Moment map geometry for three-forms

Andrew Swann

IMF, University of Aarhus IMADA / CP³-Origins, University of Southern Denmark swann@imf.au.dk

May 2011 / Lund

Moment map geometry for three-forms

Andrew Swann

IMF, University of Aarhus IMADA / CP³-Origins, University of Southern Denmark swann@imf.au.dk

May 2011 / Lund

Joint work with Thomas Bruun Madsen arXiv:1012.2048,1012.0402

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

BACKGROUND

Symplectic Geometry

Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

 (M, ω) is symplectic if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

 (M, ω) is symplectic if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If *X* preserves ω ,

 (M, ω) is symplectic if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If *X* preserves ω , then

$$0 = L_X \omega = X \,\lrcorner \, d\omega + d(X \,\lrcorner \, \omega) = d(X \,\lrcorner \, \omega).$$

 (M, ω) is symplectic if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω , then

$$0 = L_X \omega = X \,\lrcorner \, d\omega + d(X \,\lrcorner \, \omega) = d(X \,\lrcorner \, \omega).$$

So the one-form $X \,\lrcorner\, \omega$ is $d\mu_X$,

 (M, ω) is symplectic if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω , then

$$0 = L_X \omega = X \,\lrcorner \, d\omega + d(X \,\lrcorner \, \omega) = d(X \,\lrcorner \, \omega).$$

So the one-form $X \,\lrcorner\, \omega$ is $d\mu_X$, for some local function μ_X .

 (M, ω) is *symplectic* if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If *X* preserves ω , then

$$0 = L_X \omega = X \,\lrcorner \, d\omega + d(X \,\lrcorner \, \omega) = d(X \,\lrcorner \, \omega).$$

So the one-form $X \,\lrcorner\, \omega$ is $d\mu_X$, for some local function μ_X .

DEFINITION

A *moment map* for an action of *G* on *M* that preserves ω is an equivariant map

$$\mu \colon M \to \mathfrak{g}^*$$

 (M, ω) is *symplectic* if $\omega \in \Omega^2(M)$ is closed $(d\omega = 0)$ and non-degenerate.

BASIC CALCULATION

If *X* preserves ω , then

$$0 = L_X \omega = X \,\lrcorner \, d\omega + d(X \,\lrcorner \, \omega) = d(X \,\lrcorner \, \omega).$$

So the one-form $X \,\lrcorner\, \omega$ is $d\mu_X$, for some local function μ_X .

DEFINITION

A *moment map* for an action of *G* on *M* that preserves ω is an equivariant map

$$\mu\colon M o \mathfrak{g}^*$$

such that $d\langle \mu, X \rangle = X \,\lrcorner\, \omega$, for each $X \in \mathfrak{g}$.

FLAT SPACE

$$M = \mathbb{R}^{2n} = \mathbb{C}^n$$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

Any $G \subset \text{Diff}(N)$ admits a moment map,

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

Any $G \subset \text{Diff}(N)$ admits a moment map, $\mu_X = \theta(X)$.

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

Any $G \subset \text{Diff}(N)$ admits a moment map, $\mu_X = \theta(X)$.

COADJOINT ORBITS

 $\mathcal{O} = G \cdot \theta_0 \subset \mathfrak{g}^*$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

Any $G \subset \text{Diff}(N)$ admits a moment map, $\mu_X = \theta(X)$.

COADJOINT ORBITS

 $\mathcal{O} = G \cdot \theta_0 \subset \mathfrak{g}^*$ has Kirillov-Kostant-Souriau form

$$\omega(X,Y)_{\theta} = \theta([\mathsf{X},\mathsf{Y}]), \quad \theta \in \mathcal{O}, \ \mathsf{X},\mathsf{Y} \in \mathfrak{g} \,.$$

FLAT SPACE

 $M = \mathbb{R}^{2n} = \mathbb{C}^n$ with

$$\omega = \sum_{j=1}^n dx^j \wedge dy^j.$$

Circle action $\mathbf{z} \mapsto e^{i\theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$

COTANGENT BUNDLE

 $M = T^*N$ is symplectic with

$$\omega = dq^1 \wedge dp_1 + \dots + dq^n \wedge dp_n$$

= $d\theta$, $\theta(W)_{\alpha} = \alpha(\pi_*W)$.

Any $G \subset \text{Diff}(N)$ admits a moment map, $\mu_X = \theta(X)$.

COADJOINT ORBITS

 $\mathcal{O} = G \cdot \theta_0 \subset \mathfrak{g}^*$ has Kirillov-Kostant-Souriau form

$$\omega(X,Y)_{\theta} = \theta([\mathsf{X},\mathsf{Y}]), \quad \theta \in \mathcal{O}, \ \mathsf{X},\mathsf{Y} \in \mathfrak{g}.$$

The moment map $\mu \colon \mathcal{O} \to \mathfrak{g}^*$ is just inclusion.

USES OF SYMPLECTIC MOMENT MAPS

1 Reduction: $N = \mu^{-1}(0)/G$ is symplectic, $\dim N = \dim M - 2 \dim G$ if G acts freely.

USES OF SYMPLECTIC MOMENT MAPS

1 Reduction: $N = \mu^{-1}(0)/G$ is symplectic, $\dim N = \dim M - 2 \dim G$ if G acts freely.

•
$$\mathbb{CP}(n) = \mathbb{R}^{2n+2} // S^1$$
.

USES OF SYMPLECTIC MOMENT MAPS

1 Reduction: $N = \mu^{-1}(0)/G$ is symplectic, $\dim N = \dim M - 2 \dim G$ if G acts freely.

•
$$\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1.$$

•
$$T^*N /\!\!/ G = T^*(N/G).$$

- **1** Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.

- **1** Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.

- **1** Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:

- Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;

- Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} // S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;
 - cohomogeneity one hyperKähler, quaternionic Kähler;

- Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;
 - cohomogeneity one hyperKähler, quaternionic Kähler;
 - contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.

- Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;
 - cohomogeneity one hyperKähler, quaternionic Kähler;
 - contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
- **3** Constructions:

Uses of symplectic moment maps

- **1** Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} // S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;
 - cohomogeneity one hyperKähler, quaternionic Kähler;
 - contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
- **3** Constructions:
 - toric varieties: $G = T^n$, dim M = 2n, $\mu: M \to \Delta \subset \mathbb{R}^n$ a convex polytope;

Uses of symplectic moment maps

- **1** Reduction: $N = \mu^{-1}(0)/G$ is symplectic, dim $N = \dim M - 2 \dim G$ if G acts freely.
 - $\mathbb{CP}(n) = \mathbb{R}^{2n+2} / S^1$.
 - $T^*N /\!\!/ G = T^*(N/G).$
 - extensions to Kähler, hyperKähler, etc.
 - gauge theory moduli spaces.
- **2** Classification Theorems:
 - homogeneous symplectic manifolds, homogeneous Kähler;
 - cohomogeneity one hyperKähler, quaternionic Kähler;
 - contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
- **3** Constructions:
 - toric varieties: $G = T^n$, dim M = 2n, $\mu: M \to \Delta \subset \mathbb{R}^n$ a convex polytope;
 - cuts, implosions.

 $\mu: M \to \mathfrak{g}^*$

• Target space is a vector space independent of *M*.

- Target space is a vector space independent of *M*.
- *µ* exists if either

 $\mu: M \to \mathfrak{g}^*$

- Target space is a vector space independent of *M*.
- *µ* exists if either

1 *G* is compact and $b_1(M) = 0$,

- Target space is a vector space independent of *M*.
- *µ* exists if either
 - **1** *G* is compact and $b_1(M) = 0$,
 - 2 *M* is compact, with $b_1(M) = 0$,

- Target space is a vector space independent of *M*.
- *µ* exists if either
 - **1** *G* is compact and $b_1(M) = 0$,
 - **2** *M* is compact, with $b_1(M) = 0$,
 - **3** $\omega = d\theta$ with θ invariant under *G*, or

- Target space is a vector space independent of *M*.
- *µ* exists if either
 - **1** *G* is compact and $b_1(M) = 0$,
 - **2** *M* is compact, with $b_1(M) = 0$,
 - **3** $\omega = d\theta$ with θ invariant under *G*, or
 - **4** *G* is semi-simple.

Outline

 BACKGROUND Symplectic Geometry Strong Geometry Covariant Moment Maps

2 MULTI-MOMENT MAPS Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

Strong geometry

STRONG GEOMETRY

DEFINITION

(M, c) forms a *strong geometry* if $c \in \Omega^3(M)$ is closed, dc = 0.

STRONG GEOMETRY

Definition

(M, c) forms a *strong geometry* if $c \in \Omega^3(M)$ is closed, dc = 0.

The geometry is 2-*plectic* (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X \,\lrcorner\, c = 0$ only for X = 0.

STRONG GEOMETRY

Definition

(M, c) forms a *strong geometry* if $c \in \Omega^3(M)$ is closed, dc = 0.

The geometry is 2-*plectic* (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X \,\lrcorner\, c = 0$ only for X = 0.

Extended phase space

 $M = \Lambda^2 T^* N,$

Strong geometry

Definition

(M, c) forms a *strong geometry* if $c \in \Omega^3(M)$ is closed, dc = 0.

The geometry is 2-*plectic* (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X \,\lrcorner\, c = 0$ only for X = 0.

Extended phase space

 $M = \Lambda^2 T^* N,$

$$egin{aligned} c &= \sum_{i < j} dq^i \wedge dq^j \wedge dp_{ij} \ &= deta, \qquad eta_lpha(U,V) = lpha(\pi_*U,\pi_*V) \end{aligned}$$

Strong geometry

Definition

(M, c) forms a *strong geometry* if $c \in \Omega^3(M)$ is closed, dc = 0.

The geometry is 2-*plectic* (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X \,\lrcorner\, c = 0$ only for X = 0.

Extended phase space

 $M = \Lambda^2 T^* N,$

$$egin{aligned} c &= \sum_{i < j} dq^i \wedge dq^j \wedge dp_{ij} \ &= deta, \qquad eta_lpha(U,V) = lpha(\pi_*U,\pi_*V) \end{aligned}$$

is 2-plectic.

EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

• M = G/K isotropy irreducible, $c(X, Y, Z) = \langle X, [Y, Z] \rangle$.

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

- M = G/K isotropy irreducible, $c(X, Y, Z) = \langle X, [Y, Z] \rangle$.
- Strong KT geometry: (M, g, I, F_I) Hermitian, $c = -IdF_I$. Gauduchon (1984) every compact Hermitian M^4 is conformally SKT.

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm lc} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

- M = G/K isotropy irreducible, $c(X, Y, Z) = \langle X, [Y, Z] \rangle$.
- Strong KT geometry: (M, g, I, F_I) Hermitian, $c = -IdF_I$. Gauduchon (1984) every compact Hermitian M^4 is conformally SKT.

Other examples of strong geometries include:

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

- M = G/K isotropy irreducible, $c(X, Y, Z) = \langle X, [Y, Z] \rangle$.
- Strong KT geometry: (M, g, I, F_I) Hermitian, $c = -IdF_I$. Gauduchon (1984) every compact Hermitian M^4 is conformally SKT.

Other examples of strong geometries include:

• Holonomy *G*₂ manifolds.

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$\nabla = \nabla^{\rm lc} + \frac{1}{2}c,$$

a metric connection $\nabla g = 0$ with the same geodesics as ∇^{LC} .

- M = G/K isotropy irreducible, $c(X, Y, Z) = \langle X, [Y, Z] \rangle$.
- Strong KT geometry: (M, g, I, F_I) Hermitian, $c = -IdF_I$. Gauduchon (1984) every compact Hermitian M^4 is conformally SKT.

Other examples of strong geometries include:

- Holonomy *G*₂ manifolds.
- Hermitian manifolds, $c = dF_I$.

OUTLINE

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 MULTI-MOMENT MAPS Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

(M, c) strong (dc = 0).

$$(M,c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

If X preserves c,

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

So the two-form $X \,\lrcorner\, c$ is $d\alpha_X$

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

So the two-form $X \,\lrcorner\, c$ is $d\alpha_X$ for some local one-form α_X .

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

So the two-form $X \,\lrcorner\, c$ is $d\alpha_X$ for some local one-form α_X .

DEFINITION

A *covariant moment map* for an action of G on M that preserves c is

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

So the two-form $X \,\lrcorner\, c$ is $d\alpha_X$ for some local one-form α_X .

