What is a Multi-moment Mar?

Andrew Swann

IMADA / CP ${ }^{3}$-Origins
University of Southern Denmark
swann@imada.sdu.dk
September 2010 / Porto

What is a Multi-moment Mar?

Andrew Swann
IMADA / CP ${ }^{3}$-Origins
University of Southern Denmark
swann@imada.sdu.dk
September 2010 / Porto

Joint work with Thomas Bruun Madsen

Outline

(1) Background

Symplectic Geometry Strong Geometry
 Covariant Moment Maps

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields Lie kernels
Existence
(2,3)-trivial Lie algebras

Outline

(1) BACKGROUND

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} HOLONOMY

Reduction
Conformal geometry

Outline

(1) Background

Symplectic Geometry

Strong Geometry
Covariant Moment Maps
(2) Multi-MOMENT MAPS

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} HOLONOMY

Reduction
Conformal geometry

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω,

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω, then

$$
\left.\left.\left.0=L_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)=d(X\lrcorner \omega\right)
$$

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω, then

$$
\left.\left.\left.0=L_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)=d(X\lrcorner \omega\right)
$$

So the one-form $X\lrcorner \omega$ is $d \mu_{X,}$

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω, then

$$
\left.\left.\left.0=L_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)=d(X\lrcorner \omega\right)
$$

So the one-form $X\lrcorner \omega$ is $d \mu_{X}$, for some local function μ_{X}.

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω, then

$$
\left.\left.\left.0=L_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)=d(X\lrcorner \omega\right)
$$

So the one-form $X\lrcorner \omega$ is $d \mu_{X}$, for some local function μ_{X}.

DEFINITION

A moment map for an action of G on M that preserves ω is an equivariant map

$$
\mu: M \rightarrow \mathfrak{g}^{*}
$$

Symplectic geometry and moment maps

(M, ω) is symplectic if $\omega \in \Omega^{2}(M)$ is closed $(d \omega=0)$ and non-degenerate.

BASIC CALCULATION

If X preserves ω, then

$$
\left.\left.\left.0=L_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)=d(X\lrcorner \omega\right)
$$

So the one-form $X\lrcorner \omega$ is $d \mu_{X}$, for some local function μ_{X}.

DEFINITION

A moment map for an action of G on M that preserves ω is an equivariant map

$$
\mu: M \rightarrow \mathfrak{g}^{*}
$$

such that $d\langle\mu, \mathrm{X}\rangle=X\lrcorner \omega$, for each $\mathrm{X} \in \mathfrak{g}$.

Symplectic examples

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Any $G \subset \operatorname{Diff}(N)$ admits a moment map,

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Any $G \subset \operatorname{Diff}(N)$ admits a moment map, $\mu_{X}=\theta(X)$.

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Any $G \subset \operatorname{Diff}(N)$ admits a moment map, $\mu_{X}=\theta(X)$.

Coadjoint orbits

$\mathcal{O}=G \cdot \theta_{0} \subset \mathfrak{g}^{*}$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Any $G \subset \operatorname{Diff}(N)$ admits a moment map, $\mu_{X}=\theta(X)$.

CoAdjoint orbits

$\mathcal{O}=G \cdot \theta_{0} \subset \mathfrak{g}^{*}$ has Kirillov-Kostant-Souriau form

$$
\omega(X, Y)_{\theta}=\theta([X, Y]), \quad \theta \in \mathcal{O}, X, Y \in \mathfrak{g}
$$

Symplectic examples

Flat space

$M=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with

$$
\omega=\sum_{j=1}^{n} d x^{j} \wedge d y^{j}
$$

Circle action $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$ has $\mu(\mathbf{x}, \mathbf{y})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)$.

Cotangent bundle

$M=T^{*} N$ is symplectic with

$$
\begin{aligned}
\omega & =d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \\
& =d \theta, \quad \theta(W)_{\alpha}=\alpha\left(\pi_{*} W\right)
\end{aligned}
$$

Any $G \subset \operatorname{Diff}(N)$ admits a moment map, $\mu_{X}=\theta(X)$.

COAdjOINT ORBITS

$\mathcal{O}=G \cdot \theta_{0} \subset \mathfrak{g}^{*}$ has Kirillov-Kostant-Souriau form

$$
\omega(X, Y)_{\theta}=\theta([X, Y]), \quad \theta \in \mathcal{O}, X, Y \in \mathfrak{g}
$$

The moment map $\mu: \mathcal{O} \rightarrow \mathfrak{g}^{*}$ is just inclusion.

Uses of symplectic moment maps

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

UsES OF SYMPLECTIC MOMENT MAPS

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.

UsES OF SYMPLECTIC MOMENT MAPS

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;
- Cohomogeneity one hyperKähler, quaternionic Kähler;

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;
- Cohomogeneity one hyperKähler, quaternionic Kähler;
- contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;
- Cohomogeneity one hyperKähler, quaternionic Kähler;
- contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
(3) Constructions:

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;
- Cohomogeneity one hyperKähler, quaternionic Kähler;
- contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
(3) Constructions:
- toric varieties: $G=T^{n}, \operatorname{dim} M=2 n, \mu: M \rightarrow \Delta \subset \mathbb{R}^{n}$ a convex polytope;

Uses of symplectic moment maps

(1) Reduction: $N=\mu^{-1}(0) / G$ is symplectic, $\operatorname{dim} N=\operatorname{dim} M-2 \operatorname{dim} G$ if G acts freely.

- $\mathbb{C P}(n)=\mathbb{R}^{2 n+2} / / S^{1}$.
- $T^{*} N / / G=T^{*}(N / G)$.
- extensions to Kähler, hyperKähler, etc.
- gauge theory moduli spaces.
(2) Classification Theorems:
- Homogeneous symplectic manifolds, homogeneous Kähler;
- Cohomogeneity one hyperKähler, quaternionic Kähler;
- contact manifolds, twistor spaces, 3-Sasaki manifolds with large symmetry.
(3) Constructions:
- toric varieties: $G=T^{n}, \operatorname{dim} M=2 n, \mu: M \rightarrow \Delta \subset \mathbb{R}^{n}$ a convex polytope;
- cuts, implosions.

