Multi-moment maps for special Ricci-flat metrics

Andrew Swann

Department of Mathematics, Centre for Quantum Geometry of Moduli Spaces, and DIGIT, University of Aarhus swann@math.au.dk

Regensburg, September 2018

Joint work with Thomas Bruun Madsen: arXiv:1803.06646, ...

DNRF95

OUTLINE

2 Multi-Hamiltonian torus actions

SINGULAR ORBITS AND TOPOLOGICAL QUOTIENTS Flat models General

REALISATION VIA MULTI-MOMENT MAPS Flat model General case

RICCI-FLAT SPECIAL HOLONOMY

The Berger holonomy classification 1955,..., has only the following non-trivial irreducible Ricci-flat geometries

Name	Group	Dimension	Form degrees
Calabi-Yau	SU(n)	2 <i>n</i>	2, <i>n</i> , <i>n</i>
HyperKähler	$\operatorname{Sp}(n)$	4 <i>n</i>	2, 2, 2
G_2 holonomy	G_2	7	3, 4
Spin(7) holonomy	Spin(7)	8	4

In the presence of symmetries, moment map techniques from symplectic geometry may be used if there is a closed form of degree 2, yielding many examples.

Symplectic constructions

TORIC CALABI-YAU

Include symplectic quotients of \mathbb{C}^N by subtori of T^N whose weights sum to zero.

$$\mathbb{C}^4 //\operatorname{diag}(e^{\mathrm{i}\theta}, e^{\mathrm{i}\theta}, e^{-\mathrm{i}\theta}, e^{-\mathrm{i}\theta}) = \left(\mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathbb{C}P(1)\right)$$

Hypertoric manifolds

Include hyperKähler quotients of \mathbb{H}^N by subtori of T^N .

$$T^*\mathbb{C}P(n)=\mathbb{H}^{n+1}///e^{\mathrm{i}\theta}\mathbb{1}_{n+1}$$

OTHER CONSTRUCTIONS

On the other hand there are complete special holonomy metrics not obtained in such a way. These include the first complete examples found by Bryant and Salamon (1989)

M^7	$\Lambda^2(S^4)$	$\Lambda^2(\mathbb{C}P^2)$	$S^3 \times \mathbb{R}^4$
Isom ₀	Sp(2)	SU(3)	$SU(2) \times SU(2) \times U(1)$
rank(Isom)	2	2	3

for G_2 , and the Spin-bundle of S^4 , $Isom_0 = SO(5) \times U(1)$ of rank 3, for Spin(7).

Аім

Exploit forms of higher degree in such cases

Note: on compact manifolds, Ricci-flat implies that Killing vector fields are parallel and so the holonomy reduces. We will thus be interested in the non-compact situation.

Multi-Hamiltonian torus actions

 (M, α) a manifold with a closed $\alpha \in \Omega^p(M)$ preserved by $G = T^n$ is *multi-Hamiltonian* if it there is a *G*-invariant

$$\nu \colon M \to \Lambda^{p-1} \mathfrak{g}^* \cong \mathbb{R}^N,$$
$$d\langle \nu, X_1 \land \dots \land X_{p-1} \rangle = \alpha(X_1, \dots, X_{p-1}, \cdot)$$

for all $X_i \in \mathfrak{g}$.

- For p = 2 this is an ordinary symplectic moment map.
- *v* invariant $\iff \alpha$ pulls-back to 0 on each T^n -orbit
- $b_1(M) = 0 \implies$ each T^n -action preserving α is multi-Hamiltonian

More generally, we can consider several closed invariant forms $\alpha_k \in \Omega^{p_k}(M)$ with multi-moment maps v_k and consider their product

$$\nu = (\nu_1, \ldots, \nu_m) \colon M \to \bigoplus_{k=1}^m \Lambda^{p_k - 1} \mathfrak{g}^*$$

An interesting case is when

$$\nu\colon M\to\mathbb{R}^N$$

is of full rank on the part M_0 of M where $G = T^n$ acts freely, and

 $N = \dim(M_0/G).$

Then ν locally exhibits M_0 as a principal T^n -bundle over $U \subset \mathbb{R}^N$.