DEFINITION

A *covariant moment map* for an action of *G* on *M* that preserves *c* is an equivariant map

$$\alpha: M \to \Omega^1(M, \mathfrak{g})$$

(M, c) strong (dc = 0).

BASIC CALCULATION

If *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

So the two-form $X \,\lrcorner\, c$ is $d\alpha_X$ for some local one-form α_X .

DEFINITION

A *covariant moment map* for an action of *G* on *M* that preserves *c* is an equivariant map

$$\alpha: M \to \Omega^1(M, \mathfrak{g})$$

such that $d\langle \alpha, X \rangle = X \,\lrcorner\, c$, for each $X \in \mathfrak{g}$.

 $\alpha \colon M \to \Omega^1(M, \mathfrak{g})$ with $d\langle \alpha, \mathsf{X} \rangle = X \,\lrcorner\, c$.

• Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:
 - **1** Target space $\Omega^1(M, \mathfrak{g})$ depends both on *M* and \mathfrak{g} .

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:
 - **1** Target space $\Omega^1(M, \mathfrak{g})$ depends both on *M* and \mathfrak{g} .
 - 2 Existence often requires some restrictive assumption such as b₂(M) = 0.

Outline

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 MULTI-MOMENT MAPS Commuting vector fields

Lie kernels Existence (2, 3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

(M, c) strong (dc = 0).

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

Now suppose *Y* preserves both *X* and *c*:

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

Now suppose *Y* preserves both *X* and *c*:

$$[X, Y] = 0$$
 and $L_Y c = 0$.

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

Now suppose *Y* preserves both *X* and *c*:

$$[X, Y] = 0$$
 and $L_Y c = 0$.

Then

$$0 = L_Y(X \,\lrcorner\, c) = Y \,\lrcorner\, d(X \,\lrcorner\, c) + d(Y \,\lrcorner\, X \,\lrcorner\, c) = dc(X, Y, \cdot).$$

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

Now suppose *Y* preserves both *X* and *c*:

$$[X, Y] = 0$$
 and $L_Y c = 0$.

Then

$$0 = L_Y(X \,\lrcorner\, c) = Y \,\lrcorner\, d(X \,\lrcorner\, c) + d(Y \,\lrcorner\, X \,\lrcorner\, c) = dc(X, Y, \cdot).$$

So the one-form $c(X, Y, \cdot)$ is $dv_{X,Y}$

$$(M, c)$$
 strong $(dc = 0)$.

BASIC CALCULATION

Suppose *X* preserves *c*, then

$$0 = L_X c = X \,\lrcorner \, dc + d(X \,\lrcorner \, c) = d(X \,\lrcorner \, c).$$

Now suppose *Y* preserves both *X* and *c*:

$$[X, Y] = 0$$
 and $L_Y c = 0$.

Then

$$0 = L_Y(X \,\lrcorner\, c) = Y \,\lrcorner\, d(X \,\lrcorner\, c) + d(Y \,\lrcorner\, X \,\lrcorner\, c) = dc(X, Y, \cdot).$$

So the one-form $c(X, Y, \cdot)$ is $dv_{X,Y}$ for some local function $v_{X,Y}$.

OUTLINE

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 MULTI-MOMENT MAPS

Commuting vector fields

Lie kerneis

(2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

DEFINITION

The Lie kernel $\mathcal{P}_\mathfrak{g}$ of Lie algebra \mathfrak{g} is

DEFINITION

The *Lie kernel* $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$$

DEFINITION

The *Lie kernel* $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$$

A typical element of $p \in \mathcal{P}_{\mathfrak{g}}$ has the form

$$\mathsf{p} = \mathsf{X}_1 \wedge \mathsf{Y}_1 + \dots + \mathsf{X}_r \wedge \mathsf{Y}_r$$

DEFINITION

The *Lie kernel* $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$$

A typical element of $p\in \mathcal{P}_\mathfrak{g}$ has the form

$$\mathsf{p} = \mathsf{X}_1 \land \mathsf{Y}_1 + \dots + \mathsf{X}_r \land \mathsf{Y}_r$$

with

$$\sum_{i=1}^r [\mathsf{X}_i, \mathsf{Y}_i] = 0.$$

Definition

The *Lie kernel* $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$$

A typical element of $p\in \mathcal{P}_\mathfrak{g}$ has the form

$$\mathsf{p} = \mathsf{X}_1 \land \mathsf{Y}_1 + \dots + \mathsf{X}_r \land \mathsf{Y}_r$$

with

$$\sum_{i=1}^r [\mathsf{X}_i, \mathsf{Y}_i] = 0.$$

Linearity in the basic calculation shows that

$$d(p \,\lrcorner\, c) = d(\sum_{i=1}^{r} c(X_i, Y_i, \cdot)) = -(\sum_{i=1}^{r} [X_i, Y_i]) \,\lrcorner\, c = 0.$$

DEFINITION

A *multi-moment map* for *G* acting on *M* preserving *c* is

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu\colon M\to \mathcal{P}^*_{\mathfrak{g}}$

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

$$\nu: M \to \mathcal{P}^*_\mathfrak{g}$$

such that $d\langle v, \mathbf{p} \rangle = p \,\lrcorner\, c$

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu: M \to \mathcal{P}^*_{\mathfrak{g}}$

such that $d\langle v, \mathsf{p} \rangle = p \,\lrcorner\, c$ for all $\mathsf{p} \in \mathcal{P}_{\mathfrak{g}}$.

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu: M \to \mathcal{P}^*_{\mathfrak{g}}$

such that $d\langle v, p \rangle = p \,\lrcorner\, c$ for all $p \in \mathcal{P}_{g}$.

Note that:

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu: M \to \mathcal{P}^*_{\mathfrak{g}}$

such that $d\langle v, p \rangle = p \,\lrcorner\, c$ for all $p \in \mathcal{P}_{g}$.

Note that:

• $\mathcal{P}_{\mathfrak{g}}^* \subset \Lambda^2 \mathfrak{g}^*$ is a linear subspace depending on \mathfrak{g} , not on M.

DEFINITION

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu: M \to \mathcal{P}_{\mathfrak{g}}^*$

such that $d\langle v, p \rangle = p \,\lrcorner\, c$ for all $p \in \mathcal{P}_{g}$.

