Twists, Torsion and T-duality

Andrew Swann

University of Southern Denmark
swann@imada.sdu.dk
November 2007 / Hamburg

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

An Example of T-duality

HyperKähler M^{4}

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2}+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

T duality
$\overleftrightarrow{\text { on } X=\frac{\partial}{\partial \tau}}$

Strong HKT W^{4}

$$
\begin{gathered}
d s^{2}=V\left(d^{2} \tau+\gamma_{i j} d x^{i} d x^{j}\right) \\
c=-d \tau \wedge d \omega
\end{gathered}
$$

An Example of T-duality

HyperKähler M^{4}

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2}+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

T duality

Strong HKT W^{4}

$$
\begin{gathered}
d s^{2}=V\left(d^{2} \tau+\gamma_{i j} d x^{i} d x^{j}\right) \\
c=-d \tau \wedge d \omega
\end{gathered}
$$

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

An Example of T-duality

HyperKähler M^{4}

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2}+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

T duality

on $X=\frac{\partial}{\partial \tau}$

Strong HKT W^{4}

$$
\begin{gathered}
d s^{2}=V\left(d^{2} \tau+\gamma_{i j} d x^{i} d x^{j}\right) \\
c=-d \tau \wedge d \omega
\end{gathered}
$$

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

For circle actions have:

$$
R \leftrightarrow 1 / R \quad \text { and here } \quad W=\left(M / S^{1}\right) \times S^{1}
$$

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Geometry with Torsion

Metric geometry with torsion

- metric g
- connection ∇
- $\nabla g=0$

Geometry with Torsion

Metric geometry with torsion

- metric g
- connection ∇
- $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right)=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)$ is a three-form

Geometry with Torsion

Metric geometry with torsion

- metric g
- connection ∇
- $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right)=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)$ is a three-form

Have

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c
$$

- Any $c \in \Omega^{3}(M)$ will do
- ∇ and ∇^{LC} have the same geodesics/dynamics

Geometry with Torsion

Metric geometry with torsion

- metric g
- connection ∇
- $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right)=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)$ is a three-form

Have

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c
$$

- Any $c \in \Omega^{3}(M)$ will do
- ∇ and ∇^{LC} have the same geodesics/dynamics

Definition

The geometry is strong if $d c=0$

KT Geometry

Metric geometry

$g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, c \in \Lambda^{3} T^{*} M$

KT geometry

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Here $I: T M \rightarrow T M$ with

$$
I^{2}=-1 \quad N_{I}=0
$$

where $N_{I}(X, Y)=$
$[I X, I Y]-I[I X, Y]-I[X, I Y]-[X, Y]$

KT Geometry

Metric geometry

$g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, c \in \Lambda^{3} T^{*} M$

KT geometry

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Here $I: T M \rightarrow T M$ with

$$
I^{2}=-1 \quad N_{I}=0
$$

where $N_{I}(X, Y)=$ $[I X, I Y]-I[I X, Y]-I[X, I Y]-[X, Y]$

Given (g, I) the connection ∇ is unique: $c=-I d F_{I}$, where $F_{I}(X, Y)=g(I X, Y)$

- KT geometry is just Hermitian geometry together with the Bismut connection ∇
- $c=0$ is Kähler geometry
- strong KT geometry is $\partial \bar{\partial} F_{I}=0$
- Gauduchon, 1991: every compact Hermitian M^{4} is conformal to strong KT

HKT geometry

HKT structure

(g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, $A=I, J, K$
- $I J=K=-J I$

HKT geometry

HKT structure

(g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, $A=I, J, K$
- $I J=K=-J I$

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

HKT geometry

HKT structure

(g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, $A=I, J, K$
- $I J=K=-J I$

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

- most commonly encountered hypercomplex structures (M, I, J, K) admit an HKT metric - but not all.
- there is a good potential theory

$$
F_{I}=\frac{1}{2}(1-J) d I d \rho
$$

HKT geometry

HKT structure

(g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, $A=I, J, K$
- $I J=K=-J I$

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

- most commonly encountered hypercomplex structures (M, I, J, K) admit an HKT metric - but not all.
- there is a good potential theory $F_{I}=\frac{1}{2}(1-J) d I d \rho$

