Moment Maps and Toric Special Holonomy

Andrew Swann

Department of Mathematics, University of Aarhus

PADGE, August 2017, Leuven

DFF - 6108-00358

OUTLINE

THE DELZANT PICTURE

HyperKähler manifolds Hypertoric Construction

 G_2 MANIFOLDS

Multi-Hamiltonian

Toric G_2

THE DELZANT PICTURE

 (M^{2n}, ω) symplectic with a *Hamiltonian* action of $G = T^n$: have G-invariant $\mu \colon M \to \mathfrak{g}^* \cong \mathbb{R}^n$ with

$$d\langle \mu, X \rangle = X \, \lrcorner \, \omega \qquad \forall \, X \in \mathfrak{g}$$

the moment map

- μ invariant $\iff \omega$ pulls-back to 0 on each T^n -orbit
- ► $b_1(M) = 0$ \implies each symplectic T^n -action is Hamiltonian
- ▶ $\dim(M/T^n)$ equals dimension of target space of μ
- Stabiliser of any point is a (connected) subtorus of dimension
 n rank dμ

THE DELZANT POLYTOPE

$$\Delta = \{a \in \mathbb{R}^n \mid \langle a, u_k \rangle \leqslant \lambda_k, \ k = 1, \dots, m\} = \mu(M)$$

with faces $F_k = \{\langle \mu, u_k \rangle = \lambda_k \}$ satisfying

SMOOTHNESS $F_{k_1} \cap \cdots \cap F_{k_r} \neq \emptyset \implies u_{k_1}, \dots, u_{k_r}$ are part of a \mathbb{Z} -basis for $\mathbb{Z}^n \subset \mathbb{R}^n$

COMPACTNESS the intersection of any n faces is a point M is constructed as the symplectic quotient of \mathbb{C}^m by the Abelian group N given by

$$0 \longrightarrow N \longrightarrow T^m \longrightarrow T^n \longrightarrow 0$$
$$0 \longrightarrow \mathfrak{n} \longrightarrow \mathbb{R}^m \stackrel{\beta}{\longrightarrow} \mathbb{R}^n \longrightarrow 0$$
$$\beta(e_k) = u_k$$

at level $\lambda = (\lambda_k)$

HyperKähler manifolds

 $(M, q, \omega_I, \omega_I, \omega_K)$ is hyperKähler if each $(q, \omega_A = q(A \cdot, \cdot))$ is Kähler and IJ = K = -II

Then dim M = 4n and g is Ricci-flat, holonomy in $Sp(n) \leq SU(2n)$

Ricci-flatness implies:

if M is compact, then any Killing vector field is parallel so the holonomy of M reduces

So take (M, q) non-compact and complete instead

Swann (2016) and Dancer and Swann (2016), following Bielawski (1999), Bielawski and Dancer (2000) and Goto (1994)

Hypertoric is complete hyperKähler M^{4n} with tri-Hamiltonian $G = T^n$ action: have G-invariant map (hyperKähler moment map)

$$\mu = (\mu_I, \mu_J, \mu_K) \colon M \to \mathbb{R}^3 \otimes \mathfrak{g}^* \qquad d\langle \mu_A, X \rangle = X \, \lrcorner \, \omega_A$$

- $ightharpoonup \dim(M/T^n)$ equals dimension 3n of target space of μ
- ► Stabiliser of any point is a (connected) subtorus of dimension $n-\frac{1}{2}$ rank $d\mu$

Locally (Lindström and Roček 1983)

$$g=(V^{-1})_{ij}\theta_i\theta_j+V_{ij}(d\mu^i_Id\mu^j_I+d\mu^i_Jd\mu^j_J+d\mu^i_Kd\mu^j_K),$$

with V_{ij} positive-definite and harmonic on every affine three-plane $X_{av} = a + \mathbb{R}^3 \otimes v$

Hypertoric configuration data

For M^{4n} hypertoric, μ is surjective:

$$\mu(M^{4n}) = \mathbb{R}^{3n} = \mathbb{R}^3 \otimes \mathbb{R}^n = \operatorname{Im} \mathbb{H} \otimes \mathbb{R}^n$$

All stabilisers are (connected) subtori and μ induces a homeomorphism $M/T^n \to \mathbb{R}^{3n}$

Polytope faces are replaced by affine flats of codimension 3:

$$H_k = H(u_k, \lambda_k) = \{a \in \operatorname{Im} \mathbb{H} \otimes \mathbb{R}^n \mid \langle a, u_k \rangle = \lambda_k \},$$

