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HyperKähler manifolds

(M, ωI, ωJ, ωK) is hyperKähler if:
1 each ωA is a symplectic two-form: dωA = 0 and ωA is

non-degenerate,
2 the tangent bundle endomorphisms I = ω−1

K ωJ,
J = ω−1

I ωK, K = ω−1
J ωI satisfy

• I2 = −1 = J2 = K2, IJ = K = −JI, etc., and
• g = −ωA(A · , · ) is independent of A and positive definite.

Consequences
• dim M = 4n,
• aωI + bωJ + cωK = g(Ia,b,c · , · ) is symplectic for each
(a, b, c) ∈ S2, Ia,b,c = aI + bJ + cK,

• (Hitchin et al. 1987) Ia,b,c are integrable complex
structures,

• g is Ricci-flat, with holonomy contained in
Sp(n) 6 SU(2n).
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Symmetry considerations

Ricci-flatness implies:
• if M is compact, then any Killing vector field is parallel, so

the holonomy of M reduces and M splits as a product,
• if M is homogeneous then g is flat, so M is a quotient of

flat R4n by a discrete group (Alekseevskiı̆ and Kimel’fel’d
1975).

Concentrate on complete (non-compact) hyperKähler
manifolds with an Abelian group G of symmetries preserving
each symplectic structure: tri-holomorphic isometries.
Assume the action is tri-Hamiltonian, so there is a hyperKähler
moment map: a G-invariant map

µ = (µI, µJ, µK) : M→ R3 ⊗ g∗

with d〈µA, X〉 = X yωA.
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Gibbons-Hawking Ansatz

X a tri-Hamiltonian vector field on hyperKähler M4

Away from MX, locally

g =
1
V
(dt + ω)2 + V(dx2 + dy2 + dz2)

where V = 1/g(X, X), dx = X yωI = dµI, etc., and

dω = −∗3dV

on R3. In particular,
• µ = (µI, µJ, µK) is locally a conformal submersion

to (R3, dx2 + dy2 + dz2),
• V is locally a harmonic function on R3.
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Examples

V(p) = c +
1
2 ∑

i∈Z

1
‖p− pi‖

, c > 0, pi ∈ R3 distinct

• c = 0, |Z| < ∞: multi-Euguchi Hanson metrics

|Z| 1 2 . . .
space flat R4 T∗ CP(1) . . .

• c > 0, |Z| < ∞: multi-Taub-NUT metrics

|Z| 0 1 2 . . .
space flat S1 ×R3 Taub-NUT R4 T∗ CP(1) . . .

• Z countably infinite: require V(p) to converge at some
p ∈ R3, get A∞ metrics (Anderson et al. 1989; Goto 1994),
e.g. Z = N>0, pn = (1/n2, 0, 0), and their Taub-NUT
deformations.
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Classification

Theorem

The potentials

V(p) = c +
1
2 ∑

i∈Z

1
‖p− pi‖

, c > 0, pi ∈ R3 distinct,

with 0 < V(p) < ∞ for some p ∈ R3, classify all complete
hyperKähler four-manifolds with tri-Hamiltonian circle action.

When |Z| < ∞, this is due to Bielawski (1999), and the first
parts of the proof are essentially the same.
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Proof structure

Local considerations
• The only special orbits are fixed points
• µ : M/S1 → R3 is a local homeomorphism, even at fixed

points
• locally near a fixed point x,

V(µ(y)) =
1
2

1
‖µ(y)− µ(x)‖ + φ(µ(y))

with φ > 0 harmonic (Bôcher’s Theorem plus a Chern
class argument).
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Proof structure 2

Injectivity of µ
Let M′ = M \MX be the set on which S1 acts freely.
µ induces a conformal local diffeomorphism

µ : (N = M′/S1, V(dx2 + dy2 + dz2))→ µ(M′) ⊂ (R3, gR3).

Near each fixed point x ∈ MX, V = φ + 1/2r and we may
replace V by V > 0, V ∝ 1/2r2 and superharmonic, so that
(N, V(dx2 + dy2 + dz2)) is complete with non-negative scalar
curvature.
Schoen and Yau (1994) implies that µ : N → R3 is injective and
that the boundary ∂Ω of Ω = µ(N) = µ(M′) is polar, i.e.
bounded harmonic functions have unique extension across ∂Ω.
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Proof structure 3

Martin boundary
Ω = µ(M′) having polar boundary implies Ω ⊂ R3 is dense
with Green’s functions G(p, q) = 1/‖p− q‖.Assuming
p0 = 0 ∈ Ω, the Martin kernel is

M(p, q) =
G(p, q)
G(p0, q)

=
‖q‖
‖p− q‖ , p, q ∈ Ω.

The minimal Martin boundary

∆ =
{

lim
q′
(p 7→ M(p, q′)) : q′ → q /∈ Ω

}
is

∆ = ∂Ω ∪ {∞}.
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Proof structure 4

Potential theory
V is positive harmonic on Ω = µ(M′), so there is a positive
measure dµV(q) such that

V(p) =
∫

∆=∂Ω∪{∞}
M(p, q) dµV(q).