Example

$G=S U(3)=M^{8}$, bi-invariant g is strong HKT

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Twist

- X generating a circle action on M
- $(P, \theta) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- X^{\prime} a lift of X generating a free circle action

Twist

- X generating a circle action on M
- $(P, \theta) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- X^{\prime} a lift of X generating a free circle action

Definition

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

Twist

- X generating a circle action on M
- $(P, \theta) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- X^{\prime} a lift of X generating a free circle action

Definition

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

The twist carries

- circle action generated by

$$
X_{W}=\left(\pi_{W}\right)_{*} Y
$$

- principal bundle P, X^{\prime} connection

$$
\theta_{W}=\frac{1}{a} \theta
$$

Twist

- X generating a circle action on M
- $(P, \theta) \xrightarrow{\pi} M$ an invariant principal S^{1}-bundle
- X^{\prime} a lift of X generating a free circle action

Definition

A twist W of M with respect to X is

$$
W:=P /\left\langle X^{\prime}\right\rangle
$$

The twist carries

- circle action generated by

$$
X_{W}=\left(\pi_{W}\right)_{*} Y
$$

- principal bundle P, X^{\prime} connection

$$
\theta_{W}=\frac{1}{a} \theta
$$

Dually

M is a twist of W with respect to X_{W}

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion

(2) Twist Constructions

- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^{1}-bundle, generator Y
- θ a connection in P, curvature $\pi^{*} F_{\theta}=d \theta$
- $L_{X} F_{\theta}=0$

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^{1}-bundle, generator Y
- θ a connection in P, curvature $\pi^{*} F_{\theta}=d \theta$
- $L_{X} F_{\theta}=0$

Put

$$
\left.X^{\theta}:=X\right\lrcorner F_{\theta}=F_{\theta}(X, \cdot)
$$

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^{1}-bundle, generator Y
- θ a connection in P, curvature $\pi^{*} F_{\theta}=d \theta$
- $L_{X} F_{\theta}=0$

Put

$$
\left.X^{\theta}:=X\right\lrcorner F_{\theta}=F_{\theta}(X, \cdot)
$$

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^{1}-bundle, generator Y
- θ a connection in P, curvature $\pi^{*} F_{\theta}=d \theta$
- $L_{X} F_{\theta}=0$

Put

$$
\left.X^{\theta}:=X\right\lrcorner F_{\theta}=F_{\theta}(X, \cdot)
$$

Lemma

There is an X^{\prime} on P preserving θ and projecting to X if and only if X^{θ} is exact.
Lifts are parameterised by \mathbb{R}.

Proof.

Let \tilde{X} be the horizontal lift of X. Then

$$
X^{\prime}=\tilde{X}+a Y
$$

with $d a=-X^{\theta}$.

Lifting Circle Actions

Call an S^{1}-action generated by X F-Hamiltonian if X preserves $F \in \Omega^{2}(M)$ and $\left.X\right\lrcorner F$ is exact.

Proposition (cf. Lashof, May, and Segal, 1983)

Suppose $F \in \Omega_{\mathbb{Z}}^{2}(M)$ is a closed 2-form with integral periods. For each F-Hamiltonian S^{1}-action and each principal circle bundle $P \rightarrow M$ with $c_{1}(P) \otimes \mathbb{R}=[F]$ there is a locally free circle action on P covering the action on M and an invariant principal connection θ such that $F_{\theta}=F$.

General circle actions on $\mathbb{C P}(n)$ can not be lifted to free circle actions on P.