Geometry	dim M	$\deg \alpha$	G
Symplectic/Kähler	2 <i>n</i>	2	T^n
Calabi-Yau	2 <i>n</i>	(2, n, n)	T^{n-1}
HyperKähler	4n	(2, 2, 2)	T^n
G_2	7	(3, 4)	T^3
Spin(7)	8	4	T^4

FLAT MODELS

The flat symplectic/Kähler model is

•
$$M = \mathbb{C}^n$$

• $\alpha = \omega = \sum_{k=1}^n dx_k \wedge dy_k = \frac{\mathbf{i}}{2} \sum_{k=1}^n dz_k \wedge d\overline{z}_k = \frac{\mathbf{i}}{2} \sum_{k=1}^n dz_{k\overline{k}}$
• $G = T^n = \{ \operatorname{diag}(e^{\mathbf{i}\theta_1}, \dots, e^{\mathbf{i}\theta_n}) \}$
• $v = \mu = (\mu_1, \dots, \mu_n)$
 $\mu_k = \frac{1}{2} |z_k|^2$

We have

$$\mu(\mathbb{C}^n) = [0,\infty)^n$$

and μ induces a homeomorphism

$$\mathbb{C}^n/T^n \to [0,\infty)^n$$

But the latter is a manifold with corners.

FLAT MODELS, CONTINUED

For G_2 the flat model is

•
$$M = S^1 \times \mathbb{C}^3$$

•
$$\alpha = (\varphi, *\varphi)$$

$$\varphi = \frac{\mathbf{i}}{2} dx (dz_{1\overline{1}} + dz_{2\overline{2}} + dz_{3\overline{3}}) + \operatorname{Re}(dz_{123})$$
$$*\varphi = \operatorname{Im}(dz_{123}) dx - \frac{1}{8} (dz_{1\overline{1}} + dz_{2\overline{2}} + dz_{3\overline{3}})^2$$

• $G = T^3 = S^1 \times T^2 = S^1 \times \{ \text{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}) \mid \theta_1 + \theta_2 + \theta_3 = 0 \}$ For Calabi-Yau the flat model is

• $M = \mathbb{C}^n$

•
$$\alpha = (\omega, \operatorname{Re} \Omega, \operatorname{Im} \Omega), \quad \omega = \frac{i}{2} \sum_{k=1}^{n} dz_{k\overline{k}}, \quad \Omega = dz_{12...n}$$

• $G = T^{n-1}$ = diagonal unitary matrices of determinant 1

Orbit spaces

For the G_2 case

$$M/G = (S^1 \times \mathbb{C}^3)/(S^1 \times T^2) = \mathbb{C}^3/T^2 = \operatorname{cone}(S^5)/T^2 = \operatorname{cone}(S^5/T^2)$$

And for the Calabi-Yau case

$$M/G = \mathbb{C}^{n}/T^{n-1} = \text{cone}(S^{2n-1}/T^{n-1})$$

$$S^{2n-1} = \left\{ (r_1 e^{it_1}, \dots, r_{n-1} e^{it_{n-1}}) \, \middle| \, r_k \ge 0 \, \forall k, \, \sum_{k=1}^{n-1} r_k^2 = 1 \right\}$$

Each T^{n-1} -orbit contains an element with $t_1 = t_2 = \cdots = t_{n-1}$ and that element is unique modulo $2\pi/n$ unless some r_k is zero.

Thus S^{2n-1}/T^{n-1} projects on to

$$\left\{ (r_1^2, \dots, r_{n-1}^2) \, \middle| \, r_k \ge 0, \, \sum_{k=1}^{n-1} r_k^2 = 1 \right\} = \Delta^{n-1} \equiv B^{n-1}$$

with fibres cirles over the interior, and points over the boundary. It follows that S^{2n-1}/T^{n-1} is homeomorphic to

$$\{(z, x) \in \mathbb{C} \times \mathbb{R}^{n-1} \mid |z|^2 + ||x||^2 = 1\} = S^n$$

and $M/G = \mathbb{C}^n/T^{n-1}$ is homeomorphic to

 $\operatorname{cone}(S^n) = \mathbb{R}^{n+1}$

Theorem

For all the multi-Hamiltonian geometries considered the torus actions has the property that every stabiliser is a connected subtorus. Local models around any special orbit with stabiliser T^k are given by $(T^k \times \mathbb{R}^k) \times V$ where V is a flat model.

For example, in the Calabi-Yau case suppose dim $\operatorname{Stab}_{T^{n-1}}(p) = k$. Then there are n - 1 - k directions U_1, \ldots, U_{n-1-k} tangent to the orbit through p. But ω pulls-back to 0 on the orbit, so the U_i are linearly independent over \mathbb{C} . Now $\operatorname{Stab}_{T^{n-1}}(p)$ is an Abelian group acting on $T_pM = \mathbb{C}^n$ as a subgroup of $\operatorname{SU}(n)$ and fixing a \mathbb{C}^{n-1-k} pointwise, so a subgroup of $\operatorname{SU}(k + 1)$. But this forces it to be a maximal torus.

