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Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Symplectic geometry and moment maps

(M, ω) is symplectic if ω ∈ Ω2(M) is closed (dω = 0) and
non-degenerate.

Basic calculation

If X preserves ω, then

0 = LXω = X y dω + d(X y ω) = d(X y ω).

So the one-form X y ω is dµX, for some local function µX.

Definition

A moment map for an action of G on M that preserves ω is an
equivariant map

µ : M→ g∗

such that d〈µ, X〉 = X y ω, for each X ∈ g.
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Symplectic examples

Flat space

M = R2n = Cn with

ω =
n

∑
j=1

dxj ∧ dyj.

Circle action z 7→ eiθz has
µ(x, y) = 1

2 (‖x‖2 + ‖y‖2).

Cotangent bundle

M = T∗N is symplectic with

ω = dq1 ∧ dp1 + · · ·+ dqn ∧ dpn

= dθ, θ(W)α = α(π∗W).

Any G ⊂ Diff(N) admits a
moment map, µX = θ(X).

Coadjoint orbits

O = G · θ0 ⊂ g∗ has Kirillov-Kostant-Souriau form

ω(X, Y)θ = θ([X, Y]), θ ∈ O, X, Y ∈ g .

The moment map µ : O → g∗ is just inclusion.
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Uses of symplectic moment maps

1 Reduction: N = µ−1(0)/G is symplectic,
dim N = dim M− 2 dim G if G acts freely.

• CP(n) = R2n+2 � S1.
• T∗N � G = T∗(N/G).
• extensions to Kähler, hyperKähler, etc.
• gauge theory moduli spaces.

2 Classification Theorems:

• Homogeneous symplectic manifolds, homogeneous
Kähler;

• Cohomogeneity one hyperKähler, quaternionic Kähler;
• contact manifolds, twistor spaces, 3-Sasaki manifolds with

large symmetry.

3 Constructions:

• toric varieties: G = Tn, dim M = 2n, µ : M→ ∆ ⊂ Rn a
convex polytope;

• cuts, implosions.
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Key properties of symplectic moment maps

µ : M→ g∗

• Target space is a vector space independent of M.
• µ exists if either

1 G is compact and b1(M) = 0,
2 M is compact, with b1(M) = 0,
3 ω = dθ with θ invariant under G, or
4 G is semi-simple.
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Strong geometry

Definition

(M, c) forms a strong geometry if c ∈ Ω3(M) is closed, dc = 0.

The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if
c is non-degenerate, in the sense that X y c = 0 only for X = 0.

Extended phase space

M = Λ2T∗N,

c = ∑
i<j

dqi ∧ dqj ∧ dpij

= dβ, βα(U, V) = α(π∗U, π∗V)

is 2-plectic.
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Examples of strong geometries

Strong geometries with torsion

(M, g, c), g Riemannian defines

∇ = ∇lc + 1
2 c,

a metric connection ∇g = 0 with the same geodesics as ∇lc.

• M = G/K isotropy irreducible, c(X, Y, Z) = 〈X, [Y, Z]〉.
• Strong KT geometry: (M, g, I, FI) Hermitian, c = −IdFI.

Gauduchon (1984) every compact Hermitian M4 is
conformally SKT.

Other examples of strong geometries include:

• Holonomy G2 manifolds.
• Hermitian manifolds, c = dFI.
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Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c,

then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX

for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is

an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps

(M, c) strong (dc = 0).

Basic calculation

If X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

So the two-form X y c is dαX for some local one-form αX.

Definition

A covariant moment map for an action of G on M that preserves
c is an equivariant map

α : M→ Ω1(M, g)

such that d〈α, X〉 = X y c, for each X ∈ g.

Andrew Swann What is a Multi-moment Map?



Background Multi-moment G2 holonomy Summary Symplectic Strong Covariant

Covariant moment maps: discussion

α : M→ Ω1(M, g) with d〈α, X〉 = X y c.

• Definition introduced and studied by Cariñena, Crampin,
and Ibort (1991) and by Gotay, Isenberg, Marsden, and
Montgomery (1998).

• Problems include:

1 Target space Ω1(M, g) depends both on M and g.
2 Existence often requires some restrictive assumption such

as b2(M) = 0.
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Commuting vector fields

(M, c) strong (dc = 0).

Basic calculation

Suppose X preserves c, then

0 = LXc = X y dc + d(X y c) = d(X y c).

Now suppose Y preserves both X and c:

[X, Y] = 0 and LYc = 0.

Then

0 = LY(X y c) = Y y d(X y c) + d(Y y X y c) = dc(X, Y, ·).

So the one-form c(X, Y, ·) is dνX,Y for some local function νX,Y.
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Lie kernels

Definition

The Lie kernel Pg of Lie algebra g is

Pg = ker([·, ·] : Λ2 g→ g).