Key properties of symplectic moment maps

KEY PROPERTIES OF SYMPLECTIC MOMENT MAPS

$\mu: M \rightarrow \mathfrak{g}^{*}$

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.
- μ exists if either

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.
- μ exists if either
(1) G is compact and $b_{1}(M)=0$,

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.
- μ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact, with $b_{1}(M)=0$,

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.
- μ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact, with $b_{1}(M)=0$,
(3) $\omega=d \theta$ with θ invariant under G, or

Key properties of symplectic moment maps

$\mu: M \rightarrow \mathfrak{g}^{*}$

- Target space is a vector space independent of M.
- μ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact, with $b_{1}(M)=0$,
(3) $\omega=d \theta$ with θ invariant under G, or
(4) G is semi-simple.

Outline

(1) BACKGROUND

Symplectic Geometry

Strong Geometry

Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} Holonomy

Reduction
Conformal geometry

Strong geometry

Strong geometry

DEFINITION

(M, c) forms a strong geometry if $c \in \Omega^{3}(M)$ is closed, $d c=0$.

Strong geometry

DEFINITION

(M, c) forms a strong geometry if $c \in \Omega^{3}(M)$ is closed, $d c=0$.
The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X\lrcorner c=0$ only for $X=0$.

Strong geometry

DEFINITION

(M, c) forms a strong geometry if $c \in \Omega^{3}(M)$ is closed, $d c=0$.
The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X\lrcorner c=0$ only for $X=0$.

ExTENDED PHASE SPACE

$M=\Lambda^{2} T^{*} N$,

Strong geometry

Definition

(M, c) forms a strong geometry if $c \in \Omega^{3}(M)$ is closed, $d c=0$.
The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X\lrcorner c=0$ only for $X=0$.

Extended phase space

$M=\Lambda^{2} T^{*} N$,

$$
\begin{aligned}
c & =\sum_{i<j} d q^{i} \wedge d q^{j} \wedge d p_{i j} \\
& =d \beta, \quad \beta_{\alpha}(U, V)=\alpha\left(\pi_{*} U, \pi_{*} V\right)
\end{aligned}
$$

Strong geometry

DEFINITION

(M, c) forms a strong geometry if $c \in \Omega^{3}(M)$ is closed, $d c=0$.
The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if c is non-degenerate, in the sense that $X\lrcorner c=0$ only for $X=0$.

Extended phase space

$M=\Lambda^{2} T^{*} N$,

$$
\begin{aligned}
c & =\sum_{i<j} d q^{i} \wedge d q^{j} \wedge d p_{i j} \\
& =d \beta, \quad \beta_{\alpha}(U, V)=\alpha\left(\pi_{*} U, \pi_{*} V\right)
\end{aligned}
$$

is 2-plectic.

EXAMPLES OF STRONG GEOMETRIES

Strong geometries with torsion

EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

Examples of strong geometries

STRONG GEOMETRIES WITH TORSION

($M, g, c), g$ Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$

Examples of strong geometries

StRONG GEOMETRIES WITH TORSION

($M, g, c), g$ Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

Examples of strong geometries

StRONG GEOMETRIES WITH TORSION

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

- $M=G / K$ isotropy irreducible, $c(X, Y, Z)=\langle X,[Y, Z]\rangle$.

EXAMPLES OF STRONG GEOMETRIES

Strong geometries with torsion

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

- $M=G / K$ isotropy irreducible, $c(X, Y, Z)=\langle X,[Y, Z]\rangle$.
- Strong KT geometry: $\left(M, g, I, F_{I}\right)$ Hermitian, $c=-I d F_{I}$. Gauduchon (1984) every compact Hermitian M^{4} is conformally SKT.

EXAMPLES OF STRONG GEOMETRIES

Strong geometries with torsion

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

- $M=G / K$ isotropy irreducible, $c(X, Y, Z)=\langle X,[Y, Z]\rangle$.
- Strong KT geometry: $\left(M, g, I, F_{I}\right)$ Hermitian, $c=-I d F_{I}$. Gauduchon (1984) every compact Hermitian M^{4} is conformally SKT.

Other examples of strong geometries include:

EXAMPLES OF STRONG GEOMETRIES

Strong geometries with torsion

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

- $M=G / K$ isotropy irreducible, $c(X, Y, Z)=\langle X,[Y, Z]\rangle$.
- Strong KT geometry: $\left(M, g, I, F_{I}\right)$ Hermitian, $c=-I d F_{I}$. Gauduchon (1984) every compact Hermitian M^{4} is conformally SKT.

Other examples of strong geometries include:

- Holonomy G_{2} manifolds.

EXAMPLES OF STRONG GEOMETRIES

Strong geometries with torsion

(M, g, c), g Riemannian defines

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c,
$$

a metric connection $\nabla g=0$ with the same geodesics as $\nabla^{\text {LC }}$.

- $M=G / K$ isotropy irreducible, $c(X, Y, Z)=\langle X,[Y, Z]\rangle$.
- Strong KT geometry: $\left(M, g, I, F_{I}\right)$ Hermitian, $c=-I d F_{I}$. Gauduchon (1984) every compact Hermitian M^{4} is conformally SKT.

Other examples of strong geometries include:

- Holonomy G_{2} manifolds.
- Hermitian manifolds, $c=d F_{I}$.

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} Holonomy

Reduction
Conformal geometry

Covariant moment maps

(M, c) strong $(d c=0)$.

Covariant moment maps

(M, c) strong $(d c=0)$.
Basic calculation
If X preserves c,

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right) .
$$

So the two-form $X\lrcorner c$ is $d \alpha_{X}$

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

So the two-form $X\lrcorner c$ is $d \alpha_{X}$ for some local one-form α_{X}.

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

So the two-form $X\lrcorner c$ is $d \alpha_{X}$ for some local one-form α_{X}.

