On badly approximable complex numbers
by R. Esdahl-Schou and S. Kristensen
Preprints
Number 3 (March 2009)
We show that the set of complex numbers which are badly approximable by ratios of elements of Z[√−D], where D∈{1,2,3,5,7,11,19,43,67,163} has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably regular fractal set.