A typical element of p ∈ Pg has the form

p = X1 ∧ Y1 + · · ·+ Xr ∧ Yr

with
r

∑
i=1

[Xi, Yi] = 0.

Linearity in the basic calculation shows that

d(p y c) = d(
r

∑
i=1

c(Xi, Yi, ·)) = −(
r

∑
i=1

[Xi, Yi]) y c = 0.
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Multi-moment maps

Definition

A multi-moment map for G acting on M preserving c is

an
equivariant map

ν : M→ P∗g
such that d〈ν, p〉 = p y c for all p ∈ Pg.

Note that:

• P∗g ⊂ Λ2 g∗ is a linear subspace depending on g, not on M.

• For G Abelian, Pg = Λ2 g.
• For G semi-simple, Λ2 g ∼= g⊕Pg. In particular, for G

compact and simple, Pg is the isotropy representation of
the isotropy irreducible space SO(dim g)/G.
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Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map ν : M→ P∗g exists if either

1 G is compact and b1(M) = 0,

2 M is compact with a G-invariant volume form and b1(M) = 0,

3 c = dβ with β invariant under G, or

4 b2(g) = 0 = b3(g).

Cf. the results for symplectic moment maps, noting
• a symplectic manifold has a canonical volume form ωn,
• G is semi-simple if and only if b1(g) = 0 = b2(g).

For item 4, d : Λ2 g∗ → Λ3 g∗ induces a map dP : P∗g → Z3(g);
injective only if b2(g) = 0 and surjective only if b3(g) = 0.
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Examples I

Extended phase space

M = Λ2T∗N, G ⊂ Diff(N).

Here c = dβ, so we are case 3
above. This has a multi-moment map with ν(p) = β(p).

M8 = SU(3)

This carries a hypercomplex structure I, J, K found by Joyce
(1992) compatible with the bi-invariant metric. Taking cI = dFI,
etc., case 3 above gives three multi-moment maps

νI, νJ, νK : M = SU(3)→ P∗su(3)

for the left action of SU(3). Each image is the homogeneous
space F1,2(C3) = SU(3)/T2. We get an injection

(νI, νJ, νK) : SU(3) ↪→ (F1,2(C3))3.

Andrew Swann What is a Multi-moment Map?
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νI, νJ, νK : M = SU(3)→ P∗su(3)

for the left action of SU(3).

Each image is the homogeneous
space F1,2(C3) = SU(3)/T2. We get an injection

(νI, νJ, νK) : SU(3) ↪→ (F1,2(C3))3.
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Examples II

M8 = SU(3) again

carries a bi-invariant closed 3-form c(X, Y, Z) = 〈X, [Y, Z]〉,
X, Y, Z ∈ su(3). M8 is simply-connected, so b1(M) = 0.
SU(3) acts on the left, but c is 0 on Psu(3). So although νsu(3)
exists, it is trivial.
Instead, take G = SU(3)×U(1) acting as (g, z) ·A = gAz−1.
Now

ker ν∗ = [su(3), u(1)]⊥ ∼= u(2)

and

ν : SU(3)→ CP(2) ⊂ su(3) ⊂ su(3) + Psu(3) = Psu(3)+u(1)

is the description of SU(3) as a hypercomplex (HKT) Swann
bundle over the quaternionic Kähler CP(2).
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Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H, c) fibre over orbits
G ·Ψ in Z3(g) via ceH(X, Y, Z) = Ψ(X, Y, Z). Holds for any Ψ
and all H ⊂ G closed with h ⊂ ker Ψ = {X ∈ g : X y Ψ0 = 0 }.

If b2(g) = 0 then dP : P∗g → Z3(g) is injective. For Ψ = dPβ, the
orbits Oβ = G · β ↪→ Pg and G ·Ψ are identified and the
inclusion Oβ induces the multi-moment map for the strong
geometry on G/H.

Theorem

If b2(g) = 0, each Oβ ⊂ P∗g arises as the image of a multi-moment
map for a strong geometry. That geometry may be realised on Oβ if
and only if Lie stabG β = ker dPβ. In this case Oβ is 2-plectic.

Andrew Swann What is a Multi-moment Map?
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(2, 3)-trivial Lie algebras I

Definition

A Lie algebra g is (cohomologically) (2, 3)-trivial if

b2(g) = 0 = b3(g).

Theorem

Let g be a (2, 3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing k = g′ for the derived algebra, k is nilpotent and g / k is
one-dimensional.
A one-dimensional solvable extension g = RX + k of a nilpotent
algebra k is (2, 3)-trivial if and only if the fixed-point spaces Hi(k)X
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(2, 3)-trivial Lie algebras II
• Using the theorem it easy to classify the (2, 3)-trivial

algebras in small dimensions. Up to dimension 3 we have

• (0, 21),
• (0, 21 + 31, 31),
• (0, 21, λ 31), |λ| ∈ (0, 1),
• (0, λ 21 + 31,−21 + λ 31), λ > 0.