DEFINITION

A covariant moment map for an action of G on M that preserves c is

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

So the two-form $X\lrcorner c$ is $d \alpha_{X}$ for some local one-form α_{X}.

DEFINITION

A covariant moment map for an action of G on M that preserves c is an equivariant map

$$
\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})
$$

Covariant moment maps

(M, c) strong $(d c=0)$.

BASIC CALCULATION

If X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

So the two-form $X\lrcorner c$ is $d \alpha_{X}$ for some local one-form α_{X}.

DEFINITION

A covariant moment map for an action of G on M that preserves c is an equivariant map

$$
\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})
$$

such that $d\langle\alpha, X\rangle=X\lrcorner c$, for each $X \in \mathfrak{g}$.

Covariant moment maps: Discussion

$\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})$ with $\left.d\langle\alpha, X\rangle=X\right\lrcorner c$.

Covariant moment maps: Discussion

$\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})$ with $\left.d\langle\alpha, \mathrm{X}\rangle=X\right\lrcorner c$.

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).

Covariant moment maps: Discussion

$\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})$ with $\left.d\langle\alpha, \mathrm{X}\rangle=X\right\lrcorner c$.

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:

Covariant moment maps: Discussion

$\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})$ with $\left.d\langle\alpha, \mathrm{X}\rangle=X\right\lrcorner c$.

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:
(1) Target space $\Omega^{1}(M, \mathfrak{g})$ depends both on M and \mathfrak{g}.

COVARIANT MOMENT MAPS: DISCUSSION

$\alpha: M \rightarrow \Omega^{1}(M, \mathfrak{g})$ with $\left.d\langle\alpha, \mathrm{X}\rangle=X\right\lrcorner c$.

- Definition introduced and studied by Cariñena, Crampin, and Ibort (1991) and by Gotay, Isenberg, Marsden, and Montgomery (1998).
- Problems include:
(1) Target space $\Omega^{1}(M, \mathfrak{g})$ depends both on M and \mathfrak{g}.
(2) Existence often requires some restrictive assumption such as $b_{2}(M)=0$.

Outline

(1) BACKGROUND

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} Holonomy

Reduction
Conformal geometry

Commuting vector fields

(M, c) strong $(d c=0)$.

Commuting vector fields

(M, c) strong $(d c=0)$.
BASIC CALCULATION
Suppose X preserves c, then

Commuting vector fields

(M, c) strong $(d c=0)$.

Basic calculation

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right) .
$$

Commuting vector fields

(M, c) strong $(d c=0)$.

BASIC CALCULATION

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Now suppose Y preserves both X and c :

Commuting vector fields

(M, c) strong $(d c=0)$.

BASIC CALCULATION

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Now suppose Y preserves both X and c :

$$
[X, Y]=0 \quad \text { and } \quad L_{Y} \mathcal{C}=0
$$

Commuting vector fields

(M, c) strong $(d c=0)$.

BASIC CALCULATION

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Now suppose Y preserves both X and c :

$$
[X, Y]=0 \quad \text { and } \quad L_{Y} c=0
$$

Then

$$
\left.\left.\left.\left.\left.0=L_{Y}(X\lrcorner c\right)=Y\right\lrcorner d(X\lrcorner c\right)+d(Y\lrcorner X\right\lrcorner c\right)=d c(X, Y, \cdot) .
$$

Commuting vector fields

(M, c) strong $(d c=0)$.

BASIC CALCULATION

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Now suppose Y preserves both X and c :

$$
[X, Y]=0 \quad \text { and } \quad L_{Y} c=0
$$

Then

$$
\left.\left.\left.\left.\left.0=L_{Y}(X\lrcorner c\right)=Y\right\lrcorner d(X\lrcorner c\right)+d(Y\lrcorner X\right\lrcorner c\right)=d c(X, Y, \cdot) .
$$

So the one-form $c(X, Y, \cdot)$ is $d v_{X, Y}$

Commuting vector fields

(M, c) strong $(d c=0)$.

BASIC CALCULATION

Suppose X preserves c, then

$$
\left.\left.\left.0=L_{X} c=X\right\lrcorner d c+d(X\lrcorner c\right)=d(X\lrcorner c\right)
$$

Now suppose Y preserves both X and c :

$$
[X, Y]=0 \quad \text { and } \quad L_{Y} c=0
$$

Then

$$
\left.\left.\left.\left.\left.0=L_{Y}(X\lrcorner c\right)=Y\right\lrcorner d(X\lrcorner c\right)+d(Y\lrcorner X\right\lrcorner c\right)=d c(X, Y, \cdot) .
$$

So the one-form $c(X, Y, \cdot)$ is $d v_{X, Y}$ for some local function $v_{X, Y}$.

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} Holonomy

Reduction
Conformal geometry

LIE KERNELS

DEFINITION

The Lie kernel $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

Lie kernels

Definition

The Lie kernel $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$
\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)
$$

Lie kernels

Definition

The Lie kernel $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$
\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)
$$

A typical element of $p \in \mathcal{P}_{\mathfrak{g}}$ has the form

$$
\mathrm{p}=\mathrm{X}_{1} \wedge \mathrm{Y}_{1}+\cdots+\mathrm{X}_{r} \wedge \mathrm{Y}_{r}
$$

Lie kernels

DEFINITION

The Lie kernel $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$
\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)
$$

A typical element of $p \in \mathcal{P}_{\mathfrak{g}}$ has the form

$$
\mathrm{p}=\mathrm{X}_{1} \wedge \mathrm{Y}_{1}+\cdots+\mathrm{X}_{r} \wedge \mathrm{Y}_{r}
$$

with

$$
\sum_{i=1}^{r}\left[\mathrm{X}_{i}, \mathrm{Y}_{i}\right]=0
$$

LIE KERNELS

DEFINITION

The Lie kernel $\mathcal{P}_{\mathfrak{g}}$ of Lie algebra \mathfrak{g} is

$$
\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)
$$

A typical element of $p \in \mathcal{P}_{\mathfrak{g}}$ has the form

$$
\mathrm{p}=\mathrm{X}_{1} \wedge \mathrm{Y}_{1}+\cdots+\mathrm{X}_{r} \wedge \mathrm{Y}_{r}
$$

with

$$
\sum_{i=1}^{r}\left[\mathrm{X}_{i}, \mathrm{Y}_{i}\right]=0
$$

Linearity in the basic calculation shows that

$$
\left.d(p\lrcorner c)=d\left(\sum_{i=1}^{r} c\left(X_{i}, Y_{i}, \cdot\right)\right)=-\left(\sum_{i=1}^{r}\left[X_{i}, Y_{i}\right]\right)\right\lrcorner c=0 .
$$