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Transformation Rules

Definition

Tensors α on α_{W} on M and W are said to be \mathscr{H}-related if their pull-backs agree on $\mathscr{H}=\operatorname{ker} \theta$

Transformation Rules

Definition

Tensors α on α_{W} on M and W are said to be \mathscr{H}-related if their pull-backs agree on $\mathscr{H}=\operatorname{ker} \theta$

- For p-forms

$$
\left.\pi_{W}^{*} \alpha_{W}=\pi^{*} \alpha-\theta \wedge \pi^{*}\left(\frac{1}{a} X\right\lrcorner \alpha\right)
$$

Transformation Rules

Definition

Tensors α on α_{W} on M and W are said to be \mathscr{H}-related if their pull-backs agree on $\mathscr{H}=\operatorname{ker} \theta$

- For p-forms

$$
\left.\pi_{W}^{*} \alpha_{W}=\pi^{*} \alpha-\theta \wedge \pi^{*}\left(\frac{1}{a} X\right\lrcorner \alpha\right)
$$

- For metrics

$$
\pi_{W}^{*} g_{W}=\pi^{*} g-2 \theta \vee \pi^{*}\left(\frac{1}{a} X^{b}\right)+\pi^{*}\left(\frac{1}{a^{2}}\|X\|^{2}\right) \theta^{2}
$$

Transformation Rules

Definition

Tensors α on α_{W} on M and W are said to be \mathscr{H}-related if their pull-backs agree on $\mathscr{H}=\operatorname{ker} \theta$

- For p-forms

$$
\left.\pi_{W}^{*} \alpha_{W}=\pi^{*} \alpha-\theta \wedge \pi^{*}\left(\frac{1}{a} X\right\lrcorner \alpha\right)
$$

- For metrics

$$
\pi_{W}^{*} g_{W}=\pi^{*} g-2 \theta \vee \pi^{*}\left(\frac{1}{a} X^{b}\right)+\pi^{*}\left(\frac{1}{a^{2}}\|X\|^{2}\right) \theta^{2}
$$

Lemma

$d \alpha_{W}$ is \mathscr{H}-related to a form on M if and only if $L_{X} \alpha=0$. Then $\left.d \alpha_{W} \sim_{\mathscr{H}} d \alpha-F_{\theta} \wedge \frac{1}{a} X\right\lrcorner \alpha$.

Almost Hermitian Twist

Definition

Let (M, g, F_{I}) be an almost Hermitian structure invariant under X. This has twist $\left(W, g_{W}, F_{I}^{W}\right)$ where

- $g_{W} \sim_{\mathscr{H}} g$
- $F_{I}^{W} \sim_{\mathscr{H}} F_{I}$

Almost Hermitian Twist

Definition

Let $\left(M, g, F_{I}\right)$ be an almost Hermitian structure invariant under X. This has twist $\left(W, g_{W}, F_{I}^{W}\right)$ where

- $g_{W} \sim_{\mathscr{H}} g$
- $F_{I}^{W} \sim_{\mathscr{H}} F_{I}$

Proposition

- If I is integrable then I_{W} is integrable if and only if $F_{\theta} \in \Lambda^{1,1}$

Almost Hermitian Twist

Definition

Let $\left(M, g, F_{I}\right)$ be an almost Hermitian structure invariant under X. This has twist $\left(W, g_{W}, F_{I}^{W}\right)$ where

- $g_{W} \sim_{\mathscr{H}} g$
- $F_{I}^{W} \sim_{\mathscr{H}} F_{I}$

Proposition

- If I is integrable then I_{W} is integrable if and only if $F_{\theta} \in \Lambda^{1,1}$
- the forms $c=-I d F_{I}$ are related by

$$
c_{W} \sim_{\mathscr{H}} c-\frac{1}{a} X^{b} \wedge I F_{\theta}
$$

Transformation Rules II

Corollary

If ($M, \mathrm{~g}, I, J, K$) is hyperHermitian (resp. HKT) then
($W, g_{W}, I_{W}, J_{W}, K_{W}$) is hyperHermitian (resp. HKT) if and only if

$$
F_{\theta} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}
$$

i.e. F_{θ} is an instanton

Generalises Joyce, 1992, and Grantcharov and Poon, 2000

Transformation Rules II

Corollary

If (M, g, I, J, K) is hyperHermitian (resp. HKT) then
$\left(W, g_{W}, I_{W}, J_{W}, K_{W}\right)$ is hyperHermitian (resp. HKT) if and only if

$$
F_{\theta} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}
$$

i.e. F_{θ} is an instanton

Generalises Joyce, 1992, and Grantcharov and Poon, 2000

Corollary

For M KT (resp. HKT) and F_{θ} an instanton, W is strong if and only if

$$
\left.d c=\frac{1}{a}\left(d X^{b}+X\right\lrcorner c-\frac{1}{a}\|X\|^{2} F_{\theta}\right) \wedge F_{\theta}
$$

