twist Constructions

e Transformation Rules
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Twist Twist Lifting Transforming

Transformation Rules

Definition

Tensors @ on ay on M and W are said to be /-related if their
pull-backs agree on # = kerf
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Twist Twist Lifting Transforming

Transformation Rules

Definition

Tensors @ on ay on M and W are said to be /-related if their
pull-backs agree on # = kerf

e For p-forms
Ty Oy = n*a—@/\n*(éX_:a)
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Twist Twist Lifting Transforming

Transformation Rules

Definition

Tensors @ on ay on M and W are said to be /-related if their
pull-backs agree on # = kerf

e For p-forms
Ty Oy = n*a—@/\n*(éX_:a)

@ For metrics

Tygw =n"g—20 Vvt (LX) + 7 (ZIXI9)6°
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Twist Twist Lifting Transforming

Transformation Rules

Definition

Tensors @ on ay on M and W are said to be /-related if their
pull-backs agree on ./ = ker0

e For p-forms
Ty Oy = n*a—@/\n*(%lX_:a)

@ For metrics

T8 =n"g—20 V" (LX) + 7" (L1 X]*)6?

Lemma

da, is #€-related to a form on M if and only if Lxa =0. Then
day, ~ da—FgA%lX_na.
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Twist Twist Lifting Transforming

Almost Hermitian Twist

Definition
Let (M, g, Fy) be an almost Hermitian structure invariant under X.
This has twist (W, g, FIW ) where

® 8w~»8&

° FIW ~

JL”FI
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Twist Twist Lifting Transforming

Almost Hermitian Twist

Definition
Let (M, g, F;) be an almost Hermitian structure invariant under X.
This has twist (W, g, FIW ) where

° 8w~x8&

) FIW~”FI

Proposition

o If I is integrable then I, is integrable if and only if Fy € ALl
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Twist Twist Lifting Transforming

Almost Hermitian Twist

Definition
Let (M, g, F;) be an almost Hermitian structure invariant under X.
This has twist (W, g, FIW ) where

° 8w~x8&

) FIW~”FI

Proposition
o If I is integrable then I, is integrable if and only if Fy € ALl
o the forms c = —IdFj are related by

1
cW~]£c—aXb/\IFg
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Twist Twist Lifting Transforming

Transformation Rules I1

Corollary

If (M, g,1,],K) is hyperHermitian (resp. HKT) then
(W, 8w Ly Iy Kyy) is hyperHermitian (resp. HKT) if and only if

Fpe (N Ay
A=1]K

i.e. Fy is an instanton

Generalises Joyce, 1992, and Grantcharov and Poon, 2000
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Twist Twist Lifting Transforming

Transformation Rules I1

Corollary

If (M, g,1,],K) is hyperHermitian (resp. HKT) then
(W, gw» Iy Jy» Kyy) is hyperHermitian (resp. HKT) if and only if

Fpe (N Ay
A=1]K

i.e. Fy is an instanton

Generalises Joyce, 1992, and Grantcharov and Poon, 2000

Corollary
For M KT (resp. HKT) and Fy an instanton, W is strong if and only if

de=1@x’ + X c-LIXI*F) A Fp
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Examples HKT Strong KT Other

From a HyperKihler Metric

0 g= %(p2 +Vh
hyperKihler, c=0
e hyperKihler isometry X
o p(X)=1, Lxp=0
e X’=Vlp, V=
X112

o dx’e N A}
A=IL],K
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Examples HKT Strong KT Other

From a HyperKihler Metric

0 g= %(p2 +Vh
hyperKihler, c=0
e hyperKihler isometry X
o pX)=1, Lxp=0
e X’=Vlp, V=
l1x1~2
o dx’e N A}
A=L],K
Taking Fy = AdX’ # 0 gives an
HKT twist if X 1 Fy = —Ad| X||?
is exact, so A = A(| X||?).
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Examples HKT Strong KT Other

From a HyperKihler Metric

The twist is strong HKT if and only if

e g= %(p2 +Vh
hyperKihler, ¢ =0 de=1(dx’ +X1c-1IX12Fp) A Fy,
e hyperKihler isometry X da=Ad||X|?

