Aarhus University Seal

Lattice Gauge Field Theory and Prismatic Sets

by B. Akyar and J. L. Dupont
Preprints Number 3 (August 2008)
We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set $S$ and the prismatic star of $S$. Both have the same homotopy type as $S$ and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group $G$ and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying space of $G$. In turn this defines a $G$-bundle over the prismatic star.
Format available: PDF (446 KB)