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

From a HyperKähler Metric

- $g=\frac{1}{V} \varphi^{2}+V h$ hyperKähler, $c=0$
- hyperKähler isometry X
- $\varphi(X)=1, \quad L_{X} \varphi=0$
- $X^{b}=V^{-1} \varphi, \quad V=$ $\|X\|^{-2}$
- $d X^{\dagger} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}$

From a HyperKähler Metric

- $g=\frac{1}{V} \varphi^{2}+V h$ hyperKähler, $c=0$
- hyperKähler isometry X
- $\varphi(X)=1, \quad L_{X} \varphi=0$
- $X^{b}=V^{-1} \varphi, \quad V=$ $\|X\|^{-2}$
- $d X^{\natural} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}$

Taking $F_{\theta}=\lambda d X^{\dagger} \neq 0$ gives an
HKT twist if $X\lrcorner F_{\theta}=-\lambda d\|X\|^{2}$
is exact, so $\lambda=\lambda\left(\|X\|^{2}\right)$.

From a HyperKähler Metric

- $g=\frac{1}{V} \varphi^{2}+V h$ hyperKähler, $c=0$
- hyperKähler isometry X
- $\varphi(X)=1, \quad L_{X} \varphi=0$
- $X^{b}=V^{-1} \varphi, \quad V=$ $\|X\|^{-2}$
- $d X^{b} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}$

Taking $F_{\theta}=\lambda d X^{\emptyset} \neq 0$ gives an
HKT twist if $X\lrcorner F_{\theta}=-\lambda d\|X\|^{2}$
is exact, so $\lambda=\lambda\left(\|X\|^{2}\right)$.

The twist is strong HKT if and only if

$$
\begin{gathered}
\left.d c=\frac{1}{a}\left(d X^{b}+X\right\lrcorner c-\frac{1}{a}\|X\|^{2} F_{\theta}\right) \wedge F_{\theta}, \\
d a=\lambda d\|X\|^{2}
\end{gathered}
$$

From a HyperKähler Metric

- $g=\frac{1}{V} \varphi^{2}+V h$ hyperKähler, $c=0$
- hyperKähler isometry X
- $\varphi(X)=1, \quad L_{X} \varphi=0$
- $X^{b}=V^{-1} \varphi, \quad V=$ $\|X\|^{-2}$
- $d X^{b} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}$

Taking $F_{\theta}=\lambda d X^{\dagger} \neq 0$ gives an HKT twist if $X\lrcorner F_{\theta}=-\lambda d\|X\|^{2}$ is exact, so $\lambda=\lambda\left(\|X\|^{2}\right)$.

The twist is strong HKT if and only if

$$
\begin{gathered}
\left.d c=\frac{1}{a}\left(d X^{b}+X\right\lrcorner c-\frac{1}{a}\|X\|^{2} F_{\theta}\right) \wedge F_{\theta}, \\
d a=\lambda d\|X\|^{2}
\end{gathered}
$$

which says

$$
0=\frac{\lambda}{a}\left(1-\frac{\lambda}{a}\|X\|^{2}\right) d X^{b} \wedge d X^{b}
$$

and gives λ constant.

From a HyperKähler Metric

- $g=\frac{1}{V} \varphi^{2}+V h$ hyperKähler, $c=0$
- hyperKähler isometry X
- $\varphi(X)=1, \quad L_{X} \varphi=0$
- $X^{b}=V^{-1} \varphi, \quad V=$ $\|X\|^{-2}$
- $d X^{b} \in \bigcap_{A=I, J, K} \Lambda_{A}^{1,1}$

Taking $F_{\theta}=\lambda d X^{\emptyset} \neq 0$ gives an HKT twist if $X\lrcorner F_{\theta}=-\lambda d\|X\|^{2}$ is exact, so $\lambda=\lambda\left(\|X\|^{2}\right)$.