Multi-moment maps

Definition

A multi-moment map for G acting on M preserving c is

MUlti-moment maps

DEFINITION

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

MUlti-moment maps

DEFINITION

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle v, \mathbf{p}\rangle=p\lrcorner c$

MUlti-moment maps

Definition

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle v, \mathrm{p}\rangle=p\lrcorner c$ for all $\mathrm{p} \in \mathcal{P}_{\mathfrak{g}}$.

MUlti-moment maps

Definition

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle v, \mathrm{p}\rangle=p\lrcorner c$ for all $\mathrm{p} \in \mathcal{P}_{\mathfrak{g}}$.
Note that:

Multi-moment maps

Definition

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle v, \mathrm{p}\rangle=p\lrcorner c$ for all $\mathrm{p} \in \mathcal{P}_{\mathfrak{g}}$.
Note that:

- $\mathcal{P}_{\mathfrak{g}}^{*} \subset \Lambda^{2} \mathfrak{g}^{*}$ is a linear subspace depending on \mathfrak{g}, not on M.

Multi-moment maps

Definition

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle v, \mathrm{p}\rangle=p\lrcorner c$ for all $\mathrm{p} \in \mathcal{P}_{\mathfrak{g}}$.
Note that:

- $\mathcal{P}_{\mathfrak{g}}^{*} \subset \Lambda^{2} \mathfrak{g}^{*}$ is a linear subspace depending on \mathfrak{g}, not on M.
- For G Abelian, $\mathcal{P}_{\mathfrak{g}}=\Lambda^{2} \mathfrak{g}$.

Multi-moment maps

DEFINITION

A multi-moment map for G acting on M preserving c is an equivariant map

$$
v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}
$$

such that $d\langle\nu, \mathrm{p}\rangle=p\lrcorner c$ for all $\mathrm{p} \in \mathcal{P}_{\mathfrak{g}}$.
Note that:

- $\mathcal{P}_{\mathfrak{g}}^{*} \subset \Lambda^{2} \mathfrak{g}^{*}$ is a linear subspace depending on \mathfrak{g}, not on M.
- For G Abelian, $\mathcal{P}_{\mathfrak{g}}=\Lambda^{2} \mathfrak{g}$.
- For G semi-simple, $\Lambda^{2} \mathfrak{g} \cong \mathfrak{g} \oplus \mathcal{P}_{\mathfrak{g}}$. In particular, for G compact and simple, $\mathcal{P}_{\mathfrak{g}}$ is the isotropy representation of the isotropy irreducible space $S O(\operatorname{dim} \mathfrak{g}) / G$.

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields Lie kernels

Existence

(2,3)-trivial Lie algebras
(3) G_{2} HOLONOMY

Reduction
Conformal geometry

Existence of multi-moment maps

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c.

Existence of multi-MOMENT MAPs

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either

Existence of multi-MOMENT MAPs

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,

Existence of multi-MOMENT MAPs

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact with a G-invariant volume form and $b_{1}(M)=0$,

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2. M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

EXISTENCE OF MULTI-MOMENT MAPS

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2. M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G, or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

EXISTENCE OF MULTI-MOMENT MAPS

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2. M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},
- G is semi-simple if and only if $b_{1}(\mathfrak{g})=0=b_{2}(\mathfrak{g})$.

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2. M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},
- G is semi-simple if and only if $b_{1}(\mathfrak{g})=0=b_{2}(\mathfrak{g})$.

For item 4,

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2. M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},
- G is semi-simple if and only if $b_{1}(\mathfrak{g})=0=b_{2}(\mathfrak{g})$.

For item $4, d: \Lambda^{2} \mathfrak{g}^{*} \rightarrow \Lambda^{3} \mathfrak{g}^{*}$ induces a map $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$;

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},
- G is semi-simple if and only if $b_{1}(\mathfrak{g})=0=b_{2}(\mathfrak{g})$.

For item $4, d: \Lambda^{2} \mathfrak{g}^{*} \rightarrow \Lambda^{3} \mathfrak{g}^{*}$ induces a map $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$; injective only if $b_{2}(\mathfrak{g})=0$

Existence of multi-moment maps

Theorem

Suppose G acts on M preserving the closed three-form c. Then a multi-moment map $v: M \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$ exists if either
(1) G is compact and $b_{1}(M)=0$,
(2) M is compact with a G-invariant volume form and $b_{1}(M)=0$,
(3) $c=d \beta$ with β invariant under G or
(4) $b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})$.

Cf. the results for symplectic moment maps, noting

- a symplectic manifold has a canonical volume form ω^{n},
- G is semi-simple if and only if $b_{1}(\mathfrak{g})=0=b_{2}(\mathfrak{g})$.

For item $4, d: \Lambda^{2} \mathfrak{g}^{*} \rightarrow \Lambda^{3} \mathfrak{g}^{*}$ induces a map $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$; injective only if $b_{2}(\mathfrak{g})=0$ and surjective only if $b_{3}(\mathfrak{g})=0$.

Examples I

Extended phase space
 $M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$.

Examples I

EXTENDED PHASE SPACE
$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above.

Examples I

ExTENDED PHASE SPACE
$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$$
M^{8}=S U(3)
$$

ExAMPLES I

Extended phase space

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$$
M^{8}=S U(3)
$$

This carries a hypercomplex structure I, J, K found by Joyce (1992)

Examples I

ExTENDED PHASE SPACE

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$$
M^{8}=S U(3)
$$

This carries a hypercomplex structure I, J, K found by Joyce (1992) compatible with the bi-invariant metric.