Note that:

- $\mathcal{P}_{\mathfrak{g}}^* \subset \Lambda^2 \mathfrak{g}^*$ is a linear subspace depending on \mathfrak{g} , not on M.
- For *G* Abelian, $\mathcal{P}_{\mathfrak{g}} = \Lambda^2 \mathfrak{g}$.

Definition

A *multi-moment map* for G acting on M preserving c is an equivariant map

 $\nu: M \to \mathcal{P}_{\mathfrak{g}}^*$

such that $d\langle v, p \rangle = p \,\lrcorner\, c$ for all $p \in \mathcal{P}_{g}$.

Note that:

- $\mathcal{P}_{\mathfrak{g}}^* \subset \Lambda^2 \mathfrak{g}^*$ is a linear subspace depending on \mathfrak{g} , not on M.
- For *G* Abelian, $\mathcal{P}_{\mathfrak{g}} = \Lambda^2 \mathfrak{g}$.
- For *G* semi-simple, Λ² g ≅ g ⊕ P_g. In particular, for *G* compact and simple, P_g is the isotropy representation of the isotropy irreducible space SO(dim g)/G.

OUTLINE

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels

Existence

(2,3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

THEOREM

Suppose G acts on M preserving the closed three-form c.

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $\nu \colon M \to \mathcal{P}^*_{\mathfrak{a}}$ exists if either

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

1 *G* is compact and $b_1(M) = 0$,

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a *G*-invariant volume form and $b_1(M) = 0$,
- **3** $c = d\beta$ with β invariant under G, or

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a *G*-invariant volume form and $b_1(M) = 0$,
- **3** $c = d\beta$ with β invariant under *G*, or
- $b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a *G*-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under *G*, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

• a symplectic manifold has a canonical volume form ω^n ,

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form *ω*^{*n*},
- *G* is semi-simple if and only if $b_1(\mathfrak{g}) = 0 = b_2(\mathfrak{g})$.

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^n ,
- *G* is semi-simple if and only if $b_1(\mathfrak{g}) = 0 = b_2(\mathfrak{g})$.

For item 4,

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $\nu: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form *ω*^{*n*},
- *G* is semi-simple if and only if $b_1(\mathfrak{g}) = 0 = b_2(\mathfrak{g})$.

For item 4, $d: \Lambda^2 \mathfrak{g}^* \to \Lambda^3 \mathfrak{g}^*$ induces a map $d_{\mathcal{P}}: \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$;

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $\nu: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form *ω*^{*n*},
- *G* is semi-simple if and only if $b_1(\mathfrak{g}) = 0 = b_2(\mathfrak{g})$.

For item 4, $d: \Lambda^2 \mathfrak{g}^* \to \Lambda^3 \mathfrak{g}^*$ induces a map $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^* \to Z^3(\mathfrak{g})$; injective only if $b_2(\mathfrak{g}) = 0$

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $\nu: M \to \mathcal{P}_{\mathfrak{g}}^*$ exists if either

- **1** *G* is compact and $b_1(M) = 0$,
- **2** *M* is compact with a G-invariant volume form and $b_1(M) = 0$,

3
$$c = d\beta$$
 with β invariant under G, or

$$b_2(\mathfrak{g}) = 0 = b_3(\mathfrak{g}).$$

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form *ω*^{*n*},
- *G* is semi-simple if and only if $b_1(\mathfrak{g}) = 0 = b_2(\mathfrak{g})$.

For item 4, $d: \Lambda^2 \mathfrak{g}^* \to \Lambda^3 \mathfrak{g}^*$ induces a map $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^* \to Z^3(\mathfrak{g})$; injective only if $b_2(\mathfrak{g}) = 0$ and surjective only if $b_3(\mathfrak{g}) = 0$.

Extended phase space

 $M = \Lambda^2 T^* N$, $G \subset \text{Diff}(N)$.

EXTENDED PHASE SPACE

 $M = \Lambda^2 T^* N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above.

EXTENDED PHASE SPACE

 $M = \Lambda^2 T^*N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = S\overline{U(3)}$

EXTENDED PHASE SPACE

 $M = \Lambda^2 T^*N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992)

Extended phase space

 $M = \Lambda^2 T^* N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992) compatible with the bi-invariant metric.

EXTENDED PHASE SPACE

 $M = \Lambda^2 T^* N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_I = dF_I$, etc.,

Extended phase space

 $M = \Lambda^2 T^*N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_I = dF_I$, etc., case 3 above gives three multi-moment maps

$$\nu_I, \nu_J, \nu_K: M = SU(3) \rightarrow \mathcal{P}^*_{\mathfrak{su}(3)}$$

for the left action of SU(3).

Extended phase space

 $M = \Lambda^2 T^*N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_I = dF_I$, etc., case 3 above gives three multi-moment maps

$$\nu_I, \nu_J, \nu_K: M = SU(3) \rightarrow \mathcal{P}^*_{\mathfrak{su}(3)}$$

for the left action of SU(3). Each image is the homogeneous space $F_{1,2}(\mathbb{C}^3) = SU(3)/T^2$.

Extended phase space

 $M = \Lambda^2 T^*N$, $G \subset \text{Diff}(N)$. Here $c = d\beta$, so we are case 3 above. This has a multi-moment map with $\nu(p) = \beta(p)$.

$M^8 = SU(3)$

This carries a hypercomplex structure *I*, *J*, *K* found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_I = dF_I$, etc., case 3 above gives three multi-moment maps

$$\nu_I, \nu_J, \nu_K: M = SU(3) \rightarrow \mathcal{P}^*_{\mathfrak{su}(3)}$$

for the left action of SU(3). Each image is the homogeneous space $F_{1,2}(\mathbb{C}^3) = SU(3)/T^2$. We get an injection

$$(\nu_I, \nu_J, \nu_K) \colon SU(3) \hookrightarrow (F_{1,2}(\mathbb{C}^3))^3.$$

$$M^8 = SU(3)$$
 again

$M^8 = SU(3)$ again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$.

$M^8 = SU(3)$ again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X,Y,Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$.

$M^8 = SU(3)$ Again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left,

$M^8 = SU(3)$ again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X,Y,Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left, but *c* is 0 on $\mathcal{P}_{\mathfrak{su}(3)}$. So although $\nu_{\mathfrak{su}(3)}$ exists, it is trivial.