COROLLARY

For the Calabi-Yau, hyperKähler, G_2 and Spin(7) cases, M/G is homeomorphic to a smooth manifold.

via $\exp_p \colon T_p M \to M$

Multi-moment maps for G_2

For G_2 the flat model is

$$\begin{split} M &= S^1 \times \mathbb{C}^3, \, \alpha = (\varphi, *\varphi) \\ \varphi &= \frac{\mathbf{i}}{2} dx (dz_{1\overline{1}} + dz_{2\overline{2}} + dz_{3\overline{3}}) + \operatorname{Re}(dz_{123}) \\ &* \varphi = \operatorname{Im}(dz_{123}) dx - \frac{1}{8} (dz_{1\overline{1}} + dz_{2\overline{2}} + dz_{3\overline{3}})^2 \end{split}$$

•
$$G = T^3 = S^1 \times T^2$$
 generators
 $U_1 = \frac{\partial}{\partial x}, \qquad U_k = 2 \operatorname{Re} \left(i \left(z_k \frac{\partial}{\partial z_k} - z_3 \frac{\partial}{\partial z_3} \right) \right), \quad k = 2, 3$

•
$$v = (v_1, v_2, v_3, v_0)$$

 $dv_i = \varphi(U_j, U_k, \cdot)$ $(ijk) = (123),$ $dv_0 = *\varphi(U_1, U_2, U_3, \cdot)$
 $v_0 + iv_1 = -iz_1z_2z_3,$ $2v_2 = |z_2|^2 - |z_3|^2,$ $2v_3 = |z_3|^2 - |z_1|^2$

BEHAVIOUR OF FLAT MODEL

PROPOSITION

In the
$$G_2$$
 flat model, $v: M = S^1 \times \mathbb{C}^3 \to \mathbb{R}^4$

$$v_0 + \mathbf{i}v_1 = -\mathbf{i}z_1z_2z_3, \quad 2v_2 = |z_2|^2 - |z_3|^2, \quad 2v_3 = |z_3|^2 - |z_1|^2$$

induces a homeomorphism $M/G = \mathbb{C}^3/T^2 \to \mathbb{R}^4$.

This also applies to the Spin(7)-case. Similar results hold in the hyperKähler and Calabi-Yau cases.

Main point: for $t = |z_3|^2$, $c = v_0^2 + v_1^2$, satisfies $f(t) := t(t - 2v_3)(t + 2v_2) = c$ with each factor ≥ 0 . $(t, v) \mapsto v$ is a continuous bijection $\mathbb{R}^4 = \mathbb{C}^3/T^2 \to \mathbb{R}^5 \to \mathbb{R}^4$, so a homeomorphism, by Brouwer's invariance of domain.

GENERAL QUOTIENTS VIA MULTI-MOMENT MAPS

Theorem

For multi-Hamiltonian G_2 , Spin(7) and hyperKähler cases the multi-moment map v induces local homeomorphisms

 $M/G \to \mathbb{R}^N$

Also know it holds for Calabi-Yau cases when $n \leq 3$. Ingredients in proof

- properties of commuting Killing vectors at zeros
- high-order approximation by the flat model
- local understanding of image sets of singular locus
- local injectivity argument at a point
- topological degree argument combined with deformation to flat model

Commuting Killing vector fields

X Killing implies

• ∇X is a skew-symmetric endomorphism of TM

•
$$\nabla^2_{A,B}X = -R_{X,A}B$$

So $X_p = 0$ implies $(\nabla^2 X)_p = 0$ and $(\nabla^3 X)_p = -(R \circ \nabla X)_p$. If X, Y are Killing, commute and $X_p = 0$, then

• ∇X and ∇Y commute at p.

 G_2 case, with $\operatorname{Stab}_{T^3}(p) = T^2$, $T_p M = \mathbb{R} \oplus \mathbb{C}^3$. Can choose our generators so that U_2, U_3 are zero at p with covariant derivatives

$$(\nabla U_2)_p = \operatorname{diag}(\mathbf{i}, 0, -\mathbf{i}), \quad (\nabla U_3)_p = \operatorname{diag}(0, \mathbf{i}, -\mathbf{i}).$$

Let *U* be any generator that is non-zero at *p*. Then $\nabla U \in \mathfrak{g}_2$ and ∇U commutes with ∇U_i , i = 1, 2. But rank $\mathfrak{g}_2 = 2$, so can adjust *U* to get at *p* U_1 unit length in \mathbb{R} and $\nabla U_1 = 0$.