Examples I

ExTENDED PHASE SPACE

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$$
M^{8}=S U(3)
$$

This carries a hypercomplex structure I, J, K found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_{I}=d F_{I}$, etc.,

Examples I

ExTENDED PHASE SPACE

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$M^{8}=S U(3)$

This carries a hypercomplex structure I, J, K found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_{I}=d F_{I}$, etc., case 3 above gives three multi-moment maps

$$
v_{I}, v_{J}, v_{K}: M=\operatorname{SU}(3) \rightarrow \mathcal{P}_{\mathfrak{s u}(3)}^{*}
$$

for the left action of $\operatorname{SU}(3)$.

Examples I

Extended phase space

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$M^{8}=S U(3)$

This carries a hypercomplex structure I, J, K found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_{I}=d F_{I}$, etc., case 3 above gives three multi-moment maps

$$
v_{I}, v_{J}, v_{K}: M=\operatorname{SU}(3) \rightarrow \mathcal{P}_{\mathfrak{s u}(3)}^{*}
$$

for the left action of $\operatorname{SU}(3)$. Each image is the homogeneous space $F_{1,2}\left(\mathbb{C}^{3}\right)=\operatorname{SU}(3) / T^{2}$.

Examples I

Extended phase space

$M=\Lambda^{2} T^{*} N, G \subset \operatorname{Diff}(N)$. Here $c=d \beta$, so we are case 3 above. This has a multi-moment map with $v(\mathrm{p})=\beta(p)$.

$M^{8}=S U(3)$

This carries a hypercomplex structure I, J, K found by Joyce (1992) compatible with the bi-invariant metric. Taking $c_{I}=d F_{I}$, etc., case 3 above gives three multi-moment maps

$$
v_{I}, v_{J}, v_{K}: M=\operatorname{SU}(3) \rightarrow \mathcal{P}_{\mathfrak{s u}(3)}^{*}
$$

for the left action of $\operatorname{SU}(3)$. Each image is the homogeneous space $F_{1,2}\left(\mathbb{C}^{3}\right)=S U(3) / T^{2}$. We get an injection

$$
\left(v_{I}, v_{J}, v_{K}\right): \operatorname{SU}(3) \hookrightarrow\left(F_{1,2}\left(\mathbb{C}^{3}\right)\right)^{3}
$$

Examples II

$M^{8}=S U(3)$ AGAIN

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3)$.

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$. $S U(3)$ acts on the left,

Examples II

$M^{8}=\operatorname{SU}(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.
$\operatorname{SU}(3)$ acts on the left, but c is 0 on $\mathcal{P}_{\mathfrak{s u}(3)}$. So although $v_{\mathfrak{s u}(3)}$ exists, it is trivial.

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.
$\operatorname{SU}(3)$ acts on the left, but c is 0 on $\mathcal{P}_{\mathfrak{s u}(3)}$. So although $v_{\mathfrak{s u}(3)}$ exists, it is trivial.
Instead, take $G=S U(3) \times U(1)$ acting as $(g, z) \cdot A=g A z^{-1}$.

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.
$\operatorname{SU}(3)$ acts on the left, but c is 0 on $\mathcal{P}_{\mathfrak{s u}(3)}$. So although $v_{\mathfrak{s u}(3)}$ exists, it is trivial.
Instead, take $G=S U(3) \times U(1)$ acting as $(g, z) \cdot A=g A z^{-1}$. Now

$$
\operatorname{ker} v_{*}=[\mathfrak{s u}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)
$$

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.
$\operatorname{SU}(3)$ acts on the left, but c is 0 on $\mathcal{P}_{\mathfrak{s u}(3)}$. So although $v_{\mathfrak{s u}(3)}$ exists, it is trivial.
Instead, take $G=S U(3) \times U(1)$ acting as $(g, z) \cdot A=g A z^{-1}$. Now

$$
\operatorname{ker} v_{*}=[\mathfrak{s u}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)
$$

and

$$
v: S U(3) \rightarrow \mathbb{C P}(2) \subset \mathfrak{s u}(3) \subset \mathfrak{s u}(3)+\mathcal{P}_{\mathfrak{s u}(3)}=\mathcal{P}_{\mathfrak{s u}(3)+\mathfrak{u}(1)}
$$

Examples II

$M^{8}=S U(3)$ AGAIN

carries a bi-invariant closed 3-form $c(X, Y, Z)=\langle X,[Y, Z]\rangle$, $X, Y, Z \in \mathfrak{s u}(3) . M^{8}$ is simply-connected, so $b_{1}(M)=0$.
$\operatorname{SU}(3)$ acts on the left, but c is 0 on $\mathcal{P}_{\mathfrak{s u}(3)}$. So although $v_{\mathfrak{s u}(3)}$ exists, it is trivial.
Instead, take $G=S U(3) \times U(1)$ acting as $(g, z) \cdot A=g A z^{-1}$. Now

$$
\operatorname{ker} v_{*}=[\mathfrak{s u}(3), \mathfrak{u}(1)]^{\perp} \cong \mathfrak{u}(2)
$$

and

$$
v: S U(3) \rightarrow \mathbb{C P}(2) \subset \mathfrak{s u}(3) \subset \mathfrak{s u}(3)+\mathcal{P}_{\mathfrak{s u}(3)}=\mathcal{P}_{\mathfrak{s u}(3)+\mathfrak{u}(1)}
$$

is the description of $S U(3)$ as a hypercomplex (HKT) Swann bundle over the quaternionic Kähler $\mathbb{C P}(2)$.

Examples III

Homogeneous spaces and orbits

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds (G/H,c)

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.

If $b_{2}(\mathfrak{g})=0$

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$,

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β}

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G / H.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G / H.

Theorem

If $b_{2}(\mathfrak{g})=0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^{*}$ arises as the image of a multi-moment map for a strong geometry.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G / H.