The twist is strong HKT if and only if

$$
\begin{gathered}
\left.d c=\frac{1}{a}\left(d X^{b}+X\right\lrcorner c-\frac{1}{a}\|X\|^{2} F_{\theta}\right) \wedge F_{\theta}, \\
d a=\lambda d\|X\|^{2}
\end{gathered}
$$

which says

$$
0=\frac{\lambda}{a}\left(1-\frac{\lambda}{a}\|X\|^{2}\right) d X^{b} \wedge d X^{b}
$$

and gives λ constant.
This is a twist via a trivial bundle with non-flat connection.

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a

hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C}):\right.$
$\left.A^{2}=0, \operatorname{rank} A=1\right\}$

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a
hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:
$\left.A^{2}=0, \operatorname{rank} A=1\right\}$
- $F_{I}=i \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$: $\left.A^{2}=0, \operatorname{rank} A=1\right\}$
- $F_{I}=i \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:

$$
\left.A^{2}=0, \operatorname{rank} A=1\right\}
$$

- $F_{I}=i \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form
\mathbb{Z}-action generated by $A \mapsto 2 A$ is triholomorphic but not an isometry,

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:

$$
\left.A^{2}=0, \operatorname{rank} A=1\right\}
$$

- $F_{I}=i \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form
\mathbb{Z}-action generated by $A \mapsto 2 A$ is triholomorphic but not an isometry,
but $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ is HKT with

$$
g=\frac{1}{\rho} g_{\mathscr{U}}-\frac{1}{2 \rho^{2}}\left(d^{\mathbb{H}} \rho\right)^{2}
$$

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:

$$
\left.A^{2}=0, \operatorname{rank} A=1\right\}
$$

- $F_{I}=i \partial \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form
\mathbb{Z}-action generated by $A \mapsto 2 A$ is triholomorphic but not an isometry,
but $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ is HKT with

$$
g=\frac{1}{\rho} g_{\mathscr{U}}-\frac{1}{2 \rho^{2}}\left(d^{\mathbb{M}} \rho\right)^{2}
$$

- Topologically $\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}=\frac{S U(3)}{U(1)} \times S^{1}$.
The S^{1} acts as HKT isometries.

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C P}(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:

$$
\left.A^{2}=0, \operatorname{rank} A=1\right\}
$$

- $F_{I}=i \partial \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form
\mathbb{Z}-action generated by $A \mapsto 2 A$ is triholomorphic but not an isometry, but $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ is HKT with
- Topologically $\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}=\frac{S U(3)}{U(1)} \times S^{1}$.
The S^{1} acts as HKT isometries.
- $b_{2}(\mathbb{C P}(2))=1$ generated by $\left[\omega_{\mathbb{C P}(2)}\right]$
- P, θ pull-back to $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ of the circle bundle with
$F_{\theta}=\pi^{*} \omega_{\mathbb{C P}(2)}$

$$
g=\frac{1}{\rho} g_{\mathscr{U}}-\frac{1}{2 \rho^{2}}\left(d^{\mathbb{H}} \rho\right)^{2}
$$

Obtaining Lie Groups

$\mathscr{U}(\mathbb{C P}(2))=\left(V_{-} \backslash 0\right) /\{ \pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{C} P(2))=\left\{A \in M_{3}(\mathbb{C})\right.$:

$$
\left.A^{2}=0, \operatorname{rank} A=1\right\}
$$

- $F_{I}=i \partial \bar{\partial} \rho, \quad \rho(A)=k \operatorname{Tr} A A^{*}$
- $\left(F_{J}+i F_{K}\right)([A, \xi],[A, \eta])=$ $\operatorname{Tr}(A[\xi, \eta])$ the KKS form
\mathbb{Z}-action generated by $A \mapsto 2 A$ is triholomorphic but not an isometry, but $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ is HKT with

$$
g=\frac{1}{\rho} g_{\mathscr{U}}-\frac{1}{2 \rho^{2}}\left(d^{\sharp} \rho\right)^{2}
$$

- Topologically $\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}=\frac{S U(3)}{U(1)} \times S^{1}$.
The S^{1} acts as HKT isometries.
- $b_{2}(\mathbb{C P}(2))=1$ generated by $\left[\omega_{\mathbb{C P}(2)}\right]$
- P, θ pull-back to $M=\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$ of the circle bundle with
$F_{\theta}=\pi^{*} \omega_{\mathbb{C P}(2)}$

Twist of $\mathscr{U}(\mathbb{C P}(2)) / \mathbb{Z}$: strong HKT structure on $S U(3)$.