 $u_{k} \in \mathbb{Z}^{n}, \lambda_{k} \in \operatorname{Im} \mathbb{H}$

SMOOTHNESS $H(u_{k_1}, \lambda_{k_1}) \cap \cdots \cap H(u_{k_r}, \lambda_{k_r}) \neq \emptyset \implies u_{k_1}, \ldots, u_{k_r}$ is part of a \mathbb{Z} -basis for \mathbb{Z}^n

Get only finitely many distinct vectors u_k , but possibly infinitely many λ_k 's

CONSTRUCTION AND CLASSIFICATION

Choose \mathbb{L} finite or countably infinite and $\Lambda = (\Lambda_k)_{k \in \mathbb{L}} \in \mathbb{H}^{\mathbb{L}}$, so that with $\lambda_k = -\frac{1}{2} \overline{\Lambda_k} i \Lambda_k$ have $\sum_{k \in \mathbb{I}} (1 + |\lambda_k|)^{-1} < \infty$ Let $\mathbb{L}^2(\mathbb{H}) = \{ v \in \mathbb{H}^{\mathbb{L}} \mid \sum_{k \in \mathbb{I}} |v_k|^2 < \infty \}$

Hilbert manifold $M_{\Lambda} = \Lambda + \mathbb{L}^2(\mathbb{H})$ is hyperKähler with action of Hilbert group $T_{\lambda} = \{ q \in (S^1)^{\mathbb{L}} \mid \sum_{k \in \mathbb{L}} (1 + |\lambda_k|) | 1 - q_k|^2 < \infty \}$

Suppose $u_k \in \mathbb{Z}^n$ are such that $\{H(u_k, \lambda_k) \mid k \in \mathbb{L}\}$ satisfy the smoothness condition and define the Hilbert group N_{β} by

$$0 \longrightarrow N_{\beta} \longrightarrow T_{\lambda} \longrightarrow T^{n} \longrightarrow 0$$

$$0 \longrightarrow \mathfrak{n}_{\beta} \longrightarrow \mathfrak{t}_{\lambda} \stackrel{\beta}{\longrightarrow} \mathbb{R}^{n} \longrightarrow 0$$

$$\beta(e_{k}) = u_{k}$$

Then the hyperKähler quotient of M_{Λ} by N_{β} is hypertoric and every simply-connected hypertoric manifold arises in this way up to adding a (positive semi-definite) constant matrix to (V_{ij})

G_2 manifolds

 M^7 with $\varphi \in \Omega^3(M)$ pointwise of the form

$$\varphi = e_{123} - e_{145} - e_{167} - e_{246} - e_{257} - e_{347} - e_{356},$$

 $e_{ijk}=e_i \wedge e_j \wedge e_k$ Specifies metric $g=e_1^2+\cdots+e_7^2$, orientation vol = $e_{1234567}$ and four-form

$$*\varphi = e_{4567} - e_{2345} - e_{2367} - e_{3146} - e_{3175} - e_{1256} - e_{1247}$$

via

$$6g(X, Y) \text{ vol} = (X \sqcup \varphi) \land (Y \sqcup \varphi) \land \varphi$$

Holonomy of g is in G_2 when $d\varphi = 0 = d*\varphi$, a parallel G_2 -structure Then g is Ricci-flat

MULTI-HAMILTONIAN ACTIONS

Joint work with Thomas Bruun Madsen

 (M,α) manifold with closed $\alpha \in \Omega^p(M)$ preserved by $G=T^n$ This is multi-Hamiltonian if it there is a *G*-invariant $\nu: M \to \Lambda^{p-1} \mathfrak{g}^*$ with

$$d\langle v, X_1 \wedge \cdots \wedge X_{p-1} \rangle = \alpha(X_1, \dots, X_{p-1}, \cdot)$$

for all $X_i \in \mathfrak{g}$

- ▶ take n > p 2
- ν invariant $\iff \alpha$ pulls-back to 0 on each T^n -orbit
- $b_1(M) = 0 \implies \text{each } T^n \text{-action preserving } \alpha \text{ is}$ multi-Hamiltonian

For (M, φ) a parallel G_2 -structure, can take $\alpha = \varphi$ and/or $\alpha = *\varphi$

Multi-Hamiltonian parallel G_2 -manifolds

Proposition

Suppose (M, φ) is a parallel G_2 -manifold with T^n -symmetry multi-Hamiltonian for $\alpha = \varphi$ and/or $\alpha = *\varphi$. Then $2 \le n \le 4$.