Theorem

If $b_{2}(\mathfrak{g})=0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^{*}$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G / H.

Theorem

If $b_{2}(\mathfrak{g})=0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^{*}$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if $\operatorname{Lie} \operatorname{stab}_{G} \beta=\operatorname{ker} d_{\mathcal{P}} \beta$.

Examples III

Homogeneous spaces and orbits

Homogeneous strong manifolds $(G / H, c)$ fibre over orbits $G \cdot \Psi$ in $Z^{3}(\mathfrak{g})$ via $c_{e H}(X, Y, Z)=\Psi(X, Y, Z)$. Holds for any Ψ and all $H \subset G$ closed with $\left.\mathfrak{h} \subset \operatorname{ker} \Psi=\{X \in \mathfrak{g}: X\lrcorner \Psi_{0}=0\right\}$.
If $b_{2}(\mathfrak{g})=0$ then $d_{\mathcal{P}}: \mathcal{P}_{\mathfrak{g}}^{*} \rightarrow Z^{3}(\mathfrak{g})$ is injective. For $\Psi=d_{\mathcal{P}} \beta$, the orbits $\mathcal{O}_{\beta}=G \cdot \beta \hookrightarrow \mathcal{P}_{\mathfrak{g}}$ and $G \cdot \Psi$ are identified and the inclusion \mathcal{O}_{β} induces the multi-moment map for the strong geometry on G / H.

Theorem

If $b_{2}(\mathfrak{g})=0$, each $\mathcal{O}_{\beta} \subset \mathcal{P}_{\mathfrak{g}}^{*}$ arises as the image of a multi-moment map for a strong geometry. That geometry may be realised on \mathcal{O}_{β} if and only if $\operatorname{Lie} \operatorname{stab}_{G} \beta=\operatorname{ker} d_{\mathcal{P}} \beta$. In this case \mathcal{O}_{β} is 2 -plectic.

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} Holonomy

Reduction
Conformal geometry

(2,3)-trivial Lie algebras I

(2,3)-TRIVIAL Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

(2,3)-trivial Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable

(2,3)-trivial Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent

(2,3)-trivial Lie algebras I

Definition

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras.

(2,3)-trivial Lie algebras I

Definition

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k}=\mathfrak{g}^{\prime}$ for the derived algebra,

(2,3)-trivial Lie algebras I

Definition

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k}=\mathfrak{g}^{\prime}$ for the derived algebra, \mathfrak{k} is nilpotent

(2,3)-trivial Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k}=\mathfrak{g}^{\prime}$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.

(2,3)-trivial Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k}=\mathfrak{g}^{\prime}$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.
A one-dimensional solvable extension $\mathfrak{g}=\mathbb{R} X+\mathfrak{k}$ of a nilpotent algebra \mathfrak{k} is (2,3)-trivial

(2,3)-trivial Lie algebras I

DEFINITION

A Lie algebra \mathfrak{g} is (cohomologically) $(2,3)$-trivial if

$$
b_{2}(\mathfrak{g})=0=b_{3}(\mathfrak{g})
$$

Theorem

Let \mathfrak{g} be a $(2,3)$-trivial Lie algebra. Then \mathfrak{g} is solvable but not nilpotent and is not a product of smaller dimensional algebras. Writing $\mathfrak{k}=\mathfrak{g}^{\prime}$ for the derived algebra, \mathfrak{k} is nilpotent and $\mathfrak{g} / \mathfrak{k}$ is one-dimensional.
A one-dimensional solvable extension $\mathfrak{g}=\mathbb{R} X+\mathfrak{k}$ of a nilpotent algebra \mathfrak{k} is $(2,3)$-trivial if and only if the fixed-point spaces $H^{i}(\mathfrak{k})^{X}$ are trivial for $i=1,2$ and 3 .

(2,3)-TRIVIAL Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have

(2,3)-TRIVIAL Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$,

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.
- Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.
- Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
- All nilpotent algebras of dimension at most 6 admit a positive grading.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.
- Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
- All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras \mathfrak{n} with $\operatorname{Der}(\mathfrak{n})$ nilpotent.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.
- Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
- All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras \mathfrak{n} with $\operatorname{Der}(\mathfrak{n})$ nilpotent. These can not be the derived algebra of a (2,3)-trivial Lie algebra.

(2,3)-trivial Lie algebras II

- Using the theorem it easy to classify the (2,3)-trivial algebras in small dimensions. Up to dimension 3 we have
- $(0,21)$,
- $(0,21+31,31)$,
- $(0,21, \lambda 31), \quad|\lambda| \in(0,1)$,
- $(0, \lambda 21+31,-21+\lambda 31), \lambda \geqslant 0$.
- If \mathfrak{k} admits a positive grading $\mathfrak{k}=\oplus_{i \geqslant 1} \mathfrak{k}_{i},\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}$, then $\mathfrak{k}=\mathfrak{g}^{\prime}$ for some (2,3)-trivial algebra \mathfrak{g}.
- Nilpotent algebras of maximal rank, as studied in association with Kac-Moody algebras, fall in to this class.
- All nilpotent algebras of dimension at most 6 admit a positive grading.
- There exist 7-dimensional nilpotent Lie algebras \mathfrak{n} with $\operatorname{Der}(\mathfrak{n})$ nilpotent. These can not be the derived algebra of a (2,3)-trivial Lie algebra.
- There exist unimodular (2,3)-trivial Lie groups admitting compact discrete quotients $(\operatorname{dim} G \geqslant 5)$.

Outline

(1) Background

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} HOLONOMY

Reduction

Conformal geometry

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2},

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347} .
$$

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347}
$$

The metric g is then Ricci-flat with holonomy contained in G_{2}.