o pX)=1, Lxp=0
o X’=Vlp, V=
l1x1~2
o dx’e N A}
A=L],K

Taking Fy = AdX’ # 0 gives an
HKT twist if X 1 Fy = —Ad| X||?
is exact, so A = A(| X||?).
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Examples HKT Strong KT Other

From a HyperKihler Metric

The twist is strong HKT if and only if

e g= %(p2 +Vh
hyperKihler, ¢ =0 de=1(dx’ +X1c-1IX12Fp) A Fy,
e hyperKihler isometry X da=Ad||X|?
o pX)=1, Lxp=0
o X’=Vlp, V= which says
”);;H72 1,1
d Ay —Aq—Ax)?
o dX¥’e N A4 0=21-24x1%dx’ A dx’

Taking Fy = AdX’ # 0 gives an and gives A constant.
HKT twist if X 1 Fy = —Ad| X||?
is exact, so A = A(| X||?).

Andrew Swann Twists, Torsion and T-duality



Examples HKT Strong KT Other

From a HyperKihler Metric

The twist is strong HKT if and only if

e g= %(p2 +Vh
hyperKihler, ¢ =0 de=1(dx’ +X1c-1IX12Fp) A Fy,
e hyperKihler isometry X da=Ad||X|?
o pX)=1, Lxp=0
o X’=Vlp, V= which says
”);;H72 1,1
d Ay —Aq—Ax)?
o dX¥’e N A4 0=21-24x1%dx’ A dx’

Taking Fy = AdX’ # 0 gives an and gives A constant.
HKT twist if X 1 Fy = —Ad| X||?
is exact, so A = A(| X||?).

This is a twist via a trivial bundle
with non-flat connection.
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a
hyperKéhler metric:
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric:
@ % (CP(2))={Ae M3(0):

A% =0,rankA =1}

Andrew Swann Twists, Torsion and T-duality



Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric:
@ % (CP(2))={Ae M3(0):

A% =0,rankA =1}
o Fj=iddp, p(A) = kTrAA*
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric:
@ % (CP(2))={Ae M3(0):

A% =0,rankA =1}
o Fj=iddp, p(A) = kTrAA*

o (Fr+iFx)([A¢][AN]) =
Tr(A[¢,n]) the KKS form
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Examples S Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric:
@ % (CP(2))={Ae M3(0):

A% =0,rankA =1}
o Fj=iddp, p(A) = kTrAA*
o (Fr+iFx)([A¢][AN]) =
Tr(A[¢,n]) the KKS form

Z-action generated by A— 2Ais
triholomorphic but not an isometry,
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric:
@ % (CP(2))={Ae M3(0):

A% =0,rankA =1}
o Fj=iddp, p(A) = kTrAA*
o (Fr+iFx)([A¢][AN]) =
Tr(A[¢,n]) the KKS form

Z-action generated by A— 2Ais
triholomorphic but not an isometry,
but M =% (CP(2))/Z is HKT with

§=58u—37(d’p)’
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Examples S Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a

hyperKéhler metric: — SU®B) 1
o U(CP(2)) = (A M3(C): UCPR)IZ =Ty xS
A% =0 rankA=1} The S acts as HKT

e Fi= laap, p(A) = kTrAA* 1sometries.

o (Fr+iFx)([A¢][AN]) =
Tr(A[¢,n]) the KKS form

e Topologically

Z-action generated by A— 2Ais
triholomorphic but not an isometry,
but M =% (CP(2))/Z is HKT with

§=58u—37(d’p)’
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a e Topologically

hyperKéhler metric: — SU®B) 1
o U(CP(2)) = (A M3(C): UCPR)IZ =Ty xS
A% =0 rankA=1} The S acts as HKT

isometries.
@ by (CP(2)) =1 generated

o Fj=iddp, p(A) = kTrAA*
o (Fj+IiFx)([AS] AN =

Tr(A[£, 7)) the KKS form by lwere)]
e P,0 pull-back to
Z-action generated by A— 2Ais M =% (CP(2))/Z of the
triholomorphic but not an isometry, circle bundle with
but M =% (CP(2))/Z is HKT with Fy =" wep)