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Twisting a Torus

- $M=T^{2 n}$ invariant

Hermitian (g, I)

- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has
commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Y central.

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Can repeatedly twist using different central X_{i} and closed two-forms F_{i}.
Y central.

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Can repeatedly twist using different central X_{i} and closed two-forms F_{i}.

- Each stage is KT if each F_{i} is type $(1,1)$
- Final twist is strong KT if

$$
F_{1}^{2}+F_{2}^{2}+\cdots+F_{r}^{2}=0
$$

Y central.

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Can repeatedly twist using different central X_{i} and closed two-forms F_{i}.

- Each stage is KT if each F_{i} is type $(1,1)$
- Final twist is strong KT if

$$
F_{1}^{2}+F_{2}^{2}+\cdots+F_{r}^{2}=0
$$

$\operatorname{Dim} 4 \mathfrak{g}=(0,0,0,12)=$ $\mathbb{R}+\mathfrak{h}_{3}$
Y central.

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Y central.

Can repeatedly twist using different central X_{i} and closed two-forms F_{i}.

- Each stage is KT if each F_{i} is type $(1,1)$
- Final twist is strong KT if

$$
F_{1}^{2}+F_{2}^{2}+\cdots+F_{r}^{2}=0
$$

$\operatorname{Dim} 4 \mathfrak{g}=(0,0,0,12)=$ $\mathbb{R}+\mathfrak{h}_{3}$
$\operatorname{Dim} 6\left(0^{5}, 12\right)=\mathbb{R}^{3}+\mathfrak{h}_{3}$, $\left(0^{4}, 12,34\right)=2 \mathfrak{h}_{3}$

Twisting a Torus

- $M=T^{2 n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X\lrcorner F_{\theta}=0$

The twist W of M is a compact nilmanifold $\Gamma \backslash G$ where \mathfrak{g} has commutators given by

$$
[A, B]=F_{\theta}(A, B) Y,
$$

Y central.

Can repeatedly twist using different central X_{i} and closed two-forms F_{i}.

- Each stage is KT if each F_{i} is type (1,1)
- Final twist is strong KT if $F_{1}^{2}+F_{2}^{2}+\cdots+F_{r}^{2}=0$
$\operatorname{Dim} 4 \mathfrak{g}=(0,0,0,12)=$ $\mathbb{R}+\mathfrak{h}_{3}$
$\operatorname{Dim} 6\left(0^{5}, 12\right)=\mathbb{R}^{3}+\mathfrak{h}_{3}$, $\left(0^{4}, 12,34\right)=2 \mathfrak{h}_{3}$
General $\mathfrak{g}=\mathbb{R}^{k}+r \mathfrak{h}_{3}$

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

$$
\left(0^{5}, 12\right), \quad\left(0^{4}, 12,34\right), \quad\left(0^{4}, 12,14+23\right), \quad\left(0^{4}, 13+42,14+23\right)
$$

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

$$
\left(0^{5}, 12\right), \quad\left(0^{4}, 12,34\right), \quad\left(0^{4}, 12,14+23\right), \quad\left(0^{4}, 13+42,14+23\right)
$$

Instanton twists miss the last two and indeed higher-dimensional examples such as

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

$$
\left(0^{5}, 12\right), \quad\left(0^{4}, 12,34\right), \quad\left(0^{4}, 12,14+23\right), \quad\left(0^{4}, 13+42,14+23\right)
$$

Instanton twists miss the last two and indeed higher-dimensional examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with
$\mathfrak{g}=\left(0^{6}, 13-24+56,12-2.23+3.34\right)$ are irreducible and lie in a 15-dimensional family of invariant strong KT structures.