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347}
$$

The metric g is then Ricci-flat with holonomy contained in G_{2}. Suppose T^{2} acts preserving the G_{2}-structure,

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347} .
$$

The metric g is then Ricci-flat with holonomy contained in G_{2}. Suppose T^{2} acts preserving the G_{2}-structure, generated by U_{i}. Then a multi-moment map v exists, e.g. if $b_{1}(M)=0$,

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347} .
$$

The metric g is then Ricci-flat with holonomy contained in G_{2}. Suppose T^{2} acts preserving the G_{2}-structure, generated by U_{i}. Then a multi-moment map v exists, e.g. if $b_{1}(M)=0$, and

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

G_{2} STRUCTURES WITH TORUS SYMMETRY

Let $\left(M^{7}, g, \phi\right)$ be a manifold with holonomy G_{2}, meaning that $d \phi=0, d * \phi=0$ and that at each point there is an orthonormal coframe such that

$$
\phi=e_{123}+e_{145}+e_{167}+e_{246}-e_{257}-e_{356}-e_{347}
$$

The metric g is then Ricci-flat with holonomy contained in G_{2}. Suppose T^{2} acts preserving the G_{2}-structure, generated by U_{i}. Then a multi-moment map v exists, e.g. if $b_{1}(M)=0$, and

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

with

$$
\left.\left.\left.\omega_{0}=U_{1}\right\lrcorner U_{2}\right\lrcorner * \phi, \quad \omega_{i}=U_{i}\right\lrcorner \phi, \quad \ell^{2}=\left\|U_{1} \wedge U_{2}\right\|^{2} .
$$

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$.

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X}

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d \nu \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4}

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4} with θ_{i} as connection one forms.

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4} with θ_{i} as connection one forms. The forms $\omega_{j}, j=0,1,2$, descend to M^{4}

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4} with θ_{i} as connection one forms. The forms $\omega_{j}, j=0,1,2$, descend to M^{4} as pointwise linearly independent symplectic forms

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4} with θ_{i} as connection one forms. The forms $\omega_{j}, j=0,1,2$, descend to M^{4} as pointwise linearly independent symplectic forms that are self-dual for the induced metric.

Reduction of G_{2} structures

$$
\phi=\frac{1}{\ell^{2}} \omega_{0} \wedge d v+d v \wedge \theta_{1} \wedge \theta_{2}+\sum_{i=1}^{2} \omega_{i} \wedge \theta_{i}
$$

Let $\mathcal{X}=v^{-1}(t)$. Suppose T^{2} acts freely and put $M=\mathcal{X} / T^{2}$.

Proposition

The half-flat SU(3)-manifold \mathcal{X} is a principal T^{2}-bundle over M^{4} with θ_{i} as connection one forms. The forms $\omega_{j}, j=0,1,2$, descend to M^{4} as pointwise linearly independent symplectic forms that are self-dual for the induced metric.

One has

$$
\begin{gathered}
\frac{1}{\ell^{2}} \omega_{0}^{2}=\frac{1}{\left\|U_{i}\right\|^{2}} \omega_{i}^{2}=2 \operatorname{vol}_{M} \\
\omega_{0} \wedge \omega_{i}=0, \quad \omega_{1} \wedge \omega_{2}=2\left\langle U_{1}, U_{2}\right\rangle \operatorname{vol}_{M}
\end{gathered}
$$

Outline

(1) BACKGROUND

Symplectic Geometry
Strong Geometry
Covariant Moment Maps
(2) Multi-moment maps

Commuting vector fields
Lie kernels
Existence
(2,3)-trivial Lie algebras
(3) G_{2} HOLONOMY

Reduction
Conformal geometry

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation.

CONFORMAL GEOMETRY

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}.

CONFORMAL GEOMETRY

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.

CONFORMAL GEOMETRY

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.
Let $\mathcal{X} \rightarrow M$ be a T^{2}-bundle with connection one-forms $\theta_{i}, i=1,2$.

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.
Let $\mathcal{X} \rightarrow M$ be a T^{2}-bundle with connection one-forms $\theta_{i}, i=1,2$. Suppose $\lambda \in C^{\infty}(M)$ is positive.

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.
Let $\mathcal{X} \rightarrow M$ be a T^{2}-bundle with connection one-forms $\theta_{i}, i=1,2$. Suppose $\lambda \in C^{\infty}(M)$ is positive. Then

$$
\sigma=\frac{1}{\lambda} \omega_{0}+\lambda \theta_{1} \wedge \theta_{2}, \quad \psi_{+}=\omega_{1} \wedge \theta_{1}+\omega_{2} \wedge \theta_{2}
$$

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.
Let $\mathcal{X} \rightarrow M$ be a T^{2}-bundle with connection one-forms $\theta_{i}, i=1,2$. Suppose $\lambda \in C^{\infty}(M)$ is positive. Then

$$
\sigma=\frac{1}{\lambda} \omega_{0}+\lambda \theta_{1} \wedge \theta_{2}, \quad \psi_{+}=\omega_{1} \wedge \theta_{1}+\omega_{2} \wedge \theta_{2}
$$

defines a half-flat SU(3)-structure on \mathcal{X} if and only if

Conformal geometry

Putting $\Lambda_{+}=\operatorname{span}_{\mathbb{R}}\left\{\omega_{0}, \omega_{1}, \omega_{2}\right\}$ defines a conformal structure \mathcal{C}_{ω} on M^{4}.

Proposition

Suppose ω_{j} are symplectic forms on M defining the same orientation. Let g be a metric in the conformal class \mathcal{C}_{ω}. Suppose g is positive definite, $\omega_{0} \wedge \omega_{i}=0, i=1,2$, and that $Q=\left(\left\langle\omega_{i}, \omega_{j}\right\rangle\right)_{i, j=1,2}$ is positive definite.
Let $\mathcal{X} \rightarrow M$ be a T^{2}-bundle with connection one-forms $\theta_{i}, i=1,2$. Suppose $\lambda \in C^{\infty}(M)$ is positive. Then

$$
\sigma=\frac{1}{\lambda} \omega_{0}+\lambda \theta_{1} \wedge \theta_{2}, \quad \psi_{+}=\omega_{1} \wedge \theta_{1}+\omega_{2} \wedge \theta_{2}
$$

defines a half-flat SU(3)-structure on \mathcal{X} if and only if $\left(d \theta_{1}^{+}, d \theta_{2}^{+}\right)=\left(\omega_{1}, \omega_{2}\right) A$ with $\langle A, Q\rangle=0$.

