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DELzZANT

THE DELZANT PICTURE

Compact symplectic

. . ¢— | Delzant polytopes
toric manifolds

(M?", ) symplectic with a Hamiltonian action of G = T™:
have G-invariant y: M — g* = R" with

A, Xy =X 1w VXeg
the moment map

» pinvariant <= o pulls-back to 0 on each T"-orbit

v

bi(M) =0 = each symplectic T"-action is Hamiltonian

dim(M/T") equals dimension of target space of p

\4

\4

Stabiliser of any point is a (connected) subtorus of dimension
n —rankdyu
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DELzZANT

THE DELZANT POLYTOPE

A={aeR"|(aur) <Ak, k=1,...,m} = pu(M)

with faces Fr = {{u, ur) = Ay} satisfying

SMOOTHNESS Fi, N -+ NFy, #@ = uy,,...,ux, arepartofa
Z-basis for Z" c R"

COMPACTNESS the intersection of any n faces is a point

M is constructed as the symplectic quotient of C™ by the Abelian
group N given by

0—N-—>T"—>T"—0
O—>n—>Rmi>R"—>O
Blex) = uk
at level A = (Ay)
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HypPERKAHLER

HyPERKAHLER MANIFOLDS

(M, g, w1, w5, wk) is hyperKdihler if each (g, wa = g(A-, -)) is Kédhler
andIJ =K =—]I
Then dim M = 4n and g is Ricci-flat, holonomy in Sp(n) < SU(2n)

Ricci-flatness implies:

if M is compact, then any Killing vector field is parallel so
the holonomy of M reduces

So take (M, g) non-compact and complete instead

Swann (2016) and Dancer and Swann (2016), following Bielawski
(1999), Bielawski and Dancer (2000) and Goto (1994)
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HypPERKAHLER HypERTORIC

Hypertoric is complete hyperKihler M*" with tri-Hamiltonian
G = T" action: have G-invariant map (hyperKdhler moment map)

p= Gy px): M > RP@¢"  d(pa,X) =X swa

» dim(M/T") equals dimension 3n of target space of y

» Stabiliser of any point is a (connected) subtorus of dimension
n-— % rank du

Locally (Lindstrom and Rocek 1983)
g = (V"1)5j0:6; + Vij(duidu] + dpidpd, + dpiedyelo),

with V;; positive-definite and harmonic on every affine three-plane
Xav=a+ R3®v
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HypPERKAHLER HypERTORIC

HYPERTORIC CONFIGURATION DATA

For M*" hypertoric, y is surjective:
puM*™) =R =R*®R" = ImH ® R"

All stabilisers are (connected) subtori and y induces a
homeomorphism M/T" — R3"
Polytope faces are replaced by affine flats of codimension 3:

Hy = H(ug, Ax) = {a e ImH® R | (a, ux) = Ar},

Ui € z", Ak € ImH

SMOOTHNESS H(ug,, Ak,) N - N H(uk,,Ak,) # @ = Uk, ..., Uk, is
part of a Z-basis for Z"

Get only finitely many distinct vectors ug, but possibly infinitely
many A’s
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HypPERKAHLER CONSTRUCTION

CONSTRUCTION AND CLASSIFICATION

Choose L ﬁniti or countably infinite and A = (Ag)rer € HY, so that
with A = —%AkiAk have Yo (1 + Mkl)_l < o0

Let L*(H) = {v € H" | Xger|vk|? < o0}

Hilbert manifold My = A + L?(H) is hyperKihler with action of
Hilbert group Tj = {g € (V)" | Zger (1 + [AkD)I1 = gi[* < o0}

Suppose uy € Z" are such that {H(uy, Ar) | k € L} satisfy the
smoothness condition and define the Hilbert group Ny by

0—Ng—T) —T"—0

Bler) = ux

0—>nﬁ—>tﬂi>R"H0

Then the hyperKahler quotient of Mj by Ny is hypertoric and every
simply-connected hypertoric manifold arises in this way up to
adding a (positive semi-definite) constant matrix to (V;;)
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G, MANIFOLDS
M’ with ¢ € Q3(M) pointwise of the form
@ = €123 — €145 — €167 — €246 — €257 — €347 — €356,
eijk = ei NejNeg

Specifies metric g = e} + - - - + €, orientation vol = ej34567 and
four-form

*Q = €4567 — €2345 — €2367 — €3146 — €3175 — €1256 — €1247
via

69(X,Y)vol=(X19)A(Y20)A @

Holonomy of g is in G, when d¢ = 0 = dx¢, a parallel G,-structure
Then g is Ricci-flat

ANDREW SWANN MoMENT Maps AND Toric SpeciAL HoLoNomy



Gy MuLTI-HAMILTONIAN

MULTI-HAMILTONIAN ACTIONS

Joint work with Thomas Bruun Madsen

(M, @) manifold with closed @ € QP (M) preserved by G = T"
This is multi-Hamiltonian if it there is a G-invariant v: M — AP~!g*
with

dv,Xa N AXp1) = a(Xy, .., Xpoq, +)

forall X; € g

> taken > p —2
» vinvariant &= « pulls-back to 0 on each T"-orbit

» bi(M) =0 = each T"-action preserving « is
multi-Hamiltonian

For (M, ¢) a parallel G,-structure, can take & = ¢ and/or o = *¢
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Gy MuLTI-HAMILTONIAN