F = µ(MX) is discrete, so Borel, and contained in ∂Ω, so

W(p) =
∫

F
M(p, q) dµV(q) =

1
2 ∑

q∈F

1
‖p− q‖

is positive harmonic and finite on Ω, so F has no accumualtion
points.
Completeness of M gives ∂Ω \ F is then empty. So
∆ = F∪ {∞} and V = W + c, c > 0 constant.
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Toric hyperKähler

(with Andrew Dancer)
M4n complete hyperKähler with tri-Hamiltonian action of Tn.
Is given locally be the Pedersen-Poon Ansatz:

g = (V−1)ij(dt + ωi)(dt + ωj) + Vij(dxidxj + dyidyj + dzidzj),

with Vij =
∂2F

∂xi∂xj
with F a positive function on R3 ⊗Rn

harmonic on every affine three-plane Xa,v = a + R3 ⊗ v.

For generic Xa,v, then Y = µ−1(Xa,v) is smooth with free Tn−1

action, Y/Tn−1 is complete hyperKähler with S1-action. Above
analysis then fixes V on Xa,v, and F, providing a classification.
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HyperKähler modification

(N4, µN, gN, XN) a complete hyperKähler four-manifold with
tri-Hamiltionian XN.
X is a tri-Hamiltonian circle action on hyperKähler
(M, g, I, J, K) of arbitrary dimension. The hyperKähler
modification of M by N is

MNmod = (M×N)///(X′ = X−XN) = (µ− µN)−1(0)/X′.

• dim MNmod = dim M
• M complete, then MNmod

complete
• π1(M) = 0, then

b2(MNmod) =
1 + b2(M) + b2(N)

Example

M = H = N, X = XN

generating eitq, µ = µH + c,
µH = qiq, c 6= 0:
MNmod = T∗ CP(1)
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A double fibration

For Φ = µ− µN, X′ = X−XN:

P = Φ−1(0) M×H

M MNmod

pr1 pr(X′)

ι

• pr(X′) is a Riemannian submersion for ι∗(g + gH)

• pr1 is not a Riemannian submersion, it induces the metric
g̃ on M:

g̃ = g + VN(µ)gα, gα = α2
0 + α2

I + α2
J + α2

K

α0 = X[ = g(X, ·), αI = Iα0 = −α0(I·) etc.
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Elementary deformations

g̃ = g + VN(µ)gα,

g hyperKähler, X an isometry, α0 = X[, gα = α2
0 + α2

I + α2
J + α2

K

Definition

An elementary deformation g̃ of g with respect to X is

g̃ = fg + hgα

for some f , h ∈ C∞(M)

Which elementary deformations define new hyperKähler
metrics through such a double fibration picture?
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Twist construction

Twist data

• M manifold
• X ∈ X(M), circle action
• F ∈ Ω2

Z(M)X

• a ∈ C∞(M) with da = −X yF

P

M W

prM prW

horizontal distribution
H = ker θ ⊂ TP

α tensor on M is H-related to αW on W if

pr∗Mα = pr∗WαW on H

Write α ∼H αW
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Twist computations

α ∼H αW if pr∗Mα = pr∗WαW on H = ker θ
P

M W

prM prW

• α ∈ Ωp(M): dαW ∼H dα− 1
a F∧ (X y α)

• I complex structure on M:
IW integrable if and only if F ∈ Λ1,1

I

Example

M = M(n) := CPn×T2

Kähler, X on T2, F = ωFS:
W = S2n+1 × S1 Hermitian
non-Kähler.

Example

M = Tn, F left-invariant:
W is a nilmanifold
corresponding to
g∗ = (0n−1, F).
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Tri-Hamiltonian actions

(M, g) hyperKähler, dim M > 4, X tri-Hamiltonian with
moment map µ = (µI, µJ, µK)

Theorem

An elementary deformation g̃ = fg + hgα

twists via (X, F, a) to a hyperKähler
metric gW if and only if
• f constant, so take f ≡ 1,
• h = h(µI, µJ, µK) is harmonic

in U ⊂ R3,
• F = d(hα0) + ∗3dh,

• a = 1 + h‖X‖2 6= 0.

Proof method
1 ωW

I ∼H ωN
I =

f ωI + hωα
I

2 impose dωW
I = 0,

i.e. dωN
I − 1

a F∧
(X yωN

I ) = 0
3 impose

da = −X yF
4 impose dF = 0

HyperKähler modification is h = VN(µ)
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Inversion

Generally: Twist of M by data (X, F, a) to W is inverted by twist
data on W H-related to ( 1

a X,− 1
a F, 1

a ).

Proposition

The hyperKähler twist above of the elementary
deformation g̃ = g + hgα of g corresponding to h is inverted by the
elementary deformation of gW corresponding to −h.

• Modification by N = H,
VN = 1/2‖µ‖, is inverted by
h = −1/(2‖µ‖). To get
positive definite, need
‖X‖2 < 2‖µ‖. So flat R4 is not
a modification.

• h > 0: inversion
corresponds to
hyperKähler quotient
of
(M×N4, g⊕−gN(h)),
quaternionic
Lorentzian
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