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product
- let T^{2} be generated by $X_{1}, X_{2}=I X_{1}$

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product
- let T^{2} be generated by $X_{1}, X_{2}=I X_{1}$
- twist using F_{1}, F_{2} supported on $N^{2 n-2}$

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product
- let T^{2} be generated by $X_{1}, X_{2}=I X_{1}$
- twist using F_{1}, F_{2} supported on $N^{2 n-2}$

Proposition

- The T^{2} twist is KT if $\left(F_{1}+i F_{2}\right)^{0,2}=0$.

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product
- let T^{2} be generated by $X_{1}, X_{2}=I X_{1}$
- twist using F_{1}, F_{2} supported on $N^{2 n-2}$

Proposition

- The T^{2} twist is KT if $\left(F_{1}+i F_{2}\right)^{0,2}=0$.
- Get strong $K T$ if $F_{1} \wedge I F_{1}+F_{2} \wedge I F_{2}=0$.

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M=N^{2 n-2} \times T^{2}$ as a Kähler product
- let T^{2} be generated by $X_{1}, X_{2}=I X_{1}$
- twist using F_{1}, F_{2} supported on $N^{2 n-2}$

Proposition

- The T^{2} twist is KT if $\left(F_{1}+i F_{2}\right)^{0,2}=0$.
- Get strong KT if $F_{1} \wedge I F_{1}+F_{2} \wedge I F_{2}=0$.

Remark

All known strong KT structures on nilmanifolds may be obtained via iterations of the above twist constructions starting from a flat torus.

Non-toral Base

- Twisting $M^{6}=N^{4} \times T^{2}$
- integrability condition $\left(F_{1}+i F_{2}\right)^{0,2}=0$
- if not instantons then $\left(F_{1}+i F_{2}\right)^{0,2}$ is a global holomorphic form on N^{4}

Non-toral Base

- Twisting $M^{6}=N^{4} \times T^{2}$
- integrability condition $\left(F_{1}+i F_{2}\right)^{0,2}=0$
- if not instantons then $\left(F_{1}+i F_{2}\right)^{0,2}$ is a global holomorphic form on N^{4}

Take N^{4} a K3 surface, with Kähler forms $\omega_{I}, \omega_{J}, \omega_{K}$. Integrability,

$$
F_{1}+i F_{2}=\alpha+\lambda_{1} \omega_{I}+\lambda_{2}\left(\omega_{J}+i \omega_{K}\right)
$$

with $\alpha \in \Lambda_{I}^{1,1} \cap\left(\omega_{I}\right)^{\perp}$. Strong,

$$
\alpha \wedge \bar{\alpha}=4\left(\left|\lambda_{1}\right|^{2}-2\left|\lambda_{2}\right|^{2}\right) \operatorname{vol}_{g}
$$

Also, $\left[F_{1}\right],\left[F_{2}\right] \in H^{2}(N, \mathbb{Z}) \subset H^{2}(N, \mathbb{R})$

Non-toral Base

- Twisting $M^{6}=N^{4} \times T^{2}$
- integrability condition $\left(F_{1}+i F_{2}\right)^{0,2}=0$
- if not instantons then $\left(F_{1}+i F_{2}\right)^{0,2}$ is a global holomorphic form on N^{4}

Take N^{4} a K3 surface, with Kähler forms $\omega_{I}, \omega_{J}, \omega_{K}$. Integrability,

$$
F_{1}+i F_{2}=\alpha+\lambda_{1} \omega_{I}+\lambda_{2}\left(\omega_{J}+i \omega_{K}\right)
$$

with $\alpha \in \Lambda_{I}^{1,1} \cap\left(\omega_{I}\right)^{\perp}$. Strong,

$$
\alpha \wedge \bar{\alpha}=4\left(\left|\lambda_{1}\right|^{2}-2\left|\lambda_{2}\right|^{2}\right) \operatorname{vol}_{g}
$$

Also, $\left[F_{1}\right],\left[F_{2}\right] \in H^{2}(N, \mathbb{Z}) \subset H^{2}(N, \mathbb{R})$

Theorem

For linearly independent primitive F_{i} satisfying the conditions to the left, twist W^{6} of $M^{6}=N^{4} \times T^{2}$ is a compact simply-connected strong KT manifold.