MULTI-HAMILTONIAN PARALLEL G>-MANIFOLDS

ProrosIiTION

Suppose (M, ¢) is a parallel G,-manifold with T"-symmetry
multi-Hamiltonian for a = ¢ and/or a = *¢. Then 2 < n < 4.

n=2,a=¢ v:M— AR} =R 1<5=dim(M/T") (A)

n=3a=¢ v:M— A’R?®=R33 < 4=dim(M/T")

n=3a=x%p p: M — A°R* =R, 1 < 4 =dim(M/T")

n=3,a=@pANDa =*p (v,u): M - R>xR =R,
4=4=dim(M/T") (T)

n=4a=¢ v: M — A’R*=RS 6 >3 =dim(M/T") (B)

n=4,a=x%p v: M — AR* =R% 4 > 3 = dim(M/T")

(A) Madsen and Swann (2012)
(B) Baraglia (2010)
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Gy Toric Gy
Toric G,

DEFINITION

A toric G, manifold is a parallel G,-structure (M, ¢) with an action
of T® multi-Hamiltonian for both ¢ and *¢

Let Ui, Uy, Us generate the T3-action, then ¢(U;, U, Us) = 0,
multi-moment maps (v, ) = (v, vo, v3, ): M — R*

dvi=UAUgag (ijk)=(123)  dp=Ui AU AUs g

ExXAMPLE

M = S! x C3 has standard flat ¢ = %dx(dzﬁ +dzy; + dz;3) + Re(dzy23)
preserved by S! x T? < S! x SU(3)

4(vy —ip) = 212223, 4vy = |z2|? = 233, 4vs = |z3|* = |z [?
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Gy Toric Gy

ProroOSITION

All isotropy groups of the T* action are connected and act on the
tangent space as maximal tori in 1 X SU(3), 15 X SU(2) or 1;

At a point p in a principal orbit U;, Us, Us are contained in a
coassociative subspace of T,M and (dv, dp) has full rank 4
Let My be the points with trivial isotropy

Then (v, 1) induces a local diffeomorphism M,/T® — R*
PROPOSITION

For the flat structure on M = S' X C* the quotient M/T? is
homeomorphic to R* and (v, i1) induces a homeomorphism

COROLLARY

For any toric G,-manifold M, the quotient M/T? is a topological
manifold
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Gy Toric Gy

LocAL FORM

(M, ) toric G, with generating vector fields U;

My — M,/T? is a principal torus bundle with connection one-forms
6; € Q'(M) satisfying 0;(U;) = &;5, 6:(X) =0V X LUy, Up, Us

On M), put

p— . . = _1 = j
B=(9(UsUy) and V=B""=——adjB
THEOREM
On M()
_ 1 t . t 0 2
g= —detVe adj(V) 0 + dv'adj(V)dv + det(V) dpu
Q= —det(V) dV123 + dﬂth ad_](V)e i 6 eijdvk
i),k
1 . 2
= 0155d dvt adj(V)0)” + det(V) d 0;dv;
%@ = 0123 lH_Zdet(V)(VaJ( )0)” + det(V) lli?k Vik
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Gy Toric Gy

THEOREM (CONTINUED)

Such a (g, ¢, *@) defines a parallel G,-structure if and only
if Ve C®(My/T?, S?R®) is a positive-definite solution to

3, vy ) :
—L - j=1273 (divergence-free)
= ovi
and
LV)+Q@dV)=0 (elliptic)
where

d* d*
L=+ Vy=———
op? " kz;l ! 9v;0v;

and Q is a quadratic form with constant coefficients
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ProroOSITION

Toric Gy

Solutions V' to the divirgence-free equation are given locally

by A € C®(M,/T?, S*R3) via

azAkk

%A

v;? - Ovj0v
BZAjk 62Aij

0% Axy

62Aj-
Vii =
6Vk2
0%A;
Vij — 5 ik
VjOvi

(ijk)=(123)

ANDREW SWANN
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Gy Toric Gy

EXAMPLE SOLUTIONS

ExAMPLE

Bryant-Salamon metrics and their generalisations by Brandhuber
et al. (2001) on S* X R*: complete, cohomogeneity one with
symmetry group SU(2) X SU(2) x S' X Z/2

ExAMPLE

Diagonal V = diag(Vy, V2, V3). (divergence- free) oV;/dv; = 0.

aV; 9V;
Off-diagonal terms in (elliptic) give g * v o, =0

Either V = diag(Vi (v, 1), Va(vs, 1), V3(V1, 1)) linear in each variable
Or have an elliptic hierachy V3 = Vs(u), Vo = Va(vs, p),
= Vi(vz, v3, 1)
%y %V, %V, o*v 9*v 9*v

=0 + V: =0 + V; +V: =0
op? op? 3 9vs2 op? 20v,2 T o2

Eg Va=p, Vo=p®-3v:i Vi=2p°—154%v5 -5V}
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