$M^8 = SU(3)$ Again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left, but *c* is 0 on $\mathcal{P}_{\mathfrak{su}(3)}$. So although $\nu_{\mathfrak{su}(3)}$ exists, it is trivial.

Instead, take $G = SU(3) \times U(1)$ acting as $(g, z) \cdot A = gAz^{-1}$.

$M^8 = SU(3)$ Again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left, but *c* is 0 on $\mathcal{P}_{\mathfrak{su}(3)}$. So although $\nu_{\mathfrak{su}(3)}$ exists, it is trivial.

Instead, take $G = SU(3) \times U(1)$ acting as $(g, z) \cdot A = gAz^{-1}$. Now

$$\ker \nu_* = [\mathfrak{su}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)$$

$M^8 = SU(3)$ again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left, but *c* is 0 on $\mathcal{P}_{\mathfrak{su}(3)}$. So although $\nu_{\mathfrak{su}(3)}$ exists, it is trivial.

Instead, take $G = SU(3) \times U(1)$ acting as $(g, z) \cdot A = gAz^{-1}$. Now

$$\ker \nu_* = [\mathfrak{su}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)$$

and

$$\nu\colon SU(3)\to \mathbb{C}\mathrm{P}(2)\subset\mathfrak{su}(3)\subset\mathfrak{su}(3)+\mathcal{P}_{\mathfrak{su}(3)}=\mathcal{P}_{\mathfrak{su}(3)+\mathfrak{u}(1)}$$

$M^8 = SU(3)$ again

carries a bi-invariant closed 3-form $c(X, Y, Z) = \langle X, [Y, Z] \rangle$, X, Y, Z $\in \mathfrak{su}(3)$. M^8 is simply-connected, so $b_1(M) = 0$. SU(3) acts on the left, but *c* is 0 on $\mathcal{P}_{\mathfrak{su}(3)}$. So although $\nu_{\mathfrak{su}(3)}$ exists, it is trivial.

Instead, take $G = SU(3) \times U(1)$ acting as $(g, z) \cdot A = gAz^{-1}$. Now

$$\ker \nu_* = [\mathfrak{su}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)$$

and

$$\nu\colon SU(3)\to \mathbb{C}\mathrm{P}(2)\subset\mathfrak{su}(3)\subset\mathfrak{su}(3)+\mathcal{P}_{\mathfrak{su}(3)}=\mathcal{P}_{\mathfrak{su}(3)+\mathfrak{u}(1)}$$

is the description of SU(3) as a hypercomplex (HKT) Swann bundle over the quaternionic Kähler $\mathbb{CP}(2)$.

Homogeneous spaces and orbits

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c)

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}$.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}$. If $b_2(\mathfrak{g}) = 0$

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}.$ If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$,

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_\beta = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{ X \in \mathfrak{g} : X \sqcup \Psi_0 = 0 \}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} : \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β}

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{X \in \mathfrak{g} : X \sqcup \Psi_0 = 0\}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G/H.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{X \in \mathfrak{g} : X \sqcup \Psi_0 = 0\}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G/H.

Theorem

If $b_2(\mathfrak{g}) = 0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^*$ arises as the image of a multi-moment map for a strong geometry.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{X \in \mathfrak{g} : X \sqcup \Psi_0 = 0\}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G/H.

Theorem

If $b_2(\mathfrak{g}) = 0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^*$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{X \in \mathfrak{g} : X \sqcup \Psi_0 = 0\}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G/H.

Theorem

If $b_2(\mathfrak{g}) = 0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^*$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if Lie stab_G $\beta = \ker d_{\mathcal{P}}\beta$.

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits $G \cdot \Psi$ in $Z^3(\mathfrak{g})$ via $c_{eH}(X, Y, Z) = \Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\mathfrak{h} \subset \ker \Psi = \{X \in \mathfrak{g} : X \sqcup \Psi_0 = 0\}$. If $b_2(\mathfrak{g}) = 0$ then $d_{\mathcal{P}} \colon \mathcal{P}^*_{\mathfrak{g}} \to Z^3(\mathfrak{g})$ is injective. For $\Psi = d_{\mathcal{P}}\beta$, the orbits $\mathcal{O}_{\beta} = G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G/H.

Theorem

If $b_2(\mathfrak{g}) = 0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^*$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if Lie stab_G $\beta = \ker d_{\mathcal{P}}\beta$. In this case \mathcal{O}_{β} is 2-plectic.

OUTLINE

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2, 3)-trivial Lie algebras

3 G_2 holonomy

Reduction Four-dimensional geometry

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable

DEFINITION

A Lie algebra ${\mathfrak g}$ is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras.

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k} = \mathfrak{g}'$ for the derived algebra,

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k} = \mathfrak{g}'$ for the derived algebra, \mathfrak{k} is nilpotent

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k} = \mathfrak{g}'$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k} = \mathfrak{g}'$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.

A one-dimensional solvable extension $\mathfrak{g} = \mathbb{R}X + \mathfrak{k}$ of a nilpotent algebra \mathfrak{k} is (2,3)-trivial

Definition

A Lie algebra \mathfrak{g} is (cohomologically) (2,3)-trivial if

$$b_2(\mathfrak{g})=0=b_3(\mathfrak{g}).$$

Theorem

Let \mathfrak{g} be a (2,3)-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k} = \mathfrak{g}'$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.

A one-dimensional solvable extension $\mathfrak{g} = \mathbb{R}X + \mathfrak{k}$ of a nilpotent algebra \mathfrak{k} is (2,3)-trivial if and only if the fixed-point spaces $H^i(\mathfrak{k})^X$ are trivial for i = 1, 2 and 3.

• Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda 31), |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0, 21, \lambda 31), |\lambda| \in (0, 1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$,

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$, then
 - $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .
 - Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$, then
 - $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .
 - Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
 - All nilpotent algebras of dimension at most 6 admit a positive grading.

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$, then
 - $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .
 - Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
 - All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras n with Der(n) nilpotent.

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_j] \subset \mathfrak{k}_{i+j}$, then
 - $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .
 - Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
 - All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras n with Der(n) nilpotent. These can not be the derived algebra of a (2,3)-trivial Lie algebra.