$$n = 2, \alpha = \varphi \quad v \colon M \to \Lambda^2 \mathbb{R}^3 = \mathbb{R}^1, 1 < 5 = \dim(M/T^n)$$

$$n = 3, \alpha = \varphi \quad v \colon M \to \Lambda^2 \mathbb{R}^3 = \mathbb{R}^3, 3 < 4 = \dim(M/T^n)$$

$$n = 3, \alpha = *\varphi \quad \mu \colon M \to \Lambda^3 \mathbb{R}^3 = \mathbb{R}, 1 < 4 = \dim(M/T^n)$$

$$n = 3, \alpha = \varphi \text{ AND } \alpha = *\varphi \quad (v, \mu) \colon M \to \mathbb{R}^3 \times \mathbb{R} = \mathbb{R}^4,$$

$$4 = 4 = \dim(M/T^n)$$

$$(T)$$

$$n = 4, \alpha = \varphi \quad v \colon M \to \Lambda^2 \mathbb{R}^4 = \mathbb{R}^6, 6 > 3 = \dim(M/T^n)$$

$$(B)$$

$$n = 4, \alpha = *\varphi \quad v \colon M \to \Lambda^3 \mathbb{R}^4 = \mathbb{R}^4, 4 > 3 = \dim(M/T^n)$$

- (A) Madsen and Swann (2012)
- (B) Baraglia (2010)

Toric G_2

DEFINITION

A toric G_2 manifold is a parallel G_2 -structure (M, φ) with an action of T^3 multi-Hamiltonian for both φ and $*\varphi$

Let U_1, U_2, U_3 generate the T^3 -action, then $\varphi(U_1, U_2, U_3) = 0$, multi-moment maps $(v, \mu) = (v_1, v_2, v_3, \mu) : M \to \mathbb{R}^4$

$$d\nu_i = U_j \wedge U_k \, \lrcorner \, \varphi \quad (i \, j \, k) = (1 \, 2 \, 3) \qquad d\mu = U_1 \wedge U_2 \wedge U_3 \, \lrcorner * \varphi$$

EXAMPLE

 $M = S^1 \times \mathbb{C}^3$ has standard flat $\varphi = \frac{i}{2} dx (dz_{1\bar{1}} + dz_{2\bar{2}} + dz_{3\bar{3}}) + \text{Re}(dz_{123})$ preserved by $S^1 \times T^2 \leq S^1 \times SU(3)$

$$4(v_1 - i\mu) = z_1 z_2 z_3$$
, $4v_2 = |z_2|^2 - |z_3|^2$, $4v_3 = |z_3|^2 - |z_1|^2$

PROPOSITION

All isotropy groups of the T^3 action are connected and act on the tangent space as maximal tori in $1 \times SU(3)$, $1_3 \times SU(2)$ or 1_7

At a point p in a principal orbit U_1 , U_2 , U_3 are contained in a coassociative subspace of T_pM and $(dv, d\mu)$ has full rank 4 Let M_0 be the points with trivial isotropy Then (ν, μ) induces a local diffeomorphism $M_0/T^3 \to \mathbb{R}^4$

Proposition

For the flat structure on $M = S^1 \times \mathbb{C}^3$ the quotient M/T^3 is homeomorphic to \mathbb{R}^4 and (v,μ) induces a homeomorphism

COROLLARY

For any toric G_2 -manifold M, the quotient M/T^3 is a topological manifold

LOCAL FORM

 (M, φ) toric G_2 with generating vector fields U_i $M_0 \to M_0/T^3$ is a principal torus bundle with connection one-forms $\theta_i \in \Omega^1(M_0)$ satisfying $\theta_i(U_i) = \delta_{ij}$, $\theta_i(X) = 0 \ \forall X \perp U_1, U_2, U_3$ On M_0 , put

$$B = (g(U_i, U_j))$$
 and $V = B^{-1} = \frac{1}{\det B} \operatorname{adj} B$

Theorem

On M_0

$$g = \frac{1}{\det V} \theta^t \operatorname{adj}(V) \theta + dv^t \operatorname{adj}(V) dv + \det(V) d\mu^2$$

$$\varphi = -\det(V) dv_{123} + d\mu dv^t \operatorname{adj}(V) \theta + \bigotimes_{i,j,k} \theta_{ij} dv_k$$

$$*\varphi = \theta_{123} d\mu + \frac{1}{2 \det(V)} (dv^t \operatorname{adj}(V) \theta)^2 + \det(V) d\mu \bigotimes_{i,j,k} \theta_i dv_{jk}$$

THEOREM (CONTINUED)