Outline

(1) Motivation

- HKT and String Duals
- Geometry with Torsion
(2) Twist Constructions
- Basic Construction
- Lifting Actions
- Transformation Rules
(3) Examples
- HKT
- Strong KT
- Other

Other Generalisations

- Non-toral fibres: can twist $N \times M$ whenever M has a circle action using a two-form F on N. Get for example S^{2}-bundles over N.

Other Generalisations

- Non-toral fibres: can twist $N \times M$ whenever M has a circle action using a two-form F on N. Get for example S^{2}-bundles over N.
- n-torus twists: are governed by $\left.d a_{i j}=-X_{i}\right\lrcorner F_{j}$. Wider variety of phenomena.

Other Generalisations

- Non-toral fibres: can twist $N \times M$ whenever M has a circle action using a two-form F on N. Get for example S^{2}-bundles over N.
- n-torus twists: are governed by $\left.d a_{i j}=-X_{i}\right\lrcorner F_{j}$. Wider variety of phenomena.
- multiple twists: are not the same as n-torus twists.

Summary

- T-duality may be realised as a twist construction

Summary

- T-duality may be realised as a twist construction
- based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathscr{H}

Summary

- T-duality may be realised as a twist construction
- based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathscr{H}
- defining forms are \mathscr{H}-related

Summary

- T-duality may be realised as a twist construction
- based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathscr{H}
- defining forms are \mathscr{H}-related
- twisting by instantons preserves KT and HKT geometries

Summary

- T-duality may be realised as a twist construction
- based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathscr{H}
- defining forms are \mathscr{H}-related
- twisting by instantons preserves KT and HKT geometries
- strong structures may be obtained

Summary

- T-duality may be realised as a twist construction
- based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathscr{H}
- defining forms are \mathscr{H}-related
- twisting by instantons preserves KT and HKT geometries
- strong structures may be obtained
- non-instanton twists are also necessary

References I

E. Bergshoeff, C. Hull, and T. Ortín. Duality in the type-II superstring effective action. Nuclear Phys. B, 451(3):547-575, 1995. ISSN 0550-3213.
C. G. Callan, Jr., J. A. Harvey, and A. Strominger. Worldsheet approach to heterotic instantons and solitons. Nuclear Phys. B, 359(2-3):611-634, 1991. ISSN 0550-3213.
A. Fino, M. Parton, and S. M. Salamon. Families of strong KT structures in six dimensions. Comment. Math. Helv., 79(2): 317-340, 2004. ISSN 0010-2571.
P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. Ann. Sc. Norm. Sup. Pisa, 18: 563-629, 1991.

References II

G. W. Gibbons, G. Papadopoulos, and K. S. Stelle. HKT and OKT geometries on soliton black hole moduli spaces. Nuclear Phys. B, 508(3):623-658, 1997. ISSN 0550-3213.
G. Grantcharov and Y. S. Poon. Geometry of hyper-Kähler connections with torsion. Comm. Math. Phys., 213(1):19-37, 2000. ISSN 0010-3616.
D. Joyce. Compact hypercomplex and quaternionic manifolds. J. Differential Geom., 35:743-761, 1992.
R. K. Lashof, J. P. May, and G. B. Segal. Equivariant bundles with abelian structural group. In Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), volume 19 of Contemp. Math., pages 167-176, Providence, RI, 1983. Amer. Math. Soc.

References III

R. Mejldal. Complex manifolds and strong geometries with torsion. Master's thesis, Department of Mathematics and Computer Science, University of Southern Denmark, July 2004.

Exterior derivative of the torsion form

$$
\begin{array}{rl}
d c_{W} \sim_{\mathscr{H}} & d c-\frac{1}{a} d X^{b} \wedge I F_{\theta}+\frac{1}{a} X^{b} \wedge d\left(I F_{\theta}\right) \\
& \left.\left.\quad-F_{\theta} \wedge \frac{1}{a} X\right\lrcorner c+F_{\theta} \wedge \frac{1}{a^{2}}\|X\|^{2} I F_{\theta}-F_{\theta} \wedge \frac{1}{a} X^{b} \wedge X\right\lrcorner I F_{\theta}
\end{array}
$$