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
 - (0,21),
 - (0,21+31,31),
 - $(0,21,\lambda \, 31), \quad |\lambda| \in (0,1),$
 - $(0, \lambda 21 + 31, -21 + \lambda 31), \quad \lambda \ge 0.$
- If \mathfrak{k} admits a positive grading $\mathfrak{k} = \bigoplus_{i \ge 1} \mathfrak{k}_i$, $[\mathfrak{k}_i, \mathfrak{k}_i] \subset \mathfrak{k}_{i+j}$, then
 - $\mathfrak{k} = \mathfrak{g}'$ for some (2, 3)-trivial algebra \mathfrak{g} .
 - Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
 - All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras n with Der(n) nilpotent. These can not be the derived algebra of a (2,3)-trivial Lie algebra.
- There exist unimodular (2, 3)-trivial Lie groups admitting compact discrete quotients (dim *G* ≥ 5).

Outline

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2,3)-trivial Lie algebras

3 G_2 HOLONOMY

Reduction

Four-dimensional geometry

G₂ STRUCTURES WITH TORUS SYMMETRY

Let (M^7, g, ϕ) be a manifold with holonomy G_2 ,

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

The metric g is then Ricci-flat with holonomy contained in G_2 .

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

The metric *g* is then Ricci-flat with holonomy contained in G_2 . Suppose T^2 acts preserving the G_2 -structure,

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

The metric *g* is then Ricci-flat with holonomy contained in G_2 . Suppose T^2 acts preserving the G_2 -structure, generated by U_i . Then a multi-moment map ν exists, e.g. if $b_1(M) = 0$,

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

The metric *g* is then Ricci-flat with holonomy contained in G_2 . Suppose T^2 acts preserving the G_2 -structure, generated by U_i . Then a multi-moment map ν exists, e.g. if $b_1(M) = 0$, and

$$\phi = h^2 \omega_0 \wedge d\nu + d\nu \wedge \theta_1 \wedge \theta_2 + \sum_{i=1}^2 \theta_i \wedge \omega_i$$

Let (M^7, g, ϕ) be a manifold with holonomy G_2 , meaning that $d\phi = 0$, $d*\phi = 0$ and that at each point there is an orthonormal coframe such that

$$\phi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347}.$$

The metric *g* is then Ricci-flat with holonomy contained in G_2 . Suppose T^2 acts preserving the G_2 -structure, generated by U_i . Then a multi-moment map ν exists, e.g. if $b_1(M) = 0$, and

$$\phi = h^2 \omega_0 \wedge d\nu + d\nu \wedge \theta_1 \wedge \theta_2 + \sum_{i=1}^2 \theta_i \wedge \omega_i$$

with

$$\omega_0 = U_1 \,\lrcorner\, U_2 \,\lrcorner\, *\phi, \quad \omega_i = U_i \,\lrcorner\, \phi, \quad (g_{UU}g_{VV} - g_{UV}^2) \,h^2 = 1.$$

Reduction of G_2 structures

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Reduction of G_2 structures

$$\phi = h^2 \omega_0 \wedge d\nu + d\nu \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $X = v^{-1}(t)$.

Reduction of G_2 structures

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

PROPOSITION

The half-flat SU(3)-manifold \mathcal{X}

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

PROPOSITION

The half-flat SU(3)-manifold \mathcal{X} is a principal T^2 -bundle over M^4

$$\phi = h^2 \omega_0 \wedge d\nu + d\nu \wedge \theta_1 \wedge \theta_2 + \sum_{i=1}^2 \theta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

PROPOSITION

The half-flat SU(3)-manifold \mathcal{X} is a principal T^2 -bundle over M^4 with θ_i as connection one forms.

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^2 -bundle over M^4 with θ_i as connection one forms. The forms ω_j , j = 0, 1, 2, descend to M^4

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T²-bundle over M⁴ with θ_i as connection one forms. The forms ω_j , j = 0, 1, 2, descend to M⁴ as pointwise linearly independent symplectic forms

$$\phi = h^2 \omega_0 \wedge d
u + d
u \wedge heta_1 \wedge heta_2 + \sum_{i=1}^2 heta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T²-bundle over M⁴ with θ_i as connection one forms. The forms ω_j , j = 0, 1, 2, descend to M⁴ as pointwise linearly independent symplectic forms that are self-dual for the induced metric.

$$\phi = h^2 \omega_0 \wedge d\nu + d\nu \wedge \theta_1 \wedge \theta_2 + \sum_{i=1}^2 \theta_i \wedge \omega_i$$

Let $\mathcal{X} = \nu^{-1}(t)$. Suppose T^2 acts freely and put $M = \mathcal{X}/T^2$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T²-bundle over M⁴ with θ_i as connection one forms. The forms ω_j , j = 0, 1, 2, descend to M⁴ as pointwise linearly independent symplectic forms that are self-dual for the induced metric.

One has

$$\begin{split} h^2 \,\omega_0{}^2 &= g_{UU}^{-1} \,\omega_1{}^2 = g_{VV}^{-1} \,\omega_2{}^2 = 2 \operatorname{vol}_M, \\ \omega_0 \wedge \omega_1 &= 0 = \omega_0 \wedge \omega_2, \quad \omega_1 \wedge \omega_2 = 2 g_{UV} \operatorname{vol}_M. \end{split}$$

Outline

1 BACKGROUND

Symplectic Geometry Strong Geometry Covariant Moment Maps

2 Multi-moment maps

Commuting vector fields Lie kernels Existence (2, 3)-trivial Lie algebras

3 G_2 HOLONOMY

Reduction

Four-dimensional geometry

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure \mathcal{C} on M^4 .

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure C on M^4 . Call such a triple of symplectic forms *coherent*

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure C on M^4 . Call such a triple of symplectic forms *coherent* if $\omega_0 \wedge \omega_i = 0, i = 1, 2$, and

 $\Lambda_{+} = \operatorname{span}_{\mathbb{R}} \{ \omega_{0}, \omega_{1}, \omega_{2} \}$ defines a conformal structure C on M^{4} . Call such a triple of symplectic forms *coherent* if $\omega_{0} \wedge \omega_{i} = 0, i = 1, 2$, and $Q = (\langle \omega_{i}, \omega_{j} \rangle)_{i,j=1,2}$ is positive definite.