LIFTING

LIfTING

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists,

Lifting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$

Lifting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral.

Lifting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral. Let ω_{0} be any compatible Kähler form.

LIfting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral. Let ω_{0} be any compatible Kähler form. Then the T^{2}-bundle with curvatures $\left(\omega_{2},-\omega_{1}\right)$ carries half-flat $S U(3)$-structures on its total space for each choice of compatible conformal structure on M^{4}.

LIfting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral. Let ω_{0} be any compatible Kähler form. Then the T^{2}-bundle with curvatures $\left(\omega_{2},-\omega_{1}\right)$ carries half-flat $S U(3)$-structures on its total space for each choice of compatible conformal structure on M^{4}. Any analytic choice of ω_{1} gives a flow to a holonomy G_{2}-metric.

LIfting

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral. Let ω_{0} be any compatible Kähler form. Then the T^{2}-bundle with curvatures $\left(\omega_{2},-\omega_{1}\right)$ carries half-flat $S U(3)$-structures on its total space for each choice of compatible conformal structure on M^{4}. Any analytic choice of ω_{1} gives a flow to a holonomy G_{2}-metric.

More general than Apostolov and Salamon (2004): we do not need a hyperKähler triple ω_{i}.

LIfTING

If the Hitchin flow $\dot{\psi}_{+}(t)=d \sigma(t), \dot{\sigma}^{2}(t)=-d \psi_{-}(t)$ with initial data $\left(X, \sigma, \psi_{+}\right)$exists, then the Hitchin flow defines a holonomy G_{2}-structure on $X \times(a, b)$ whose multi-moment reduction is the given data on M^{4}.

Example

$M^{4} \rightarrow T^{4} /\{ \pm 1\}$ a Kummer surface, with $\omega_{c}=\omega_{1}+i \omega_{2}$ complex symplectic and integral. Let ω_{0} be any compatible Kähler form. Then the T^{2}-bundle with curvatures $\left(\omega_{2},-\omega_{1}\right)$ carries half-flat $S U(3)$-structures on its total space for each choice of compatible conformal structure on M^{4}. Any analytic choice of ω_{1} gives a flow to a holonomy G_{2}-metric.

More general than Apostolov and Salamon (2004): we do not need a hyperKähler triple ω_{i}. Donaldson (2006) asks whether the underlying compact manifold is always hyperKähler.

Summary

Summary

- Multi-moment maps are defined $v:(M, c) \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$, where $\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)$.

Summary

- Multi-moment maps are defined $v:(M, c) \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$, where $\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)$.
- These take values in a vector space and exist under weak topological assumptions on M or under cohomological assumptions on \mathfrak{g}.

Summary

- Multi-moment maps are defined $v:(M, c) \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$, where $\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)$.
- These take values in a vector space and exist under weak topological assumptions on M or under cohomological assumptions on \mathfrak{g}.
- Homogeneous examples may be described via orbits in $\Lambda^{*} \mathfrak{g}^{*}$.

Summary

- Multi-moment maps are defined $v:(M, c) \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$, where $\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)$.
- These take values in a vector space and exist under weak topological assumptions on M or under cohomological assumptions on \mathfrak{g}.
- Homogeneous examples may be described via orbits in $\Lambda^{*} \mathfrak{g}^{*}$.
- $(2,3)$-trivial Lie algebras may be classified in small dimensions and described and as certain one-dimensional solvable extensions of nilpotent algebras in general.

Summary

- Multi-moment maps are defined $v:(M, c) \rightarrow \mathcal{P}_{\mathfrak{g}}^{*}$, where $\mathcal{P}_{\mathfrak{g}}=\operatorname{ker}\left([\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}\right)$.
- These take values in a vector space and exist under weak topological assumptions on M or under cohomological assumptions on \mathfrak{g}.
- Homogeneous examples may be described via orbits in $\Lambda^{*} \mathfrak{g}^{*}$.
- $(2,3)$-trivial Lie algebras may be classified in small dimensions and described and as certain one-dimensional solvable extensions of nilpotent algebras in general.
- G_{2} holonomy manifolds with T^{2}-symmetry correspond via multi-moment map reduction to conformal data on M^{4} defined by a certain type of triple of symplectic forms.

References I

V. Apostolov and S. Salamon. Kähler reduction of metrics with holonomy G2. Comm. Math. Phys., 246(1):43-61, March 2004.
John C. Baez, Alexander E. Hoffnung, and Christopher L.
Rogers. Categorified symplectic geometry and the classical string. Comm. Math. Phys., 293(3):701-725, 2010. ISSN 0010-3616. doi: 10.1007/s00220-009-0951-9. URL http://dx.doi.org/10.1007/s00220-009-0951-9.
J. F. Cariñena, M. Crampin, and L. A. Ibort. On the multisymplectic formalism for first order field theories.
Differential Geom. Appl., 1(4):345-374, 1991. ISSN 0926-2245. doi: 10.1016/0926-2245(91)90013-Y. URL
http://dx.doi.org/10.1016/0926-2245(91)90013-Y.

References II

S. K. Donaldson. Two-forms on four-manifolds and elliptic equations. In Inspired by S. S. Chern, volume 11 of Nankai Tracts Math., pages 153-172. World Sci. Publ., Hackensack, NJ, 2006.
P. Gauduchon. La 1-forme de torsion d'une variété hermitienne compacte. Math. Ann., 267:495-518, 1984.
Mark J. Gotay, James Isenberg, Jerrold E. Marsden, and Richard Montgomery. Momentum maps and classical relativistic fields. part I: Covariant field theory, January 1998. eprint arXiv:physics/9801019 [math-ph].
D. Joyce. Compact hypercomplex and quaternionic manifolds. J. Differential Geom., 35:743-761, 1992.