• If k admits a positive grading k = ⊕i>1 ki, [ki, kj] ⊂ ki+j, then
k = g′ for some (2, 3)-trivial algebra g.

• Nilpotent algebras of maximal rank, as studied in
association with Kac-Moody algebras, fall in to this class.

• All nilpotent algebras of dimension at most 6 admit a
positive grading.

• There exist 7-dimensional nilpotent Lie algebras n with
Der(n) nilpotent. These can not be the derived algebra of
a (2, 3)-trivial Lie algebra.

• There exist unimodular (2, 3)-trivial Lie groups admitting
compact discrete quotients (dim G > 5).
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G2 structures with torus symmetry

Let (M7, g, φ) be a manifold with holonomy G2,

meaning that
dφ = 0, d∗φ = 0 and that at each point there is an orthonormal
coframe such that

φ = e123 + e145 + e167 + e246 − e257 − e356 − e347.

The metric g is then Ricci-flat with holonomy contained in G2.

Suppose T2 acts preserving the G2-structure, generated by Ui.
Then a multi-moment map ν exists, e.g. if b1(M) = 0, and

φ =
1
`2 ω0 ∧ dν + dν ∧ θ1 ∧ θ2 +

2

∑
i=1

ωi ∧ θi

with

ω0 = U1 y U2 y ∗φ, ωi = Ui y φ, `2 = ‖U1 ∧U2‖2.
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Reduction of G2 structures

φ =
1
`2 ω0 ∧ dν + dν ∧ θ1 ∧ θ2 +

2

∑
i=1

ωi ∧ θi.

Let X = ν−1(t). Suppose T2 acts freely and put M = X/T2.

Proposition

The half-flat SU(3)-manifold X is a principal T2-bundle over M4

with θi as connection one forms. The forms ωj, j = 0, 1, 2, descend to
M4 as pointwise linearly independent symplectic forms that are
self-dual for the induced metric.

One has
1
`2 ω2

0 =
1

‖Ui‖2 ω2
i = 2 volM,

ω0 ∧ωi = 0, ω1 ∧ω2 = 2〈U1, U2〉 volM .
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Conformal geometry

Putting Λ+ = spanR{ω0, ω1, ω2} defines a conformal
structure Cω on M4.

Proposition

Suppose ωj are symplectic forms on M defining the same orientation.
Let g be a metric in the conformal class Cω. Suppose g is positive
definite, ω0 ∧ωi = 0, i = 1, 2, and that Q = (〈ωi, ωj〉)i,j=1,2 is
positive definite.
Let X → M be a T2-bundle with connection one-forms θi, i = 1, 2.
Suppose λ ∈ C∞(M) is positive. Then

σ =
1
λ

ω0 + λ θ1 ∧ θ2, ψ+ = ω1 ∧ θ1 + ω2 ∧ θ2,

defines a half-flat SU(3)-structure on X if and only if
(dθ+

1 , dθ+
2 ) = (ω1, ω2)A with 〈A, Q〉 = 0.
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Lifting

If the Hitchin flow ψ̇+(t) = dσ(t), σ̇2(t) = −dψ−(t) with initial
data (X, σ, ψ+) exists, then the Hitchin flow defines a
holonomy G2-structure on X× (a, b) whose multi-moment
reduction is the given data on M4.

Example

M4 → T4/{±1} a Kummer surface, with ωc = ω1 + iω2
complex symplectic and integral. Let ω0 be any compatible
Kähler form. Then the T2-bundle with curvatures (ω2,−ω1)
carries half-flat SU(3)-structures on its total space for each
choice of compatible conformal structure on M4. Any analytic
choice of ω1 gives a flow to a holonomy G2-metric.

More general than Apostolov and Salamon (2004): we do not
need a hyperKähler triple ωi. Donaldson (2006) asks whether
the underlying compact manifold is always hyperKähler.
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Summary

• Multi-moment maps are defined ν : (M, c)→ P∗g , where
Pg = ker([·, ·] : Λ2 g→ g).

• These take values in a vector space and exist under weak
topological assumptions on M or under cohomological
assumptions on g.

• Homogeneous examples may be described via orbits in
Λ∗ g∗.

• (2, 3)-trivial Lie algebras may be classified in small
dimensions and described and as certain one-dimensional
solvable extensions of nilpotent algebras in general.

• G2 holonomy manifolds with T2-symmetry correspond
via multi-moment map reduction to conformal data on
M4 defined by a certain type of triple of symplectic forms.
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