Processing math: 100%
Aarhus University Seal

Ideals in groupoid C -algebras

Johannes Christensen (KU Leuven)
Tuesday 7 May 2024 15:15–16:15 Aud. D4 (1531-219)
Mathematics Seminar

There are many different constructions which one can use to build C-algebras from some kind of initial data. To name a few examples one can construct C-algebras from groups, directed graphs, group actions by homeomorphisms and many other kinds of dynamical systems. There is a general framework for constructing C-algebras using groupoids which generalises all these constructions. The groupoid C-algebras have in recent years come to play an increasingly prominent role in the theory of C-algebras. As in many other areas of mathematics, one of the natural questions one can ask about a mathematical object (like a C-algebra) is if it can loosely speaking be decomposed into smaller and more manageable objects. One way to provide such a decomposition for C-algebras is to describe all primitive ideals of the C-algebra. In this talk I will report on a joint project with Sergey Neshveyev where we investigate the primitive ideals in groupoid C-algebras and describe them for a large class of groupoids. The talk is aimed at non-experts.

Organised by: Mathematics Group
Contact: Jacob Schach Møller Revised: 12.04.2024