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure C on M^4 . Call such a triple of symplectic forms *coherent* if $\omega_0 \wedge \omega_i = 0, i = 1, 2, \text{ and } Q = (\langle \omega_i, \omega_j \rangle)_{i,j=1,2}$ is positive definite. Write $h = \sqrt{\det Q}$ and let $g \in C$ satisfy $h^2 \omega_0^2 = 2 \operatorname{vol}_g$.

PROPOSITION

Suppose $(\omega_j, j = 0, 1, 2)$ is a coherent triple of symplectic forms on M^4 .

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure C on M^4 . Call such a triple of symplectic forms *coherent* if $\omega_0 \wedge \omega_i = 0, i = 1, 2, \text{ and } Q = (\langle \omega_i, \omega_j \rangle)_{i,j=1,2}$ is positive definite. Write $h = \sqrt{\det Q}$ and let $g \in C$ satisfy $h^2 \omega_0^2 = 2 \operatorname{vol}_g$.

PROPOSITION

Suppose $(\omega_j, j = 0, 1, 2)$ is a coherent triple of symplectic forms on M^4 . Let $\mathcal{X} \to M$ be a T^2 -bundle with connection one-forms θ_i , i = 1, 2.

 $\Lambda_+ = \operatorname{span}_{\mathbb{R}} \{\omega_0, \omega_1, \omega_2\}$ defines a conformal structure C on M^4 . Call such a triple of symplectic forms *coherent* if $\omega_0 \wedge \omega_i = 0, i = 1, 2, \text{ and } Q = (\langle \omega_i, \omega_j \rangle)_{i,j=1,2}$ is positive definite. Write $h = \sqrt{\det Q}$ and let $g \in C$ satisfy $h^2 \omega_0^2 = 2 \operatorname{vol}_g$.

PROPOSITION

Suppose $(\omega_j, j = 0, 1, 2)$ is a coherent triple of symplectic forms on M^4 . Let $\mathcal{X} \to M$ be a T^2 -bundle with connection one-forms θ_i , i = 1, 2. Then

$$\sigma = h\omega_0 + h^{-1}\theta_1 \wedge \theta_2, \quad \psi_+ = \omega_1 \wedge \theta_1 + \omega_2 \wedge \theta_2,$$

 $\Lambda_{+} = \operatorname{span}_{\mathbb{R}} \{ \omega_{0}, \omega_{1}, \omega_{2} \} \text{ defines a conformal structure } C \text{ on } M^{4}. \text{ Call such a triple of symplectic forms$ *coherent* $if <math>\omega_{0} \wedge \omega_{i} = 0, i = 1, 2, \text{ and } Q = (\langle \omega_{i}, \omega_{j} \rangle)_{i,j=1,2} \text{ is positive } definite. Write <math>h = \sqrt{\det Q}$ and let $g \in C$ satisfy $h^{2}\omega_{0}^{2} = 2\operatorname{vol}_{g}$.

PROPOSITION

Suppose $(\omega_j, j = 0, 1, 2)$ is a coherent triple of symplectic forms on M^4 . Let $\mathcal{X} \to M$ be a T^2 -bundle with connection one-forms θ_i , i = 1, 2. Then

$$\sigma = h\omega_0 + h^{-1} \theta_1 \wedge \theta_2, \quad \psi_+ = \omega_1 \wedge \theta_1 + \omega_2 \wedge \theta_2,$$

defines a half-flat SU(3)-structure on X if and only if

 $\Lambda_{+} = \operatorname{span}_{\mathbb{R}} \{ \omega_{0}, \omega_{1}, \omega_{2} \} \text{ defines a conformal structure } C \text{ on } M^{4}. \text{ Call such a triple of symplectic forms$ *coherent* $if <math>\omega_{0} \wedge \omega_{i} = 0, i = 1, 2, \text{ and } Q = (\langle \omega_{i}, \omega_{j} \rangle)_{i,j=1,2} \text{ is positive } definite. Write <math>h = \sqrt{\det Q}$ and let $g \in C$ satisfy $h^{2}\omega_{0}^{2} = 2\operatorname{vol}_{g}$.

PROPOSITION

Suppose $(\omega_j, j = 0, 1, 2)$ is a coherent triple of symplectic forms on M^4 . Let $\mathcal{X} \to M$ be a T^2 -bundle with connection one-forms θ_i , i = 1, 2. Then

$$\sigma = h\omega_0 + h^{-1}\theta_1 \wedge \theta_2, \quad \psi_+ = \omega_1 \wedge \theta_1 + \omega_2 \wedge \theta_2,$$

defines a half-flat SU(3)-structure on \mathcal{X} if and only if $(d\theta_1^+, d\theta_2^+) = (\omega_1, \omega_2)A$ with $\langle A, Q \rangle = 0$.

Theorem

If the data on M^4 is analytic,

THEOREM

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above

LIFTING

Theorem

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above defines a unique metric with holonomy G_2 on an open neighbourhood of $X \times \{0\}$ in $X \times \mathbb{R}$.

LIFTING

Theorem

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above defines a unique metric with holonomy G_2 on an open neighbourhood of $X \times \{0\}$ in $X \times \mathbb{R}$. Every G_2 holonomy structure with effective T^2 symmetry arises in this way.

Theorem

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above defines a unique metric with holonomy G_2 on an open neighbourhood of $X \times \{0\}$ in $X \times \mathbb{R}$. Every G_2 holonomy structure with effective T^2 symmetry arises in this way.

The related flow with $h \equiv 1$ has been studied by Hitchin (2001).

Theorem

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above defines a unique metric with holonomy G_2 on an open neighbourhood of $X \times \{0\}$ in $X \times \mathbb{R}$. Every G_2 holonomy structure with effective T^2 symmetry arises in this way.

The related flow with $h \equiv 1$ has been studied by Hitchin (2001). However, it does not preserve the multi-moment map structure.

Theorem

If the data on M^4 is analytic, then the flow

$$\psi'_+ = d(h\sigma)$$
 $(\frac{1}{2}\sigma^2)' = -d(h\psi_-)$

with initial data (X, σ, ψ_+) defined above defines a unique metric with holonomy G_2 on an open neighbourhood of $X \times \{0\}$ in $X \times \mathbb{R}$. Every G_2 holonomy structure with effective T^2 symmetry arises in this way.

The related flow with $h \equiv 1$ has been studied by Hitchin (2001). However, it does not preserve the multi-moment map structure. Bryant (2010) has provided examples of initial data for the Hitchin flow that have no solution.