Such a $(q, \varphi, *\varphi)$ defines a parallel G_2 -structure if and only if $V \in C^{\infty}(M_0/T^3, S^2\mathbb{R}^3)$ is a positive-definite solution to

$$\sum_{i=1}^{3} \frac{\partial V_{ij}}{\partial v_i} = 0 j = 1, 2, 3 (divergence-free)$$

and

$$L(V) + Q(dV) = 0$$
 (elliptic)

where

$$L = \frac{\partial^2}{\partial \mu^2} + \sum_{k,\ell} V_{ij} \frac{\partial^2}{\partial \nu_i \partial \nu_j}$$

and Q is a quadratic form with constant coefficients

Proposition

Solutions V to the divirgence-free equation are given locally $bv A \in C^{\infty}(M_0/T^3, S^2\mathbb{R}^3)$ via

$$V_{ii} = \frac{\partial^2 A_{jj}}{\partial v_k^2} + \frac{\partial^2 A_{kk}}{\partial v_j^2} - \frac{\partial^2 A_{jk}}{\partial v_j \partial v_k}$$

$$V_{ij} = \frac{\partial^2 A_{ik}}{\partial v_j \partial v_k} + \frac{\partial^2 A_{jk}}{\partial v_i \partial v_k} - \frac{\partial^2 A_{ij}}{\partial v_k^2} - \frac{\partial^2 A_{kk}}{\partial v_i \partial v_j}$$

$$(ijk) = (123)$$

Andrew Swann

Example solutions

EXAMPLE

Bryant-Salamon metrics and their generalisations by Brandhuber et al. (2001) on $S^3 \times \mathbb{R}^4$: complete, cohomogeneity one with symmetry group $SU(2) \times SU(2) \times S^1 \times \mathbb{Z}/2$

EXAMPLE

Diagonal $V = \text{diag}(V_1, V_2, V_3)$. (divergence-free) $\partial V_i / \partial v_i = 0$.

Off-diagonal terms in (elliptic) give $\frac{\partial V_i}{\partial v_i} \frac{\partial V_j}{\partial v_i} = 0$.

Either $V = \text{diag}(V_1(v_2, \mu), V_2(v_3, \mu), V_3(v_1, \mu))$ linear in each variable

Or have an elliptic hierarchy $V_3 = V_3(\mu)$, $V_2 = V_2(\nu_3, \mu)$,

$$V_1 = V_1(\nu_2, \nu_3, \mu)$$

$$\frac{\partial^{2} V_{3}}{\partial \mu^{2}} = 0 \quad \frac{\partial^{2} V_{2}}{\partial \mu^{2}} + V_{3} \frac{\partial^{2} V_{2}}{\partial v_{3}^{2}} = 0 \quad \frac{\partial^{2} V_{1}}{\partial \mu^{2}} + V_{2} \frac{\partial^{2} V_{1}}{\partial v_{2}^{2}} + V_{3} \frac{\partial^{2} V_{1}}{\partial v_{3}^{2}} = 0$$

E.g.
$$V_3 = \mu$$
, $V_2 = \mu^3 - 3v_3^2$, $V_1 = 2\mu^5 - 15\mu^2v_3^2 - 5v_2^2$

References I

- Baraglia, D. (2010), 'Moduli of coassociative submanifolds and semi-flat G_2 -manifolds', J. Geom. Phys. 60:12, pp. 1903–1918.
- Bielawski, R. (1999), 'Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian \mathbb{R}^n -action', $Math.\ Ann.\ 314:3$, pp. 505-528.
- Bielawski, R. and A. S. Dancer (2000), 'The geometry and topology of toric hyperkähler manifolds', *Comm. Anal. Geom.* 8:4, pp. 727–760.
- Brandhuber, A., J. Gomis, S. S. Gubser and S. Gukov (2001), 'Gauge Theory at Large N and New G_2 Holonomy Metrics', *Nuclear Phys.* B 611:1-3, pp. 179–204.
- Dancer, A. S. and A. F. Swann (2016), 'Hypertoric manifolds and hyperKähler moment maps', arXiv: 1607.04078 [math.DG].
- Goto, R. (1994), 'On hyper-Kähler manifolds of type A_{∞} ', Geometric and Funct. Anal. 4, pp. 424–454.

References II

- Lindström, U. and M. Roček (1983), 'Scalar tensor duality and N=1, 2 nonlinear σ -models', *Nuclear Phys. B* 222:2, pp. 285–308.
- Madsen, T. B. and A. F. Swann (2012), 'Multi-moment maps', *Adv. Math.* 229, pp. 2287–2309.
- Swann, A. F. (2016), 'Twists versus modifications', *Adv. Math.* 303, pp. 611–637.