§=58u—37(d’p)’
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Examples HKT Strong KT Other

Obtaining Lie Groups

9 (CP(2)) = (V_\0)/{x1} carries a e Topologically

hyperKéhler metric: — SU®B) 1
o U(CP(2)) = (A M3(C): UCPR)IZ =Ty xS
A% =0 rankA=1} The S acts as HKT

isometries.
@ by (CP(2)) =1 generated

o Fj=iddp, p(A) = kTrAA*
o (Fj+IiFx)([AS] AN =

Tr(A[£, 7)) the KKS form by lwere)]
e P,0 pull-back to
Z-action generated by A— 2Ais M =% (CP(2))/Z of the
triholomorphic but not an isometry, circle bundle with
but M =% (CP(2))/Z is HKT with Fy =" wep)

§=58u—37(d’p)’

Twist of % (CP(2))/Z: strong
HKT structure on SU(3). J
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Examples HKT Strong KT Other
p! g

Outline

© Examples

@ Strong KT
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Examples HKT Strong KT Other

Twisting a Torus

e M = T?"invariant
Hermitian (g, I)

@ X a generator for a circle

@ Fp an invariant integral
two-form with X 1 Fy =0
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Examples HKT Strong KT Other

Twisting a Torus

e M = T?"invariant
Hermitian (g, I)

@ X a generator for a circle

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

[A, Bl = Fg(A,B)Y,

Y central.
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Examples HKT Strong KT Other

Twisting a Torus

Can repeatedly twist using
different central X; and closed
Hermitian (g, ) two-forms F;.

@ X a generator for a circle

e M = T?"invariant

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

[A, Bl = Fg(A,B)Y,

Y central.
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Examples HKT Strong KT Other

Twisting a Torus

Can repeatedly twist using
different central X; and closed
two-forms F;.

e M = T?"invariant
Hermitian (g, I)

@ X a generator for a circle

o Each stage is KT if each F;is
type (1,1)

o Final twist is strong KT if
FP+F+.--+F2=0

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

[A, Bl = Fg(A,B)Y,

Y central.
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Examples HKT Strong KT Other

Twisting a Torus

Can repeatedly twist using
different central X; and closed
two-forms F;.

e M = T?"invariant
Hermitian (g, I)

@ X a generator for a circle

o Each stage is KT if each F;is
type (1,1)

o Final twist is strong KT if
FP+F+.--+F2=0

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

Dim 4 g= (0,0,0, 12) =
[A, Bl = Fy(A BY, R+bs

Y central.
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Examples

HKT Strong KT Other

Twisting a Torus

e M = T?"invariant
Hermitian (g, I)
@ X agenerator for a circle

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

[A, Bl = Fg(A,B)Y,

Y central.

Can repeatedly twist using
different central X; and closed
two-forms F;.

o Each stage is KT if each F;is
type (1,1)

o Final twist is strong KT if
FP+F+.--+F2=0

Dim4 g=(0,0,0,12) =
R+b;

Dim 6 (0%,12) =R3 +bj,
(0,12,34) =2b4
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Examples

HKT Strong KT Other

Twisting a Torus

e M = T?"invariant
Hermitian (g, I)

@ X a generator for a circle

@ Fp an invariant integral
two-form with X 1 Fy =0

The twist W of M is a compact
nilmanifold I'\ G where g has
commutators given by

[A, Bl = Fg(A,B)Y,

Y central.

Can repeatedly twist using
different central X; and closed
two-forms F;.

o Each stage is KT if each F;is
type (1,1)

o Final twist is strong KT if
FP+F+.--+F2=0

Dim4 g=(0,0,0,12) =
R+b;
Dim 6 (0%,12) =R3 +bj,
(0,12,34) =2b4
General g=R*+rh,
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Examples HKT Strong KT Other

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)
The six-dimensional strong KT nilmanifolds have Lie algebras

0°,12), (0%12,34), (0%12,14+23), (0% 13+42,14+23)
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Examples HKT Strong KT Other

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras
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Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

0°,12), (0%12,34), (0%12,14+23), (0% 13+42,14+23)