HIGH-ORDER APPROXIMATION

 G_2 case, $\operatorname{Stab}_{T^3}(p) = T^2$. At p, can ensure φ and $*\varphi$ agree with the flat model,

$$U_2 = 0 = U_3, \qquad \nabla U_1 = 0, \qquad \nabla^2 U_2 = 0 = \nabla^2 U_3$$

and U_1 , ∇U_2 , ∇U_3 agree with the flat model. Now $dv_i = \varphi(U_j, U_k, \cdot)$, (ijk) = (123), and $dv_0 = *\varphi(U_1, U_2, U_3, \cdot)$. But $\nabla \varphi = 0 = \nabla *\varphi$, so

$$\begin{split} \nabla^r v_i &= \varphi(\nabla^{s_1} U_j, \nabla^{s_2} U_k, \, \cdot \,), \qquad r = s_1 + s_2 + 1, \ (ijk) = (123) \\ \nabla^r v_0 &= *\varphi(\nabla^{s_1} U_1, \nabla^{s_2} U_2, \nabla^{s_3} U_3, \, \cdot \,), \quad r = s_1 + s_2 + s_3 + 1. \end{split}$$

LEMMA

At p,

- v_2 , v_3 agree with the flat model to order 3,
- v_0 , v_1 agree with the flat model to order 4.

Image of singular locus

 G_2 case

$$dv_1 = \varphi(U_2, U_3, \cdot), \quad dv_2 = \varphi(U_3, U_1, \cdot)$$

$$dv_3 = \varphi(U_1, U_2, \cdot), \quad dv_0 = *\varphi(U_1, U_2, U_3, \cdot)$$

If U_1 vanishes on a collection of singular orbits, then v_2 , v_3 and v_0 are locally constant on that collection.

- T^2 stabiliser \mapsto a point in $\mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}$
- S^1 stabiliser \mapsto lines in (ν_0 = constant) of rational slope
- Any intersection is triple, with with the primitive slope vectors summing to zero

Thus we get a collection of trivalent graphs.

FLAT GENERAL

Complete G_2 examples

EXAMPLE

Foscolo et al. (2018) examples on $M_{m,n}$ have $M_{m,n}$ a circle bundle over the canonical bundle of $\mathbb{C}P^1 \times \mathbb{C}P^1$ with first Chern class (m, -n) over the zero section, symmetry group SU(2) × SU(2) × S¹:

Primitive directions (m - n, 0, n) (0, n - m, m) (n - m, m - n, -m - n)planar

EXPLICIT METRICS WITH SPECIAL HOLONOMY

Full holonomy G_2

$$g = \frac{1}{v_0}(\theta_1^2 + \theta_2^2 + \theta_3^2) + v_0^2(dv_1^2 + dv_2^2 + dv_3^2) + v_0^3dv_0^2$$

$$d\theta_i = dv_j \wedge dv_k, \quad (ijk) = (123)$$

Full holonomy Spin(7)

$$g = \frac{1}{v_1}\theta_0^2 + \frac{1}{v_2}\theta_1^2 + \frac{1}{v_3}\theta_2^2 + \frac{1}{v_0}\theta_3^2 + \frac{1}{v_2}v_3v_0dv_0^2 + v_1v_3v_0dv_1^2 + v_1v_2v_0dv_2^2 + v_1v_2v_3dv_3^2$$

$$d\theta_0 = -\nu_2 d\nu_{23}, \quad d\theta_1 = -\nu_3 d\nu_{03}, \quad d\theta_2 = -\nu_0 d\nu_{01}, \quad d\theta_3 = \nu_1 d\nu_{12}$$

References

References I

- Berger, M. (1955), 'Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes', *Bull. Soc. Math. France*, 83: 279–330.
- Bryant, R. L. and Salamon, S. M. (1989), 'On the construction of some complete metrics with exceptional holonomy', *Duke Math. J.* 58: 829-50.
- Foscolo, L., Haskins, M., and Nordström, J. (2018), Infinitely many new families of complete cohomogeneity one G₂-manifolds: G₂ analogues of the Taub-NUT and Eguchi-Hanson spaces, May, arXiv: 1805.02612 [math.DG].
- Madsen, T. B. and Swann, A. F. (2018), Toric geometry of G₂-manifolds, Mar., arXiv: 1803.06646 [math.DG].