 $M^4 \rightarrow T^4 / \{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral.

 $M^4 \rightarrow T^4 / \{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form.

 $M^4 \rightarrow T^4/\{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form. Then the T^2 -bundle with curvatures ($\omega_2, -\omega_1$) carries half-flat SU(3)-structures on its total space for each choice of compatible conformal structure on M^4 .

 $M^4 \rightarrow T^4/\{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form. Then the T^2 -bundle with curvatures ($\omega_2, -\omega_1$) carries half-flat SU(3)-structures on its total space for each choice of compatible conformal structure on M^4 . Any analytic choice of ω_1 gives a flow to a holonomy G_2 -metric.

 $M^4 \rightarrow T^4/\{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form. Then the T^2 -bundle with curvatures ($\omega_2, -\omega_1$) carries half-flat SU(3)-structures on its total space for each choice of compatible conformal structure on M^4 . Any analytic choice of ω_1 gives a flow to a holonomy G_2 -metric.

More general than Apostolov and Salamon (2004): we do not need a hyperKähler triple ω_i .

 $M^4 \rightarrow T^4/\{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form. Then the T^2 -bundle with curvatures ($\omega_2, -\omega_1$) carries half-flat SU(3)-structures on its total space for each choice of compatible conformal structure on M^4 . Any analytic choice of ω_1 gives a flow to a holonomy G_2 -metric.

More general than Apostolov and Salamon (2004): we do not need a hyperKähler triple ω_i . However, if the triple is hyperKähler we can be explicit.

 $M^4 \rightarrow T^4/\{\pm 1\}$ a Kummer surface, with $\omega_c = \omega_1 + i\omega_2$ complex symplectic and integral. Let ω_0 be *any* compatible Kähler form. Then the T^2 -bundle with curvatures ($\omega_2, -\omega_1$) carries half-flat SU(3)-structures on its total space for each choice of compatible conformal structure on M^4 . Any analytic choice of ω_1 gives a flow to a holonomy G_2 -metric.

More general than Apostolov and Salamon (2004): we do not need a hyperKähler triple ω_i . However, if the triple is hyperKähler we can be explicit.

Donaldson (2006) asks whether the underlying compact manifold is always hyperKähler.

SUMMARY

• Multi-moment maps are defined $\nu \colon (M, c) \to \mathcal{P}_{\mathfrak{g}}^*$, where $\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$

- Multi-moment maps are defined $\nu \colon (M, c) \to \mathcal{P}_{\mathfrak{g}}^*$, where $\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$
- These take values in a vector space and exist under weak topological assumptions on *M* or under cohomological assumptions on g.

- Multi-moment maps are defined $\nu \colon (M, c) \to \mathcal{P}_{\mathfrak{g}}^*$, where $\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$
- These take values in a vector space and exist under weak topological assumptions on *M* or under cohomological assumptions on g.
- Homogeneous examples may be described via orbits in $\Lambda^* \mathfrak{g}^*$.

- Multi-moment maps are defined $\nu \colon (M, c) \to \mathcal{P}_{\mathfrak{g}}^*$, where $\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$
- These take values in a vector space and exist under weak topological assumptions on *M* or under cohomological assumptions on g.
- Homogeneous examples may be described via orbits in $\Lambda^* \mathfrak{g}^*$.
- (2,3)-trivial Lie algebras may be classified in small dimensions and described and as certain one-dimensional solvable extensions of nilpotent algebras in general.

- Multi-moment maps are defined $\nu \colon (M, c) \to \mathcal{P}_{\mathfrak{g}}^*$, where $\mathcal{P}_{\mathfrak{g}} = \ker([\cdot, \cdot] \colon \Lambda^2 \mathfrak{g} \to \mathfrak{g}).$
- These take values in a vector space and exist under weak topological assumptions on *M* or under cohomological assumptions on g.
- Homogeneous examples may be described via orbits in $\Lambda^* \mathfrak{g}^*$.
- (2,3)-trivial Lie algebras may be classified in small dimensions and described and as certain one-dimensional solvable extensions of nilpotent algebras in general.
- G_2 holonomy manifolds with T^2 -symmetry correspond via multi-moment map reduction to coherent symplectic triples on M^4 .

References

References I

- V. Apostolov and S. Salamon. Kähler reduction of metrics with holonomy *G*₂. *Comm. Math. Phys.*, 246(1):43–61, March 2004.
- John C. Baez, Alexander E. Hoffnung, and Christopher L. Rogers. Categorified symplectic geometry and the classical string. *Comm. Math. Phys.*, 293(3):701–725, 2010. ISSN 0010-3616. doi: 10.1007/s00220-009-0951-9. URL http://dx.doi.org/10.1007/s00220-009-0951-9.
- Robert L. Bryant. Nonembeddings and nonextentsion results in special holonomy. In *The Many Facets of Geometry: A Tribute to Nigel Hitchin*. Oxford University Press, 2010.

References

References II

- J. F. Cariñena, M. Crampin, and L. A. Ibort. On the multisymplectic formalism for first order field theories. *Differential Geom. Appl.*, 1(4):345–374, 1991. ISSN 0926-2245. doi: 10.1016/0926-2245(91)90013-Y. URL http://dx.doi.org/10.1016/0926-2245(91)90013-Y.
- S. K. Donaldson. Two-forms on four-manifolds and elliptic equations. In *Inspired by S. S. Chern*, volume 11 of *Nankai Tracts Math.*, pages 153–172. World Sci. Publ., Hackensack, NJ, 2006.
- P. Gauduchon. La 1-forme de torsion d'une variété hermitienne compacte. *Math. Ann.*, 267:495–518, 1984.
- Mark J. Gotay, James Isenberg, Jerrold E. Marsden, and Richard Montgomery. Momentum maps and classical relativistic fields. part I: Covariant field theory, January 1998. eprint arXiv:physics/9801019[math-ph].

References

References III

- N. J. Hitchin. Stable forms and special metrics. In *Global differential geometry: the mathematical legacy of Alfred Gray* (*Bilbao, 2000*), volume 288 of *Contemp. Math.*, pages 70–89. Amer. Math. Soc., Providence, RI, 2001.
- D. Joyce. Compact hypercomplex and quaternionic manifolds. *J. Differential Geom.*, 35:743–761, 1992.