Instanton twists miss the last two and indeed higher-dimensional
examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with
g=(0%13-24+56,12—2.23 +3.34) are irreducible and lie in a
15-dimensional family of invariant strong KT structures.
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Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
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We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
e let T2 be generated by Xj, X, = IX;
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Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
e let T2 be generated by Xj, X, = IX;
e twist using F;, F> supported on N2"~2
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Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
e let T2 be generated by Xj, X, = IX;
e twist using F;, F> supported on N2"~2

Proposition
o The T? twist is KT if (F, + iF»)>? = 0.
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Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
e let T2 be generated by Xj, X, = IX;
e twist using F;, F> supported on N2"~2

Proposition
o The T? twist is KT if (F, + iF»)>? = 0.
o Getstrong KTif Fy ANIF, + F> A IF, = 0.

Andrew Swann Twists, Torsion and T-duality



Examples HKT Strong KT Other

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows
e M = N?""2 x T? as a Kihler product
e let T2 be generated by Xj, X, = IX;
e twist using F;, F> supported on N2"~2

Proposition
o The T? twist is KT if (F, + iF»)>? = 0.
o Getstrong KTif Fy ANIF, + F> A IF, = 0.

Remark

All known strong KT structures on nilmanifolds may be obtained via
iterations of the above twist constructions starting from a flat torus.

V.
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Non-toral Base

o Twisting M® = N* x T2
@ integrability condition (F; + iF,)%% =0

e if not instantons then (F; + iF,)%? is a global holomorphic form
on N*
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Non-toral Base

o Twisting M® = N* x T2

@ integrability condition (F; + iF,)%% =0

e if notinstantons then (F + iF)%?

on N*

is a global holomorphic form

Take N* a K3 surface, with Kihler forms
w1, 0y, Wk. Integrability,

F+ib = a+7L1w1+/12(w]+ iwg)
with a € A}'l N (wy)*. Strong,
an@=4(M1*-2121%) volg

Also, [F1],[F>] € H*(N,Z) < H?(N,R)
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Non-toral Base

o Twisting M® = N* x T2
@ integrability condition (F; + iF,)%% =0

e if not instantons then (F; + iF,)%? is a global holomorphic form
on N*

Take N* a K3 surface, with Kihler forms
w1, 0y, Wk. Integrability,

Theorem
Fi+iF = a+ Mor+ A2 () + iog) For linearly independent
primitive F; satisfying the
with a € A}'l N(wp)*. Strong, conditions to the left, twist
WS of MO =N*x T? isa
aAa=4(M1%-2|22%) volg compact simply-connected
strong KT manifold.
Also, [F],[F,] € H*(N,Z) < H*(N,R) ’
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Outline

© Examples

@ Other

Andrew Swann ists, Torsion and T-duality



Examples HKT Strong KT Other

Other Generalisations

@ Non-toral fibres: can twist N x M whenever M has a circle
action using a two-form F on N. Get for example S?-bundles
over N.
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Other Generalisations

@ Non-toral fibres: can twist N x M whenever M has a circle

action using a two-form F on N. Get for example S?-bundles
over N.

@ n-torus twists: are governed by da;; = —X; 1 F;. Wider variety of
phenomena.
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Other Generalisations

@ Non-toral fibres: can twist N x M whenever M has a circle
action using a two-form F on N. Get for example S?-bundles
over N.

@ n-torus twists: are governed by da;; = —X; 1 F;. Wider variety of
phenomena.

e multiple twists: are not the same as n-torus twists.
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e T-duality may be realised as a twist construction

e based on a double principal bundle M — P — W with
common Ehreshmann connection #

o defining forms are .#-related
@ twisting by instantons preserves KT and HKT geometries

@ strong structures may be obtained
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Summary

Summary

T-duality may be realised as a twist construction

e based on a double principal bundle M — P — W with
common Ehreshmann connection #

defining forms are .#°-related
twisting by instantons preserves KT and HKT geometries

strong structures may be obtained

non-instanton twists are also necessary
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Exterior derivative

Exterior derivative of the torsion form

deyy ~ 5 de—1dX’ A IFp + 1 X" A d(IFp)
—FyALX e+ Fyn LIXIPIR - Fy A LX° A XL IFy
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